1
|
Jung J, Kim TH, Park JY, Kwon S, Sung JS, Kang MJ, Jose J, Lee M, Shin HJ, Pyun JC. SARS-CoV-2 vaccine based on ferritin complexes with screened immunogenic sequences from the Fv-antibody library. J Mater Chem B 2025; 13:1383-1394. [PMID: 39668674 DOI: 10.1039/d4tb01595a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
In this study, the vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was developed using ferritin complexes with the immunogenic sequences screened against the SARS-CoV-2 spike protein (SP) from the Fv-antibody library. The Fv-antibody library was prepared on the outer membrane of E. coli by the expression of the VH region of immunoglobulin G (IgG) with a randomized complementarity-determining region 3 (CDR3). Four Fv-antibodies to the receptor-binding domain (RBD) were screened from the Fv-antibody library, which had a comparable binding constant (KD) between SARS-CoV-2 SP and the angiotensin-converting enzyme 2 (ACE2) receptor. The binding sites of screened Fv-antibodies on the RBD were analyzed using a docking analysis, and these binding sites were used as immunogenic sequences for the vaccine. The four immunogenic sequences were modified and co-expressed as a part of ferritin which was assembled into a ferritin complex. After the vaccination of ferritin complexes to mice, the anti-sera were analyzed to have a high enough titer. Additionally, the immune responses were found to be activated by vaccination, such as the expression of IgG subclasses and the increased level of cytokines. The neutralizing activity of the anti-sera was estimated using a cell-based infection assay based on pseudo-virus expressing the SP of SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Tae-Hun Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Jae-Yeon Park
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Soonil Kwon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Jeong Soo Sung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul 02456, Korea
| | - Joachim Jose
- Institute of Pharmaceutical and Medical Chemistry, University of Munster, Münster (48149), Germany
| | - Misu Lee
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Hyun-Jin Shin
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| |
Collapse
|
2
|
Watanabe T, Hata H, Mochizuki Y, Yokoyama F, Hasegawa T, Kumar N, Kurosaki T, Ohara O, Fukuyama H. Development of a new genotype-phenotype linked antibody screening system. eLife 2024; 13:RP95346. [PMID: 39558690 PMCID: PMC11575895 DOI: 10.7554/elife.95346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
Antibodies are powerful tools for the therapy and diagnosis of various diseases. In addition to conventional hybridoma-based screening, recombinant antibody-based screening has become a common choice; however, its application is hampered by two factors: (1) screening starts after Ig gene cloning and recombinant antibody production only, and (2) the antibody is composed of paired chains, heavy and light, commonly expressed by two independent expression vectors. Here, we introduce a method for the rapid screening of recombinant monoclonal antibodies by establishing a Golden Gate-based dual-expression vector and in-vivo expression of membrane-bound antibodies. Using this system, we demonstrate the rapid isolation of influenza cross-reactive antibodies with high affinity from immunized mice within 7 days. This system is particularly useful for isolating therapeutic or diagnostic antibodies, for example during foreseen pandemics.
Collapse
Affiliation(s)
- Takashi Watanabe
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hikaru Hata
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoshiki Mochizuki
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Fumie Yokoyama
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tomoko Hasegawa
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Naveen Kumar
- Laboratory for Integrated Bioinformatics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Osamu Ohara
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Hidehiro Fukuyama
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Division of Immunology, Near-InfraRed Photo-Immunotherapy Research Institute, Kansai Medical University, Osaka, Japan
- INSERM EST, Strasbourg Cedex, France
| |
Collapse
|
3
|
Ramezani Khorsand F, Hakimi Naeini S, Molakarimi M, Dehnavi E, Zeinoddini M, Sajedi RH. Surface display provides an efficient expression system for production of recombinant proteins and bacterial whole cell biosensor in E. coli. Anal Biochem 2024; 694:115599. [PMID: 38964699 DOI: 10.1016/j.ab.2024.115599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
A novel bacterial display vector based on Escherichia coli has been engineered for recombinant protein production and purification. Accordingly, a construct harboring the enhanced green fluorescent protein (EGFP) and the ice nucleation protein (INP) was designed to produce EGFP via the surface display in E. coli cells. The fusion EGFP-expressed cells were then investigated using fluorescence measurement, SDS- and native-PAGE before and after TEV protease digestion. The displayed EGFP was obtained with a recovery of 57.7 % as a single band on SDS-PAGE. Next, the efficiency of the cell surface display for mutant EGFP (EGFP S202H/Q204H) was examined in sensing copper ions. Under optimal conditions, a satisfactorily linear range for copper ions concentrations up to 10 nM with a detection limit of 0.073 nM was obtained for cell-displayed mutant EGFP (mEGFP). In the presence of bacterial cell lysates and purified mEGFP, response to copper was linear in the 2-10 nM and 0.1-2 μM concentration range, respectively, with a 1.3 nM and 0.14 μM limit of detection. The sensitivity of bacterial cell lysates and surface-displayed mEGFP in the detection of copper ions is higher than the purified mEGFP.
Collapse
Affiliation(s)
- Fereshteh Ramezani Khorsand
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| | - Saghi Hakimi Naeini
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| | - Maryam Molakarimi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| | - Ehsan Dehnavi
- Gene Transfer Pioneers (GTP) Research Group, Incubation Center of Pharmaceutical Technologies, Shahid Beheshti University of Medical Science, Tehran, Iran.
| | - Mehdi Zeinoddini
- Department of Bioscience and Biotechnology, Malek Ashtar University of Technology, Tehran, Iran.
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| |
Collapse
|
4
|
Adhikari RP, Alem F, Kemboi D, Kanipakala T, Sherchand SP, Kailasan S, Purcell BK, Heine HS, Russell-Lodrigue K, Etobayeva I, Howell KA, Vu H, Shulenin S, Holtsberg FW, Roy CJ, Hakami RM, Nelson DC, Aman MJ. Engineered antibodies targeted to bacterial surface integrate effector functions with toxin neutralization to provide superior efficacy against bacterial infections. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.23.24313920. [PMID: 39398995 PMCID: PMC11469364 DOI: 10.1101/2024.09.23.24313920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Anti-bacterial monoclonal antibody (mAb) therapies either rely on toxin neutralization or opsonophagocytic killing (OPK). Toxin neutralization protects the host from toxin-induced damage, while leaving the organism intact. OPK inducing antibodies clear the bacteria but leave the released toxins unencountered. Infection site targeted anti-toxin antibodies (ISTAbs) that we report here addresses this binary paradigm by combining both functionalities into a single molecule. ISTAbs consist of cell wall targeting (CWT) domains of bacteriophage endolysins fused to toxin neutralizing mAbs (IgG). CWT governs specific binding to the surface of bacteria while the IgG variable domain neutralizes the toxins as they are released. The complex is then cleared by phagocytic cells. As proof of concept, we generated several ISTAb prototypes targeting major toxins from two Gram-positive spore forming pathogens that have a high clinical significance; Clostridium difficile , causative agent of the most common hospital-acquired infection, and Bacillus anthracis , a Category A select agent pathogen. Both groups of ISTAbs exhibited potent toxin neutralization, binding to their respective bacterial cells, and induction of opsonophagocytosis. In mice infected with B. anthracis , ISTAbs exhibit significantly higher efficacy than parental IgG in both pre- and post-challenge models. Furthermore, ISTAbs fully protected against B. anthracis infection in a nonhuman primate (NHP) aerosol challenge model. These findings establish that as a platform technology, ISTAbs are broadly applicable for therapeutic intervention against several toxigenic bacterial pathogens.
Collapse
|
5
|
Jeon EJ, Lee SM, Hong HS, Jeong KJ. Design of fully synthetic signal peptide library and its use for enhanced secretory production of recombinant proteins in Corynebacterium glutamicum. Microb Cell Fact 2024; 23:252. [PMID: 39285401 PMCID: PMC11406804 DOI: 10.1186/s12934-024-02516-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Corynebacterium glutamicum is an attractive host for secretory production of recombinant proteins, including high-value industrial enzymes and therapeutic proteins. The choice of an appropriate signaling peptide is crucial for efficient protein secretion. However, due to the limited availability of signal peptides in C. glutamicum, establishing an optimal secretion system is challenging. RESULT We constructed a signal peptide library for the isolation of target-specific signal peptides and developed a highly efficient secretory production system in C. glutamicum. Based on the sequence information of the signal peptides of the general secretion-dependent pathway in C. glutamicum, a synthetic signal peptide library was designed, and validated with three protein models. First, we examined endoxylanase (XynA) and one potential signal peptide (C1) was successfully isolated by library screening on xylan-containing agar plates. With this C1 signal peptide, secretory production of XynA as high as 3.2 g/L could be achieved with high purity (> 80%). Next, the signal peptide for ⍺-amylase (AmyA) was screened on a starch-containing agar plate. The production titer of the isolated signal peptide (HS06) reached 1.48 g/L which was 2-fold higher than that of the well-known Cg1514 signal peptide. Finally, we isolated the signal peptide for the M18 single-chain variable fragment (scFv). As an enzyme-independent screening tool, we developed a fluorescence-dependent screening tool using Fluorescence-Activating and Absorption-Shifting Tag (FAST) fusion, and successfully isolated the optimal signal peptide (18F11) for M18 scFv. With 18F11, secretory production as high as 228 mg/L was achieved, which was 3.4-fold higher than previous results. CONCLUSIONS By screening a fully synthetic signal peptide library, we achieved improved production of target proteins compared to previous results using well-known signal peptides. Our synthetic library provides a useful resource for the development of an optimal secretion system for various recombinant proteins in C. glutamicum, and we believe this bacterium to be a more promising workhorse for the bioindustry.
Collapse
Affiliation(s)
- Eun Jung Jeon
- Department of Chemical and Biomolecular Engineering, BK21 Plus Program, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Seong Min Lee
- Department of Chemical and Biomolecular Engineering, BK21 Plus Program, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hee Soo Hong
- Department of Chemical and Biomolecular Engineering, BK21 Plus Program, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering, BK21 Plus Program, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- Institute for The BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
6
|
Irvine EB, Reddy ST. Advancing Antibody Engineering through Synthetic Evolution and Machine Learning. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:235-243. [PMID: 38166249 DOI: 10.4049/jimmunol.2300492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/20/2023] [Indexed: 01/04/2024]
Abstract
Abs are versatile molecules with the potential to achieve exceptional binding to target Ags, while also possessing biophysical properties suitable for therapeutic drug development. Protein display and directed evolution systems have transformed synthetic Ab discovery, engineering, and optimization, vastly expanding the number of Ab clones able to be experimentally screened for binding. Moreover, the burgeoning integration of high-throughput screening, deep sequencing, and machine learning has further augmented in vitro Ab optimization, promising to accelerate the design process and massively expand the Ab sequence space interrogated. In this Brief Review, we discuss the experimental and computational tools employed in synthetic Ab engineering and optimization. We also explore the therapeutic challenges posed by developing Abs for infectious diseases, and the prospects for leveraging machine learning-guided protein engineering to prospectively design Abs resistant to viral escape.
