1
|
Morrison JI, Metzendorf NG, Liu J, Hultqvist G. Serotransferrin enhances transferrin receptor-mediated brain uptake of antibodies. Drug Deliv Transl Res 2025:10.1007/s13346-025-01811-1. [PMID: 39971861 DOI: 10.1007/s13346-025-01811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 02/21/2025]
Abstract
The propensity of antibody-based therapies to systemically enter the brain interstitium and ameliorate pathology associated with numerous neurological maladies is precluded by the presence of the blood-brain barrier (BBB). Through distinct mechanisms, the BBB has evolved to regulate transport of essential ions, minerals, certain peptides and cells between the blood and the brain, but very restrictive otherwise. Hijacking receptor-mediated transport pathways of the BBB has proved fruitful in developing "Trojan Horse" therapeutic approaches to deliver antibody-based therapies to the brain milieu. The transferrin receptor (TfR)-mediated transcytosis pathway (RMT) is one such example where large recombinant molecules have been designed to bind to the TfR, which in turn activates the RMT pathway, resulting in delivery across the BBB into the brain milieu. Based on these findings, we here investigated whether the addition of serotransferrin could trigger the endogenous TfR-mediated RMT pathway and hence be used to enhance the uptake of TfR binding antibodies. By using an in vitro model of a mouse BBB we could test whether co-administration of mouse serotransferrin with mouse and human-based monoclonal antibodies enhanced brain uptake. In all cases tested, no matter if the monoclonal antibodies were designed to bind the TfR in a monovalent, partially monovalent/bivalent or entirely bivalent fashion, with high or low affinity or avidity, the addition of mouse serotransferrin significantly improved transport across the artificial BBB. This was also true for TfR binding antibodies that on their own passes the BBB poorly. These results were subsequently confirmed using a human in vitro BBB model, along with human serotransferrin and human TfR-binding antibody. To corroborate the in vitro results further, we conducted two pilot in vivo brain uptake study in wildtype mice, by intravenously co-administering a monoclonal TfR-binding antibody in the presence or absence of mouse serotransferrin as a proof-of-concept. In a similar outcome to the in vitro studies, we observed a significant almost two-fold increase in uptake of two different TfR binding antibodies in the brain when it was co-administered with mouse serotransferrin. These findings show for the first time that serotransferrin supplementation can significantly improve the ability of TfR-binding antibodies to traverse the BBB, which provides a realistic therapeutic opportunity for improving the delivery of therapeutic antibodies to the brain.
Collapse
Affiliation(s)
| | | | - Jielu Liu
- Institutionen För Farmaci, Uppsala Universitet, Uppsala, Sweden
| | - Greta Hultqvist
- Institutionen För Farmaci, Uppsala Universitet, Uppsala, Sweden.
| |
Collapse
|
2
|
Fernández-Quintero ML, Ljungars A, Waibl F, Greiff V, Andersen JT, Gjølberg TT, Jenkins TP, Voldborg BG, Grav LM, Kumar S, Georges G, Kettenberger H, Liedl KR, Tessier PM, McCafferty J, Laustsen AH. Assessing developability early in the discovery process for novel biologics. MAbs 2023; 15:2171248. [PMID: 36823021 PMCID: PMC9980699 DOI: 10.1080/19420862.2023.2171248] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/18/2023] [Indexed: 02/25/2023] Open
Abstract
Beyond potency, a good developability profile is a key attribute of a biological drug. Selecting and screening for such attributes early in the drug development process can save resources and avoid costly late-stage failures. Here, we review some of the most important developability properties that can be assessed early on for biologics. These include the influence of the source of the biologic, its biophysical and pharmacokinetic properties, and how well it can be expressed recombinantly. We furthermore present in silico, in vitro, and in vivo methods and techniques that can be exploited at different stages of the discovery process to identify molecules with liabilities and thereby facilitate the selection of the most optimal drug leads. Finally, we reflect on the most relevant developability parameters for injectable versus orally delivered biologics and provide an outlook toward what general trends are expected to rise in the development of biologics.
Collapse
Affiliation(s)
- Monica L. Fernández-Quintero
- Center for Molecular Biosciences Innsbruck (CMBI), Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Franz Waibl
- Center for Molecular Biosciences Innsbruck (CMBI), Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Victor Greiff
- Department of Immunology, University of Oslo, Oslo, Norway
| | - Jan Terje Andersen
- Department of Immunology, University of Oslo, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo, Oslo, Norway
| | | | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Bjørn Gunnar Voldborg
- National Biologics Facility, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lise Marie Grav
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sandeep Kumar
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Guy Georges
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Hubert Kettenberger
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Klaus R. Liedl
- Center for Molecular Biosciences Innsbruck (CMBI), Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Peter M. Tessier
- Department of Chemical Engineering, Pharmaceutical Sciences and Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - John McCafferty
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- Maxion Therapeutics, Babraham Research Campus, Cambridge, UK
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
3
|
Müller T, Tasser C, Tesar M, Fucek I, Schniegler-Mattox U, Koch J, Ellwanger K. Selection of bispecific antibodies with optimal developability using FcRn‑Ph‑HPLC as an optimized FcRn affinity chromatography method. MAbs 2023; 15:2245519. [PMID: 37599441 PMCID: PMC10443974 DOI: 10.1080/19420862.2023.2245519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
A challenge when developing therapeutic antibodies is the identification of candidates with favorable pharmacokinetics (PK) early in development. A key determinant of immunoglobulin (IgG) serum half‑life in vivo is the efficiency of pH-dependent binding to the neonatal Fc receptor (FcRn). Numerous studies have proposed techniques to assess FcRn binding of IgG-based therapeutics in vitro, enabling prediction of serum half-life prior to clinical assessment. FcRn high-performance liquid chromatography (HPLC) assays FcRn binding of therapeutic IgGs across a pH gradient, allowing the correlation of IgG column retention time to the half‑life of a therapeutic IgG in vivo. However, as FcRn retention time cannot be directly compared to an in vivo parameter, modifications to FcRn-HPLC are required to enable interpretation of the data within a physiological context, to provide more accurate estimations of serum half-life. This study presents an important modification to this method, FcRn-pH-HPLC, which reproducibly measures FcRn dissociation pH, allowing correlation with previously established half-lives of therapeutic antibodies. Furthermore, the influence of incorporating various antibody modifications, binding modules, and their orientations within IgGs and bispecifics on FcRn dissociation pH was evaluated using antibodies from the redirected optimized cell killing (ROCK®) platform. Target and effector antigen-binding domain sequences, their presentation format and orientation within a bispecific antibody alter FcRn retention; tested Fc domain modifications and incorporating stabilizing disulfide bonds had minimal effect. This study may inform the generation of mono-, bi- and multi-specific antibodies with tailored half-lives based on FcRn binding properties in vitro, to differentiate antibody-based therapeutic candidates with optimal developability.
Collapse
Affiliation(s)
- Thomas Müller
- Discovery Research and Translational Immunology, Affimed GmbH, Heidelberg, Germany
| | - Carolin Tasser
- Discovery Research and Translational Immunology, Affimed GmbH, Heidelberg, Germany
| | - Michael Tesar
- Discovery Research and Translational Immunology, Affimed GmbH, Heidelberg, Germany
| | - Ivica Fucek
- Discovery Research and Translational Immunology, Affimed GmbH, Heidelberg, Germany
| | | | - Joachim Koch
- Discovery Research and Translational Immunology, Affimed GmbH, Heidelberg, Germany
| | - Kristina Ellwanger
- Discovery Research and Translational Immunology, Affimed GmbH, Heidelberg, Germany
| |
Collapse
|
4
|
Dolatshahi S, Butler AL, Pou C, Henckel E, Bernhardsson AK, Gustafsson A, Bohlin K, Shin SA, Lauffenburger DA, Brodin P, Alter G. Selective transfer of maternal antibodies in preterm and fullterm children. Sci Rep 2022; 12:14937. [PMID: 36056073 PMCID: PMC9440225 DOI: 10.1038/s41598-022-18973-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 08/23/2022] [Indexed: 01/11/2023] Open
Abstract
Preterm newborns are more likely to suffer from infectious diseases at birth compared to children delivered at term. Whether this is due to compromised cellular, humoral, or organ-specific development remains unclear. To begin to define whether maternal-fetal antibody transfer profiles differ across preterm (PT) and fullterm (FT) infants, the overall quantity and functional quality of an array of 24 vaccine-, endemic pathogen-, and common antigen-specific antibodies were assessed across a cohort of 11 PT and 12 term-delivered maternal:infant pairs from birth through week 12. While total IgG levels to influenza, pneumo, measles, rubella, EBV, and RSV were higher in FT newborns, selective Fc-receptor binding antibodies was noted in PT newborns. In fact, near equivalent antibody-effector functions were observed across PT and FT infants, despite significant quantitative differences in transferred antibody levels. Moreover, temporal transfer analysis revealed the selective early transfer of FcRn, FcγR2, and FcγR3 binding antibodies, pointing to differential placental sieving mechanisms across gestation. These data point to selectivity in placental transfer at distinct gestational ages, to ensure that children are endowed with the most robust humoral immunity even if born preterm.
Collapse
Affiliation(s)
- Sepideh Dolatshahi
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Biomedical Engineering Department, University of Virginia, Charlottesville, VA, USA
| | | | - Christian Pou
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Ewa Henckel
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
| | - Anna Karin Bernhardsson
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
| | - Anna Gustafsson
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
| | - Kajsa Bohlin
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
| | - Sally A Shin
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering and Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Petter Brodin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
- Karolinska University Hospital, Stockholm, Sweden.
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
5
|
Pyzik M, Sand KMK, Hubbard JJ, Andersen JT, Sandlie I, Blumberg RS. The Neonatal Fc Receptor (FcRn): A Misnomer? Front Immunol 2019; 10:1540. [PMID: 31354709 PMCID: PMC6636548 DOI: 10.3389/fimmu.2019.01540] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022] Open
Abstract
Antibodies are essential components of an adaptive immune response. Immunoglobulin G (IgG) is the most common type of antibody found in circulation and extracellular fluids. Although IgG alone can directly protect the body from infection through the activities of its antigen binding region, the majority of IgG immune functions are mediated via proteins and receptors expressed by specialized cell subsets that bind to the fragment crystallizable (Fc) region of IgG. Fc gamma (γ) receptors (FcγR) belong to a broad family of proteins that presently include classical membrane-bound surface receptors as well as atypical intracellular receptors and cytoplasmic glycoproteins. Among the atypical FcγRs, the neonatal Fc receptor (FcRn) has increasingly gained notoriety given its intimate influence on IgG biology and its ability to also bind to albumin. FcRn functions as a recycling or transcytosis receptor that is responsible for maintaining IgG and albumin in the circulation, and bidirectionally transporting these two ligands across polarized cellular barriers. More recently, it has been appreciated that FcRn acts as an immune receptor by interacting with and facilitating antigen presentation of peptides derived from IgG immune complexes (IC). Here we review FcRn biology and focus on newer advances including how emerging FcRn-targeted therapies may affect the immune responses to IgG and IgG IC.
