1
|
Abdallah J, Williams RG, Awada H, Raman G, Ozcan Y, Orland M, Mete M, Chen W, Gurnari C, Maciejewski JP, Bat T. Thrombocytosis and megakaryocyte changes associated with PRCA. Blood Adv 2024; 8:3058-3062. [PMID: 38564765 PMCID: PMC11215193 DOI: 10.1182/bloodadvances.2023012309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Affiliation(s)
- Joelle Abdallah
- Division of Hematology and Oncology, UT Southwestern Medical Center, Dallas, TX
| | | | - Hussein Awada
- Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH
| | - Ganesh Raman
- Division of Hematology and Oncology, UT Southwestern Medical Center, Dallas, TX
| | | | - Mark Orland
- Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH
| | - Mutlu Mete
- Department of Computer Science, Texas A&M University-Commerce, Commerce, TX
| | - Weina Chen
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX
| | - Carmelo Gurnari
- Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | - Taha Bat
- Division of Hematology and Oncology, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
2
|
Hidalgo D, Bejder J, Pop R, Gellatly K, Hwang Y, Maxwell Scalf S, Eastman AE, Chen JJ, Zhu LJ, Heuberger JAAC, Guo S, Koury MJ, Nordsborg NB, Socolovsky M. EpoR stimulates rapid cycling and larger red cells during mouse and human erythropoiesis. Nat Commun 2021; 12:7334. [PMID: 34921133 PMCID: PMC8683474 DOI: 10.1038/s41467-021-27562-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 11/19/2021] [Indexed: 11/08/2022] Open
Abstract
The erythroid terminal differentiation program couples sequential cell divisions with progressive reductions in cell size. The erythropoietin receptor (EpoR) is essential for erythroblast survival, but its other functions are not well characterized. Here we use Epor-/- mouse erythroblasts endowed with survival signaling to identify novel non-redundant EpoR functions. We find that, paradoxically, EpoR signaling increases red cell size while also increasing the number and speed of erythroblast cell cycles. EpoR-regulation of cell size is independent of established red cell size regulation by iron. High erythropoietin (Epo) increases red cell size in wild-type mice and in human volunteers. The increase in mean corpuscular volume (MCV) outlasts the duration of Epo treatment and is not the result of increased reticulocyte number. Our work shows that EpoR signaling alters the relationship between cycling and cell size. Further, diagnostic interpretations of increased MCV should now include high Epo levels and hypoxic stress.
Collapse
Affiliation(s)
- Daniel Hidalgo
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jacob Bejder
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Ramona Pop
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Kyle Gellatly
- Program in Bioinformatics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Yung Hwang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - S Maxwell Scalf
- Department of Cell Biology and Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Anna E Eastman
- Department of Cell Biology and Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Jane-Jane Chen
- Institute for Medical Engineering & Science, MIT, Cambridge, MA, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Bioinformatics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Shangqin Guo
- Department of Cell Biology and Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Mark J Koury
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Merav Socolovsky
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
3
|
Lee YY, Irfan M, Quah Y, Saba E, Kim SD, Park SC, Jeong MG, Kwak YS, Rhee MH. The increasing hematopoietic effect of the combined treatment of Korean Red Ginseng and Colla corii asini on cyclophosphamide-induced immunosuppression in mice. J Ginseng Res 2021; 45:591-598. [PMID: 34803429 PMCID: PMC8587481 DOI: 10.1016/j.jgr.2021.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/17/2021] [Indexed: 12/22/2022] Open
Abstract
Background Hematopoiesis is the production of blood cells from hematopoietic stem cells (HSCs) that reside in the bone marrow. Cyclophosphamide (CTX) is a chemotherapy drug that suppresses the immune system. Korean Red Ginseng (KRG) and Colla corii asini (CCA) have been traditionally used for boosting the immune system. Methods HSCs in the bone marrow, and immune cell subtype in splenocytes, PBMCs, and thymocytes were investigated. Serum levels of hematopoietic-related markers were analyzed using ELISA. Protein expression in spleen tissue was analyzed using western blot analysis. Hematoxylin & eosin staining in the femurs of mice were also conducted. Results The combination of KRG and CCA with a ratio of 3:2 increased HSCs, CD3 and CD8+ T cells in the circulation, and CD3 T cells in the spleen. A ratio of 2:3 (KRG:CCA) increased the thymic regulatory T cells and recovered the CD3 T cells in the spleen and circulation while recovering proteins in the JAK-STAT pathway in the spleen. Overall, blood cell population and differentiating factors vital for cell differentiation were also significantly recovered by all combinations especially in ratios of 3:2 and 2:3. Conclusion A ratio of 3:2 (KRG:CCA) is the most ideal combination as it recovered the HSC population in the bone marrow of mice.
Collapse
Affiliation(s)
- Yuan Yee Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Irfan
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Yixian Quah
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Evelyn Saba
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Sung-Dae Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung-Chun Park
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Myung-Gyun Jeong
- R&D Headquarters, Korea Ginseng Cooperation, Daejeon, Republic of Korea
| | - Yi-Seong Kwak
- R&D Headquarters, Korea Ginseng Cooperation, Daejeon, Republic of Korea
- Corresponding author. Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Man Hee Rhee
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
- Corresponding author. R&D Headquarters, Korea Ginseng Cooperation, Daejeon, 34520, Republic of Korea.
| |
Collapse
|
4
|
Vlaski-Lafarge M, Chevaleyre J, Cohen J, Ivanovic Z, Lafarge X. Discarded plasma obtained after cord blood volume reduction as an alternative for fetal calf serum in mesenchymal stromal cells cultures. Transfusion 2020; 60:1910-1917. [PMID: 32767423 DOI: 10.1111/trf.15920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND Utilization of the fetal calf serum (FCS) carries a potential health risk and raises growing economic and ethical problems. Umbilical cord blood volume reduction, required for banking, provides clinical-grade umbilical cord blood plasma (UCBP) discarded as a waste. The aim of this study was to test whether serum derived from UCBP could replace FCS for the amplification of mesenchymal stromal cells (MSCs). STUDY DESIGN AND METHODS To this end, the amplification of the MSCs and mesenchymal progenitors was estimated in the presence of serum derived from UCBP and its cytokine content was determined by cytometric bead array and enzyme-linked immunosorbent assay techniques. As a comparison, other sources of clinical-grade human serum were tested in parallel: serum derived from solvent/detergent-treated fresh-frozen plasma (S/D-FFP) and from platelet (PLT)-rich and PLT-poor umbilical plasma. RESULTS Serum derived from UCBP-supplemented culture sustains identical amplification of MSCs and their progenitors as in the case of FCS addition. Furthermore, the assays reveal the presence in the serum derived from UCBP of cytokines influencing the properties of MSCs (basic fibroblast growth factor, transforming growth factor-β, vascular endothelial growth factor, and interleukin-8) or involved in the development of the myeloid lineage (thrombopoietin, erythropoietin, granulocyte-colony-stimulating factor, and granulocyte-macrophage-colony-stimulating factor). Also, our study indicates important differences between neonatal and adult-derived serum. Poor cytokine content in the S/D-FFP makes a less efficient replacement of FCS comparing to other human blood-derived supplements. CONCLUSION Our work shows that the discarded human cord blood plasma from volume reduction is an easily obtainable and greatly available, xeno-free source of serum that is a highly efficient replacement of FCS in sustaining MSC growth.
Collapse
Affiliation(s)
- Marija Vlaski-Lafarge
- Etablissement Français du Sang Nouvelle-Aquitaine, Bordeaux, France.,INSERM U1035 University of Bordeaux, Bordeaux, France
| | - Jean Chevaleyre
- Etablissement Français du Sang Nouvelle-Aquitaine, Bordeaux, France
| | - Julie Cohen
- Etablissement Français du Sang Nouvelle-Aquitaine, Bordeaux, France
| | - Zoran Ivanovic
- Etablissement Français du Sang Nouvelle-Aquitaine, Bordeaux, France.,INSERM U1035 University of Bordeaux, Bordeaux, France
| | - Xavier Lafarge
- Etablissement Français du Sang Nouvelle-Aquitaine, Bordeaux, France.,INSERM U1035 University of Bordeaux, Bordeaux, France
| |
Collapse
|
5
|
Held MA, Greenfest-Allen E, Jachimowicz E, Stoeckert CJ, Stokes MP, Wood AW, Wojchowski DM. Phospho-proteomic discovery of novel signal transducers including thioredoxin-interacting protein as mediators of erythropoietin-dependent human erythropoiesis. Exp Hematol 2020; 84:29-44. [PMID: 32259549 DOI: 10.1016/j.exphem.2020.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/19/2023]
Abstract
Erythroid cell formation critically depends on signals transduced via erythropoietin (EPO)/EPO receptor (EPOR)/JAK2 complexes. This includes not only core response modules (e.g., JAK2/STAT5, RAS/MEK/ERK), but also specialized effectors (e.g., erythroferrone, ASCT2 glutamine transport, Spi2A). By using phospho-proteomics and a human erythroblastic cell model, we identify 121 new EPO target proteins, together with their EPO-modulated domains and phosphosites. Gene ontology (GO) enrichment for "Molecular Function" identified adaptor proteins as one top EPO target category. This includes a novel EPOR/JAK2-coupled network of actin assemblage modifiers, with adaptors DLG-1, DLG-3, WAS, WASL, and CD2AP as prime components. "Cellular Component" GO analysis further identified 19 new EPO-modulated cytoskeletal targets including the erythroid cytoskeletal targets spectrin A, spectrin B, adducin 2, and glycophorin C. In each, EPO-induced phosphorylation occurred at pY sites and subdomains, which suggests coordinated regulation by EPO of the erythroid cytoskeleton. GO analysis of "Biological Processes" further revealed metabolic regulators as a likewise unexpected EPO target set. Targets included aldolase A, pyruvate dehydrogenase α1, and thioredoxin-interacting protein (TXNIP), with EPO-modulated p-Y sites in each occurring within functional subdomains. In TXNIP, EPO-induced phosphorylation occurred at novel p-T349 and p-S358 sites, and was paralleled by rapid increases in TXNIP levels. In UT7epo-E and primary human stem cell (HSC)-derived erythroid progenitor cells, lentivirus-mediated short hairpin RNA knockdown studies revealed novel pro-erythropoietic roles for TXNIP. Specifically, TXNIP's knockdown sharply inhibited c-KIT expression; compromised EPO dose-dependent erythroblast proliferation and survival; and delayed late-stage erythroblast formation. Overall, new insight is provided into EPO's diverse action mechanisms and TXNIP's contributions to EPO-dependent human erythropoiesis.
