1
|
Janoschek R, Handwerk M, Hucklenbruch-Rother E, Schmitz L, Bae-Gartz I, Kasper P, Lackmann JW, Kretschmer T, Vohlen C, Mesaros A, Purrio M, Quaas A, Dötsch J, Appel S. Heterogeneous effects of individual high-fat diet compositions on phenotype, metabolic outcome, and hepatic proteome signature in BL/6 male mice. Nutr Metab (Lond) 2023; 20:8. [PMID: 36755289 PMCID: PMC9909936 DOI: 10.1186/s12986-023-00729-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
The multitude of obesogenic diets used in rodent studies can hardly be overviewed. Since standardization is missing and assuming that individual compositions provoke individual effects, the choice of quality, quantity and combination of diet ingredients seems to be crucial for the outcome and interpretation of obesity studies. Therefore, the present study was conducted to compare the individual effects of three commonly used obesogenic diets, mainly differing in sugar and fat content. Besides basic phenotypic and metabolic characterization, one main aspect was a comparative liver proteome analysis. As expected, the obtained results picture differentiated consequences mainly depending on fat source and/or fat- and sugar quantity. By confirming the general presumption that the choice of nutritional composition is a pivotal factor, the present findings demonstrate that a conscious selection is indispensable for obtaining reliable and sound results in obesity research. In conclusion, we strongly recommend a careful selection of the appropriate diet in advance of a new experiment, taking into account the specific research question.
Collapse
Affiliation(s)
- Ruth Janoschek
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany.
| | - Marion Handwerk
- grid.6190.e0000 0000 8580 3777Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Eva Hucklenbruch-Rother
- grid.6190.e0000 0000 8580 3777Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Lisa Schmitz
- grid.6190.e0000 0000 8580 3777Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Inga Bae-Gartz
- grid.6190.e0000 0000 8580 3777Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Philipp Kasper
- grid.6190.e0000 0000 8580 3777Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Jan-Wilm Lackmann
- grid.6190.e0000 0000 8580 3777Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Tobias Kretschmer
- grid.6190.e0000 0000 8580 3777Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Christina Vohlen
- grid.6190.e0000 0000 8580 3777Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Andrea Mesaros
- grid.6190.e0000 0000 8580 3777Phenotyping Core Facility, Max-Planck Institute for Biology of Aging, University of Cologne, 50931 Cologne, Germany
| | - Martin Purrio
- grid.6190.e0000 0000 8580 3777Phenotyping Core Facility, Max-Planck Institute for Biology of Aging, University of Cologne, 50931 Cologne, Germany
| | - Alexander Quaas
- grid.6190.e0000 0000 8580 3777Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Jörg Dötsch
- grid.6190.e0000 0000 8580 3777Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Sarah Appel
- grid.6190.e0000 0000 8580 3777Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
2
|
de Oliveira Micheletti T, Cassia dos Santos A, Rocha GZ, Silva VRR, Quaresma PGF, Assalin HB, Junqueira FS, Ropelle ER, Oliveira AG, Saad MJA, Prada PDO. Acute exercise reduces feeding by activating IL-6/Tubby axis in the mouse hypothalamus. Front Physiol 2022; 13:956116. [PMID: 36452038 PMCID: PMC9702993 DOI: 10.3389/fphys.2022.956116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/23/2022] [Indexed: 01/05/2025] Open
Abstract
Background: Acute exercise contributes to decreased feeding through leptin and interleukin/Janus kinase 2/signal transducers and activators of transcription 3 (IL-6/JAK2/STAT3) signaling. Considering the pleiotropic use of substrates by JAK2 and that JAK2 can phosphorylate the Tubby protein (TUB) in CHO-IR cells, we speculated that acute exercise can activate the IL-6/JAK2/TUB pathway to decrease food intake. Aims: We investigated whether acute exercise induced tyrosine phosphorylation and the association of TUB and JAK2 in the hypothalamus and if IL-6 is involved in this response, whether acute exercise increases the IL-6/TUB axis to regulate feeding, and if leptin has an additive effect over this mechanism. Methods: We applied a combination of genetic, pharmacological, and molecular approaches. Key findings: The in vivo experiments showed that acute exercise increased the tyrosine phosphorylation and association of JAK2/TUB in the hypothalamus, which reduced feeding. This response was dependent on IL-6. Leptin had no additive effect on this mechanism. Significance: The results of this study suggest a novel hypothalamic pathway by which IL-6 released by exercise regulates feeding and reinforces the beneficial effects of exercise.
Collapse
Affiliation(s)
- Thayana de Oliveira Micheletti
- School of Applied Sciences, State University of Campinas (UNICAMP), Limeira, Brazil
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Andressa Cassia dos Santos
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Guilherme Zweig Rocha
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Heloisa Balan Assalin
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Felipe Silva Junqueira
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Eduardo Rochete Ropelle
- School of Applied Sciences, State University of Campinas (UNICAMP), Limeira, Brazil
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Alexandre Gabarra Oliveira
- Department of Physical Education, Biosciences Institute, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Mario Jose Abdalla Saad
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Patricia de Oliveira Prada
- School of Applied Sciences, State University of Campinas (UNICAMP), Limeira, Brazil
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
3
|
IL-6 family cytokines as potential therapeutic strategies to treat metabolic diseases. Cytokine 2021; 144:155549. [PMID: 33962843 DOI: 10.1016/j.cyto.2021.155549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023]
Abstract
Metabolic disease is highly prevalent. Here we discuss the therapeutic utility of using gp130 receptor ligands as a therapeutic strategy to treat metabolic disease.
Collapse
|
4
|
Collura KM, Niu J, Sanders SS, Montersino A, Holland SM, Thomas GM. The palmitoyl acyltransferases ZDHHC5 and ZDHHC8 are uniquely present in DRG axons and control retrograde signaling via the Gp130/JAK/STAT3 pathway. J Biol Chem 2020; 295:15427-15437. [PMID: 32958558 PMCID: PMC7667964 DOI: 10.1074/jbc.ra120.013815] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Palmitoylation, the modification of proteins with the lipid palmitate, is a key regulator of protein targeting and trafficking. However, knowledge of the roles of specific palmitoyl acyltransferases (PATs), which catalyze palmitoylation, is incomplete. For example, little is known about which PATs are present in neuronal axons, although long-distance trafficking of palmitoyl-proteins is important for axon integrity and for axon-to-soma retrograde signaling, a process critical for axon development and for responses to injury. Identifying axonally targeted PATs might thus provide insights into multiple aspects of axonal biology. We therefore comprehensively determined the subcellular distribution of mammalian PATs in dorsal root ganglion (DRG) neurons and, strikingly, found that only two PATs, ZDHHC5 and ZDHHC8, were enriched in DRG axons. Signals via the Gp130/JAK/STAT3 and DLK/JNK pathways are important for axonal injury responses, and we found that ZDHHC5 and ZDHHC8 were required for Gp130/JAK/STAT3, but not DLK/JNK, axon-to-soma signaling. ZDHHC5 and ZDHHC8 robustly palmitoylated Gp130 in cotransfected nonneuronal cells, supporting the possibility that Gp130 is a direct ZDHHC5/8 substrate. In DRG neurons, Zdhhc5/8 shRNA knockdown reduced Gp130 palmitoylation and even more markedly reduced Gp130 surface expression, potentially explaining the importance of these PATs for Gp130-dependent signaling. Together, these findings provide new insights into the subcellular distribution and roles of specific PATs and reveal a novel mechanism by which palmitoylation controls axonal retrograde signaling.
Collapse
Affiliation(s)
- Kaitlin M Collura
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Jingwen Niu
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Shaun S Sanders
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Audrey Montersino
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Sabrina M Holland
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Gareth M Thomas
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
5
|
Fantone S, Tossetta G, Montironi R, Senzacqua M, Marzioni D, Mazzucchelli R. Ciliary neurotrophic factor (CNTF) and its receptor (CNTFRα) signal through MAPK/ERK pathway in human prostate tissues: a morphological and biomolecular study. Eur J Histochem 2020; 64. [PMID: 33131268 PMCID: PMC7586252 DOI: 10.4081/ejh.2020.3147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/15/2020] [Indexed: 12/28/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) is a member of interleukin-6 type cytokine family. The CNTF receptor complex is a heterodimer including gp130 and CNTF receptor α (CNTFRα) proteins triggering the activation of multiple intracellular signaling pathways including AKT/PI3K, MAPK/ERK and Jak/STAT pathways. At present no data are available on the localization of CNTF and CNTFRα in prostate as well as on the role of CNTF in this organ. In this study we have analyzed the localization of CNTF and CNTFRα by immunohistochemistry and we have used PWR-1E cell line as a model for normal glandular cell to investigate the role of this cytokine. Our results show that CNTF and CNTFRa are expressed in the staminal compart of the prostate and that CNTF selectively inhibits ERK pathway. In conclusion, we suggest that CNTF could be considered as key molecule to maintenance epithelium homeostasis via pERK downregulation by an autocrine mechanism. Further CNTF studies in prostate cancer could be useful to verify the potential role of this cytokine in carcinogenesis.
Collapse
Affiliation(s)
- Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona.
| | - Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona.
| | - Rodolfo Montironi
- Department of Biomedical Sciences and Public Health, Section of Pathological Anatomy, Università Politecnica delle Marche, School of Medicine, United Hospitals, Ancona.
| | - Martina Senzacqua
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona.
