1
|
Sarkar S, Han JX, Azzopardi K, Dhar P, Saeed MA, Day S, Ranganathan S, Sutton P. Protease-activated receptor 1 in the pathogenesis of cystic fibrosis. BMJ Open Respir Res 2025; 12:e002960. [PMID: 39832889 PMCID: PMC12004468 DOI: 10.1136/bmjresp-2024-002960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/26/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND The most common cause of death in those with cystic fibrosis (CF) is respiratory failure due to bronchiectasis resulting from repeated cycles of respiratory infection and inflammation. Protease-activated receptor 1 (PAR1) is a cell surface receptor activated by serine proteases including neutrophil elastase, which is recognised as a potent modulator of inflammation. While PAR1 is known to play an important role in regulating inflammation, nothing is known about any potential role of this receptor in CF pathogenesis. METHODS PAR1 (PAR1-/- ) and intestinal-corrected CFTR (Cftr-/- ) deficient mice were crossed to generate double knock-out (DKO) mutants lacking both PAR1 and CFTR, as well as matching sibling single mutant and wildtype (WT) littermate controls. Mice were weighed weekly to 15 weeks of age; then, the lungs and intestines were examined. RESULTS Cftr-deficient mice gained body weight at a significantly slower rate than WT controls and presented with no lung inflammation, but had increased weights of their ilea and proximal colons. DKO mice (lacking both CFTR and PAR1) gained body weight at a similar rate to Cftr-/- mice but only gained weight in their proximal colons. Weight gain in the ilea of Cftr-/- but not DKO mice was associated with increased ileal levels in the pro-inflammatory cytokine interleukin (IL)-6. CONCLUSIONS This study provides the first evidence of PAR1 contributing to the pathological effects of Cftr deficiency in the intestine and suggests a possible effect of PAR1 on the regulation of IL-6 in CF pathogenesis.
Collapse
Affiliation(s)
- Sohinee Sarkar
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Jia-Xi Han
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Kristy Azzopardi
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Poshmaal Dhar
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Muhammad A Saeed
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Sophie Day
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Sarath Ranganathan
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Philip Sutton
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Park SS, Lee YK, Kim YH, Park SH, Kang HY, Kim JC, Kim DJ, Lim SB, Yoon G, Kim JH, Choi YW, Park TJ. Distribution and impact of p16 INK4A+ senescent cells in elderly tissues: a focus on senescent immune cell and epithelial dysfunction. Exp Mol Med 2024; 56:2631-2641. [PMID: 39617789 DOI: 10.1038/s12276-024-01354-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/26/2024] [Accepted: 09/11/2024] [Indexed: 12/28/2024] Open
Abstract
Cellular senescence, recognized as a key hallmark of aging, leads to the accumulation of senescent cells in various tissues over time. While the detrimental effects of these cells on age-related pathological conditions are well-documented, there is still limited information about how senescent cells are distributed in normal tissues of both young and aged organs. Our research indicates that fully senescent p16INK4A+ cells are rarely identified in the parenchyma of organic tissues and in the stromal cells crucial for structural maintenance, such as fibroblasts and smooth muscle cells. Instead, p16INK4A+ cells are more commonly found in immune cells, whether they reside in the organ or are infiltrating. Notably, p16INK4A+ senescent T cells have been observed to induce apoptosis and inflammation in colonic epithelial cells through Granzyme A-PARs signaling, compromising the integrity of the epithelial lining. This study showed that the senescence of immune cells could affect the phenotypical change of the parenchymal cells in the elderly and suggests that targeting immunosenescence might be a strategy to control functional decline in this population.
Collapse
Affiliation(s)
- Soon Sang Park
- Inflammaging Translational Research Center, Ajou University Medical Center, Suwon, Korea
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea
| | - Young-Kyoung Lee
- Inflammaging Translational Research Center, Ajou University Medical Center, Suwon, Korea
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea
| | - Young Hwa Kim
- Inflammaging Translational Research Center, Ajou University Medical Center, Suwon, Korea
| | - So Hyun Park
- Department of Pathology, Ajou University School of Medicine, Suwon, Korea
| | - Hee Young Kang
- Inflammaging Translational Research Center, Ajou University Medical Center, Suwon, Korea
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea
| | - Jin Cheol Kim
- Inflammaging Translational Research Center, Ajou University Medical Center, Suwon, Korea
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea
| | - Dong Jun Kim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea
| | - Su Bin Lim
- Inflammaging Translational Research Center, Ajou University Medical Center, Suwon, Korea
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea
| | - Gyesoon Yoon
- Inflammaging Translational Research Center, Ajou University Medical Center, Suwon, Korea
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea
| | - Jang-Hee Kim
- Department of Pathology, Ajou University School of Medicine, Suwon, Korea
| | - Yong Won Choi
- Inflammaging Translational Research Center, Ajou University Medical Center, Suwon, Korea.
- Department of Hematology and Oncology, Ajou University School of Medicine, Suwon, Korea.
| | - Tae Jun Park
- Inflammaging Translational Research Center, Ajou University Medical Center, Suwon, Korea.
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.
| |
Collapse
|
3
|
Vergnolle N. Thrombin stories in the gut. Biochimie 2024; 226:107-112. [PMID: 38521125 DOI: 10.1016/j.biochi.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Many studies have demonstrated the involvement of proteases in gut physiology and pathophysiology over the recent years. Among them, thrombin has appeared for a long time as an old player only involved in blood clotting upon tissue injury. The fact that thrombin receptors (Protease-Activated Receptors-1 and -4) are expressed and functional in almost all cell types of the gut, contributing to barrier, immune or motility functions, suggested that thrombin could actually be at the crossroad of intestinal physiology. Recent work has unraveled the constitutive release of active thrombin by intestinal epithelial cells, opening new research avenues on the role of thrombin in the gut. These roles are considered in the present review, as well as the regulation of thrombin in the gut. The potential of thrombin as a target for treatments of intestinal pathologies is also discussed here.
Collapse
Affiliation(s)
- Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), CS60039, Toulouse, Cedex 03, 31024, France; Department of Physiology & Pharmacology, University of Calgary Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, Ab T2N 4N1, Canada.
| |
Collapse
|
4
|
Guignard S, Saifeddine M, Mihara K, Motahhary M, Savignac M, Guiraud L, Sagnat D, Sebbag M, Khou S, Rolland C, Edir A, Bournet B, Buscail L, Buscail E, Alric L, Camare C, Ambli M, Vergnolle N, Hollenberg MD, Deraison C, Bonnart C. Chymotrypsin activity signals to intestinal epithelium by protease-activated receptor-dependent mechanisms. Br J Pharmacol 2024; 181:2725-2749. [PMID: 38637276 DOI: 10.1111/bph.16341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND AND PURPOSE Chymotrypsin is a pancreatic protease secreted into the lumen of the small intestine to digest food proteins. We hypothesized that chymotrypsin activity may be found close to epithelial cells and that chymotrypsin signals to them via protease-activated receptors (PARs). We deciphered molecular pharmacological mechanisms and gene expression regulation for chymotrypsin signalling in intestinal epithelial cells. EXPERIMENTAL APPROACH The presence and activity of chymotrypsin were evaluated by Western blot and enzymatic activity tests in the luminal and mucosal compartments of murine and human gut samples. The ability of chymotrypsin to cleave the extracellular domain of PAR1 or PAR2 was assessed using cell lines expressing N-terminally tagged receptors. The cleavage site of chymotrypsin on PAR1 and PAR2 was determined by HPLC-MS analysis. The chymotrypsin signalling mechanism was investigated in CMT93 intestinal epithelial cells by calcium mobilization assays and Western blot analyses of (ERK1/2) phosphorylation. The transcriptional consequences of chymotrypsin signalling were analysed on colonic organoids. KEY RESULTS We found that chymotrypsin was present and active in the vicinity of the colonic epithelium. Molecular pharmacological studies have shown that chymotrypsin cleaves both PAR1 and PAR2 receptors. Chymotrypsin activated calcium and ERK1/2 signalling pathways through PAR2, and this pathway promoted interleukin-10 (IL-10) up-regulation in colonic organoids. In contrast, chymotrypsin disarmed PAR1, preventing further activation by its canonical agonist, thrombin. CONCLUSION AND IMPLICATIONS Our results highlight the ability of chymotrypsin to signal to intestinal epithelial cells via PARs, which may have important physiological consequences in gut homeostasis.
Collapse
Affiliation(s)
- Simon Guignard
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Mahmoud Saifeddine
- Department of Physiology and Pharmacology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Koichiro Mihara
- Department of Physiology and Pharmacology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Majid Motahhary
- Department of Physiology and Pharmacology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Magali Savignac
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291-Centre National de la Recherche Scientifique UMR5051, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Laura Guiraud
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - David Sagnat
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Mireille Sebbag
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Sokchea Khou
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Corinne Rolland
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Anissa Edir
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Barbara Bournet
- Department of Gastroenterology, Toulouse University Hospital, Toulouse, France
| | - Louis Buscail
- Department of Gastroenterology, Toulouse University Hospital, Toulouse, France
| | - Etienne Buscail
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
- Department of Digestive Surgery, Toulouse University Hospital, Toulouse, France
| | - Laurent Alric
- Department of Internal Medicine and Digestive Diseases, Rangueil, Toulouse III University Hospital, University of Toulouse, Toulouse, France
| | - Caroline Camare
- Department of Clinical Biochemistry, Toulouse University Hospital, Toulouse, France
- University of Toulouse, UMR1297, INSERM/Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Mouna Ambli
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Nathalie Vergnolle
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
- Department of Physiology and Pharmacology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Morley D Hollenberg
- Department of Physiology and Pharmacology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Céline Deraison
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Chrystelle Bonnart
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
5
|
Nag N, Ray T, Tapader R, Gope A, Das R, Mahapatra E, Saha S, Pal A, Prasad P, Pal A. Metallo-protease Peptidase M84 from Bacillusaltitudinis induces ROS-dependent apoptosis in ovarian cancer cells by targeting PAR-1. iScience 2024; 27:109828. [PMID: 38799586 PMCID: PMC11126781 DOI: 10.1016/j.isci.2024.109828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/02/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
We have purified Peptidase M84 from Bacillus altitudinis in an effort to isolate anticancer proteases from environmental microbial isolates. This metallo-protease had no discernible impact on normal cell survival, but it specifically induced apoptosis in ovarian cancer cells. PAR-1, a GPCR which is reported to be overexpressed in ovarian cancer cells, was identified as a target of Peptidase M84. We observed that Peptidase M84 induced PAR-1 overexpression along with activating its downstream signaling effectors NF-κB and MAPK to promote excessive reactive oxygen species (ROS) generation. This evoked apoptotic death of the ovarian cancer cells through the intrinsic route. In in vivo set-up, weekly intraperitoneal administration of Peptidase M84 in syngeneic mice significantly diminished ascites accumulation, increasing murine survival rates by 60%. Collectively, our findings suggested that Peptidase M84 triggered PAR-1-mediated oxidative stress to act as an apoptosis inducer. This established Peptidase M84 as a drug candidate for receptor mediated targeted-therapy of ovarian cancer.
