1
|
Gary E, O'Connor M, Chakhtoura M, Tardif V, Kumova OK, Malherbe DC, Sutton WF, Haigwood NL, Kutzler MA, Haddad EK. Adenosine deaminase-1 enhances germinal center formation and functional antibody responses to HIV-1 Envelope DNA and protein vaccines. Vaccine 2020; 38:3821-3831. [PMID: 32280045 PMCID: PMC7190415 DOI: 10.1016/j.vaccine.2020.03.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/17/2020] [Accepted: 03/27/2020] [Indexed: 12/28/2022]
Abstract
Adenosine deaminase-1 (ADA-1) plays both enzymatic and non-enzymatic roles in regulating immune cell function. Mutations in the ADA1 gene account for 15% of heritable severe-combined immunodeficiencies. We determined previously that ADA1 expression defines and is instrumental for the germinal center follicular helper T cell (TFH) phenotype using in vitro human assays. Herein, we tested whether ADA-1 can be used as an adjuvant to improve vaccine efficacy in vivo. In vitro, ADA-1 induced myeloid dendritic cell (mDC) maturation as measured by increased frequencies of CD40-, CD83-, CD86-, and HLA-DR-positive mDCs. ADA-1 treatment also promoted the secretion of the TFH-polarizing cytokine IL-6 from mDCs. In the context of an HIV-1 envelope (env) DNA vaccine, co-immunization with plasmid-encoded ADA-1 (pADA) enhanced humoral immunity. Animals co-immunized with env DNA and pADA had significantly increased frequencies of TFH cells in their draining lymph nodes and increased HIV-binding IgG in serum. Next, mice were co-immunized with subtype C env gp160 DNA and pADA along with simultaneous immunization with matched gp140 trimeric protein. Mice that received env gp160 DNA, pADA, and gp140 glycoprotein had significantly more heterologous HIV-specific binding IgG in their serum. Furthermore, only these mice had detectable neutralizing antibody responses. These studies support the use of ADA-1 as a vaccine adjuvant to qualitatively enhance germinal center responses and represent a novel application of an existing therapeutic agent that can be quickly translated for clinical use.
Collapse
Affiliation(s)
- Ebony Gary
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Margaret O'Connor
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, United States; The Department of Biochemistry and Cell Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Marita Chakhtoura
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Virginie Tardif
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Ogan K Kumova
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Delphine C Malherbe
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - William F Sutton
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Nancy L Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Michele A Kutzler
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, United States; The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Elias K Haddad
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, United States; The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
2
|
Alipour S, Mahdavi A. Boosting Tat DNA vaccine with Tat protein stimulates strong cellular and humoral immune responses in mice. Biotechnol Lett 2020; 42:505-517. [PMID: 31974645 DOI: 10.1007/s10529-020-02801-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022]
Abstract
The aim of the present study was to evaluate the efficacy of a novel DNA priming-protein boosting regimen in simultaneous enhancing humoral and cellular immunogenicity of the HIV-1-Tat-based candidate vaccines in mice. The experimental BALB/c mice were successfully immunized with the HIV-1-Tat DNA vaccine and boosted with the corresponding protein vaccine over a two-week interval and the elicitation of cellular and humoral immune responses were simultaneously assessed. The results showed that the prime-boost immunization has significantly given rise to lymphocyte proliferation and CTL responses, as well as the levels of both IgG and IgG antibodies compared to the other candidate vaccines. The results of the Th polarization also revealed that the Th1: Th2 indexes in the mice vaccinated with the HIV-1 Tat protein, Tat DNA, and the prime-boost vaccines were 1.03, 1.19, and 1.25, respectively. The results suggest that co-administration of the HIV-1-Tat DNA with the corresponding protein may serve as a potential formulation for enhancing of Tat vaccineinduced immunity and has measurable effects on shaping vaccines' induced Th polarization.
Collapse
Affiliation(s)
- Samira Alipour
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), P. O. Box 45195-1159, Zanjan, Iran
| | - Atiyeh Mahdavi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), P. O. Box 45195-1159, Zanjan, Iran.
| |
Collapse
|
3
|
del Moral-Sánchez I, Sliepen K. Strategies for inducing effective neutralizing antibody responses against HIV-1. Expert Rev Vaccines 2019; 18:1127-1143. [PMID: 31791150 PMCID: PMC6961309 DOI: 10.1080/14760584.2019.1690458] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Despite intensive research efforts, there is still no effective prophylactic vaccine available against HIV-1. Currently, substantial efforts are devoted to the development of vaccines aimed at inducing broadly neutralizing antibodies (bNAbs), which are capable of neutralizing most HIV-1 strains. All bNAbs target the HIV-1 envelope glycoprotein (Env), but Env immunizations usually only induce neutralizing antibodies (NAbs) against the sequence-matched virus and not against other strains.Areas covered: We describe the different strategies that have been explored to improve the breadth and potency of anti-HIV-1 NAb responses. The discussed strategies include the application of engineered Env immunogens, optimization of (bNAb) epitopes, different cocktail and sequential vaccination strategies, nanoparticles and nucleic acid-based vaccines.Expert opinion: A combination of the strategies described in this review and future approaches are probably needed to develop an effective HIV-1 vaccine that can induce broad, potent and long-lasting NAb responses.
Collapse
Affiliation(s)
- Iván del Moral-Sánchez
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Kwinten Sliepen
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands,CONTACT Kwinten Sliepen Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
|
5
|
Abstract
Since the discovery of acquired immunodeficiency syndrome (AIDS) in 1981, it has been extremely difficult to develop an effective vaccine or a therapeutic cure despite over 36 years of global efforts. One of the major reasons is due to the lack of an immune-competent animal model that supports live human immunodeficiency virus (HIV) infection and disease progression such that vaccine-induced correlates of protection and efficacy can be determined clearly before human trials. Nevertheless, rhesus macaques infected with simian immunodeficiency virus (SIV) and chimeric simian human immunodeficiency virus (SHIV) have served as invaluable models not only for understanding AIDS pathogenesis but also for studying HIV vaccine and cure. In this chapter, therefore, we summarize major scientific evidence generated in these models since the beginning of the AIDS pandemic. Hopefully, the accumulated knowledge and lessons contributed by thousands of scientists will be useful in promoting the search of an ultimate solution to end HIV/AIDS.
Collapse
|
6
|
Churchyard G, Mlisana K, Karuna S, Williamson AL, Williamson C, Morris L, Tomaras GD, De Rosa SC, Gilbert PB, Gu N, Yu C, Mkhize NN, Hermanus T, Allen M, Pensiero M, Barnett SW, Gray G, Bekker LG, Montefiori DC, Kublin J, Corey L. Sequential Immunization with gp140 Boosts Immune Responses Primed by Modified Vaccinia Ankara or DNA in HIV-Uninfected South African Participants. PLoS One 2016; 11:e0161753. [PMID: 27583368 PMCID: PMC5008759 DOI: 10.1371/journal.pone.0161753] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 08/08/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The safety and immunogenicity of SAAVI DNA-C2 (4 mg IM), SAAVI MVA-C (2.9 x 109 pfu IM) and Novartis V2-deleted subtype C gp140 (100 mcg) with MF59 adjuvant in various vaccination regimens was evaluated in HIV-uninfected adults in South Africa. METHODS Participants at three South African sites were randomized (1:1:1:1) to one of four vaccine regimens: MVA prime, sequential gp140 protein boost (M/M/P/P); concurrent MVA/gp140 (MP/MP); DNA prime, sequential MVA boost (D/D/M/M); DNA prime, concurrent MVA/gp140 boost (D/D/MP/MP) or placebo. Peak HIV specific humoral and cellular responses were measured. RESULTS 184 participants were enrolled: 52% were female, all were Black/African, median age was 23 years (range, 18-42 years) and 79% completed all vaccinations. 159 participants reported at least one adverse event, 92.5% were mild or moderate. Five, unrelated, serious adverse events were reported. The M/M/P/P and D/D/MP/MP regimens induced the strongest peak neutralizing and binding antibody responses and the greatest CD4+ T-cell responses to Env. All peak neutralizing and binding antibody responses decayed with time. The MVA, but not DNA, prime contributed to the humoral and cellular immune responses. The D/D/M/M regimen was poorly immunogenic overall but did induce modest CD4+ T-cell responses to Gag and Pol. CD8+ T-cell responses to any antigen were low for all regimens. CONCLUSIONS The SAAVI DNA-C2, SAAVI MVA-C and Novartis gp140 with MF59 adjuvant in various combinations were safe and induced neutralizing and binding antibodies and cellular immune responses. Sequential immunization with gp140 boosted immune responses primed by MVA or DNA. The best overall immune responses were seen with the M/M/P/P regimen. TRIAL REGISTRATION ClinicalTrials.gov NCT01418235.