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona.
| | - Roberta Mazzucchelli
- Department of Biomedical Sciences and Public Health, Section of Pathological Anatomy, Università Politecnica delle Marche, School of Medicine, United Hospitals, Ancona.
| |
Collapse
|
6
|
Venema W, Severi I, Perugini J, Di Mercurio E, Mainardi M, Maffei M, Cinti S, Giordano A. Ciliary Neurotrophic Factor Acts on Distinctive Hypothalamic Arcuate Neurons and Promotes Leptin Entry Into and Action on the Mouse Hypothalamus. Front Cell Neurosci 2020; 14:140. [PMID: 32528252 PMCID: PMC7253709 DOI: 10.3389/fncel.2020.00140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
In humans and experimental animals, the administration of ciliary neurotrophic factor (CNTF) reduces food intake and body weight. To gain further insights into the mechanism(s) underlying its satiety effect, we: (i) evaluated the CNTF-dependent activation of the Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) pathway in mouse models where neuropeptide Y (NPY) and pro-opiomelanocortin (POMC) neurons can be identified by green fluorescent protein (GFP); and (ii) assessed whether CNTF promotes leptin signaling in hypothalamic feeding centers. Immunohistochemical experiments enabled us to establish that intraperitoneal injection of mouse recombinant CNTF activated the JAK2-STAT3 pathway in a substantial proportion of arcuate nucleus (ARC) NPY neurons (18.68% ± 0.60 in 24-h fasted mice and 25.50% ± 1.17 in fed mice) but exerted a limited effect on POMC neurons (4.15% ± 0.33 in 24-h fasted mice and 2.84% ± 0.45 in fed mice). CNTF-responsive NPY neurons resided in the ventromedial ARC, facing the median eminence (ME), and were surrounded by albumin immunoreactivity, suggesting that they are located outside the blood-brain barrier (BBB). In both normally fed and high-fat diet (HFD) obese animals, CNTF activated extracellular signal-regulated kinase signaling in ME β1- and β2-tanycytes, an effect that has been linked to the promotion of leptin entry into the brain. Accordingly, compared to the animals treated with leptin, mice treated with leptin/CNTF showed: (i) a significantly greater leptin content in hypothalamic protein extracts; (ii) a significant increase in phospho-STAT3 (P-STAT3)-positive neurons in the ARC and the ventromedial hypothalamic nucleus of normally fed mice; and (iii) a significantly increased number of P-STAT3-positive neurons in the ARC and dorsomedial hypothalamic nucleus of HFD obese mice. Collectively, these data suggest that exogenously administered CNTF reduces food intake by exerting a leptin-like action on distinctive NPY ARC neurons and by promoting leptin signaling in hypothalamic feeding centers.
Collapse
Affiliation(s)
- Wiebe Venema
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, Ancona, Italy
| | - Ilenia Severi
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, Ancona, Italy
| | - Jessica Perugini
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, Ancona, Italy
| | - Eleonora Di Mercurio
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, Ancona, Italy
| | - Marco Mainardi
- Institute of Neuroscience, National Research Council, Pisa, Italy
| | | | - Saverio Cinti
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, Ancona, Italy
- Center of Obesity, Università Politecnica delle Marche-United Hospitals, Ancona, Italy
| | - Antonio Giordano
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, Ancona, Italy
| |
Collapse
|
7
|
Perugini J, Di Mercurio E, Tossetta G, Severi I, Monaco F, Reguzzoni M, Tomasetti M, Dani C, Cinti S, Giordano A. Biological Effects of Ciliary Neurotrophic Factor on hMADS Adipocytes. Front Endocrinol (Lausanne) 2019; 10:768. [PMID: 31781039 PMCID: PMC6861295 DOI: 10.3389/fendo.2019.00768] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022] Open
Abstract
Administration of ciliary neurotrophic factor (CNTF) to experimental animals exerts anti-obesity effects by acting on multiple targets. In white adipose tissue CNTF reduces lipid content, promotes fatty acid (FA) oxidation and improves insulin sensitivity. This study was performed to establish whether CNTF exerts similar effects on human white adipocytes. To this end, adipose differentiation was induced in vitro in human multipotent adipose-derived stem (hMADS) cells. CNTF receptor α (CNTFRα) expression was assessed in hMADS cells and adipocytes by qRT-PCR, Western blotting, and immunocytochemistry. After administration of human recombinant CNTF, signaling pathways and gene expression were evaluated by Western blotting and qRT-PCR. Glucose uptake was assessed by measuring 2-nitrobenzodeoxyglucose uptake with a fluorescence plate reader. Lastly, CNTF-induced anti-inflammatory responses were evaluated in hMADS adipocytes stressed with tumor necrosis factor α (TNFα) for 24 h. Results showed that CNTFRα protein expression was higher in undifferentiated hMADS cells than in hMADS adipocytes, where it was however clearly detectable. In hMADS adipocytes, 1 nM CNTF strongly activated the JAK-STAT3 (Janus kinase-signaling transducer and activator of transcription 3) pathway and acutely and transiently activated the AMPK (AMP-activated protein kinase) and AKT (protein kinase B) pathways. Acute CNTF treatment for 20 min significantly increased basal glucose uptake and was associated with increased AKT phosphorylation. Longer-term (24 and 48 h) treatment reduced the expression of lipogenic markers (FA synthase and sterol regulatory element-binding protein-1) and increased the expression of lipolytic [hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL)] and mitochondrial (peroxisome proliferator-activated receptor γ coactivator-1α and carnitine palmitoyltransferase 1) markers. In TNFα-treated hMADS adipocytes, CNTF significantly reduced the expression of monocyte chemoattractant protein 1 and TNFα-induced AKT inhibition. Collectively, these findings demonstrate for the first time that CNTF plays a role also in human adipocytes, driving their metabolism toward a less lipid-storing and more energy-consuming phenotype.
Collapse
Affiliation(s)
- Jessica Perugini
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Eleonora Di Mercurio
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Federica Monaco
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Marcella Reguzzoni
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Marco Tomasetti
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Christian Dani
- Université Côte d'Azur, CNRS, INSERM, iBV, Faculté de Médecine, Nice, France
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
- Center of Obesity, United Hospitals, Marche Polytechnic University, Ancona, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
8
|
André C, Catania C, Remus-Borel J, Ladeveze E, Leste-Lasserre T, Mazier W, Binder E, Gonzales D, Clark S, Guzman-Quevedo O, Abrous DN, Layé S, Cota D. mTORC1 pathway disruption abrogates the effects of the ciliary neurotrophic factor on energy balance and hypothalamic neuroinflammation. Brain Behav Immun 2018; 70:325-334. [PMID: 29548998 DOI: 10.1016/j.bbi.2018.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 11/19/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) potently decreases food intake and body weight in diet-induced obese mice by acting through neuronal circuits and pathways located in the arcuate nucleus (ARC) of the hypothalamus. CNTF also exerts pro-inflammatory actions within the brain. Here we tested whether CNTF modifies energy balance by inducing inflammatory responses in the ARC and whether these effects depend upon the mechanistic target of rapamycin complex 1 (mTORC1) pathway, which regulates both energy metabolism and inflammation. To this purpose, chow- and high fat diet (HFD)- fed mice lacking the S6 kinase 1 (S6K1-/-), a downstream target of mTORC1, and their wild-type (WT) littermates received 12 days continuous intracerebroventricular (icv) infusion of the CNTF analogue axokine (CNTFAx15). Behavioral, metabolic and molecular effects were evaluated. Central chronic administration of CNTFAx15 decreased body weight and feed efficiency in WT mice only, when fed HFD, but not chow. These metabolic effects correlated with increased number of iba-1 positive microglia specifically in the ARC and were accompanied by significant increases of IL-1β and TNF-α mRNA expression in the hypothalamus. Hypothalamic iNOS and SOCS3 mRNA, molecular markers of pro-inflammatory response, were also increased by CNTFAx15. All these changes were absent in S6K1-/- mice. This study reveals that CNTFAx15 requires a functional S6K1 to modulate energy balance and hypothalamic inflammation in a diet-dependent fashion. Further investigations should determine whether S6K1 is a suitable target for the treatment of pathologies characterized by a high neuroinflammatory state.
Collapse
Affiliation(s)
- Caroline André
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Caterina Catania
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Julie Remus-Borel
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, F-33076 Bordeaux, France; University of Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, F-33076 Bordeaux, France
| | - Elodie Ladeveze
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Thierry Leste-Lasserre
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Wilfrid Mazier
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Elke Binder
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Delphine Gonzales
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Samantha Clark
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Omar Guzman-Quevedo
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Djoher Nora Abrous
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Sophie Layé
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, F-33076 Bordeaux, France; University of Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, F-33076 Bordeaux, France
| | - Daniela Cota
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France.
| |
Collapse
|
9
|
Cron L, Allen T, Febbraio MA. The role of gp130 receptor cytokines in the regulation of metabolic homeostasis. ACTA ACUST UNITED AC 2016; 219:259-65. [PMID: 26792338 DOI: 10.1242/jeb.129213] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
It is well known that obesity is responsible, at least in part, for the increased incidence of chronic diseases such as type 2 diabetes, cardiovascular disease and certain types of cancer. Despite public education programs emphasizing lifestyle modifications to arrest this global pandemic, it is now estimated that 10-15% of the world's population are overweight or obese. As a result, new therapeutic options for the treatment of obesity-related disorders are clearly warranted. Much of the benefit of physical activity has been attributed to several mechanisms including reduced adiposity, increased cardiorespiratory fitness, reduced circulating lipids and the maintenance of muscle mass. However, the observation that the gp130 receptor cytokine interleukin-6 (IL-6) was released from skeletal muscle during exercise to improve metabolic homeostasis altered our understanding of the health benefits of exercise and opened avenues for research into potential novel therapeutics to treat metabolic disease. One gp130 receptor cytokine in particular, ciliary neurotrophic factor (CNTF), a pluripotent neurocytokine, showed efficacy as a potential anti-obesogenic therapy. This review examines the potential of gp130 receptor ligands, with a focus on IL-6 and CNTF as therapeutic strategies to treat obesity-related disorders.
Collapse
Affiliation(s)
- Lena Cron
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia Faculty of Biology & Medicine, University of Lausanne, Lausanne,1015 Vaud, Switzerland
| | - Tamara Allen
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Mark A Febbraio
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia Division of Diabetes & Metabolism, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| |
Collapse
|
10
|
Senzacqua M, Severi I, Perugini J, Acciarini S, Cinti S, Giordano A. Action of Administered Ciliary Neurotrophic Factor on the Mouse Dorsal Vagal Complex. Front Neurosci 2016; 10:289. [PMID: 27445662 PMCID: PMC4921504 DOI: 10.3389/fnins.2016.00289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/10/2016] [Indexed: 12/13/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) induces weight loss in obese rodents and humans through activation of the hypothalamic Jak-STAT (Janus kinase-signal transducer and activator of transcription) signaling pathway. Here, we tested the hypothesis that CNTF also affects the brainstem centers involved in feeding and energy balance regulation. To this end, wild-type and leptin-deficient (ob/ob and db/db) obese mice were acutely treated with intraperitoneal recombinant CNTF. Coronal brainstem sections were processed for immunohistochemical detection of STAT3, STAT1, STAT5 phosphorylation and c-Fos. In wild-type mice, CNTF treatment for 45 min induced STAT3, STAT1, and STAT5 phosphorylation in neurons as well as glial cells of the area postrema; here, the majority of CNTF-responsive cells activated multiple STAT isoforms, and a significant proportion of CNTF-responsive glial cells bore the immaturity and plasticity markers nestin and vimentin. After 120 min CNTF treatment, c-Fos expression was intense in glial cells and weak in neurons of the area postrema, it was intense in several neurons of the rostral and caudal solitary tract nucleus (NTS), and weak in some cholinergic neurons of the dorsal motor nucleus of the vagus. In the ob/ob and db/db mice, Jak-STAT activation and c-Fos expression were similar to those induced in wild-type mouse brainstem. Treatment with CNTF (120 min, to induce c-Fos expression) and leptin (25 min, to induce STAT3 phosphorylation) demonstrated the co-localization of the two transcription factors in a small neuron population in the caudal NTS portion. Finally, weak immunohistochemical CNTF staining, detected in funiculus separans, and meningeal glial cells, matched the modest amount of CNTF found by RT-qPCR in micropunched area postrema tissue, which in contrast exhibited a very high amount of CNTF receptor. Collectively, the present findings show that the area postrema and the NTS exhibit high, distinctive responsiveness to circulating exogenous and, probably, endogenous CNTF.