Collapse
Affiliation(s)
- Edward B Irvine
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
7
|
Osgerby A, Overton TW. Approaches for high-throughput quantification of periplasmic recombinant proteins. N Biotechnol 2023; 77:149-160. [PMID: 37708933 DOI: 10.1016/j.nbt.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
The Gram-negative periplasm is a convenient location for the accumulation of many recombinant proteins including biopharmaceutical products. It is the site of disulphide bond formation, required by some proteins (such as antibody fragments) for correct folding and function. It also permits simpler protein release and downstream processing than cytoplasmic accumulation. As such, targeting of recombinant proteins to the E. coli periplasm is a key strategy in biologic manufacture. However, expression and translocation of each recombinant protein requires optimisation including selection of the best signal peptide and growth and production conditions. Traditional methods require separation and analysis of protein compositions of periplasmic and cytoplasmic fractions, a time- and labour-intensive method that is difficult to parallelise. Therefore, approaches for high throughput quantification of periplasmic protein accumulation offer advantages in rapid process development.
Collapse
Affiliation(s)
- Alexander Osgerby
- School of Chemical Engineering and Institute of Microbiology and Infection, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Tim W Overton
- School of Chemical Engineering and Institute of Microbiology and Infection, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
8
|
Jung J, Bong JH, Sung JS, Park JH, Kim TH, Kwon S, Kang MJ, Jose J, Pyun JC. Immunoaffinity biosensors for the detection of SARS-CoV-1 using screened Fv-antibodies from an autodisplayed Fv-antibody library. Biosens Bioelectron 2023; 237:115439. [PMID: 37301177 PMCID: PMC10223632 DOI: 10.1016/j.bios.2023.115439] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
The detection of severe acute respiratory syndrome coronavirus (SARS-CoV-1) was demonstrated using screened Fv-antibodies for SPR biosensor and impedance spectrometry. The Fv-antibody library was first prepared on the outer membrane of E. coli using autodisplay technology and the Fv-variants (clones) with a specific affinity toward the SARS-CoV-1 spike protein (SP) were screened using magnetic beads immobilized with the SP. Upon screening the Fv-antibody library, two target Fv-variants (clones) with a specific binding affinity toward the SARS-CoV-1 SP were determined and the Fv-antibodies on two clones were named "Anti-SP1" (with CDR3 amino acid sequence: 1GRTTG5NDRPD11Y) and "Anti-SP2" (with CDR3 amino acid sequence: 1CLRQA5GTADD11V). The binding affinities of the two screened Fv-variants (clones) were analyzed using flow cytometry and the binding constants (KD) were estimated to be 80.5 ± 3.6 nM for Anti-SP1 and 45.6 ± 8.9 nM for Anti-SP2 (n = 3). In addition, the Fv-antibody including three CDR regions (CDR1, CDR2, and CDR3) and frame regions (FRs) between the CDR regions was expressed as a fusion protein (Mw. 40.6 kDa) with a green fluorescent protein (GFP) and the KD values of the expressed Fv-antibodies toward the SP estimated to be 15.3 ± 1.5 nM for Anti-SP1 (n = 3) and 16.3 ± 1.7 nM for Anti-SP2 (n = 3). Finally, the expressed Fv-antibodies screened against SARS-CoV-1 SP (Anti-SP1 and Anti-SP2) were applied for the detection of SARS-CoV-1. Consequently, the detection of SARS-CoV-1 was demonstrated to be feasible using the SPR biosensor and impedance spectrometry utilizing the immobilized Fv-antibodies against the SARS-CoV-1 SP.
Collapse
Affiliation(s)
- Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Ji-Hong Bong
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jeong Soo Sung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jun-Hee Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Tae-Hun Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Soonil Kwon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Joachim Jose
- Institute of Pharmaceutical and Medical Chemistry, Westphalian Wilhelms-University Münster, Münster, 48149, Germany
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
9
|
Robinson MP, Jung J, Lopez-Barbosa N, Chang M, Li M, Jaroentomeechai T, Cox EC, Zheng X, Berkmen M, DeLisa MP. Isolation of full-length IgG antibodies from combinatorial libraries expressed in the cytoplasm of Escherichia coli. Nat Commun 2023; 14:3514. [PMID: 37316535 PMCID: PMC10267130 DOI: 10.1038/s41467-023-39178-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/01/2023] [Indexed: 06/16/2023] Open
Abstract
Here we describe a facile and robust genetic selection for isolating full-length IgG antibodies from combinatorial libraries expressed in the cytoplasm of redox-engineered Escherichia coli cells. The method is based on the transport of a bifunctional substrate comprised of an antigen fused to chloramphenicol acetyltransferase, which allows positive selection of bacterial cells co-expressing cytoplasmic IgGs called cyclonals that specifically capture the chimeric antigen and sequester the antibiotic resistance marker in the cytoplasm. The utility of this approach is first demonstrated by isolating affinity-matured cyclonal variants that specifically bind their cognate antigen, the leucine zipper domain of a yeast transcriptional activator, with subnanomolar affinities, which represent a ~20-fold improvement over the parental IgG. We then use the genetic assay to discover antigen-specific cyclonals from a naïve human antibody repertoire, leading to the identification of lead IgG candidates with affinity and specificity for an influenza hemagglutinin-derived peptide antigen.
Collapse
Affiliation(s)
- Michael-Paul Robinson
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Jinjoo Jung
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Natalia Lopez-Barbosa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Matthew Chang
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Mingji Li
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Thapakorn Jaroentomeechai
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Emily C Cox
- Biomedical and Biological Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Xiaolu Zheng
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Mehmet Berkmen
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
| | - Matthew P DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA.
- Biomedical and Biological Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
- Cornell Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
10
|
Abstract
As a natural function, antibodies defend the host from infected cells and pathogens by recognizing their pathogenic determinants. Antibodies (Abs) gained wide acceptance with an enormous impact on human health and have predominantly captured the arena of bio-therapeutics and bio-diagnostics. The scope of Ab-based biologics is vast, and it is likely to solve many unmet clinical needs in future. The majority of attention is now devoted to developing innovative technologies for manufacturing and engineering Abs, better suited to satisfy human needs. The advent of Ab engineering technologies (AET) led to phenomenal developments leading to the generation of Abs-/Ab-derived molecules with desirable functional properties proportional to their expanding requirements. Evolution brought by AET, from the naturally occurring Ab forms to several advanced Ab formats and derivatives, was much needed as it is of great interest to the pharmaceutical industry. Thus, numerous advancements in AET have propelled success in therapeutic Ab development, along with the potential for ever-increasing improvements. Unique characteristics of Abs, such as its diversity, specificity, structural integrity and an array of possible applications, together inspire continuous innovation in the field. Overall, the AET could assist in conquer of several limitations of Abs in terms of their applicability in the field of therapeutics, diagnostics and research; AET has so far led to the production of next-generation Abs, which have revolutionized these arenas. Here in this review, we discuss the various distinguished engineering platforms for Ab development and the progress in modern therapeutics by the so-called "next-generation Abs."
Collapse
Affiliation(s)
- Divya Kandari
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Banaras Hindu University, Varanasi, India.,Amity University Rajasthan, Jaipur, India
| |
Collapse
|
11
|
Mahdavi SZB, Oroojalian F, Eyvazi S, Hejazi M, Baradaran B, Pouladi N, Tohidkia MR, Mokhtarzadeh A, Muyldermans S. An overview on display systems (phage, bacterial, and yeast display) for production of anticancer antibodies; advantages and disadvantages. Int J Biol Macromol 2022; 208:421-442. [PMID: 35339499 DOI: 10.1016/j.ijbiomac.2022.03.113] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 03/17/2022] [Indexed: 11/05/2022]
Abstract
Antibodies as ideal therapeutic and diagnostic molecules are among the top-selling drugs providing considerable efficacy in disease treatment, especially in cancer therapy. Limitations of the hybridoma technology as routine antibody generation method in conjunction with numerous developments in molecular biology led to the development of alternative approaches for the streamlined identification of most effective antibodies. In this regard, display selection technologies such as phage display, bacterial display, and yeast display have been widely promoted over the past three decades as ideal alternatives to traditional methods. The display of antibodies on phages is probably the most widespread of these methods, although surface display on bacteria or yeast have been employed successfully, as well. These methods using various sizes of combinatorial antibody libraries and different selection strategies possessing benefits in screening potency, generating, and isolation of high affinity antibodies with low risk of immunogenicity. Knowing the basics of each method assists in the design and retrieval process of antibodies suitable for different diseases, including cancer. In this review, we aim to outline the basics of each library construction and its display method, screening and selection steps. The advantages and disadvantages in comparison to alternative methods, and their applications in antibody engineering will be explained. Finally, we will review approved or non-approved therapeutic antibodies developed by employing these methods, which may serve as therapeutic antibodies in cancer therapy.
Collapse
Affiliation(s)
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Shirin Eyvazi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Maryam Hejazi
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Serge Muyldermans
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, China..
| |
Collapse
|
12
|
Mukai H, Ogawa K, Kato N, Kawakami S. Recent advances in lipid nanoparticles for delivery of nucleic acid, mRNA, and gene editing-based therapeutics. Drug Metab Pharmacokinet 2022; 44:100450. [PMID: 35381574 PMCID: PMC9363157 DOI: 10.1016/j.dmpk.2022.100450] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 12/26/2022]
Abstract
Lipid nanoparticles (LNPs) are becoming popular as a means of delivering therapeutics, including those based on nucleic acids and mRNA. The mRNA-based coronavirus disease 2019 vaccines are perfect examples to highlight the role played by drug delivery systems in advancing human health. The fundamentals of LNPs for the delivery of nucleic acid- and mRNA-based therapeutics, are well established. Thus, future research on LNPs will focus on addressing the following: expanding the scope of drug delivery to different constituents of the human body, expanding the number of diseases that can be targeted, and studying the change in the pharmacokinetics of LNPs under physiological and pathological conditions. This review article provides an overview of recent advances aimed at expanding the application of LNPs, focusing on the pharmacokinetics and advantages of LNPs. In addition, analytical techniques, library construction and screening, rational design, active targeting, and applicability to gene editing therapy have also been discussed.