Collapse
Affiliation(s)
- Michal Pyzik
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Kine M K Sand
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jonathan J Hubbard
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Jan Terje Andersen
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Inger Sandlie
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Harvard Digestive Diseases Center, Boston, MA, United States
| |
Collapse
|
6
|
Evans AR, Capaldi MT, Goparaju G, Colter D, Shi FF, Aubert S, Li LC, Mo J, Lewis MJ, Hu P, Alfonso P, Mehndiratta P. Using bispecific antibodies in forced degradation studies to analyze the structure-function relationships of symmetrically and asymmetrically modified antibodies. MAbs 2019; 11:1101-1112. [PMID: 31161859 PMCID: PMC6748611 DOI: 10.1080/19420862.2019.1618675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Forced degradation experiments of monoclonal antibodies (mAbs) aid in the identification of critical quality attributes (CQAs) by studying the impact of post-translational modifications (PTMs), such as oxidation, deamidation, glycation, and isomerization, on biological functions. Structure-function characterization of mAbs can be used to identify the PTM CQAs and develop appropriate analytical and process controls. However, the interpretation of forced degradation results can be complicated because samples may contain mixtures of asymmetrically and symmetrically modified mAbs with one or two modified chains. We present a process to selectively create symmetrically and asymmetrically modified antibodies for structure-function characterization using the bispecific DuoBody® platform. Parental molecules mAb1 and mAb2 were first stressed with peracetic acid to induce methionine oxidation. Bispecific antibodies were then prepared from a mixture of oxidized or unoxidized parental mAbs by a controlled Fab-arm exchange process. This process was used to systematically prepare four bispecific mAb products: symmetrically unoxidized, symmetrically oxidized, and both combinations of asymmetrically oxidized bispecific mAbs. Results of this study demonstrated chain-independent, 1:2 stoichiometric binding of the mAb Fc region to both FcRn receptor and to Protein A. The approach was also applied to create asymmetrically deamidated mAbs at the asparagine 330 residue. Results of this study support the proposed 1:1 stoichiometric binding relationship between the FcγRIIIa receptor and the mAb Fc. This approach should be generally applicable to study the potential impact of any modification on biological function.
Collapse
Affiliation(s)
- Adam R Evans
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Michael T Capaldi
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Geetha Goparaju
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - David Colter
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Frank F Shi
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Sarah Aubert
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Lian-Chao Li
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Jingjie Mo
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Michael J Lewis
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Ping Hu
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Pedro Alfonso
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Promod Mehndiratta
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA.,b Analytical Development, Biologics Research and Development, Celgene Corporation , Summit , NJ , USA
| |
Collapse
|
7
|
Stapleton NM, Brinkhaus M, Armour KL, Bentlage AEH, de Taeye SW, Temming AR, Mok JY, Brasser G, Maas M, van Esch WJE, Clark MR, Williamson LM, van der Schoot CE, Vidarsson G. Reduced FcRn-mediated transcytosis of IgG2 due to a missing Glycine in its lower hinge. Sci Rep 2019; 9:7363. [PMID: 31089170 PMCID: PMC6517591 DOI: 10.1038/s41598-019-40731-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 02/19/2019] [Indexed: 11/09/2022] Open
Abstract
Neonatal Fc-receptor (FcRn), the major histocompatibility complex (MHC) class I-like Fc-receptor, transports immunoglobuline G (IgG) across cell layers, extending IgG half-life in circulation and providing newborns with humoral immunity. IgG1 and IgG2 have similar half-lives, yet IgG2 displays lower foetal than maternal concentration at term, despite all known FcRn binding residues being preserved between IgG1 and IgG2. We investigated FcRn mediated transcytosis of VH-matched IgG1 and IgG2 and mutated variants thereof lacking Fc-gamma receptor (FcγR) binding in human cells expressing FcRn. We observed that FcγR binding was not required for transport and that FcRn transported less IgG2 than IgG1. Transport of IgG1 with a shortened lower hinge (ΔGly236, absent in germline IgG2), was reduced to levels equivalent to IgG2. Conversely, transport of IgG2 + Gly236 was increased to IgG1 levels. Gly236 is not a contact residue between IgG and FcRn, suggesting that its absence leads to an altered conformation of IgG, possibly due to a less flexible Fab, positioned closer to the Fc portion. This may sterically hinder FcRn binding and transport. We conclude that the lack of Gly236 is sufficient to explain the reduced FcRn-mediated IgG2 transcytosis and accounts for the low maternal/fetal IgG2 ratio at term.
Collapse
Affiliation(s)
- Nigel M Stapleton
- Sanquin Research, Department of Experimental Immunohematology, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands, Plesmanlaan 125, Amsterdam, 1066 CX, The Netherlands.,HALIX B.V., J.H. Oortweg 15/17, 2333 CH, Leiden, The Netherlands
| | - Maximilian Brinkhaus
- Sanquin Research, Department of Experimental Immunohematology, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands, Plesmanlaan 125, Amsterdam, 1066 CX, The Netherlands
| | - Kathryn L Armour
- Department of Pathology, Division of Immunology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.,Department of Haematology, University of Cambridge, Cambridge, UK.,LifeArc, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Arthur E H Bentlage
- Sanquin Research, Department of Experimental Immunohematology, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands, Plesmanlaan 125, Amsterdam, 1066 CX, The Netherlands
| | - Steven W de Taeye
- Sanquin Research, Department of Experimental Immunohematology, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands, Plesmanlaan 125, Amsterdam, 1066 CX, The Netherlands
| | - A Robin Temming
- Sanquin Research, Department of Experimental Immunohematology, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands, Plesmanlaan 125, Amsterdam, 1066 CX, The Netherlands
| | | | | | | | | | - Mike R Clark
- Department of Pathology, Division of Immunology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.,Clark Antibodies Ltd, 10 Wellington Street, Cambridge, CB1 1HW, UK
| | - Lorna M Williamson
- Department of Haematology, University of Cambridge, Cambridge, UK.,NHS Blood and Transplant, Long Road, Cambridge, CB2 2PT, UK
| | - C Ellen van der Schoot
- Sanquin Research, Department of Experimental Immunohematology, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands, Plesmanlaan 125, Amsterdam, 1066 CX, The Netherlands
| | - Gestur Vidarsson
- Sanquin Research, Department of Experimental Immunohematology, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands, Plesmanlaan 125, Amsterdam, 1066 CX, The Netherlands.
| |
Collapse
|
8
|
Wang X, McKay P, Yee LT, Dutina G, Hass PE, Nijem I, Allison D, Cowan KJ, Lin K, Quarmby V, Yang J. Impact of SPR biosensor assay configuration on antibody: Neonatal Fc receptor binding data. MAbs 2016; 9:319-332. [PMID: 28001487 DOI: 10.1080/19420862.2016.1261774] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Binding interactions with the neonatal Fc receptor (FcRn) are one determinant of pharmacokinetic properties of recombinant human monoclonal antibody (rhumAb) therapeutics, and a conserved binding motif in the crystallizable fragment (Fc) region of IgG molecules interacts with FcRn. Surface plasmon resonance (SPR) biosensor assays are often used to characterize interactions between FcRn and rhumAb therapeutics. In such assays, generally either the rhumAb (format 1) or the FcRn protein (format 2) is immobilized on a biosensor chip. However, because evidence suggests that, in some cases, the variable domains of a rhumAb may also affect FcRn binding, we evaluated the effect of SPR assay configuration on binding data. We sought to assess FcRn binding properties of 2 rhumAbs (rhumAb1 and rhumAb2) to FcRn proteins using these 2 biosensor assay formats. The two rhumAbs have greater than 99% sequence identity in the Fc domain but differ in their Fab regions. rhumAb2 contains a positively charged patch in the variable domain that is absent in rhumAb1. Our results showed that binding of rhumAb1 to FcRn was independent of biosensor assay configuration, while binding of rhumAb2 to FcRn was highly SPR assay configuration dependent. Further investigations revealed that the format dependency of rhumAb2-FcRn binding is linked to the basic residues that form a positively charged patch in the variable domain of rhumAb2. Our work highlights the importance of analyzing rhumAb-FcRn binding interactions using 2 alternate SPR biosensor assay configurations. This approach may also provide a simple way to identify the potential for non-Fc-driven FcRn binding interactions in otherwise typical IgGs.