Collapse
Affiliation(s)
- Gavin Churchyard
- Aurum Institute for Health Research, Klerksdorp, South Africa
- School of Public Health, University of Witwatersrand, Johannesburg, South Africa
- Advancing Care and Treatment for TB and HIV, Medical Research Council Collaborating Centre, Klerksdorp, South Africa
| | | | - Shelly Karuna
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Anna-Lise Williamson
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, University of Cape Town, Cape Town, South Africa; National Health Laboratory Services, Observatory, Cape Town, South Africa
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, University of Cape Town, Cape Town, South Africa; National Health Laboratory Services, Observatory, Cape Town, South Africa
| | - Lynn Morris
- National Institute for Communicable Diseases, National Health Laboratory Services, Sandringham, Johannesburg, South Africa
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States of America
| | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States of America
| | - Peter B. Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Niya Gu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Chenchen Yu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Nonhlanhla N. Mkhize
- National Institute for Communicable Diseases, National Health Laboratory Services, Sandringham, Johannesburg, South Africa
| | - Tandile Hermanus
- National Institute for Communicable Diseases, National Health Laboratory Services, Sandringham, Johannesburg, South Africa
| | - Mary Allen
- Vaccine Research Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Michael Pensiero
- Vaccine Research Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Susan W. Barnett
- Novartis Vaccines and Diagnostics, Cambridge, MA, United States of America
| | - Glenda Gray
- South African Medical Research Council, Cape Town, South Africa
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Braamfontein, Johannesburg, South Africa
| | - Linda-Gail Bekker
- Desmond Tutu HIV Centre, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - David C. Montefiori
- Laboratory for AIDS Vaccine Research and Development, Duke University Medical Center, Durham, NC, United States of America
| | - James Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
7
|
Ren Y, Min YQ, Liu M, Chi L, Zhao P, Zhang XL. N-glycosylation-mutated HCV envelope glycoprotein complex enhances antigen-presenting activity and cellular and neutralizing antibody responses. Biochim Biophys Acta Gen Subj 2016; 1860:1764-75. [DOI: 10.1016/j.bbagen.2015.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 08/07/2015] [Accepted: 08/08/2015] [Indexed: 02/08/2023]
|
8
|
Prime-boost vaccine strategy against viral infections: Mechanisms and benefits. Vaccine 2016; 34:413-423. [DOI: 10.1016/j.vaccine.2015.11.062] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/21/2015] [Accepted: 11/23/2015] [Indexed: 01/01/2023]
|
9
|
The Breadth of Expandable Memory CD8+ T Cells Inversely Correlates with Residual Viral Loads in HIV Elite Controllers. J Virol 2015; 89:10735-47. [PMID: 26269189 DOI: 10.1128/jvi.01527-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 07/27/2015] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Previous studies have shown that elite controllers with minimal effector T cell responses harbor a low-frequency, readily expandable, highly functional, and broadly directed memory population. Here, we interrogated the in vivo relevance of this cell population by investigating whether the breadth of expandable memory responses is associated with the magnitude of residual viremia in individuals achieving durable suppression of HIV infection. HIV-specific memory CD8(+) T cells were expanded by using autologous epitopic and variant peptides. Viral load was measured by an ultrasensitive single-copy PCR assay. Following expansion, controllers showed a greater increase in the overall breadth of Gag responses than did untreated progressors (P = 0.01) as well as treated progressors (P = 0.0003). Nef- and Env-specific memory cells expanded poorly for all groups, and their expanded breadths were indistinguishable among groups (P = 0.9 for Nef as determined by a Kruskal-Wallis test; P = 0.6 for Env as determined by a Kruskal-Wallis test). More importantly, we show that the breadth of expandable, previously undetectable Gag-specific responses was inversely correlated with residual viral load (r = -0.6; P = 0.009). Together, these data reveal a direct link between the abundance of Gag-specific expandable memory responses and prolonged maintenance of low-level viremia. Our studies highlight a CD8(+) T cell feature that would be desirable in a vaccine-induced T cell response. IMPORTANCE Many studies have shown that the rare ability of some individuals to control HIV infection in the absence of antiretroviral therapy appears to be heavily dependent upon special HIV-specific killer T lymphocytes that are able to inhibit viral replication. The identification of key features of these immune cells has the potential to inform rational HIV vaccine design. This study shows that a special subset of killer lymphocytes, known as central memory CD8(+) T lymphocytes, is at least partially involved in the durable control of HIV replication. HIV controllers maintain a large proportion of Gag-specific expandable memory CD8(+) T cells involved in ongoing viral suppression. These data suggest that induction of this cell subset by future HIV vaccines may be important for narrowing possible routes of rapid escape from vaccine-induced CD8(+) T cell responses.
Collapse
|
10
|
Zhou Y, Sullivan NJ. Immunology and evolvement of the adenovirus prime, MVA boost Ebola virus vaccine. Curr Opin Immunol 2015; 35:131-6. [PMID: 26247875 DOI: 10.1016/j.coi.2015.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/22/2015] [Indexed: 11/29/2022]
Abstract
The 2014 Ebola virus outbreak caused an order of magnitude more deaths in a single outbreak than all previous known outbreaks combined, affecting both local and international public health, and threatening the security and economic stability of the countries in West Africa directly confronting the outbreak. The severity of the epidemic lead to a global response to assist with patient care, outbreak control, and deployment of vaccines. The latter was possible due to the long history of basic and clinical research aimed at identifying a safe and effective vaccine to protect against Ebola virus infection. This review highlights the immunology, development, and progress of vaccines based on replication-defective adenovirus vectors, culminating in the successful launch of the first Phase III trial of an Ebola virus vaccine.
Collapse
Affiliation(s)
- Yan Zhou
- Biodefense Research Section, Vaccine Research Center, National Institute for Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20814, USA
| | - Nancy J Sullivan
- Biodefense Research Section, Vaccine Research Center, National Institute for Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20814, USA.
| |
Collapse
|
11
|
Iyer SS, Amara RR. DNA/MVA Vaccines for HIV/AIDS. Vaccines (Basel) 2014; 2:160-78. [PMID: 26344473 PMCID: PMC4494194 DOI: 10.3390/vaccines2010160] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 01/31/2014] [Accepted: 02/06/2014] [Indexed: 11/16/2022] Open
Abstract
Since the initial proof-of-concept studies examining the ability of antigen-encoded plasmid DNA to serve as an immunogen, DNA vaccines have evolved as a clinically safe and effective platform for priming HIV-specific cellular and humoral responses in heterologous "prime-boost" vaccination regimens. Direct injection of plasmid DNA into the muscle induces T- and B-cell responses against foreign antigens. However, the insufficient magnitude of this response has led to the development of approaches for enhancing the immunogenicity of DNA vaccines. The last two decades have seen significant progress in the DNA-based vaccine platform with optimized plasmid constructs, improved delivery methods, such as electroporation, the use of molecular adjuvants and novel strategies combining DNA with viral vectors and subunit proteins. These innovations are paving the way for the clinical application of DNA-based HIV vaccines. Here, we review preclinical studies on the DNA-prime/modified vaccinia Ankara (MVA)-boost vaccine modality for HIV. There is a great deal of interest in enhancing the immunogenicity of DNA by engineering DNA vaccines to co-express immune modulatory adjuvants. Some of these adjuvants have demonstrated encouraging results in preclinical and clinical studies, and these data will be examined, as well.
Collapse
Affiliation(s)
- Smita S Iyer
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | - Rama R Amara
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| |
Collapse
|
12
|
Chen Y, Wang S, Lu S. DNA Immunization for HIV Vaccine Development. Vaccines (Basel) 2014; 2:138-159. [PMID: 26344472 PMCID: PMC4494200 DOI: 10.3390/vaccines2010138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/08/2014] [Accepted: 02/10/2014] [Indexed: 01/10/2023] Open
Abstract
DNA vaccination has been studied in the last 20 years for HIV vaccine research. Significant experience has been accumulated in vector design, antigen optimization, delivery approaches and the use of DNA immunization as part of a prime-boost HIV vaccination strategy. Key historical data and future outlook are presented. With better understanding on the potential of DNA immunization and recent progress in HIV vaccine research, it is anticipated that DNA immunization will play a more significant role in the future of HIV vaccine development.
Collapse
Affiliation(s)
- Yuxin Chen
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
13
|
Xu L, Liu Y, Chen Z, Li W, Liu Y, Wang L, Ma L, Shao Y, Zhao Y, Chen C. Morphologically virus-like fullerenol nanoparticles act as the dual-functional nanoadjuvant for HIV-1 vaccine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:5928-36. [PMID: 23963730 DOI: 10.1002/adma.201300583] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/17/2013] [Indexed: 05/18/2023]
Abstract
Fullerenol, which self-assembles into virus-sized nanoparticles, is designed as a dual-functional nanoadjuvant to generate comparable immune responses to the HIV DNA vaccine. It shows promising adjuvant activity via various immunization routes, decreasing the antigen dosage and immunization frequency while maintaining immunity levels and inducing TEM -biased immunity to combat the infection at early stage. The underlying mechanisms by which fullerenol-based formulation induces above-mentioned polyvalent immune responses are involved in activating multiple TLRs signaling pathways.
Collapse
Affiliation(s)
- Ligeng Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No.11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Villarreal DO, Talbott KT, Choo DK, Shedlock DJ, Weiner DB. Synthetic DNA vaccine strategies against persistent viral infections. Expert Rev Vaccines 2013; 12:537-54. [PMID: 23659301 DOI: 10.1586/erv.13.33] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The human body has developed an elaborate defense system against microbial pathogens and foreign antigens. However, particular microbes have evolved sophisticated mechanisms to evade immune surveillance, allowing persistence within the human host. In an effort to combat such infections, intensive research has focused on the development of effective prophylactic and therapeutic countermeasures to suppress or clear persistent viral infections. To date, popular therapeutic strategies have included the use of live-attenuated microbes, viral vectors and dendritic-cell vaccines aiming to help suppress or clear infection. In recent years, improved DNA vaccines have now re-emerged as a promising candidate for therapeutic intervention due to the development of advanced optimization and delivery technologies. For instance, genetic optimization of synthetic plasmid constructs and their encoded antigens, in vivo electroporation-mediated vaccine delivery, as well as codelivery with molecular adjuvants have collectively enhanced both transgene expression and the elicitation of vaccine-induced immunity. In addition, the development of potent heterologous prime-boost regimens has also provided significant contributions to DNA vaccine immunogenicity. Herein, the authors will focus on these recent improvements to this synthetic platform in relation to their application in combating persistent virus infection.
Collapse
Affiliation(s)
- Daniel O Villarreal
- University of Pennsylvania, Perelman School of Medicine, Department of Pathology & Laboratory Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
15
|
Wang J, Zhu R, Gao B, Wu B, Li K, Sun X, Liu H, Wang S. The enhanced immune response of hepatitis B virus DNA vaccine using SiO2@LDH nanoparticles as an adjuvant. Biomaterials 2013; 35:466-78. [PMID: 24099705 DOI: 10.1016/j.biomaterials.2013.09.060] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/17/2013] [Indexed: 02/06/2023]
Abstract
Various approaches have been used to improve systemic immune response to infectious disease or virus, and DNA vaccination has been demonstrated to be one of these effective ways to elicit protective immunity against pathogens. Our previous studies showed that layered double hydroxides (LDH) nanoparticles could be efficiently taken up by the MDDCs and had an adjuvant activity for DC maturation. To further enhance the immune adjuvant activity of LDH, core-shell structure SiO2@LDH nanoparticles were synthesized with an average diameter of about 210 nm. And its high transfection efficiency in vitro was demonstrated by using GFP expression plasmid as model DNA. Exposing SiO2@LDH nanoparticles to macrophages caused a higher dose-dependent expression of IFN-γ, IL-6, CD86 and MHC II, compared with SiO2 and LDH respectively. Furthermore, in vivo immunization of BALB/c mice indicated that, DNA vaccine loaded-SiO2@LDH nanoparticles not only induced much higher serum antibody response than naked DNA vaccine and plain nanoparticles, but also obviously promoted T-cell proliferation and skewed T helper to Th1 polarization. Additionally, it was proved that the caveolae-mediated uptake of SiO2@LDH nanoparticles by macrophage lead to macrophages activation via NF-κB signaling pathway. Our results indicate that SiO2@LDH nanoparticles could serve as a potential non-viral gene delivery system.
