1
|
Cui H, Li S, Yan X, Wang Z, Leng T, Li M, Li S. In vitro efficacy of bovine lactoferrin against bovine viral diarrhea virus. Arch Microbiol 2025; 207:126. [PMID: 40261405 DOI: 10.1007/s00203-025-04328-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/26/2025] [Accepted: 04/04/2025] [Indexed: 04/24/2025]
Abstract
Bovine viral diarrhea virus (BVDV) infection represents a significant economic challenge to the global cattle industry, leading to considerable losses in productivity and increased management costs. This underscores the urgent need for effective antiviral strategies to combat BVDV infection. In this study, we demonstrated that bovine lactoferrin (bLF), a multifunctional glycoprotein with known antimicrobial properties, exhibited potent inhibitory activity against BVDV infection. Importantly, the antiviral effect of bLF was not mediated by cytotoxicity towards host cells, indicating its safety for potential applications. Mechanistic investigations revealed that bLF did not interfere with viral RNA translation or replication, nor did it impair viral assembly or release. Instead, bLF effectively blocked BVDV infection during the early stages of the viral lifecycle, likely by competitively binding to cellular receptor molecules involved in viral entry. These findings identify bLF as a promising candidate for the development of antivirals targeting BVDV infection, offering a novel and effective approach to managing BVDV-associated diseases.
Collapse
Affiliation(s)
- Hongwei Cui
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Songda Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohuan Yan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaohua Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Centre for Laboratory animal Pathology Analysis, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Tianyi Leng
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ming Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Songli Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
2
|
Benn M, Emanuelsson F, Tybjærg-Hansen A, Nordestgaard BG. Low LDL cholesterol and risk of bacterial and viral infections: observational and Mendelian randomization studies. EUROPEAN HEART JOURNAL OPEN 2025; 5:oeaf009. [PMID: 39991120 PMCID: PMC11843444 DOI: 10.1093/ehjopen/oeaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/13/2025] [Accepted: 01/31/2025] [Indexed: 02/25/2025]
Abstract
Aims Low levels of LDL cholesterol may be associated with risk of infectious disease. We tested the hypothesis that low LDL cholesterol due to genetic variation in the LDLR, PCSK9, and HMGCR genes and a polygenic LDL cholesterol score is associated with risk of infectious diseases in the general population. Methods and results Using observational and Mendelian randomization designs, we examined associations of low plasma LDL cholesterol with risk of bacterial and viral infections in 119 805 individuals from the Copenhagen General Population Study/Copenhagen City Heart Study, 468 701 from the UK Biobank, and up to 376 773 from the FinnGen Research Project. Observationally, low LDL cholesterol concentrations were associated with risk of hospitalization for both bacterial and viral infections. In genetic analyses, a 1 mmol/L lower LDL cholesterol was associated with lower plasma PCSK9 {-0.55 nmol/L [95% confidence interval (CI): -1.06 to -0.05]; P = 0.03}, leucocyte count [-0.42 × 109/L (-0.61 to -0.24); P < 0.001], and high-sensitivity C-reactive protein [-0.44 mg/L (-0.79 to -0.09); P = 0.014]. Using an LDLR, HMGCR, and PCSK9 score, a 1 mmol/L lower LDL cholesterol was associated with risk ratios of 0.91 (95% CI: 0.86-0.97; P = 0.002) for unspecified bacterial infection, of 0.92 (0.87-0.97; P = 0.004) for diarrhoeal disease, and of 1.15 (1.03-1.29; P = 0.012) for unspecified viral infections and 1.64 (1.13-2.39; P = 0.009) for HIV/AIDS. Using a polygenic LDL cholesterol score largely showed similar results and in addition a lower risk of 0.85 (0.76-0.96; P = 0.006) for bacterial pneumonia and 0.91 (0.82-0.99; P = 0.035) for sepsis. Conclusion Genetically low LDL cholesterol concentrations were associated with lower concentration of markers of inflammation; lower risk of hospitalization for unspecified bacterial infections, infectious diarrhoeal diseases, bacterial pneumonia, and sepsis; and higher risk of viral infections and HIV/AIDS.
Collapse
Affiliation(s)
- Marianne Benn
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital—Herlev and Gentofte, Borgmester Ib Juuls vej 1, DK-2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Frida Emanuelsson
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital—Herlev and Gentofte, Borgmester Ib Juuls vej 1, DK-2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
- The Copenhagen City Heart Study, Copenhagen University Hospital—Bispebjerg and Frederiksberg, Bispebjerg Bakke 23, DK-2400 Copenhagen, Denmark
| | - Børge G Nordestgaard
- The Copenhagen General Population Study, Copenhagen University Hospital—Herlev and Gentofte, Borgmester Ib Juuls vej 1, DK-2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
- The Copenhagen City Heart Study, Copenhagen University Hospital—Bispebjerg and Frederiksberg, Bispebjerg Bakke 23, DK-2400 Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital—Herlev and Gentofte, Borgmester Ib Juuls vej 1, DK-2730 Herlev, Denmark
| |
Collapse
|
3
|
Chuang YC, Ou JHJ. Hepatitis B virus entry, assembly, and egress. Microbiol Mol Biol Rev 2024; 88:e0001424. [PMID: 39440957 DOI: 10.1128/mmbr.00014-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
SUMMARYHepatitis B virus (HBV) is an important human pathogen that chronically infects approximately 250 million people in the world, resulting in ~1 million deaths annually. This virus is a hepatotropic virus and can cause severe liver diseases including cirrhosis and hepatocellular carcinoma. The entry of HBV into hepatocytes is initiated by the interaction of its envelope proteins with its receptors. This is followed by the delivery of the viral nucleocapsid to the nucleus for the release of its genomic DNA and the transcription of viral RNAs. The assembly of the viral capsid particles may then take place in the nucleus or the cytoplasm and may involve cellular membranes. This is followed by the egress of the virus from infected cells. In recent years, significant research progresses had been made toward understanding the entry, the assembly, and the egress of HBV particles. In this review, we discuss the molecular pathways of these processes and compare them with those used by hepatitis delta virus and hepatitis C virus , two other hepatotropic viruses that are also enveloped. The understanding of these processes will help us to understand how HBV replicates and causes diseases, which will help to improve the treatments for HBV patients.