Collapse
Affiliation(s)
- Niraj Nag
- Division of Molecular Pathophysiology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Tanusree Ray
- Division of Molecular Pathophysiology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Rima Tapader
- Division of Molecular Pathophysiology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Animesh Gope
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Rajdeep Das
- Molecular Cell Biology of Autophagy Lab, The Francis Crick Institute, 1, Midland Road, London NW1 1AT, UK
| | - Elizabeth Mahapatra
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal 700026, India
| | - Saibal Saha
- Division of Molecular Pathophysiology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Ananda Pal
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Parash Prasad
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital and Medical Center, 3333 Burnet Avenue, Cincinnati 45229-3026, OH, USA
| | - Amit Pal
- Division of Molecular Pathophysiology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| |
Collapse
|
6
|
Vilardi A, Przyborski S, Mobbs C, Rufini A, Tufarelli C. Current understanding of the interplay between extracellular matrix remodelling and gut permeability in health and disease. Cell Death Discov 2024; 10:258. [PMID: 38802341 PMCID: PMC11130177 DOI: 10.1038/s41420-024-02015-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/25/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
The intestinal wall represents an interactive network regulated by the intestinal epithelium, extracellular matrix (ECM) and mesenchymal compartment. Under healthy physiological conditions, the epithelium undergoes constant renewal and forms an integral and selective barrier. Following damage, the healthy epithelium is restored via a series of signalling pathways that result in remodelling of the scaffolding tissue through finely-regulated proteolysis of the ECM by proteases such as matrix metalloproteinases (MMPs). However, chronic inflammation of the gastrointestinal tract, as occurs in Inflammatory Bowel Disease (IBD), is associated with prolonged disruption of the epithelial barrier and persistent damage to the intestinal mucosa. Increased barrier permeability exhibits distinctive signatures of inflammatory, immunological and ECM components, accompanied by increased ECM proteolytic activity. This narrative review aims to bring together the current knowledge of the interplay between gut barrier, immune and ECM features in health and disease, discussing the role of barrier permeability as a discriminant between homoeostasis and IBD.
Collapse
Affiliation(s)
- Aurora Vilardi
- Cancer Research Centre, University of Leicester, Leicester, LE2 7LX, United Kingdom
| | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom
| | - Claire Mobbs
- Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom
| | - Alessandro Rufini
- Cancer Research Centre, University of Leicester, Leicester, LE2 7LX, United Kingdom.
- Department of Biosciences, University of Milan, Milan, 20133, Italy.
| | - Cristina Tufarelli
- Cancer Research Centre, University of Leicester, Leicester, LE2 7LX, United Kingdom.
| |
Collapse
|
7
|
Hou JJ, Ding L, Yang T, Yang YF, Jin YP, Zhang XP, Ma AH, Qin YH. The proteolytic activity in inflammatory bowel disease: insight from gut microbiota. Microb Pathog 2024; 188:106560. [PMID: 38272327 DOI: 10.1016/j.micpath.2024.106560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic, recurrent inflammatory disease caused by the destruction of the intestinal mucosal epithelium that affects a growing number of people worldwide. Although the etiology of IBD is complex and still elucidated, the role of dysbiosis and dysregulated proteolysis is well recognized. Various studies observed altered composition and diversity of gut microbiota, as well as increased proteolytic activity (PA) in serum, plasma, colonic mucosa, and fecal supernatant of IBD compared to healthy individuals. The imbalance of intestinal microecology and intestinal protein hydrolysis were gradually considered to be closely related to IBD. Notably, the pivotal role of intestinal microbiota in maintaining proteolytic balance received increasing attention. In summary, we have speculated a mesmerizing story, regarding the hidden role of PA and microbiota-derived PA hidden in IBD. Most importantly, we provided the diagnosis and therapeutic targets for IBD as well as the formulation of new treatment strategies for other digestive diseases and protease-related diseases.
Collapse
Affiliation(s)
- Jun-Jie Hou
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Liang Ding
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Tao Yang
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Yan-Fei Yang
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Yue-Ping Jin
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Xiao-Ping Zhang
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - A-Huo Ma
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Yue-Hua Qin
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China.
| |
Collapse
|
8
|
Kline SN, Orlando NA, Lee AJ, Wu MJ, Zhang J, Youn C, Feller LE, Pontaza C, Dikeman D, Limjunyawong N, Williams KL, Wang Y, Cihakova D, Jacobsen EA, Durum SK, Garza LA, Dong X, Archer NK. Staphylococcus aureus proteases trigger eosinophil-mediated skin inflammation. Proc Natl Acad Sci U S A 2024; 121:e2309243121. [PMID: 38289950 PMCID: PMC10861893 DOI: 10.1073/pnas.2309243121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024] Open
Abstract
Staphylococcus aureus skin colonization and eosinophil infiltration are associated with many inflammatory skin disorders, including atopic dermatitis, bullous pemphigoid, Netherton's syndrome, and prurigo nodularis. However, whether there is a relationship between S. aureus and eosinophils and how this interaction influences skin inflammation is largely undefined. We show in a preclinical mouse model that S. aureus epicutaneous exposure induced eosinophil-recruiting chemokines and eosinophil infiltration into the skin. Remarkably, we found that eosinophils had a comparable contribution to the skin inflammation as T cells, in a manner dependent on eosinophil-derived IL-17A and IL-17F production. Importantly, IL-36R signaling induced CCL7-mediated eosinophil recruitment to the inflamed skin. Last, S. aureus proteases induced IL-36α expression in keratinocytes, which promoted infiltration of IL-17-producing eosinophils. Collectively, we uncovered a mechanism for S. aureus proteases to trigger eosinophil-mediated skin inflammation, which has implications in the pathogenesis of inflammatory skin diseases.
Collapse
Affiliation(s)
- Sabrina N. Kline
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Nicholas A. Orlando
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Alex J. Lee
- Department of Oncology, Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Meng-Jen Wu
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Jing Zhang
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Christine Youn
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Laine E. Feller
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Cristina Pontaza
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Dustin Dikeman
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Nathachit Limjunyawong
- Center of Research Excellence in Allergy and Immunology, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok10700, Thailand
| | - Kaitlin L. Williams
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Yu Wang
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Daniela Cihakova
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Elizabeth A. Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, AZ85259
| | - Scott K. Durum
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD21702
| | - Luis A. Garza
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Xinzhong Dong
- HHMI, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Nathan K. Archer
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| |
Collapse
|
9
|
May CJ, Chesor M, Hunter SE, Hayes B, Barr R, Roberts T, Barrington FA, Farmer L, Ni L, Jackson M, Snethen H, Tavakolidakhrabadi N, Goldstone M, Gilbert R, Beesley M, Lennon R, Foster R, Coward R, Welsh GI, Saleem MA. Podocyte protease activated receptor 1 stimulation in mice produces focal segmental glomerulosclerosis mirroring human disease signaling events. Kidney Int 2023; 104:265-278. [PMID: 36940798 PMCID: PMC7616342 DOI: 10.1016/j.kint.2023.02.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/31/2023] [Accepted: 02/27/2023] [Indexed: 03/23/2023]
Abstract
About 30% of patients who have a kidney transplant with underlying nephrotic syndrome (NS) experience rapid relapse of disease in their new graft. This is speculated to be due to a host-derived circulating factor acting on podocytes, the target cells in the kidney, leading to focal segmental glomerulosclerosis (FSGS). Our previous work suggests that podocyte membrane protease receptor 1 (PAR-1) is activated by a circulating factor in relapsing FSGS. Here, the role of PAR-1 was studied in human podocytes in vitro, and using a mouse model with developmental or inducible expression of podocyte-specific constitutively active PAR-1, and using biopsies from patients with nephrotic syndrome. In vitro podocyte PAR-1 activation caused a pro-migratory phenotype with phosphorylation of the kinase JNK, VASP protein and docking protein Paxillin. This signaling was mirrored in podocytes exposed to patient relapse-derived NS plasma and in patient disease biopsies. Both developmental and inducible activation of transgenic PAR-1 (NPHS2 Cre PAR-1Active+/-) caused early severe nephrotic syndrome, FSGS, kidney failure and, in the developmental model, premature death. We found that the non-selective cation channel protein TRPC6 could be a key modulator of PAR-1 signaling and TRPC6 knockout in our mouse model significantly improved proteinuria and extended lifespan. Thus, our work implicates podocyte PAR-1 activation as a key initiator of human NS circulating factor and that the PAR-1 signaling effects were partly modulated through TRPC6.
Collapse
Affiliation(s)
- Carl J May
- Bristol Renal, University of Bristol, Bristol, UK
| | | | | | - Bryony Hayes
- Bristol Renal, University of Bristol, Bristol, UK
| | - Rachel Barr
- Bristol Renal, University of Bristol, Bristol, UK
| | - Tim Roberts
- Bristol Renal, University of Bristol, Bristol, UK
| | | | | | - Lan Ni
- Bristol Renal, University of Bristol, Bristol, UK
| | | | | | | | | | - Rodney Gilbert
- Renal Medicine and Nephrology, Southampton General Hospital, University Hospital Southampton, Southampton, UK
| | - Matt Beesley
- Pathology Department, Gloucestershire Royal Hospital, Gloucester, UK
| | - Rachel Lennon
- Wellcome Trust Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medical and Health Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | | | - Richard Coward
- Bristol Renal, University of Bristol, Bristol, UK; Department of Paediatric Nephrology, Bristol Royal Hospital for Children, Bristol, UK
| | | | - Moin A Saleem
- Bristol Renal, University of Bristol, Bristol, UK; Department of Paediatric Nephrology, Bristol Royal Hospital for Children, Bristol, UK.
| |
Collapse
|
10
|
Deraison C, Bonnart C, Langella P, Roget K, Vergnolle N. Elafin and its precursor trappin-2: What is their therapeutic potential for intestinal diseases? Br J Pharmacol 2023; 180:144-160. [PMID: 36355635 PMCID: PMC10098471 DOI: 10.1111/bph.15985] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/22/2022] [Accepted: 05/07/2022] [Indexed: 11/12/2022] Open
Abstract
Elafin and its precursor trappin-2 are known for their contribution to the physiological mucosal shield against luminal microbes. Such a contribution seems to be particularly relevant in the gut, where the exposure of host tissues to heavy loads of microbes is constant and contributes to mucosa-associated pathologies. The expression of trappin-2/elafin has been shown to be differentially regulated in diseases associated with gut inflammation. Accumulating evidence has demonstrated the protective effects of trappin-2/elafin in gut intestinal disorders associated with acute or chronic inflammation, or with gluten sensitization disorders. The protective effects of trappin-2/elafin in the gut are discussed in terms of their pleiotropic modes of action: acting as protease inhibitors, transglutaminase substrates, antimicrobial peptides or as a regulator of pro-inflammatory transcription factors. Further, the question of the therapeutic potential of trappin-2/elafin delivery at the intestinal mucosa surface is raised. Whether trappin-2/elafin mucosal delivery should be considered to ensure intestinal tissue repair is also discussed.