Collapse
Affiliation(s)
- Martina Senzacqua
- Department of Experimental and Clinical Medicine, Università Politecnica delle MarcheAncona, Italy
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine, Università Politecnica delle MarcheAncona, Italy
| | - Jessica Perugini
- Department of Experimental and Clinical Medicine, Università Politecnica delle MarcheAncona, Italy
| | - Samantha Acciarini
- Department of Experimental and Clinical Medicine, Università Politecnica delle MarcheAncona, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Università Politecnica delle MarcheAncona, Italy
- Center of Obesity, Università Politecnica delle Marche-United HospitalsAncona, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Università Politecnica delle MarcheAncona, Italy
| |
Collapse
|
11
|
Severi I, Senzacqua M, Mondini E, Fazioli F, Cinti S, Giordano A. Activation of transcription factors STAT1 and STAT5 in the mouse median eminence after systemic ciliary neurotrophic factor administration. Brain Res 2015; 1622:217-229. [PMID: 26133794 DOI: 10.1016/j.brainres.2015.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/29/2015] [Accepted: 06/21/2015] [Indexed: 12/26/2022]
Abstract
Exogenously administered ciliary neurotrophic factor (CNTF) causes weight loss in obese rodents and humans through leptin-like activation of the Jak-STAT3 signaling pathway in hypothalamic arcuate neurons. Here we report for the first time that 40min after acute systemic treatment, rat recombinant CNTF (intraperitoneal injection of 0.3mg/kg of body weight) induced nuclear translocation of the tyrosine-phosphorylated forms of STAT1 and STAT5 in the mouse median eminence and other circumventricular organs, including the vascular organ of the lamina terminalis and the subfornical organ. In the tuberal hypothalamus of treated mice, specific nuclear immunostaining for phospo-STAT1 and phospho-STAT5 was detected in ependymal cells bordering the third ventricle floor and lateral recesses, and in median eminence cells. Co-localization studies documented STAT1 and STAT5 activation in median eminence β-tanycytes and underlying radial glia-like cells. A few astrocytes in the arcuate nucleus responded to CNTF by STAT5 activation. The vast majority of median eminence tanycytes and radial glia-like cells showing phospho-STAT1 and phospho-STAT5 immunoreactivity were also positive for phospho-STAT3. In contrast, STAT3 was the sole STAT isoform activated by CNTF in arcuate nucleus and median eminence neurons. Finally, immunohistochemical evaluation of STAT activation 20, 40, 80, and 120min from the injection demonstrated that cell activation was accompanied by c-Fos expression. Collectively, our findings show that CNTF activates STAT3, STAT1, and STAT5 in vivo. The distinctive activation pattern of these STAT isoforms in the median eminence may disclose novel targets and pathways through which CNTF regulates food intake.
Collapse
Affiliation(s)
- Ilenia Severi
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Martina Senzacqua
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Eleonora Mondini
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Francesca Fazioli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Center of Obesity, Università Politecnica delle Marche-United Hospitals, Ancona, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
12
|
Silva VRR, Micheletti TO, Pimentel GD, Katashima CK, Lenhare L, Morari J, Mendes MCS, Razolli DS, Rocha GZ, de Souza CT, Ryu D, Prada PO, Velloso LA, Carvalheira JBC, Pauli JR, Cintra DE, Ropelle ER. Hypothalamic S1P/S1PR1 axis controls energy homeostasis. Nat Commun 2014; 5:4859. [PMID: 25255053 DOI: 10.1038/ncomms5859] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/31/2014] [Indexed: 02/07/2023] Open
Abstract
Sphingosine 1-phosphate receptor 1 (S1PR1) is a G-protein-coupled receptor for sphingosine-1-phosphate (S1P) that has a role in many physiological and pathophysiological processes. Here we show that the S1P/S1PR1 signalling pathway in hypothalamic neurons regulates energy homeostasis in rodents. We demonstrate that S1PR1 protein is highly enriched in hypothalamic POMC neurons of rats. Intracerebroventricular injections of the bioactive lipid, S1P, reduce food consumption and increase rat energy expenditure through persistent activation of STAT3 and the melanocortin system. Similarly, the selective disruption of hypothalamic S1PR1 increases food intake and reduces the respiratory exchange ratio. We further show that STAT3 controls S1PR1 expression in neurons via a positive feedback mechanism. Interestingly, several models of obesity and cancer anorexia display an imbalance of hypothalamic S1P/S1PR1/STAT3 axis, whereas pharmacological intervention ameliorates these phenotypes. Taken together, our data demonstrate that the neuronal S1P/S1PR1/STAT3 signalling axis plays a critical role in the control of energy homeostasis in rats.
Collapse
Affiliation(s)
- Vagner R R Silva
- Laboratory of Molecular Biology of Exercise (LaBMEx). School of Applied Science, University of Campinas (UNICAMP), Rua Pedro Zaccarias, 1300, CEP 13484-350 Limeira, São Paulo, Brazil
| | - Thayana O Micheletti
- Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), CEP 13083-887 Campinas, São Paulo, Brazil
| | - Gustavo D Pimentel
- Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), CEP 13083-887 Campinas, São Paulo, Brazil
| | - Carlos K Katashima
- Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), CEP 13083-887 Campinas, São Paulo, Brazil
| | - Luciene Lenhare
- Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), CEP 13083-887 Campinas, São Paulo, Brazil
| | - Joseane Morari
- Laboratory of Cell Signalling, Faculty of Medical Sciences, University of Campinas (UNICAMP), CEP 13083-887 Campinas, São Paulo, Brazil
| | - Maria Carolina S Mendes
- Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), CEP 13083-887 Campinas, São Paulo, Brazil
| | - Daniela S Razolli
- Laboratory of Cell Signalling, Faculty of Medical Sciences, University of Campinas (UNICAMP), CEP 13083-887 Campinas, São Paulo, Brazil
| | - Guilherme Z Rocha
- Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), CEP 13083-887 Campinas, São Paulo, Brazil
| | - Claudio T de Souza
- Laboratory of Exercise Biochemistry and Physiology, Health Sciences Unit, University of Southern Santa Catarina, CEP 88806-000 Criciúma, Santa Catarina, Brazil
| | - Dongryeol Ryu
- Laboratory of Integrative and Systems Physiology, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Patrícia O Prada
- Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), CEP 13083-887 Campinas, São Paulo, Brazil
| | - Lício A Velloso
- Laboratory of Cell Signalling, Faculty of Medical Sciences, University of Campinas (UNICAMP), CEP 13083-887 Campinas, São Paulo, Brazil
| | - José B C Carvalheira
- Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), CEP 13083-887 Campinas, São Paulo, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx). School of Applied Science, University of Campinas (UNICAMP), Rua Pedro Zaccarias, 1300, CEP 13484-350 Limeira, São Paulo, Brazil
| | - Dennys E Cintra
- 1] Laboratory of Molecular Biology of Exercise (LaBMEx). School of Applied Science, University of Campinas (UNICAMP), Rua Pedro Zaccarias, 1300, CEP 13484-350 Limeira, São Paulo, Brazil [2] Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), CEP 13083-887 Campinas, São Paulo, Brazil [3] Laboratory of Cell Signalling, Faculty of Medical Sciences, University of Campinas (UNICAMP), CEP 13083-887 Campinas, São Paulo, Brazil
| | - Eduardo R Ropelle
- 1] Laboratory of Molecular Biology of Exercise (LaBMEx). School of Applied Science, University of Campinas (UNICAMP), Rua Pedro Zaccarias, 1300, CEP 13484-350 Limeira, São Paulo, Brazil [2] Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), CEP 13083-887 Campinas, São Paulo, Brazil
| |
Collapse
|
13
|
Lee Y, Song YS, Fang CH, So BI, Park JY, Joo HW, Park IH, Shen GY, Shin JH, Kim H, Ahn YH, Kim KS. Anti-obesity effects of granulocyte-colony stimulating factor in Otsuka-Long-Evans-Tokushima fatty rats. PLoS One 2014; 9:e105603. [PMID: 25144367 PMCID: PMC4140798 DOI: 10.1371/journal.pone.0105603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/26/2014] [Indexed: 11/18/2022] Open
Abstract
Granulocyte-colony stimulating factor (G-CSF) has molecular structures and intracellular signaling pathways that are similar to those of leptin and ciliary neurotropic factor (CNTF). It also has immune-modulatory properties. Given that leptin and CNTF play important roles in energy homeostasis and that obesity is an inflammatory condition in adipose tissue, we hypothesized that G-CSF could also play a role in energy homeostasis. We treated 12 38-week-old male Otsuka-Long-Evans-Tokushima fatty rats (OLETF, diabetic) and 12 age-matched male Long-Evans-Tokushima rats (LETO, healthy) with 200 µg/day G-CSF or saline for 5 consecutive days. Body weight reduction was greater in G-CSF-treated OLETF (G-CSF/OLETF) than saline-treated OLETF (saline/OLETF) following 8 weeks of treatment (−6.9±1.6% vs. −3.1±2.2%, p<0.05). G-CSF treatment had no effect on body weight in LETO or on food intake in either OLETF or LETO. Body fat in G-CSF/OLETF was more reduced than in saline/OLETF (−32.2±3.1% vs. −20.8±6.2%, p<0.05). Energy expenditure was higher in G-CSF/OLETF from 4 weeks after the treatments than in saline/OLETF. Serum levels of cholesterol, triglyceride, interleukin-6 and tumor necrosis factor-α were lower in G-CSF/OLETF than in saline/OLETF. Uncoupling protein-1 (UCP-1) expression in brown adipose tissue (BAT) was higher in G-CSF/OLETF than in saline/OLETF, but was unaffected in LETO. Immunofluorescence staining and PCR results revealed that G-CSF receptors were expressed in BAT. In vitro experiments using brown adipocyte primary culture revealed that G-CSF enhanced UCP-1 expression from mature brown adipocytes via p38 mitogen-activated protein kinase pathway. In conclusion, G-CSF treatment reduced body weight and increased energy expenditure in a diabetic model, and enhanced UCP-1 expression and decreased inflammatory cytokine levels may be associated with the effects of G-CSF treatment.