Collapse
Affiliation(s)
- Yu-Chen Chuang
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - J-H James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| |
Collapse
|
4
|
Leveringhaus E, Poljakovic R, Herrmann G, Roman-Sosa G, Becher P, Postel A. Porcine low-density lipoprotein receptor plays an important role in classical swine fever virus infection. Emerg Microbes Infect 2024; 13:2327385. [PMID: 38514916 PMCID: PMC10962300 DOI: 10.1080/22221751.2024.2327385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 03/01/2024] [Indexed: 03/23/2024]
Abstract
Several cellular factors have been reported to be required for replication of classical swine fever virus (CSFV), a member of the genus Pestivirus within the family Flaviviridae. However, many steps of its replication cycle are still poorly understood. The low-density lipoprotein receptor (LDLR) is involved in cell entry and post-entry processes of different viruses including other members of the Flaviviridae. In this study, the relevance of LDLR in replication of CSFV and another porcine pestivirus, Bungowannah pestivirus (BuPV), was investigated by antibody-mediated blocking of LDLR and genetically engineered porcine cell lines providing altered LDLR expression levels. An LDLR-specific antibody largely blocked infection with CSFV, but had only a minor impact on BuPV. Infections of the genetically modified cells confirmed an LDLR-dependent replication of CSFV. Compared to wild type cells, lower and higher expression of LDLR resulted in a 3.5-fold decrease or increase in viral titers already 20 h post infection. Viral titers were 25-fold increased in LDLR-overexpressing cells compared to cells with reduced LDLR expression at 72 h post infection. The varying LDLR expression levels had no clear effect on permissivity to BuPV. A decoy receptor assay using recombinant soluble LDLR provided no evidence that LDLR may function as a receptor for CSFV or BuPV. Differences in their dependency on LDLR suggest that CSFV and BuPV likely use different mechanisms to interact with their host cells. Moreover, this study reveals similarities in the replication cycles of CSFV and other members of the family Flaviviridae that are dependent on LDLR.
Collapse
Affiliation(s)
- Elena Leveringhaus
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Robin Poljakovic
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Gina Herrmann
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Gleyder Roman-Sosa
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Paul Becher
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Alexander Postel
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
5
|
Ke PY, Yeh CT. Functional Role of Hepatitis C Virus NS5A in the Regulation of Autophagy. Pathogens 2024; 13:980. [PMID: 39599533 PMCID: PMC11597459 DOI: 10.3390/pathogens13110980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Many types of RNA viruses, including the hepatitis C virus (HCV), activate autophagy in infected cells to promote viral growth and counteract the host defense response. Autophagy acts as a catabolic pathway in which unnecessary materials are removed via the lysosome, thus maintaining cellular homeostasis. The HCV non-structural 5A (NS5A) protein is a phosphoprotein required for viral RNA replication, virion assembly, and the determination of interferon (IFN) sensitivity. Recently, increasing evidence has shown that HCV NS5A can induce autophagy to promote mitochondrial turnover and the degradation of hepatocyte nuclear factor 1 alpha (HNF-1α) and diacylglycerol acyltransferase 1 (DGAT1). In this review, we summarize recent progress in understanding the detailed mechanism by which HCV NS5A triggers autophagy, and outline the physiological significance of the balance between host-virus interactions.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry and Molecular Biology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| |
Collapse
|
6
|
Cosset FL, Denolly S. Lipoprotein receptors: A little grease for enveloped viruses to open the lock? J Biol Chem 2024; 300:107849. [PMID: 39357828 PMCID: PMC11550601 DOI: 10.1016/j.jbc.2024.107849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024] Open
Abstract
Several studies recently highlighted the role of lipoprotein receptors in viral entry. These receptors are evolutionarily ancient proteins, key for the transport of lipids as well as other signaling molecules across the plasma membrane. Here, we discuss the different families of lipoprotein receptors and how they are hijacked by enveloped viruses to promote their entry into infected cells. While the usage of lipoprotein receptors was known for members of the Flaviviridae family and vesicular stomatitis virus, the last 4 years have seen the discovery that these receptors are used by many genetically unrelated viruses. We also emphasize how viral particles interact with these receptors and the possible targeting of these host factors as antiviral strategies.
Collapse
Affiliation(s)
- François-Loïc Cosset
- CIRI - Centre International de Recherche en Infectiologie, Université de Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308 ENS de Lyon, Lyon, France.
| | - Solène Denolly
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon1, Centre Léon Bérard, Lyon, France.
| |
Collapse
|
7
|
Huang CF, Dai CY, Lin YH, Wang CW, Jang TY, Liang PC, Lin TC, Tsai PC, Wei YJ, Yeh ML, Hsieh MY, Huang CK, Huang JF, Chuang WL, Yu ML. Dynamic change of metabolic dysfunction-associated steatotic liver disease in chronic hepatitis C patients after viral eradication: A nationwide registry study in Taiwan. Clin Mol Hepatol 2024; 30:883-894. [PMID: 39069721 PMCID: PMC11540343 DOI: 10.3350/cmh.2024.0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND/AIMS Steatotic liver disease (SLD) is a common manifestation in chronic hepatitis C (CHC). Metabolic alterations in CHC are associated with metabolic dysfunction-associated steatotic liver disease (MASLD). We aimed to elucidate whether hepatitis C virus (HCV) eradication mitigates MASLD occurrence or resolution. METHODS We enrolled 5,840 CHC patients whose HCV was eradicated by direct-acting antivirals in a nationwide HCV registry. MASLD and the associated cardiometabolic risk factors (CMRFs) were evaluated at baseline and 6 months after HCV cure. RESULTS There were 2,147 (36.8%) patients with SLD, and 1,986 (34.0%) of them met the MASLD criteria before treatment. After treatment, HbA1c (6.0% vs. 5.9%, P<0.001) and BMI (24.8 kg/m2 vs. 24.7 kg/m2, P<0.001) decreased, whereas HDL-C (49.1 mg/dL vs. 51.9 mg/dL, P<0.001) and triglycerides (102.8 mg/dL vs. 111.9 mg/dL, P<0.001) increased significantly. The proportion of patients with SLD was 37.5% after HCV eradication, which did not change significantly compared with the pretreatment status. The percentage of the patients who had post-treatment MASLD was 34.8%, which did not differ significantly from the pretreatment status (P=0.17). Body mass index (BMI) (odds ratio [OR] 0.89; 95% confidence intervals [CI] 0.85-0.92; P<0.001) was the only factor associated with MASLD resolution. In contrast, unfavorable CMRFs, including BMI (OR 1.10; 95% CI 1.06-1.14; P<0.001) and HbA1c (OR 1.19; 95% CI 1.04-1.35; P=0.01), were independently associated with MASLD development after HCV cure. CONCLUSION HCV eradication mitigates MASLD in CHC patients. CMRF surveillance is mandatory for CHC patients with metabolic alterations, which are altered after HCV eradication and predict the evolution of MASLD.