Collapse
Affiliation(s)
- Céline Deraison
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Chrystelle Bonnart
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Philippe Langella
- Université Paris-Saclay, AgroParisTech, Micalis Institute, INRAE, Jouy-en-Josas, France
| | | | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
11
|
Abstract
Proteases are an evolutionarily conserved family of enzymes that degrade peptide bonds and have been implicated in several common gastrointestinal (GI) diseases. Although luminal proteolytic activity is important for maintenance of homeostasis and health, the current review describes recent advances in our understanding of how overactivity of luminal proteases contributes to the pathophysiology of celiac disease, irritable bowel syndrome, inflammatory bowel disease and GI infections. Luminal proteases, many of which are produced by the microbiota, can modulate the immunogenicity of dietary antigens, reduce mucosal barrier function and activate pro-inflammatory and pro-nociceptive host signaling. Increased proteolytic activity has been ascribed to both increases in protease production and decreases in inhibitors of luminal proteases. With the identification of strains of bacteria that are important sources of proteases and their inhibitors, the stage is set to develop drug or microbial therapies to restore protease balance and alleviate disease.
Collapse
Affiliation(s)
- Alberto Caminero
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Mabel Guzman
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen’s University, Kingston, Ontario, Canada
| | - Josie Libertucci
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Alan E. Lomax
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen’s University, Kingston, Ontario, Canada,CONTACT Alan E. Lomax Gastrointestinal Diseases Research Unit, Kingston General Hospital, Kingston, ON, K7L 2V7, Canada
| |
Collapse
|
12
|
Peach CJ, Edgington-Mitchell LE, Bunnett NW, Schmidt BL. Protease-activated receptors in health and disease. Physiol Rev 2023; 103:717-785. [PMID: 35901239 PMCID: PMC9662810 DOI: 10.1152/physrev.00044.2021] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 11/22/2022] Open
Abstract
Proteases are signaling molecules that specifically control cellular functions by cleaving protease-activated receptors (PARs). The four known PARs are members of the large family of G protein-coupled receptors. These transmembrane receptors control most physiological and pathological processes and are the target of a large proportion of therapeutic drugs. Signaling proteases include enzymes from the circulation; from immune, inflammatory epithelial, and cancer cells; as well as from commensal and pathogenic bacteria. Advances in our understanding of the structure and function of PARs provide insights into how diverse proteases activate these receptors to regulate physiological and pathological processes in most tissues and organ systems. The realization that proteases and PARs are key mediators of disease, coupled with advances in understanding the atomic level structure of PARs and their mechanisms of signaling in subcellular microdomains, has spurred the development of antagonists, some of which have advanced to the clinic. Herein we review the discovery, structure, and function of this receptor system, highlight the contribution of PARs to homeostatic control, and discuss the potential of PAR antagonists for the treatment of major diseases.
Collapse
Affiliation(s)
- Chloe J Peach
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Department of Neuroscience and Physiology and Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York
| | - Laura E Edgington-Mitchell
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, New York
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Department of Neuroscience and Physiology and Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York
| | - Brian L Schmidt
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, New York
| |
Collapse
|
13
|
Park MJ, Won JH, Kim DK. Thrombin Induced Apoptosis through Calcium-Mediated Activation of Cytosolic Phospholipase A 2 in Intestinal Myofibroblasts. Biomol Ther (Seoul) 2023; 31:59-67. [PMID: 36052603 PMCID: PMC9810453 DOI: 10.4062/biomolther.2022.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/06/2022] [Accepted: 07/06/2022] [Indexed: 01/13/2023] Open
Abstract
Thrombin is a serine protease that participates in a variety of biological signaling through protease-activated receptors. Intestinal myofibroblasts play central roles in maintaining intestinal homeostasis. In this study, we found that thrombin-induced apoptosis is mediated by the calcium-mediated activation of cytosolic phospholipase A2 in the CCD-18Co cell. Thrombin reduced cell viability by inducing apoptosis and proteinase-activated receptor-1 antagonist attenuated thrombin-induced cell death. Endogenous ceramide did not affect the cell viability itself, but a ceramide-mediated pathway was involved in thrombin-induced cell death. Thrombin increased intracellular calcium levels and cytosolic phospholipase A2 activity. The ceramide synthase inhibitor Fumonisin B1, intracellular calcium chelator BAPTA-AM, and cytosolic phospholipase A2 inhibitor AACOCF3 inhibited thrombin-induced cell death. Thrombin stimulated arachidonic acid release and reactive oxygen species generation, which was blocked by AACOCF3, BAPTA-AM, and the antioxidant reagent Trolox. Taken together, thrombin triggered apoptosis through calcium-mediated activation of cytosolic phospholipase A2 in intestinal myofibroblasts.
Collapse
Affiliation(s)
- Mi Ja Park
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jong Hoon Won
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dae Kyong Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea,Corresponding Author E-mail: , Tel: +82-31-724-2611, Fax: +82-31-724-2612
| |
Collapse
|
14
|
Akter T, Annamalai B, Obert E, Simpson KN, Rohrer B. Dabigatran and Wet AMD, Results From Retinal Pigment Epithelial Cell Monolayers, the Mouse Model of Choroidal Neovascularization, and Patients From the Medicare Data Base. Front Immunol 2022; 13:896274. [PMID: 35784301 PMCID: PMC9248746 DOI: 10.3389/fimmu.2022.896274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/17/2022] [Indexed: 12/02/2022] Open
Abstract
Background Age-related macular degeneration (AMD), the leading cause of irreversible blindness in elderly Caucasian populations, includes destruction of the blood-retina barrier (BRB) generated by the retinal pigment epithelium-Bruch's membrane complex (RPE/BrM), and complement activation. Thrombin is likely to get access to those structures upon BRB integrity loss. Here we investigate the potential role of thrombin in AMD by analyzing effects of the thrombin inhibitor dabigatran. Material and Methods MarketScan data for patients aged ≥65 years on Medicare was used to identify association between AMD and dabigatran use. ARPE-19 cells grown as mature monolayers were analyzed for thrombin effects on barrier function (transepithelial resistance; TER) and downstream signaling (complement activation, expression of connective tissue growth factor (CTGF), and secretion of vascular endothelial growth factor (VEGF)). Laser-induced choroidal neovascularization (CNV) in mouse is used to test the identified downstream signaling. Results Risk of new wet AMD diagnosis was reduced in dabigatran users. In RPE monolayers, thrombin reduced TER, generated unique complement C3 and C5 cleavage products, led to C3d/MAC deposition on cell surfaces, and increased CTGF expression via PAR1-receptor activation and VEGF secretion. CNV lesion repair was accelerated by dabigatran, and molecular readouts suggest that downstream effects of thrombin include CTGF and VEGF, but not the complement system. Conclusions This study provides evidence of association between dabigatran use and reduced exudative AMD diagnosis. Based on the cell- and animal-based studies, we suggest that thrombin modulates wound healing and CTGF and VEGF expression, making dabigatran a potential novel treatment option in AMD.
Collapse
Affiliation(s)
- Tanjina Akter
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, United States
| | | | - Elisabeth Obert
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, United States
| | - Kit N. Simpson
- Department of Healthcare Leadership and Management, Medical University of South Carolina, Charleston, SC, United States
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, United States
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States
- Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC, United States
| |
Collapse
|
15
|
Zhang Z, Tanaka I, Pan Z, Ernst PB, Kiyono H, Kurashima Y. Intestinal homeostasis and inflammation: gut microbiota at the crossroads of pancreas-intestinal barrier axis. Eur J Immunol 2022; 52:1035-1046. [PMID: 35476255 PMCID: PMC9540119 DOI: 10.1002/eji.202149532] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022]
Abstract
The pancreas contains exocrine glands, which release enzymes (e.g., amylase, trypsin, and lipase) that are important for digestion and islets, which produce hormones. Digestive enzymes and hormones are secreted from the pancreas into the duodenum and bloodstream, respectively. Growing evidence suggests that the roles of the pancreas extend to not only the secretion of digestive enzymes and hormones but also to the regulation of intestinal homeostasis and inflammation (e.g., mucosal defense to pathogens and pathobionts). Organ crosstalk between the pancreas and intestine is linked to a range of physiological, immunological, and pathological activities, such as the regulation of the gut microbiota by the pancreatic proteins and lipids, the retroaction of the gut microbiota on the pancreas, the relationship between inflammatory bowel disease, and pancreatic diseases. We herein discuss the current understanding of the pancreas–intestinal barrier axis and the control of commensal bacteria in intestinal inflammation.
Collapse
Affiliation(s)
- Zhongwei Zhang
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Izumi Tanaka
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Zhen Pan
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Peter B Ernst
- Division of Comparative Pathology and Medicine, Department of Pathology, University of California San Diego, San Diego, CA, 92093-0956, USA.,Center for Veterinary Sciences and Comparative Medicine, University of California, San Diego, CA, 92093-0956, USA.,Departments of Medicine and Pathology, CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), University of California, San Diego, CA, 92093-0956, USA.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Hiroshi Kiyono
- Division of Comparative Pathology and Medicine, Department of Pathology, University of California San Diego, San Diego, CA, 92093-0956, USA.,Departments of Medicine and Pathology, CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), University of California, San Diego, CA, 92093-0956, USA.,Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Department of Human Mucosal Vaccinology, Chiba University, Chiba, 260-8670, Japan
| | - Yosuke Kurashima
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.,Division of Comparative Pathology and Medicine, Department of Pathology, University of California San Diego, San Diego, CA, 92093-0956, USA.,Departments of Medicine and Pathology, CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), University of California, San Diego, CA, 92093-0956, USA.,Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Department of Human Mucosal Vaccinology, Chiba University, Chiba, 260-8670, Japan.,Institute for Advanced Academic Research, Chiba University, Chiba, 260-8670, Japan
| |
Collapse
|
16
|
Activated Protein C Protects against Murine Contact Dermatitis by Suppressing Protease-Activated Receptor 2. Int J Mol Sci 2022; 23:ijms23010516. [PMID: 35008942 PMCID: PMC8745259 DOI: 10.3390/ijms23010516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease associated with excessive inflammation and defective skin barrier function. Activated protein C (APC) is a natural anticoagulant with anti-inflammatory and barrier protective functions. However, the effect of APC on AD and its engagement with protease activated receptor (PAR)1 and PAR2 are unknown. Methods: Contact hypersensitivity (CHS), a model for human AD, was induced in PAR1 knockout (KO), PAR2KO and matched wild type (WT) mice using 2,4-dinitrofluorobenzene (DNFB). Recombinant human APC was administered into these mice as preventative or therapeutic treatment. The effect of APC and PAR1KO or PARKO on CHS was assessed via measurement of ear thickness, skin histologic changes, inflammatory cytokine levels, Th cell phenotypes and keratinocyte function. Results: Compared to WT, PAR2KO but not PAR1KO mice displayed less severe CHS when assessed by ear thickness; PAR1KO CHS skin had less mast cells, lower levels of IFN-γ, IL-4, IL-17 and IL-22, and higher levels of IL-1β, IL-6 and TGF-β1, whereas PAR2KO CHS skin only contained lower levels of IL-22 and IgE. Both PAR1KO and PAR2KO spleen cells had less Th1/Th17/Th22/Treg cells. In normal skin, PAR1 was present at the stratum granulosum and spinosum, whereas PAR2 at the upper layers of the epidermis. In CHS, however, the expression of PAR1 and PAR2 were increased and spread to the whole epidermis. In vitro, compared to WT cells, PAR1KO keratinocytes grew much slower, had a lower survival rate and higher para permeability, while PAR2KO cells grew faster, were resistant to apoptosis and para permeability. APC inhibited CHS as a therapeutic but not as a preventative treatment only in WT and PAR1KO mice. APC therapy reduced skin inflammation, suppressed epidermal PAR2 expression, promoted keratinocyte growth, survival, and barrier function in both WT and PAR1KO cells, but not in PAR2KO cells. Conclusions: APC therapy can mitigate CHS. Although APC acts through both PAR1 and PAR2 to regulate Th and mast cells, suppression of clinical disease in mice is achieved mainly via inhibition of PAR2 alone. Thus, APC may confer broad therapeutic benefits as a disease-modifying treatment for AD.