Collapse
Affiliation(s)
- Yonggu Lee
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, South Korea
- Department of Cardiology, Sung-Ae Hospital, Seoul, South Korea
| | - Yi-Sun Song
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Cheng-Hu Fang
- Division of Cardiology, Yanbian University, Yanji, China
| | - Byung-Im So
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Jun-Young Park
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Hyun-Woo Joo
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - In-Hwa Park
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Guang-Yin Shen
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Jeong-Hun Shin
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, South Korea
| | - Hyuck Kim
- Department of Thoracic Surgery, Hanyang University Hospital, Seoul, South Korea
| | - You-Heon Ahn
- Department of Endocrinology, Hanyang University Hospital, Seoul, South Korea
| | - Kyung-Soo Kim
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, South Korea
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
- * E-mail:
| |
Collapse
|
14
|
Severi I, Perugini J, Mondini E, Smorlesi A, Frontini A, Cinti S, Giordano A. Opposite effects of a high-fat diet and calorie restriction on ciliary neurotrophic factor signaling in the mouse hypothalamus. Front Neurosci 2013; 7:263. [PMID: 24409114 PMCID: PMC3873503 DOI: 10.3389/fnins.2013.00263] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/16/2013] [Indexed: 12/05/2022] Open
Abstract
In the mouse hypothalamus, ciliary neurotrophic factor (CNTF) is mainly expressed by ependymal cells and tanycytes of the ependymal layer covering the third ventricle. Since exogenously administered CNTF causes reduced food intake and weight loss, we tested whether endogenous CNTF might be involved in energy balance regulation. We thus evaluated CNTF production and responsiveness in the hypothalamus of mice fed a high-fat diet (HFD), of ob/ob obese mice, and of mice fed a calorie restriction (CR) regimen. RT-PCR showed that CNTF mRNA increased significantly in HFD mice and decreased significantly in CR animals. Western blotting confirmed that CNTF expression was higher in HFD mice and reduced in CR mice, but high interindividual variability blunted the significance of these differences. By immunohistochemistry, hypothalamic tuberal and mammillary region tanycytes stained strongly for CNTF in HFD mice, whereas CR mice exhibited markedly reduced staining. RT-PCR and Western blotting disclosed that changes in CNTF expression were paralleled by changes in the expression of its specific receptor, CNTF receptor α (CNTFRα). Injection of recombinant CNTF and detection of phospho-signal transducer and activator of transcription 3 (P-STAT3) showed that CNTF responsiveness by the ependymal layer, mainly by tanycytes, was higher in HFD than CR mice. In addition, in HFD mice CNTF administration induced distinctive STAT3 signaling in a large neuron population located in the dorsomedial and ventromedial nuclei, perifornical area and mammillary body. The hypothalamic expression of CNTF and CNTFRα did not change in the hyperphagic, leptin-deficient ob/ob obese mice; accordingly, P-STAT3 immunoreactivity in CNTF-treated ob/ob mice was confined to ependymal layer and arcuate neurons. Collectively, these data suggest that hypothalamic CNTF is involved in controlling the energy balance and that CNTF signaling plays a role in HFD obese mice at specific sites.
Collapse
Affiliation(s)
- Ilenia Severi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle MarcheAncona, Italy
| | - Jessica Perugini
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle MarcheAncona, Italy
| | - Eleonora Mondini
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle MarcheAncona, Italy
| | - Arianna Smorlesi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle MarcheAncona, Italy
| | - Andrea Frontini
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle MarcheAncona, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle MarcheAncona, Italy
- Center of Obesity, Università Politecnica delle Marche-United HospitalsAncona, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle MarcheAncona, Italy
| |
Collapse
|
15
|
Vespasiani-Gentilucci U, De Vincentis A, Argemi J, Galati G, Ansò E, Patti G, Picardi A. Cardiotrophin-1 is not associated with carotid or coronary disease and is inversely associated with obesity in patients undergoing coronary angiography. Arch Med Sci 2013; 9:635-639. [PMID: 24049522 PMCID: PMC3776189 DOI: 10.5114/aoms.2013.37272] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/20/2012] [Accepted: 01/27/2013] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION Cardiotrophin-1 (CT-1) is a member of the interleukin-6 superfamily with known hypertrophic and protective actions upon cardiac myocytes. Although its effects on myocardial tissue and its role in hypertensive heart disease are well documented, there are no studies on CT-1 blood levels in patients with coronary artery disease. In this study we aimed to verify the relationships of serum CT-1 with vascular disease and metabolic parameters in a population of patients undergoing coronary angiography due to clinical indications. MATERIAL AND METHODS Serum levels of CT-1 were investigated in a cohort of 81 consecutive patients (median age 68 years (95% CI: 64-71), 59 males) undergoing coronary angiography and carotid Doppler ultrasound. Exclusion criteria were: acute coronary syndrome, already-established ischemic cardiopathy, chronic inflammatory diseases and presence or past history of cancer. RESULTS Levels of CT-1 were inversely correlated with body mass index (BMI) and waist circumference (WC) (ρ = -0.261, p = 0.02; ρ = -0.224, p = 0.05, respectively). Moreover, obese patients showed significantly lower CT-1 concentrations than non-obese ones (1.18 (0.64-1.64) ng/ml vs. 1.56 (1.37-2.04) ng/ml, p = 0.013), and serum CT-1 was significantly reduced in patients with elevated compared to those with normal WC (1.43 (0.94-1.60) ng/ml vs. 1.64 (1.39-2.49) ng/ml, p = 0.047). Concentrations of CT-1 did not correlate either with the other parameters of metabolic syndrome or with markers of cardiovascular disease (carotid intima-media thickness, presence of carotid or coronary artery plaques). CONCLUSIONS Our results failed to demonstrate any association between CT-1 and carotid or coronary disease. The inverse association with BMI and WC fits with the latest experimental data on the role of CT-1 in dysmetabolic conditions and could help to further clarify the role of CT-1 in obesity and diabetes.
Collapse
Affiliation(s)
| | | | | | - Giovanni Galati
- Campus Bio-Medico of University, Clinical Medicine – Hepatology, Rome, Italy
| | | | | | - Antonio Picardi
- Campus Bio-Medico of University, Clinical Medicine – Hepatology, Rome, Italy
| |
Collapse
|
16
|
Purser MJ, Dalvi PS, Wang ZC, Belsham DD. The cytokine ciliary neurotrophic factor (CNTF) activates hypothalamic urocortin-expressing neurons both in vitro and in vivo. PLoS One 2013; 8:e61616. [PMID: 23626705 PMCID: PMC3633986 DOI: 10.1371/journal.pone.0061616] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 03/12/2013] [Indexed: 12/11/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) induces neurogenesis, reduces feeding, and induces weight loss. However, the central mechanisms by which CNTF acts are vague. We employed the mHypoE-20/2 line that endogenously expresses the CNTF receptor to examine the direct effects of CNTF on mRNA levels of urocortin-1, urocortin-2, agouti-related peptide, brain-derived neurotrophic factor, and neurotensin. We found that treatment of 10 ng/ml CNTF significantly increased only urocortin-1 mRNA by 1.84-fold at 48 h. We then performed intracerebroventricular injections of 0.5 mg/mL CNTF into mice, and examined its effects on urocortin-1 neurons post-exposure. Through double-label immunohistochemistry using specific antibodies against c-Fos and urocortin-1, we showed that central CNTF administration significantly activated urocortin-1 neurons in specific areas of the hypothalamus. Taken together, our studies point to a potential role for CNTF in regulating hypothalamic urocortin-1-expressing neurons to mediate its recognized effects on energy homeostasis, neuronal proliferaton/survival, and/or neurogenesis.
Collapse
Affiliation(s)
- Matthew J. Purser
- Department of Physiology, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Prasad S. Dalvi
- Department of Physiology, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Zi C. Wang
- Department of Physiology, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Denise D. Belsham
- Department of Physiology, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Departments of Obstetrics, Gynaecology and Medicine, University of Toronto and Division of Cellular and Molecular Biology, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
17
|
Acute selective ablation of rat insulin promoter-expressing (RIPHER) neurons defines their orexigenic nature. Proc Natl Acad Sci U S A 2012; 109:18132-7. [PMID: 23064638 DOI: 10.1073/pnas.1206147109] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rat insulin promoter (RIP)-expressing neurons in the hypothalamus control body weight and energy homeostasis. However, genetic approaches to study the role of these neurons have been limited by the fact that RIP expression is predominantly found in pancreatic β-cells, which impedes selective targeting of neurons. To define the function of hypothalamic RIP-expressing neurons, we set out to acutely and selectively eliminate them via diphtheria toxin-mediated ablation. Therefore, the diphtheria toxin receptor transgene was specifically expressed upon RIP-specific Cre recombination using a RIP-Cre line first described by Herrera (RIP(HER)-Cre) [Herrera PL (2000) Development 127:2317-2322]. Using proopiomelanocortin-expressing cells located in the arcuate nucleus of the hypothalamus and in the pituitary gland as a model, we established a unique protocol of intracerebroventricular application of diphtheria toxin to efficiently ablate hypothalamic cells with no concomitant effect on pituitary proopiomelanocortin-expressing corticotrophs in the mouse. Using this approach to ablate RIP(HER) neurons in the brain, but not in the pancreas, resulted in decreased food intake and loss of body weight and fat mass. In addition, ablation of RIP(HER) neurons caused increased c-Fos immunoreactivity of neurons in the paraventricular nucleus (PVN) of the hypothalamus. Moreover, transsynaptic tracing of RIP(HER) neurons revealed labeling of neurons located in the PVN and dorsomedial hypothalamic nucleus. Thus, our experiments indicate that RIP(HER) neurons inhibit anorexigenic neurons in the PVN, revealing a basic orexigenic nature of these cells.