Collapse
Affiliation(s)
- Chung-Feng Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital; College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Ph.D. Program in Translational Medicine, College of Medicine, Kaohsiung Medical University and Academia Sinica, Kaohsiung, Taiwan
| | - Chia-Yen Dai
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital; College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hung Lin
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital; College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Wen Wang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital; College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tyng-Yuan Jang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital; College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Cheng Liang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital; College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzu-Chun Lin
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital; College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Chien Tsai
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital; College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Ju Wei
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital; College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lun Yeh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital; College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Yen Hsieh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital; College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Kuan Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital; College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jee-Fu Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital; College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital; College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital; College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
8
|
Liu CJ, Seto WK, Yu ML. Dual-etiology MAFLD: the interactions between viral hepatitis B, viral hepatitis C, alcohol, and MAFLD. Hepatol Int 2024; 18:897-908. [PMID: 39115632 DOI: 10.1007/s12072-024-10699-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/03/2024] [Indexed: 10/05/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) and viral hepatitis due to chronic hepatitis B virus (HBV) or hepatitis C virus (HCV) infection are common liver diseases worldwide. Excessive alcohol consumption and alcoholic liver disease (ALD) are also emerging health problems. Therefore, in clinical practice, we may encounter subjects with dual etiology of liver diseases such as coexisting MAFLD/HBV, MAFLD/HCV, and MAFLD/ALD. In this review, we summarize the epidemiology, clinical features, and mutual interactions of MAFLD with coexisting HBV, HCV, or ALD. The impact of MAFLD on the progression of liver diseases and treatment outcomes in patients with chronic viral hepatitis and the clinical questions to be addressed regarding dual MAFLD and ALD are also discussed.
Collapse
Affiliation(s)
- Chun-Jen Liu
- Hepatitis Research Center, National Taiwan University College of Medicine and, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
| | - Wai Kay Seto
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Pok Fu Lam, China.
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine, Center of Hepatitis Research, College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
9
|
Li Z, He Y, Chen J, Ran D, Yue J, Fu Q, Shi H. Transcriptomic Analysis of Metformin's Effect on Bovine Viral Diarrhea Virus Infection. Vet Sci 2024; 11:376. [PMID: 39195830 PMCID: PMC11358930 DOI: 10.3390/vetsci11080376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
(1) Background: Bovine viral diarrhea virus (BVDV) causes calf diarrhea, bovine respiratory syndrome, and cow abortion, resulting in substantial economic losses in the cattle industry. Owing to its persistent infection mechanism, BVDV is a major challenge in the treatment of cattle. (2) Methods: To determine how metformin (Met) inhibits the interaction between BVDV and host cells, we treated BVDV-infected cells with Met. We then performed an RNA sequencing (RNA-seq) analysis of Met-treated cells infected with BVDV to identify differentially expressed genes (DEGs). Consequently, the RNA-seq results were validated through real-time quantitative PCR (qPCR). (3) Results: Our analysis revealed 3169 DEGs in the Met-treated cells (Met group) vs. the negative controls (NC group) and 2510 DEGs in the BVDV-infected cells after pretreatment with Met (MetBVDV group) vs. the BVDV-infected cells (BVDV group). The DEGs were involved in MDBK interactions during BVDV infection, as indicated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The potential interactions of the DEGs were confirmed via a protein-protein interaction (PPI) network. Met treatment induced autophagy signaling activity and the expression of the autophagy-related genes ATG2A, ATG4B, ATG10, and ATG12 in BVDV-infected Met-pretreated cells. (4) Conclusions: We found that the host transcriptomic profile was affected by BVDV infection and Met pretreatment. These findings offer valuable new insights and provide support for future studies on the inhibition of BVDV replication by Met.
Collapse
Affiliation(s)
- Zeyu Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Z.L.); (Y.H.); (J.C.); (D.R.)
- Xinjiajng Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Yuanxiu He
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Z.L.); (Y.H.); (J.C.); (D.R.)
- Xinjiajng Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Junzhen Chen
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Z.L.); (Y.H.); (J.C.); (D.R.)
- Xinjiajng Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Duoliang Ran
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Z.L.); (Y.H.); (J.C.); (D.R.)
- Xinjiajng Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Jianbo Yue
- Division of Natural and Applied Science, Duke Kunshan University, Kunshan 215316, China;
| | - Qiang Fu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Z.L.); (Y.H.); (J.C.); (D.R.)
- Xinjiajng Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Huijun Shi
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Z.L.); (Y.H.); (J.C.); (D.R.)
- Xinjiajng Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| |
Collapse
|
10
|
Seurre C, Roca Suarez AA, Testoni B, Zoulim F, Grigorov B. After the Storm: Persistent Molecular Alterations Following HCV Cure. Int J Mol Sci 2024; 25:7073. [PMID: 39000179 PMCID: PMC11241208 DOI: 10.3390/ijms25137073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The development of direct-acting antivirals (DAAs) against hepatitis C virus (HCV) has revolutionized the management of this pathology, as their use allows viral elimination in a large majority of patients. Nonetheless, HCV remains a major public health problem due to the multiple challenges associated with its diagnosis, treatment availability and development of a prophylactic vaccine. Moreover, HCV-cured patients still present an increased risk of developing hepatic complications such as hepatocellular carcinoma. In the present review, we aim to summarize the impact that HCV infection has on a wide variety of peripheral and intrahepatic cell populations, the alterations that remain following DAA treatment and the potential molecular mechanisms implicated in their long-term persistence. Finally, we consider how recent developments in single-cell multiomics could refine our understanding of this disease in each specific intrahepatic cell population and drive the field to explore new directions for the development of chemo-preventive strategies.
Collapse
Affiliation(s)
- Coline Seurre
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (C.S.); (A.A.R.S.); (B.T.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| | - Armando Andres Roca Suarez
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (C.S.); (A.A.R.S.); (B.T.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| | - Barbara Testoni
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (C.S.); (A.A.R.S.); (B.T.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| | - Fabien Zoulim
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (C.S.); (A.A.R.S.); (B.T.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
- Hospices Civils de Lyon, 69002 Lyon, France
| | - Boyan Grigorov
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (C.S.); (A.A.R.S.); (B.T.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| |
Collapse
|
11
|
Monteil VM, Wright SC, Dyczynski M, Kellner MJ, Appelberg S, Platzer SW, Ibrahim A, Kwon H, Pittarokoilis I, Mirandola M, Michlits G, Devignot S, Elder E, Abdurahman S, Bereczky S, Bagci B, Youhanna S, Aastrup T, Lauschke VM, Salata C, Elaldi N, Weber F, Monserrat N, Hawman DW, Feldmann H, Horn M, Penninger JM, Mirazimi A. Crimean-Congo haemorrhagic fever virus uses LDLR to bind and enter host cells. Nat Microbiol 2024; 9:1499-1512. [PMID: 38548922 PMCID: PMC11153131 DOI: 10.1038/s41564-024-01672-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/11/2024] [Indexed: 06/07/2024]
Abstract
Climate change and population densities accelerated transmission of highly pathogenic viruses to humans, including the Crimean-Congo haemorrhagic fever virus (CCHFV). Here we report that the Low Density Lipoprotein Receptor (LDLR) is a critical receptor for CCHFV cell entry, playing a vital role in CCHFV infection in cell culture and blood vessel organoids. The interaction between CCHFV and LDLR is highly specific, with other members of the LDLR protein family failing to bind to or neutralize the virus. Biosensor experiments demonstrate that LDLR specifically binds the surface glycoproteins of CCHFV. Importantly, mice lacking LDLR exhibit a delay in CCHFV-induced disease. Furthermore, we identified the presence of Apolipoprotein E (ApoE) on CCHFV particles. Our findings highlight the essential role of LDLR in CCHFV infection, irrespective of ApoE presence, when the virus is produced in tick cells. This discovery holds profound implications for the development of future therapies against CCHFV.