Collapse
Affiliation(s)
- Hidefumi Mukai
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki, 852-8588, Japan; Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| | - Koki Ogawa
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki, 852-8588, Japan
| | - Naoya Kato
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki, 852-8588, Japan
| | - Shigeru Kawakami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki, 852-8588, Japan.
| |
Collapse
|
13
|
Abstract
Fc-mediated effector functions are important for the clearance of pathologic cells by therapeutic IgG antibodies through two mechanisms: via the activation of the classical complement pathway and through the binding to Fcγ receptors (FcγRs) which mediate clearance of targeted cells by antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) by effector cells such as macrophages, NK cells, and other leukocytes subsets. Complement activation results in direct cell killing through the formation of the membrane attack complex (MAC, complement-dependent cytotoxicity or CDC) and in the deposition of complement opsonins on pathogen surfaces. The latter are recognized by complement receptors on effector cells in turn triggering complement-dependent cell cytotoxicity and phagocytosis (CDCC and CDCP, respectively). Little is known about the role of CDCC and CDCP on therapeutic antibody function because on the one hand, IgG isotype antibodies bind to both FcγR and C1q to activate the complement pathway, and on the other, immune cells express complement receptor as well as FcγRs. We engineered IgG1 Fc domains that bind with high affinity to C1q but have very little or no binding to FcγR. To this end, we employed display of IgG in E. coli (which lack protein glycosylation machinery) for the screening of very large libraries (>2 × 109) of randomly mutated human Fc domains to isolate Fc variants that bind to C1q. Herein we introduce and describe the method.
Collapse
Affiliation(s)
- Chang-Han Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.
| | - George Delidakis
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
14
|
Hanning KR, Minot M, Warrender AK, Kelton W, Reddy ST. Deep mutational scanning for therapeutic antibody engineering. Trends Pharmacol Sci 2021; 43:123-135. [PMID: 34895944 DOI: 10.1016/j.tips.2021.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 12/24/2022]
Abstract
The biophysical and functional properties of monoclonal antibody (mAb) drug candidates are often improved by protein engineering methods to increase the probability of clinical efficacy. One emerging method is deep mutational scanning (DMS) which combines the power of exhaustive protein mutagenesis and functional screening with deep sequencing and bioinformatics. The application of DMS has yielded significant improvements to the affinity, specificity, and stability of several preclinical antibodies alongside novel applications such as introducing multi-specific binding properties. DMS has also been applied directly on target antigens to precisely map antibody-binding epitopes and notably to profile the mutational escape potential of viral targets (e.g., SARS-CoV-2 variants). Finally, DMS combined with machine learning is enabling advances in the computational screening and engineering of therapeutic antibodies.
Collapse
Affiliation(s)
- Kyrin R Hanning
- Te Huataki Waiora School of Health, University of Waikato, Hamilton 3240, New Zealand
| | - Mason Minot
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel 4058, Switzerland
| | - Annmaree K Warrender
- Te Huataki Waiora School of Health, University of Waikato, Hamilton 3240, New Zealand
| | - William Kelton
- Te Huataki Waiora School of Health, University of Waikato, Hamilton 3240, New Zealand.
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel 4058, Switzerland.
| |
Collapse
|
15
|
Palma M. Perspectives on passive antibody therapy and peptide-based vaccines against emerging pathogens like SARS-CoV-2. Germs 2021; 11:287-305. [PMID: 34422699 DOI: 10.18683/germs.2021.1264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/25/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
The current epidemic of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is raising awareness of the need to act faster when dealing with new pathogens. Exposure to an emerging pathogen generates an antibody response that can be used for preventing and treating the infection. These antibodies might have a high specificity to a target, few side effects, and are useful in the absence of an effective vaccine for treating immunocompromised individuals. The approved antibodies against the receptor-binding domain (RBD) of the viral spike protein of SARS-CoV-2 (e.g., regdanvimab, bamlanivimab, etesevimab, and casirivimab/imdevimab) have been selected from the antibody repertoire of B cells from convalescent patients using flow cytometry, next-generation sequencing, and phage display. This encourages use of these techniques especially phage display, because it does not require expensive types of equipment and can be performed on the lab bench, thereby making it suitable for labs with limited resources. Also, the antibodies in blood samples from convalescent patients can be used to screen pre-made peptide libraries to identify epitopes for vaccine development. Different types of vaccines against SARS-CoV-2 have been developed, including inactivated virus vaccines, mRNA-based vaccines, non-replicating vector vaccines, and protein subunits. mRNA vaccines have numerous advantages over existing vaccines, such as efficacy, ease of manufacture, safety, and cost-effectiveness. Additionally, epitope vaccination may constitute an attractive strategy to induce high levels of antibodies against a pathogen and phages might be used as immunogenic carriers of such peptides. This is a point worth considering further, as phage-based vaccines have been shown to be safe in clinical trials and phages are easy to produce and tolerate high temperatures. In conclusion, identification of the antibody repertoire of recovering patients, and the epitopes they recognize, should be an attractive alternative option for developing therapeutic and prophylactic antibodies and vaccines against emerging pathogens.
Collapse
Affiliation(s)
- Marco Palma
- PhD, Independent researcher, Calle San Jose, Torrevieja, 03181, Spain
| |
Collapse
|
16
|
Kelly SM, Larsen KR, Darling R, Petersen AC, Bellaire BH, Wannemuehler MJ, Narasimhan B. Single-dose combination nanovaccine induces both rapid and durable humoral immunity and toxin neutralizing antibody responses against Bacillus anthracis. Vaccine 2021; 39:3862-3870. [PMID: 34090702 DOI: 10.1016/j.vaccine.2021.05.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/24/2021] [Accepted: 05/23/2021] [Indexed: 12/11/2022]
Abstract
Bacillus anthracis, the causative agent of anthrax, continues to be a prominent biological warfare and bioterrorism threat. Vaccination is likely to remain the most effective and user-friendly public health measure to counter this threat in the foreseeable future. The commercially available AVA BioThrax vaccine has a number of shortcomings where improvement would lead to a more practical and effective vaccine for use in the case of an exposure event. Identification of more effective adjuvants and novel delivery platforms is necessary to improve not only the effectiveness of the anthrax vaccine, but also enhance its shelf stability and ease-of-use. Polyanhydride particles have proven to be an effective platform at adjuvanting the vaccine-associated adaptive immune response as well as enhancing stability of encapsulated antigens. Another class of adjuvants, the STING pathway-targeting cyclic dinucleotides, have proven to be uniquely effective at inducing a beneficial inflammatory response that leads to the rapid induction of high titer antibodies post-vaccination capable of providing protection against bacterial pathogens. In this work, we evaluate the individual contributions of cyclic di-GMP (CDG), polyanhydride nanoparticles, and a combination thereof towards inducing neutralizing antibody (nAb) against the secreted protective antigen (PA) from B. anthracis. Our results show that the combination nanovaccine elicited rapid, high titer, and neutralizing IgG anti-PA antibody following single dose immunization that persisted for at least 108 DPI.
Collapse
Affiliation(s)
- Sean M Kelly
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States; Nanovaccine Institute, Ames, IA, United States
| | - Kristina R Larsen
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States; Interdepartmental Microbiology Program, Iowa State University, Ames, IA, United States
| | - Ross Darling
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Andrew C Petersen
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Bryan H Bellaire
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States; Interdepartmental Microbiology Program, Iowa State University, Ames, IA, United States; Nanovaccine Institute, Ames, IA, United States
| | - Michael J Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States; Nanovaccine Institute, Ames, IA, United States.
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States; Nanovaccine Institute, Ames, IA, United States.
| |
Collapse
|
17
|
Zhang L, Cong Y, Li H, Chen L, Li B, Huang JX, Dong J. Construction of a full-length antibody phage display vector. J Immunol Methods 2021; 494:113052. [PMID: 33838171 DOI: 10.1016/j.jim.2021.113052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/25/2021] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
Antibody phage display technology plays an important role in the development of monoclonal antibodies, humanization, and affinity evolution of antibodies. Thus far, antibody phage display mainly focuses on the display of antibody variable region or antigen-binding fragments. In this study, we constructed a new phage display system that can display full-length IgG antibodies on M13 phage. The phage display vector contains open reading frames (ORFs) encoding full-length the heavy and light chains of the antibody. NcoI/XhoI restriction enzyme sites were used to clone the variable region of the heavy chain into the heavy chain ORF, and SalI/NotI sites were used to clone the light chain variable region. SnaBI and SbfI restriction enzyme sites were designed between the cloning sites of heavy and light chains, respectively, to increase the cloning efficiency. The full-length antibodies of nivolumab against programmed death factor 1, trastuzumab against human epidermal growth factor 2, diL2K against the cluster of differentiation 3 epsilon, and adalimumab against tumor necrosis factor- alpha were displayed on phage with the vector. Phage-displayed antibodies showed their original antigen-binding activity. An amber codon shifted the vector to express IgG in non-suppressed Escherichia coli. The heavy and light chains of the E. coli-expressed antibodies could be detected through western blotting, and the antigen-binding activity was confirmed using an enzyme-linked immunosorbent assay. Biopanning was carried out with a model phage display antibody library, and the results showed that the novel phage system could be used for antibody library construction and highly efficient antibody screening. The reported system is the first full-length antibody phage display system.
Collapse
Affiliation(s)
- Liqian Zhang
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Yang Cong
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Haimei Li
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Limei Chen
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Baowei Li
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Johnny X Huang
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Jinhua Dong
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China; World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan.
| |
Collapse
|
18
|
Valldorf B, Hinz SC, Russo G, Pekar L, Mohr L, Klemm J, Doerner A, Krah S, Hust M, Zielonka S. Antibody display technologies: selecting the cream of the crop. Biol Chem 2021; 403:455-477. [PMID: 33759431 DOI: 10.1515/hsz-2020-0377] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Antibody display technologies enable the successful isolation of antigen-specific antibodies with therapeutic potential. The key feature that facilitates the selection of an antibody with prescribed properties is the coupling of the protein variant to its genetic information and is referred to as genotype phenotype coupling. There are several different platform technologies based on prokaryotic organisms as well as strategies employing higher eukaryotes. Among those, phage display is the most established system with more than a dozen of therapeutic antibodies approved for therapy that have been discovered or engineered using this approach. In recent years several other technologies gained a certain level of maturity, most strikingly mammalian display. In this review, we delineate the most important selection systems with respect to antibody generation with an emphasis on recent developments.