Collapse
Affiliation(s)
- Jin Wang
- Tenth People's Hospital, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Saito A, Akari H. Macaque-tropic human immunodeficiency virus type 1: breaking out of the host restriction factors. Front Microbiol 2013; 4:187. [PMID: 23847610 PMCID: PMC3705164 DOI: 10.3389/fmicb.2013.00187] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/20/2013] [Indexed: 12/02/2022] Open
Abstract
Macaque monkeys serve as important animal models for understanding the pathogenesis of lentiviral infections. Since human immunodeficiency virus type 1 (HIV-1) hardly replicates in macaque cells, simian immunodeficiency virus (SIV) or chimeric viruses between HIV-1 and SIV (SHIV) have been used as challenge viruses in this research field. These viruses, however, are genetically distant from HIV-1. Therefore, in order to evaluate the efficacy of anti-HIV-1 drugs and vaccines in macaques, the development of a macaque-tropic HIV-1 (HIV-1mt) having the ability to replicate efficiently in macaques has long been desired. Recent studies have demonstrated that host restriction factors, such as APOBEC3 family and TRIM5, impose a strong barrier against HIV-1 replication in macaque cells. By evading these restriction factors, others and we have succeeded in developing an HIV-1mt that is able to replicate in macaques. In this review, we have attempted to shed light on the role of host factors that affect the susceptibility of macaques to HIV-1mt infection, especially by focusing on TRIM5-related factors.
Collapse
Affiliation(s)
- Akatsuki Saito
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University Inuyama, Japan ; Japan Foundation for AIDS Prevention Chiyoda-ku, Japan
| | | |
Collapse
|
17
|
The development of gene-based vectors for immunization. Vaccines (Basel) 2013. [PMCID: PMC7151937 DOI: 10.1016/b978-1-4557-0090-5.00064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
|
19
|
Biju V, Anas A, Akita H, Shibu ES, Itoh T, Harashima H, Ishikawa M. FRET from quantum dots to photodecompose undesired acceptors and report the condensation and decondensation of plasmid DNA. ACS NANO 2012; 6:3776-3788. [PMID: 22468986 DOI: 10.1021/nn2048608] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Protection of genes against enzymatic degradation and overcoming of cellular barriers are critical for efficient gene delivery. The effectiveness of gene delivery by nonviral vectors depends mostly on the extent of DNA packaging or condensation. We show that Förster resonance energy transfer (FRET)-mediated photodecomposition of undesired acceptors in doubly labeled plasmid DNA (pDNA) and FRET recovery after acceptor photodecomposition (FRET-RAP) are effective methods for the detection of DNA condensation and decondensation. Our hypothesis is that undesired acceptors within the Förster distance of highly-photostable donors in precondensed DNA can be selectively photodecomposed by FRET. We investigate this hypothesis by the random labeling of pcDNA3.1-GL3 and pUC18DNA with quantum dots (QDs) as the energy donor and AlexaFluor594 or Cy5 as the acceptor. At first, the random labeling generates efficient FRET, also called intrinsic FRET, in precondensed DNA, which prevents us from decoding any changes in the FRET efficiency during DNA condensation. Next, we suppressed the intrinsic FRET by the FRET-mediated photodecomposition of acceptors within the Förster distance of QDs. Conversely, many acceptors kept intact beyond the Förster distance provide us with high FRET efficiency during the condensation of pDNA using protamine. Further, the FRET efficiency is significantly decreased during the decondensation of DNA using heparan sulfate and glutathione. The random labeling of DNA using excess acceptors around photostable donors followed by the FRET-mediated photodecomposition of undesired acceptors can be a promising method for not only the sensitive detection of DNA condensation by FRET but also the customization of biomolecular sensors.
Collapse
Affiliation(s)
- Vasudevanpillai Biju
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Takamatsu, Kagawa 761-0395, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
Arrode-Brusés G, Hegde R, Jin Y, Liu Z, Narayan O, Chebloune Y. Immunogenicity of a lentiviral-based DNA vaccine driven by the 5'LTR of the naturally attenuated caprine arthritis encephalitis virus (CAEV) in mice and macaques. Vaccine 2012; 30:2956-62. [PMID: 22387218 DOI: 10.1016/j.vaccine.2012.02.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/02/2012] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
Abstract
Increasing the safety and the efficacy of existing HIV vaccines is one of the strategies that could help to promote the development of a vaccine for human use. We developed a HIV DNA vaccine (Δ4-SHIVKU2) that has been shown to induce potent polyfunctional HIV-specific T cell responses following a single dose immunization of mice and macaques. Δ4-SHIVKU2 also induced protection when immunized macaques were challenged with homologous pathogenic viruses. In the present study, our aim was to examine whether a chimeric HIV DNA vaccine (CAL-Δ4-SHIVKU2) whose genome is driven by the LTR of the goat lentivirus, caprine arthritis encephalitis (CAEV) expresses efficiently the vaccine antigens and induces potent immune responses in animal models for HIV vaccine. Data of radioimmunoprecipitation assays clearly show that this chimeric genome drives efficient expression of all HIV antigens in the construct. In addition, evaluation of the p24 Gag protein in the supernatant of HEK-293-T cells transfected in parallel with Δ4-SHIVKU2 and CAL-Δ4-SHIVKU2 showed no difference suggesting that these two LTRs are inducing equally the expression of the viral genes. Immunization of mice and macaques using our single dose immunization regimen resulted in induction of similar IFN-γ ELISPOT responses in Δ4-SHIVKU2- and CAL-Δ4-SHIVKU2-treated mice. Similar profiles of T cell responses were also detected both in mice and macaques when multiparametric flow cytometry analyses were performed. Since CAEV LTR is not dependent of Tat to drive viral gene expression and is not functional for integration with HIV integrase, this new vector increases the safety and efficacy of our vaccine vectors and vaccination strategy.
Collapse
Affiliation(s)
- Géraldine Arrode-Brusés
- Department of Microbiology, Molecular Genetics and Immunology, The University of Kansas Medical Center, Kansas City, KS 66160, United States
| | | | | | | | | | | |
Collapse
|
21
|
Bristow CL, Babayeva MA, LaBrunda M, Mullen MP, Winston R. α1Proteinase inhibitor regulates CD4+ lymphocyte levels and is rate limiting in HIV-1 disease. PLoS One 2012; 7:e31383. [PMID: 22363634 PMCID: PMC3281957 DOI: 10.1371/journal.pone.0031383] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 01/06/2012] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The regulation of adult stem cell migration through human hematopoietic tissue involves the chemokine CXCL12 (SDF-1) and its receptor CXCR4 (CD184). In addition, human leukocyte elastase (HLE) plays a key role. When HLE is located on the cell surface (HLE(CS)), it acts not as a proteinase, but as a receptor for α(1)proteinase inhibitor (α(1)PI, α(1)antitrypsin, SerpinA1). Binding of α(1)PI to HLE(CS) forms a motogenic complex. We previously demonstrated that α(1)PI deficiency attends HIV-1 disease and that α(1)PI augmentation produces increased numbers of immunocompetent circulating CD4(+) lymphocytes. Herein we investigated the mechanism underlying the α(1)PI deficiency that attends HIV-1 infection. METHODS AND FINDINGS Active α(1)PI in HIV-1 subjects (median 17 µM, n = 35) was significantly below normal (median 36 µM, p<0.001, n = 30). In HIV-1 uninfected subjects, CD4(+) lymphocytes were correlated with the combined factors α(1)PI, HLE(CS) (+) lymphocytes, and CXCR4(+) lymphocytes (r(2) = 0.91, p<0.001, n = 30), but not CXCL12. In contrast, in HIV-1 subjects with >220 CD4 cells/µl, CD4(+) lymphocytes were correlated solely with active α(1)PI (r(2) = 0.93, p<0.0001, n = 26). The monoclonal anti-HIV-1 gp120 antibody 3F5 present in HIV-1 patient blood is shown to bind and inactivate human α(1)PI. Chimpanzee α(1)PI differs from human α(1)PI by a single amino acid within the 3F5-binding epitope. Unlike human α(1)PI, chimpanzee α(1)PI did not bind 3F5 or become depleted following HIV-1 challenge, consistent with the normal CD4(+) lymphocyte levels and benign syndrome of HIV-1 infected chimpanzees. The presence of IgG-α(1)PI immune complexes correlated with decreased CD4(+) lymphocytes in HIV-1 subjects. CONCLUSIONS This report identifies an autoimmune component of HIV-1 disease that can be overcome therapeutically. Importantly, results identify an achievable vaccine modification with the novel objective to protect against AIDS as opposed to the current objective to protect against HIV-1 infection.
Collapse
Affiliation(s)
- Cynthia L Bristow
- Weill Cornell Medical College, New York, New York, United States of America.
| | | | | | | | | |
Collapse
|
22
|
Kumar R, Tuen M, Li H, Tse DB, Hioe CE. Improving immunogenicity of HIV-1 envelope gp120 by glycan removal and immune complex formation. Vaccine 2011; 29:9064-74. [PMID: 21945958 DOI: 10.1016/j.vaccine.2011.09.057] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 08/18/2011] [Accepted: 09/02/2011] [Indexed: 11/18/2022]
Abstract
HIV-1 envelope (Env) gp120 is an important target for neutralizing antibody (Ab) responses against the virus; however, developing gp120 vaccines that elicit potent and broad neutralizing Abs has proven to be a formidable challenge. Previously, removal of an N-linked glycan at residue 448 by an N to Q mutation (N448Q) has been found to enhance the in vitro antigenicity of neutralizing epitopes in the V3 loop. In this study the mutated gp120 was first compared with wild type gp120 for immunogenicity in mice using a DNA prime and protein boost immunization regimen. The N448Q mutant did not elicit higher titers of anti-gp120 serum Abs and failed to generate anti-V3 Abs. The sera also had no virus-neutralizing activity, even though the mutant induced higher levels of lymphoproliferation and cytokine production. Subsequently, the N448Q mutant was used to construct an immune complex vaccine with the anti-CD4 binding site monoclonal antibody (mAb) 654. The N448Q/654 complex stimulated comparably high levels of serum Abs to gp120 and V3 as the wild type complex. However, Abs against the C1 and C2 regions in the gp120 core were more elevated. Importantly, the mutant complex also elicited higher titers of neutralizing Abs activity than the wild type counterpart. Similar results were achieved with a complex made with gp120 bearing an N448E mutation, confirming the importance of the N448-linked glycan in modulating gp120 immunogenicity. Neutralizing activity was directed to V3 and other undefined neutralizing epitopes. Improved immunogenicity of the immune complexes correlated with alterations in exposure of V3 and other Ab epitopes and their stability against proteases. These data demonstrate the advantage of combining site-specific N-glycan removal and immune complex formation as a novel vaccine strategy to improve immunogenicity of targeted Ab epitopes on critical regions of HIV-1 gp120.