Collapse
Affiliation(s)
- Vanessa M Monteil
- Unit of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| | - Shane C Wright
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Matheus Dyczynski
- Acus Laboratories GmbH, Cologne, Germany
- JLP Health GmbH, Vienna, Austria
| | - Max J Kellner
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | | | - Sebastian W Platzer
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | | | - Hyesoo Kwon
- National Veterinary Institute, Uppsala, Sweden
| | | | - Mattia Mirandola
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Stephanie Devignot
- Unit of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| | | | | | | | - Binnur Bagci
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Sivas Cumhuriyet University, Sivas, Turkey
| | - Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- University Tübingen, Tübingen, Germany
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Nazif Elaldi
- Department of Infectious Diseases and Clinical Microbiology, Medical Faculty, Cumhuriyet University, Sivas, Turkey
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Gießen, Germany
| | - Nuria Monserrat
- University of Barcelona, Barcelona, Spain
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - David W Hawman
- Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, USA
| | - Heinz Feldmann
- Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, USA
| | - Moritz Horn
- Acus Laboratories GmbH, Cologne, Germany
- JLP Health GmbH, Vienna, Austria
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria.
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
- Helmholtz Centre for Infection Research, Braunschweig, Germany.
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Ali Mirazimi
- Unit of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden.
- Public Health Agency of Sweden, Solna, Sweden.
- National Veterinary Institute, Uppsala, Sweden.
| |
Collapse
|
12
|
Lanave G, Pellegrini F, Triggiano F, De Giglio O, Lucente MS, Diakoudi G, Catella C, Gentile A, Tardugno R, Fracchiolla G, Martella V, Camero M. In Vitro Virucidal Activity of Different Essential Oils against Bovine Viral Diarrhea Virus Used as Surrogate of Human Hepatitis C Virus. Antibiotics (Basel) 2024; 13:514. [PMID: 38927181 PMCID: PMC11201044 DOI: 10.3390/antibiotics13060514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The hepatitis C virus (HCV) is a major hepatotropic virus that affects humans with increased risk of developing hepatocellular carcinoma. The bovine viral diarrhea virus (BVDV) causes abortion, calf mortality and poor reproductive performance in cattle. Due the difficulties of in vitro cultivation for HCV, BVDV has been used as surrogate for in vitro assessment of the efficacy of antivirals. Essential oils (EOs) display antiviral and virucidal activity on several viral pathogens. In this study, the virucidal activity of five EOs, Salvia officinalis L. EO (SEO), Melissa officinalis L. EO (MEO), Citrus lemon EO (LEO), Rosmarinus officinalis L. EO (REO) and Thymus vulgaris L. EO (TEO) against BVDV was evaluated in vitro at different concentrations for several time contacts. MEO and LEO were able to considerably inactivate BVDV with a time- and dose-dependent fashion. MEO and LEO at the highest concentrations decreased viral titer by 2.00 and 2.25 log10 TCID50/50 μL at 8 h contact time, respectively. SEO, REO and TEO displayed mild virucidal activity at the highest concentrations for 8 h contact times. In this study, the virucidal efficacies of MEO and LEO against BVDV were observed regardless of compound concentration and contact time. Further studies are needed to confirm the potential use of MEO and LEO as surface disinfectants.
Collapse
Affiliation(s)
- Gianvito Lanave
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; (G.L.); (F.P.); (M.S.L.); (G.D.); (C.C.); (A.G.); (V.M.)
| | - Francesco Pellegrini
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; (G.L.); (F.P.); (M.S.L.); (G.D.); (C.C.); (A.G.); (V.M.)
| | - Francesco Triggiano
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, 70124 Bari, Italy; (F.T.); (O.D.G.)
| | - Osvalda De Giglio
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, 70124 Bari, Italy; (F.T.); (O.D.G.)
| | - Maria Stella Lucente
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; (G.L.); (F.P.); (M.S.L.); (G.D.); (C.C.); (A.G.); (V.M.)
| | - Georgia Diakoudi
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; (G.L.); (F.P.); (M.S.L.); (G.D.); (C.C.); (A.G.); (V.M.)
| | - Cristiana Catella
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; (G.L.); (F.P.); (M.S.L.); (G.D.); (C.C.); (A.G.); (V.M.)
| | - Arturo Gentile
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; (G.L.); (F.P.); (M.S.L.); (G.D.); (C.C.); (A.G.); (V.M.)
| | - Roberta Tardugno
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (R.T.); (G.F.)
| | - Giuseppe Fracchiolla
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (R.T.); (G.F.)
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; (G.L.); (F.P.); (M.S.L.); (G.D.); (C.C.); (A.G.); (V.M.)
| | - Michele Camero
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; (G.L.); (F.P.); (M.S.L.); (G.D.); (C.C.); (A.G.); (V.M.)
| |
Collapse
|
13
|
Xu ZS, Du WT, Wang SY, Wang MY, Yang YN, Li YH, Li ZQ, Zhao LX, Yang Y, Luo WW, Wang YY. LDLR is an entry receptor for Crimean-Congo hemorrhagic fever virus. Cell Res 2024; 34:140-150. [PMID: 38182887 PMCID: PMC10837205 DOI: 10.1038/s41422-023-00917-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/14/2023] [Indexed: 01/07/2024] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is the most widespread tick-born zoonotic bunyavirus that causes severe hemorrhagic fever and death in humans. CCHFV enters the cell via clathrin-mediated endocytosis which is dependent on its surface glycoproteins. However, the cellular receptors that are required for CCHFV entry are unknown. Here we show that the low density lipoprotein receptor (LDLR) is an entry receptor for CCHFV. Genetic knockout of LDLR impairs viral infection in various CCHFV-susceptible human, monkey and mouse cells, which is restored upon reconstitution with ectopically-expressed LDLR. Mutagenesis studies indicate that the ligand binding domain (LBD) of LDLR is necessary for CCHFV infection. LDLR binds directly to CCHFV glycoprotein Gc with high affinity, which supports virus attachment and internalization into host cells. Consistently, a soluble sLDLR-Fc fusion protein or anti-LDLR blocking antibodies impair CCHFV infection into various susceptible cells. Furthermore, genetic knockout of LDLR or administration of an LDLR blocking antibody significantly reduces viral loads, pathological effects and death following CCHFV infection in mice. Our findings suggest that LDLR is an entry receptor for CCHFV and pharmacological targeting of LDLR may provide a strategy to prevent and treat Crimean-Congo hemorrhagic fever.