Collapse
|
17
|
Louwies T, Meerveld BGV. Abdominal Pain. COMPREHENSIVE PHARMACOLOGY 2022:132-163. [DOI: 10.1016/b978-0-12-820472-6.00037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Motta JP, Deraison C, Le Grand S, Le Grand B, Vergnolle N. PAR-1 Antagonism to Promote Gut Mucosa Healing in Crohn's Disease Patients: A New Avenue for CVT120165. Inflamm Bowel Dis 2021; 27:S33-S37. [PMID: 34791291 DOI: 10.1093/ibd/izab244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 12/17/2022]
Abstract
A new paradigm has been added for the treatment of inflammatory bowel diseases such as Crohn's disease and ulcerative colitis. In addition to resolving symptoms and inflammatory cell activation, the objective of tissue repair and mucosal healing is also now considered a primary goal. In the search of mediators that would be responsible for delayed mucosal healing, protease-activated receptor-1 (PAR-1) has emerged as a most interesting target. Indeed, in Crohn's disease, the endogenous PAR-1 agonist thrombin is drastically activated. Activation of PAR-1 is known to be associated with epithelial dysfunctions that hamper mucosal homeostasis. This review gathers the scientific evidences of a potential role for PAR-1 in mucosal damage and mucosal dysfunctions associated with chronic intestinal inflammation. The potential clinical benefits of PAR-1 antagonism to promote mucosal repair in CD patients are discussed. Targeted local delivery of a PAR-1 antagonist molecule such as CVT120165, a formulated version of the FDA-approved PAR-1 antagonist vorapaxar, at the mucosa of Crohn's disease patients could be proposed as a new indication for IBD that could be rapidly tested in clinical trials.
Collapse
Affiliation(s)
- Jean-Paul Motta
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRA, ENVT, UPS, U1220, CHU Purpan, CS60039, Toulouse, France.,CVasThera, Arobase Castres-Mazamet, Castres, France
| | - Celine Deraison
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRA, ENVT, UPS, U1220, CHU Purpan, CS60039, Toulouse, France
| | | | | | - Nathalie Vergnolle
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRA, ENVT, UPS, U1220, CHU Purpan, CS60039, Toulouse, France.,Departments of Physiology & Pharmacology, and Medicine, University of Calgary Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, Alberta, Canada
| |
Collapse
|
19
|
Solà Tapias N, Denadai-Souza A, Rolland-Fourcade C, Quaranta-Nicaise M, Blanpied C, Marcellin M, Edir A, Rolland C, Cirillo C, Dietrich G, Alric L, Portier G, Kirzin S, Bonnet D, Mas E, Burlet-Schiltz O, Deraison C, Bonnart C, Vergnolle N, Barreau F. Colitis Linked to Endoplasmic Reticulum Stress Induces Trypsin Activity Affecting Epithelial Functions. J Crohns Colitis 2021; 15:1528-1541. [PMID: 33609354 DOI: 10.1093/ecco-jcc/jjab035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND AIMS Intestinal epithelial cells [IECs] from inflammatory bowel disease [IBD] patients exhibit an excessive induction of endoplasmic reticulum stress [ER stress] linked to altered intestinal barrier function and inflammation. Colonic tissues and the luminal content of IBD patients are also characterized by increased serine protease activity. The possible link between ER stress and serine protease activity in colitis-associated epithelial dysfunctions is unknown. We aimed to study the association between ER stress and serine protease activity in enterocytes and its impact on intestinal functions. METHODS The impact of ER stress induced by Thapsigargin on serine protease secretion was studied using either human intestinal cell lines or organoids. Moreover, treating human intestinal cells with protease-activated receptor antagonists allowed us to investigate ER stress-resulting molecular mechanisms that induce proteolytic activity and alter intestinal epithelial cell biology. RESULTS Colonic biopsies from IBD patients exhibited increased epithelial trypsin-like activity associated with elevated ER stress. Induction of ER stress in human intestinal epithelial cells displayed enhanced apical trypsin-like activity. ER stress-induced increased trypsin activity destabilized intestinal barrier function by increasing permeability and by controlling inflammatory mediators such as C-X-C chemokine ligand 8 [CXCL8]. The deleterious impact of ER stress-associated trypsin activity was specifically dependent on the activation of protease-activated receptors 2 and 4. CONCLUSIONS Excessive ER stress in IECs caused an increased release of trypsin activity that, in turn, altered intestinal barrier function, promoting the development of inflammatory process.
Collapse
Affiliation(s)
- Núria Solà Tapias
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | | | | | | | | | - Marlène Marcellin
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anissa Edir
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Corinne Rolland
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Carla Cirillo
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.,Laboratory for Enteric NeuroScience (LENS), TARGID, University of Leuven, Leuven, Belgium
| | - Gilles Dietrich
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | | | | | | | | | - Emmanuel Mas
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.,Pole Digestif, CHU, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Céline Deraison
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | | | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Frédérick Barreau
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| |
Collapse
|
20
|
Wang C, Fang X. Inflammation and Overlap of Irritable Bowel Syndrome and Functional Dyspepsia. J Neurogastroenterol Motil 2021; 27:153-164. [PMID: 33795538 PMCID: PMC8026374 DOI: 10.5056/jnm20175] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 12/13/2022] Open
Abstract
Irritable bowel syndrome (IBS) and functional dyspepsia (FD) are common functional gastrointestinal disorders (FGIDs) and account for a large proportion of consulting patients. These 2 disorders overlap with each other frequently. The pathogenesis of IBS or FD is complicated and multi-factors related, in which infectious or non-infectious inflammation and local or systemic immune response play significant roles. There are few studies focusing on the mechanism of inflammation in patients with overlap syndrome of irritable bowel syndrome and functional dyspepsia (IBS-FD). This review focuses on current advances about the role of inflammation in the pathogenesis of IBS and FD and the possible mechanism of inflammation in IBS-FD.
Collapse
Affiliation(s)
- Congzhen Wang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiucai Fang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Chao G, Wang Z, Yang C, Qian Y, Zhang S. Teprenone ameliorates diclofenac-induced small intestinal injury via inhibiting protease activated receptors 1 and 2 activity. Biomarkers 2020; 26:38-44. [PMID: 33176506 DOI: 10.1080/1354750x.2020.1849405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE This study aimed to investigate specific protein expression of injured intestinal mucosa induced by diclofenac, and explore the protective effects of teprenone on it. METHODS Intestinal damage of Sprague Dawley male rats was gradually induced by the intragastric administration of diclofenac. After the last drug administration, the intestinal mucosa was taken off with an interval of 24 h, subsequently, its general histological injury and ultrastructure were observed and analysed by a transmission electron microscope. The expression levels of PAR1 and PAR2 protein were detected by immunohistochemistry and real-time polymerase chain reaction (PCR). RESULTS The Reuter and Chiu scores of small intestinal damage were 5.63 ± 1.30 and 4.25 ± 0.70 respectively in the model group, which could be protected by teprenone (100 mg/kg⋅day) with the degree of 55.7% and 44%. Optical microscopy and transmission electron microscope showed that intestinal mucosa and ultrastructure were severely damaged. Distributed in the cytoplasm or aligned with the nucleus, the expression of PAR1 and PAR2 was significantly upregulated after the administration of diclofenac, while it was relieved after the treatment of teprenone. CONCLUSION Our study presents a new view that teprenone might protect NSAIDs-induced (diclofenac) intestinal injury via suppressing the expression of PAR1 and PAR2.
Collapse
Affiliation(s)
- Guanqun Chao
- Department of Family Medicine, Sir Run Run Shaw Hospital, Zhejiang University, China
| | - Zhaojun Wang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, China
| | - Chaoyu Yang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, China
| | - Yanna Qian
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, China
| | - Shuo Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, China
| |
Collapse
|
22
|
Motta JP, Palese S, Giorgio C, Chapman K, Denadai-Souza A, Rousset P, Sagnat D, Guiraud L, Edir A, Seguy C, Alric L, Bonnet D, Bournet B, Buscail L, Gilletta C, Buret AG, Wallace JL, Hollenberg MD, Oswald E, Barocelli E, Le Grand S, Le Grand B, Deraison C, Vergnolle N. Increased Mucosal Thrombin is Associated with Crohn's Disease and Causes Inflammatory Damage through Protease-activated Receptors Activation. J Crohns Colitis 2020; 15:787-799. [PMID: 33201214 PMCID: PMC8095389 DOI: 10.1093/ecco-jcc/jjaa229] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Thrombin levels in the colon of Crohn's disease patients have recently been found to be elevated 100-fold compared with healthy controls. Our aim was to determine whether and how dysregulated thrombin activity could contribute to local tissue malfunctions associated with Crohn's disease. METHODS Thrombin activity was studied in tissues from Crohn's disease patients and healthy controls. Intracolonic administration of thrombin to wild-type or protease-activated receptor-deficient mice was used to assess the effects and mechanisms of local thrombin upregulation. Colitis was induced in rats and mice by the intracolonic administration of trinitrobenzene sulphonic acid. RESULTS Active forms of thrombin were increased in Crohn's disease patient tissues. Elevated thrombin expression and activity were associated with intestinal epithelial cells. Increased thrombin activity and expression were also a feature of experimental colitis in rats. Colonic exposure to doses of active thrombin comparable to what is found in inflammatory bowel disease tissues caused mucosal damage and tissue dysfunctions in mice, through a mechanism involving both protease-activated receptors -1 and -4. Intracolonic administration of the thrombin inhibitor dabigatran, as well as inhibition of protease-activated receptor-1, prevented trinitrobenzene sulphonic acid-induced colitis in rodent models. CONCLUSIONS Our data demonstrated that increased local thrombin activity, as it occurs in the colon of patients with inflammatory bowel disease, causes mucosal damage and inflammation. Colonic thrombin and protease-activated receptor-1 appear as possible mechanisms involved in mucosal damage and loss of function and therefore represent potential therapeutic targets for treating inflammatory bowel disease.