Collapse
Affiliation(s)
- Xiangdan Wang
- a BioAnalytical Sciences, Genentech , South San Francisco , CA , USA
| | - Patrick McKay
- b Technical Development, Genentech , South San Francisco , CA , USA
| | - Liliana T Yee
- b Technical Development, Genentech , South San Francisco , CA , USA
| | - George Dutina
- c Department of Early Stage Cell Culture , Genentech , South San Francisco , CA , USA
| | - Philip E Hass
- d Protein Chemistry, Genentech , South San Francisco , CA , USA
| | - Ihsan Nijem
- a BioAnalytical Sciences, Genentech , South San Francisco , CA , USA
| | - David Allison
- e Clinical Pharmacology, Genentech , South San Francisco , CA , USA
| | - Kyra J Cowan
- a BioAnalytical Sciences, Genentech , South San Francisco , CA , USA
| | - Kevin Lin
- f Analytical Operations, Genentech , South San Francisco , CA , USA
| | - Valerie Quarmby
- a BioAnalytical Sciences, Genentech , South San Francisco , CA , USA
| | - Jihong Yang
- a BioAnalytical Sciences, Genentech , South San Francisco , CA , USA
| |
Collapse
|
9
|
Abdiche YN, Yeung YA, Chaparro-Riggers J, Barman I, Strop P, Chin SM, Pham A, Bolton G, McDonough D, Lindquist K, Pons J, Rajpal A. The neonatal Fc receptor (FcRn) binds independently to both sites of the IgG homodimer with identical affinity. MAbs 2015; 7:331-43. [PMID: 25658443 PMCID: PMC4622529 DOI: 10.1080/19420862.2015.1008353] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The neonatal Fc receptor (FcRn) is expressed by cells of epithelial, endothelial and myeloid lineages and performs multiple roles in adaptive immunity. Characterizing the FcRn/IgG interaction is fundamental to designing therapeutic antibodies because IgGs with moderately increased binding affinities for FcRn exhibit superior serum half-lives and efficacy. It has been hypothesized that 2 FcRn molecules bind an IgG homodimer with disparate affinities, yet their affinity constants are inconsistent across the literature. Using surface plasmon resonance biosensor assays that eliminated confounding experimental artifacts, we present data supporting an alternate hypothesis: 2 FcRn molecules saturate an IgG homodimer with identical affinities at independent sites, consistent with the symmetrical arrangement of the FcRn/Fc complex observed in the crystal structure published by Burmeister et al. in 1994. We find that human FcRn binds human IgG1 with an equilibrium dissociation constant (KD) of 760 ± 60 nM (N = 14) at 25°C and pH 5.8, and shows less than 25% variation across the other human subtypes. Human IgG1 binds cynomolgus monkey FcRn with a 2-fold higher affinity than human FcRn, and binds both mouse and rat FcRn with a 10-fold higher affinity than human FcRn. FcRn/IgG interactions from multiple species show less than a 2-fold weaker affinity at 37°C than at 25°C and appear independent of an IgG's variable region. Our in vivo data in mouse and rat models demonstrate that both affinity and avidity influence an IgG's serum half-life, which should be considered when choosing animals, especially transgenic systems, as surrogates.
Collapse
Key Words
- CFCA, calibration-free concentration analysis
- FcRn
- FcRn, neonatal Fc receptor
- IgG
- RU, response units
- Rmax, maximum binding response
- SPR
- SPR, surface plasmon resonance
- WT, wild-type
- anti-Id, anti-idiotypic
- cyFcRn, cynomolgus monkey FcRn
- cyIgG, cynomolgus monkey IgG
- hErbB2, human ErbB2
- hFcRn, human FcRn
- hIgG, human IgG
- label-free biosensor
- mAb, monoclonal antibody
- mFcRn, mouse FcRn
- neonatal Fc receptor
- pI, isoelectric point
- rFcRn, rat FcRn
- rIgG, rat IgG
Collapse
|
10
|
Davidoff SN, Ditto NT, Brooks AE, Eckman J, Brooks BD. Surface Plasmon Resonance for Therapeutic Antibody Characterization. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-1-4939-2617-6_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Schlothauer T, Rueger P, Stracke JO, Hertenberger H, Fingas F, Kling L, Emrich T, Drabner G, Seeber S, Auer J, Koch S, Papadimitriou A. Analytical FcRn affinity chromatography for functional characterization of monoclonal antibodies. MAbs 2013; 5:576-86. [PMID: 23765230 DOI: 10.4161/mabs.24981] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The neonatal Fc receptor (FcRn) is important for the metabolic fate of IgG antibodies in vivo. Analysis of the interaction between FcRn and IgG in vitro might provide insight into the structural and functional integrity of therapeutic IgG that may affect pharmacokinetics (PK) in vivo. We developed a standardized pH gradient FcRn affinity liquid chromatography method with conditions closely resembling the physiological mechanism of interaction between IgG and FcRn. This method allows the separation of molecular IgG isoforms, degradation products and engineered molecules based on their affinity to FcRn. Human FcRn was immobilized on the column and a linear pH gradient from pH 5.5 to 8.8 was applied. FcRn chromatography was used in comparison to surface plasmon resonance to characterize different monoclonal IgG preparations, e.g., oxidized or aggregated species. Wild-type and engineered IgGs were compared in vitro by FcRn chromatography and in vivo by PK studies in huFcRn transgenic mice. Analytical FcRn chromatography allows differentiation of IgG samples and variants by peak pattern and retention time profile. The method can distinguish: 1) IgGs with different Fabs, 2) oxidized from native IgG, 3) aggregates from monomer and 4) antibodies with mutations in the Fc part from wild-type IgGs. Changes in the FcRn chromatographic behavior of mutant IgGs relative to the wild-type IgG correlate to changes in the PK profile in the FcRn transgenic mice. These results demonstrate that FcRn affinity chromatography is a useful new method for the assessment of IgG integrity.
Collapse
Affiliation(s)
- Tilman Schlothauer
- Department of Protein Analytics, Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wilkinson IC, Fowler SB, Machiesky L, Miller K, Hayes DB, Adib M, Her C, Borrok MJ, Tsui P, Burrell M, Corkill DJ, Witt S, Lowe DC, Webster CI. Monovalent IgG4 molecules: immunoglobulin Fc mutations that result in a monomeric structure. MAbs 2013; 5:406-17. [PMID: 23567207 DOI: 10.4161/mabs.23941] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Antibodies have become the fastest growing class of biological therapeutics, in part due to their exquisite specificity and ability to modulate protein-protein interactions with a high biological potency. The relatively large size and bivalency of antibodies, however, limits their use as therapeutics in certain circumstances. Antibody fragments, such as single-chain variable fragments and antigen binding-fragments, have emerged as viable alternatives, but without further modifications these monovalent formats have reduced terminal serum half-lives because of their small size and lack of an Fc domain, which is required for FcRn-mediated recycling. Using rational engineering of the IgG4 Fc domain to disrupt key interactions at the CH3-CH3 interface, we identified a number of point mutations that abolish Fc dimerization and created half-antibodies, a novel monovalent antibody format that retains a monomeric Fc domain. Introduction of these mutations into an IgG1 framework also led to the creation of half-antibodies. These half-antibodies were shown to be soluble, thermodynamically stable and monomeric, characteristics that are favorable for use as therapeutic proteins. Despite significantly reduced FcRn binding in vitro, which suggests that avidity gains in a dimeric Fc are critical to optimal FcRn binding, this format demonstrated an increased terminal serum half-life compared with that expected for most alternative antibody fragments.
Collapse
Affiliation(s)
- Ian C Wilkinson
- MedImmune Ltd.; Department of Antibody Discovery and Protein Engineering; Cambridge, UK
| | - Susan B Fowler
- MedImmune Ltd.; Department of Antibody Discovery and Protein Engineering; Cambridge, UK
| | - Leeann Machiesky
- MedImmune LLC.; Departments of Antibody Discovery and Protein Engineering and Analytical Biochemistry; Gaithersburg, MD USA
| | - Kenneth Miller
- MedImmune LLC.; Departments of Antibody Discovery and Protein Engineering and Analytical Biochemistry; Gaithersburg, MD USA
| | - David B Hayes
- MedImmune LLC.; Departments of Antibody Discovery and Protein Engineering and Analytical Biochemistry; Gaithersburg, MD USA
| | - Morshed Adib
- MedImmune LLC.; Departments of Antibody Discovery and Protein Engineering and Analytical Biochemistry; Gaithersburg, MD USA
| | - Cheng Her
- MedImmune LLC.; Departments of Antibody Discovery and Protein Engineering and Analytical Biochemistry; Gaithersburg, MD USA
| | - M Jack Borrok
- MedImmune LLC.; Departments of Antibody Discovery and Protein Engineering and Analytical Biochemistry; Gaithersburg, MD USA
| | - Ping Tsui
- MedImmune LLC.; Departments of Antibody Discovery and Protein Engineering and Analytical Biochemistry; Gaithersburg, MD USA
| | - Matthew Burrell
- MedImmune Ltd.; Department of Antibody Discovery and Protein Engineering; Cambridge, UK
| | - Dominic J Corkill
- MedImmune Ltd.; Department of Antibody Discovery and Protein Engineering; Cambridge, UK
| | - Susanne Witt
- MedImmune Ltd.; Department of Antibody Discovery and Protein Engineering; Cambridge, UK
| | - David C Lowe
- MedImmune Ltd.; Department of Antibody Discovery and Protein Engineering; Cambridge, UK
| | - Carl I Webster
- MedImmune Ltd.; Department of Antibody Discovery and Protein Engineering; Cambridge, UK
| |
Collapse
|
13
|
STAGSTED JAN. Journey beyond immunology. Regulation of receptor internalization by major histocompatibility complex class I (MHC-I) and effect of peptides derived from MHC-I. APMIS 2011. [DOI: 10.1111/j.1600-0463.1998.tb05657.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
14
|
Wang W, Lu P, Fang Y, Hamuro L, Pittman T, Carr B, Hochman J, Prueksaritanont T. Monoclonal antibodies with identical Fc sequences can bind to FcRn differentially with pharmacokinetic consequences. Drug Metab Dispos 2011; 39:1469-77. [PMID: 21610128 DOI: 10.1124/dmd.111.039453] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neonatal Fc receptor (FcRn) is a key determinant of IgG homeostasis. It binds to the Fc domain of IgG in a strictly pH-dependent manner and protects IgG from lysosomal degradation. The impact of FcRn salvage pathway on IgG monoclonal antibody (mAb) pharmacokinetics (PK) has been well established. In this report, a set of mAbs with wild-type human Fc sequences but different Fab domains were used to examine the potential impact of Fab domain on in vitro FcRn binding and in vivo PK. We were surprised to find that mAbs with the same wild-type human Fc sequences but different Fab domains were shown to bind FcRn with considerable differences in both the binding at acidic pH and the dissociation at neutral pH, suggesting that the Fab domain may also have an impact on FcRn interaction. For these mAbs, no relationship between the FcRn binding affinity at acidic pH and in vivo PK was found. Instead, an apparent correlation between the in vitro FcRn dissociation at neutral pH and the in vivo PK in human FcRn mice, nonhuman primates and humans was observed. Our results suggested that the Fab domain of mAbs can affect their interaction with FcRn and thus their pharmacokinetic properties and that in vitro FcRn binding/dissociation assays can be a useful screening tool for pharmacokinetic assessment of mAbs with wild-type Fc sequences.