Collapse
Affiliation(s)
- Rajnish Kumar
- New York University School of Medicine, Department of Pathology, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
23
|
Lan J, Gao Z, Xiong H, Chuai X, Jin Y, Li J, Xian X, Liu G, Xie L, Zhang Y, Wang Y. Generation of protective immune responses against coxsackievirus B3 challenge by DNA prime–protein boost vaccination. Vaccine 2011; 29:6894-902. [DOI: 10.1016/j.vaccine.2011.07.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 07/13/2011] [Accepted: 07/16/2011] [Indexed: 12/31/2022]
|
24
|
Abstract
This review provides a detailed look at the attributes and immunologic mechanisms of plasmid DNA vaccines and their utility as laboratory tools as well as potential human vaccines. The immunogenicity and efficacy of DNA vaccines in a variety of preclinical models is used to illustrate how they differ from traditional vaccines in novel ways due to the in situ antigen production and the ease with which they are constructed. The ability to make new DNA vaccines without needing to handle a virulent pathogen or to adapt the pathogen for manufacturing purposes demonstrates the potential value of this vaccine technology for use against emerging and epidemic pathogens. Similarly, personalized anti-tumor DNA vaccines can also readily be made from a biopsy. Because DNA vaccines bias the T-helper (Th) cell response to a Th1 phenotype, DNA vaccines are also under development for vaccines against allergy and autoimmune diseases. The licensure of four animal health products, including two prophylactic vaccines against infectious diseases, one immunotherapy for cancer, and one gene therapy delivery of a hormone for a food animal, provides evidence of the efficacy of DNA vaccines in multiple species including horses and pigs. The size of these target animals provides evidence that the somewhat disappointing immunogenicity of DNA vaccines in a number of human clinical trials is not due simply to the larger mass of humans compared with most laboratory animals. The insights gained from the mechanisms of protection in the animal vaccines, the advances in the delivery and expression technologies for increasing the potency of DNA vaccines, and encouragingly potent human immune responses in certain clinical trials, provide insights for future efforts to develop DNA vaccines into a broadly useful vaccine and immunotherapy platform with applications for human and animal health.
Collapse
|
25
|
Comparative evaluation of immunization with recombinant protein and plasmid DNA vaccines of fusion antigen ROP2 and SAG1 from Toxoplasma gondii in mice: cellular and humoral immune responses. Parasitol Res 2011; 109:637-44. [DOI: 10.1007/s00436-011-2296-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 02/11/2011] [Indexed: 12/18/2022]
|
26
|
Li A, Qin L, Wang W, Zhu R, Yu Y, Liu H, Wang S. The use of layered double hydroxides as DNA vaccine delivery vector for enhancement of anti-melanoma immune response. Biomaterials 2010; 32:469-77. [PMID: 20934217 DOI: 10.1016/j.biomaterials.2010.08.107] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 08/30/2010] [Indexed: 12/24/2022]
Abstract
Our previous studies have shown that Mg:Al 1:1 layered double hydroxides (LDH(R1)) nanoparticles could be taken up by the MDDCs effectively and had an adjuvant activity for DC maturation. Furthermore, these LDH(R1) nanoparticles could up-regulate the expression of CCR7 and augment the migration of DCs in response to CCL21. In current study, we have evaluated whether LDH(R1) as DNA vaccine delivery carrier can augment the efficacy of DNA vaccine immunization in vivo. Firstly, we found that LDH(R1) was efficient in combining DNA and formed LDH(R1)/DNA complex with an average diameter of about 80-120 nm. Its high transfection efficiency in vivo delivered with a GFP expression plasmid was also observed. After delivery of pcDNA(3)-OVA/LDH(R1) complex by intradermal immunization in C57BL/6 mice, the LDH(R1) induced an enhanced serum antibody response much greater than naked DNA vaccine. Using B16-OVA melanoma as tumor model, we demonstrated that pcDNA(3)-OVA/LDH(R1) complex enhanced immune priming and protection from tumor challenge in vivo. Furthermore, we showed that LDH(R1) induced dramatically more effective CTL activation and skewed T helper polarization to Th1. Collectively, these findings demonstrate that this LDH(R1)/DNA plasmid complex should be a new and promising way in vaccination against tumor.
Collapse
Affiliation(s)
- Ang Li
- Tenth People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, PR China
| | | | | | | | | | | | | |
Collapse
|
27
|
Cafaro A, Macchia I, Maggiorella MT, Titti F, Ensoli B. Innovative approaches to develop prophylactic and therapeutic vaccines against HIV/AIDS. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 655:189-242. [PMID: 20047043 DOI: 10.1007/978-1-4419-1132-2_14] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The acquired immunodeficiency syndrome (AIDS) emerged in the human population in the summer of 1981. According to the latest United Nations estimates, worldwide over 33 million people are infected with human immunodeficiency virus (HIV) and the prevalence rates continue to rise globally. To control the alarming spread of HIV, an urgent need exists for developing a safe and effective vaccine that prevents individuals from becoming infected or progressing to disease. To be effective, an HIV/AIDS vaccine should induce broad and long-lasting humoral and cellular immune responses, at both mucosal and systemic level. However, the nature of protective immune responses remains largely elusive and this represents one of the major roadblocks preventing the development of an effective vaccine. Here we summarize our present understanding of the factors responsible for resistance to infection or control of progression to disease in human and monkey that may be relevant to vaccine development and briefly review recent approaches which are currently being tested in clinical trials. Finally, the rationale and the current status of novel strategies based on nonstructural HIV-1 proteins, such as Tat, Nef and Rev, used alone or in combination with modified structural HIV-1 Env proteins are discussed.
Collapse
Affiliation(s)
- Aurelio Cafaro
- National AIDS Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161, Rome, Italy
| | | | | | | | | |
Collapse
|
28
|
Wu Y, Zhang Q, Sales D, Bianco AE, Craig A. Vaccination with peptide mimotopes produces antibodies recognizing bacterial capsular polysaccharides. Vaccine 2010; 28:6425-35. [PMID: 20674874 DOI: 10.1016/j.vaccine.2010.07.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 06/07/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022]
Abstract
A phage display peptide library was screened using a panel of antibodies to the capsular polysaccharides of Streptococcus agalactiae and Neisseria meningitidis. Mimotopes NPDHPRVPTFMA (2-8), LIPFHKHPHHRG (3-2) and EQEIFTNITDRV (G3) showing the highest binding capacity and strongest ELISA reaction were selected for immunization experiments. These mimotopes were either synthesised as oligodeoxynucleotides for DNA immunization or MAP (multiple antigen peptide) for peptide immunization. Mimotope-DNA vaccination, particularly for G3, induced antibodies recognizing a number of target bacteria. This response was seen after the second boost injection and was significantly enhanced by the 3rd boost injection with a Th1-associated profile, which was dominated by IgG2a, followed by IgG1. Mimotope-MAP immunization also produced strong humoral immune responses to the bacteria. Antibodies from G3 DNA immunization reacted with the surface molecules of S. agalactiae, N. meningitidis and Escherichia coli K5 shown by indirect immunofluorescence staining, indicating a possible localization to the bacterial capsule. Antibodies produced both from DNA/MAP immunization reacted with purified bacterial capsular polysaccharides by ELISA and were of high avidity. We have further characterized peptide G3 by a 'tiling path' study to examine the effect of changing individual residues in the peptide in raising antibodies, which showed that the EIFTN motif in G3 was important in generating antibodies to several capsulated bacteria. We conclude that mimotope immunization with DNA or MAP potentially induces strong antibody responses against encapsulated bacteria. It is suggested that the antibody targets are polysaccharides, and these antibodies may cross react at least among closely related species of bacteria.
Collapse
Affiliation(s)
- Yang Wu
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | | | | | | | | |
Collapse
|
29
|
DNA vaccine expressing HIV-1 gp120/immunoglobulin fusion protein enhances cellular immunity. Vaccine 2010; 28:4920-7. [DOI: 10.1016/j.vaccine.2010.05.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 04/30/2010] [Accepted: 05/16/2010] [Indexed: 11/23/2022]
|
30
|
Hensley LE, Mulangu S, Asiedu C, Johnson J, Honko AN, Stanley D, Fabozzi G, Nichol ST, Ksiazek TG, Rollin PE, Wahl-Jensen V, Bailey M, Jahrling PB, Roederer M, Koup RA, Sullivan NJ. Demonstration of cross-protective vaccine immunity against an emerging pathogenic Ebolavirus Species. PLoS Pathog 2010; 6:e1000904. [PMID: 20502688 PMCID: PMC2873919 DOI: 10.1371/journal.ppat.1000904] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 04/09/2010] [Indexed: 11/19/2022] Open
Abstract
A major challenge in developing vaccines for emerging pathogens is their continued evolution and ability to escape human immunity. Therefore, an important goal of vaccine research is to advance vaccine candidates with sufficient breadth to respond to new outbreaks of previously undetected viruses. Ebolavirus (EBOV) vaccines have demonstrated protection against EBOV infection in nonhuman primates (NHP) and show promise in human clinical trials but immune protection occurs only with vaccines whose antigens are matched to the infectious challenge species. A 2007 hemorrhagic fever outbreak in Uganda demonstrated the existence of a new EBOV species, Bundibugyo (BEBOV), that differed from viruses covered by current vaccine candidates by up to 43% in genome sequence. To address the question of whether cross-protective immunity can be generated against this novel species, cynomolgus macaques were immunized with DNA/rAd5 vaccines expressing ZEBOV and SEBOV glycoprotein (GP) prior to lethal challenge with BEBOV. Vaccinated subjects developed robust, antigen-specific humoral and cellular immune responses against the GP from ZEBOV as well as cellular immunity against BEBOV GP, and immunized macaques were uniformly protected against lethal challenge with BEBOV. This report provides the first demonstration of vaccine-induced protective immunity against challenge with a heterologous EBOV species, and shows that Ebola vaccines capable of eliciting potent cellular immunity may provide the best strategy for eliciting cross-protection against newly emerging heterologous EBOV species. Ebola virus causes death, fear, and economic disruption during outbreaks. It is a concern worldwide as a natural pathogen and a bioterrorism agent, and has caused death to residents and tourists of Africa where the virus circulates. A vaccine strategy to protect against all circulating Ebola viruses is complicated by the fact that there are five different virus species, and individual vaccines provide protection only against those included in the vaccine. Making broad vaccines that contain multiple components is complicated, expensive, and poses challenges for regulatory approval. Therefore, in the present work, we examined whether a prime-boost immunization strategy with a vaccine targeted to one Ebola virus species could cross protect against a different species. We found that genetic immunization with vectors expressing the Ebola virus glycoprotein from Zaire blocked infection with a newly emerged virus species, Bundibugyo EBOV, not represented in the vaccine. Protection occurred in the absence of antibodies against the second species and was mediated instead by cellular immune responses. Therefore, single-component vaccines may be improved to protect against multiple Ebola viruses if they are designed to generate this type of immunity.