Collapse
|
18
|
Stefater MA, MacLennan AJ, Lee N, Patterson CM, Haller A, Sorrell J, Myers M, Woods SC, Seeley RJ. The anorectic effect of CNTF does not require action in leptin-responsive neurons. Endocrinology 2012; 153:2647-54. [PMID: 22518062 PMCID: PMC3359614 DOI: 10.1210/en.2012-1024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Leptin resistance is a feature of obesity that poses a significant therapeutic challenge. Any treatment that is effective to reduce body weight in obese patients must overcome or circumvent leptin resistance, which promotes the maintenance of excess body fat in obese individuals. Ciliary neurotrophic factor (CNTF) is unique in its ability to reduce food intake and body weight in obese, leptin-resistant humans and rodents. Although attempts to use CNTF as an obesity therapy failed due to the development of neutralizing antibodies to the drug, efforts to understand mechanisms for CNTF's anorectic effects provide an opportunity to develop new drugs for leptin-resistant individuals. CNTF and leptin share several structural, anatomic, and signaling properties, but it is not understood whether or how the two cytokines might interact to affect energy balance. Here, we conditionally deleted the CNTF receptor (CNTFR) subunit, CNTFRα, in cells expressing leptin receptors. We found that CNTFR signaling in leptin-responsive neurons is not required for endogenous maintenance of energy balance and is not required for the anorectic response to exogenous administration of a CNTF agonist. These results indicate that despite anatomical overlap for CNTF and leptin action, CNTF appears to act within a distinct neuronal population to elicit its potent anorectic effect.
Collapse
Affiliation(s)
- M A Stefater
- Metabolic Diseases Institute, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45237, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Severi I, Carradori MR, Lorenzi T, Amici A, Cinti S, Giordano A. Constitutive expression of ciliary neurotrophic factor in mouse hypothalamus. J Anat 2012; 220:622-631. [PMID: 22458546 PMCID: PMC3390515 DOI: 10.1111/j.1469-7580.2012.01498.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2012] [Indexed: 11/30/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) is a potent survival molecule for a large number of neuronal and glial cells in culture; its expression in glial cells is strongly upregulated after a variety of nerve tissue injuries. Exogenously administered CNTF produces an anorectic effect via activation of hypothalamic neurons and stimulates neurogenesis in mouse hypothalamus. To determine whether CNTF is produced endogenously in the hypothalamus, we sought cellular sources and examined their distribution in adult mouse hypothalamus by immunohistochemistry. CNTF immunoreactivity (IR) was predominantly detected in the ependymal layer throughout the rostrocaudal extension of the third ventricle, where numerous ependymocytes and tanycytes exhibited specific staining. Some astrocytes in the grey matter of the anterior hypothalamus and in the median eminence of the hypothalamic tuberal region were also positive. Stimulation of cells bearing CNTF receptor α (CNTFRα) induces specific activation of the signal transducer and activator of transcription 3 (STAT3) signalling system. Treatment with recombinant CNTF and detection of the nuclear expression of phospho-STAT3 (P-STAT3) showed that CNTF-producing ependymal cells and tanycytes were intermingled with, or very close to, P-STAT3-positive, CNTFRα-bearing cells. A fraction of CNTF-producing ependymal cells and tanycytes and some median eminence astrocytes also exhibited P-STAT3 IR. Thus, in normal adult mice the ependyma of the third ventricle is both a source of and a target for CNTF, which may play hitherto unknown roles in hypothalamic function in physiological conditions.
Collapse
Affiliation(s)
- Ilenia Severi
- Department of Experimental and Clinical Medicine, School of Medicine, Università Politecnica delle MarcheAncona, Italy
| | - Maria Rita Carradori
- Department of Clinical, Experimental and Odontostomatological Sciences, School of Medicine, Università Politecnica delle MarcheAncona, Italy
| | - Teresa Lorenzi
- Department of Experimental and Clinical Medicine, School of Medicine, Università Politecnica delle MarcheAncona, Italy
| | - Adolfo Amici
- Department of Clinical, Experimental and Odontostomatological Sciences, School of Medicine, Università Politecnica delle MarcheAncona, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, School of Medicine, Università Politecnica delle MarcheAncona, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, School of Medicine, Università Politecnica delle MarcheAncona, Italy
| |
Collapse
|
20
|
Couvreur O, Aubourg A, Crépin D, Degrouard J, Gertler A, Taouis M, Vacher CM. The anorexigenic cytokine ciliary neurotrophic factor stimulates POMC gene expression via receptors localized in the nucleus of arcuate neurons. Am J Physiol Endocrinol Metab 2012; 302:E458-67. [PMID: 22146310 DOI: 10.1152/ajpendo.00388.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ciliary neurotrophic factor (CNTF) is a neural cytokine that reduces appetite and body weight when administrated to rodents or humans. We have demonstrated recently that the level of CNTF in the arcuate nucleus (ARC), a key hypothalamic region involved in food intake regulation, is positively correlated with protection against diet-induced obesity. However, the comprehension of the physiological significance of neural CNTF action was still incomplete because CNTF lacks a signal peptide and thus may not be secreted by the classical exocytosis pathways. Knowing that CNTF distribution shares similarities with that of its receptor subunits in the rat ARC, we hypothesized that CNTF could exert a direct intracrine effect in ARC cells. Here, we demonstrate that CNTF, together with its receptor subunits, translocates to the cell nucleus of anorexigenic POMC neurons in the rat ARC. Furthermore, the stimulation of hypothalamic nuclear fractions with CNTF induces the phosphorylation of several signaling proteins, including Akt, as well as the transcription of the POMC gene. These data strongly suggest that intracellular CNTF may directly modulate POMC gene expression via the activation of receptors localized in the cell nucleus, providing a novel plausible mechanism of CNTF action in regulating energy homeostasis.
Collapse
Affiliation(s)
- Odile Couvreur
- Neuroendocrinologie Moléculaire de la Prise Alimentaire, University of Paris-Sud, Orsay, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Fudim M, Wagman G, Altschul R, Yucel E, Bloom M, Vittorio TJ. Pathophysiology and treatment options for cardiac anorexia. Curr Heart Fail Rep 2011; 8:147-53. [PMID: 21327573 DOI: 10.1007/s11897-011-0049-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The anorexia-cachexia syndrome (ACS) occurs in many chronic illnesses, such as cancer, AIDS, and chronic obstructive pulmonary disease in addition to chronic congestive heart failure (CHF). Comparable to other chronic states, the ACS complicates CHF and impacts its prognosis; however, the available treatment options for this syndrome remain unsatisfactory. This review article focuses on the complex pathophysiology of cardiac anorexia. We focus on the recent data demonstrating the relationships between central appetite-regulating structures, inflammatory processes, and neurohormonal activation, and their respective roles in the development of anorexia. We then describe the different treatment options and discuss some future prospects for the management for cardiac anorexia.
Collapse
Affiliation(s)
- Marat Fudim
- Heinrich-Heine-Universität, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Moreno-Aliaga MJ, Pérez-Echarri N, Marcos-Gómez B, Larequi E, Gil-Bea FJ, Viollet B, Gimenez I, Martínez JA, Prieto J, Bustos M. Cardiotrophin-1 is a key regulator of glucose and lipid metabolism. Cell Metab 2011; 14:242-53. [PMID: 21803294 DOI: 10.1016/j.cmet.2011.05.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 02/23/2011] [Accepted: 05/18/2011] [Indexed: 12/19/2022]
Abstract
Cardiotrophin-1 (CT-1) is a member of the gp130 family of cytokines. We observed that ct-1(-/-) mice develop mature-onset obesity, insulin resistance, and hypercholesterolemia despite reduced calorie intake. Decreased energy expenditure preceded and accompanied the development of obesity. Acute treatment with rCT-1 decreased blood glucose in an insulin-independent manner and increased insulin-stimulated AKT phosphorylation in muscle. These changes were associated with stimulation of fatty acid oxidation, an effect that was absent in AMPKα2(-/-) mice. Chronic rCT-1 treatment reduced food intake, enhanced energy expenditure, and induced white adipose tissue remodeling characterized by upregulation of genes implicated in the control of lipolysis, fatty acid oxidation, and mitochondrial biogenesis and genes typifying brown fat phenotype. Moreover, rCT-1 reduced body weight and corrected insulin resistance in ob/ob and in high-fat-fed obese mice. We conclude that CT-1 is a master regulator of fat and glucose metabolism with potential applications for treatment of obesity and insulin resistance.
Collapse
Affiliation(s)
- María J Moreno-Aliaga
- Department of Nutrition, Food Sciences, Physiology and Toxicology, University of Navarra, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
De Jonghe BC, Hayes MR, Bence KK. Melanocortin control of energy balance: evidence from rodent models. Cell Mol Life Sci 2011; 68:2569-88. [PMID: 21553232 PMCID: PMC3135719 DOI: 10.1007/s00018-011-0707-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 01/18/2023]
Abstract
Regulation of energy balance is extremely complex, and involves multiple systems of hormones, neurotransmitters, receptors, and intracellular signals. As data have accumulated over the last two decades, the CNS melanocortin system is now identified as a prominent integrative network of energy balance controls in the mammalian brain. Here, we will review findings from rat and mouse models, which have provided an important framework in which to study melanocortin function. Perhaps most importantly, this review attempts for the first time to summarize recent advances in our understanding of the intracellular signaling pathways thought to mediate the action of melanocortin neurons and peptides in control of longterm energy balance. Special attention will be paid to the roles of MC4R/MC3R, as well as downstream neurotransmitters within forebrain and hindbrain structures that illustrate the distributed control of melanocortin signaling in energy balance. In addition, distinctions and controversy between rodent species will be discussed.