Collapse
Affiliation(s)
- Bernhard Valldorf
- Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Steffen C Hinz
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287Darmstadt, Germany
| | - Giulio Russo
- Abcalis GmbH, Inhoffenstrasse 7, D-38124Braunschweig, Germany.,Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106Braunschweig, Germany
| | - Lukas Pekar
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Laura Mohr
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, Max-von-Laue-Strasse 13, D-60438Frankfurt am Main, Germany
| | - Janina Klemm
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287Darmstadt, Germany
| | - Achim Doerner
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106Braunschweig, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| |
Collapse
|
19
|
Kang SH, Lee CH. Development of Therapeutic Antibodies and Modulating the Characteristics of Therapeutic Antibodies to Maximize the Therapeutic Efficacy. BIOTECHNOL BIOPROC E 2021; 26:295-311. [PMID: 34220207 PMCID: PMC8236339 DOI: 10.1007/s12257-020-0181-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
Monoclonal antibodies (mAb) have been used as therapeutic agents for various diseases, and immunoglobulin G (IgG) is mainly used among antibody isotypes due to its structural and functional properties. So far, regardless of the purpose of the therapeutic antibody, wildtype IgG has been mainly used, but recently, the engineered antibodies with various strategies according to the role of the therapeutic antibody have been used to maximize the therapeutic efficacy. In this review paper, first, the overall structural features and functional characteristics of antibody IgG, second, the old and new techniques for antibody discovery, and finally, several antibody engineering strategies for maximizing therapeutic efficacy according to the role of a therapeutic antibody will be introduced.
Collapse
Affiliation(s)
- Seung Hyun Kang
- grid.31501.360000 0004 0470 5905Department of Pharmacology, Seoul National University College of Medicine, Seoul, 03080 Korea
| | - Chang-Han Lee
- grid.31501.360000 0004 0470 5905Department of Pharmacology, Seoul National University College of Medicine, Seoul, 03080 Korea ,grid.31501.360000 0004 0470 5905Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080 Korea ,Hongcheon, 25159 Korea ,grid.31501.360000 0004 0470 5905SNU Dementia Research Center, Seoul National University College of Medicine, Seoul, 03080 Korea
| |
Collapse
|
20
|
Luo R, Zhao Y, Fan Y, An L, Jiang T, Ma S, Hang H. High efficiency CHO cell display-based antibody maturation. Sci Rep 2020; 10:8102. [PMID: 32415149 PMCID: PMC7229201 DOI: 10.1038/s41598-020-65044-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 04/21/2020] [Indexed: 11/09/2022] Open
Abstract
Previously, we developed a CHO cell display-based antibody maturation procedure in which an antibody (or other protein) gene of interest was induced to mutate by activation-induced cytidine deaminase (AID) and then form a library by simply proliferating the CHO cells in culture. In this study, we further improved the efficiency of this maturation system by reengineering AID, and optimizing the nucleic acid sequence of the target antibody gene and AID gene as well as the protocol for AID gene transfection. These changes have increased both the mutation rate and the number of mutation type of antibody genes by more than 10 fold, and greatly improved the maturation efficiency of antibody/other proteins.
Collapse
Affiliation(s)
- Ruiqi Luo
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yun Zhao
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yingjun Fan
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Lili An
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tao Jiang
- University of Chinese Academy of Sciences, Beijing, 100039, China.,National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shaohua Ma
- Department of Thoracic Surgery, Peking University Third Hospital, Beijing, 100191, China.
| | - Haiying Hang
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
21
|
Wang Z, Li Y, Hou B, Pronobis MI, Wang M, Wang Y, Cheng G, Weng W, Wang Y, Tang Y, Xu X, Pan R, Lin F, Wang N, Chen Z, Wang S, Ma LZ, Li Y, Huang D, Jiang L, Wang Z, Zeng W, Zhang Y, Du X, Lin Y, Li Z, Xia Q, Geng J, Dai H, Yu Y, Zhao XD, Yuan Z, Yan J, Nie Q, Zhang X, Wang K, Chen F, Zhang Q, Zhu Y, Zheng S, Poss KD, Tao SC, Meng X. An array of 60,000 antibodies for proteome-scale antibody generation and target discovery. SCIENCE ADVANCES 2020; 6:eaax2271. [PMID: 32195335 PMCID: PMC7065887 DOI: 10.1126/sciadv.aax2271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 12/13/2019] [Indexed: 05/28/2023]
Abstract
Antibodies are essential for elucidating gene function. However, affordable technology for proteome-scale antibody generation does not exist. To address this, we developed Proteome Epitope Tag Antibody Library (PETAL) and its array. PETAL consists of 62,208 monoclonal antibodies (mAbs) against 15,199 peptides from diverse proteomes. PETAL harbors binders for a great multitude of proteins in nature due to antibody multispecificity, an intrinsic antibody feature. Distinctive combinations of 10,000 to 20,000 mAbs were found to target specific proteomes by array screening. Phenotype-specific mAb-protein pairs were found for maize and zebrafish samples. Immunofluorescence and flow cytometry mAbs for membrane proteins and chromatin immunoprecipitation-sequencing mAbs for transcription factors were identified from respective proteome-binding PETAL mAbs. Differential screening of cell surface proteomes of tumor and normal tissues identified internalizing tumor antigens for antibody-drug conjugates. By finding high-affinity mAbs at a fraction of current time and cost, PETAL enables proteome-scale antibody generation and target discovery.
Collapse
Affiliation(s)
- Zhaohui Wang
- School of Life Sciences, Northwest University, Xi’an, Shanxi 710069, China
- Abmart, 333 Guiping Road, Shanghai 200033, China
| | - Yang Li
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bing Hou
- School of Life Sciences, Northwest University, Xi’an, Shanxi 710069, China
- Abmart, 333 Guiping Road, Shanghai 200033, China
| | - Mira I. Pronobis
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Yuemeng Wang
- Abmart, 333 Guiping Road, Shanghai 200033, China
| | | | - Weining Weng
- Abmart, 333 Guiping Road, Shanghai 200033, China
| | - Yiqiang Wang
- Abmart, 333 Guiping Road, Shanghai 200033, China
| | - Yanfang Tang
- Abmart, 333 Guiping Road, Shanghai 200033, China
| | - Xuefan Xu
- Abmart, 333 Guiping Road, Shanghai 200033, China
| | - Rong Pan
- Abmart, 333 Guiping Road, Shanghai 200033, China
| | - Fei Lin
- Abmart, 333 Guiping Road, Shanghai 200033, China
| | - Nan Wang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziqing Chen
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiwei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Luyan zulie Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yangrui Li
- Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, Guangxi 530007, China
| | - Dongliang Huang
- Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, Guangxi 530007, China
| | - Li Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
| | - Wenfang Zeng
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
| | - Ying Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
| | - Xuemei Du
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100083, China
| | - Ying Lin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Zhiqing Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Jing Geng
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing 100029, China
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing 100029, China
| | - Yuan Yu
- School of Life Sciences, Northwest University, Xi’an, Shanxi 710069, China
| | - Xiao-dong Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Yuan
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian Yan
- Ludwig Institute for Cancer Research, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Department of Medical Biochemistry and Biophysics, Division of Functional Genomics and Systems Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Qinghua Nie
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiquan Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Kun Wang
- Institute for Advanced Studies and College of Life Sciences, Wuhan University, Wuhan, China
| | - Fulin Chen
- School of Life Sciences, Northwest University, Xi’an, Shanxi 710069, China
| | - Qin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuxian Zhu
- Institute for Advanced Studies and College of Life Sciences, Wuhan University, Wuhan, China
| | - Susan Zheng
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kenneth D. Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sheng-ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai 200240, China
| | - Xun Meng
- School of Life Sciences, Northwest University, Xi’an, Shanxi 710069, China
- Abmart, 333 Guiping Road, Shanghai 200033, China
| |
Collapse
|
22
|
Bozovičar K, Bratkovič T. Evolving a Peptide: Library Platforms and Diversification Strategies. Int J Mol Sci 2019; 21:E215. [PMID: 31892275 PMCID: PMC6981544 DOI: 10.3390/ijms21010215] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/22/2019] [Accepted: 12/25/2019] [Indexed: 12/22/2022] Open
Abstract
Peptides are widely used in pharmaceutical industry as active pharmaceutical ingredients, versatile tools in drug discovery, and for drug delivery. They find themselves at the crossroads of small molecules and proteins, possessing favorable tissue penetration and the capability to engage into specific and high-affinity interactions with endogenous receptors. One of the commonly employed approaches in peptide discovery and design is to screen combinatorial libraries, comprising a myriad of peptide variants of either chemical or biological origin. In this review, we focus mainly on recombinant peptide libraries, discussing different platforms for their display or expression, and various diversification strategies for library design. We take a look at well-established technologies as well as new developments and future directions.
Collapse
Affiliation(s)
| | - Tomaž Bratkovič
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
23
|
Lee CH, Kang TH, Godon O, Watanabe M, Delidakis G, Gillis CM, Sterlin D, Hardy D, Cogné M, Macdonald LE, Murphy AJ, Tu N, Lee J, McDaniel JR, Makowski E, Tessier PM, Meyer AS, Bruhns P, Georgiou G. An engineered human Fc domain that behaves like a pH-toggle switch for ultra-long circulation persistence. Nat Commun 2019; 10:5031. [PMID: 31695028 PMCID: PMC6834678 DOI: 10.1038/s41467-019-13108-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022] Open
Abstract
The pharmacokinetic properties of antibodies are largely dictated by the pH-dependent binding of the IgG fragment crystallizable (Fc) domain to the human neonatal Fc receptor (hFcRn). Engineered Fc domains that confer a longer circulation half-life by virtue of more favorable pH-dependent binding to hFcRn are of great therapeutic interest. Here we developed a pH Toggle switch Fc variant containing the L309D/Q311H/N434S (DHS) substitutions, which exhibits markedly improved pharmacokinetics relative to both native IgG1 and widely used half-life extension variants, both in conventional hFcRn transgenic mice and in new knock-in mouse strains. engineered specifically to recapitulate all the key processes relevant to human antibody persistence in circulation, namely: (i) physiological expression of hFcRn, (ii) the impact of hFcγRs on antibody clearance and (iii) the role of competing endogenous IgG. DHS-IgG retains intact effector functions, which are important for the clearance of target pathogenic cells and also has favorable developability.
Collapse
Affiliation(s)
- Chang-Han Lee
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Tae Hyun Kang
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
- Department of Applied Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Ophélie Godon
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR1222 INSERMF-75015, Paris, France
| | - Makiko Watanabe
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - George Delidakis
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Caitlin M Gillis
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR1222 INSERMF-75015, Paris, France
| | - Delphine Sterlin
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR1222 INSERMF-75015, Paris, France
| | - David Hardy
- Experimental Neuropathology Unit, Infection and Epidemiology Department, Institut Pasteur, 25, rue du Docteur Roux, 75015, Paris, France
| | | | | | | | - Naxin Tu
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Jiwon Lee
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Jonathan R McDaniel
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Emily Makowski
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Peter M Tessier
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Aaron S Meyer
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, CA, USA
| | - Pierre Bruhns
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR1222 INSERMF-75015, Paris, France.
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA.
- Department of Molecular Bioscience, University of Texas at Austin, Austin, TX, USA.