Collapse
Affiliation(s)
- Matthew A Held
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH
| | | | - Edward Jachimowicz
- Molecular Medicine Department, Maine Medical Center Research Institute, Scarborough, ME
| | | | | | | | - Don M Wojchowski
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH.
| |
Collapse
|
6
|
Abstract
SCL, a transcription factor of the basic helix-loop-helix family, is a master regulator of hematopoiesis. Scl specifies lateral plate mesoderm to a hematopoietic fate and establishes boundaries by inhibiting the cardiac lineage. A combinatorial interaction between Scl and Vegfa/Flk1 sets in motion the first wave of primitive hematopoiesis. Subsequently, definitive hematopoietic stem cells (HSCs) emerge from the embryo proper via an endothelial-to-hematopoietic transition controlled by Runx1, acting with Scl and Gata2. Past this stage, Scl in steady state HSCs is redundant with Lyl1, a highly homologous factor. However, Scl is haploinsufficient in stress response, when a rare subpopulation of HSCs with very long term repopulating capacity is called into action. SCL activates transcription by recruiting a core complex on DNA that necessarily includes E2A/HEB, GATA1-3, LIM-only proteins LMO1/2, LDB1, and an extended complex comprising ETO2, RUNX1, ERG, or FLI1. These interactions confer multifunctionality to a complex that can control cell proliferation in erythroid progenitors or commitment to terminal differentiation through variations in single component. Ectopic SCL and LMO1/2 expression in immature thymocytes activates of a stem cell gene network and reprogram cells with a finite lifespan into self-renewing preleukemic stem cells (pre-LSCs), an initiating event in T-cell acute lymphoblastic leukemias. Interestingly, fate conversion of fibroblasts to hematoendothelial cells requires not only Scl and Lmo2 but also Gata2, Runx1, and Erg, indicating a necessary collaboration between these transcription factors for hematopoietic reprogramming. Nonetheless, full reprogramming into self-renewing multipotent HSCs may require additional factors and most likely, a permissive microenvironment.
Collapse
Affiliation(s)
- T Hoang
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada.
| | - J A Lambert
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| | - R Martin
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| |
Collapse
|
7
|
Dolence JJ, Gwin KA, Shapiro MB, Medina KL. Flt3 signaling regulates the proliferation, survival, and maintenance of multipotent hematopoietic progenitors that generate B cell precursors. Exp Hematol 2014; 42:380-393.e3. [PMID: 24444745 PMCID: PMC4089881 DOI: 10.1016/j.exphem.2014.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 12/17/2013] [Accepted: 01/02/2014] [Indexed: 10/25/2022]
Abstract
Flt3 signaling plays a crucial role in regulating the survival and differentiation of lymphoid progenitors into B cell precursors (BCPs) in bone marrow. To define further the role of Flt3 signaling in lymphoid progenitor survival, mice deficient in Flt3 ligand that also expressed a Bcl2 transgene (Eμ-bcl2tg flt3l(-/-)) were generated. Intracellular flow cytometry established transgene expression in primitive hematopoietic progenitors, including lineage-negative Sca-1(+) c-kit(+) (LSK(+)) CD27(-) cells enriched for functional hematopoietic stem cells. Compared with flt3l(-/-) mice, Eμ-bcl2tg flt3l(-/-) mice had significantly increased multipotential progenitors (MPPs), IL-7R(+) common lymphoid progenitors, and B cell precursors. To determine whether forced expression of Bcl2 was sufficient to restore lymphoid priming in the absence of Flt3 signaling Eμ-bcl2tg flt3l(-/-)rag1-gfp(+) mice were generated. Analysis of Eμ-bcl2tg flt3l(-/-)rag1-gfp(+) mice revealed that the Bcl2 transgene had no effect on lymphoid priming before CD19 expression. Thus, forced expression of a survival gene can bypass the requirement for threshold levels of Flt3 signaling requisite for lymphoid priming. Temporal Flt3 ligand (FL) replacement therapy in flt3l(-/-) mice revealed specific requirements for Flt3 signaling in the expansion and maintenance of Flt3(+hi) MPP and Flt3(+) all lymphoid progenitors, but not Flt3(+) B lymphoid progenitors (BLPs), the immediate precursors of BCPs. BCPs were restored after temporal in vivo FL treatment, albeit with delayed kinetics. Together, these results show that Flt3 regulates the proliferation, survival, and maintenance of developmental stage-specific hematopoietic progenitors that give rise to BCPs.
Collapse
Affiliation(s)
- Joseph J Dolence
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA; Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Kimberly A Gwin
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Mariya B Shapiro
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Kay L Medina
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA; Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
8
|
Paldi A. Effects of the in vitro manipulation of stem cells: epigenetic mechanisms as mediators of induced metabolic fluctuations. Epigenomics 2013; 5:429-37. [PMID: 23895655 DOI: 10.2217/epi.13.35] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The increasing popularity of stem cells in life science research has at least two major causes. On one hand, the study of stem cells may provide insights into one of the major secrets of biology: the mechanisms of cell differentiation. On the other hand, stem cells are potentially promising tools for regenerative therapy. The understanding of how environmental stimuli are translated into phenotypic differentiation through gene expression changes and how the same stimuli at the same time may perturb the normal process of cellular differentiation, growth and maintenance is a central issue for fundamental research but is also essential for the development of efficient and safe procedures for therapeutic use. This article assembles the known facts, as pieces of a puzzle, into a coherent picture around the idea of why stem cells are so sensitive to their culture environment and what practical consequences this implies.
Collapse
Affiliation(s)
- András Paldi
- Ecole Pratique des Hautes Etudes, INSERM U951, Genethon 1bis rue de l'Internationale 91002 Evry, France.
| |
Collapse
|
9
|
Mossadegh-Keller N, Sarrazin S, Kandalla PK, Espinosa L, Stanley ER, Nutt SL, Moore J, Sieweke MH. M-CSF instructs myeloid lineage fate in single haematopoietic stem cells. Nature 2013; 497:239-43. [PMID: 23575636 DOI: 10.1038/nature12026] [Citation(s) in RCA: 280] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 02/20/2013] [Indexed: 02/08/2023]
Abstract
Under stress conditions such as infection or inflammation the body rapidly needs to generate new blood cells that are adapted to the challenge. Haematopoietic cytokines are known to increase output of specific mature cells by affecting survival, expansion and differentiation of lineage-committed progenitors, but it has been debated whether long-term haematopoietic stem cells (HSCs) are susceptible to direct lineage-specifying effects of cytokines. Although genetic changes in transcription factor balance can sensitize HSCs to cytokine instruction, the initiation of HSC commitment is generally thought to be triggered by stochastic fluctuation in cell-intrinsic regulators such as lineage-specific transcription factors, leaving cytokines to ensure survival and proliferation of the progeny cells. Here we show that macrophage colony-stimulating factor (M-CSF, also called CSF1), a myeloid cytokine released during infection and inflammation, can directly induce the myeloid master regulator PU.1 and instruct myeloid cell-fate change in mouse HSCs, independently of selective survival or proliferation. Video imaging and single-cell gene expression analysis revealed that stimulation of highly purified HSCs with M-CSF in culture resulted in activation of the PU.1 promoter and an increased number of PU.1(+) cells with myeloid gene signature and differentiation potential. In vivo, high systemic levels of M-CSF directly stimulated M-CSF-receptor-dependent activation of endogenous PU.1 protein in single HSCs and induced a PU.1-dependent myeloid differentiation preference. Our data demonstrate that lineage-specific cytokines can act directly on HSCs in vitro and in vivo to instruct a change of cell identity. This fundamentally changes the current view of how HSCs respond to environmental challenge and implicates stress-induced cytokines as direct instructors of HSC fate.
Collapse
Affiliation(s)
- Noushine Mossadegh-Keller
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, UM2, Campus de Luminy, Case 906, 13288 Marseille Cedex 09, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kondo M. Lymphoid and myeloid lineage commitment in multipotent hematopoietic progenitors. Immunol Rev 2011; 238:37-46. [PMID: 20969583 DOI: 10.1111/j.1600-065x.2010.00963.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hematopoietic stem cells (HSCs) continuously replenish all classes of blood cells through a series of lineage restriction steps that results in the progressive loss of differentiation potential to other cell lineages. This review focuses on the recent advances in understanding one of the earliest differentiation steps in HSC maturation, which involves the diversification of the lymphoid and myeloid cell lineages, the two major branches of hematopoietic cells. We discuss progress in the identification and characterization of progenitor populations downstream of HSCs, which has been a key to understanding the sequential biological events that take place along the course of differentiation into a certain hematopoietic cell type. We also discuss the importance of bone marrow microenvironment in lymphoid and myeloid lineage choice.
Collapse
Affiliation(s)
- Motonari Kondo
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
11
|
Lodish H, Flygare J, Chou S. From stem cell to erythroblast: regulation of red cell production at multiple levels by multiple hormones. IUBMB Life 2010; 62:492-6. [PMID: 20306512 PMCID: PMC2893266 DOI: 10.1002/iub.322] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This article reviews the regulation of production of red blood cells at several levels: (1) the ability of erythropoietin and adhesion to a fibronectin matrix to stimulate the rapid production of red cells by inducing terminal proliferation and differentiation of committed erythroid CFU-E progenitors; (2) the regulated expansion of the pool of earlier BFU-E erythroid progenitors by glucocorticoids and other factors that occurs during chronic anemia or inflammation; and (3) the expansion of thehematopoietic cell pool to produce more progenitors of all hematopoietic lineages.