Collapse
Affiliation(s)
- Jean-Paul Motta
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, Toulouse, France,CVasThera, Arobase Castres-Mazamet, Castres, France
| | - Simone Palese
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, Toulouse, France,Università di Parma, Dipartimento di Scienze degli Alimenti e del Farmaco, Parma, Italia
| | - Carmine Giorgio
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, Toulouse, France,Università di Parma, Dipartimento di Scienze degli Alimenti e del Farmaco, Parma, Italia
| | - Kevin Chapman
- Department of Physiology & Pharmacology, and Medicine, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | | | - Perrine Rousset
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, Toulouse, France
| | - David Sagnat
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, Toulouse, France
| | - Laura Guiraud
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, Toulouse, France
| | - Anissa Edir
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, Toulouse, France
| | - Carine Seguy
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, Toulouse, France
| | - Laurent Alric
- Department of Internal Medicine and Digestive Diseases, CHU Toulouse, Toulouse, France,Pole Digestif, CHU Toulouse, Toulouse, France,Faculty of Medicine, Paul Sabatier University, Toulouse, France
| | - Delphine Bonnet
- Department of Internal Medicine and Digestive Diseases, CHU Toulouse, Toulouse, France,Pole Digestif, CHU Toulouse, Toulouse, France
| | - Barbara Bournet
- Pole Digestif, CHU Toulouse, Toulouse, France,Faculty of Medicine, Paul Sabatier University, Toulouse, France
| | - Louis Buscail
- Pole Digestif, CHU Toulouse, Toulouse, France,Faculty of Medicine, Paul Sabatier University, Toulouse, France
| | | | - Andre G Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - John L Wallace
- Department of Physiology & Pharmacology, and Medicine, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology, and Medicine, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, Toulouse, France
| | - Elisabetta Barocelli
- Università di Parma, Dipartimento di Scienze degli Alimenti e del Farmaco, Parma, Italia
| | | | | | - Celine Deraison
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, Toulouse, France
| | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, Toulouse, France,Department of Physiology & Pharmacology, and Medicine, University of Calgary Cumming School of Medicine, Calgary, AB, Canada,Corresponding author: Dr Nathalie Vergnolle, PhD, Institut de Recherche en Santé Digestive [IRSD], INSERM UMR-1220, Purpan Hospital, CS60039, 31024 Toulouse cedex 03, France. Tel.: 33-5-62-74-45-00; fax: 33-5-62-74-45-58;
| |
Collapse
|
23
|
Tomuschat C, O'Donnell AM, Coyle D, Puri P. Increased protease activated receptors in the colon of patients with Hirschsprung's disease. J Pediatr Surg 2020; 55:1488-1494. [PMID: 31859043 DOI: 10.1016/j.jpedsurg.2019.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/12/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE The pathophysiology of Hirschsprung's associated enterocolitis (HAEC) is not understood. Abnormal intestinal motility and altered intestinal epithelial barrier function have been suggested to play a key role in the causation of HAEC. Protease-activated receptors (PARs) 1 and 2, have been implicated in inflammatory reactions, intestinal permeability and modulation of motility in the gut. METHODS We investigated PAR-1 and PAR-2 protein expression in aganglionic and ganglionic regions of patients with Hirschsprung's Disease (HSCR) (n = 10) versus normal control colon (n = 10). Protein distribution was assessed by using immunofluorescence and confocal microscopy. Gene and protein expression were quantified using quantitative real-time polymerase chain reaction (qPCR), western blot analysis, and densitometry. RESULTS qPCR and Western blot analysis revealed that PAR-1 and PAR-2 expression was significantly increased in ganglionic and aganglionic bowel in HSCR compared to controls (p < 0.003). Confocal microscopy revealed strong PAR-1 and PAR-2 expression in smooth muscles, interstitial cells of Cajal (ICCs), platelet-derived growth factor-alpha receptor-positive (PDGFRα+) cells, enteric neurons and epithelium in the ganglionic and aganglionic bowel compared to controls. CONCLUSION Increased PAR-1 and PAR-2 expression in the colon of patients with HSCR suggests that excessive local release of PAR activating proteases may trigger inflammatory responses leading to HAEC.
Collapse
Affiliation(s)
- Christian Tomuschat
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland.
| | - Anne Marie O'Donnell
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - David Coyle
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland; School of Medicine and Medical Science and Conway Institute of Biomedical Research, University College Dublin, Ireland
| |
Collapse
|
24
|
Buret AG. Acceptance of the 2019 Stoll-Stunkard Memorial Lectureship Award: The Study of Host-Parasite Interactions to Better Understand Fundamental Host Physiology: The Model of Giardiasis. J Parasitol 2020. [DOI: 10.1645/19-134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- André G. Buret
- Department of Biological Sciences, Host-Parasite Interactions Program, Inflammation Research Network, University of Calgary, 2500 University Drive N.W., Calgary (Alberta), T2N 1N4, Canada
| |
Collapse
|
25
|
Boucher AA, Rosenfeldt L, Mureb D, Shafer J, Sharma BK, Lane A, Crowther RR, McKell MC, Whitt J, Alenghat T, Qualls J, Antoniak S, Mackman N, Flick MJ, Steinbrecher KA, Palumbo JS. Cell type-specific mechanisms coupling protease-activated receptor-1 to infectious colitis pathogenesis. J Thromb Haemost 2020; 18:91-103. [PMID: 31539206 PMCID: PMC7026906 DOI: 10.1111/jth.14641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/29/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Protease-activated receptor-1 (PAR-1) plays a major role in multiple disease processes, including colitis. Understanding the mechanisms coupling PAR-1 to disease pathogenesis is complicated by the fact that PAR-1 is broadly expressed across multiple cell types. OBJECTIVE Determine the specific contributions of PAR-1 expressed by macrophages and colonic enterocytes to infectious colitis. METHODS Mice carrying a conditional PAR-1 allele were generated and bred to mice expressing Cre recombinase in a myeloid- (PAR-1ΔM ) or enterocyte-specific (PAR-1ΔEPI ) fashion. Citrobacter rodentium colitis pathogenesis was analyzed in mice with global PAR-1 deletion (PAR-1-/- ) and cell type-specific deletions. RESULTS Constitutive deletion of PAR-1 had no significant impact on weight loss, crypt hypertrophy, crypt abscess formation, or leukocyte infiltration in Citrobacter colitis. However, colonic shortening was significantly blunted in infected PAR-1-/- mice, and these animals exhibited decreased local levels of IL-1β, IL-22, IL-6, and IL-17A. In contrast, infected PAR-1ΔM mice lost less weight and had fewer crypt abscesses relative to controls. PAR-1ΔM mice had diminished CD3+ T cell infiltration into colonic tissue, but macrophage and CD4+ T cell infiltration were similar to controls. Also contrasting results in global knockouts, PAR-1ΔM mice exhibited lower levels of IL-1β, but not Th17-related cytokines (ie, IL-22, IL-6, IL-17A). Infected PAR-1ΔEPI mice exhibited increased crypt hypertrophy and crypt abscess formation, but local cytokine elaboration was similar to controls. CONCLUSIONS These studies reveal complex, cell type-specific roles for PAR-1 in modulating the immune response to Citrobacter colitis that are not readily apparent in analyses limited to mice with global PAR-1 deficiency.
Collapse
Affiliation(s)
- Alexander A. Boucher
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Leah Rosenfeldt
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Duaa Mureb
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jessica Shafer
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Bal Krishan Sharma
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Adam Lane
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Rebecca R. Crowther
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Melanie C. McKell
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jordan Whitt
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Theresa Alenghat
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Joseph Qualls
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Silvio Antoniak
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nigel Mackman
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Matthew J. Flick
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kris A. Steinbrecher
- Division of Gastroenterology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Joseph S. Palumbo
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
26
|
Allain T, Buret AG. Pathogenesis and post-infectious complications in giardiasis. ADVANCES IN PARASITOLOGY 2019; 107:173-199. [PMID: 32122529 DOI: 10.1016/bs.apar.2019.12.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Giardia is an important cause of diarrhoea, and results in post-infectious and extra-intestinal complications. This chapter presents a state-of-the art of our understanding of how this parasite may cause such abnormalities, which appear to develop at least in part in Assemblage-dependent manner. Findings from prospective longitudinal cohort studies indicate that Giardia is one of the four most prevalent enteropathogens in early life, and represents a risk factor for stunting at 2 years of age. This may occur independently of diarrheal disease, in strong support of the pathophysiological significance of the intestinal abnormalities induced by this parasite. These include epithelial malabsorption and maldigestion, increased transit, mucus depletion, and disruptions of the commensal microbiota. Giardia increases epithelial permeability and facilitates the invasion of gut bacteria. Loss of intestinal barrier function is at the core of the acute and post-infectious complications associated with this infection. Recent findings demonstrate that the majority of the pathophysiological responses triggered by this parasite can be recapitulated by the effects of its membrane-bound and secreted cysteine proteases.
Collapse
Affiliation(s)
- Thibault Allain
- University of Calgary, Host-Parasite Interactions Program, Inflammation Research Network, Department of Biological Sciences, Calgary, Canada
| | - André G Buret
- University of Calgary, Host-Parasite Interactions Program, Inflammation Research Network, Department of Biological Sciences, Calgary, Canada.
| |
Collapse
|
27
|
Pontarollo G, Mann A, Brandão I, Malinarich F, Schöpf M, Reinhardt C. Protease-activated receptor signaling in intestinal permeability regulation. FEBS J 2019; 287:645-658. [PMID: 31495063 DOI: 10.1111/febs.15055] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/01/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
Protease-activated receptors (PARs) are a unique class of G-protein-coupled transmembrane receptors, which revolutionized the perception of proteases from degradative enzymes to context-specific signaling factors. Although PARs are traditionally known to affect several vascular responses, recent investigations have started to pinpoint the functional role of PAR signaling in the gastrointestinal (GI) tract. This organ is exposed to the highest number of proteases, either from the gut lumen or from the mucosa. Luminal proteases include the host's digestive enzymes and the proteases released by the commensal microbiota, while mucosal proteases entail extravascular clotting factors and the enzymes released from resident and infiltrating immune cells. Active proteases and, in case of a disrupted gut barrier, even entire microorganisms are capable to translocate the intestinal epithelium, particularly under inflammatory conditions. Especially PAR-1 and PAR-2, expressed throughout the GI tract, impact gut permeability regulation, a major factor affecting intestinal physiology and metabolic inflammation. In addition, PARs are critically involved in the onset of inflammatory bowel diseases, irritable bowel syndrome, and tumor progression. Due to the number of proteases involved and the multiple cell types affected, selective regulation of intestinal PARs represents an interesting therapeutic strategy. The analysis of tissue/cell-specific knockout animal models will be of crucial importance to unravel the intrinsic complexity of this signaling network. Here, we provide an overview on the implication of PARs in intestinal permeability regulation under physiologic and disease conditions.
Collapse
Affiliation(s)
- Giulia Pontarollo
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz, Germany
| | - Amrit Mann
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz, Germany
| | - Inês Brandão
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz, Germany.,Centro de Apoio Tecnológico Agro Alimentar (CATAA), Zona Industrial de Castelo Branco, Portugal
| | - Frano Malinarich
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz, Germany
| | - Marie Schöpf
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Mainz, Germany
| |
Collapse
|
28
|
Baicalin Protects against Thrombin-Induced Cell Injury in Human Umbilical Vein Endothelial Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2187306. [PMID: 31467874 PMCID: PMC6699368 DOI: 10.1155/2019/2187306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/16/2019] [Accepted: 07/11/2019] [Indexed: 01/17/2023]
Abstract
Thrombin plays a pivotal role in the pathogenesis of atherosclerosis. Baicalin, an active flavonoid compound, was shown to attenuate the development of atherosclerosis, but the mechanism remains elusive. In the present study, the role and mechanism of baicalin in thrombin-induced cell injury was investigated in human umbilical vein endothelial cells (HUVECs). Our results showed that baicalin significantly reduced thrombin-induced apoptosis of HUVECs. Additional experiments showed that baicalin inhibited thrombin-induced NF-κB activation and PAR-1 expression. In addition, baicalin decreased thrombin-induced PAR-1 expression by inhibiting ERK pathway. These results indicated that baicalin has protective effects on thrombin-induced cell injury in HUVECs possibly through inhibition of PAR-1 expression and its downstream NF-κB activation, which was mediated by ERK1/2 activation.