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
24
|
Kwok HS, Vargas-Rodriguez O, Melnikov SV, Söll D. Engineered Aminoacyl-tRNA Synthetases with Improved Selectivity toward Noncanonical Amino Acids. ACS Chem Biol 2019; 14:603-612. [PMID: 30933556 DOI: 10.1021/acschembio.9b00088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A wide range of noncanonical amino acids (ncAAs) can be incorporated into proteins in living cells by using engineered aminoacyl-tRNA synthetase/tRNA pairs. However, most engineered tRNA synthetases are polyspecific; that is, they can recognize multiple rather than one ncAA. Polyspecificity of engineered tRNA synthetases imposes a limit to the use of genetic code expansion because it prevents specific incorporation of a desired ncAA when multiple ncAAs are present in the growth media. In this study, we employed directed evolution to improve substrate selectivity of polyspecific tRNA synthetases by developing substrate-selective readouts for flow-cytometry-based screening with the simultaneous presence of multiple ncAAs. We applied this method to improve the selectivity of two commonly used tRNA synthetases, p-cyano-l-phenylalanyl aminoacyl-tRNA synthetase ( pCNFRS) and Nε-acetyl-lysyl aminoacyl-tRNA synthetase (AcKRS), with broad specificity. Evolved pCNFRS and AcKRS variants exhibit significantly improved selectivity for ncAAs p-azido-l-phenylalanine ( pAzF) and m-iodo-l-phenylalanine ( mIF), respectively. To demonstrate the utility of our approach, we used the newly evolved tRNA synthetase variant to produce highly pure proteins containing the ncAA mIF, in the presence of multiple ncAAs present in the growth media. In summary, our new approach opens up a new avenue for engineering the next generation of tRNA synthetases with improved selectivity toward a desired ncAA.
Collapse
Affiliation(s)
- Hui Si Kwok
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Sergey V. Melnikov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
25
|
Meiresonne NY, Consoli E, Mertens LM, Chertkova AO, Goedhart J, den Blaauwen T. Superfolder mTurquoise2 ox optimized for the bacterial periplasm allows high efficiency in vivo FRET of cell division antibiotic targets. Mol Microbiol 2019; 111:1025-1038. [PMID: 30648295 PMCID: PMC6850650 DOI: 10.1111/mmi.14206] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2019] [Indexed: 11/30/2022]
Abstract
Fluorescent proteins (FPs) are of vital importance to biomedical research. Many of the currently available fluorescent proteins do not fluoresce when expressed in non-native environments, such as the bacterial periplasm. This strongly limits the options for applications that employ multiple FPs, such as multiplex imaging and Förster resonance energy transfer (FRET). To address this issue, we have engineered a new cyan fluorescent protein based on mTurquoise2 (mTq2). The new variant is dubbed superfolder turquoise2ox (sfTq2ox ) and is able to withstand challenging, oxidizing environments. sfTq2ox has improved folding capabilities and can be expressed in the periplasm at higher concentrations without toxicity. This was tied to the replacement of native cysteines that may otherwise form promiscuous disulfide bonds. The improved sfTq2ox has the same spectroscopic properties as mTq2, that is, high fluorescence lifetime and quantum yield. The sfTq2ox -mNeongreen FRET pair allows the detection of periplasmic protein-protein interactions with energy transfer rates exceeding 40%. Employing the new FRET pair, we show the direct interaction of two essential periplasmic cell division proteins FtsL and FtsB and disrupt it by mutations, paving the way for in vivo antibiotic screening. SIGNIFICANCE: The periplasmic space of Gram-negative bacteria contains many regulatory, transport and cell wall-maintaining proteins. A preferred method to investigate these proteins in vivo is by the detection of fluorescent protein fusions. This is challenging since most fluorescent proteins do not fluoresce in the oxidative environment of the periplasm. We assayed popular fluorescent proteins for periplasmic functionality and describe key factors responsible for periplasmic fluorescence. Using this knowledge, we engineered superfolder mTurquoise2ox (sfTq2ox ), a new cyan fluorescent protein, capable of bright fluorescence in the periplasm. We show that our improvements come without a trade-off from its parent mTurquoise2. Employing sfTq2ox as FRET donor, we show the direct in vivo interaction and disruption of unique periplasmic antibiotic targets FtsB and FtsL.
Collapse
Affiliation(s)
- Nils Y. Meiresonne
- Bacterial Cell Biology & Physiology, Swammerdam Institute for Life SciencesUniversity of AmsterdamScience Park 904Amsterdam1098 XHThe Netherlands
| | - Elisa Consoli
- Bacterial Cell Biology & Physiology, Swammerdam Institute for Life SciencesUniversity of AmsterdamScience Park 904Amsterdam1098 XHThe Netherlands
| | - Laureen M.Y. Mertens
- Bacterial Cell Biology & Physiology, Swammerdam Institute for Life SciencesUniversity of AmsterdamScience Park 904Amsterdam1098 XHThe Netherlands
| | - Anna O. Chertkova
- Molecular Cytology and van Leeuwenhoek Centre for Advanced MicroscopySwammerdam Institute for Life Sciences, University of AmsterdamScience Park 904Amsterdam1098 XHThe Netherlands
| | - Joachim Goedhart
- Molecular Cytology and van Leeuwenhoek Centre for Advanced MicroscopySwammerdam Institute for Life Sciences, University of AmsterdamScience Park 904Amsterdam1098 XHThe Netherlands
| | - Tanneke den Blaauwen
- Bacterial Cell Biology & Physiology, Swammerdam Institute for Life SciencesUniversity of AmsterdamScience Park 904Amsterdam1098 XHThe Netherlands
| |
Collapse
|
26
|
A High-Resolution Luminescent Assay for Rapid and Continuous Monitoring of Protein Translocation across Biological Membranes. J Mol Biol 2019; 431:1689-1699. [PMID: 30878481 PMCID: PMC6461198 DOI: 10.1016/j.jmb.2019.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/02/2019] [Accepted: 03/05/2019] [Indexed: 12/20/2022]
Abstract
Protein translocation is a fundamental process in biology. Major gaps in our understanding of this process arise due the poor sensitivity, low time resolution and irreproducibility of translocation assays. To address this, we applied NanoLuc split-luciferase to produce a new strategy for measuring protein transport. The system reduces the timescale of data collection from days to minutes and allows for continuous acquisition with a time resolution in the order of seconds, yielding kinetics parameters suitable for mechanistic elucidation and mathematical fitting. To demonstrate its versatility, we implemented and validated the assay in vitro and in vivo for the bacterial Sec system and the mitochondrial protein import apparatus. Overall, this technology represents a major step forward, providing a powerful new tool for fundamental mechanistic enquiry of protein translocation and for inhibitor (drug) screening, with an intensity and rigor unattainable through classical methods. Conventional methods for monitoring protein translocation are laborious and discontinuous and lack kinetic detail. A split NanoLuc system was adapted for real-time monitoring of protein translocation through the bacterial Sec system and the mitochondrial Tim23 complex. The new assay reduces the timescale of data acquisition from days to minutes. It produces high-quality results suitable for kinetic fitting and model derivation.
Collapse
|
27
|
McKenna R, Lombana TN, Yamada M, Mukhyala K, Veeravalli K. Engineered sigma factors increase full-length antibody expression in Escherichia coli. Metab Eng 2019; 52:315-323. [DOI: 10.1016/j.ymben.2018.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 12/24/2022]
|
28
|
Jo M, Hwang B, Yoon HW, Jung ST. Escherichia coli inner membrane display system for high-throughput screening of dimeric proteins. Biotechnol Bioeng 2018; 115:2849-2858. [PMID: 30171695 DOI: 10.1002/bit.26826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/23/2018] [Accepted: 08/30/2018] [Indexed: 11/10/2022]
Abstract
Multimer formation is indispensable to the intrinsicbiologicalfunctions of many natural proteins. For example, the human immunoglobulin G (IgG) antibody has two variable regions (heavy chain variable domain [VH] and light chain variable domain [VL]) that must be assembled for specific antigen binding, and homodimerization of the antibody's Fc domain is essential for eliciting therapeutic effector functions. For the more efficient high-throughput directed evolution of multimeric proteins with ease of cultivation and handling, here we report a membrane protein drift and assembly (MPDA) system, in which a multimeric protein is displayed on a bacterial inner membrane by drifting and auto-assembling membrane-anchored subunit polypeptides. This system enabled the auto-assembly of membrane-tethered Fv domains (VH and VL) or the monomeric Fc domain into a functional hetero- or homodimeric protein complex on the bacterial inner membrane. This system could also be used to enrich a desired engineered Fc variant from a mixture containing a million-fold excess of wild-type Fc domain, indicating the applicability of the MPDA system for the high-throughput directed evolution of a variety of multimeric proteins, such as cytokines, enzymes, or structural proteins.
Collapse
Affiliation(s)
- Migyeong Jo
- Department of Applied Chemistry, Kookmin University, Seoul, Korea
| | - Bora Hwang
- Department of Applied Chemistry, Kookmin University, Seoul, Korea
| | - Hyun Woung Yoon
- Department of Applied Chemistry, Kookmin University, Seoul, Korea
| | - Sang Taek Jung
- Department of Applied Chemistry, Kookmin University, Seoul, Korea
| |
Collapse
|
29
|
Affinity maturation of an antibody for the UV-induced DNA lesions 6,4 pyrimidine-pyrimidones. Appl Microbiol Biotechnol 2018; 102:6409-6424. [PMID: 29749564 DOI: 10.1007/s00253-018-8998-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/04/2018] [Accepted: 04/07/2018] [Indexed: 10/16/2022]
Abstract
DNA lesions, associated mostly with minor changes in DNA structure, may induce permanent change in heritable coding information. Biochemically, these minor structural changes are difficult to be explored for generating high-affinity antibodies to detect specific DNA lesions in varying sequence contexts. Herein, we established a platform of bacterial display to facilitate antibodies to be matured with high affinity and high specificity against DNA lesions. To achieve this goal, we, for the first time, developed a two-round mutation/screening strategy: (1) using multiple lesion-containing DNA probes for primary maturation and (2) using single lesion-containing DNA probes for second maturation. Specifically, we capitalized on 64M-2 as a parental template to improve affinity for 6-4PP by 710-fold, compared with the model one. In addition, the matured antibody (9c3) is found to be much less dependent on the bases surrounding 6-4PPs than the model one. The mechanistic study from both computational simulation and reverse mutations revealed the critical roles of the two-round mutations in the enhanced binding affinity and independence of surrounding bases. This selection strategy opens a new way to improve affinity and specificity of antibodies for other DNA lesions.