Collapse
Affiliation(s)
- Harvey Lodish
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| | | | | |
Collapse
|
12
|
Delaney C, Ratajczak MZ, Laughlin MJ. Strategies to enhance umbilical cord blood stem cell engraftment in adult patients. Expert Rev Hematol 2010; 3:273-83. [PMID: 20835351 PMCID: PMC2935587 DOI: 10.1586/ehm.10.24] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Umbilical cord blood (UCB) has been used successfully as a source of hematopoietic stem cells (HSCs) for allogeneic transplantation in children and adults in the treatment of hematologic diseases. However, compared with marrow or mobilized peripheral blood stem cell grafts from adult donors, significant delays in the rates and kinetics of neutrophil and platelet engraftment are noted after UCB transplant. These differences relate in part to the reduced numbers of HSCs in UCB grafts. To improve the rates and kinetics of engraftment of UCB HSC, several strategies have been proposed, including ex vivo expansion of UCB HSCs, addition of third-party mesenchymal cells, intrabone delivery of HSCs, modulation of CD26 expression, and infusion of two UCB grafts. This article will focus on ex vivo expansion of UCB HSCs and strategies to enhance UCB homing as potential solutions to overcome the problem of low stem cell numbers in a UCB graft.
Collapse
Affiliation(s)
- Colleen Delaney
- Fred Hutchinson Cancer Research Center, Mailstop D2-100, 1100 Fairview Ave N, PO Box, 9024, Seattle, WA 98109, USA
| | - Mariusz Z Ratajczak
- Stem Cell Institute James Graham Brown Cancer Center, 500 South Floyd Street, Louisville, KY 40202, USA
| | - Mary J Laughlin
- Associate Professor of Medicine & Pathology, Dr Donald & Ruth Weber Goodman Professor of Innovative Cancer Therapeutics, Case Western Reserve University, 10900 Euclid Avenue, WRB 2-125, Cleveland, OH 44106-7284, USA
| |
Collapse
|
13
|
Arcasoy MO, Maun NA, Perez L, Forget BG, Berliner N. Erythropoietin mediates terminal granulocytic differentiation of committed myeloid cells with ectopic erythropoietin receptor expression. Eur J Haematol 2008. [DOI: 10.1034/j.1600-0609.2001.t01-1-00491.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Hsu CL, Kikuchi K, Kondo M. Activation of mitogen-activated protein kinase kinase (MEK)/extracellular signal regulated kinase (ERK) signaling pathway is involved in myeloid lineage commitment. Blood 2007; 110:1420-8. [PMID: 17536016 PMCID: PMC1975832 DOI: 10.1182/blood-2007-02-071761] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Common lymphoid progenitors (CLPs) are lymphoid-lineage-committed progenitor cells. However, they maintain a latent myeloid differentiation potential that can be initiated by stimulation with interleukin-2 (IL-2) via ectopically expressed IL-2 receptors. Although CLPs express IL-7 receptors, which share the common gamma chain with IL-2 receptors, IL-7 cannot initiate lineage conversion in CLPs. In this study, we demonstrate that the critical signals for initiating lineage conversion in CLPs are delivered via IL-2 receptor beta (IL-2R beta) intracellular domains. Fusion of the A region of the IL-2R beta cytoplasmic tail to IL-7R alpha enables IL-7 to initiate myeloid differentiation in CLPs. We found that Shc, which associates with the A region, mediates lineage conversion signals through the mitogen activated protein kinase (MAPK) pathway. Because mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) inhibitors completely blocked IL-2-mediated lineage conversion, MAPK activation, specifically via the MEK/ERK pathway, is critically involved in the initiation of this event. Furthermore, formation of granulocyte/macrophage (GM) colonies by hematopoietic stem cells, but not by common myeloid progenitors (CMPs), was severely reduced in the presence of MEK/ERK inhibitors. These results demonstrate that activation of MEK/ERK plays an important role in GM lineage commitment.
Collapse
Affiliation(s)
- Chia-Lin Hsu
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
15
|
Weinreich MA, Lintmaer I, Wang L, Liggitt HD, Harkey MA, Blau CA. Growth factor receptors as regulators of hematopoiesis. Blood 2006; 108:3713-21. [PMID: 16902155 PMCID: PMC1895457 DOI: 10.1182/blood-2006-01-012278] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nearly 15 years have elapsed since the US Food and Drug Administration last approved a major new hematopoietic cytokine. Promiscuous binding to multiple receptors, or to receptors expressed by multiple tissues, reduces growth factor specificity and promotes side effects. Here we show that hematopoiesis can be differentially regulated using receptors rather than ligands. Conditional derivatives of both fibroblast growth factor receptor-1 (F36VFGFR1) and the thrombopoietin receptor (F36VMpl) induced a sustained expansion of mouse marrow cells ex vivo, and erythroid cells in vivo. Only F36VFGFR1 could support the ex vivo expansion of short-term repopulating hematopoietic stem cells (HSCs), the ex vivo survival of long-term repopulating HSCs, and the prolonged in vivo expansion of granulocytes, monocytes, and platelets. Only F36VMpl induced a response sufficiently rapid to accelerate recovery from radiation-induced anemia. These results establish receptors as a new class of hematopoietic regulators possessing activities unobtainable with growth factors.
Collapse
MESH Headings
- Amino Acid Substitution
- Anemia/etiology
- Anemia/genetics
- Anemia/metabolism
- Anemia/therapy
- Animals
- Bone Marrow Cells
- Cell Survival/genetics
- Erythroid Precursor Cells/cytology
- Erythroid Precursor Cells/metabolism
- Female
- Genetic Therapy
- Hematopoiesis/genetics
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/metabolism
- Leukocytes/cytology
- Leukocytes/metabolism
- Mice
- Mice, Mutant Strains
- Mutation, Missense
- Radiation Injuries, Experimental/genetics
- Radiation Injuries, Experimental/mortality
- Radiation Injuries, Experimental/therapy
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptors, Thrombopoietin/genetics
- Receptors, Thrombopoietin/metabolism
- Time Factors
- Transduction, Genetic
- Transplantation Chimera/genetics
- Transplantation Chimera/metabolism
- United States
- United States Food and Drug Administration
Collapse
Affiliation(s)
- Michael A Weinreich
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
16
|
Gupta R, Karpatkin S, Basch RS. Hematopoiesis and stem cell renewal in long-term bone marrow cultures containing catalase. Blood 2006; 107:1837-46. [PMID: 16278309 PMCID: PMC1895700 DOI: 10.1182/blood-2005-03-1180] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Accepted: 08/12/2005] [Indexed: 11/20/2022] Open
Abstract
Culturing mouse bone marrow in the presence of catalase dramatically alters hematopoiesis. Granulocyte output is initially increased 4- to 5-fold. This increase is transient and granulocyte production declines as immature (Sca-1+/LIN-) cells accumulate. One third of these immature cells have a phenotype (Sca-1+/c-Kit+) characteristic of hematopoietic stem cells. At 2 to 3 weeks there are greater than 200-fold more Sca-1+/c-Kit+/LIN- cells in treated cultures than in controls. This population contains functional stem cells with both short-term and long-term bone marrow repopulating activity. In addition to myeloid progenitors, this Sca-1+/LIN- population contains a large number of cells that express CD31 and CD34 and have an active Tie-2 promoter, indicating that they are in the endothelial lineage. After 3 to 4 weeks hematopoiesis in treated cultures wanes but if catalase is removed, hematopoiesis resumes. After 7 to 10 days the cultures are indistinguishable from untreated controls. Thus, protected from H2O2, hematopoietic progenitors multiply and become quiescent. This sequence resembles in vivo development in normal marrow. These results make it clear that peroxide-sensitive regulatory mechanisms play an important role in controlling hematopoiesis ex vivo and presumably in vivo as well. They also indicate that manipulation of the peroxide levels can be used to enhance the growth of hematopoietic stem cells in culture.
Collapse
Affiliation(s)
- Rashmi Gupta
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
17
|
Wang L, Arcasoy MO, Watowich SS, Forget BG. Cytokine signals through STAT3 promote expression of granulocyte secondary granule proteins in 32D cells. Exp Hematol 2005; 33:308-17. [PMID: 15730854 PMCID: PMC2388245 DOI: 10.1016/j.exphem.2004.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 11/19/2004] [Accepted: 11/22/2004] [Indexed: 01/19/2023]
Abstract
OBJECTIVE In a previous study, we showed that activation of a transfected human erythropoietin receptor (EPOR) in the murine myeloid cell line 32D resulted in the development of morphologic features of granulocytic differentiation and expression of the neutrophil primary granule protein myeloperoxidase. We now studied if EPOR signaling could also mediate secondary granule protein gene expression and investigated the signal transduction requirements for induction of secondary granule gene expression in 32D cells. MATERIALS AND METHODS Wild-type and variant 32D cells expressing normal or chimeric EPORs or receptors for granulocyte colony-stimulating factor (G-CSFRs) were stimulated with EPO or G-CSF and the expression of granulocyte-specific genes was analyzed by Northern blot analysis. To determine the signaling mechanisms required for secondary granule protein gene induction, the activation of STAT pathways following growth factor stimulation was studied by Western blot analysis. RESULTS We found that EPO treatment of 32D cells engineered to express EPOR did not result in induction of the secondary granule protein genes encoding lactoferrin and 24p3 lipocalin, the mouse homolog of human N-Gal, or the myeloid transcription factor C/EBPepsilon. Replacement of the intracellular domain of EPOR with the intracellular domain of G-CSFR in a chimeric receptor was associated with EPO-mediated induction of lactoferrin, 24p3 lipocalin, and C/EBPepsilon genes. We found that STAT3 phosphorylation was mediated by the intracellular domain of G-CSFR, but not EPOR. Replacement of one or two of the STAT5 binding sites in the intracytoplasmic domain of the EPOR with STAT3 binding sites resulted in EPO-mediated STAT3 activation and a marked increase in the expression of the 24p3 lipocalin gene. Knockdown of STAT3 protein levels with siRNA caused significant decrease in 24p3 lipocalin gene induction. CONCLUSION These results indicate that EPOR signaling cannot substitute for G-CSFR signaling to stimulate secondary granule protein gene expression in 32D cells. In addition, STAT3 is a critical mediator of 24p3 lipocalin gene expression in these cells.