Collapse
Affiliation(s)
- Weirong Wang
- Department of Drug Metabolism and Pharmacokinetics, Merck Sharp and Dohme Corp., West Point, PA 19486, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Wang W, Vlasak J, Li Y, Pristatsky P, Fang Y, Pittman T, Roman J, Wang Y, Prueksaritanont T, Ionescu R. Impact of methionine oxidation in human IgG1 Fc on serum half-life of monoclonal antibodies. Mol Immunol 2011; 48:860-6. [PMID: 21256596 DOI: 10.1016/j.molimm.2010.12.009] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/10/2010] [Accepted: 12/11/2010] [Indexed: 10/18/2022]
Abstract
IgG monoclonal antibodies (mAbs) consist of two Fab fragments and one Fc fragment. The Fab fragments contain the variable regions and are responsible for drug specificity (via antigen binding); the Fc fragment contains constant regions and is responsible for effector functions (via interactions with Fcγ receptors) and extended serum half-life (via interaction with the neonatal Fc receptor, FcRn). There are two conserved methionine (Met) residues located in the FcRn binding site of the Fc fragment. It has been shown previously that oxidation of these two Met residues decreases the binding affinity to FcRn. We have further evaluated the impact of Met oxidation on serum half-lives of two humanized IgG1 mAbs in transgenic mice with human FcRn. Variable oxidation levels were obtained by several procedures: exposure to an oxidizing agent, accumulation during extended refrigerated storage, or chromatographic separation. Our results show that Met oxidation can result in a significant reduction of the serum circulation half-life and the magnitude of the change correlates well with the extent of Met oxidation and changes in FcRn binding affinities. The relatively low levels of Met oxidation accumulated during 3 years of refrigerated storage had minimal impact on FcRn binding and no detectable impact on the serum half-life.
Collapse
Affiliation(s)
- Weirong Wang
- Preclinical DMPK Department, Merck Research Laboratories, Merck Sharp and Dohme Corp., West Point, PA 19486, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
He Y, Jensen GJ, Bjorkman PJ. Nanogold as a specific marker for electron cryotomography. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2009; 15:183-8. [PMID: 19460172 PMCID: PMC2785728 DOI: 10.1017/s1431927609090424] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
While electron cryotomography (ECT) provides "molecular" resolution, three-dimensional images of unique biological specimens, sample crowdedness, and/or resolution limitations can make it difficult to identify specific macromolecular components. Here we used a 1.4 nm Nanogold cluster specifically attached to the Fc fragment of IgG to monitor its interaction with the neonatal Fc receptor (FcRn), a membrane-bound receptor that transports IgG across cells in acidic intracellular vesicles. ECT was used to image complexes formed by Nanogold-labeled Fc bound to FcRn attached to the outer surface of synthetic liposomes. In the resulting three-dimensional reconstructions, 1.4 nm Nanogold particles were distributed predominantly along the interfaces where 2:1 FcRn-Fc complexes bridged adjacent lipid bilayers. These results demonstrate that the 1.4 nm Nanogold cluster is visible in tomograms of typically thick samples (approximately 250 nm) recorded with defocuses appropriate for large macromolecules and is thus an effective marker.
Collapse
Affiliation(s)
- Yongning He
- Division of Biology, California Institute of Technology, 114-96, 1200 East California Blvd., Pasadena, CA 91125
| | - Grant J. Jensen
- Division of Biology, California Institute of Technology, 114-96, 1200 East California Blvd., Pasadena, CA 91125
- Howard Hughes Medical Institute, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125
| | - Pamela J. Bjorkman
- Division of Biology, California Institute of Technology, 114-96, 1200 East California Blvd., Pasadena, CA 91125
- Howard Hughes Medical Institute, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125
| |
Collapse
|
17
|
Leclerc E, Fritz G, Vetter SW, Heizmann CW. Binding of S100 proteins to RAGE: an update. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:993-1007. [PMID: 19121341 DOI: 10.1016/j.bbamcr.2008.11.016] [Citation(s) in RCA: 387] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 11/24/2008] [Accepted: 11/28/2008] [Indexed: 12/21/2022]
Abstract
The Receptor for Advanced Glycation Endproducts (RAGE) is a multi-ligand receptor of the immunoglobulin family. RAGE interacts with structurally different ligands probably through the oligomerization of the receptor on the cell surface. However, the exact mechanism is unknown. Among RAGE ligands are members of the S100 protein family. S100 proteins are small calcium binding proteins with high structural homology. Several members of the family have been shown to interact with RAGE in vitro or in cell-based assays. Interestingly, many RAGE ligands appear to interact with distinct domains of the extracellular portion of RAGE and to trigger various cellular effects. In this review, we summarize the modes of S100 protein-RAGE interaction with regard to their cellular functions.
Collapse
Affiliation(s)
- Estelle Leclerc
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, Fl 33431, USA
| | | | | | | |
Collapse
|
18
|
Gurbaxani BM, Morrison SL. Development of new models for the analysis of Fc–FcRn interactions. Mol Immunol 2006; 43:1379-89. [PMID: 16183124 DOI: 10.1016/j.molimm.2005.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Accepted: 08/23/2005] [Indexed: 11/29/2022]
Abstract
An important question remains as to which FcRn binding parameters, if any, correlate with the serum half-life of antibodies. In the present study, we used a BIACore surface plasmon resonance (SPR) device to study kinetic properties of antibody binding to FcRn at different pHs and under different binding reaction conditions. The ability of many different models to fit the data was tested. The previous models could not adequately explain all of the data collected. We now present models that have intuitive appeal and fit a broader range of data than previous models. Specifically, the model assumes that there are two forms of FcRn on the BIAcore chip and that, in addition to monomeric IgG, there is some aggregated IgG that can function as ligand. Although this model represents an improvement over previous models, it is still not globally valid for the entire range of data that was collected. Even with these limitations, the model provides a powerful new tool to analyze not only FcRn-IgG interactions but also other complex protein-protein interactions.
Collapse
Affiliation(s)
- Brian Mohan Gurbaxani
- Department of Microbiology, Immunology and Molecular Genetics and The Molecular Biology Institute, University of California, Los Angeles, CA 90049, USA.
| | | |
Collapse
|
19
|
Sakagami M, Omidi Y, Campbell L, Kandalaft LE, Morris CJ, Barar J, Gumbleton M. Expression and Transport Functionality of FcRn within Rat Alveolar Epithelium: A Study in Primary Cell Culture and in the Isolated Perfused Lung. Pharm Res 2006; 23:270-9. [PMID: 16382279 DOI: 10.1007/s11095-005-9226-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 10/21/2005] [Indexed: 11/26/2022]
Abstract
PURPOSE The neonatal constant region fragment receptor (FcRn) binds and transports IgG. FcRn expression in the upper tracheobronchial airways of the lung is recognized. In this study, we sought to characterize the functional expression of FcRn within alveolar regions of lung tissue. METHODS FcRn immunohistochemistry was performed on intact rat lung. FcRn expression [Western blot, reverse transcription-polymerase chain reaction (RT-PCR), and immunofluorescence microscopy] and IgG transport functionality were assessed in an in vitro rat alveolar epithelial primary cell culture model. An isolated perfused rat lung model was used to examine IgG transport across pulmonary epithelium from airspace to perfusate. RESULTS FcRn is expressed in intact alveolar epithelium, substantiated by expression and functionality in an in vitro alveolar epithelial model within which IgG transport was temperature sensitive, concentration dependent, and inhibited by excess unlabeled IgG and, to a disproportionate level, by anti-FcRn antibody. Saturable IgG transport across pulmonary epithelium was evident in an isolated perfused rat lung, inhibitable by competing IgG, and displayed a relatively low maximal net IgG absorptive rate of approximately 80 ng/h. CONCLUSION Pulmonary epithelium expresses functional FcRn providing an absorption pathway potentially important for highly potent Fcgamma-fusion proteins but unlikely to be of quantitative significance for the systemic delivery of inhaled therapeutic monoclonal IgGs.
Collapse
Affiliation(s)
- Masahiro Sakagami
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, 23298-0533, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Gurbaxani B, Dela Cruz LL, Chintalacharuvu K, Morrison SL. Analysis of a family of antibodies with different half-lives in mice fails to find a correlation between affinity for FcRn and serum half-life. Mol Immunol 2005; 43:1462-73. [PMID: 16139891 DOI: 10.1016/j.molimm.2005.07.032] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Indexed: 10/25/2022]
Abstract
In this study we analyzed mouse FcRn binding to different recombinant chimeric antibodies with human constant regions. This system has the advantage that in vivo half-life in animals expressing the receptor can be directly correlated with receptor binding kinetics. The goal was to determine which FcRn binding parameters, if any, correlate with the serum half-life of antibodies. We used a BIAcore surface plasmon resonance (SPR) device to study kinetic properties at different pHs and concentrations. The data were analyzed using a new model, the dual bivalent analyte model (DBVA), which postulates that there are two types of FcRn bound to the chip, one low affinity and one high affinity. In addition, it takes into consideration the possibility that the ligand, immunoglobulin G (IgG), can exist as both monomer and as higher molecular forms. While some antibodies bind to FcRn with different kinetics, including antibodies that differ only by containing the kappa or lambda light chain--a result which itself is unexpected--we cannot identify a single FcRn binding parameter that directly correlates with Ab half-life. Importantly, we demonstrate that some IgGs with higher affinity for FcRn do not have extended in vivo half-lives.
Collapse
Affiliation(s)
- Brian Gurbaxani
- Department of Microbiology, Immunology and Molecular Genetics, Molecular Biology Institute, University of California, Los Angeles, CA 90049, USA.
| | | | | | | |
Collapse
|
21
|
Abstract
The existence of surface guided electromagnetic waves has been theoretically predicted from Maxwell's equations and investigated during the first decades of the 20th century. However, it is only since the late 1960's that they have attracted the interest of surface physicists and earned the moniker of "surface plasmon". With the advent of commercially available instruments and well established theories, the technique has been used to study a wide variety of biochemical and biotechnological phenomena. Spectral response of the resonance condition serves as a sensitive indicator of the optical properties of thin films immobilized within a wavelength of the surface. This enhanced surface sensitivity has provided a boon to the surface sciences, and fosters collaboration between surface chemistry, physics and the ongoing biological and biotechnological revolution. Since then, techniques based on surface plasmons such as Surface Plasmon Resonance (SPR), SPR Imaging, Plasmon Waveguide Resonance (PWR) and others, have been increasingly used to determine the affinity and kinetics of a wide variety of real time molecular interactions such as protein-protein, lipid-protein and ligand-protein, without the need for a molecular tag or label. The physical-chemical methodologies used to immobilize membranes at the surface of these optical devices are reviewed, pointing out advantages and limitations of each method. The paper serves to summarize both historical and more recent developments of these technologies for investigating structure-function aspects of these molecular interactions, and regulation of specific events in signal transduction by G-protein coupled receptors (GPCRs).