Collapse
Affiliation(s)
- Zhi-Sheng Xu
- Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Tian Du
- Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Su-Yun Wang
- Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Mo-Yu Wang
- Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi-Ning Yang
- Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Hui Li
- Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhen-Qi Li
- Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li-Xin Zhao
- Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Yang
- Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei-Wei Luo
- Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Yi Wang
- Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, Hubei, China.
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan, Hubei, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
14
|
Casiano Matos J, Harichandran K, Tang J, Sviridov DO, Sidoti Migliore G, Suzuki M, Olano LR, Hobbs A, Kumar A, Paskel MU, Bonsignori M, Dearborn AD, Remaley AT, Marcotrigiano J. Hepatitis C virus E1 recruits high-density lipoprotein to support infectivity and evade antibody recognition. J Virol 2024; 98:e0084923. [PMID: 38174935 PMCID: PMC10804985 DOI: 10.1128/jvi.00849-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Hepatitis C virus (HCV) is a member of the Flaviviridae family; however, unlike other family members, the HCV virion has an unusually high lipid content. HCV has two envelope glycoproteins, E1 and E2. E2 contributes to receptor binding, cell membrane attachment, and immune evasion. In contrast, the functions of E1 are poorly characterized due, in part, to challenges in producing the protein. This manuscript describes the expression and purification of a soluble E1 ectodomain (eE1) that is recognized by conformational, human monoclonal antibodies. eE1 forms a complex with apolipoproteins AI and AII, cholesterol, and phospholipids by recruiting high-density lipoprotein (HDL) from the extracellular media. We show that HDL binding is a function specific to eE1 and HDL hinders recognition of E1 by a neutralizing monoclonal antibody. Either low-density lipoprotein or HDL increases the production and infectivity of cell culture-produced HCV, but E1 preferentially selects HDL, influencing both viral life cycle and antibody evasion.IMPORTANCEHepatitis C virus (HCV) infection is a significant burden on human health, but vaccine candidates have yet to provide broad protection against this infection. We have developed a method to produce high quantities of soluble E1 or E2, the viral proteins located on the surface of HCV. HCV has an unusually high lipid content due to the recruitment of apolipoproteins. We found that E1 (and not E2) preferentially recruits host high-density lipoprotein (HDL) extracellularly. This recruitment of HDL by E1 prevents binding of E1 by a neutralizing antibody and furthermore prevents antibody-mediated neutralization of the virus. By comparison, low-density lipoprotein does not protect the virus from antibody-mediated neutralization. Our findings provide mechanistic insight into apolipoprotein recruitment, which may be critical for vaccine development.
Collapse
Affiliation(s)
- Jennifer Casiano Matos
- Structural Virology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kaneemozhe Harichandran
- Structural Virology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jingrong Tang
- Lipoprotein Metabolism Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Denis O. Sviridov
- Lipoprotein Metabolism Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Giacomo Sidoti Migliore
- Translational Immunobiology Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Motoshi Suzuki
- Protein Chemistry Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Lisa R. Olano
- Protein Chemistry Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Alvaro Hobbs
- Structural Virology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ashish Kumar
- Structural Virology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Myeisha U. Paskel
- Structural Virology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mattia Bonsignori
- Translational Immunobiology Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Altaira D. Dearborn
- Structural Virology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alan T. Remaley
- Lipoprotein Metabolism Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph Marcotrigiano
- Structural Virology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Ma YX, Chai YJ, Han YQ, Zhao SB, Yang GY, Wang J, Ming SL, Chu BB. Pseudorabies virus upregulates low-density lipoprotein receptors to facilitate viral entry. J Virol 2024; 98:e0166423. [PMID: 38054618 PMCID: PMC10804996 DOI: 10.1128/jvi.01664-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
Pseudorabies virus (PRV) is the causative agent of Aujeszky's disease in pigs. The low-density lipoprotein receptor (LDLR) is a transcriptional target of the sterol-regulatory element-binding proteins (SREBPs) and participates in the uptake of LDL-derived cholesterol. However, the involvement of LDLR in PRV infection has not been well characterized. We observed an increased expression level of LDLR mRNA in PRV-infected 3D4/21, PK-15, HeLa, RAW264.7, and L929 cells. The LDLR protein level was also upregulated by PRV infection in PK-15 cells and in murine lung and brain. The treatment of cells with the SREBP inhibitor, fatostatin, or with SREBP2-specific small interfering RNA prevented the PRV-induced upregulation of LDLR expression as well as viral protein expression and progeny virus production. This suggested that PRV activated SREBPs to induce LDLR expression. Furthermore, interference in LDLR expression affected PRV proliferation, while LDLR overexpression promoted it. This indicated that LDLR was involved in PRV infection. The study also demonstrated that LDLR participated in PRV invasions. The overexpression of LDLR or inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9), which binds to LDLR and targets it for lysosomal degradation, significantly enhanced PRV attachment and entry. Mechanistically, LDLR interacted with PRV on the plasma membrane, and pretreatment of cells with LDLR antibodies was able to neutralize viral entry. An in vivo study indicated that the treatment of mice with the PCSK9 inhibitor SBC-115076 promoted PRV proliferation. The data from the study indicate that PRV hijacks LDLR for viral entry through the activation of SREBPs.IMPORTANCEPseudorabies virus (PRV) is a herpesvirus that primarily manifests as fever, pruritus, and encephalomyelitis in various domestic and wild animals. Owing to its lifelong latent infection characteristics, PRV outbreaks have led to significant financial setbacks in the global pig industry. There is evidence that PRV variant strains can infect humans, thereby crossing the species barrier. Therefore, gaining deeper insights into PRV pathogenesis and developing updated strategies to contain its spread are critical. This study posits that the low-density lipoprotein receptor (LDLR) could be a co-receptor for PRV infection. Hence, strategies targeting LDLR may provide a promising avenue for the development of effective PRV vaccines and therapeutic interventions.