Collapse
Affiliation(s)
- Lei Wang
- Department of Medicine, Yale University School of Medicine, New Haven, Conn., USA
| | - Murat O. Arcasoy
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Stephanie S. Watowich
- Department of Immunology, University of Texas, MD Anderson Cancer Center, Houston, Tex., USA
| | - Bernard G. Forget
- Department of Medicine, Yale University School of Medicine, New Haven, Conn., USA
| |
Collapse
|
18
|
Abraham N, Ma MC, Snow JW, Miners MJ, Herndier BG, Goldsmith MA. Haploinsufficiency identifies STAT5 as a modifier of IL-7-induced lymphomas. Oncogene 2005; 24:5252-7. [PMID: 15870688 DOI: 10.1038/sj.onc.1208726] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The requirement for receptor components and the signalling effector, signal transducer and activator of transcription (STAT) 5A/5B, was assessed genetically in a lymphoma development model induced by interleukin-7 (IL-7). This growth factor for T- and B-cell progenitors and mature lymphocytes activates survival and proliferative pathways including Bcl-2, phosphatidylinositol-3 kinase and STAT5. Overexpression of IL-7 in vivo causes early mortality from lymphoma development. Mice overexpressing IL-7 that were heterozygous for the IL-7Ralpha subunit showed improved survival compared to wild-type mice. In addition, STAT5A/5B+/- compound heterozygous mice with one targeted allele each of STAT5A and STAT5B showed striking amelioration of IL-7-induced mortality and disease development. STAT5A/5B+/- compound heterozygous mice were otherwise normal in stem cell and lymphocyte development and cellularity. Lower STAT5 protein levels accompanied the reduction in STAT5A/5B copy number, which suggests that STAT5 haploinsufficiency is a modifier of IL-7 signal strength.
Collapse
Affiliation(s)
- Ninan Abraham
- Department of Microbiology and Immunology, The University of British Columbia, #300-6174, University Boulevard, BC, Canada.
| | | | | | | | | | | |
Collapse
|
19
|
Körbel S, Büchse T, Prietzsch H, Sasse T, Schümann M, Krause E, Brock J, Bittorf T. Phosphoprotein profiling of erythropoietin receptor- dependent pathways using different proteomic strategies. Proteomics 2005; 5:91-100. [PMID: 15672454 DOI: 10.1002/pmic.200400883] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proteomic techniques provide new tools for the global analysis of protein profiles but also for the investigation of specific protein functions. The analysis of signaling cascades has traditionally been performed by the determination of enzymatic or transcription factor activities representing a certain pathway. Functional proteomics now allows more comprehensive approaches to study cellular responses induced during ligand/receptor interactions. In this study we evaluated proteomic strategies for the investigation of structure-function relationships in the erythropoietin receptor signalling complex. After expression of epidermal growth factor/erythropoietin receptor mutant molecules in an identical cellular background we characterized their potential to induce cellular activities. Using this system we focused our efforts on post-translational modifications of signalling proteins reflecting a substantial part of receptor-dependent signaling events. Although tyrosine phosphorylated proteins were enriched by immunoprecipitation the analysis using the classical approach combining two-dimensional gel electrophoresis and identification by matrix assisted laser desorption/ionization-time of flight-mass spectrometry revealed that low expressed signaling proteins cannot be detected by this technique. An alternative strategy using one-dimensional gel separation of phosphoproteins and liquid chromatography-tandem mass spectrometry, however, allowed us to identify multiple proteins involved in intracellular signalling representing already established pathways but also proteins which have not been linked to EPO-induced signaling so far. This approach offers the potential to extend functional proteomic studies to complex signaling processes.
Collapse
Affiliation(s)
- Sandra Körbel
- Institute of Medical Biochemistry and Molecular Biology, Medical Faculty, University of Rostock, D-18057 Rostock, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Asari S, Sakamoto A, Okada S, Ohkubo Y, Arima M, Hatano M, Kuroda Y, Tokuhisa T. Abnormal erythroid differentiation in neonatal bcl-6-deficient mice. Exp Hematol 2005; 33:26-34. [PMID: 15661395 DOI: 10.1016/j.exphem.2004.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Revised: 10/01/2004] [Accepted: 10/04/2004] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The bcl-6 proto-oncogene is ubiquitously expressed in various tissues. Since we found out the smaller number of TER119(+) cells in the spleen of neonatal bcl-6-deficient (bcl-6(-/-)) mice compared with that of control (bcl-6(+/+)) littermates, we studied functions of bcl-6 in differentiation of erythroid lineage cells. MATERIALS AND METHODS Erythroblasts in the definitive erythropoiesis were separated into four subsets using anti-TER119 and anti-CD71 mAbs. The cell number and property of these four subsets in spleens of neonatal bcl-6(+/+) and bcl-6(-/-) mice were examined using a flow cytometry. RESULTS bcl-6 mRNA expression was detected in the TER119(high)CD71(high) subset, which is morphologically equivalent to basophilic erythroblasts, by reverse-transcribed polymerase chain reaction. High percentages of cells in the TER119(low)CD71(high) and TER119(high)CD71(high) subsets were in the cell cycle. The cell number of the TER119(high)CD71(high) subset in the spleen and the percentage of reticulocytes in the peripheral blood of neonatal bcl-6(-/-) mice were significantly lower than those of neonatal bcl-6(+/+) mice. However, the percentage of apoptotic cells and that of cells in the cell cycle in the TER119(high)CD71(high) subset of bcl-6(-/-) mice were similar to those of bcl-6(+/+) mice. CONCLUSION bcl-6 detected in the TER119(high)CD71(high) subset of erythroblasts in the spleen of neonatal mice may be required to retain the erythroblasts in the cell proliferation stage.
Collapse
Affiliation(s)
- Sadaki Asari
- Department of Developmental Genetics (H2), Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Chalandon Y, Jiang X, Loutet S, Eaves AC, Eaves CJ. Growth autonomy and lineage switching in BCR-ABL-transduced human cord blood cells depend on different functional domains of BCR-ABL. Leukemia 2004; 18:1006-12. [PMID: 15014528 DOI: 10.1038/sj.leu.2403335] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The tyrosine kinase activity of p210BCR-ABL is essential to its leukemogenic potential, but the role of other functional domains in primary human hematopoietic cells has not been previously investigated. Here we show that infection of normal human CD34+ cord blood (CB) cells with a retroviral vector encoding p210BCR-ABL rapidly activates a factor-independent phenotype and autocrine interleukin-3/granulocyte colony-stimulating factor/erythropoietin production in the transduced cells. These changes are characteristic of primitive chronic myeloid leukemic (CML) cells and are important to the leukemogenicity of BCR-ABL-transduced murine hematopoietic stem cells. When BCR-ABL-transduced human CB cells were incubated with imatinib mesylate, an inhibitor of the p210BCR-ABL kinase, or when human CB cells were transduced with a BCR-ABL cDNA lacking the SH2 domain (p210DeltaSH2), factor independence was significantly reduced. In contrast, deletion of the SH2 domain had little impact on the p210BCR-ABL kinase-dependent promotion of erythropoietic differentiation also seen immediately following the BCR-ABL transduction of primitive human CB cells, but not in naturally occurring CML. Thus, p210BCR-ABL has distinct biological effects in primary human hematopoietic cells, which variably mimic features of human CML, and activation of these changes can show different dependencies on the integrity of the SH1 and SH2 domains of p210BCR-ABL.
Collapse
Affiliation(s)
- Y Chalandon
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | | | | | | | | |
Collapse
|
22
|
Tsiftsoglou AS, Pappas IS, Vizirianakis IS. Mechanisms involved in the induced differentiation of leukemia cells. Pharmacol Ther 2004; 100:257-90. [PMID: 14652113 DOI: 10.1016/j.pharmthera.2003.09.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Despite the remarkable progress achieved in the treatment of leukemias over the last several years, many problems (multidrug resistance [MDR], cellular heterogeneity, heterogeneous molecular abnormalities, karyotypic instability, and lack of selective action of antineoplastic agents) still remain. The recent progress in tumor molecular biology has revealed that leukemias are likely to arise from disruption of differentiation of early hematopoietic progenitors that fail to give birth to cell lineage restricted phenotypes. Evidence supporting such mechanisms has been derived from studying bone marrow leukemiogenesis and analyzing differentiation of leukemic cell lines in culture that serve as models of erythroleukemic (murine erythroleukemia [MEL] and human leukemia [K562] cells) and myeloid (human promyelocytic leukemia [HL-60] cells) cell maturation. This paper reviews the current concepts of differentiation, the chemical/pharmacological inducing agents developed thus far, and the mechanisms involved in initiation of leukemic cell differentiation. Emphasis was given on commitment and the cell lineage transcriptional factors as key regulators of terminal differentiation as well as on membrane-mediated events and signaling pathways involved in hematopoietic cell differentiation. The developmental program of MEL cells was presented in considerable depth. It is quite remarkable that the erythrocytic maturation of these cells is orchestrated into specific subprograms and gene expression patterns, suggesting that leukemic cell differentiation represents a highly coordinated set of events that lead to irreversible growth arrest and expression of cell lineage restricted phenotypes. In MEL and other leukemic cells, differentiation appears to be accompanied by differentiation-dependent apoptosis (DDA), an event that can be exploited chemotherapeutically. The mechanisms by which the chemical inducers promote differentiation of leukemic cells have been discussed.