Collapse
Affiliation(s)
| | | | - V.J. Hruby
- Department of Chemistry
- Department of Biochemistry and Molecular Biophysics, University of Arizona, 85721 Tucson, Arizona, USA
| |
Collapse
|
22
|
Wernick NLB, Haucke V, Simister NE. Recognition of the Tryptophan-based Endocytosis Signal in the Neonatal Fc Receptor by the μ Subunit of Adaptor Protein-2. J Biol Chem 2005; 280:7309-16. [PMID: 15598658 DOI: 10.1074/jbc.m410752200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endocytosis of membrane proteins is typically mediated by signals present in their cytoplasmic domains. These signals usually contain an essential tyrosine or pair of leucine residues. Both tyrosine- and dileucine-based endocytosis signals are recognized by the adaptor complex AP-2. The best understood of these interactions occurs between the tyrosine-based motif, YXXPhi, and the mu2 subunit of AP-2. We recently reported a tryptophan-based endocytosis signal, WLSL, contained within the cytoplasmic domain of the neonatal Fc receptor. This signal resembles YXXPhi. We have investigated the mechanism by which the tryptophan-based signal is recognized. Both interaction assays in vitro and endocytosis assays in vivo show that mu2 binds the tryptophan-based signal. Furthermore, the WLSL sequence binds the same site as YXXPhi. Unlike the WXXF motif, contained in stonin 2 and other endocytic proteins, WLSL does not bind the alpha subunit of AP-2. These observations reveal a functional similarity between the tryptophan-based endocytosis signal and the YXXPhi motif, and an unexpected versatility of mu2 function.
Collapse
Affiliation(s)
- Naomi L B Wernick
- Rosenstiel Center for Basic Biomedical Sciences and Department of Biology, Brandeis University, Waltham, Massachusetts 02254-9110, USA
| | | | | |
Collapse
|
23
|
Massberg S, Konrad I, Bültmann A, Schulz C, Münch G, Peluso M, Lorenz M, Schneider S, Besta F, Müller I, Hu B, Langer H, Kremmer E, Rudelius M, Heinzmann U, Ungerer M, Gawaz M. Soluble glycoprotein VI dimer inhibits platelet adhesion and aggregation to the injured vessel wall in vivo. FASEB J 2004; 18:397-9. [PMID: 14656994 DOI: 10.1096/fj.03-0464fje] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Platelet-collagen interactions play a fundamental role in the process of arterial thrombosis. The major platelet collagen receptor is the glycoprotein VI (GPVI). Here, we determined the effects of a soluble dimeric form of GPVI on platelet adhesion in vitro and in vivo. We fused the extracellular domain of GPVI with the human immunoglobulin Fc domain. The soluble dimeric form of GPVI (GPVI-Fc) specifically bound to immobilized collagen. Binding of GPVI-Fc to collagen was inhibited competitively by soluble GPVI-Fc, but not control Fc lacking the external GPVI domain. GPVI-Fc inhibited the adhesion of CHO cells that stably express human GPVI and of platelets on collagen and attenuated thrombus formation under shear conditions in vitro. To test the effects of GPVI-Fc in vivo, arterial thrombosis was induced in the mouse carotid artery, and platelet-vessel wall interactions were visualized by intravital fluorescence microscopy. Infusion of GPVI-Fc but not of control Fc virtually abolished stable arrest and aggregation of platelets following vascular injury. Importantly, GPVI-Fc but not control Fc, was detected at areas of vascular injury. These findings further substantiate the critical role of the collagen receptor GPVI in the initiation of thrombus formation at sites of vascular injury and identify soluble GPVI as a promising antithrombotic strategy.
Collapse
Affiliation(s)
- Steffen Massberg
- Klinikum rechts der Isar, 1. Medizinische Klinik, Technische Universität München, D-81675 München, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Miura Y, Takahashi T, Jung SM, Moroi M. Analysis of the interaction of platelet collagen receptor glycoprotein VI (GPVI) with collagen. A dimeric form of GPVI, but not the monomeric form, shows affinity to fibrous collagen. J Biol Chem 2002; 277:46197-204. [PMID: 12356768 DOI: 10.1074/jbc.m204029200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycoprotein VI (GPVI) is a platelet-specific glycoprotein that has been indicated to react with collagen and activate platelets. Its structure was recently identified by cDNA cloning (Clemetson, J. M., Polgar, J., Magnenat, E., Wells, T. N., and Clemetson, K. J. (1999) J. Biol. Chem. 274, 29019-29024). However, the mechanism of the interaction between collagen and GPVI has not been analyzed in detail because both collagen and GPVI are insoluble molecules. In this study, we expressed the extracellular domain of GPVI as soluble forms as follows: the monomeric form (GPVIex) and the dimeric form of GPVI fused with the human immunoglobulin Fc domain (GPVI-Fc(2)). Purified GPVIex strongly inhibited convulxin (Cvx)-induced platelet aggregation but only weakly inhibited that induced by collagen-related peptide. However, only GPVI-Fc(2), and not GPVIex, inhibited collagen-induced platelet aggregation. The dimeric form of GPVI exhibits high affinity for collagen, as concluded from measurements of GPVI binding to immobilized collagen by both the enzyme-linked immunosorbent assay and surface plasmon resonance methods. GPVI-Fc(2) bound to the surface of immobilized collagen with a dissociation constant (K(D)) of 5.76 x 10(-7) m, but the binding of GPVIex was too weak to allow estimation of this parameter. Cvx did not inhibit the binding of dimeric GPVI to collagen, indicating that the binding site of GPVI to collagen was different from that to Cvx. Taken together, our data indicate that the high affinity binding site for collagen is composed from two chains of GPVI. Furthermore, they suggest that the binding sites for Cvx are different from the collagen-binding sites and do not need to be formed by two GPVI molecules. Because dimeric GPVI is the only form that shows high affinity to fibrous collagen, our results indicate that GPVI would be present as a dimeric form on the platelet. Moreover, surface plasmon resonance indicated that there is no detectable interaction between soluble collagen and GPVI, supporting our previous observation that GPVI only reacts with fibrous collagen.
Collapse
Affiliation(s)
- Yoshiki Miura
- Department of Protein Biochemistry, Institute of Life Science, Kurume University, 2432-3 Aikawa-machi, Kurume, Fukuoka 839-0861, Japan
| | | | | | | |
Collapse
|
25
|
Zhu X, Peng J, Raychowdhury R, Nakajima A, Lencer WI, Blumberg RS. The heavy chain of neonatal Fc receptor for IgG is sequestered in endoplasmic reticulum by forming oligomers in the absence of beta2-microglobulin association. Biochem J 2002; 367:703-14. [PMID: 12162790 PMCID: PMC1222943 DOI: 10.1042/bj20020200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2002] [Revised: 07/15/2002] [Accepted: 08/06/2002] [Indexed: 01/26/2023]
Abstract
The heavy chain (HC) of the neonatal Fc receptor (FcRn) for IgG is non-convalently associated with beta(2)-microglobulin (beta(2)m). In beta(2)m(-/-) mice, FcRn functions are greatly impaired. We sought to determine how FcRn HC, particularly its structure and biogenesis, is affected by the absence of beta(2)m. Human FcRn HC, expressed from the beta(2)m-null cell line FO-1(FcRn), was present as a monomeric 45-kDa protein under reducing conditions but primarily as a 92-kDa oligomeric protein under non-reducing conditions. Two-dimensional electrophoresis and MS analysis showed that the 92-kDa protein was a dimer of the 45-kDa HC. Immunostaining showed that FcRn HC in FO-1(FcRn) was co-localized with the endoplasmic reticulum (ER) protein Bip/GRP78 but not with an endosome protein, EEA1. In contrast, FcRn HC in FO-1(FcRn+beta2m) was detected in both the ER and endosome. The dimeric HC in FcRn oligomers was free of beta(2)m association in FO-1(FcRn+beta2m). Mutation of non-paired cysteine residues at positions 48 and 251 within the human FcRn cDNA failed to eliminate the oligomers. The FcRn HC oligomers could be reduced by reconstitution of FO-1(FcRn) with beta(2)m or by balanced expression of FcRn HC with beta(2)m, or beta(2)m fused with a KDEL retention sequence. Similarly, the majority of FcRn HC isolated from neonatal beta(2)m(-/-) mice was in a dimeric form under non-reducing conditions. The amount of FcRn HC was significantly decreased in beta(2)m(-/-) mice and FO-1(FcRn). Furthermore, beta(2)m-free FcRn HC was sensitive to endoglycosidase digestion. These results indicate that FcRn HC alone can form disulphide-bonded oligomers in the ER, which may represent a misfolded protein. The beta(2)m association with FcRn HC is critical for correct folding of FcRn and exiting the ER for routing to endosomes and the cell surface.
Collapse
Affiliation(s)
- Xiaoping Zhu
- Gastroenterology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
26
|
Praetor A, Jones RM, Wong WL, Hunziker W. Membrane-anchored human FcRn can oligomerize in the absence of IgG. J Mol Biol 2002; 321:277-84. [PMID: 12144784 DOI: 10.1016/s0022-2836(02)00626-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
FcRn is unique among immunoglobulin G (IgG) Fc receptors in that it is structurally closely related to major histocompatibility complex class I molecules and likewise consists of an alpha-chain and beta2-microglobulin. Crystallographic data show that rat FcRn alpha-chain/beta2m heterodimers can further dimerize via ionic interactions and a carbohydrate handshake. Intriguingly, however, no dimers are found in crystals of human FcRn, probably because the charged amino acids and the carbohydrate implicated in dimerization of rat FcRn are not conserved. Here, we show that although a secreted soluble form of human FcRn does not dimerize, the membrane-anchored receptor can form both non-covalent and covalent dimers. Furthermore, dimerization of human FcRn occurs in the absence of its ligand, IgG.