Collapse
Affiliation(s)
- Ying-Xian Ma
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan, China
| | - Ya-Jing Chai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan, China
| | - Ya-Qi Han
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan, China
| | - Shi-Bo Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan, China
| | - Guo-Yu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China
| | - Sheng-Li Ming
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan, China
| | - Bei-Bei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, Henan, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China
- Longhu Advanced Immunization Laboratory, Zhengzhou, Henan, China
| |
Collapse
|
16
|
Yeh ML, Huang JF, Yu ML. Fatty liver and viral hepatitis: Prevalence, risk factors, natural course, pathogenesis, and management. METABOLIC STEATOTIC LIVER DISEASE 2024:261-275. [DOI: 10.1016/b978-0-323-99649-5.00008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Henriques P, Rosa A, Caldeira-Araújo H, Soares P, Vigário AM. Flying under the radar - impact and factors influencing asymptomatic DENV infections. Front Cell Infect Microbiol 2023; 13:1284651. [PMID: 38076464 PMCID: PMC10704250 DOI: 10.3389/fcimb.2023.1284651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
The clinical outcome of DENV and other Flaviviruses infections represents a spectrum of severity that ranges from mild manifestations to severe disease, which can ultimately lead to death. Nonetheless, most of these infections result in an asymptomatic outcome that may play an important role in the persistent circulation of these viruses. Also, although little is known about the mechanisms that lead to these asymptomatic infections, they are likely the result of a complex interplay between viral and host factors. Specific characteristics of the infecting viral strain, such as its replicating efficiency, coupled with host factors, like gene expression of key molecules involved in the immune response or in the protection against disease, are among crucial factors to study. This review revisits recent data on factors that may contribute to the asymptomatic outcome of the world's widespread DENV, highlighting the importance of silent infections in the transmission of this pathogen and the immune status of the host.
Collapse
Affiliation(s)
- Paulo Henriques
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
| | - Alexandra Rosa
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
| | - Helena Caldeira-Araújo
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
- CQM-Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Pedro Soares
- Department of Biology, CBMA (Centre of Molecular and Environmental Biology), Braga, Portugal
- Department of Biology, Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| | - Ana Margarida Vigário
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
18
|
Carriquí-Madroñal B, Lasswitz L, von Hahn T, Gerold G. Genetic and pharmacological perturbation of hepatitis-C virus entry. Curr Opin Virol 2023; 62:101362. [PMID: 37678113 DOI: 10.1016/j.coviro.2023.101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/30/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023]
Abstract
Hepatitis-C virus (HCV) chronically infects 58 million individuals worldwide with variable disease outcome. While a subfraction of individuals exposed to the virus clear the infection, the majority develop chronic infection if untreated. Another subfraction of chronically ill proceeds to severe liver disease. The underlying causes of this interindividual variability include genetic polymorphisms in interferon genes. Here, we review available data on the influence of genetic or pharmacological perturbation of HCV host dependency factors on the clinically observed interindividual differences in disease outcome. We focus on host factors mediating virus entry into human liver cells. We assess available data on genetic variants of the major entry factors scavenger receptor class-B type I, CD81, claudin-1, and occludin as well as pharmacological perturbation of these entry factors. We review cell culture experimental and clinical cohort study data and conclude that entry factor perturbation may contribute to disease outcome of hepatitis C.
Collapse
Affiliation(s)
- Belén Carriquí-Madroñal
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hanover, Germany
| | - Lisa Lasswitz
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hanover, Germany
| | - Thomas von Hahn
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; Department of Gastroenterology, Hepatology and Interventional Endoscopy, Asklepios Hospital Barmbek, Semmelweis University, Campus Hamburg, 22307 Hamburg, Germany
| | - Gisa Gerold
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hanover, Germany; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden; Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden.
| |
Collapse
|
19
|
Porto PS, Rivera A, Moonrinta R, Wobus CE. Entry and egress of human astroviruses. Adv Virus Res 2023; 117:81-119. [PMID: 37832992 DOI: 10.1016/bs.aivir.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Astroviruses encapsidate a positive-sense, single-stranded RNA genome into ∼30nm icosahedral particles that infect a wide range of mammalian and avian species, but their biology is not well understood. Human astroviruses (HAstV) are divided into three clades: classical HAstV serotypes 1-8, and novel or non-classical HAstV of the MLB and VA clades. These viruses are part of two genogroups and phylogenetically cluster with other mammalian astroviruses, highlighting their zoonotic potential. HAstV are a highly prevalent cause of nonbacterial gastroenteritis, primarily in children, the elderly and immunocompromised. Additionally, asymptomatic infections and extraintestinal disease (e.g., encephalitis), are also observed, mostly in immunocompetent or immunocompromised individuals, respectively. While these viruses are highly prevalent, no approved vaccines or antivirals are available to prevent or treat infections. This is in large part due to their understudied nature and the limited understanding of even very basic features of their life cycle and pathogenesis at the cellular and organismal level. This review will summarize molecular features of human astrovirus biology, pathogenesis, and tropism, and then focus on two stages of the viral life cycle, namely entry and egress, since these are proven targets for therapeutic interventions. We will further highlight gaps in knowledge in hopes of stimulating future research into these understudied viruses.
Collapse
Affiliation(s)
- Pedro Soares Porto
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United states
| | - Andres Rivera
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United states
| | - Rootjikarn Moonrinta
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United states
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United states.
| |
Collapse
|
20
|
Guo X, Zhang M, Liu X, Zhang Y, Wang C, Guo Y. Attachment, Entry, and Intracellular Trafficking of Classical Swine Fever Virus. Viruses 2023; 15:1870. [PMID: 37766277 PMCID: PMC10534341 DOI: 10.3390/v15091870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Classical swine fever virus (CSFV), which is a positive-sense, single-stranded RNA virus with an envelope, is a member of the Pestivirus genus in the Flaviviridae family. CSFV causes a severe and highly contagious disease in pigs and is prevalent worldwide, threatening the pig farming industry. The detailed mechanisms of the CSFV life cycle have been reported, but are still limited. Some receptors and attachment factors of CSFV, including heparan sulfate (HS), laminin receptor (LamR), complement regulatory protein (CD46), MER tyrosine kinase (MERTK), disintegrin, and metalloproteinase domain-containing protein 17 (ADAM17), were identified. After attachment, CSFV internalizes via clathrin-mediated endocytosis (CME) and/or caveolae/raft-dependent endocytosis (CavME). After internalization, CSFV moves to early and late endosomes before uncoating. During this period, intracellular trafficking of CSFV relies on components of the endosomal sorting complex required for transport (ESCRT) and Rab proteins in the endosome dynamics, with a dependence on the cytoskeleton network. This review summarizes the data on the mechanisms of CSFV attachment, internalization pathways, and intracellular trafficking, and provides a general view of the early events in the CSFV life cycle.