Collapse
Affiliation(s)
- Asterios S Tsiftsoglou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece.
| | | | | |
Collapse
|
23
|
Lewis JL, Marley SB, Ojo M, Gordon MY. Opposing effects of PI3 kinase pathway activation on human myeloid and erythroid progenitor cell proliferation and differentiation in vitro. Exp Hematol 2004; 32:36-44. [PMID: 14725899 DOI: 10.1016/j.exphem.2003.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To investigate 1) the effects of lineage-specific cytokines (G-CSF and EPO) combined with ligands for different classes of cytokine receptors (common beta chain, gp130, and tyrosine kinase) on proliferation by human myeloid and erythroid progenitor cells; and 2) the signal transduction pathways associated with combinatorial cytokine actions. PATIENTS AND METHODS CFU-GM and BFU-E were cloned in vitro. Secondary colony formation by replated CFU-GM and subcolony formation by BFU-E provided measures of progenitor cell proliferation. Studies were performed in the presence of cytokine combinations with and without signal transduction inhibitors. RESULTS Proliferation by CFU-GM and BFU-E was enhanced synergistically when common beta chain receptor cytokines (IL-3 or GM-CSF) were combined with G-CSF or EPO, but not with gp130 receptor cytokines (LIF or IL-6) or tyrosine kinase receptor cytokines (SCF, HGF, Flt-3 ligand, or PDGF). Delayed addition studies with G-CSF+IL-3 and EPO+IL-3 demonstrated that synergy required the presence of both cytokines from the initiation of the culture. The Jak2-specific inhibitor, AG490, abrogated the effect of combining IL-3 with EPO but had no effect on the enhanced CFU-GM proliferation stimulated by IL-3+G-CSF. The PI3 kinase inhibitors LY294002 and wortmannin substituted for G-CSF in combination with IL-3 since proliferation in the presence of LY294002/wortmannin+IL-3 was enhanced to the same extent as in the presence of G-CSF+IL-3. In contrast, LY294002 and wortmannin inhibited proliferation in the presence of EPO and in the presence of EPO+IL-3. CONCLUSION 1) IL-3 may activate different signal transduction pathways when combined with G-CSF and when combined with EPO; 2) different signal transducing intermediates regulate erythroid and myeloid progenitor cell proliferation; and 3) inhibition of the PI3 kinase pathway suppresses myeloid progenitor cell differentiation and thereby increases proliferation.
Collapse
Affiliation(s)
- John L Lewis
- LRF Centre for Adult Leukaemia, Department of Hematology, Faculty of Medicine, Imperial College, London, England, UK
| | | | | | | |
Collapse
|
24
|
Sastry PSRK. Metabolic rate determines haematopoietic stem cell self-renewal. Med Hypotheses 2004; 63:476-80. [PMID: 15288372 DOI: 10.1016/j.mehy.2004.02.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Accepted: 02/19/2004] [Indexed: 10/26/2022]
Abstract
The number of haematopoietic stem cells (HSCs) per animal is conserved across species. This means the HSCs need to maintain hematopoiesis over a longer period in larger animals. This would result in the requirement of stem cell self-renewal. At present the three existing models are the stochastic model, instructive model and the third more recently proposed is the chiaro-scuro model. It is a well known allometric law that metabolic rate scales to the three quarter power. Larger animals have a lower metabolic rate, compared to smaller animals. Here it is being hypothesized that metabolic rate determines haematopoietic stem cell self-renewal. At lower metabolic rate the stem cells commit for self-renewal, where as at higher metabolic rate they become committed to different lineages. The present hypothesis can explain the salient features of the different models. Recent findings regarding stem cell self-renewal suggest an important role for Wnt proteins and their receptors known as frizzleds, which are an important component of cell signaling pathway. The role of cGMP in the Wnts action provides further justification for the present hypothesis as cGMP is intricately linked to metabolic rate. One can also explain the telomere homeostasis by the present hypothesis. One prediction of the present hypothesis is with reference to the limit of cell divisions known as Hayflick limit, here it is being suggested that this is the result of metabolic rate in laboratory conditions and there can be higher number of cell divisions in vivo if the metabolic rate is lower.
Collapse
Affiliation(s)
- P S R K Sastry
- Jaslok Hospital and Research Centre, 15, Dr. G. Deshmukh Road (Pedder Road), Mumbai, Maharashtra, India.
| |
Collapse
|
25
|
Cairns L, Cirò M, Minuzzo M, Morlé F, Starck J, Ottolenghi S, Ronchi A. Induction of globin mRNA expression by interleukin-3 in a stem cell factor-dependent SV-40 T-antigen-immortalized multipotent hematopoietic cell line. J Cell Physiol 2003; 195:38-49. [PMID: 12599207 DOI: 10.1002/jcp.10241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Erythropoiesis requires the stepwise action on immature progenitors of several growth factors, including stem cell factor (SCF), interleukin 3 (IL-3), and erythropoietin (Epo). Epo is required to sustain proliferation and survival of committed progenitors and might further modulate the level of expression of several erythroid genes, including globin genes. Here we report a new SCF-dependent immortalized mouse progenitor cell line (GATA-1 ts SCF) that can also grow in either Epo or IL-3 as the sole growth factor. When grown in SCF, these cells show an "open" chromatin structure of the beta-globin LCR, but do not significantly express globin. However, Epo or IL-3 induce globin expression and are required for its maintainance. This effect of IL-3 is unexpected as IL-3 was previously reported either to be unable to induce hemoglobinization, or even to antagonize it. This suggests that GATA-1 ts SCF cells may have progressed to a stage in which globin genes are already poised for expression and only require signal(s) that can be elicited by either Epo or IL-3. Through the use of inhibitors, we suggest that p38 may be one of the molecules modulating induction and maintenance of globin expression.
Collapse
Affiliation(s)
- Linda Cairns
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Kume A, Koremoto M, Xu R, Okada T, Mizukami H, Hanazono Y, Hasegawa M, Ozawa K. In vivo expansion of transduced murine hematopoietic cells with a selective amplifier gene. J Gene Med 2003; 5:175-81. [PMID: 12666183 DOI: 10.1002/jgm.337] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Hematopoietic stem-cell-directed gene transfer has achieved limited success in transducing clinically relevant levels of target cells. The expansion of gene-modified cells is one way to circumvent the problem of inefficient transduction with current vectors. To this end, we have developed 'selective amplifier genes' (SAGs) that encode chimeric proteins that are a fusion of granulocyte colony-stimulating factor receptor and the steroid-binding domain. Prototype SAGs conferred estrogen-responsive growth on murine hematopoietic progenitors. METHODS We constructed a retroviral vector coexpressing an SAG for 4-hydroxytamoxifen (Tm)-specific proliferation and the enhanced green fluorescent protein (EGFP). Murine bone marrow cells were transduced with this vector and transplanted into myeloablated mice. Subsequently, recipients were challenged with Tm, and EGFP(+) cells were enumerated. RESULTS The challenge induced a significant increase in EGFP(+) leukocytes (21 +/- 4% to 27 +/- 5%), while EGFP(+) cells decreased in untreated animals (21 +/- 5% to 10 +/- 3%). Three months later, bone marrow cells were transplanted from the unchallenged mice to secondary hosts. Again the administration of Tm resulted in an increase of EGFP(+) cells (16 +/- 4% to 35 +/- 3%), contrasting to a decrease in controls (22 +/- 4% to 12 +/- 4%), and the difference was significant for more than 3 months. A detailed study of lineage showed a preferential expansion of EGFP(+) cells in granulocytes and monocytes following Tm administration. CONCLUSIONS Long-term repopulating cells were transduced with the SAG, and the transduced granulocyte/monocyte precursors were most likely to be expandable in vivo upon Tm stimulation.
Collapse
Affiliation(s)
- Akihiro Kume
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical School, Tochigi 329-0498, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Cao ZY, Wu KF, Li G, Lin YM, Zhang B, Zheng GG. Enhancement of NIH3T3 cell proliferation by expressing macrophage colony stimulating factor in nuclei. Chin J Cancer Res 2003. [DOI: 10.1007/s11670-003-0010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
28
|
Affiliation(s)
- Hajime Kubo
- Molecular/Cancer Biology Laboratory, Haartman Institute, Helsinki University Central Hospital and Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| | | |
Collapse
|
29
|
Tagliafico E, Tenedini E, Bergamaschi A, Manfredini R, Percudani R, Siena M, Zanocco-Marani T, Grande A, Montanari M, Gemelli C, Torelli U, Ferrari S. Gene expression profile of Vitamin D3 treated HL60 cells shows an incomplete molecular phenotypic conversion to monocytes. Cell Death Differ 2002; 9:1185-95. [PMID: 12404117 DOI: 10.1038/sj.cdd.4401104] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2002] [Revised: 06/11/2002] [Accepted: 07/11/2002] [Indexed: 11/09/2022] Open
Abstract
By high density oligonucleotide microarrays we have studied the expression profile of proliferating and VD treated HL60 cells and the molecular phenotype of VD monocytes and that of CD14+ peripheral monocytes has been compared. The results indicate that important changes in functional categories of the differentially expressed genes underlie the differentiation transition from myeloblasts to monocytes. This differential gene expression pattern leads to an increased expression of mRNAs involved in surface and external activities since many of the VD induced genes belong to ligand binding, receptors, cell surface antigens, defense/immunity and adhesion molecules functional categories. The results also indicate that the molecular phenotypes of monocytes and VD induced cells diverge for a small but significant set of defense related genes. Particularly, class II MHC genes are not expressed in these cells. Furthermore, the high levels of expression of these genes induced by serum treatment of monocytes are decreased by VD.