Collapse
Affiliation(s)
- Asja Praetor
- Institute of Molecular and Cell Biology, Epithelial Cell Biology Laboratory, 30 Medical Drive, Singapore, Singapore
| | | | | | | |
Collapse
|
27
|
Claypool SM, Dickinson BL, Yoshida M, Lencer WI, Blumberg RS. Functional reconstitution of human FcRn in Madin-Darby canine kidney cells requires co-expressed human beta 2-microglobulin. J Biol Chem 2002; 277:28038-50. [PMID: 12023961 PMCID: PMC2825174 DOI: 10.1074/jbc.m202367200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The major histocompatibility complex class I-related neonatal Fc receptor, FcRn, assembles as a heterodimer consisting of a heavy chain and beta(2)-microglobulin (beta(2)m), which is essential for FcRn function. We observed that, in Madin-Darby canine kidney (MDCK) cells, the function of human FcRn in mediating the bidirectional transport of IgG was significantly increased upon co-expression of the human isoform of beta(2)m. In MDCK cells, the presence of human beta(2)m endowed upon human FcRn an enhanced ability to exit the endoplasmic reticulum and acquire mature carbohydrate side-chain modifications at steady state, a faster kinetics of maturation, and augmented localization at the cell surface as a mature glycoprotein able to bind IgG. Although human FcRn with immature carbohydrate side-chain modifications was capable of exhibiting pH-dependent binding of IgG, only human FcRn with mature carbohydrate side-chain modifications was detected on the cell surface. These results show that human FcRn travels to the cell surface via the normal secretory pathway and that the appropriate expression and function of human FcRn in MDCK cells depends upon the co-expression of human beta(2)m.
Collapse
Affiliation(s)
- Steven M. Claypool
- Harvard Medical School, Program in Immunology, Boston, Massachusetts 02115
- Gastroenterogy Division, Brigham and Women’s Hospital, Boston, Massachusetts 02115
| | - Bonny L. Dickinson
- Gastrointestinal Cell Biology and Department of Medicine, Children’s Hospital, Boston, Massachusetts 02115
| | - Masaru Yoshida
- Gastroenterogy Division, Brigham and Women’s Hospital, Boston, Massachusetts 02115
| | - Wayne I. Lencer
- Gastrointestinal Cell Biology and Department of Medicine, Children’s Hospital, Boston, Massachusetts 02115
- Harvard Digestive Diseases Center, Boston, Massachusetts 02115
| | - Richard S. Blumberg
- Gastroenterogy Division, Brigham and Women’s Hospital, Boston, Massachusetts 02115
- Harvard Digestive Diseases Center, Boston, Massachusetts 02115
- Supported by NIH Grants DK44319 and DK51362. To whom correspondence should be addressed: Gastroenterology Division, Dept. of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115. Tel.: 617-732-6917; Fax: 617-264-5185;
| |
Collapse
|
28
|
Wu Z, Simister NE. Tryptophan- and dileucine-based endocytosis signals in the neonatal Fc receptor. J Biol Chem 2001; 276:5240-7. [PMID: 11096078 DOI: 10.1074/jbc.m006684200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neonatal Fc receptor, FcRn, transports immunoglobulin G across intestinal cells in suckling rats. FcRn enters these cells by endocytosis and is present on the apical and basolateral surfaces. We investigated the roles of aromatic amino acids and a dileucine motif in the cytoplasmic domain of rat FcRn. We expressed mutant FcRn in which alanine replaced Trp-311, Leu-322, and Leu-323, or Phe-340 in the inner medullary collecting duct cell line IMCD. Individual replacement of the aromatic amino acids or the dileucine motif only partially blocked endocytosis of (125)I-Fc, whereas uptake by FcRn containing alanine residues in place of both Trp-311 and the dileucine motif was reduced to the level obtained with the tailless receptor. Leu-314 was required for the function of the tryptophan-based endocytosis signal, and Asp-317 and Asp-318 were required for the dileucine-based signal. Nonvectorial delivery of newly synthesized FcRn to the two cell surfaces was unaffected by loss of the endocytosis signals. However, the steady-state distribution of endocytosis mutants was predominantly apical, unlike wild-type FcRn, which was predominantly basolateral. This shift appeared to arise because the loss of endocytosis signals inhibited apical to basolateral transcytosis of FcRn more than basolateral to apical transcytosis.
Collapse
Affiliation(s)
- Z Wu
- Rosenstiel Center for Basic Biomedical Sciences, W. M. Keck Institute for Cellular Visualization, Brandeis University, Waltham, MA 02254-9110, USA
| | | |
Collapse
|
29
|
Wines BD, Sardjono CT, Trist HH, Lay CS, Hogarth PM. The interaction of Fc alpha RI with IgA and its implications for ligand binding by immunoreceptors of the leukocyte receptor cluster. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:1781-9. [PMID: 11160224 DOI: 10.4049/jimmunol.166.3.1781] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study defines the molecular basis of the FcalphaRI (CD89):IgA interaction, which is distinct from that of the other leukocyte Fc receptors and their Ig ligands. A comprehensive analysis using both cell-free (biosensor) and cell-based assays was used to define and characterize the IgA binding region of FcalphaRI. Biosensor analysis of mutant FcalphaRI proteins showed that residues Y35, Y81, and R82 were essential for IgA binding, and R52 also contributed. The role of the essential residues (Y35 and R82) was confirmed by analysis of mutant receptors expressed on the surface of mammalian cells. These receptors failed to bind IgA, but were detected by the mAb MY43, which blocks IgA binding to FcalphaRI, indicating that its epitope does not coincide with these IgA binding residues. A homology model of the ectodomains of FcalphaRI was generated based on the structures of killer Ig-like receptors, which share 30-34% identity with FcalphaRI. Key structural features of killer Ig-like receptors are appropriately reproduced in the model, including the structural conservation of the interdomain linker and hydrophobic core (residues V17, V97, and W183). In this FcalphaRI model the residues forming the IgA binding site identified by mutagenesis form a single face near the N-terminus of the receptor, distinct from other leukocyte Fc receptors where ligand binding is in the second domain. This taken together with major differences in kinetics and affinity for IgA:FcalphaRI interaction that were observed depending on whether FcalphaRI was immobilized or in solution suggest a mode of interaction unique among the leukocyte receptors.
Collapse
Affiliation(s)
- B D Wines
- The Helen M. Schutt Laboratory for Immunology and Biotechnology, Austin Research Institute, Austin Repatriation Medical Center, Heidelberg, Victoria, Australia
| | | | | | | | | |
Collapse
|
30
|
Ghetie V, Ward ES. Multiple roles for the major histocompatibility complex class I- related receptor FcRn. Annu Rev Immunol 2000; 18:739-66. [PMID: 10837074 DOI: 10.1146/annurev.immunol.18.1.739] [Citation(s) in RCA: 361] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Multiple functions have recently been identified for the neonatal Fc receptor FcRn. In addition, a human homolog of the rodent forms of FcRn has been identified and characterized. This major histocompatibility complex class I-related receptor plays a role in the passive delivery of immunoglobulin (Ig)Gs from mother to young and the regulation of serum IgG levels. In addition, FcRn expression in tissues such as liver, mammary gland, and adult intestine suggests that it may modulate IgG transport at these sites. These diverse functions are apparently brought about by the ability of FcRn to bind IgGs and transport them within and across cells. However, the molecular details as to how FcRn traffics within cells have yet to be fully understood, although in vitro systems have been developed for this purpose. The molecular nature of the FcRn-IgG interaction has been studied extensively and encompasses residues located at the CH2-CH3 domain interface of the Fc region of IgG. These Fc amino acids are highly conserved in rodents and man and interact with residues primarily located on the alpha2 domain of FcRn. Thus, it is now possible to engineer IgGs with altered affinities for FcRn, and this has relevance to the modulation of IgG serum half-life and maternofetal IgG transport for therapeutic applications.
Collapse
Affiliation(s)
- V Ghetie
- Center for Immunology and Cancer Immunobiology Center, University of Texas Southwestern Medical Center, Dallas, Texas 75235-8576, USA
| | | |
Collapse
|
31
|
Haymann JP, Levraud JP, Bouet S, Kappes V, Hagège J, Nguyen G, Xu Y, Rondeau E, Sraer JD. Characterization and localization of the neonatal Fc receptor in adult human kidney. J Am Soc Nephrol 2000; 11:632-639. [PMID: 10752522 DOI: 10.1681/asn.v114632] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The binding of Fc fragments of Ig on glomerular epithelial cells (GEC) was observed previously, but the receptor could not be identified. In immunofluorescence and immunohistochemical studies using normal adult human kidney sections, the presence of the so-called neonatal Fc receptor (FcRn) was demonstrated on GEC as well as in the brush border of proximal tubular cells. FcRn transcripts were also detected on isolated glomeruli by reverse transcription-PCR. Using an immortalized GEC line, the presence of the FcRn was confirmed by flow cytometry, reverse transcription-PCR, Western blotting, and by the pH dependence of the binding of heat-aggregated IgG. Because it is well established that the FcRn is involved in IgG transcytosis, it is hypothesized that the FcRn in the kidney may play a role in the reabsorption of IgG. Ongoing studies should clarify the role of the FcRn as a potential target for immune complexes on GEC and should assess its relevance in physiology and pathology.