Collapse
Affiliation(s)
- Lisa E. Hensley
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Sabue Mulangu
- Biodefense Research Section, Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Clement Asiedu
- Biodefense Research Section, Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joshua Johnson
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Anna N. Honko
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Daphne Stanley
- Biodefense Research Section, Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Giulia Fabozzi
- Biodefense Research Section, Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stuart T. Nichol
- Special Pathogens Branch, Division of Viral and Rickettsial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Thomas G. Ksiazek
- Special Pathogens Branch, Division of Viral and Rickettsial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Pierre E. Rollin
- Special Pathogens Branch, Division of Viral and Rickettsial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Victoria Wahl-Jensen
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Michael Bailey
- Biodefense Research Section, Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter B. Jahrling
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mario Roederer
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard A. Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nancy J. Sullivan
- Biodefense Research Section, Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
31
|
Weaver E, Camacho Z, Gao F. Similar T-cell immune responses induced by group M consensus env immunogens with wild-type or minimum consensus variable regions. AIDS Res Hum Retroviruses 2010; 26:577-84. [PMID: 20438382 DOI: 10.1089/aid.2009.0258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Consensus HIV-1 genes can decrease the genetic distances between candidate immunogens and field virus strains. To ensure the functionality and optimal presentation of immunologic epitopes, we generated two group-M consensus env genes that contain variable regions either from a wild-type B/C recombinant virus isolate (CON6) or minimal consensus elements (CON-S) in the V1, V2, V4, and V5 regions. C57BL/6 and BALB/c mice were primed twice with CON6, CON-S, and subtype control (92UG37_A and HXB2/Bal_B) DNA and boosted with recombinant vaccinia virus (rVV). Mean antibody titers against 92UG37_A, 89.6_B, 96ZM651_C, CON6, and CON-S Env protein were determined. Both CON6 and CON-S induced higher mean antibody titers against several of the proteins, as compared with the subtype controls. However, no significant differences were found in mean antibody titers in animals immunized with CON6 or CON-S. Cellular immune responses were measured by using five complete Env overlapping peptide sets: subtype A (92UG37_A), subtype B (MN_B, 89.6_B and SF162_B), and subtype C (Chn19_C). The intensity of the induced cellular responses was measured by using pooled Env peptides; T-cell epitopes were identified by using matrix peptide pools and individual peptides. No significant differences in T-cell immune-response intensities were noted between CON6 and CON-S immunized BALB/c and C57BL/6 mice. In BALB/c mice, 10 and eight nonoverlapping T-cell epitopes were identified in CON6 and CON-S, whereas eight epitopes were identified in 92UG37_A and HXB2/BAL_B. In C57BL/6 mice, nine and six nonoverlapping T-cell epitopes were identified after immunization with CON6 and CON-S, respectively, whereas only four and three were identified in 92UG37_A and HXB2/BAL_B, respectively. When combined together from both mouse strains, 18 epitopes were identified. The group M artificial consensus env genes, CON6 and CON-S, were equally immunogenic in breadth and intensity for inducing humoral and cellular immune responses.
Collapse
Affiliation(s)
- E.A. Weaver
- Department of Infectious Diseases, Mayo Clinic, Rochester, Minnesota
| | - Z.T. Camacho
- Department of Biology, Western New Mexico University, Silver City, New Mexico
| | - F. Gao
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
32
|
Priming immunization with DNA augments immunogenicity of recombinant adenoviral vectors for both HIV-1 specific antibody and T-cell responses. PLoS One 2010; 5:e9015. [PMID: 20126394 PMCID: PMC2814848 DOI: 10.1371/journal.pone.0009015] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 01/11/2010] [Indexed: 11/19/2022] Open
Abstract
Background Induction of HIV-1-specific T-cell responses relevant to diverse subtypes is a major goal of HIV vaccine development. Prime-boost regimens using heterologous gene-based vaccine vectors have induced potent, polyfunctional T cell responses in preclinical studies. Methods The first opportunity to evaluate the immunogenicity of DNA priming followed by recombinant adenovirus serotype 5 (rAd5) boosting was as open-label rollover trials in subjects who had been enrolled in prior studies of HIV-1 specific DNA vaccines. All subjects underwent apheresis before and after rAd5 boosting to characterize in depth the T cell and antibody response induced by the heterologous DNA/rAd5 prime-boost combination. Results rAd5 boosting was well-tolerated with no serious adverse events. Compared to DNA or rAd5 vaccine alone, sequential DNA/rAd5 administration induced 7-fold higher magnitude Env-biased HIV-1-specific CD8+ T-cell responses and 100-fold greater antibody titers measured by ELISA. There was no significant neutralizing antibody activity against primary isolates. Vaccine-elicited CD4+ and CD8+ T-cells expressed multiple functions and were predominantly long-term (CD127+) central or effector memory T cells and that persisted in blood for >6 months. Epitopes mapped in Gag and Env demonstrated partial cross-clade recognition. Conclusion Heterologous prime-boost using vector-based gene delivery of vaccine antigens is a potent immunization strategy for inducing both antibody and T-cell responses. Trial Registration ClinicalTrails.gov NCT00102089, NCT00108654
Collapse
|
33
|
Li Y, Jin J, Yang Y, Bian Z, Chen Z, Fan M. Enhanced immunogenicity of an anti-caries vaccine encoding a cell-surface protein antigen ofStreptococcus mutansby intranasal DNA prime-protein boost immunization. J Gene Med 2009; 11:1039-47. [DOI: 10.1002/jgm.1386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
34
|
Vaine M, Lu S, Wang S. Progress on the induction of neutralizing antibodies against HIV type 1 (HIV-1). BioDrugs 2009; 23:137-53. [PMID: 19627166 DOI: 10.2165/00063030-200923030-00001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Infection with HIV type 1 (HIV-1), the causative agent of AIDS, is one of the most catastrophic pandemics to affect human healthcare in the latter 20th century. The best hope of controlling this pandemic is the development of a successful prophylactic vaccine. However, to date, this goal has proven to be exceptionally elusive. The recent failure of an experimental vaccine in a phase IIb study, named the STEP trial, intended solely to elicit cell-mediated immune responses against HIV-1, has highlighted the need for a balanced immune response consisting of not only cellular immunity but also a broad and potent humoral antibody response that can prevent infection with HIV-1. This article reviews the efforts made up to this point to elicit such antibody responses, especially with regard to the use of a DNA prime-protein boost regimen, which has been proven to be a highly effective platform for the induction of neutralizing antibodies in both animal and early-phase human studies.
Collapse
Affiliation(s)
- Michael Vaine
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | |
Collapse
|
35
|
Pérez-Vélez ME, García-Nieves T, Colón-Sánchez C, Martínez I. Induction of neutralization antibodies in mice by Dengue-2 envelope DNA vaccines. PUERTO RICO HEALTH SCIENCES JOURNAL 2009; 28:239-50. [PMID: 19715116 PMCID: PMC2897078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
BACKGROUND Dengue (DEN) viruses have become a public health problem that affects approximately 100 million people worldwide each year. Prevention measures rely on vector control programs, which are inefficient. Therefore, a vaccine is urgently needed. METHODS The main goal of our laboratory is to develop an efficient tetravalent DEN DNA vaccine. In this study, we constructed four DEN-2 DNA vaccines expressing prM/env genes, using the homologous leader sequence (VecD2, VRD2E) or the tissue plasminogen activator (tPA) secretory signal (VecD2tpa, VRD2tpa). In vitro expression was tested by transient transfections and Western blot. The immunogenicity and protective efficacy of the vaccine candidates was evaluated in BALB/c mice, using intramuscular (IM) and intradermal (ID) vaccination routes. RESULTS Envelope (E) protein expression was detected in transfected COS-7 or 293T cells. We found statistical differences in the antibody responses induced by these vaccine candidates. In addition, the strongest antibody responses and protection were observed when the vaccines were delivered intramuscularly. Moreover, the tPA leader sequence did not significantly improve the vaccine immunogenicity since VecD2 and VecD2tpa induced similar antibody responses. CONCLUSIONS We demonstrated that most of our DNA vaccine candidates could induce antibody responses and partial protection against DEN-2 virus in mice. These results provide valuable information for the design and construction of a tetravalent DEN DNA vaccine.
Collapse
Affiliation(s)
- Mariel E Pérez-Vélez
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan
| | | | | | | |
Collapse
|
36
|
Effect of immunological adjuvants: GM-CSF (granulocyte-monocyte colony stimulating factor) and IL-23 (interleukin-23) on immune responses generated against hepatitis C virus core DNA vaccine. Cytokine 2009; 46:43-50. [DOI: 10.1016/j.cyto.2008.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Revised: 12/03/2008] [Accepted: 12/13/2008] [Indexed: 11/23/2022]
|
37
|
Matic S, Minafra A, Boscia D, da Cunha ATP, Martelli GP. Production of antibodies to Little cherry virus 1 coat protein by DNA prime and protein boost immunization. J Virol Methods 2008; 155:72-6. [PMID: 18940199 DOI: 10.1016/j.jviromet.2008.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 09/08/2008] [Accepted: 09/15/2008] [Indexed: 10/21/2022]
Abstract
Little cherry, an economically important disease of cherry is caused by at least two different viruses. One of these is Little cherry virus 1 (LChV-1) for the detection of which no efficient serological tools are available, so that diagnosis is based on molecular methods. In this study, different immunization strategies for producing antibodies against the viral coat protein of LChV-1 were tried, using either purified virus preparations, or bacterially expressed protein, or a DNA vector that expressed the cloned coat protein (CP) gene in vivo. Effective induction of specific antibodies to LChV-1 CP was obtained using DNA intramuscular immunization followed by a single boost with the recombinant protein. The entire coat protein sequence was cloned in a mammalian expression vector and, after being coated by an amphiphilic non-toxic reagent was delivered into rabbit. A protein boost increased the specific immune response against the virus protein. The sensitivity of this antiserum is lower if compared with that of antisera raised conventionally against other viruses, thus it requires improvements for use for diagnostic purposes.
Collapse
Affiliation(s)
- S Matic
- Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi and Istituto di Virologia Vegetale del CNR, sezione di Bari, Via Amendola 165/A, 70126 Bari, Italy
| | | | | | | | | |
Collapse
|
38
|
Li P, Cao RB, Zheng QS, Liu JJ, Li Y, Wang EX, Li F, Chen PY. Enhancement of humoral and cellular immunity in mice against Japanese encephalitis virus using a DNA prime-protein boost vaccine strategy. Vet J 2008; 183:210-6. [PMID: 19008134 DOI: 10.1016/j.tvjl.2008.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 09/17/2008] [Accepted: 09/27/2008] [Indexed: 11/17/2022]
Abstract
A synthetic multi-epitope gene containing critical epitopes of the Japanese encephalitis virus (JEV) envelope gene was cloned into both prokaryotic and eukaryotic expression vectors. The recombinant plasmid and purified recombinant protein (heterologously expressed in Escherichia coli) were used as immunogens in a mouse model. The results indicate that both the recombinant protein and the DNA vaccine induce humoral and cellular immune responses. Neutralising antibody titres in mice in the pcDNA-TEP plus rEP group increased considerably relative to mice immunised using either pcDNA-TEP or rEP alone (P<0.05). Furthermore, the highest levels of interleukin (IL)-2, interferon-gamma and IL-4 were induced following priming with the DNA vaccine and boosting with the recombinant protein. Together these findings demonstrate that a DNA-recombinant protein prime-boost vaccination strategy can produce high levels of antibody and trigger significant T cell responses in mice, highlighting the potential value of such an approach in the prevention of JEV infection.