Collapse
Affiliation(s)
- E Tagliafico
- Università di Modena e Reggio Emilia, Dipartimento di Scienze Biomediche, Sezione di Chimica Biologica, Via Campi, 287, 41100, Modena, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Brisken C, Socolovsky M, Lodish HF, Weinberg R. The signaling domain of the erythropoietin receptor rescues prolactin receptor-mutant mammary epithelium. Proc Natl Acad Sci U S A 2002; 99:14241-5. [PMID: 12381781 PMCID: PMC137868 DOI: 10.1073/pnas.222549599] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2002] [Indexed: 11/18/2022] Open
Abstract
The cytokine hormones prolactin and erythropoietin mediate tissue-specific developmental outcomes by activating their cognate receptors, prolactin receptor (PrlR) and erythropoietin receptor (EpoR), respectively. The EpoR is essential for red blood cell formation, whereas a principal function of PrlR is in the development of the mammary gland during pregnancy and lactation [Ormandy, C., et al. (1997) Genes Dev. 11, 167-178]. The instructive model of differentiation proposes that such distinct, cytokine-dependent developmental outcomes are a result of cytokine receptor-unique signals that bring about induction of lineage-specific genes. This view was challenged by our finding that an exogenously expressed PrlR could rescue EpoR(-/-) erythroid progenitors and mediate their differentiation into red blood cells. Together with similar findings in other hematopoietic lineages, this suggested that cytokine receptors do not play an instructive role in hematopoietic differentiation. Here, we show that these findings are not limited to the hematopoietic system but are of more general relevance to cytokine-dependent differentiation. We demonstrate that the developmental defect of PrlR(-/-) mammary epithelium is rescued by an exogenously expressed chimeric receptor (prl-EpoR) containing the PrlR extracellular domain joined to the EpoR transmembrane and intracellular domains. Like the wild-type PrlR, the prl-EpoR rescued alveologenesis and milk secretion in PrlR(-/-) mammary epithelium. These results suggest that, in cell types as unrelated as erythrocytes and mammary epithelial cells, cytokine receptors employ similar, generic signals that permit the expression of predetermined, tissue-specific differentiation programs.
Collapse
Affiliation(s)
- Cathrin Brisken
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|
31
|
Yang J, Blum A, Novak T, Levinson R, Lai E, Barasch J. An epithelial precursor is regulated by the ureteric bud and by the renal stroma. Dev Biol 2002; 246:296-310. [PMID: 12051817 DOI: 10.1006/dbio.2002.0646] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kidney epithelia develop from the metanephric mesenchyme after receiving inductive signals from the ureteric bud and from the renal stroma. However, it is not clear how these signals induce the different types of epithelia that make up the nephron. To investigate inductive signaling, we have isolated clusters of epithelial progenitors from the metanephric mesenchyme, thereby separating them from the renal stroma. When the isolated progenitors were treated with the ureteric bud factor LIF, they expressed epithelial proteins (ZO-1, E-cadherin, laminin alpha(5)) and produced nephrons (36 glomeruli with 58 tubules), indicating that they are the target of inductive signaling from the ureteric bud, and that renal stroma is not absolutely required for epithelial development in vitro. In fact, stroma-depleted epithelial progenitors produced sevenfold more glomeruli than did intact metanephric mesenchyme (5 glomeruli, 127 tubules). Conversely, when epithelial progenitors were treated with both LIF and proteins secreted from a renal stromal cell line, glomerulogenesis was abolished but tubular epithelia were expanded (0 glomeruli, 47 tubules). Hence, by isolating epithelial progenitors from the metanephric mesenchyme, we show that they are targeted by factors from the ureteric bud and from the renal stroma, and that epithelial diversification is stimulated by the ureteric bud and limited by renal stroma.
Collapse
Affiliation(s)
- Jun Yang
- College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
32
|
Barth-Baus D, Stratton CA, Parrott L, Myerson H, Meyuhas O, Templeton DJ, Landreth GE, Hensold JO. S6 phosphorylation-independent pathways regulate translation of 5'-terminal oligopyrimidine tract-containing mRNAs in differentiating hematopoietic cells. Nucleic Acids Res 2002; 30:1919-28. [PMID: 11972328 PMCID: PMC113832 DOI: 10.1093/nar/30.9.1919] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Synthesis of new ribosomes is an energy costly and thus highly regulated process. Ribosomal protein synthesis is controlled by regulating translation of the corresponding ribosomal protein (rp)mRNAs. In mammalian cells a 5'-terminal oligopyrimidine tract (TOP) is a conserved feature of these mRNAs that has been demonstrated to be essential for their translational regulation. Translation of TOP mRNAs has been proposed to be regulated by phosphorylation of ribosomal protein S6, which is a common effect of mitogenic stimulation of cells. However, as demonstrated here, S6 phosphorylation is not detectable in murine erythroleukemia (MEL) or other hematopoietic cells. The absence of S6 phosphorylation appears to be due to the action of a phosphatase that acts downstream of S6 kinase, presumably on S6 itself. Despite the absence of changes in S6 phosphorylation, translation of TOP mRNAs is repressed during differentiation of MEL cells. These data demonstrate the existence of a mechanism for regulating S6 phosphorylation that is distinct from kinase activation, as well as the existence of mechanisms for regulating translation of TOP mRNAs that are independent of S6 phosphorylation.
Collapse
Affiliation(s)
- Diane Barth-Baus
- Department of Medicine and University/Ireland Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4937, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Grande A, Montanari M, Tagliafico E, Manfredini R, Marani TZ, Siena M, Tenedini E, Gallinelli A, Ferrari S. Physiological levels of 1α, 25 dihydroxyvitamin D3 induce the monocytic commitment of CD34+ hematopoietic progenitors. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.4.641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Alexis Grande
- Dipartimento di Scienze Biomediche, Sezione di Chimica Biologica, Università di Modena e Reggio Emilia, Modena, Italy and
| | - Monica Montanari
- Dipartimento di Scienze Biomediche, Sezione di Chimica Biologica, Università di Modena e Reggio Emilia, Modena, Italy and
| | - Enrico Tagliafico
- Dipartimento di Scienze Biomediche, Sezione di Chimica Biologica, Università di Modena e Reggio Emilia, Modena, Italy and
| | - Rossella Manfredini
- Dipartimento di Scienze Biomediche, Sezione di Chimica Biologica, Università di Modena e Reggio Emilia, Modena, Italy and
| | - Tommaso Zanocco Marani
- Dipartimento di Scienze Biomediche, Sezione di Chimica Biologica, Università di Modena e Reggio Emilia, Modena, Italy and
| | - Michela Siena
- Dipartimento di Scienze Biomediche, Sezione di Chimica Biologica, Università di Modena e Reggio Emilia, Modena, Italy and
| | - Elena Tenedini
- Dipartimento di Scienze Biomediche, Sezione di Chimica Biologica, Università di Modena e Reggio Emilia, Modena, Italy and
| | - Andrea Gallinelli
- Dipartimento di Scienze Ginecologiche, Ostetriche e Pediatriche, Università di Modena e Reggio Emilia, Modena, Italy
| | - Sergio Ferrari
- Dipartimento di Scienze Biomediche, Sezione di Chimica Biologica, Università di Modena e Reggio Emilia, Modena, Italy and
| |
Collapse
|
34
|
Li G, Song YH, Wu KF, Lin YM, Cao ZY, Zheng GG. Clone and expression of mutant M-CSF and its receptor from human leukemic cell line J6-1. Leuk Res 2002; 26:377-82. [PMID: 11839381 DOI: 10.1016/s0145-2126(01)00139-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Macrophage colony-stimulating factor (M-CSF) plays important roles in hematopoietic and immunologic systems. Some isoforms or mutations have been demonstrated including membrane-bound and cellular M-CSF, which associated with some leukemia, lymphoma and other solid tumors. We previously reported that the M-CSF-like membrane-associated factor (MAF-J6-1) and its receptor was found from human leukemic cell line J6-1. In this report, the cDNA of MAF-J6-1 and its receptor were cloned. The cDNA sequence of MAF-J6-1 shows a 768bp open reading frame (ORF) with 99.2% homology to m-M-CSF, but six site mutations, including two synonymous mutations and four missense mutations. The cDNA of MAF-J6-1-R has a 2916bp ORF shared 99.6% homology with M-CSF-R, but 13 site mutations, including six synonymous mutations and seven missense mutations. At the same time, a 1662bp mutant s-M-CSF cDNA, which has 10 site mutations including three synonymous mutations and seven missense mutations, was cloned from J6-1 cells. The cDNAs of MAF-J6-1 and MAF-J6-1-R were inserted into a mammalian expression plasmid pTARGET and were expressed in COS-7 cells that demonstrated by their specific MAb. COS-7 cells transfected with MAF-J6-1-R show obvious protein tyrosine kinase (PTK) activity. Our present work shows that MAF-J6-1 and its receptor are mutations of M-CSF and its receptor.
Collapse
Affiliation(s)
- Ge Li
- National Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, PR China
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Myeloid blood cells comprise an important component of the immune system. Proper control of both lineage- and stage-specific gene expression is required for normal myeloid cell development and function. In recent years, a relatively small number of critical transcriptional regulators have been identified that serve important roles both in myeloid cell development and regulation of lineage-restricted gene expression in mature myeloid cells. This review summarizes our current understanding of the regulation of lineage- and stage-restricted transcription during myeloid cell differentiation, how critical transcriptional regulators control myeloid cell development, and how perturbations in transcription factor function results in the development of leukemia.
Collapse
Affiliation(s)
- David G Skalnik
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
36
|
Abstract
The kidney is derived from the ureteric bud and the metanephrogenic mesenchyme, and these two progenitor cells differentiate into more than 26 different cell types in the adult kidney. The ureteric bud contains the precursor of the epithelial cells of the collecting duct and the renal mesenchyme contains precursors of all the epithelia of the rest of the nephron, endothelial cell precursors and stroma cells, but the relatedness among these cells is unclear. A single metanephric mesenchymal cell can generate all the epithelial cells of the nephron (except the collecting duct), indicating that the kidney contains epithelial stem cells. It is currently unknown whether these stem cells also are present in the adult kidney but experience in other organs makes this likely. It also is unclear whether embryonic renal epithelial stem cells can generate other cell types, but preliminary studies in our laboratory suggest that they can differentiate into myofibroblasts, smooth muscle, and perhaps endothelial cells, indicating that they are pluripotent renal stem cells. The important problem to be solved now is the identification and location of adult renal stem cells. This article discusses work done in other organs and in renal development that we believe may be useful for the resolution of this problem.