Collapse
Affiliation(s)
- Bart C. De Jonghe
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Matthew R. Hayes
- Department of Psychiatry, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Kendra K. Bence
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
24
|
Klöckener T, Hess S, Belgardt BF, Paeger L, Verhagen LAW, Husch A, Sohn JW, Hampel B, Dhillon H, Zigman JM, Lowell BB, Williams KW, Elmquist JK, Horvath TL, Kloppenburg P, Brüning JC. High-fat feeding promotes obesity via insulin receptor/PI3K-dependent inhibition of SF-1 VMH neurons. Nat Neurosci 2011; 14:911-8. [PMID: 21642975 PMCID: PMC3371271 DOI: 10.1038/nn.2847] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/28/2011] [Indexed: 01/16/2023]
Abstract
Steroidogenic factor 1 (SF-1)-expressing neurons of the ventromedial hypothalamus (VMH) control energy homeostasis, but the role of insulin action in these cells remains undefined. We show that insulin activates phosphatidylinositol-3-OH kinase (PI3K) signaling in SF-1 neurons and reduces firing frequency in these cells through activation of K(ATP) channels. These effects were abrogated in mice with insulin receptor deficiency restricted to SF-1 neurons (SF-1(ΔIR) mice). Whereas body weight and glucose homeostasis remained the same in SF-1(ΔIR) mice as in controls under a normal chow diet, they were protected from diet-induced leptin resistance, weight gain, adiposity and impaired glucose tolerance. High-fat feeding activated PI3K signaling in SF-1 neurons of control mice, and this response was attenuated in the VMH of SF-1(ΔIR) mice. Mimicking diet-induced overactivation of PI3K signaling by disruption of the phosphatidylinositol-3,4,5-trisphosphate phosphatase PTEN led to increased body weight and hyperphagia under a normal chow diet. Collectively, our experiments reveal that high-fat diet-induced, insulin-dependent PI3K activation in VMH neurons contributes to obesity development.
Collapse
Affiliation(s)
- Tim Klöckener
- Department of Mouse Genetics and Metabolism, Institute for Genetics University of Cologne, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne and Center for Molecular Medicine Cologne (CMMC), Zülpicher Str. 47a, 50674 Köln, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Zülpicher Str. 47a, 50674 Köln, Germany
- Max-Planck-Institute for Neurological Research, Gleueler Str. 50a, 50931 Köln, Germany
| | - Simon Hess
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Zülpicher Str. 47a, 50674 Köln, Germany
- Biocenter, Institute for Zoology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany
| | - Bengt F. Belgardt
- Department of Mouse Genetics and Metabolism, Institute for Genetics University of Cologne, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne and Center for Molecular Medicine Cologne (CMMC), Zülpicher Str. 47a, 50674 Köln, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Zülpicher Str. 47a, 50674 Köln, Germany
- Max-Planck-Institute for Neurological Research, Gleueler Str. 50a, 50931 Köln, Germany
| | - Lars Paeger
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Zülpicher Str. 47a, 50674 Köln, Germany
- Biocenter, Institute for Zoology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany
| | - Linda A. W. Verhagen
- Department of Mouse Genetics and Metabolism, Institute for Genetics University of Cologne, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne and Center for Molecular Medicine Cologne (CMMC), Zülpicher Str. 47a, 50674 Köln, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Zülpicher Str. 47a, 50674 Köln, Germany
- Max-Planck-Institute for Neurological Research, Gleueler Str. 50a, 50931 Köln, Germany
| | - Andreas Husch
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Zülpicher Str. 47a, 50674 Köln, Germany
- Biocenter, Institute for Zoology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany
| | - Jong-Woo Sohn
- Division of Hypothalamic Research, Department of Internal Medicine, and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Brigitte Hampel
- Department of Mouse Genetics and Metabolism, Institute for Genetics University of Cologne, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne and Center for Molecular Medicine Cologne (CMMC), Zülpicher Str. 47a, 50674 Köln, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Zülpicher Str. 47a, 50674 Köln, Germany
- Max-Planck-Institute for Neurological Research, Gleueler Str. 50a, 50931 Köln, Germany
| | - Harveen Dhillon
- Beth Israel Deaconess Medical Center, Center for Life Sciences, Boston, MA 02115
| | - Jeffrey M. Zigman
- Division of Hypothalamic Research, Department of Internal Medicine, and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Bradford B. Lowell
- Beth Israel Deaconess Medical Center, Center for Life Sciences, Boston, MA 02115
| | - Kevin W. Williams
- Division of Hypothalamic Research, Department of Internal Medicine, and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Joel K. Elmquist
- Division of Hypothalamic Research, Department of Internal Medicine, and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Tamas L. Horvath
- Section of Comparative Medicine, Neurobiology & Departments of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Peter Kloppenburg
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Zülpicher Str. 47a, 50674 Köln, Germany
- Biocenter, Institute for Zoology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany
| | - Jens C. Brüning
- Department of Mouse Genetics and Metabolism, Institute for Genetics University of Cologne, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne and Center for Molecular Medicine Cologne (CMMC), Zülpicher Str. 47a, 50674 Köln, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Zülpicher Str. 47a, 50674 Köln, Germany
- Max-Planck-Institute for Neurological Research, Gleueler Str. 50a, 50931 Köln, Germany
| |
Collapse
|
25
|
Solymár M, Szelényi Z, Pétervári E. A fever-like effect of central infusion of CNTF in freely moving mice with diet-induced obesity. J Mol Neurosci 2011; 45:212-5. [PMID: 21286852 DOI: 10.1007/s12031-011-9497-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 01/20/2011] [Indexed: 01/27/2023]
Abstract
Ciliary neurotrophic factor (CNTF), an inducer of neurogenesis in the hypothalamus, has been known to cause a permanent fall of body mass in mice made obese by a fat-rich diet. In the present study, energetics of obese mice was followed during and after a 7-days long intracerebroventricular infusion of CNTF (720 ng/day) using an ALZET minipump. The animals were previously implanted with MINIMITTER biotelemetry transmitter allowing monitoring of abdominal core temperature (Tc) and locomotor activity (Act). The fat-rich diet induced a rise in body mass by about 40% over a period of 2 months and led to a prompt decrease of circadian Tc excursions by about 50% and an increase of 24-h Tc averages without a change in Act. Infusion of CNTF resulted in an expected reduction of body mass of obese mice beyond the period of infusion. This response was accompanied by a rise in daily averages of Tc together with a decrease in daily Tc excursions and a fall in Act. The observed fall of body mass, rise of Tc and probably a decrease of food intake belong to the components of sickness behaviour.
Collapse
Affiliation(s)
- Margit Solymár
- Department of Pathophysiology and Gerontology, Faculty of Medicine, University of Pécs, Szigeti str. 12, 7624 Pécs, Hungary
| | | | | |
Collapse
|
26
|
Allen TL, Matthews VB, Febbraio MA. Overcoming insulin resistance with ciliary neurotrophic factor. Handb Exp Pharmacol 2011:179-99. [PMID: 21484573 DOI: 10.1007/978-3-642-17214-4_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The incidence of obesity and related co-morbidities such as insulin resistance, dyslipidemia and hypertension are increasing at an alarming rate worldwide. Current interventions seem ineffective to halt this progression. With the failure of leptin as an anti-obesity therapeutic, ciliary neurotrophic factor (CNTF) has proven efficacious in models of obesity and leptin resistance, where leptin proved ineffective. CNTF is a gp130 ligand that has been found to act centrally and peripherally to promote weight loss and insulin sensitivity in both human and rodent models. Future research into novel gp130 ligands may offer new candidates for obesity-related drug therapy.
Collapse
Affiliation(s)
- Tamara L Allen
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, 6492, St Kilda Road Central, Melbourne, 8008, VIC, Australia
| | | | | |
Collapse
|
27
|
Belgardt BF, Brüning JC. CNS leptin and insulin action in the control of energy homeostasis. Ann N Y Acad Sci 2010; 1212:97-113. [PMID: 21070248 DOI: 10.1111/j.1749-6632.2010.05799.x] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The obesity and diabetes pandemics have made it an urgent necessity to define the central nervous system (CNS) pathways controlling body weight, energy expenditure, and fuel metabolism. The pancreatic hormone insulin and the adipose tissue-derived leptin are known to act on diverse neuronal circuits in the CNS to maintain body weight and metabolism in a variety of species, including humans. Because these homeostatic circuits are disrupted during the development of obesity, the pathomechanisms leading to CNS leptin and insulin resistance are a focal point of research. In this review, we summarize the recent findings concerning the mechanisms and novel neuronal mediators of both insulin and leptin action in the CNS.
Collapse
Affiliation(s)
- Bengt F Belgardt
- Department of Mouse Genetics and Metabolism, Institute for Genetics, Center for Molecular Medicine, University of Cologne, Zülpicher Strasse 47a, Cologne, Germany
| | | |
Collapse
|
28
|
Grossberg AJ, Scarlett JM, Marks DL. Hypothalamic mechanisms in cachexia. Physiol Behav 2010; 100:478-89. [PMID: 20346963 PMCID: PMC2927357 DOI: 10.1016/j.physbeh.2010.03.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/10/2010] [Accepted: 03/12/2010] [Indexed: 12/12/2022]
Abstract
The role of nutrition and balanced metabolism in normal growth, development, and health maintenance is well known. Patients affected with either acute or chronic diseases often show disorders of nutrient balance. In some cases, a devastating state of malnutrition known as cachexia arises, brought about by a synergistic combination of a dramatic decrease in appetite and an increase in metabolism of fat and lean body mass. Other common features that are not required for the diagnosis include decreases in voluntary movement, insulin resistance, and anhedonia. This combination is found in a number of disorders including cancer, cystic fibrosis, AIDS, rheumatoid arthritis, renal failure, and Alzheimer's disease. The severity of cachexia in these illnesses is often the primary determining factor in both quality of life, and in eventual mortality. Indeed, body mass retention in AIDS patients has a stronger association with survival than any other current measure of the disease. This has led to intense investigation of cachexia and the proposal of numerous hypotheses regarding its etiology. Most authors suggest that cytokines released during inflammation and malignancy act on the central nervous system to alter the release and function of a number of neurotransmitters, thereby altering both appetite and metabolic rate. This review will discuss the salient features of cachexia in human diseases, and review the mechanisms whereby inflammation alters the function of key brain regions to produce stereotypical illness behavior. The paper represents an invited review by a symposium, award winner or keynote speaker at the Society for the Study of Ingestive Behavior [SSIB] Annual Meeting in Portland, July 2009.