Collapse
Affiliation(s)
- Jean-Philippe Haymann
- Service de Néphrologie A, Assistance Publique-Hôpitaux de Paris, Institut National de la Santé et de la Recherche Médicale U489 et Association Claude Bernard, Hôpital Tenon, Paris, France
| | - Jean-Pierre Levraud
- Institut National de la Santé et de la Recherche Médicale U277, Institut Pasteur, Paris, France
| | - Sandrine Bouet
- Service de Néphrologie A, Assistance Publique-Hôpitaux de Paris, Institut National de la Santé et de la Recherche Médicale U489 et Association Claude Bernard, Hôpital Tenon, Paris, France
| | - Vincent Kappes
- Service de Néphrologie A, Assistance Publique-Hôpitaux de Paris, Institut National de la Santé et de la Recherche Médicale U489 et Association Claude Bernard, Hôpital Tenon, Paris, France
| | - Jacqueline Hagège
- Service de Néphrologie A, Assistance Publique-Hôpitaux de Paris, Institut National de la Santé et de la Recherche Médicale U489 et Association Claude Bernard, Hôpital Tenon, Paris, France
| | - Genevieve Nguyen
- Service de Néphrologie A, Assistance Publique-Hôpitaux de Paris, Institut National de la Santé et de la Recherche Médicale U489 et Association Claude Bernard, Hôpital Tenon, Paris, France
| | - Yichun Xu
- Service de Néphrologie A, Assistance Publique-Hôpitaux de Paris, Institut National de la Santé et de la Recherche Médicale U489 et Association Claude Bernard, Hôpital Tenon, Paris, France
| | - Eric Rondeau
- Service de Néphrologie A, Assistance Publique-Hôpitaux de Paris, Institut National de la Santé et de la Recherche Médicale U489 et Association Claude Bernard, Hôpital Tenon, Paris, France
| | - Jean-Daniel Sraer
- Service de Néphrologie A, Assistance Publique-Hôpitaux de Paris, Institut National de la Santé et de la Recherche Médicale U489 et Association Claude Bernard, Hôpital Tenon, Paris, France
| |
Collapse
|
32
|
Schuck P, Radu CG, Ward ES. Sedimentation equilibrium analysis of recombinant mouse FcRn with murine IgG1. Mol Immunol 1999; 36:1117-25. [PMID: 10698313 DOI: 10.1016/s0161-5890(99)00093-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The interaction of mouse IgG1 or IgG1-derived Fc fragment with recombinant, insect cell expressed mouse FcRn has been analyzed using sedimentation equilibrium. This results in a model for the interaction in which the two binding sites for FcRn on Fc or IgG1 have significantly different affinities with macroscopic binding constants of < 130 nM and 6 microM. This data indicates the formation of an asymmetric FcRn:Fc (or IgG1):FcRn complex which is consistent with earlier suggestions that for this form of recombinant FcRn, binding to IgG1 or Fc does not result in a symmetric 2:1 complex in which both binding sites are equivalent.
Collapse
Affiliation(s)
- P Schuck
- Molecular Interactions Resource ORS, Bioengineering and Physical Science Program, National Institutes of Health, Bethesda, MD 20892-5766, USA
| | | | | |
Collapse
|
33
|
Regnault V, Arvieux J, Vallar L, Lecompte T. Both kinetic data and epitope mapping provide clues for understanding the anti-coagulant effect of five murine monoclonal antibodies to human beta2-glycoprotein I. Immunology 1999; 97:400-7. [PMID: 10447760 PMCID: PMC2326858 DOI: 10.1046/j.1365-2567.1999.00780.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction between five murine monoclonal antibodies (mAb) and beta2-glycoprotein I (beta2GPI) in the absence of phospholipids was studied using surface plasmon resonance-based biosensor technology. Two separate epitope regions were confirmed for the five mAb but epitopes of two mAb were shown to be overlapping but not identical. The characteristics of binding on both immobilized beta2GPI, using different chemistries of coupling to a dextran matrix and antibody surfaces prepared by two strategies of immobilization, were compared. Binding was strongly influenced by the orientation of the immobilized partner, and the five mAb showed heterogeneity in their binding to immobilized and soluble beta2GPI. The observed stoichiometries of mAb-beta2GPI complexes and the detailed analysis of the kinetics of the association and dissociation phases of the interactions with soluble and immobilized beta2GPI revealed differences in the dissociation rate constants, resulting in a 10-fold higher affinity for immobilized beta2GPI compared to soluble beta2GPI for four out of five mAb. This suggests bivalent binding of these mAb to immobilized beta2GPI. In addition, the kinetic data helped explain the differing anti-coagulant properties of these mAb.
Collapse
Affiliation(s)
- V Regnault
- Laboratoire d'Hématologie-UMR CNRS 7563, Faculté de Médecine, Vandoeuvre-lés-Nancy, France
| | | | | | | |
Collapse
|
34
|
Heyse S, Stora T, Schmid E, Lakey JH, Vogel H. Emerging techniques for investigating molecular interactions at lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1376:319-38. [PMID: 9804980 DOI: 10.1016/s0304-4157(98)00020-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- S Heyse
- Laboratoire de Chimie Physique des Polymères et Membranes, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
35
|
Weng Z, Gulukota K, Vaughn DE, Bjorkman PJ, DeLisi C. Computational determination of the structure of rat Fc bound to the neonatal Fc receptor. J Mol Biol 1998; 282:217-25. [PMID: 9735282 DOI: 10.1006/jmbi.1998.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The available crystal structure for the complex between the Fc fragment of immunoglobulin G (IgG) and the neonatal Fc receptor (FcRn) was determined at low resolution and has no electron density for a large portion of the CH2 domain of the Fc. Here, we use a well validated computational docking algorithm in conjunction with known crystallographic data to predict the orientation of CH2 when bound to FcRn, and validate the predicted structure with data from site-specific mutagenesis experiments. The predicted Fc structure indicates that the CH2 domain moves upon binding FcRn , such that the end-to-end distance of the bound Fc fragment is greater than it is in the crystal structure of isolated Fc. The calculated orientation of the bound CH2 domain is displaced by an average of 6 A from the CH2 orientation in the structure of Fc alone, and shows improved charge complementarity with FcRn. The predicted effects of 11 specific mutations in Fc and FcRn are calculated and the results are compared with experimental measurements. The predicted structure is consistent with all reported mutagenesis data, some of which are explicable only on the basis of our model. The current study predicts that FcRn-bound Fc is asymmetric due to reorientation of the CH2 domain upon FcRn binding, a rearrangement that would be likely to interfere with optimal binding of FcRn at the second binding site of the Fc homodimer.
Collapse
Affiliation(s)
- Z Weng
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| | | | | | | | | |
Collapse
|
36
|
Abstract
This review describes structures which determine the biological activities triggered by Fc gamma R and account for the cell-mediated functions of IgG antibodies in physiology and pathology. The binding specificity and affinity of Fc gamma R depend primarily on IgG-binding structures, in their immunoglobulin-like extracellular domains. Binding is however also influenced by subunits that associate to multichain Fc gamma R. Effector and regulatory intracytoplasmic sequences that are unique to molecules of the Fc gamma RIIB family determine the internalization properties of these receptors. Immunoreceptor Tyrosine-based Activation Motifs (ITAMs) are intracytoplasmic effector sequences shared by Fc gamma R and other receptors involved in the recognition of antigen, which trigger cell activation and internalization. Immunoreceptor Tyrosine-based Inhibition Motifs (ITIMs) are intracytoplasmic sequences, shared by Fc gamma RIIB and a growing number of negative coreceptors which negatively regulate cell activation via ITAM-bearing receptors. Altogether, these structures enable IgG antibodies to exert a variety of finely tuned biological effects during the immune response.
Collapse
Affiliation(s)
- M Daëron
- Laboratoire d'Immunologie Cellulaire et Clinique, INSERM U255, Institut Curie, Paris, France.
| |
Collapse
|
37
|
Adenovirus-Mediated Human Immunodeficiency Virus-1 Nef Expression in Human Monocytes/Macrophages and Effect of Nef on Downmodulation of Fcγ Receptors and Expression of Monokines. Blood 1998. [DOI: 10.1182/blood.v91.6.2108.2108_2108_2117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To characterize the effect of human immunodeficiency virus-1 (HIV-1)nef expression in human monocytes/macrophage (HMØ) and U937 on the levels of FcγRs, HLA antigens, and monokines, elutriated HMØs and U937 cells were transfected with an adenovirus-mediated Nef expression system. Nef-expressing cells downmodulated FcγRI, FcγRII, and upregulated HLA class I molecules. Nef-expressing HMØs, treated with lipopolysaccharide (LPS) or phorbol 12-myristate 13-acetate (PMA), overexpressed tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-10. However, IL-6 was induced by LPS and inhibited by PMA. Additionally, a subpopulation of Nef-expressing HMØs underwent apoptosis. Our data suggest that HIV-1 nefdownmodulated FcγRs in myeloid cells in a manner similar to that previously reported for its effect on CD4+ in T cells.
Collapse
|
38
|
Adenovirus-Mediated Human Immunodeficiency Virus-1 Nef Expression in Human Monocytes/Macrophages and Effect of Nef on Downmodulation of Fcγ Receptors and Expression of Monokines. Blood 1998. [DOI: 10.1182/blood.v91.6.2108] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractTo characterize the effect of human immunodeficiency virus-1 (HIV-1)nef expression in human monocytes/macrophage (HMØ) and U937 on the levels of FcγRs, HLA antigens, and monokines, elutriated HMØs and U937 cells were transfected with an adenovirus-mediated Nef expression system. Nef-expressing cells downmodulated FcγRI, FcγRII, and upregulated HLA class I molecules. Nef-expressing HMØs, treated with lipopolysaccharide (LPS) or phorbol 12-myristate 13-acetate (PMA), overexpressed tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-10. However, IL-6 was induced by LPS and inhibited by PMA. Additionally, a subpopulation of Nef-expressing HMØs underwent apoptosis. Our data suggest that HIV-1 nefdownmodulated FcγRs in myeloid cells in a manner similar to that previously reported for its effect on CD4+ in T cells.
Collapse
|
39
|
Wilson IA, Bjorkman PJ. Unusual MHC-like molecules: CD1, Fc receptor, the hemochromatosis gene product, and viral homologs. Curr Opin Immunol 1998; 10:67-73. [PMID: 9523114 DOI: 10.1016/s0952-7915(98)80034-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The MHC fold, with its well-characterized peptide-binding groove, can perform other functions in addition to presentation of antigenic peptides to T cells. Homologs of MHC molecules have diverse roles that include presentation of lipid antigens (by CD1), transport of immunoglobulins (by the neonatal Fc receptor), regulation of iron metabolism (by the hemochromatosis gene product, HFE), and deception of the host immune system (by viral homologs). Recent crystal structures of two of these non-standard MHC-like molecules have allowed comparison of the recognition properties of classical. MHC molecules with those of their unusual homologs.