Collapse
Affiliation(s)
- Peng Li
- Key Laboratory of Animal Disease Diagnosis and Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Chege GK, Shephard EG, Meyers A, van Harmelen J, Williamson C, Lynch A, Gray CM, Rybicki EP, Williamson AL. HIV-1 subtype C Pr55gag virus-like particle vaccine efficiently boosts baboons primed with a matched DNA vaccine. J Gen Virol 2008; 89:2214-2227. [PMID: 18753231 DOI: 10.1099/vir.0.83501-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A DNA vaccine expressing human immunodeficiency virus type 1 (HIV-1) southern African subtype C Gag (pTHGag) and a recombinant baculovirus Pr55gag virus-like particle prepared using a subtype C Pr55gag protein (Gag VLP) was tested in a prime-boost inoculation regimen in Chacma baboons. The response of five baboons to Gag peptides in a gamma interferon (IFN-gamma) enzyme-linked immunospot (ELISPOT) assay after three pTHGag immunizations ranged from 100 to 515 spot-forming units (s.f.u.) per 10(6) peripheral blood mononuclear cells (PBMCs), whilst the response of two baboons to the Gag VLP vaccine ranged from 415 to 465 s.f.u. per 10(6) PBMCs. An increase in the Gag-specific response to a range of 775-3583 s.f.u. per 10(6) PBMCs was achieved by boosting with Gag VLPs the five baboons that were primed with pTHGag. No improvement in Gag responses was achieved in this prime-boost inoculation regimen by increasing the number of pTHGag inoculations to six. IFN-gamma responses were mapped to several peptides, some of which have been reported to be targeted by PBMCs from HIV-1 subtype C-infected individuals. Gag VLPs, given as a single-modality regimen, induced a predominantly CD8+ T-cell IFN-gamma response and interleukin-2 was a major cytokine within a mix of predominantly Th1 cytokines produced by a DNA-VLP prime-boost modality. The prime-boost inoculation regimen induced high serum p24 antibody titres in all baboons, which were several fold above that induced by the individual vaccines. Overall, this study demonstrated that these DNA prime/VLP boost vaccine regimens are highly immunogenic in baboons, inducing high-magnitude and broad multifunctional responses, providing support for the development of these products for clinical trials.
Collapse
Affiliation(s)
- Gerald K Chege
- Institute of Primate Research, PO Box 24481, Karen 00502, Nairobi, Kenya.,Medical Virology, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Enid G Shephard
- MRC/UCT Liver Research Centre, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Ann Meyers
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Rondebosch, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Joanne van Harmelen
- Medical Virology, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa.,Medical Virology, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Alisson Lynch
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Clive M Gray
- National Institute for Communicable Diseases, Private Bag X4, Sandringham 2131, Johannesburg, South Africa
| | - Edward P Rybicki
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Rondebosch, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Anna-Lise Williamson
- National Health Laboratory Service, Groote Schuur Hospital, Observatory, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa.,Medical Virology, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| |
Collapse
|
40
|
Chen AY, Fry SR, Daggard GE, Mukkur TK. Evaluation of immune response to recombinant potential protective antigens of Mycoplasma hyopneumoniae delivered as cocktail DNA and/or recombinant protein vaccines in mice. Vaccine 2008; 26:4372-8. [DOI: 10.1016/j.vaccine.2008.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 05/30/2008] [Accepted: 06/02/2008] [Indexed: 12/13/2022]
|
41
|
Koopman G, Mortier D, Hofman S, Mathy N, Koutsoukos M, Ertl P, Overend P, van Wely C, Thomsen LL, Wahren B, Voss G, Heeney JL. Immune-response profiles induced by human immunodeficiency virus type 1 vaccine DNA, protein or mixed-modality immunization: increased protection from pathogenic simian–human immunodeficiency virus viraemia with protein/DNA combination. J Gen Virol 2008; 89:540-5533. [PMID: 18198386 DOI: 10.1099/vir.0.83384-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Current data suggest that prophylactic human immunodeficiency virus type 1 (HIV) vaccines will be most efficacious if they elicit a combination of adaptive humoral and T-cell responses. Here, we explored the use of different vaccine strategies in heterologous prime–boost regimes and evaluated the breadth and nature of immune responses in rhesus monkeys induced by epidermally delivered plasmid DNA or recombinant HIV proteins formulated in the AS02A adjuvant system. These immunogens were administered alone or as either prime or boost in mixed-modality regimes. DNA immunization alone induced cell-mediated immune (CMI) responses, with a strong bias towards Th1-type cytokines, and no detectable antibodies to the vaccine antigens. Whenever adjuvanted protein was used as a vaccine, either alone or in a regime combined with DNA, high-titre antibody responses to all vaccine antigens were detected in addition to strong Th1- and Th2-type CMI responses. As the vaccine antigens included HIV-1 Env, Nef and Tat, as well as simian immunodeficiency virus (SIV)mac239 Nef, the animals were subsequently exposed to a heterologous, pathogenic simian–human immunodeficiency virus (SHIV)89.6p challenge. Protection against sustained high virus load was observed to some degree in all vaccinated groups. Suppression of virus replication to levels below detection was observed most frequently in the group immunized with protein followed by DNA immunization, and similarly in the group immunized with DNA alone. Interestingly, control of virus replication was associated with increased SIV Nef- and Gag-specific gamma interferon responses observed immediately following challenge.
Collapse
MESH Headings
- AIDS Vaccines/immunology
- Animals
- Antibodies, Viral/immunology
- Antibodies, Viral/pharmacology
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, env/metabolism
- Gene Products, tat/genetics
- Gene Products, tat/immunology
- Gene Products, tat/metabolism
- HIV/genetics
- HIV/immunology
- HIV/metabolism
- Human Immunodeficiency Virus Proteins/administration & dosage
- Human Immunodeficiency Virus Proteins/genetics
- Humans
- Immunization
- Macaca mulatta
- Simian Immunodeficiency Virus/physiology
- Vaccines, DNA/immunology
- Vaccines, Subunit/immunology
- Viremia
- Virus Replication
Collapse
Affiliation(s)
- Gerrit Koopman
- Department of Virology, Biomedical Primate Research Center (BPRC), 2288 GH Rijswijk, The Netherlands
| | - Daniella Mortier
- Department of Virology, Biomedical Primate Research Center (BPRC), 2288 GH Rijswijk, The Netherlands
| | - Sam Hofman
- Department of Virology, Biomedical Primate Research Center (BPRC), 2288 GH Rijswijk, The Netherlands
| | | | | | - Peter Ertl
- GlaxoSmithKline Biopharmaceuticals CEDD Biology, Stevenage, UK
| | - Phil Overend
- GlaxoSmithKline Biopharmaceuticals CEDD Biology, Stevenage, UK
| | - Cathy van Wely
- GlaxoSmithKline Biopharmaceuticals CEDD Biology, Stevenage, UK
| | - Lindy L Thomsen
- GlaxoSmithKline Biopharmaceuticals CEDD Biology, Stevenage, UK
| | - Britta Wahren
- Swedish Institute for Infectious Disease Control, Karolinska Institutet, Stockholm, Sweden
| | - Gerald Voss
- GlaxoSmithKline Biologicals, Rixensart, Belgium
| | - Jonathan L Heeney
- Department of Veterinary Medicine, University of Cambridge, UK
- Department of Virology, Biomedical Primate Research Center (BPRC), 2288 GH Rijswijk, The Netherlands
| |
Collapse
|
42
|
Nehete PN, Nehete BP, Hill L, Manuri PR, Baladandayuthapani V, Feng L, Simmons J, Sastry KJ. Selective induction of cell-mediated immunity and protection of rhesus macaques from chronic SHIV(KU2) infection by prophylactic vaccination with a conserved HIV-1 envelope peptide-cocktail. Virology 2008; 370:130-41. [PMID: 17920095 PMCID: PMC2196441 DOI: 10.1016/j.virol.2007.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 07/25/2007] [Accepted: 08/21/2007] [Indexed: 10/22/2022]
Abstract
Infection of Indian-origin rhesus macaques by the simian human immunodeficiency virus (SHIV) is considered to be a suitable preclinical model for directly testing efficacy of vaccine candidates based on the HIV-1 envelope. We used this model for prophylactic vaccination with a peptide-cocktail comprised of highly conserved HIV-1 envelope sequences immunogenic/antigenic in macaques and humans. Separate groups of macaques were immunized with the peptide-cocktail by intravenous and subcutaneous routes using autologous dendritic cells (DC) and Freund's adjuvant, respectively. The vaccine elicited antigen specific IFN-gamma-producing cells and T-cell proliferation, but not HIV-neutralizing antibodies. The vaccinated animals also exhibited efficient cross-clade cytolytic activity against target cells expressing envelope proteins corresponding to HIV-1 strains representative of multiple clades that increased after intravenous challenge with pathogenic SHIV(KU2). Virus-neutralizing antibodies were either undetectable or present only transiently at low levels in the control as well as vaccinated monkeys after infection. Significant control of plasma viremia leading to undetectable levels was achieved in majority of vaccinated monkeys compared to mock-vaccinated controls. Monkeys vaccinated with the peptide-cocktail using autologous DC, compared to Freund's adjuvant, and the mock-vaccinated animals, showed significantly higher IFN-gamma production, higher levels of vaccine-specific IFN-gamma producing CD4(+) cells and significant control of plasma viremia. These results support DC-based vaccine delivery and the utility of the conserved HIV-1 envelope peptide-cocktail, capable of priming strong cell-mediated immunity, for potential inclusion in HIV vaccination strategies.
Collapse
Affiliation(s)
- Pramod N Nehete
- Department of Veterinary Sciences, The University of Texas M. D. Anderson Cancer Center, Bastrop, TX 78602, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Hallermalm K, Johansson S, Bråve A, Ek M, Engström G, Boberg A, Gudmundsdotter L, Blomberg P, Mellstedt H, Stout R, Liu MA, Wahren B. Pre-clinical evaluation of a CEA DNA prime/protein boost vaccination strategy against colorectal cancer. Scand J Immunol 2007; 66:43-51. [PMID: 17587345 DOI: 10.1111/j.1365-3083.2007.01945.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In preparation for a clinical trial in patients diagnosed with colorectal cancer, a vaccination strategy targeting the carcinoembryonic antigen (CEA) was evaluated in mice using a GMP-produced plasmid DNA vaccine, CEA66, encoding a truncated form of the tumour-associated antigen, CEA. The GMP-produced CEA DNA vaccine was also evaluated for toxicity. Repeated intradermal administration of the GMP-produced vaccine using a novel needle-free jet injection device (Biojector) induced robust CD4 and CD8 T-cell responses in mice, and did not result in any vaccine-related toxicity. In a heterologous DNA prime/protein boost setting, cellular immune responses were of higher magnitude in animals primed with CEA66 DNA than in animals receiving repeated doses of recombinant CEA protein. These responses were further enhanced if recombinant murine granulocyte-macrophage colony-stimulating factor was given as an adjuvant prior to vaccination. In contrast to repeated administration of recombinant CEA protein as a single modality vaccine, the heterologous CEA66 DNA prime/rCEA boost vaccination strategy resulted in a qualitatively broader immune response, and supports clinical testing of this vaccination regimen in humans.