Collapse
|
30
|
Hetrick K, Walker MC, van der Donk WA. Development and Application of Yeast and Phage Display of Diverse Lanthipeptides. ACS CENTRAL SCIENCE 2018; 4:458-467. [PMID: 29721528 PMCID: PMC5920614 DOI: 10.1021/acscentsci.7b00581] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Indexed: 05/09/2023]
Abstract
Peptide display has enabled identification and optimization of ligands to many targets. These ligands are usually linear or disulfide-containing peptides that are vulnerable to proteolysis or reduction. We report yeast surface and phage display of lanthipeptides, macrocyclic ribosomally synthesized and post-translationally modified peptides (RiPPs). Lanthipeptides contain multiple thioether cross-links that bestow their biological activities. We developed C-terminal yeast display of the class II lanthipeptides lacticin 481 and haloduracin β, and randomization of the C-ring of the former was used to select tight binders to αvβ3 integrin. This represents the first examples of bacterial RiPP production in Saccharomyces cerevisiae for identification of variants with new biological activities. We also report N-terminal phage display of the class I lanthipeptide nisin and randomization of its A- and B-rings to enrich binders to a small molecule, lipid II. The successful display and randomization of both class I and II lanthipeptides demonstrates the versatility and potential of RiPP display.
Collapse
Affiliation(s)
| | | | - Wilfred A. van der Donk
- 600
S. Mathews Avenue, Urbana,
Illinois 61801, United States. E-mail: . Phone: (217) 244-5360. Fax: (217) 244-8533
| |
Collapse
|
31
|
Salema V, Fernández LÁ. Escherichia coli surface display for the selection of nanobodies. Microb Biotechnol 2017; 10:1468-1484. [PMID: 28772027 PMCID: PMC5658595 DOI: 10.1111/1751-7915.12819] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 12/29/2022] Open
Abstract
Nanobodies (Nbs) are the smallest functional antibody fragments known in nature and have multiple applications in biomedicine or environmental monitoring. Nbs are derived from the variable segment of camelid heavy chain-only antibodies, known as VHH. For selection, libraries of VHH gene segments from naïve, immunized animals or of synthetic origin have been traditionally cloned in E. coli phage display or yeast display systems, and clones binding the target antigen recovered, usually from plastic surfaces with the immobilized antigen (phage display) or using fluorescence-activated cell sorting (FACS; yeast display). This review briefly describes these conventional approaches and focuses on the distinct properties of an E. coli display system developed in our laboratory, which combines the benefits of both phage display and yeast display systems. We demonstrate that E. coli display using an N-terminal domain of intimin is an effective platform for the surface display of VHH libraries enabling selection of high-affinity Nbs by magnetic cell sorting and direct selection on live mammalian cells displaying the target antigen on their surface. Flow cytometry analysis of E. coli bacteria displaying the Nbs on their surface allows monitoring of the selection process, facilitates screening, characterization of antigen-binding clones, specificity, ligand competition and estimation of the equilibrium dissociation constant (KD ).
Collapse
Affiliation(s)
- Valencio Salema
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología (CNB)Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Luis Ángel Fernández
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología (CNB)Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| |
Collapse
|
32
|
Fang Y, Chu TH, Ackerman ME, Griswold KE. Going native: Direct high throughput screening of secreted full-length IgG antibodies against cell membrane proteins. MAbs 2017; 9:1253-1261. [PMID: 28933630 PMCID: PMC5680790 DOI: 10.1080/19420862.2017.1381812] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Gel microdroplet – fluorescence activated cell sorting (GMD-FACS) is an innovative high throughput screening platform for recombinant protein libraries, and we show here that GMD-FACS can overcome many of the limitations associated with conventional screening methods for antibody libraries. For example, phage and cell surface display benefit from exceptionally high throughput, but generally require high quality, soluble antigen target and necessitate the use of anchored antibody fragments. In contrast, the GMD-FACS assay can screen for soluble, secreted, full-length IgGs at rates of several thousand clones per second, and the technique enables direct screening against membrane protein targets in their native cellular context. In proof-of-concept experiments, rare anti-EGFR antibody clones were efficiently enriched from a 10,000-fold excess of anti-CCR5 clones in just three days. Looking forward, GMD-FACS has the potential to contribute to antibody discovery and engineering for difficult targets, such as ion channels and G protein-coupled receptors.
Collapse
Affiliation(s)
- Yongliang Fang
- a Thayer School of Engineering, Dartmouth , Hanover , NH , USA
| | - Thach H Chu
- a Thayer School of Engineering, Dartmouth , Hanover , NH , USA
| | - Margaret E Ackerman
- a Thayer School of Engineering, Dartmouth , Hanover , NH , USA.,b Department of Microbiology and Immunology , Dartmouth , Hanover , NH , USA
| | - Karl E Griswold
- a Thayer School of Engineering, Dartmouth , Hanover , NH , USA.,c Immunology & Cancer Immunotherapy Program, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center , Lebanon , NH , USA.,d Department of Biological Sciences , Dartmouth , Hanover , NH.,e Department of Chemistry , Dartmouth , Hanover , NH , USA
| |
Collapse
|
33
|
Antibody therapies for the prevention and treatment of viral infections. NPJ Vaccines 2017; 2:19. [PMID: 29263875 PMCID: PMC5627241 DOI: 10.1038/s41541-017-0019-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/08/2017] [Accepted: 05/16/2017] [Indexed: 12/18/2022] Open
Abstract
Antibodies are an important component in host immune responses to viral pathogens. Because of their unique maturation process, antibodies can evolve to be highly specific to viral antigens. Physicians and researchers have been relying on such high specificity in their quest to understand host–viral interaction and viral pathogenesis mechanisms and to find potential cures for viral infection and disease. With more than 60 recombinant monoclonal antibodies developed for human use in the last 20 years, monoclonal antibodies are now considered a viable therapeutic modality for infectious disease targets, including newly emerging viral pathogens such as Ebola representing heightened public health concerns, as well as pathogens that have long been known, such as human cytomegalovirus. Here, we summarize some recent advances in identification and characterization of monoclonal antibodies suitable as drug candidates for clinical evaluation, and review some promising candidates in the development pipeline.
Collapse
|
34
|
Lee CH, Romain G, Yan W, Watanabe M, Charab W, Todorova B, Lee J, Triplett K, Donkor M, Lungu OI, Lux A, Marshall N, Lindorfer MA, Goff ORL, Balbino B, Kang TH, Tanno H, Delidakis G, Alford C, Taylor RP, Nimmerjahn F, Varadarajan N, Bruhns P, Zhang YJ, Georgiou G. IgG Fc domains that bind C1q but not effector Fcγ receptors delineate the importance of complement-mediated effector functions. Nat Immunol 2017; 18:889-898. [PMID: 28604720 DOI: 10.1038/ni.3770] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/16/2017] [Indexed: 12/17/2022]
Abstract
Engineered crystallizable fragment (Fc) regions of antibody domains, which assume a unique and unprecedented asymmetric structure within the homodimeric Fc polypeptide, enable completely selective binding to the complement component C1q and activation of complement via the classical pathway without any concomitant engagement of the Fcγ receptor (FcγR). We used the engineered Fc domains to demonstrate in vitro and in mouse models that for therapeutic antibodies, complement-dependent cell-mediated cytotoxicity (CDCC) and complement-dependent cell-mediated phagocytosis (CDCP) by immunological effector molecules mediated the clearance of target cells with kinetics and efficacy comparable to those of the FcγR-dependent effector functions that are much better studied, while they circumvented certain adverse reactions associated with FcγR engagement. Collectively, our data highlight the importance of CDCC and CDCP in monoclonal-antibody function and provide an experimental approach for delineating the effect of complement-dependent effector-cell engagement in various therapeutic settings.
Collapse
Affiliation(s)
- Chang-Han Lee
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Gabrielle Romain
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Wupeng Yan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Makiko Watanabe
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Wissam Charab
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Biliana Todorova
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France.,INSERM, U760, Paris, France
| | - Jiwon Lee
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Kendra Triplett
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Moses Donkor
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Oana I Lungu
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Anja Lux
- Institute of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Nicholas Marshall
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Margaret A Lindorfer
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Odile Richard-Le Goff
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France.,INSERM, U760, Paris, France
| | - Bianca Balbino
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France.,INSERM, U760, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Tae Hyun Kang
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Hidetaka Tanno
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - George Delidakis
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Corrine Alford
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Ronald P Taylor
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Falk Nimmerjahn
- Institute of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Navin Varadarajan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Pierre Bruhns
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France.,INSERM, U760, Paris, France
| | - Yan Jessie Zhang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA.,Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA.,Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA.,Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA.,Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas, USA.,Center for Systems and Synthetic Biology University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
35
|
Rodriguez C, Nam DH, Kruchowy E, Ge X. Efficient Antibody Assembly in E. coli Periplasm by Disulfide Bond Folding Factor Co-expression and Culture Optimization. Appl Biochem Biotechnol 2017; 183:520-529. [PMID: 28488120 DOI: 10.1007/s12010-017-2502-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/01/2017] [Indexed: 01/20/2023]
Abstract
Molecular chaperones and protein folding factors of bacterial periplasmic space play important roles in assisting disulfide bond formation and proper protein folding. In this study, effects of disulfide bond protein (Dsb) families were investigated on assembly of 3F3 Fab, an antibody inhibitor targeting matrix metalloproteinase-14 (MMP-14). By optimizing DsbA/C co-expression, promoter for 3F3 Fab, host strains, and culture media and conditions, a high yield of 30-mg purified 3F3 Fab per liter culture was achieved. Produced 3F3 Fab exhibited binding affinity of 34 nM and inhibition potency of 970 nM. This established method of DsbA/C co-expression can be applied to produce other important disulfide bond-dependent recombinant proteins in E. coli periplasm.
Collapse
Affiliation(s)
- Carlos Rodriguez
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Ave., Riverside, CA, 92521, USA.,Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, USA
| | - Dong Hyun Nam
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Ave., Riverside, CA, 92521, USA.,Xencor Inc., 111 W Lemon Ave., Monrovia, CA, 91016, USA
| | - Evan Kruchowy
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Ave., Riverside, CA, 92521, USA
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Ave., Riverside, CA, 92521, USA.
| |
Collapse
|
36
|
Ravikumar S, Baylon MG, Park SJ, Choi JI. Engineered microbial biosensors based on bacterial two-component systems as synthetic biotechnology platforms in bioremediation and biorefinery. Microb Cell Fact 2017; 16:62. [PMID: 28410609 PMCID: PMC5391612 DOI: 10.1186/s12934-017-0675-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 04/04/2017] [Indexed: 12/30/2022] Open
Abstract
Two-component regulatory systems (TCRSs) mediate cellular response by coupling sensing and regulatory mechanisms. TCRSs are comprised of a histidine kinase (HK), which serves as a sensor, and a response regulator, which regulates expression of the effector gene after being phosphorylated by HK. Using these attributes, bacterial TCRSs can be engineered to design microbial systems for different applications. This review focuses on the current advances in TCRS-based biosensors and on the design of microbial systems for bioremediation and their potential application in biorefinery.