Collapse
|
29
|
Allain T, Fekete E, Buret AG. Giardia Cysteine Proteases: The Teeth behind the Smile. Trends Parasitol 2019; 35:636-648. [DOI: 10.1016/j.pt.2019.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 01/15/2023]
|
30
|
Abstract
The prevalence of celiac disease (CeD) has increased in the last decades, suggesting a role for environmental factors in addition to gluten. Several cohort studies have shown that different gastrointestinal infections increase CeD risk. However, the mechanisms by which microbes participate in CeD have remained elusive. Recently, with the use of animal models, both viral and bacterial opportunistic pathogens were shown to induce immune activation relevant for CeD. The hypothesis that viral and/or bacterial infections can contribute to immune activation and breakdown of tolerance toward gluten in genetically susceptible individuals is therefore reinforced. Here, we discuss the evidence regarding the role of microbes in promoting CeD and the specific pathways triggered by microbes that could participate in CeD pathogenesis. Understanding these pathways will allow us to develop optimal microbiota-modulating strategies to help prevent CeD.
Collapse
Affiliation(s)
- Alberto Caminero
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Elena F. Verdu
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
31
|
Heuberger DM, Schuepbach RA. Protease-activated receptors (PARs): mechanisms of action and potential therapeutic modulators in PAR-driven inflammatory diseases. Thromb J 2019; 17:4. [PMID: 30976204 PMCID: PMC6440139 DOI: 10.1186/s12959-019-0194-8] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/08/2019] [Indexed: 12/29/2022] Open
Abstract
Inflammatory diseases have become increasingly prevalent with industrialization. To address this, numerous anti-inflammatory agents and molecular targets have been considered in clinical trials. Among molecular targets, protease-activated receptors (PARs) are abundantly recognized for their roles in the development of chronic inflammatory diseases. In particular, several inflammatory effects are directly mediated by the sensing of proteolytic activity by PARs. PARs belong to the seven transmembrane domain G protein-coupled receptor family, but are unique in their lack of physiologically soluble ligands. In contrast with classical receptors, PARs are activated by N-terminal proteolytic cleavage. Upon removal of specific N-terminal peptides, the resulting N-termini serve as tethered activation ligands that interact with the extracellular loop 2 domain and initiate receptor signaling. In the classical pathway, activated receptors mediate signaling by recruiting G proteins. However, activation of PARs alternatively lead to the transactivation of and signaling through receptors such as co-localized PARs, ion channels, and toll-like receptors. In this review we consider PARs and their modulators as potential therapeutic agents, and summarize the current understanding of PAR functions from clinical and in vitro studies of PAR-related inflammation.
Collapse
Affiliation(s)
- Dorothea M Heuberger
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Surgical Research Division, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Reto A Schuepbach
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
de la Mora-de la Mora JI, Enríquez-Flores S, Fernández-Lainez C, Gutiérrez-Castrellón P, Olivos-García A, González-Canto A, Hernández R, Luján HD, García-Torres I, López-Velázquez G. Characterization of proteolytic activities of Giardia lamblia with the ability to cleave His-tagged N-terminal sequences. Mol Biochem Parasitol 2019; 228:16-26. [DOI: 10.1016/j.molbiopara.2019.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/24/2018] [Accepted: 01/03/2019] [Indexed: 12/18/2022]
|
33
|
Sébert M, Sola-Tapias N, Mas E, Barreau F, Ferrand A. Protease-Activated Receptors in the Intestine: Focus on Inflammation and Cancer. Front Endocrinol (Lausanne) 2019; 10:717. [PMID: 31708870 PMCID: PMC6821688 DOI: 10.3389/fendo.2019.00717] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
Protease-activated receptors (PARs) belong to the G protein-coupled receptor (GPCR) family. Compared to other GPCRs, the specificity of the four PARs is the lack of physiologically soluble ligands able to induce their activation. Indeed, PARs are physiologically activated after proteolytic cleavage of their N-terminal domain by proteases. The resulting N-terminal end becomes a tethered activation ligand that interact with the extracellular loop 2 domain and thus induce PAR signal. PARs expression is ubiquitous and these receptors have been largely described in chronic inflammatory diseases and cancer. In this review, after describing their discovery, structure, mechanisms of activation, we then focus on the roles of PARs in the intestine and the two main diseases affecting the organ, namely inflammatory bowel diseases and cancer.
Collapse
|
34
|
He L, Ma Y, Li W, Han W, Zhao X, Wang H. Protease-activated receptor 2 signaling modulates susceptibility of colonic epithelium to injury through stabilization of YAP in vivo. Cell Death Dis 2018; 9:949. [PMID: 30237580 PMCID: PMC6148223 DOI: 10.1038/s41419-018-0995-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/01/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022]
Abstract
Hippo signaling plays critical roles in intestinal regeneration. However, the mechanisms which regulate its activity in vivo are largely unknown. We hypothesize that protease-activated receptor 2 (PAR2) signaling, which could be activated by trypsin, might affect YAP activity in the setting of tissue damage and regeneration. It is found that knockout of PAR2 severely aggravates the mucosal damage induced by dextran sodium sulfate (DSS) in mouse, which correlated with notable repression of YAP protein in colonic epithelial cells. Although the cytokine expression is reduced, the damage of colonic crypt is more severe after DSS-induced colitis in PAR2-/- mouse. In vitro, PAR2 activation causes the accumulation of YAP, while knockdown of PAR2 with shRNA dramatically represses the expression of YAP protein in different intestinal epithelial cell lines. Moreover, forced expression of YAP significantly reduces the production of reactive oxygen species (ROS) and the sensitivity to nitric oxide-induced apoptosis in PAR2-deficient condition. Further studies show that PAR2 signaling stabilizes YAP protein but independent of Lats. Nevertheless PAR2 activation increased the binding of YAP with protein phosphatase PP1. Inhibition of PP1 with specific siRNA blocked PAR2-induced dephosphorylation of YAP. Taken together, PAR2 signaling might modulate susceptibility of colonic epithelium to injury through stabilization of YAP.
Collapse
Affiliation(s)
- Longmei He
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China, 100021
| | - Yiming Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China, 100021
| | - Weiwei Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China, 100021
| | - Wenxiao Han
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China, 100021
| | - Xinhua Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China, 100021
| | - Hongying Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China, 100021.
| |
Collapse
|
35
|
Sébert M, Denadai-Souza A, Quaranta M, Racaud-Sultan C, Chabot S, Lluel P, Monjotin N, Alric L, Portier G, Kirzin S, Bonnet D, Ferrand A, Vergnolle N. Thrombin modifies growth, proliferation and apoptosis of human colon organoids: a protease-activated receptor 1- and protease-activated receptor 4-dependent mechanism. Br J Pharmacol 2018; 175:3656-3668. [PMID: 29959891 PMCID: PMC6109216 DOI: 10.1111/bph.14430] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/24/2018] [Accepted: 06/08/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Thrombin is massively released upon tissue damage associated with bleeding or chronic inflammation. The effects of this thrombin on tissue regrowth and repair has been scarcely addressed and only in cancer cell lines. Hence, the purpose of the present study was to determine thrombin's pharmacological effects on human intestinal epithelium growth, proliferation and apoptosis, using three-dimensional cultures of human colon organoids. EXPERIMENTAL APPROACH Crypts were isolated from human colonic resections and cultured for 6 days, forming human colon organoids. Cultured organoids were exposed to 10 and 50 mU·mL-1 of thrombin, in the presence or not of protease-activated receptor (PAR) antagonists. Organoid morphology, metabolism, proliferation and apoptosis were followed. KEY RESULTS Thrombin favoured organoid maturation leading to a decreased number of immature cystic structures and a concomitant increased number of larger structures releasing cell debris and apoptotic cells. The size of budding structures, metabolic activity and proliferation were significantly reduced in organoid cultures exposed to thrombin, while apoptosis was dramatically increased. Both PAR1 and PAR4 antagonists inhibited apoptosis regardless of thrombin doses. Thrombin-induced inhibition of proliferation and metabolic activity were reversed by PAR4 antagonist for thrombin's lowest dose and by PAR1 antagonist for thrombin's highest dose. CONCLUSIONS AND IMPLICATIONS Overall, our data suggest that the presence of thrombin in the vicinity of human colon epithelial cells favours their maturation at the expense of their regenerative capacities. Our data point to thrombin and its two receptors PAR1 and PAR4 as potential molecular targets for epithelial repair therapies.
Collapse
Affiliation(s)
- Morgane Sébert
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | | | - Muriel Quaranta
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | | | | | | | | | - Laurent Alric
- Department of Internal Medicine and Digestive Diseases, CHU Purpan, Toulouse, France
| | - Guillaume Portier
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Sylvain Kirzin
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Delphine Bonnet
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Audrey Ferrand
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
36
|
Van Spaendonk H, Ceuleers H, Witters L, Patteet E, Joossens J, Augustyns K, Lambeir AM, De Meester I, De Man JG, De Winter BY. Regulation of intestinal permeability: The role of proteases. World J Gastroenterol 2017; 23:2106-2123. [PMID: 28405139 PMCID: PMC5374123 DOI: 10.3748/wjg.v23.i12.2106] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/20/2017] [Accepted: 03/02/2017] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal barrier is - with approximately 400 m2 - the human body's largest surface separating the external environment from the internal milieu. This barrier serves a dual function: permitting the absorption of nutrients, water and electrolytes on the one hand, while limiting host contact with noxious luminal antigens on the other hand. To maintain this selective barrier, junction protein complexes seal the intercellular space between adjacent epithelial cells and regulate the paracellular transport. Increased intestinal permeability is associated with and suggested as a player in the pathophysiology of various gastrointestinal and extra-intestinal diseases such as inflammatory bowel disease, celiac disease and type 1 diabetes. The gastrointestinal tract is exposed to high levels of endogenous and exogenous proteases, both in the lumen and in the mucosa. There is increasing evidence to suggest that a dysregulation of the protease/antiprotease balance in the gut contributes to epithelial damage and increased permeability. Excessive proteolysis leads to direct cleavage of intercellular junction proteins, or to opening of the junction proteins via activation of protease activated receptors. In addition, proteases regulate the activity and availability of cytokines and growth factors, which are also known modulators of intestinal permeability. This review aims at outlining the mechanisms by which proteases alter the intestinal permeability. More knowledge on the role of proteases in mucosal homeostasis and gastrointestinal barrier function will definitely contribute to the identification of new therapeutic targets for permeability-related diseases.