Collapse
Affiliation(s)
- K Hallermalm
- Department of Microbiology and Tumor and Cell Biology, Karolinska Institutet & Swedish Institute for Infectious Disease ControlCenter for Molecular Medicine, Karolinska InstitutetVecura, Cell & Gene Therapy Center, Karolinska SjukhusetCancer Center Karolinska, Karolinska Sjukhuset, Stockholm, SwedenBioject Medical Technologies Inc., Tualatin, OR, USAProTherImmune, Lafayette, CA, USA
| | - S Johansson
- Department of Microbiology and Tumor and Cell Biology, Karolinska Institutet & Swedish Institute for Infectious Disease ControlCenter for Molecular Medicine, Karolinska InstitutetVecura, Cell & Gene Therapy Center, Karolinska SjukhusetCancer Center Karolinska, Karolinska Sjukhuset, Stockholm, SwedenBioject Medical Technologies Inc., Tualatin, OR, USAProTherImmune, Lafayette, CA, USA
| | - A Bråve
- Department of Microbiology and Tumor and Cell Biology, Karolinska Institutet & Swedish Institute for Infectious Disease ControlCenter for Molecular Medicine, Karolinska InstitutetVecura, Cell & Gene Therapy Center, Karolinska SjukhusetCancer Center Karolinska, Karolinska Sjukhuset, Stockholm, SwedenBioject Medical Technologies Inc., Tualatin, OR, USAProTherImmune, Lafayette, CA, USA
| | - M Ek
- Department of Microbiology and Tumor and Cell Biology, Karolinska Institutet & Swedish Institute for Infectious Disease ControlCenter for Molecular Medicine, Karolinska InstitutetVecura, Cell & Gene Therapy Center, Karolinska SjukhusetCancer Center Karolinska, Karolinska Sjukhuset, Stockholm, SwedenBioject Medical Technologies Inc., Tualatin, OR, USAProTherImmune, Lafayette, CA, USA
| | - G Engström
- Department of Microbiology and Tumor and Cell Biology, Karolinska Institutet & Swedish Institute for Infectious Disease ControlCenter for Molecular Medicine, Karolinska InstitutetVecura, Cell & Gene Therapy Center, Karolinska SjukhusetCancer Center Karolinska, Karolinska Sjukhuset, Stockholm, SwedenBioject Medical Technologies Inc., Tualatin, OR, USAProTherImmune, Lafayette, CA, USA
| | - A Boberg
- Department of Microbiology and Tumor and Cell Biology, Karolinska Institutet & Swedish Institute for Infectious Disease ControlCenter for Molecular Medicine, Karolinska InstitutetVecura, Cell & Gene Therapy Center, Karolinska SjukhusetCancer Center Karolinska, Karolinska Sjukhuset, Stockholm, SwedenBioject Medical Technologies Inc., Tualatin, OR, USAProTherImmune, Lafayette, CA, USA
| | - L Gudmundsdotter
- Department of Microbiology and Tumor and Cell Biology, Karolinska Institutet & Swedish Institute for Infectious Disease ControlCenter for Molecular Medicine, Karolinska InstitutetVecura, Cell & Gene Therapy Center, Karolinska SjukhusetCancer Center Karolinska, Karolinska Sjukhuset, Stockholm, SwedenBioject Medical Technologies Inc., Tualatin, OR, USAProTherImmune, Lafayette, CA, USA
| | - P Blomberg
- Department of Microbiology and Tumor and Cell Biology, Karolinska Institutet & Swedish Institute for Infectious Disease ControlCenter for Molecular Medicine, Karolinska InstitutetVecura, Cell & Gene Therapy Center, Karolinska SjukhusetCancer Center Karolinska, Karolinska Sjukhuset, Stockholm, SwedenBioject Medical Technologies Inc., Tualatin, OR, USAProTherImmune, Lafayette, CA, USA
| | - H Mellstedt
- Department of Microbiology and Tumor and Cell Biology, Karolinska Institutet & Swedish Institute for Infectious Disease ControlCenter for Molecular Medicine, Karolinska InstitutetVecura, Cell & Gene Therapy Center, Karolinska SjukhusetCancer Center Karolinska, Karolinska Sjukhuset, Stockholm, SwedenBioject Medical Technologies Inc., Tualatin, OR, USAProTherImmune, Lafayette, CA, USA
| | - R Stout
- Department of Microbiology and Tumor and Cell Biology, Karolinska Institutet & Swedish Institute for Infectious Disease ControlCenter for Molecular Medicine, Karolinska InstitutetVecura, Cell & Gene Therapy Center, Karolinska SjukhusetCancer Center Karolinska, Karolinska Sjukhuset, Stockholm, SwedenBioject Medical Technologies Inc., Tualatin, OR, USAProTherImmune, Lafayette, CA, USA
| | - M A Liu
- Department of Microbiology and Tumor and Cell Biology, Karolinska Institutet & Swedish Institute for Infectious Disease ControlCenter for Molecular Medicine, Karolinska InstitutetVecura, Cell & Gene Therapy Center, Karolinska SjukhusetCancer Center Karolinska, Karolinska Sjukhuset, Stockholm, SwedenBioject Medical Technologies Inc., Tualatin, OR, USAProTherImmune, Lafayette, CA, USA
| | - B Wahren
- Department of Microbiology and Tumor and Cell Biology, Karolinska Institutet & Swedish Institute for Infectious Disease ControlCenter for Molecular Medicine, Karolinska InstitutetVecura, Cell & Gene Therapy Center, Karolinska SjukhusetCancer Center Karolinska, Karolinska Sjukhuset, Stockholm, SwedenBioject Medical Technologies Inc., Tualatin, OR, USAProTherImmune, Lafayette, CA, USA
| |
Collapse
|
44
|
Zhou X, Liu B, Yu X, Zha X, Zhang X, Wang X, Chen Y, Chen Y, Chen Y, Shan Y, Jin Y, Wu Y, Liu J, Kong W, Shen J. Enhance immune response to DNA vaccine based on a novel multicomponent supramolecular assembly. Biomaterials 2007; 28:4684-92. [PMID: 17686512 PMCID: PMC7124441 DOI: 10.1016/j.biomaterials.2007.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 07/02/2007] [Indexed: 11/24/2022]
Abstract
DNA vaccination has tremendous potential for treating or preventing numerous diseases for which traditional vaccines are ineffective but the technique can be limited by low immunogenicity. Current synthetic DNA delivery systems are versatile and safe, but substantially less efficient than viruses. Here, a novel multicomponent supramolecular system involving the preparation of mannose-bearing chitosan oligomers microspheres with entrapping complexes of DNA vaccine and polyethylenimine was developed to mimic many of the beneficial properties of the viruses. After delivery by intramuscular immunization in BALB/c mice, the microspheres induced an enhanced serum antibody responses two orders of magnitude greater than naked DNA vaccine. Additionally, in contrast to naked DNA, the microspheres induced potent cytotoxic T lymphocyte responses at a low dose. Consequently, formulation of DNA vaccines into multicomponent vectors is a powerful means of increasing vaccine potency.
Collapse
Affiliation(s)
- Xianfeng Zhou
- College of Life Science, Key Laboratory for Supramolecular Structure & Materials of Ministry of Education, Jilin University, Changchun 130012, and Sichuan Tumor Hospital & Institute, Chengdu, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Brice GT, Dobaño C, Sedegah M, Stefaniak M, Graber NL, Campo JJ, Carucci DJ, Doolan DL. Extended immunization intervals enhance the immunogenicity and protective efficacy of plasmid DNA vaccines. Microbes Infect 2007; 9:1439-46. [PMID: 17913540 DOI: 10.1016/j.micinf.2007.07.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 07/25/2007] [Accepted: 07/26/2007] [Indexed: 10/23/2022]
Abstract
Effective vaccines against infectious diseases and biological warfare agents remain an urgent public health priority. Studies have characterized the differentiation of effector and memory T cells and identified a subset of T cells capable of conferring enhanced protective immunity against pathogen challenge. We hypothesized that the kinetics of T cell differentiation influences the immunogenicity and protective efficacy of plasmid DNA vaccines, and tested this hypothesis in the Plasmodium yoelii murine model of malaria. We found that increasing the interval between immunizations significantly enhanced the frequency and magnitude of CD8+ and CD4+ T cell responses as well as protective immunity against sporozoite challenge. Moreover, the interval between immunizations was more important than the total number of immunizations. Immunization interval had a significantly greater impact on T cell responses and protective immunity than on antibody responses. With prolonged immunization intervals, T cell responses induced by homologous DNA only regimens achieved levels similar to those induced by heterologous DNA prime/ virus boost immunization at standard intervals. Our studies establish that the dosing interval significantly impacts the immunogenicity and protective efficacy of plasmid DNA vaccines.
Collapse
Affiliation(s)
- Gary T Brice
- Malaria Program, Naval Medical Research Center, Silver Spring, MD 20910-7500, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Thirugnanam S, Pandiaraja P, Ramaswamy K, Murugan V, Gnanasekar M, Nandakumar K, Reddy MVR, Kaliraj P. Brugia malayi: comparison of protective immune responses induced by Bm-alt-2 DNA, recombinant Bm-ALT-2 protein and prime-boost vaccine regimens in a jird model. Exp Parasitol 2007; 116:483-91. [PMID: 17442307 PMCID: PMC2763209 DOI: 10.1016/j.exppara.2007.02.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2006] [Revised: 02/28/2007] [Accepted: 02/28/2007] [Indexed: 11/30/2022]
Abstract
Immunization of jirds with Bm-alt-2 elicited partial protection against challenge infection with the filarial parasite Brugia malayi. In this study, we initially compared the protective immune responses elicited following immunization with recombinant Bm-ALT-2 protein regimen and Bm-alt-2 DNA regimen. These studies showed that protein vaccination conferred approximately 75% protection compared to DNA vaccination that conferred only 57% protection. Analysis of the protective immune responses showed that the protein immunization promoted a Th2-biased response with an increase in IL-4, IL-5 and IgG1 responses, whereas, the DNA vaccine promoted a Th1-biased response with profound IFN-gamma and IgG2a responses. Since protein vaccination gave better results than DNA vaccination, we then wanted to evaluate whether a prime-boost vaccination that combined DNA prime and protein boost will significantly increase the protective responses induced by the protein vaccine. Our results suggest that prime-boost vaccination had no added advantage and was comparatively less effective (64% protection) than the Bm-ALT-2 protein alone vaccination. Prime boost vaccination generated mixed Th1/Th2 responses with a slightly diminished Th2 responses compared to protein vaccination. Thus, our results suggest that Bm-ALT-2 protein vaccination regimen may be slightly better than prime-boost vaccine regimen and the mechanism of protection appears to be largely mediated by a Th2-biased response.