Collapse
Affiliation(s)
- I A Wilson
- Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
40
|
Abstract
BACKGROUND The neonatal Fc receptor (FcRn) mediates the transcytosis of maternal immunoglobulin G (IgG) across fetal and/or neonatal tissues for the acquisition of passive immunity. In adults, FcRn is involved in the maintenance of high serum IgG levels. Both processes are mediated by pH-dependent IgG binding to FcRn-FcRn binds to IgG with nanomolar affinity at pH 6, but shows no detectable binding at pH 7.5. At pH 6, FcRn is more thermally stable and the dissociation rate of its light chain is an order of magnitude slower than at pH 8.0. Comparison of the structures of FcRn at pH 6.5 and pH 8 allows an analysis of the structural basis for the receptor's pH-dependent ligand binding and stability. RESULTS We have determined the structure of FcRn at pH 8 and compared it to a further refined version of the structure at pH 6.5. An extensive ordered carbohydrate structure is observed at both pH values. The two structures are very similar; thus the pH dependence of FcRn stability and affinity for IgG can be attributed to chemical properties of the structures themselves, rather than mechanisms that rely on conformational changes. The pH-dependent properties are mediated by electrostatic interactions involving histidine residues, which are more favorable for the protonated form of histidine that predominates at acidic pH values. CONCLUSIONS No major conformational change is observed between the pH 6.5 and pH 8 structures of FcRn that could account for the differences in affinity for IgG. The pH dependence of IgG binding to FcRn can therefore primarily be attributed to titration of histidine residues on Fc that interact with anionic pockets on the receptor. The FcRn dimer, which is required for high affinity binding of IgG, is itself stabilized at acidic pH by histidine-mediated salt bridges and a sidechain rearrangement that creates a more favorable interaction with an anionic pocket at pH 6.5 relative to pH 8. FcRn dimerization is facilitated by reciprocal interactions in which carbohydrate from one receptor molecule binds to protein residues from the dimer-related receptor molecule to form a 'carbohydrate handshake'.
Collapse
Affiliation(s)
- D E Vaughn
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | |
Collapse
|
41
|
Vaughn DE, Milburn CM, Penny DM, Martin WL, Johnson JL, Bjorkman PJ. Identification of critical IgG binding epitopes on the neonatal Fc receptor. J Mol Biol 1997; 274:597-607. [PMID: 9417938 DOI: 10.1006/jmbi.1997.1388] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The neonatal Fc receptor (FcRn) binds maternal immunoglobulin G (IgG) during the acquisition of passive immunity by the fetus or newborn. FcRn also binds IgG and returns it to the bloodstream, thus protecting IgG from a default degradative pathway. Biosensor assays have been used to characterize the interaction of a soluble form of rat FcRn with IgG, and demonstrate that FcRn dimerization and immobilization are necessary to reproduce in vivo binding characteristics. Here, we report the identification of several FcRn amino acid substitutions that disrupt its affinity for IgG and examine the effect of alteration of residues at the FcRn dimer interface. The role of these amino acids is discussed in the context of the previously reported structures of rat FcRn and a complex of FcRn with the Fc portion of IgG.
Collapse
Affiliation(s)
- D E Vaughn
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | | | | | | | | | |
Collapse
|
42
|
Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Curr Opin Biotechnol 1997; 8:50-7. [PMID: 9013659 DOI: 10.1016/s0958-1669(97)80157-7] [Citation(s) in RCA: 360] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Surface plasmon resonance based biosensors are being used to define the kinetics of a wide variety of macromolecular interactions. As the popularity of this approach grows, experimental design and data analysis methods continue to evolve. These advances are making it possible to accurately define the assembly mechanisms and rate constants associated with macromolecular interactions.
Collapse
|
43
|
Junghans RP. Finally! The Brambell receptor (FcRB). Mediator of transmission of immunity and protection from catabolism for IgG. Immunol Res 1997; 16:29-57. [PMID: 9048207 DOI: 10.1007/bf02786322] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
F. W. Rogers Brambell was the father of the field of transmission of immunity, which he entered 50 years before the present era. As part of his quantitative and temporal studies on transmission, he defined the first Fc receptor system for IgG, and furthermore recognized the link between transmission of passive immunity from mother to young and protection from catabolism for IgG. This article provides a historical overview of the efforts of Professor Brambell and summarizes the subsequent elaboration of the details of the physiology and molecular biology of this remarkable receptor system.
Collapse
Affiliation(s)
- R P Junghans
- Faculty of Immunology, Harvard Medical School, New England Deaconess Hospital, Boston, MA 02215, USA
| |
Collapse
|
44
|
Abstract
This review deals with membrane Fc receptors (FcR) of the immunoglobulin superfamily. It is focused on the mechanisms by which FcR trigger and regulate biological responses of cells on which they are expressed. FcR deliver signals when they are aggregated at the cell surface. The aggregation of FcR having immunoreceptor tyrosine-based activation motifs (ITAMs) activates sequentially src family tyrosine kinases and syk family tyrosine kinases that connect transduced signals to common activation pathways shared with other receptors. FcR with ITAMs elicit cell activation, endocytosis, and phagocytosis. The nature of responses depends primarily on the cell type. The aggregation of FcR without ITAM does not trigger cell activation. Most of these FcR internalize their ligands, which can be endocytosed, phagocytosed, or transcytosed. The fate of internalized receptor-ligand complexes depends on defined sequences in the intracytoplasmic domain of the receptors. The coaggregation of different FcR results in positive or negative cooperation. Some FcR without ITAM use FcR with ITAM as signal transduction subunits. The coaggregation of antigen receptors or of FcR having ITAMs with FcR having immunoreceptor tyrosine-based inhibition motifs (ITIMs) negatively regulates cell activation. FcR therefore appear as the subunits of multichain receptors whose constitution is not predetermined and which deliver adaptative messages as a function of the environment.
Collapse
Affiliation(s)
- M Daëron
- Laboratoire d'Immunologie Cellulaire et Clinique, INSERM U.255, Institut Curie, Paris, France.
| |
Collapse
|
45
|
Schuck P. Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1997; 26:541-66. [PMID: 9241429 DOI: 10.1146/annurev.biophys.26.1.541] [Citation(s) in RCA: 420] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Surface plasmon resonance biosensors have become increasingly popular for the qualitative and quantitative characterization of the specific binding of a mobile reactant to a binding partner immobilized on the sensor surface. This article reviews the use of this new technique to measure the binding affinities and the kinetic constants of reversible interactions between biological macromolecules. Immobilization techniques, the most commonly employed experimental strategies, and various analytical approaches are summarized. In recent years, several sources of potential artifacts have been identified: immobilization of the binding partner, steric hindrance of binding to adjacent binding sites at the sensor surface, and finite rate of mass transport of the mobile reactant to the sensor surface. Described here is the influence of these artifacts on the measured binding kinetics and equilibria, together with suggested control experiments.
Collapse
Affiliation(s)
- P Schuck
- Section of Physical Biochemistry, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
46
|
Abstract
Receptors for the Fc domain of immunoglobulins play an important role in immune defense. There are two well-defined functional classes of mammalian receptors. One class of receptors transports immunoglobulins across epithelial tissues to their main sites of action. This class includes the neonatal Fc receptor (FcRn), which transports immunoglobulin G (IgG), and the polymeric immunoglobulin receptor (pIgR), which transports immunoglobulin A (IgA) and immunoglobulin M (IgM). Another class of receptors present on the surfaces of effector cells triggers various biological responses upon binding antibody-antigen complexes. Of these, the IgG receptors (Fc gamma R) and immunoglobulin E (IgE) receptors (Fc epsilon R) are the best characterized. The biological responses elicited include antibody-dependent, cell-mediated cytotoxicity, phagocytosis, release of inflammatory mediators, and regulation of lymphocyte proliferation and differentiation. We summarize the current knowledge of the structures and functions of FcRn, pIgR, and the Fc gamma R and Fc epsilon RI proteins, concentrating on the interactions of the extracellular portions of these receptors with immunoglobulins.
Collapse
Affiliation(s)
- M Raghavan
- Division of Biology, Howard Hughes Medical Institute, California Institute of Technology, Pasadena 91125, USA
| | | |
Collapse
|
47
|
Kristoffersen EK. Human placental Fc gamma-binding proteins in the maternofetal transfer of IgG. APMIS. SUPPLEMENTUM 1996; 64:5-36. [PMID: 8944053 DOI: 10.1111/j.1600-0463.1996.tb05583.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Annexin II, a member of the annexin family of Ca2+ and phospholipid binding proteins, is present in human placenta. Placental annexin II has low affinity FcR activity, and is present as a heterotetramere on syncytiotrophoblast apical cell membrane extracellular surface. In addition to annexin II, transmembraneous leukocyte FcRIII is present on syncytiotrophoblast apical membrane. Either one, or both molecules may mediate the binding of IgG and thereby facilitate its transport through the syncytiotrophoblast layer. However, the presence of other maternal plasma proteins in syncytiotrophoblasts that are not transported to the human fetus is suggestive of nonspecific fluid phase endocytosis. The MHC class I like FcR, similar to the receptor found in neonatal rodent intestine, FcRn, is present intracellularly in human syncytiotrophoblasts, as is its light chain beta 2-microglobulin. The hFcRn is not detected on the apical plasma membrane. The placental hFcRn co-localizes with IgG in syncytiotrophoblast granules. It is likely that hFcRn binds and transcytoses IgG through the syncytiotrophoblast. Protected transfer of IgG may occur within syncytiotrophoblast endocytotic vesicles prior to release in the villous stroma and subsequent translocation into the lumen of fetal stem vessels by uptake and transport in endothelial caveolae.
Collapse
Affiliation(s)
- E K Kristoffersen
- Department of Microbiology and Immunology, Gade Institute, University of Bergen, Norway
| |
Collapse
|
48
|
Kristoffersen EK, Matre R. Co-localization of the neonatal Fc gamma receptor and IgG in human placental term syncytiotrophoblasts. Eur J Immunol 1996; 26:1668-71. [PMID: 8766579 DOI: 10.1002/eji.1830260741] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Transfer of maternal IgG through the human placenta furnishes the newborn with passive immunity to a number of infectious agents. The exact mechanism of this transfer is still unknown, but it is agreed that it involves active receptor-mediated transport. The neonatal Fc receptor is a major histocompatibility complex class I-like receptor originally identified in the intestines of newborn rodents. A similar receptor has recently been detected in human placental syncytiotrophoblasts. Using multilabeling fluorescence immunohistochemistry and confocal laser scanning microscopy, we found that the neonatal Fc receptor co-localizes with IgG and beta 2-microglobulin in granules of human placental syncytiotrophoblast. The Fc receptor is not detected on syncytiotrophoblast apical plasma membrane. Localization to the outermost cellular barrier between the fetal and maternal blood further strengthens the role of the Fc receptor in transplacental transport of IgG.
Collapse
Affiliation(s)
- E K Kristoffersen
- Department of Microbiology and Immunology, Gade Institute, University of Bergen, Norway.
| | | |
Collapse
|