Collapse
|
37
|
Allain T, Amat CB, Motta JP, Manko A, Buret AG. Interactions of Giardia sp. with the intestinal barrier: Epithelium, mucus, and microbiota. Tissue Barriers 2017; 5:e1274354. [PMID: 28452685 DOI: 10.1080/21688370.2016.1274354] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Understanding how intestinal enteropathogens cause acute and chronic alterations has direct animal and human health perspectives. Significant advances have been made on this field by studies focusing on the dynamic crosstalk between the intestinal protozoan parasite model Giardia duodenalis and the host intestinal mucosa. The concept of intestinal barrier function is of the highest importance in the context of many gastrointestinal diseases such as infectious enteritis, inflammatory bowel disease, and post-infectious gastrointestinal disorders. This crucial function relies on 3 biotic and abiotic components, first the commensal microbiota organized as a biofilm, then an overlaying mucus layer, and finally the tightly structured intestinal epithelium. Herein we review multiple strategies used by Giardia parasite to circumvent these 3 components. We will summarize what is known and discuss preliminary observations suggesting how such enteropathogen directly and/ or indirectly impairs commensal microbiota biofilm architecture, disrupts mucus layer and damages host epithelium physiology and survival.
Collapse
Affiliation(s)
- Thibault Allain
- a Department of Biological Sciences , University of Calgary , Calgary , AB , Canada.,b Inflammation Research Network, University of Calgary , Calgary , AB , Canada.,c Host-Parasite Interactions, University of Calgary , Calgary , AB , Canada
| | - Christina B Amat
- a Department of Biological Sciences , University of Calgary , Calgary , AB , Canada.,b Inflammation Research Network, University of Calgary , Calgary , AB , Canada.,c Host-Parasite Interactions, University of Calgary , Calgary , AB , Canada
| | - Jean-Paul Motta
- a Department of Biological Sciences , University of Calgary , Calgary , AB , Canada.,b Inflammation Research Network, University of Calgary , Calgary , AB , Canada.,c Host-Parasite Interactions, University of Calgary , Calgary , AB , Canada
| | - Anna Manko
- a Department of Biological Sciences , University of Calgary , Calgary , AB , Canada.,b Inflammation Research Network, University of Calgary , Calgary , AB , Canada.,c Host-Parasite Interactions, University of Calgary , Calgary , AB , Canada
| | - André G Buret
- a Department of Biological Sciences , University of Calgary , Calgary , AB , Canada.,b Inflammation Research Network, University of Calgary , Calgary , AB , Canada.,c Host-Parasite Interactions, University of Calgary , Calgary , AB , Canada
| |
Collapse
|
38
|
Sturgeon C, Fasano A. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers 2016; 4:e1251384. [PMID: 28123927 DOI: 10.1080/21688370.2016.1251384] [Citation(s) in RCA: 309] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/14/2016] [Accepted: 10/14/2016] [Indexed: 12/15/2022] Open
Abstract
Beside digesting nutrients and absorbing solutes and electrolytes, the intestinal epithelium with its barrier function is in charge of a tightly controlled antigen trafficking from the intestinal lumen to the submucosa. This trafficking dictates the delicate balance between tolerance and immune response causing inflammation. Loss of barrier function secondary to upregulation of zonulin, the only known physiological modulator of intercellular tight junctions, leads to uncontrolled influx of dietary and microbial antigens. Additional insights on zonulin mechanism of action and the recent appreciation of the role that altered intestinal permeability can play in the development and progression of chronic inflammatory disorders has increased interest of both basic scientists and clinicians on the potential role of zonulin in the pathogenesis of these diseases. This review focuses on the recent research implicating zonulin as a master regulator of intestinal permeability linked to the development of several chronic inflammatory disorders.
Collapse
Affiliation(s)
- Craig Sturgeon
- Center for Celiac Research and Treatment, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Division of Pediatric Gastroenterology and Nutrition, Boston, MA, USA; Graduate Program in Life Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alessio Fasano
- Center for Celiac Research and Treatment, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Division of Pediatric Gastroenterology and Nutrition, Boston, MA, USA; European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| |
Collapse
|
39
|
Abstract
The GI tract is the most exposed organ to proteases, both in physiological and pathophysiological conditions. For digestive purposes, the lumen of the upper GI tract contains large amounts of pancreatic proteases, but studies have also demonstrated increased proteolytic activity into mucosal tissues (both in the upper and lower GI tract), associated with pathological conditions. This review aims at outlining the evidences for dysregulated proteolytic homeostasis in GI diseases and the pathogenic mechanisms of increased proteolytic activity. The therapeutic potential of protease inhibition in GI diseases is discussed, with a particular focus on IBDs, functional GI disorders and colorectal cancer.
Collapse
Affiliation(s)
- Nathalie Vergnolle
- Inserm, U1220, Toulouse, France,Université de Toulouse, Université Paul Sabatier, Institut de Recherche en Santé Digestive (IRSD), Toulouse, France,Inra, U1416, Toulouse, France,Ecole Nationale Vétérinaire de Toulouse (ENVT), France,Department of Pharmacology and Physiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
40
|
Zhang H, Wang M, Shi T, Shen L, Zhu J, Sun M, Deng Y, Liang L, Li G, Wu Y, Fan M, Wei Q, Zhang Z. Genetic polymorphisms of PAI-1 and PAR-1 are associated with acute normal tissue toxicity in Chinese rectal cancer patients treated with pelvic radiotherapy. Onco Targets Ther 2015; 8:2291-301. [PMID: 26347502 PMCID: PMC4556037 DOI: 10.2147/ott.s83723] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Plasminogen activator inhibitor type 1 (PAI-1) and protease-activated receptor-1 (PAR-1) are crucial mediators of the intestinal microenvironment and are involved in radiation-induced acute and chronic injury. To evaluate whether genetic polymorphisms of PAI-1 and PAR-1 were predictors of radiation-induced injury in patients with rectal cancer, we retrospectively evaluated 356 rectal cancer patients who had received pelvic radiotherapy and analyzed the association of genetic polymorphisms of PAI-1 and PAR-1 with acute toxicities after radiotherapy. Acute adverse events were scored, including dermatitis, fecal incontinence (anal toxicity), hematological toxicity, diarrhea, and vomiting. The patients were grouped into grade ≥2 and grade 0-1 toxicity groups to analyze the acute toxicities. Genotyping of six single nucleotide polymorphisms (SNPs) of PAI-1 and PAR-1 was performed using TaqMan assays. A logistic regression model was used to estimate the odds ratios and 95% confidence intervals. Of the 356 individuals, 264 (72.5%) had grade ≥2 total toxicities; within this group, there were 65 (18.3%) individuals who reached grade ≥3 toxicities. There were 19.5% (69/354) and 36.9% (130/352) patients that developed grade ≥2 toxicities for diarrhea and fecal incontinence, respectively. The variant genotype GG of rs1050955 in PAI-1 was found to be negatively associated with the risk of diarrhea and incontinence (P<0.05), whereas the AG and GG genotypes of rs2227631 in PAI-1 were associated with an increased risk of incontinence. The CT genotype of PAR-1 rs32934 was associated with an increased risk of total toxicity compared with the CC allele. Our results demonstrated that SNPs in the PAI-1 and PAR-1 genes were associated with acute injury in rectal cancer patients treated with pelvic irradiation. These SNPs may be useful biomarkers for predicting acute radiotoxicity in patients with rectal cancer if validated in future studies.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China ; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Mengyun Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China ; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Tingyan Shi
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China ; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Lijun Shen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China ; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ji Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China ; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Menghong Sun
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China ; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yun Deng
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China ; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Liping Liang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China ; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Guichao Li
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China ; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yongxin Wu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China ; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ming Fan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China ; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Qingyi Wei
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China ; Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China ; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
41
|
Buret AG, Amat CB, Manko A, Beatty JK, Halliez MCM, Bhargava A, Motta JP, Cotton JA. Giardia duodenalis: New Research Developments in Pathophysiology, Pathogenesis, and Virulence Factors. CURRENT TROPICAL MEDICINE REPORTS 2015. [DOI: 10.1007/s40475-015-0049-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
42
|
Gugerell A, Pasteiner W, Nürnberger S, Kober J, Meinl A, Pfeifer S, Hartinger J, Wolbank S, Goppelt A, Redl H, Mittermayr R. Thrombin as important factor for cutaneous wound healing: comparison of fibrin biomatrices in vitro and in a rat excisional wound healing model. Wound Repair Regen 2015; 22:740-8. [PMID: 25231003 DOI: 10.1111/wrr.12234] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 09/04/2014] [Indexed: 12/13/2022]
Abstract
Fibrin biomatrices have been used for many years for hemostasis and sealing and are a well-established surgical tool. The objective of the present study was to compare two commercially available fibrin biomatrices regarding the effect of their thrombin concentration on keratinocytes and wound healing in vitro and in vivo. Keratinocytes showed significant differences in adhesion, viability, and morphology in the presence of the fibrin matrices in vitro. A high thrombin concentration (800-1,200 IU/mL) caused deteriorated cell compatibility. By using a thrombin inhibitor, those differences could be reversed. In a rat excisional wound healing model, we observed more rapid wound closure and less wound severity in wounds treated with a fibrin matrix containing a lower concentration of thrombin (4 IU/mL). Furthermore, fewer new functional vessels and a lower level of vascular endothelial growth factor were measured in wounds after 7 days treated with the matrix with higher thrombin concentration. These in vivo results may be partially explained by the in vitro biocompatibility data. Additionally, results show that low thrombin biomatrices were degraded faster than the high thrombin material. Hence, we conclude that the composition of fibrin biomatrices influences keratinocytes and therefore has an impact on wound healing.
Collapse
Affiliation(s)
- Alfred Gugerell
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Vienna, Austria; Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Xu QL, Guo XH, Liu JX, Chen B, Liu ZF, Su L. Blockage of protease-activated receptor 1 ameliorates heat-stress induced intestinal high permeability and bacterial translocation. Cell Biol Int 2015; 39:411-7. [PMID: 25492552 DOI: 10.1002/cbin.10408] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 10/14/2014] [Indexed: 11/06/2022]
Abstract
Accumulated evidences indicate intestinal lesions play an important role in the pathogenesis of heatstroke. However, the underlying mechanisms by which heat stress causes intestinal barrier dysfunction and bacterial translocation remain unclear. In this study, we investigated the role of protease-activated receptor 1 (PAR1) in heat stress-induced intestinal hyper-permeability and bacterial translocation. Intestinal permeability in heat stressed mouse was evaluated by determining plasma endotoxin concentration and urinal lactulose/mannitol (L/M) ratio with gastric administration of L/M solution. Venous blood, liver, spleen and mesenteric lymph node tissues were collected for bacterial load test. Real time PCR was used to determine ileum PAR1 mRNA expression. In vitro study, permeability was assessed by determining trans-epithelial electrical resistance (TEER) in human intestinal Caco-2 cell line. RWJ-58259, a selective antagonist of PAR1, was used both in vivo and in vitro studies. The results showed that heat stress could increase ileum PAR1 mRNA level, urinal L/M ratio, plasma endotoxin concentration and bacterial load in the blood, spleen and mesenteric lymph nodes. Blocking PAR1 with RWJ-58259 (10 mg/kg) pretreatment could significantly reduce heat stress-induced above changes, but have no role to PAR1 mRNA level. In Caco-2 cells, heat stress-induced high permeability could also be reduced by RWJ-58259 (5-20 µmol/L). In summary, our results demonstrated that PAR1 signaling pathway may play an important role in the heat stress-induced elevation of intestinal permeability, bacterial translocation and the occurrence of endotoxemia.