Collapse
Affiliation(s)
| | | | | | | | | | - Yidi Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| |
Collapse
|
21
|
Cao X, Nguyen V, Tsai J, Gao C, Tian Y, Zhang Y, Carver W, Kiaris H, Cui T, Tan W. The SARS-CoV-2 spike protein induces long-term transcriptional perturbations of mitochondrial metabolic genes, causes cardiac fibrosis, and reduces myocardial contractile in obese mice. Mol Metab 2023; 74:101756. [PMID: 37348737 PMCID: PMC10281040 DOI: 10.1016/j.molmet.2023.101756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND As the pandemic evolves, post-acute sequelae of CoV-2 (PASC) including cardiovascular manifestations have emerged as a new health threat. This study aims to study whether the Spike protein plus obesity can exacerbate PASC-related cardiomyopathy. METHODS A Spike protein-pseudotyped (Spp) virus with the proper surface tropism of SARS-CoV-2 was developed for viral entry assay in vitro and administration into high fat diet (HFD)-fed mice. The systemic viral loads and cardiac transcriptomes were analyzed at 2 and 24 h, 3, 6, and 24 weeks post introducing (wpi) Spp using RNA-seq or real time RT-PCR. Echocardiography was used to monitor cardiac functions. RESULTS Low-density lipoprotein cholesterol enhanced viral uptake in endothelial cells, macrophages, and cardiomyocyte-like H9C2 cells. Selective cardiac and adipose viral depositions were observed in HFD mice but not in normal-chow-fed mice. The cardiac transcriptional signatures in HFD mice at 3, 6, and 24 wpi showed systemic suppression of mitochondria respiratory chain genes including ATP synthases and nicotinamide adenine dinucleotide:ubiquinone oxidoreductase gene members, upregulation of stress pathway-related crucial factors such as nuclear factor-erythroid 2-related factor 1 and signal transducer and activator of transcription 5A, and increases in expression of glucose metabolism-associated genes. As compared with the age-matched HFD control mice, cardiac ejection fraction and fractional shortening were significantly decreased, while left ventricular end-systolic diameter and volume were significantly elevated, and cardiac fibrosis was increased in HFD mice at 24 wpi. CONCLUSION Our data demonstrated that the Spike protein could induce long-term transcriptional suppression of mitochondria metabolic genes and cause cardiac fibrosis and myocardial contractile impairment in obese mice, providing mechanistic insights to PASC-related cardiomyopathy.
Collapse
Affiliation(s)
- Xiaoling Cao
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
| | - Vi Nguyen
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
| | - Joseph Tsai
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, UC San Diego School of Medicine, San Diego, CA, 92093, USA
| | - Chao Gao
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
| | - Yan Tian
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA; Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yuping Zhang
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA; Department of General Surgery, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Wayne Carver
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA; Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, 29208, USA
| | - Hippokratis Kiaris
- Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Taixing Cui
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA; Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, 29208, USA
| | - Wenbin Tan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA; Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
22
|
Devignot S, Sha TW, Burkard TR, Schmerer P, Hagelkruys A, Mirazimi A, Elling U, Penninger JM, Weber F. Low-density lipoprotein receptor-related protein 1 (LRP1) as an auxiliary host factor for RNA viruses. Life Sci Alliance 2023; 6:e202302005. [PMID: 37072184 PMCID: PMC10114362 DOI: 10.26508/lsa.202302005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/20/2023] Open
Abstract
Viruses with an RNA genome are often the cause of zoonotic infections. In order to identify novel pro-viral host cell factors, we screened a haploid insertion-mutagenized mouse embryonic cell library for clones that are resistant to Rift Valley fever virus (RVFV). This screen returned the low-density lipoprotein receptor-related protein 1 (LRP1) as a top hit, a plasma membrane protein involved in a wide variety of cell activities. Inactivation of LRP1 in human cells reduced RVFV RNA levels already at the attachment and entry stages of infection. Moreover, the role of LRP1 in promoting RVFV infection was dependent on physiological levels of cholesterol and on endocytosis. In the human cell line HuH-7, LRP1 also promoted early infection stages of sandfly fever Sicilian virus and La Crosse virus, but had a minor effect on late infection by vesicular stomatitis virus, whereas encephalomyocarditis virus was entirely LRP1-independent. Moreover, siRNA experiments in human Calu-3 cells demonstrated that also SARS-CoV-2 infection benefitted from LRP1. Thus, we identified LRP1 as a host factor that supports infection by a spectrum of RNA viruses.
Collapse
Affiliation(s)
- Stephanie Devignot
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
| | - Tim Wai Sha
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
| | - Thomas R Burkard
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Patrick Schmerer
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
| | - Astrid Hagelkruys
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Ali Mirazimi
- Public Health Agency of Sweden, Solna, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, Solna, Sweden
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
- German Centre for Infection Research (DZIF), Partner Site Giessen, Giessen, Germany
| |
Collapse
|
23
|
Tsutsumi Y, Ito S, Shiratori S, Teshima T. Hepatitis C Virus (HCV)-Ribonucleic Acid (RNA) As a Biomarker for Lymphoid Malignancy with HCV Infection. Cancers (Basel) 2023; 15:2852. [PMID: 37345190 DOI: 10.3390/cancers15102852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
The hepatitis C virus (HCV) is potentially associated with liver cancer, and advances in various drugs have led to progress in the treatment of hepatitis C and attempts to prevent its transition to liver cancer. Furthermore, reactivation of HCV has been observed in the treatment of lymphoma, during which the immortalization and proliferation of lymphocytes occur, which leads to the possibility of further stimulating cytokines and the like and possibly to the development of lymphoid malignancy. There are also cases in which the disappearance of lymphoid malignancy has been observed by treating HCV and suppressing HCV-Ribonucleic acid (RNA), as well as cases of recurrence with an increase in HCV-RNA. While HCV-associated lymphoma has a poor prognosis, improving the prognosis with Direct Acting Antivirals (DAA) has recently been reported. The reduction and eradication of HCV-RNA by means of DAA is thus important for the treatment of lymphoid malignancy associated with HCV infection, and HCV-RNA can presumably play a role as a biomarker. This review provides an overview of what is currently known about HCV-associated lymphoma, its epidemiology, the mechanisms underlying the progression to lymphoma, its treatment, the potential and limits of HCV-RNA as a therapeutic biomarker, and biomarkers that are expected now that DAA therapy has been developed.