Collapse
Affiliation(s)
- Aaron J Grossberg
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | |
Collapse
|
29
|
Banno R, Zimmer D, De Jonghe BC, Atienza M, Rak K, Yang W, Bence KK. PTP1B and SHP2 in POMC neurons reciprocally regulate energy balance in mice. J Clin Invest 2010; 120:720-34. [PMID: 20160350 DOI: 10.1172/jci39620] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 12/16/2009] [Indexed: 12/13/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) and SH2 domain-containing protein tyrosine phosphatase-2 (SHP2) have been shown in mice to regulate metabolism via the central nervous system, but the specific neurons mediating these effects are unknown. Here, we have shown that proopiomelanocortin (POMC) neuron-specific deficiency in PTP1B or SHP2 in mice results in reciprocal effects on weight gain, adiposity, and energy balance induced by high-fat diet. Mice with POMC neuron-specific deletion of the gene encoding PTP1B (referred to herein as POMC-Ptp1b-/- mice) had reduced adiposity, improved leptin sensitivity, and increased energy expenditure compared with wild-type mice, whereas mice with POMC neuron-specific deletion of the gene encoding SHP2 (referred to herein as POMC-Shp2-/- mice) had elevated adiposity, decreased leptin sensitivity, and reduced energy expenditure. POMC-Ptp1b-/- mice showed substantially improved glucose homeostasis on a high-fat diet, and hyperinsulinemic-euglycemic clamp studies revealed that insulin sensitivity in these mice was improved on a standard chow diet in the absence of any weight difference. In contrast, POMC-Shp2-/- mice displayed impaired glucose tolerance only secondary to their increased weight gain. Interestingly, hypothalamic Pomc mRNA and alpha-melanocyte-stimulating hormone (alphaMSH) peptide levels were markedly reduced in POMC-Shp2-/- mice. These studies implicate PTP1B and SHP2 as important components of POMC neuron regulation of energy balance and point to what we believe to be a novel role for SHP2 in the normal function of the melanocortin system.
Collapse
Affiliation(s)
- Ryoichi Banno
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia 19104-6046, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Grossberg AJ, Scarlett JM, Zhu X, Bowe DD, Batra AK, Braun TP, Marks DL. Arcuate nucleus proopiomelanocortin neurons mediate the acute anorectic actions of leukemia inhibitory factor via gp130. Endocrinology 2010; 151:606-16. [PMID: 20016025 PMCID: PMC2817620 DOI: 10.1210/en.2009-1135] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The proinflammatory cytokine leukemia inhibitory factor (LIF) is induced in disease states and is known to inhibit food intake when administered centrally. However, the neural pathways underlying this effect are not well understood. We demonstrate that LIF acutely inhibits food intake by directly activating pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus. We show that arcuate POMC neurons express the LIF-R, and that LIF stimulates the release of the anorexigenic peptide, alpha-MSH from ex vivo hypothalami. Transgenic mice lacking gp130, the signal transducing subunit of the LIF-R complex, specifically in POMC neurons fail to respond to LIF. Furthermore, LIF does not stimulate the release of alpha-MSH from the transgenic hypothalamic explants. These findings indicate that POMC neurons mediate the acute anorectic actions of central LIF administration and provide a mechanistic link between inflammation and food intake.
Collapse
Affiliation(s)
- Aaron J Grossberg
- Department of Pediatrics, Oregon Health and Science University, Mail Code L-481, Portland, Oregon 97239, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Sánchez-Lasheras C, Könner AC, Brüning JC. Integrative neurobiology of energy homeostasis-neurocircuits, signals and mediators. Front Neuroendocrinol 2010; 31:4-15. [PMID: 19729032 DOI: 10.1016/j.yfrne.2009.08.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 08/21/2009] [Accepted: 08/25/2009] [Indexed: 11/26/2022]
Abstract
Body weight is tightly controlled in a species-specific range from insects to vertebrates and organisms have developed a complex regulatory network in order to avoid either excessive weight gain or chronic weight loss. Energy homeostasis, a term comprising all processes that aim to maintain stability of the metabolic state, requires a constant communication of the different organs involved; i.e. adipose tissue, skeletal muscle, liver, pancreas and the central nervous system (CNS). A tight hormonal network ensures rapid communication to control initiation and cessation of eating, nutrient processing and partitioning of the available energy within different organs and metabolic pathways. Moreover, recent experiments indicate that many of these homeostatic signals modulate the neural circuitry of food reward and motivation. Disturbances in each individual system can affect the maintenance and regulation of the others, making the analysis of energy homeostasis and its dysregulation highly complex. Though this cross-talk has been intensively studied for many years now, we are far from a complete understanding of how energy balance is maintained and multiple key questions remain unanswered. This review summarizes some of the latest developments in the field and focuses on the effects of leptin, insulin, and nutrient-related signals in the central regulation of feeding behavior. The integrated view, how these signals interact and the definition of functional neurocircuits in control of energy homeostasis, will ultimately help to develop new therapeutic interventions within the current obesity epidemic.
Collapse
Affiliation(s)
- Carmen Sánchez-Lasheras
- Department of Mouse Genetics and Metabolism, Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Germany
| | | | | |
Collapse
|
32
|
Yamawaki Y, Kimura H, Hosoi T, Ozawa K. MyD88 plays a key role in LPS-induced Stat3 activation in the hypothalamus. Am J Physiol Regul Integr Comp Physiol 2009; 298:R403-10. [PMID: 19955495 DOI: 10.1152/ajpregu.00395.2009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Infection causes the production of proinflammatory cytokines, which act on the central nervous system (CNS) and can result in fever, sleep disorders, depression-like behavior, and even anorexia, although precisely how cytokines regulate the functions of the CNS remain unclear. In the present study, we investigated the regulatory-molecular mechanisms by which cytokines affect hypothalamic function in a state of infection. The intraperitoneal administration of lipopolysaccharide (LPS), a ligand of Toll-like receptor 4 (TLR4), time-dependently (2-24 h) increased signal transducer and activator of transcription 3 (STAT3) phosphorylation in the hypothalamus and liver, which corresponded with anorexia observed within 24 h. Interestingly, the pattern of phosphorylation in response to LPS differed between the hypothalamus and liver. In the hypothalamus, LPS increased STAT3 phosphorylation from 2 h, with a peak at 4 h and a decline thereafter, whereas, in the liver, the peak activation of STAT3 persisted from 2 to 8 h. The time course of the LPS-induced expression of suppressor of cytokine signaling 3 (SOCS3), a STAT3-induced negative regulator of the Janus kinase-STAT pathway, was similar to that of STAT3 phosphorylation. Using mice deficient in myeloid differentiation primary-response protein 88 (MyD88), an adapter protein of TLR4, we found that LPS-induced STAT3 phosphorylation and SOCS3 expression in the hypothalamus and liver were predominantly mediated through MyD88. Moreover, we observed that MyD88-deficient mice were resistant to LPS-induced anorexia. Taken together, our findings reveal a novel mechanism, i.e., MyD88 plays a key role in mediating STAT3 phosphorylation and anorexia in the CNS in a state of infection and inflammation.
Collapse
Affiliation(s)
- Yosuke Yamawaki
- Department of Pharmacotherapy, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | | | | | | |
Collapse
|
33
|
Vieira AS, Rezende ACS, Grigoletto J, Rogério F, Velloso LA, Skaper SD, Negro A, Langone F. Ciliary neurotrophic factor infused intracerebroventricularly shows reduced catabolic effects when linked to the TAT protein transduction domain. J Neurochem 2009; 110:1557-66. [PMID: 19573019 DOI: 10.1111/j.1471-4159.2009.06259.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Ciliary neurotrophic factor (CNTF) regulates the differentiation and survival of a wide spectrum of developing and adult neurons, including motor neuron loss after injury. We recently described a cell-penetrant recombinant human CNTF (rhCNTF) molecule, formed by fusion with the human immunodeficiency virus-1 transactivator of transcription (TAT) protein transduction domain (TAT-CNTF) that, upon subcutaneous administration, retains full neurotrophic activity without cytokine-like side-effects. Although the CNTF receptor is present in hypothalamic nuclei, which are involved in the control of energy, rhCNTF but not TAT-CNTF stimulates signal transducers and activators of transcription 3 phosphorylation in the rat hypothalamus after subcutaneous administration. This could be due limited TAT-CNTF distribution in the hypothalamus and/or altered intracellular signaling by the fusion protein. To explore these possibilities, we examined the effect of intracerebroventricular administration of TAT-CNTF in male adult rats. TAT-CNTF-induced weight loss, although the effect was smaller than that seen with either rhCNTF or leptin (which exerts CNTF-like effects via its receptor). In contrast to rhCNTF and leptin, TAT-CNTF neither induced morphological changes in adipose tissues nor increased uncoupling protein 1 expression in brown adipose tissue, a characteristic feature of rhCNTF and leptin. Acute intracerebroventricular administration of TAT-CNTF induced a less robust phosphorylation of signal transducers and activators of transcription 3 in the hypothalamus, compared with rhCNTF. The data show that fusion of a protein transduction domain may change rhCNTF CNS distribution, while further strengthening the utility of cell-penetrating peptide technology to neurotrophic factor biology beyond the neuroscience field.
Collapse
Affiliation(s)
- André S Vieira
- Department of Genetics, Evolution and Bioagents, State University of Campinas, Campinas, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kleinridders A, Pogoda HM, Irlenbusch S, Smyth N, Koncz C, Hammerschmidt M, Brüning JC. PLRG1 is an essential regulator of cell proliferation and apoptosis during vertebrate development and tissue homeostasis. Mol Cell Biol 2009; 29:3173-85. [PMID: 19307306 PMCID: PMC2682009 DOI: 10.1128/mcb.01807-08] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 12/31/2008] [Accepted: 03/16/2009] [Indexed: 11/20/2022] Open
Abstract
PLRG1, an evolutionarily conserved component of the spliceosome, forms a complex with Pso4/SNEV/Prp19 and the cell division and cycle 5 homolog (CDC5L) that is involved in both pre-mRNA splicing and DNA repair. Here, we show that the inactivation of PLRG1 in mice results in embryonic lethality at 1.5 days postfertilization. Studies of heart- and neuron-specific PLRG1 knockout mice further reveal an essential role of PLRG1 in adult tissue homeostasis and the suppression of apoptosis. PLRG1-deficient mouse embryonic fibroblasts (MEFs) fail to progress through S phase upon serum stimulation and exhibit increased rates of apoptosis. PLRG1 deficiency causes enhanced p53 phosphorylation and stabilization in the presence of increased gamma-H2AX immunoreactivity as an indicator of an activated DNA damage response. p53 downregulation rescues lethality in both PLRG1-deficient MEFs and zebrafish in vivo, showing that apoptosis resulting from PLRG1 deficiency is p53 dependent. Moreover, the deletion of PLRG1 results in the relocation of its interaction partner CDC5L from the nucleus to the cytoplasm without general alterations in pre-mRNA splicing. Taken together, the results of this study identify PLRG1 as a critical nuclear regulator of p53-dependent cell cycle progression and apoptosis during both embryonic development and adult tissue homeostasis.