Collapse
Affiliation(s)
- Qiu-lin Xu
- Department of Intensive Care Unit, General Hospital of Guangzhou Military Command, Guangzhou, 510010, China; Key Laboratory of Hot Zone Trauma Care and Tissue Repair of PLA, General Hospital of Guangzhou Military Command, Guangzhou, 510010, China
| | | | | | | | | | | |
Collapse
|
44
|
Ankaferd Blood Stopper induces apoptosis and regulates PAR1 and EPCR expression in human leukemia cells. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2015. [DOI: 10.1016/j.ejmhg.2014.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
45
|
Epple HJ, Schneider T, Zeitz M. Microbial Translocation and the Effects of HIV/SIV Infection on Mucosal Barrier Function. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00077-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Sedda S, Marafini I, Caruso R, Pallone F, Monteleone G. Proteinase activated-receptors-associated signaling in the control of gastric cancer. World J Gastroenterol 2014; 20:11977-11984. [PMID: 25232234 PMCID: PMC4161785 DOI: 10.3748/wjg.v20.i34.11977] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/10/2014] [Accepted: 05/05/2014] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is the fourth most common cancer in the world and the second cause of cancer-related death. Gastric carcinogenesis is a multifactorial process, in which environmental and genetic factors interact to activate multiple intracellular signals thus leading to uncontrolled growth and survival of GC cells. One such a pathway is regulated by proteinase activated-receptors (PARs), seven transmembrane-spanning domain G protein-coupled receptors, which comprise four receptors (i.e., PAR-1, PAR-2, PAR-3, and PAR-4) activated by various proteases. Both PAR-1 and PAR-2 are over-expressed on GC cells and their activation triggers and/or amplifies intracellular pathways, which sustain gastric carcinogenesis. There is also evidence that expression of either PAR-1 or PAR-2 correlates with depth of wall invasion and metastatic dissemination and inversely with the overall survival of patients. Consistently, data emerging from experimental models of GC suggest that both these receptors can be important targets for therapeutic interventions in GC patients. In contrast, PAR-4 levels are down-regulated in GC and correlate inversely with the aggressiveness of GC, thus suggesting a negative role of this receptor in the control of GC. In this article we review the available data on the expression and role of PARs in GC and discuss whether manipulation of PAR-driven signals may be useful for interfering with GC cell behavior.
Collapse
|
47
|
Atanelishvili I, Liang J, Akter T, Spyropoulos DD, Silver RM, Bogatkevich GS. Thrombin increases lung fibroblast survival while promoting alveolar epithelial cell apoptosis via the endoplasmic reticulum stress marker, CCAAT enhancer-binding homologous protein. Am J Respir Cell Mol Biol 2014; 50:893-902. [PMID: 24279877 DOI: 10.1165/rcmb.2013-0317oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Apoptosis of alveolar epithelial cells (AECs) and survival of lung fibroblasts are critical events in the pathogenesis of pulmonary fibrosis; however, mechanisms underlying the apoptosis of AECs and the resistance of lung fibroblasts to apoptosis remain obscure. Herein, we demonstrate that the fate of these two cell types depends on the expression of CCAAT enhancer-binding homologous protein (CHOP). We observed that thrombin, which is overexpressed in scleroderma (SSc; systemic sclerosis) and other interstitial lung diseases (ILDs), increases the expression of CHOP in primary AECs and in A549 cells via an Ets1-dependent pathway. In addition, thrombin activates caspase-3 in AECs and induces apoptosis of these cells in a CHOP-dependent manner. In contrast, thrombin decreases endoplasmic reticulum stress-induced CHOP in lung fibroblasts through Myc-dependent mechanisms and protects such cells from apoptosis. Furthermore, when lung fibroblasts are transfected with recombinant CHOP, they then undergo apoptosis, even in the presence of thrombin, suggesting that CHOP signaling pathways are downstream of thrombin. In accordance with the differential effects of thrombin on AECs and lung fibroblasts, we observed strong expression of CHOP in AECs in fibrotic lung tissue isolated from patients with SSc-associated ILD (SSc-ILD), but not in lung myofibroblasts nor in normal lung tissue. Expression of CHOP in SSc lung is accompanied by positive staining for the thrombin receptor, protease-activated receptor-1, and for terminal deoxynucleotidyl transferase dUTP nick end labeling, suggesting roles for both thrombin and CHOP in AEC apoptosis in SSc-ILD. We conclude that regulation of CHOP by thrombin directs AECs toward apoptosis while promoting survival of lung fibroblasts, ultimately contributing to the persistent fibroproliferation seen in SSc-ILD and other fibrosing lung diseases.
Collapse
|
48
|
Zhu W, Bi M, Liu Y, Wang Y, Pan F, Qiu L, Guo A, Lv H, Yao P, Zhang N, Wang P. Thrombin promotes airway remodeling via protease-activated receptor-1 and transforming growth factor-β1 in ovalbumin-allergic rats. Inhal Toxicol 2014; 25:577-86. [PMID: 23937416 DOI: 10.3109/08958378.2013.813995] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Protease-activated receptor-1 (PAR-1) is widely distributed in platelets and involved in coagulation cascade activated by thrombin. In this study, we intend to explore the role of PAR-1 in the process of thrombin-inducing transforming growth factor-β1 (TGF-β1) to promote airway remodeling in ovalbumin (OVA)-allergic rats. MATERIALS AND METHODS A rat model of chronic asthma was set up by systemic sensitization and repeated challenge to OVA. The doses of thrombin, recombinant hirudin, PAR-1 inhibitor ER-112780-06 varied for different groups. We evaluated the bronchoalveolar lavage fluid (BALF) concentration of thrombin in these groups. The protein and gene expression of PAR-1 was assessed and the expression of TGF-β1 was also detected. RESULTS The PAR-1 mRNA level and the protein level were higher in the airway of asthmatic rats than those of normal rats, and were significantly increased by thrombin treatment but decreased by thrombin-inhibitor treatment. Airway remodeling was strengthened by thrombin but weakened by thrombin inhibitor and PAR-1 antagonist. Expression of TGF-β1 protein in asthmatic rats was significantly increased by thrombin treatment and decreased by thrombin-inhibitor treatment and PAR-1 antagonist treatment. CONCLUSION The expression of PAR-1 is regulated by thrombin that induces the expression of TGF-β1 to promote airway remodeling via PAR-1 in OVA-allergic rats.
Collapse
Affiliation(s)
- Weiwei Zhu
- Department of Pediatrics, Jinan Central Hospital Affiliated to Shandong Univeristy, Jinan, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Carroll IM, Maharshak N. Enteric bacterial proteases in inflammatory bowel disease- pathophysiology and clinical implications. World J Gastroenterol 2013; 19:7531-7543. [PMID: 24431894 PMCID: PMC3837251 DOI: 10.3748/wjg.v19.i43.7531] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/05/2013] [Accepted: 11/05/2013] [Indexed: 02/06/2023] Open
Abstract
Numerous reports have identified a dysbiosis in the intestinal microbiota in patients suffering from inflammatory bowel diseases (IBD), yet the mechanism(s) in which this complex microbial community initiates or perpetuates inflammation remains unclear. The purpose of this review is to present evidence for one such mechanism that implicates enteric microbial derived proteases in the pathogenesis of IBD. We highlight and discuss studies demonstrating that proteases and protease receptors are abundant in the digestive system. Additionally, we investigate studies demonstrating an association between increased luminal protease activity and activation of protease receptors, ultimately resulting in increased intestinal permeability and exacerbation of colitis in animal models as well as in human IBD. Proteases are essential for the normal functioning of bacteria and in some cases can serve as virulence factors for pathogenic bacteria. Although not classified as traditional virulence factors, proteases originating from commensal enteric bacteria also have a potential association with intestinal inflammation via increased enteric permeability. Reports of increased protease activity in stools from IBD patients support a possible mechanism for a dysbiotic enteric microbiota in IBD. A better understanding of these pathways and characterization of the enteric bacteria involved, their proteases, and protease receptors may pave the way for new therapeutic approaches for these diseases.
Collapse
|
50
|
Aerts L, Hamelin MÈ, Rhéaume C, Lavigne S, Couture C, Kim W, Susan-Resiga D, Prat A, Seidah NG, Vergnolle N, Riteau B, Boivin G. Modulation of protease activated receptor 1 influences human metapneumovirus disease severity in a mouse model. PLoS One 2013; 8:e72529. [PMID: 24015257 PMCID: PMC3755973 DOI: 10.1371/journal.pone.0072529] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/10/2013] [Indexed: 11/19/2022] Open
Abstract
Human metapneumovirus (hMPV) infection causes acute respiratory tract infections (RTI) which can result in hospitalization of both children and adults. To date, no antiviral or vaccine is available for this common viral infection. Immunomodulators could represent an interesting strategy for the treatment of severe viral infection. Recently, the role of protease-activated receptors (PAR) in inflammation, coagulation and infection processes has been of growing interest. Herein, the effects of a PAR1 agonist and a PAR1 antagonist on hMPV infection were investigated in BALB/c mice. Intranasal administration of the PAR1 agonist resulted in increased weight loss and mortality of infected mice. Conversely, the PAR1 antagonist was beneficial to hMPV infection by decreasing weight loss and clinical signs and by significantly reducing pulmonary inflammation, pro-inflammatory cytokine levels (including IL-6, KC and MCP-1) and recruitment of immune cells to the lungs. In addition, a significant reduction in pulmonary viral titers was also observed in the lungs of PAR1 antagonist-treated mice. Despite no apparent direct effect on virus replication during in vitro experiments, an important role for PAR1 in the regulation of furin expression in the lungs was shown for the first time. Further experiments indicated that the hMPV fusion protein can be cleaved by furin thus suggesting that PAR1 could have an effect on viral infectivity in addition to its immunomodulatory properties. Thus, inhibition of PAR1 by selected antagonists could represent an interesting strategy for decreasing the severity of paramyxovirus infections.
Collapse
Affiliation(s)
- Laetitia Aerts
- Centre de Recherche en Infectiologie du Centre Hospitalier Universitaire de Québec and Université Laval, Quebec, Canada
| | - Marie-Ève Hamelin
- Centre de Recherche en Infectiologie du Centre Hospitalier Universitaire de Québec and Université Laval, Quebec, Canada
| | - Chantal Rhéaume
- Centre de Recherche en Infectiologie du Centre Hospitalier Universitaire de Québec and Université Laval, Quebec, Canada
| | - Sophie Lavigne
- Department of Anatomo-pathology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - Christian Couture
- Department of Anatomo-pathology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - WooJin Kim
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Canada
| | - Delia Susan-Resiga
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Canada
| | - Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Canada
| | - Nathalie Vergnolle
- Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France
- Department of Physiology and Pharmacology, University of Calgary, Alberta, Canada
| | - Beatrice Riteau
- Virologie et Pathologie Humaine, Université Lyon, Faculté de Médecine RTH Laennec, Lyon, France
- Centre de Tours-Nouzilly Institut National de la Recherche Agronomique, Nouzilly, France
| | - Guy Boivin
- Centre de Recherche en Infectiologie du Centre Hospitalier Universitaire de Québec and Université Laval, Quebec, Canada
| |
Collapse
|