Collapse
Affiliation(s)
- Sambandam Ravikumar
- Biomolecules Engineering Lab, Department of Biotechnology and Bioengineering, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Republic of Korea
| | - Mary Grace Baylon
- Division of Chemical Engineering and Materials Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Si Jae Park
- Division of Chemical Engineering and Materials Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| | - Jong-Il Choi
- Biomolecules Engineering Lab, Department of Biotechnology and Bioengineering, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
37
|
Wu L, Wang X, Zhang J, Luan T, Bouveret E, Yan X. Flow Cytometric Single-Cell Analysis for Quantitative in Vivo Detection of Protein–Protein Interactions via Relative Reporter Protein Expression Measurement. Anal Chem 2017; 89:2782-2789. [DOI: 10.1021/acs.analchem.6b03603] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lina Wu
- The MOE Key Laboratory
of Spectrochemical Analysis and Instrumentation, The Key Laboratory
for Chemical Biology of Fujian Province, Collaborative Innovation
Center of Chemistry for Energy Materials, Department of
Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Xu Wang
- The MOE Key Laboratory
of Spectrochemical Analysis and Instrumentation, The Key Laboratory
for Chemical Biology of Fujian Province, Collaborative Innovation
Center of Chemistry for Energy Materials, Department of
Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Jianqiang Zhang
- The MOE Key Laboratory
of Spectrochemical Analysis and Instrumentation, The Key Laboratory
for Chemical Biology of Fujian Province, Collaborative Innovation
Center of Chemistry for Energy Materials, Department of
Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Tian Luan
- The MOE Key Laboratory
of Spectrochemical Analysis and Instrumentation, The Key Laboratory
for Chemical Biology of Fujian Province, Collaborative Innovation
Center of Chemistry for Energy Materials, Department of
Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Emmanuelle Bouveret
- Laboratory of
Macromolecular System Engineering, Institute of Microbiology
of the Mediterranean, Aix-Marseille Université and Centre National de la Recherche Scientifique, Marseille 13402, France
| | - Xiaomei Yan
- The MOE Key Laboratory
of Spectrochemical Analysis and Instrumentation, The Key Laboratory
for Chemical Biology of Fujian Province, Collaborative Innovation
Center of Chemistry for Energy Materials, Department of
Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| |
Collapse
|
38
|
Ding L, Hao Z, Yuan Q, Xu P, Yu Y, Li D. Anti-human fibroblast growth factor-21 monoclonal antibody preparation, characterization and analysis of in vitro bioactivity. Exp Ther Med 2016; 12:3417-3424. [PMID: 27882173 DOI: 10.3892/etm.2016.3753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/05/2016] [Indexed: 11/06/2022] Open
Abstract
Human fibroblast growth factor 21 (hFGF-21) is involved in numerous metabolic processes and elevated hFGF-21 levels are associated with many metabolic diseases. However, the role hFGF-21 serves in the metabolic system is not fully understood. A humanized anti-hFGF-21 monoclonal antibody (mAb) would provide a novel method for further investigations into the role hFGF-21 serves in the metabolic system and related diseases, which may reveal therapeutic targets for future treatment of these diseases. The present study aimed to prepare an anti-hFGF-21 mAb, followed by identification of its characteristics and bioactivity in vitro. The results of the present study identified that the anti-hFGF-21 mAb (clone 2D8) produced had good specificity, had an immunoglobulin isotype of IgG2b and a titer of 1:1.024×106. hFGF-21 was screened for epitopes using fluorescence-activated cell sorting, which revealed a specific 15 amino acid sequence (YQSEAHGLPLHLPGN) that the anti-hFGF-21 mAb recognized. In vitro bioactivity of anti-hFGF-21 was determined using a glucose uptake assay and by measuring the expression of glucose transporter 1 (GLUT1) messenger RNA (mRNA) in 3T3-L1 adipocytes. This revealed that hFGF-21-dependent glucose uptake and GLUT1 mRNA expression were negatively correlated with increasing levels of the anti-hFGF-21 mAb tested, and that hFGF-21 activity could be overcome by increasing concentrations of the mAb, demonstrating that the mAb has hFGF-21-neutralizing activity in vitro.
Collapse
Affiliation(s)
- Liangjun Ding
- Biopharmaceutical Department, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Zhichao Hao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, P.R. China
| | - Qingyan Yuan
- Biopharmaceutical Department, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Pengfei Xu
- Biopharmaceutical Department, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Yinhang Yu
- Biopharmaceutical Department, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Deshan Li
- Biopharmaceutical Department, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| |
Collapse
|
39
|
Xu LM, Zhao JZ, Liu M, Cao YS, Yin JS, Liu HB, Lu T. Recombinant scFv antibodies against infectious pancreatic necrosis virus isolated by flow cytometry. J Virol Methods 2016; 237:204-209. [PMID: 27678027 DOI: 10.1016/j.jviromet.2016.07.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 07/29/2016] [Accepted: 07/31/2016] [Indexed: 11/28/2022]
Abstract
Infectious pancreatic necrosis is a significant disease of farmed salmonids in China. In this study, a single chain variable fragment (scFv) antibody library derived from rainbow trout (Oncorhynchus mykiss) and viral protein VP2 of a Chinese infectious pancreatic necrosis virus (IPNV) isolate ChRtm213 were co-expressed by a bacterial display technology. The library was subjected to three rounds of screening by flow cytometry (FCM) to select IPNV specific antibodies. Six antibody clones with different mean fluorescence intensities (MFI) were obtained by picking colonies at random. The antibody clones were expressed and purified. The purified IPNV-specific scFv antibodies were used successfully in Western blotting, enzyme linked immunosorbent assay (ELISA) and an immunofluorescence antibody test (IFAT). This method provides a high throughput means to screen an antibody library by flow cytometry, and isolate a panel of antibody that can be used as potential reagents for the detection and study of IPNV that are prevalent in China.
Collapse
Affiliation(s)
- Li-Ming Xu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Jing-Zhuang Zhao
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Miao Liu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Yong-Sheng Cao
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Jia-Sheng Yin
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Hong-Bai Liu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Tongyan Lu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| |
Collapse
|
40
|
Guo X, Cao H, Wang Y, Liu Y, Chen Y, Wang N, Jiang S, Zhang S, Wu Q, Li T, Zhang Y, Zhou B, Yin J, Li D, Ren G. Screening scFv antibodies against infectious bursal disease virus by co-expression of antigen and antibody in the bacteria display system. Vet Immunol Immunopathol 2016; 180:45-52. [PMID: 27692095 DOI: 10.1016/j.vetimm.2016.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 02/07/2023]
Abstract
We have previously reported an antigen and antibody co-expression (AAC) technology to demonstrate the interaction between a known antigen and antibody. To validate the co-expression system for screening antibody libraries, a single chain fragment variable(scFv)antibody library was constructed from chickens immunized with the VP2 protein of infectious bursal disease virus (IBDV). The genes of both VP2 and scFv antibodies were inserted into the pBFD-Ab-Ag vector. The co-expression library was subjected to three rounds of screening by flow cytometry (FCM) using a polyclonal antibody against VP2 through a bacteria display system. We achieved enrichment of scFv specific for IBDV. 110 individual clones were initially selected and sequenced. Twenty clones were selected based on fluorescence intensity by FCM. The scFv antibodies were expressed by pET-27b in E.coli and purified. The specificity and affinity of the selected scFv antibodies were confirmed by western blotting assay and ELISA analysis. What's more, the neutralizing capacity was measured with IBDV-B87(100 TCID50) in vitro. Four scFvs (clone 8(1), Y8, L10 and L7) showed significant neutralizing capacity. Two of the four scFvs (clone 8(1) and Y8) demonstrated a higher neutralizing activity to IBDV-B87 and the titers were 16,384 and 8,192, respectively. The two scFvs had higher neutralizing capacity than those obtained in previous studies. We demonstrated that the AAC technology could be applied to screen antibody libraries without baiting antigen to make antibody screening process easier and obtain scFvs with higher neutralizing capacity.
Collapse
Affiliation(s)
- Xiaochen Guo
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Hongxue Cao
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunxin Wang
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yang Liu
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yanmin Chen
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Nan Wang
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Shan Jiang
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Shengqi Zhang
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Qiang Wu
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Tianhe Li
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, China
| | - Yingjie Zhang
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Bing Zhou
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jiechao Yin
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Deshan Li
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin 150030, China
| | - Guiping Ren
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
41
|
Immunogenomic engineering of a plug-and-(dis)play hybridoma platform. Nat Commun 2016; 7:12535. [PMID: 27531490 PMCID: PMC4992066 DOI: 10.1038/ncomms12535] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/11/2016] [Indexed: 12/22/2022] Open
Abstract
Hybridomas, fusions of primary mouse B cells and myelomas, are stable, rapidly-proliferating cell lines widely utilized for antibody screening and production. Antibody specificity of a hybridoma clone is determined by the immunoglobulin sequence of the primary B cell. Here we report a platform for rapid reprogramming of hybridoma antibody specificity by immunogenomic engineering. Here we use CRISPR-Cas9 to generate double-stranded breaks in immunoglobulin loci, enabling deletion of the native variable light chain and replacement of the endogenous variable heavy chain with a fluorescent reporter protein (mRuby). New antibody genes are introduced by Cas9-targeting of mRuby for replacement with a donor construct encoding a light chain and a variable heavy chain, resulting in full-length antibody expression. Since hybridomas surface express and secrete antibodies, reprogrammed cells are isolated using flow cytometry and cell culture supernatant is used for antibody production. Plug-and-(dis)play hybridomas can be reprogrammed with only a single transfection and screening step.
Collapse
|
42
|
Chiu ML, Gilliland GL. Engineering antibody therapeutics. Curr Opin Struct Biol 2016; 38:163-73. [PMID: 27525816 DOI: 10.1016/j.sbi.2016.07.012] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 02/07/2023]
Abstract
The successful introduction of antibody-based protein therapeutics into the arsenal of treatments for patients has within a few decades fostered intense innovation in the production and engineering of antibodies. Reviewed here are the methods currently used to produce antibodies along with how our knowledge of the structural and functional characterization of immunoglobulins has resulted in the engineering of antibodies to produce protein therapeutics with unique properties, both biological and biophysical, that are leading to novel therapeutic approaches. Antibody engineering includes the introduction of the antibody combining site (variable regions) into a host of architectures including bi and multi-specific formats that further impact the therapeutic properties leading to further advantages and successes in patient treatment.