Collapse
Affiliation(s)
- André Kleinridders
- Institute for Genetics, Department of Mouse Genetics and Metabolism, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Benomar Y, Berthou F, Vacher CM, Bailleux V, Gertler A, Djiane J, Taouis M. Leptin but not ciliary neurotrophic factor (CNTF) induces phosphotyrosine phosphatase-1B expression in human neuronal cells (SH-SY5Y): putative explanation of CNTF efficacy in leptin-resistant state. Endocrinology 2009; 150:1182-91. [PMID: 19008309 DOI: 10.1210/en.2008-1097] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Growing evidences suggest that obesity is associated with hypothalamic leptin resistance, leading to the alteration of food intake control. Alternative treatment using ciliary neurotrophic factor (CNTF) has been suggested because CNTF exerts a leptin-like effect, even in leptin-resistant states, but the mechanisms by which CNTF maintains this effect are not yet understood. Both leptin and CNTF act in the hypothalamus through similar signaling pathways including janus kinase-2/signal transducer and activator of transcription (STAT)-3 pathway. To explore the differences and interactions between leptin and CNTF signaling pathways, differentiated human neuroblastoma cells (SH-SY5Y) were exposed to either leptin or CNTF and then challenged for each cytokine. Leptin pretreatment completely abolished leptin-dependent STAT-3 and ERK 1/2 phosphorylations without affecting CNTF action. The lack of cross-desensitization between leptin and CNTF signaling pathways occurred despite the induction of suppressor of cytokine signaling-3 in response to both cytokines. Interestingly, leptin as well as insulin induced the expression of phosphotyrosine phosphatase (PTP)-1B, whereas CNTF treatment did not affect its expression. In addition, acute leptin treatment but not CNTF induced PTP-1B expression in mouse hypothalamic arcuate nucleus. Furthermore, the overexpression of human PTP-1B in SH-SY5Y cells completely abolished leptin- and insulin-dependent janus kinase-2, STAT-3, and ERK 1/2 phosphorylations, but CNTF action was not altered. Collectively, our results suggest that PTP-1B constitutes a key divergent element between leptin/insulin and CNTF signaling pathways at the neuronal level, which may constitute a possible mechanism that explains the efficacy of CNTF in leptin-resistant states.
Collapse
Affiliation(s)
- Yacir Benomar
- Neuroendocrinologie Moléculaire de la Prise Alimentaire, Unité Mixte de Recherche 1197, Université Paris-Sud 11, Institut National de la Recherche Agronomique, Orsay, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Fasnacht N, Müller W. Conditional gp130 deficient mouse mutants. Semin Cell Dev Biol 2008; 19:379-84. [DOI: 10.1016/j.semcdb.2008.07.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 06/27/2008] [Accepted: 07/10/2008] [Indexed: 01/06/2023]
|
37
|
Rother E, Könner AC, Brüning JC. Neurocircuits integrating hormone and nutrient signaling in control of glucose metabolism. Am J Physiol Endocrinol Metab 2008; 294:E810-6. [PMID: 18285523 DOI: 10.1152/ajpendo.00685.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As obesity, diabetes, and associated comorbidities are on a constant rise, large efforts have been put into better understanding the cellular and molecular mechanisms by which nutrients and metabolic signals influence central and peripheral energy regulation. For decades, peripheral organs as a source and a target of such cues have been the focus of study. Their ability to integrate metabolic signals is essential for balanced energy and glucose metabolism. Only recently has the pivotal role of the central nervous system in the control of fuel partitioning been recognized. The rapidly expanding knowledge on the elucidation of molecular mechanisms and neuronal circuits involved is the focus of this review.
Collapse
Affiliation(s)
- Eva Rother
- Institute for Genetics, Department of Mouse Genetics and Metabolism, Center of Molecular Medicine, University of Cologne, Cologne, Germany
| | | | | |
Collapse
|
38
|
Belgardt BF, Husch A, Rother E, Ernst MB, Wunderlich FT, Hampel B, Klöckener T, Alessi D, Kloppenburg P, Brüning JC. PDK1 deficiency in POMC-expressing cells reveals FOXO1-dependent and -independent pathways in control of energy homeostasis and stress response. Cell Metab 2008; 7:291-301. [PMID: 18396135 DOI: 10.1016/j.cmet.2008.01.006] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 12/14/2007] [Accepted: 01/17/2008] [Indexed: 11/25/2022]
Abstract
Insulin- and leptin-stimulated phosphatidylinositol-3 kinase (PI3K) activation has been demonstrated to play a critical role in central control of energy homeostasis. To delineate the importance of pathways downstream of PI3K specifically in pro-opiomelanocortin (POMC) cell regulation, we have generated mice with selective inactivation of 3-phosphoinositide-dependent protein kinase 1 (PDK1) in POMC-expressing cells (PDK1(DeltaPOMC) mice). PDK1(DeltaPOMC) mice initially display hyperphagia, increased body weight, and impaired glucose metabolism caused by reduced hypothalamic POMC expression. On the other hand, PDK1(DeltaPOMC) mice exhibit progressive, severe hypocortisolism caused by loss of POMC-expressing corticotrophs in the pituitary. Expression of a dominant-negative mutant of FOXO1 specifically in POMC cells is sufficient to ameliorate positive energy balance in PDK1(DeltaPOMC) mice but cannot restore regular pituitary function. These results reveal important but differential roles for PDK1 signaling in hypothalamic and pituitary POMC cells in the control of energy homeostasis and stress response.
Collapse
Affiliation(s)
- Bengt F Belgardt
- Institute for Genetics, Department of Mouse Genetics and Metabolism, Center for Molecular Medicine Cologne (CMMC), University of Cologne, D-50674 Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
CNTF: a target therapeutic for obesity-related metabolic disease? J Mol Med (Berl) 2008; 86:353-61. [DOI: 10.1007/s00109-007-0286-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 10/09/2007] [Accepted: 10/24/2007] [Indexed: 02/06/2023]
|
40
|
Könner AC, Janoschek R, Plum L, Jordan SD, Rother E, Ma X, Xu C, Enriori P, Hampel B, Barsh GS, Kahn CR, Cowley MA, Ashcroft FM, Brüning JC. Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab 2007; 5:438-49. [PMID: 17550779 DOI: 10.1016/j.cmet.2007.05.004] [Citation(s) in RCA: 524] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 04/03/2007] [Accepted: 05/10/2007] [Indexed: 10/23/2022]
Abstract
Insulin action in the central nervous system regulates energy homeostasis and glucose metabolism. To define the insulin-responsive neurons that mediate these effects, we generated mice with selective inactivation of the insulin receptor (IR) in either pro-opiomelanocortin (POMC)- or agouti-related peptide (AgRP)-expressing neurons of the arcuate nucleus of the hypothalamus. While neither POMC- nor AgRP-restricted IR knockout mice exhibited altered energy homeostasis, insulin failed to normally suppress hepatic glucose production during euglycemic-hyperinsulinemic clamps in AgRP-IR knockout (IR(DeltaAgRP)) mice. These mice also exhibited reduced insulin-stimulated hepatic interleukin-6 expression and increased hepatic expression of glucose-6-phosphatase. These results directly demonstrate that insulin action in POMC and AgRP cells is not required for steady-state regulation of food intake and body weight. However, insulin action specifically in AgRP-expressing neurons does play a critical role in controlling hepatic glucose production and may provide a target for the treatment of insulin resistance in type 2 diabetes.
Collapse
Affiliation(s)
- A Christine Könner
- Department of Mouse Genetics and Metabolism, Institute for Genetics, Center for Molecular Medicine, University of Cologne, D-50674 Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Understanding the cytokine network is a very complex task. One way is the dissection of the network by the generation and analysis of mutant mice. As the technology advances more sophisticated approaches toward this goal become available and proof to disclose an even more complex picture of the cytokine network as we initially anticipated. This increase in complexity leads to fascinating challenges in the future.
Collapse
Affiliation(s)
- Werner Müller
- University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
42
|
Abstract
Obesity and its related cluster of pathophysiologic conditions including insulin resistance, glucose intolerance, dyslipidemia, and hypertension are recognized as growing threats to world health. It is now estimated that 10% of the world's population is overweight or obese. As a result, new therapeutic options for the treatment of obesity are clearly warranted. Recent research has focused on the role that gp130 receptor ligands may play as potential therapeutic targets in obesity. One cytokine in particular, ciliary neurotrophic factor (CNTF), acts both centrally and peripherally and mimics the biologic actions of the appetite control hormone leptin, but unlike leptin, CNTF appears to be effective in obesity and as such may have therapeutic potential. In addition, CNTF suppresses inflammatory signaling cascades associated with lipid accumulation in liver and skeletal muscle. This review examines the potential role of gp130 receptor ligands as part of a therapeutic strategy to treat obesity.
Collapse
Affiliation(s)
- Mark A Febbraio
- Cellular and Molecular Metabolism Laboratory, Division of Diabetes and Metabolism, Baker Heart Research Institute, Melbourne, Victoria, Australia.
| |
Collapse
|
43
|
Buchanan JB, Johnson RW. Regulation of food intake by inflammatory cytokines in the brain. Neuroendocrinology 2007; 86:183-90. [PMID: 17823502 DOI: 10.1159/000108280] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 12/11/2007] [Indexed: 11/19/2022]
Abstract
A number of inflammatory cytokines are synthesized and released after activation of the immune system. In addition to other biological effects, these cytokines can potently inhibit food intake. Cytokine-mediated inhibition of food intake is of particular importance because excessive production of peripheral inflammatory cytokines is often associated with the cachexia-anorexia syndrome seen in some chronic diseases. The weight loss in cachexia is associated with an increase in morbidity and mortality. Understanding how cytokines regulate food intake may be crucial in enhancing quality of life and facilitating recovery in patients exhibiting cachexia. This review describes the main inflammatory cytokines that influence food intake and explores how peripheral cytokines communicate with hypothalamic nuclei to influence feeding.
Collapse
Affiliation(s)
- Jessica B Buchanan
- Laboratory of Integrative Immunology and Behaviour, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|