Collapse
Affiliation(s)
- Qais Al-Awqati
- Department of Medicine, College of Physicians & Surgeons of Columbia University, New York New York 10032, USA.
| | | |
Collapse
|
37
|
Khaled AR, Moor AN, Li A, Kim K, Ferris DK, Muegge K, Fisher RJ, Fliegel L, Durum SK. Trophic factor withdrawal: p38 mitogen-activated protein kinase activates NHE1, which induces intracellular alkalinization. Mol Cell Biol 2001; 21:7545-57. [PMID: 11604491 PMCID: PMC99926 DOI: 10.1128/mcb.21.22.7545-7557.2001] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trophic factor withdrawal induces cell death by mechanisms that are incompletely understood. Previously we reported that withdrawal of interleukin-7 (IL-7) or IL-3 produced a rapid intracellular alkalinization, disrupting mitochondrial metabolism and activating the death protein Bax. We now observe that this novel alkalinization pathway is mediated by the pH regulator NHE1, as shown by the requirement for sodium, blocking by pharmacological inhibitors or use of an NHE1-deficient cell line, and the altered phosphorylation of NHE1. Alkalinization also required the stress-activated p38 mitogen-activated protein kinase (MAPK). Inhibition of p38 MAPK activity with pharmacological inhibitors or expression of a dominant negative kinase prevented alkalinization. Activated p38 MAPK directly phosphorylated the C terminus of NHE1 within a 40-amino-acid region. Analysis by mass spectroscopy identified four phosphorylation sites on NHE1, Thr 717, Ser 722, Ser 725, and Ser 728. Thus, loss of trophic cytokine signaling induced the p38 MAPK pathway, which phosphorylated NHE1 at specific sites, inducing intracellular alkalinization.
Collapse
Affiliation(s)
- A R Khaled
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ohishi K, Varnum-Finney B, Serda RE, Anasetti C, Bernstein ID. The Notch ligand, Delta-1, inhibits the differentiation of monocytes into macrophages but permits their differentiation into dendritic cells. Blood 2001; 98:1402-7. [PMID: 11520788 DOI: 10.1182/blood.v98.5.1402] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Notch-mediated cellular interactions are known to regulate cell fate decisions in various developmental systems. A previous report indicated that monocytes express relatively high amounts of Notch-1 and Notch-2 and that the immobilized extracellular domain of the Notch ligand, Delta-1 (Delta(ext-myc)), induces apoptosis in peripheral blood monocytes cultured with macrophage colony-stimulating factor (M-CSF), but not granulocyte-macrophage CSF (GM-CSF). The present study determined the effect of Notch signaling on monocyte differentiation into macrophages and dendritic cells. Results showed that immobilized Delta(ext-myc) inhibited differentiation of monocytes into mature macrophages (CD1a+/-CD14+/- CD64+) with GM-CSF. However, Delta(ext-myc) permitted differentiation into immature dendritic cells (CD1a+CD14-CD64-) with GM-CSF and interleukin 4 (IL-4), and further differentiation into mature dendritic cells (CD1a+CD83+) with GM-CSF, IL-4, and tumor necrosis factor-alpha (TNF-alpha). Notch signaling affected the differentiation of CD1a-CD14+ macrophage/dendritic cell precursors derived in vitro from CD34+ cells. With GM-CSF and TNF-alpha, exposure to Delta(ext-myc) increased the proportion of precursors that differentiated into CD1a+CD14- dendritic cells (51% in the presence of Delta(ext-myc) versus 10% in control cultures), whereas a decreased proportion differentiated into CD1a-CD14+ macrophages (6% versus 65%). These data indicate a role for Notch signaling in regulating cell fate decisions by bipotent macrophage/dendritic precursors.
Collapse
Affiliation(s)
- K Ohishi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
39
|
Pacilio M, Debili N, Arnould A, Machavoine F, Rolli-Derkinderen M, Bodger M, Arock M, Duménil D, Dy M, Schneider E. Thrombopoietin induces histidine decarboxylase gene expression in c-mpl transfected UT7 cells. Biochem Biophys Res Commun 2001; 285:1095-101. [PMID: 11478766 DOI: 10.1006/bbrc.2001.5296] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The leukemic cell line UT7 is endowed with both megakaryocyte and basophil differentiation potential, as judged by its capacity to respond to PMA by displaying megakaryocytic and basophilic markers and to produce histamine by neosynthesis. Herein, we addressed the question whether the biological activities characteristic of basophil differentiation were still induced when c-mpl-transfected UT7 cells received a specific megakaryocytic differentiation signal delivered by thrombopoietin (TPO). Surprisingly, we found that histamine synthesis did effectively occur in response to the growth factor. This activity was not associated with megakaryopoiesis since it was not detected in megakaryocytes generated from CD34(+) cells cultured in the presence of TPO. Comparing different c-mpl-transfected cell lines, we found that the amount of histamine generated in response to TPO correlated with their responsiveness to PMA, but not with their level of c-mpl expression, thus revealing an intrinsic basophil differentiation potential. Both PMA- and TPO-induced histamine synthesis was reduced by PKC and MEKs inhibitors, indicating that the induction occurred through a common signalling pathway.
Collapse
MESH Headings
- Basophils/cytology
- Basophils/drug effects
- Basophils/metabolism
- Cell Differentiation/drug effects
- Enzyme Inhibitors/pharmacology
- Gene Expression/drug effects
- Histamine/biosynthesis
- Histidine Decarboxylase/biosynthesis
- Histidine Decarboxylase/genetics
- Humans
- Leukemia, Megakaryoblastic, Acute/genetics
- Leukemia, Megakaryoblastic, Acute/metabolism
- Leukemia, Megakaryoblastic, Acute/pathology
- Megakaryocytes/cytology
- Megakaryocytes/drug effects
- Megakaryocytes/metabolism
- Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors
- Neoplasm Proteins
- Protein Kinase C/antagonists & inhibitors
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/metabolism
- Receptors, Cytokine
- Receptors, Thrombopoietin
- Signal Transduction/drug effects
- Tetradecanoylphorbol Acetate/pharmacology
- Thrombopoietin/pharmacology
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- M Pacilio
- CNRS UMR 8603, Paris V University, Necker Hospital, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zeng H, Masuko M, Jin L, Neff T, Otto KG, Blau CA. Receptor specificity in the self-renewal and differentiation of primary multipotential hemopoietic cells. Blood 2001; 98:328-34. [PMID: 11435300 DOI: 10.1182/blood.v98.2.328] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
To determine whether cytokine-induced signals generate unique responses in multipotential hemopoietic progenitor cells, the signaling domains of 3 different growth factor receptors (Mpl, granulocyte-colony-stimulating factor [G-CSF] receptor, and Flt-3) were inserted into mouse primary bone marrow cells. To circumvent the activation of endogenous receptors, each signaling domain was incorporated into an FK506 binding protein (FKBP) fusion to allow for its specific activation using synthetic FKBP ligands. Each signaling domain supported the growth of Ba/F3 cells; however, only Mpl supported the sustained growth of transduced marrow cells, with a dramatic expansion of multipotential progenitors and megakaryocytes. These findings demonstrate that the self-renewal and differentiation of multipotential progenitor cells can be influenced through distinct, receptor-initiated signaling pathways.
Collapse
Affiliation(s)
- H Zeng
- Department of Medicine, Division of Hematology, University of Washington, Seattle 98195, USA
| | | | | | | | | | | |
Collapse
|
41
|
Ogilvie M, Yu X, Nicolas-Metral V, Pulido SM, Liu C, Ruegg UT, Noguchi CT. Erythropoietin stimulates proliferation and interferes with differentiation of myoblasts. J Biol Chem 2000; 275:39754-61. [PMID: 10995753 DOI: 10.1074/jbc.m004999200] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythropoietin (Epo) is required for the production of mature red blood cells. The requirement for Epo and its receptor (EpoR) for normal heart development and the response of vascular endothelium and cells of neural origin to Epo provide evidence that the function of Epo as a growth factor or cytokine to protect cells from apoptosis extends beyond the hematopoietic lineage. We now report that the EpoR is expressed on myoblasts and can mediate a biological response of these cells to treatment with Epo. Primary murine satellite cells and myoblast C2C12 cells, both of which express endogenous EpoR, exhibit a proliferative response to Epo and a marked decrease in terminal differentiation to form myotubes. We also observed that Epo stimulation activates Jak2/Stat5 signal transduction and increases cytoplasmic calcium, which is dependent on tyrosine phosphorylation. In erythroid progenitor cells, Epo stimulates induction of transcription factor GATA-1 and EpoR; in C2C12 cells, GATA-3 and EpoR expression are induced. The decrease in differentiation of C2C12 cells is concomitant with an increase in Myf-5 and MyoD expression and inhibition of myogenin induction during differentiation, altering the pattern of expression of the MyoD family of transcription factors during muscle differentiation. These data suggest that, rather than acting in an instructive or specific mode for differentiation, Epo can stimulate proliferation of myoblasts to expand the progenitor population during differentiation and may have a potential role in muscle development or repair.