Collapse
MESH Headings
- Animals
- Antibodies, Helminth/biosynthesis
- Antibodies, Helminth/blood
- Antigens, Helminth/genetics
- Antigens, Helminth/immunology
- Brugia malayi/immunology
- Cytokines/biosynthesis
- Cytokines/genetics
- DNA, Helminth/immunology
- Diffusion Chambers, Culture
- Disease Models, Animal
- Elephantiasis, Filarial/prevention & control
- Gerbillinae
- Helminth Proteins/genetics
- Helminth Proteins/immunology
- Immunity, Cellular
- Immunization/methods
- Lymphocyte Activation
- Male
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Th2 Cells/immunology
- Vaccines/immunology
- Vaccines, DNA/immunology
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
| | | | - Kalyanasundaram Ramaswamy
- Department of Biomedical Sciences, University of Illinois, College of Medicine, Rockford, IL 61107, USA
| | - Vadivel Murugan
- Centre for Biotechnology, Anna University, Chennai 600 025, India
| | - Munirathinam Gnanasekar
- Department of Biomedical Sciences, University of Illinois, College of Medicine, Rockford, IL 61107, USA
| | - Krithika Nandakumar
- Jamnalal Bajaj Tropical Disease Research Centre, Mahatma Gandhi Institute of Medical Sciences, Sevagram, India
| | - Maryada Venkata Rami Reddy
- Jamnalal Bajaj Tropical Disease Research Centre, Mahatma Gandhi Institute of Medical Sciences, Sevagram, India
| | - Perumal Kaliraj
- Centre for Biotechnology, Anna University, Chennai 600 025, India
| |
Collapse
|
47
|
Han TK, Dao ML. Enhancement of salivary IgA response to a DNA vaccine against Streptococcus mutans wall-associated protein A in mice by plasmid-based adjuvants. J Med Microbiol 2007; 56:675-680. [PMID: 17446293 DOI: 10.1099/jmm.0.47020-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A specific salivary IgA (sIgA) response was obtained in mice by intranasal immunization with a naked DNA vaccine consisting of the Streptococcus mutans wall-associated protein A gene (wapA) inserted into the mammalian expression vector pcDNA3.1/V5/His-TOPO. In the present study, the vaccine, referred to as pcDNA-wapA, was administered with or without the cationic lipid DMRIE-C. No mucosal response was observed in mice immunized with the vaccine alone, whereas a weak and temporal sIgA response was obtained when the vaccine was mixed with DMRIE-C. To investigate the use of pcDNA containing the interleukin 5 (IL-5) gene (pcDNA-il-5) or the cholera toxin B gene (pcDNA-ctb) as genetic adjuvants, these constructs were used in co-immunization studies. The enhancement effect was transient with pcDNA-il-5, but longer lasting with pcDNA-ctb, thus supporting the use of the latter as a genetic adjuvant to DNA vaccine.
Collapse
MESH Headings
- Adjuvants, Immunologic/genetics
- Administration, Intranasal
- Animals
- Antibodies, Bacterial/analysis
- Antibodies, Bacterial/immunology
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Cholera Toxin/genetics
- Cholera Toxin/immunology
- Female
- Genetic Vectors
- Immunity, Mucosal
- Immunoglobulin A, Secretory/analysis
- Immunoglobulin A, Secretory/immunology
- Interleukin-5/genetics
- Interleukin-5/immunology
- Mice
- Mice, Inbred BALB C
- Plasmids/genetics
- Saliva/immunology
- Streptococcal Vaccines/genetics
- Streptococcal Vaccines/immunology
- Streptococcus mutans/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Thomas K Han
- Department of Biology, University of South Florida, Tampa, FL, USA
| | - My Lien Dao
- Department of Biology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
48
|
Zhou X, Liu B, Yu X, Zha X, Zhang X, Chen Y, Wang X, Jin Y, Wu Y, Chen Y, Shan Y, Chen Y, Liu J, Kong W, Shen J. Controlled release of PEI/DNA complexes from mannose-bearing chitosan microspheres as a potent delivery system to enhance immune response to HBV DNA vaccine. J Control Release 2007; 121:200-7. [PMID: 17630014 PMCID: PMC7126484 DOI: 10.1016/j.jconrel.2007.05.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 05/08/2007] [Accepted: 05/17/2007] [Indexed: 01/12/2023]
Abstract
A novel approach involving the preparation of mannose-bearing chitosan microspheres with entrapping complexes of HBV DNA and PEI was developed to improve the delivery of DNA into antigen-presenting cells (APCs) after intramuscular (i.m.) injection. Compared with the traditional chitosan microspheres, the microspheres could quickly release intact and penetrative PEI/DNA complexes. What's more, chitosan was modified with mannose to target the primary APCs such as dendritic cells (DCs) owing to the high density of mannose receptors expressing on the surface of immature DCs. After i.m. immunization, the microspheres induced significantly enhanced serum antibody and cytotoxic T lymphocyte (CTL) responses in comparison to naked DNA.
Collapse
Affiliation(s)
- Xianfeng Zhou
- College of Life Science, Jilin University, Changchun 130012, PR China
- Key Laboratory for Supramolecular Structure and Materials of Ministry of Education, Jilin University, Changchun 130012, PR China
| | - Bin Liu
- Key Laboratory for Supramolecular Structure and Materials of Ministry of Education, Jilin University, Changchun 130012, PR China
| | - Xianghui Yu
- College of Life Science, Jilin University, Changchun 130012, PR China
- Key Laboratory for Supramolecular Structure and Materials of Ministry of Education, Jilin University, Changchun 130012, PR China
| | - Xiao Zha
- Key Laboratory for Supramolecular Structure and Materials of Ministry of Education, Jilin University, Changchun 130012, PR China
- Sichuan Tumor Hospital & Institute, Chengdu 610041, PR China
| | - Xizhen Zhang
- College of Life Science, Jilin University, Changchun 130012, PR China
| | - Yu Chen
- College of Life Science, Jilin University, Changchun 130012, PR China
| | - Xueyun Wang
- College of Life Science, Jilin University, Changchun 130012, PR China
| | - Yinghua Jin
- College of Life Science, Jilin University, Changchun 130012, PR China
| | - Yongge Wu
- College of Life Science, Jilin University, Changchun 130012, PR China
| | - Yue Chen
- College of Life Science, Jilin University, Changchun 130012, PR China
| | - Yaming Shan
- College of Life Science, Jilin University, Changchun 130012, PR China
| | - Yan Chen
- College of Life Science, Jilin University, Changchun 130012, PR China
| | - Junqiu Liu
- Key Laboratory for Supramolecular Structure and Materials of Ministry of Education, Jilin University, Changchun 130012, PR China
| | - Wei Kong
- College of Life Science, Jilin University, Changchun 130012, PR China
- Key Laboratory for Supramolecular Structure and Materials of Ministry of Education, Jilin University, Changchun 130012, PR China
- Corresponding author. College of Life Science, Jilin University, Changchun 130012, PR China. Tel.: +86 431 85177701; fax: +86 431 85195516.
| | - Jiacong Shen
- Key Laboratory for Supramolecular Structure and Materials of Ministry of Education, Jilin University, Changchun 130012, PR China
| |
Collapse
|
49
|
Cristillo AD, Lisziewicz J, He L, Lori F, Galmin L, Trocio JN, Unangst T, Whitman L, Hudacik L, Bakare N, Whitney S, Restrepo S, Suschak J, Ferrari MG, Chung HK, Kalyanaraman VS, Markham P, Pal R. HIV-1 prophylactic vaccine comprised of topical DermaVir prime and protein boost elicits cellular immune responses and controls pathogenic R5 SHIV162P3. Virology 2007; 366:197-211. [PMID: 17499328 DOI: 10.1016/j.virol.2007.04.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 03/29/2007] [Accepted: 04/11/2007] [Indexed: 11/30/2022]
Abstract
Topical DNA vaccination (DermaVir) facilitates antigen presentation to naive T cells. DermaVir immunization in mice, using HIV-1 Env and Gag, elicited cellular immune responses. Boosting with HIV-1 gp120 Env and p41 Gag augmented Th1 cytokine levels. Intramuscular DNA administration was less efficient in priming antigen-specific cytokine production and memory T cells. In rhesus macaques, DermaVir immunization induced Gag- and Env-specific Th1 and Th2 cytokines and generation of memory T cells. Boosting of DermaVir-primed serum antibody levels was noted following gp140(SHIV89.6P)/p27(SIV) immunization. Rectal challenge with pathogenic R5-tropic SHIV162P3 resulted in control of plasma viremia (4/5 animals) that was reflected in jejunum, colon and mesenteric lymph nodes. An inverse correlation was found between Gag- and Env-specific central memory T cell responses on the day of challenge and plasma viremia at set point. Overall, the topical DermaVir/protein vaccination yields central memory T cell responses and facilitates control of pathogenic SHIV infection.
Collapse
Affiliation(s)
- Anthony D Cristillo
- Advanced BioScience Laboratories, Inc., 5510 Nicholson Lane, Kensington, MD 20895, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Reynard F, Willkomm N, Fatmi A, Vallon-Eberhard A, Verrier B, Bedin F. Characterization of the antibody response elicited by HIV-1 Env glycomutants in rabbits. Vaccine 2007; 25:535-46. [PMID: 16934377 DOI: 10.1016/j.vaccine.2006.07.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 07/20/2006] [Accepted: 07/25/2006] [Indexed: 10/24/2022]
Abstract
HIV-1 N-glycans are known to shield underlying epitopes towards the protective antibody repertoire. We previously described HIV-1 acute infection Env glycomutants designed from 3D-model in which the removal of clustered N-glycans did not disturb the envelope antigenicity, but increased the neutralization sensitivity. The potential of such immunogens to elicit neutralizing responses was estimated after rabbit immunizations with a DNA/protein protocol. Maturation of the Env-specific antibody response was confirmed by a change in avidity and conformational dependence. For one immunogen, the neutralizing response was increased with a higher breadth compared to the Wild-Type. Our data suggest that Env selective deglycosylation based on 3D data may represent a valuable strategy to improve elicitation of neutralizing antibodies.
Collapse
Affiliation(s)
- F Reynard
- FRE 2736, CNRS-bioMerieux, IFR128, CERVI, 21 Avenue Tony Garnier, 69007 Lyon, France
| | | | | | | | | | | |
Collapse
|