Collapse
Affiliation(s)
- Mark L Chiu
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA.
| | - Gary L Gilliland
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA.
| |
Collapse
|
43
|
Chen Y, Bai Y, Guo X, Wang W, Zheng Q, Wang F, Sun D, Li D, Ren G, Yin J. Selection of affinity-improved neutralizing human scFv against HBV PreS1 from CDR3 VH/VL mutant library. Biologicals 2016; 44:271-275. [PMID: 27255707 DOI: 10.1016/j.biologicals.2016.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 12/17/2022] Open
Abstract
A CDR3 mutant library was constructed from a previously isolated anti-HBV neutralizing Homo sapiens scFv-31 template by random mutant primers PCR. Then the library was displayed on the inner membrane surface in Escherichia coli periplasmic space. Seven scFv clones were isolated from the mutant library through three rounds of screening by flow cytometry. Competition ELISA assay indicates that isolated scFv fragments show more efficient binding ability to HBV PreS1 compared with parental scFv-31. HBV neutralization assay indicated that two clones (scFv-3 and 59) show higher neutralizing activity by blocking the HBV infection to Chang liver cells. Our method provides a new strategy for rapid screening of mutant antibody library for affinity-enhanced scFv clones and the neutralizing scFvs obtained from this study provide a potential alternative of Hepatitis B immune globulin.
Collapse
Affiliation(s)
- YanMin Chen
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Yin Bai
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China; The 211th Hospital of People's Liberation Army, Harbin 150080, People's Republic of China.
| | - XiaoChen Guo
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - WenFei Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Qi Zheng
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - FuXiang Wang
- Harbin Medical University, The Fourth Affiliated Hospital, Nangang District, Harbin 150001, People's Republic of China.
| | - Dejun Sun
- Harbin Pharmaceutical Group Bio-vaccine Co., Ltd., Harbin, 150000, People's Republic of China.
| | - DeShan Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - GuiPing Ren
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - JieChao Yin
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
44
|
Ishikawa M, Yoshimoto S, Hayashi A, Kanie J, Hori K. Discovery of a novel periplasmic protein that forms a complex with a trimeric autotransporter adhesin and peptidoglycan. Mol Microbiol 2016; 101:394-410. [PMID: 27074146 DOI: 10.1111/mmi.13398] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/06/2016] [Indexed: 12/01/2022]
Abstract
Trimeric autotransporter adhesins (TAAs), fibrous proteins on the cell surface of Gram-negative bacteria, have attracted attention as virulence factors. However, little is known about the mechanism of their biogenesis. AtaA, a TAA of Acinetobacter sp. Tol 5, confers nonspecific, high adhesiveness to bacterial cells. We identified a new gene, tpgA, which forms a single operon with ataA and encodes a protein comprising two conserved protein domains identified by Pfam: an N-terminal SmpA/OmlA domain and a C-terminal OmpA_C-like domain with a peptidoglycan (PGN)-binding motif. Cell fractionation and a pull-down assay showed that TpgA forms a complex with AtaA, anchoring it to the outer membrane (OM). Isolation of total PGN-associated proteins showed TpgA binding to PGN. Disruption of tpgA significantly decreased the adhesiveness of Tol 5 because of a decrease in surface-displayed AtaA, suggesting TpgA involvement in AtaA secretion. This is reminiscent of SadB, which functions as a specific chaperone for SadA, a TAA in Salmonella species; however, SadB anchors to the inner membrane, whereas TpgA anchors to the OM through AtaA. The genetic organization encoding the TAA-TpgA-like protein cassette can be found in diverse Gram-negative bacteria, suggesting a common contribution of TpgA homologues to TAA biogenesis.
Collapse
Affiliation(s)
- Masahito Ishikawa
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Shogo Yoshimoto
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Ayumi Hayashi
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Junichi Kanie
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Katsutoshi Hori
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| |
Collapse
|
45
|
Antibody affinity maturation through combining display of two-chain paired antibody and precision flow cytometric sorting. Appl Microbiol Biotechnol 2016; 100:5977-88. [DOI: 10.1007/s00253-016-7472-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 03/13/2016] [Accepted: 03/15/2016] [Indexed: 01/09/2023]
|
46
|
Gao P, Pinkston KL, Wilganowski N, Robinson H, Azhdarinia A, Zhu B, Sevick-Muraca EM, Harvey BR. Deglycosylation of mAb by EndoS for improved molecular imaging. Mol Imaging Biol 2015; 17:195-203. [PMID: 25135058 DOI: 10.1007/s11307-014-0781-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Monoclonal antibodies (mAbs) have been shown preclinically as reliable targeting moieties for antigen imaging using near-infrared fluorescence (NIRF) molecular imaging. However, crystallizable fragment-gamma receptor (FcγRs) expressed on immune cells also bind mAbs through defined epitopes on the constant fragment (Fc) of IgG. Herein, we evaluate the potential impact Fc interactions have on mAb agent imaging specificity. PROCEDURE Through the removal of conserved glycans within the Fc domain, shown to have Fc/FcγR interactions, we evaluate their impact on non-specific binding/accumulation of a NIRF-labeled mAb-based imaging agent in lymph nodes (LNs) in inflamed animals and in an orthotopic prostate cancer animal model of LN metastasis. RESULTS Deglycosylation of a murine mAb against the human epithelial cell adhesion marker using endoglycosidase EndoS significantly reduced non-specific binding in the LNs of inflamed animals and in cancer-negative LNs of tumor-bearing animals. Sensitivity remained unchanged while improvement in imaging specificity increased imaging accuracy. CONCLUSION The reduction of non-specific binding through deglycosylation of a mAb-based imaging agent shows that reducing Fc/FcγR interactions can improve imaging accuracy.
Collapse
Affiliation(s)
- Peng Gao
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, 1825 Pressler Street, Houston, TX, 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Nam DH, Ge X. Direct production of functional matrix metalloproteinase--14 without refolding or activation and its application for in vitro inhibition assays. Biotechnol Bioeng 2015; 113:717-23. [PMID: 26416249 DOI: 10.1002/bit.25840] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/05/2015] [Accepted: 09/21/2015] [Indexed: 02/06/2023]
Abstract
Human matrix metalloproteinase (MMP)-14, a membrane-bound zinc endopeptidase, is one of the most important cancer targets because it plays central roles in tumor growth and invasion. Large amounts of active MMP-14 are required for cancer research and the development of chemical or biological MMP-14 inhibitors. Current methods of MMP-14 production through refolding and activation are labor-intensive, time-consuming, and often associated with low recovery rates, lot-to-lot variation and heterogeneous products. Here, we report direct production of the catalytic domain of MMP-14 in the periplasmic space of Escherichia coli. 0.5 mg/L of functional MMP-14 was produced without tedious refolding or problematic activation process. MMP-14 prepared by simple periplasmic treatment can be readily utilized to evaluate the potencies of chemical and antibody-based inhibitors. Furthermore, co-expression of both MMP-14 and antibody Fab fragments in the periplasm facilitated inhibitory antibody screening by avoiding purification of MMP-14 or Fabs. We expect this MMP-14 expression strategy can expedite the development of therapeutic drugs targeting MMPs with biological significance.
Collapse
Affiliation(s)
- Dong Hyun Nam
- Department of Chemical and Environmental Engineering, University of California, 900 University Ave Riverside, Riverside, 92521, California
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, 900 University Ave Riverside, Riverside, 92521, California.
| |
Collapse
|
48
|
Sun F, Pang X, Xie T, Zhai Y, Wang G, Sun F. BrkAutoDisplay: functional display of multiple exogenous proteins on the surface of Escherichia coli by using BrkA autotransporter. Microb Cell Fact 2015; 14:129. [PMID: 26337099 PMCID: PMC4558763 DOI: 10.1186/s12934-015-0316-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/10/2015] [Indexed: 01/08/2023] Open
Abstract
Background Bacterial surface display technique enables the exogenous proteins or polypeptides displayed on the bacterial surface, while maintaining their relatively independent spatial structures and biological activities. The technique makes recombinant bacteria possess the expectant functions, subsequently, directly used for many applications. Many proteins could be used to achieve bacterial surface display, among them, autotransporter, a member of the type V secretion system of gram-negative bacteria, has been extensively studied because of its modular structure and apparent simplicity. However, autotransporter has not been widely used at present due to lack of a convenient genetic vector system. With our recently characterized autotransporter BrkA (Bordetella serum-resistance killing protein A) from Bordetella pertussis, we are aiming to develop a new autotransporter-based surface display system for potential wide application. Results Here, we construct a bacterial surface display system named as BrkAutoDisplay, based on the structure of autotransporter BrkA. BrkAutoDisplay is a convenient system to host exogenous genes. In our test, this system is good to efficiently display various proteins on the outer membrane surface of Escherichia coli, including green fluorescent protein (GFP), various enzymes and single chain antibody. Moreover, the displayed GFP possesses green fluorescence, the enzymes CotA, EstPc and PalA exhibit catalytic activity 0.12, 6.88 and 0.32 mU (per 5.2 × 108 living bacteria cells) respectively, and the single chain antibody fragment (scFv) can bind with its antigen strongly. Finally, we showed that C41(DE3) is a good strain of E. coli for the successful functionality of BrkAutoDisplay. Conclusions We designed a new bacterial display system called as BrkAutoDisplay and displayed various exogenous proteins on E. coli surface. Our results indicate that BrkAutoDisplay system is worthy of further study for industrial applications.
Collapse
Affiliation(s)
- Fang Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China. .,University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaoyun Pang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.
| | - Tian Xie
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China. .,University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yujia Zhai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.
| | - Ganggang Wang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Fei Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.
| |
Collapse
|
49
|
Ramesh B, Frei CS, Cirino PC, Varadarajan N. Functional enrichment by direct plasmid recovery after fluorescence activated cell sorting. Biotechniques 2015; 59:157-61. [PMID: 26345509 DOI: 10.2144/000114329] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/02/2015] [Indexed: 11/23/2022] Open
Abstract
Iterative screening of expressed protein libraries using fluorescence-activated cell sorting (FACS) typically involves culturing the pooled clones after each sort. In these experiments, if cell viability is compromised by the sort conditions and/or expression of the target protein(s), rescue PCR provides an alternative to culturing but requires re-cloning and can introduce amplification bias. We have optimized a simple protocol using commercially available reagents to directly recover plasmid DNA from sorted cells for subsequent transformation. We tested our protocol with 2 different screening systems in which <10% of sorted cells survive culturing and demonstrate that >60% of the sorted cell population was recovered.
Collapse
Affiliation(s)
- Balakrishnan Ramesh
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX
| | - Christopher S Frei
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX
| | - Patrick C Cirino
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX
| | - Navin Varadarajan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX
| |
Collapse
|
50
|
High throughput screening of scFv antibodies against viral hemorrhagic septicaemia virus by flow cytometry. J Virol Methods 2015; 219:18-22. [DOI: 10.1016/j.jviromet.2015.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/13/2015] [Accepted: 03/13/2015] [Indexed: 11/17/2022]
|