Collapse
Affiliation(s)
- M Ogilvie
- Laboratory of Chemical Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1822, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Constantinescu SN. Stem cell generation and choice of fate: role of cytokines and cellular microenvironment. J Cell Mol Med 2000; 4:233-248. [PMID: 12067458 PMCID: PMC6517819 DOI: 10.1111/j.1582-4934.2000.tb00123.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Hematopoietic stem cells (HSC) have provided a model for the isolation, enrichment and transplantation of stem cells. Gene targeting studies in mice have shown that expression of the thrombopoietin receptor (TpoR) is linked to the accumulation of HSCs capable to generate long-term blood repopulation when injected into irradiated mice. The powerful increase in vivo in HSC numbers by retrovirally transduced HOX4B, a homeotic gene, along with the role of the TpoR, suggested that stem cell fate, renewal, differentiation and number can be controlled. The discovery of the precise region of the mouse embryo where HSCs originate and the isolation of supporting stromal cell lines open the possibility of identifying the precise signals required for HSC choice of fate. The completion of human genome sequencing coupled with advances in gene expression profiling using DNA microarrays will enable the identification of key genes deciding the fate of stem cells. Downstream from HSCs, multipotent hematopoietic progenitor cells appear to co-express a multiplicity of genes characteristic of different blood lineages. Genomic approaches will permit the identification of the select group of genes consolidated by the commitment of these multipotent progenitors towards one or the other of the blood lineages. Studies with neural stem cells pointed to the unexpected plastic nature of these cells. Isolation of stem cells from multiple tissues may suggest that, providing the appropriate environment/ signal, tissues could be regenerated in the laboratory and used for transplantation. A spectacular example of influence of the environment on cell fate was revealed decades ago by using mouse embryonic stem cells (ES). Injected into blastocysts, ES cells contribute to the formation of all adult tissues. Injected into adult mice, ES cells become cancer cells. After multiple passages as ascites, when injected back into the blastocyst environment, ES- derived cancer cells behaved again as ES cells. More recently, the successful cloning of mammals and reprogramming of transferred nuclei by factors in the cytoplasm of oocytes turned back the clock by showing that differentiated nuclei can be "re-booted" to generate again the stem cells for different tissues.
Collapse
Affiliation(s)
- S. N. Constantinescu
- Ludwig Institute for Cancer Research, Brussels Branch of Cancer Genetics, Avenue Hippocrate 74, UCL 74 +4, B-1200, Brussels, Belgium.
| |
Collapse
|
43
|
Abstract
Diverse types of blood cell (lineages) are produced from rare haematopoietic stem cells that reside in the bone marrow. This process, known as haematopoiesis, provides a valuable model for examining how genetic programs are established and executed in vertebrates, and also how homeostasis of blood formation is altered in leukaemias. So, how does an apparently small group of critical lineage-restricted nuclear regulatory factors specify the diversity of haematopoietic cells? Recent findings not only indicate how this may be achieved but also show the extraordinary plasticity of tissue stem cells in vivo.
Collapse
Affiliation(s)
- S H Orkin
- Division of Hematology, Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, USA.
| |
Collapse
|
44
|
Monocytes express high amounts of Notch and undergo cytokine specific apoptosis following interaction with the Notch ligand, Delta-1. Blood 2000. [DOI: 10.1182/blood.v95.9.2847.009k19_2847_2854] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Notch signaling has been shown to play a key role in cell fate decisions in numerous developmental systems. Using a reverse transcriptase-polymerase chain reaction (RT-PCR) assay, we reported the expression of human Notch-1 in CD34+ progenitors. In this study, we evaluated the expression of human Notch-1 and Notch-2 protein by hematopoietic cells. In immunofluoresence study, we detected low amounts of Notch-1 and Notch-2 protein in both CD34+ and CD34+Lin− cells, high amounts in CD14+ monocytes as well as B and T cells, but no expression in CD15+ granulocytes. We further found that an immobilized truncated form of the Notch ligand, Delta-1, induced apoptosis in monocytes in the presence of macrophage colony-stimulating factor (M-CSF), but not granulocyte-macrophage colony-stimulating factor (GM-CSF). The widespread expressions of Notch proteins suggest multiple functions for this receptor during hematopoiesis. These studies further indicate a novel role for Notch in regulating monocyte survival.
Collapse
|
45
|
Abstract
Activating mutations in c-Kit, the receptor for Stem Cell Factor (SCF), have been identified in dysplasias and leukaemias of the mast cell lineage and have been shown to contribute to transformation in model systems. Early myeloid cells also normally express c-Kit and their survival, proliferation and differentiation is promoted by SCF. It might therefore be expected that c-Kit mutations could also be involved in some acute and/or chronic myeloid leukaemias. We have found that mutant c-Kit (and normal c-Kit in the presence of SCF) provides a strong differentiation stimulus in normal and immortalised murine early myeloid cells. Since maturation of haemopoietic cells, with the exception of mast cells, results in down-regulation of c-Kit expression, the transforming effects of mutant receptor may be self-limiting in most lineages. This is consistent with the observation that multipotential progenitor cells from some patients with systemic mastocytosis express mutant c-Kit. However, c-Kit mutations have been observed in a few cases of myelodysplastic syndromes or AML without mast cell features. Oncogenesis involves multiple genetic changes and the phenotype of malignant haemopoietic cells expressing mutant c-Kit may be influenced by co-oncogenic events. For example mutations blocking the differentiative effect of mutant c-Kit might result in AML rather than mastocytosis. Thus the extent to which c-Kit mutations contribute to malignancies of early myeloid phenotype remains unknown, and resolution of this issue is complicated by the heterogeneity of this family of diseases.
Collapse
Affiliation(s)
- L K Ashman
- Division of Haematology, Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Adelaide, Australia.
| | | | | | | |
Collapse
|
46
|
Obinata M, Yanai N. Cellular and molecular regulation of an erythropoietic inductive microenvironment (EIM). Cell Struct Funct 1999; 24:171-9. [PMID: 10532351 DOI: 10.1247/csf.24.171] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- M Obinata
- Department of Cell Biology, Institute of Aging, Development and Cancer, Tohoku University, Sendai, Japan.
| | | |
Collapse
|
47
|
Abstract
Activating mutations in c-Kit, the receptor for Stem Cell Factor (SCF), have been identified in dysplasias and leukaemias of the mast cell lineage and have been shown to contribute to transformation in model systems. Early myeloid cells also normally express c-Kit and their survival, proliferation and differentiation is promoted by SCE It might therefore be expected that c-Kit mutations could also be involved in some acute and/or chronic myeloid leukaemias. We have found that mutant c-Kit (and normal c-Kit in the presence of SCF) provides a strong differentiation stimulus in normal and immortalised murine early myeloid cells. Since maturation of haemopoietic cells, with the exception of mast cells, results in down-regulation of c-Kit expression, the transforming effects of mutant receptor may be self-limiting in most lineages. This is consistent with the observation that multipotential progenitor cells from some patients with systemic mastocytosis express mutant c-Kit. However, c-Kit mutations have been observed in a few cases of myelodysplastic syndromes or AML without mast cell features. Oncogenesis involves multiple genetic changes and the phenotype of malignant haemopoietic cells expressing mutant c-Kit may be influenced by co-oncogenic events. For example mutations blocking the differentiative effect of mutant c-Kit might result in AML rather than mastocytosis. Thus the extent to which c-Kit mutations contribute to malignancies of early myeloid phenotype remains unknown, and resolution of this issue is complicated by the heterogeneity of this family of diseases.
Collapse
Affiliation(s)
- L K Ashman
- Division of Haematology, Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Adelaide, Australia.
| | | | | | | |
Collapse
|
48
|
Abstract
The transcription factor GATA-1 is essential for normal erythropoiesis. By examining in vitro–differentiated embryonic stem cells, we showed previously that in the absence of GATA-1, committed erythroid precursors fail to complete maturation and instead undergo apoptosis. The mechanisms by which GATA-1 controls cell survival are unknown. Here we report that in erythroid cells, GATA-1 strongly induces the expression of the anti-apoptotic protein bcl-xL, but not the related proteins bcl-2 and mcl-1. Consistent with a role for bcl-xL in mediating GATA-1–induced erythroid cell survival, in vitro–differentiated bcl-xL−/− embryonic stem cells fail to generate viable mature definitive erythroid cells, a phenotype resembling that of GATA-1 gene disruption. In addition, we show that erythropoietin, which is also required for erythroid cell survival, cooperates with GATA-1 to stimulate bcl-xL gene expression and to maintain erythroid cell viability during terminal maturation. Together, our data show that bcl-xL is essential for normal erythroid development and suggest a regulatory hierarchy in which bcl-xL is a critical downstream effector of GATA-1 and erythropoietin-mediated signals.
Collapse
|
49
|
|
50
|
Erythropoietin Induces the Tyrosine Phosphorylation of GAB1 and Its Association With SHC, SHP2, SHIP, and Phosphatidylinositol 3-Kinase. Blood 1999. [DOI: 10.1182/blood.v93.8.2578] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractFive tyrosine-phosphorylated proteins with molecular masses of 180, 145, 116, 100, and 70 kD are associated with phosphatidylinositol 3-kinase (PI 3-kinase) in erythropoietin (Epo)-stimulated UT-7 cells. The 180- and 70-kD proteins have been previously shown to be IRS2 and the Epo receptor. In this report, we show that the 116-kD protein is the IRS2-related molecular adapter, GAB1. Indeed, Epo induced the transient tyrosine phosphorylation of GAB1 in UT-7 cells. Both kinetics and Epo dose-response experiments showed that GAB1 tyrosine phosphorylation was a direct consequence of Epo receptor activation. After tyrosine phosphorylation, GAB1 associated with the PI 3-kinase, the phosphotyrosine phosphatase SHP2, the phosphatidylinositol 3,4,5 trisphosphate 5-phosphatase SHIP, and the molecular adapter SHC. GAB1 was also associated with the molecular adapter GRB2 in unstimulated cells, and this association dramatically increased after Epo stimulation. Thus, GAB1 could be a scaffold protein able to couple the Epo receptor activation with the stimulation of several intracellular signaling pathways. Epo-induced tyrosine phosphorylation of GAB1 was also observed in normal human erythroid progenitors isolated from cord blood. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and thrombopoietin (TPO) also induced the tyrosine phosphorylation of GAB1 in UT-7 cells, indicating that this molecule participates in the signal transduction of several cytokine receptors.
Collapse
|