Collapse
Affiliation(s)
- Yutaka Tsutsumi
- Department of Hematology, Hakodate Municipal Hospital, Hakodate, 1-10-1, Minato-cho, Hakodate 041-8680, Japan
| | - Shinichi Ito
- Department of Hematology, Hakodate Municipal Hospital, Hakodate, 1-10-1, Minato-cho, Hakodate 041-8680, Japan
| | - Souichi Shiratori
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| |
Collapse
|
24
|
Vieyres G, Pietschmann T. The role of human lipoproteins for hepatitis C virus persistence. Curr Opin Virol 2023; 60:101327. [PMID: 37031484 DOI: 10.1016/j.coviro.2023.101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/23/2023] [Accepted: 03/05/2023] [Indexed: 04/11/2023]
Abstract
Hepatitis C virus (HCV) is a hepatotropic virus that establishes a chronic infection in most individuals. Effective treatments are available; however, many patients are not aware of their infection. Consequently, they do not receive treatment and HCV transmission remains high, particularly among groups at high risk of exposure such as people who inject intravenous drugs. A prophylactic vaccine may reduce HCV transmission, but is currently not available. HCV has evolved immune evasion strategies, which facilitate persistence and complicate development of a protective vaccine. The peculiar association of HCV particles with human lipoproteins is thought to facilitate evasion from humoral immune response and viral homing to liver cells. A better understanding of these aspects provides the basis for development of protective vaccination strategies. Here, we review key information about the composition of HCV particles, the mechanisms mediating lipoprotein incorporation, and the functional consequences of this interaction.
Collapse
Affiliation(s)
- Gabrielle Vieyres
- Leibniz Institute of Virology, Hamburg, Germany; Integrative Analysis of Pathogen-Induced Compartments, Leibniz ScienceCampus InterACt, Hamburg, Germany
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hanover, Germany.
| |
Collapse
|
25
|
Sularea VM, Sugrue JA, O'Farrelly C. Innate antiviral immunity and immunometabolism in hepatocytes. Curr Opin Immunol 2023; 80:102267. [PMID: 36462263 DOI: 10.1016/j.coi.2022.102267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022]
Abstract
The human liver mediates whole-body metabolism, systemic inflammation and responses to hepatotropic pathogens. Hepatocytes, the most abundant cell type of the liver, have critical roles in each of these activities. The regulation of metabolic pathways, such as glucose metabolism, lipid biosynthesis and oxidation, influences whole-organism functionality. However, the immune potential of the liver in general and hepatocytes in particular is also determined by metabolic ability. The major shifts in cellular metabolism required to drive activity in immune cells are now well-described. Given the unique functions of hepatocytes in systemic metabolism and inflammation, and their ability to mediate local antiviral innate immunity, the metabolic shifts required to facilitate these activities are likely to be complex and challenging to define. In this review, we explore what is known about the complex metabolic rewiring required for hepatocytes to respond appropriately to viral infection. We also discuss how viruses can manipulate hepatocyte metabolism to facilitate infection.
Collapse
Affiliation(s)
- Vasile Mihai Sularea
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Jamie A Sugrue
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Cliona O'Farrelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; School of Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
26
|
Cao X, Nguyen V, Tsai J, Gao C, Tian Y, Zhang Y, Carver W, Kiaris H, Cui T, Tan W. The SARS-CoV-2 Spike protein induces long-term transcriptional perturbations of mitochondrial metabolic genes, causes cardiac fibrosis, and reduces myocardial contractile in obese mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522853. [PMID: 36656778 PMCID: PMC9844011 DOI: 10.1101/2023.01.05.522853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Background As the pandemic evolves, post-acute sequelae of CoV-2 (PACS) including cardiovascular manifestations have emerged as a new health threat. This study aims to study whether the Spike protein plus obesity can exacerbate PACS-related cardiomyopathy. Methods A Spike protein-pseudotyped (Spp) virus with the proper surface tropism of SARS-CoV-2 was developed for viral entry assay in vitro and administration into high fat diet (HFD)-fed mice. The systemic viral loads and cardiac transcriptomes were analyzed at 2 and 24 hrs, 3, 6, and 24 weeks post introducing (wpi) Spp using RNA-seq or real time RT-PCR. Echocardiography was used to monitor cardiac functions. Results Low-density lipoprotein cholesterol enhanced viral uptake in endothelial cells, macrophages, and cardiomyocyte-like H9C2 cells. Selective cardiac and adipose viral depositions were observed in HFD mice but not in normal-chow-fed mice. The cardiac transcriptional signatures in HFD mice at 3, 6, and 24 wpi showed systemic suppression of mitochondria respiratory chain genes including ATP synthases and nicotinamide adenine dinucleotide:ubiquinone oxidoreductase gene members, upregulation of stress pathway-related crucial factors such as nuclear factor-erythroid 2-related factor 1 and signal transducer and activator of transcription 5A, and increases in expression of glucose metabolism-associated genes. As compared with the age-matched HFD control mice, cardiac ejection fraction and fractional shortening were significantly decreased, while left ventricular end-systolic diameter and volume were significantly elevated, and cardiac fibrosis was increased in HFD mice at 24 wpi. Conclusion Our data demonstrated that the Spike protein could induce long-term transcriptional suppression of mitochondria metabolic genes and cause cardiac fibrosis and myocardial contractile impairment, providing mechanistic insights to PACS-related cardiomyopathy.
Collapse
Affiliation(s)
- Xiaoling Cao
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina, 29209, USA
| | - Vi Nguyen
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina, 29209, USA
| | - Joseph Tsai
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, UC San Diego School of Medicine, San Diego, CA, 92093, USA
| | - Chao Gao
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina, 29209, USA
| | - Yan Tian
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina, 29209, USA
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yuping Zhang
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina, 29209, USA
- Department of General Surgery, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Wayne Carver
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina, 29209, USA
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Hippokratis Kiaris
- Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Taixing Cui
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina, 29209, USA
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Wenbin Tan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina, 29209, USA
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, 29208, USA
| |
Collapse
|
27
|
Awadh AA. The Role of Cytosolic Lipid Droplets in Hepatitis C Virus Replication, Assembly, and Release. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5156601. [PMID: 37090186 PMCID: PMC10121354 DOI: 10.1155/2023/5156601] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 04/25/2023]
Abstract
The hepatitis C virus (HCV) causes chronic hepatitis by establishing a persistent infection. Patients with chronic hepatitis frequently develop hepatic cirrhosis, which can lead to liver cancer-the progressive liver damage results from the host's immune response to the unresolved infection. The HCV replication process, including the entry, replication, assembly, and release stages, while the virus circulates in the bloodstream, it is intricately linked to the host's lipid metabolism, including the dynamic of the cytosolic lipid droplets (cLDs). This review article depicts how this interaction regulates viral cell tropism and aids immune evasion by coining viral particle characteristics. cLDs are intracellular organelles that store most of the cytoplasmic components of neutral lipids and are assumed to play an increasingly important role in the pathophysiology of lipid metabolism and host-virus interactions. cLDs are involved in the replication of several clinically significant viruses, where viruses alter the lipidomic profiles of host cells to improve viral life cycles. cLDs are involved in almost every phase of the HCV life cycle. Indeed, pharmacological modulators of cholesterol synthesis and intracellular trafficking, lipoprotein maturation, and lipid signaling molecules inhibit the assembly of HCV virions. Likewise, small-molecule inhibitors of cLD-regulating proteins inhibit HCV replication. Thus, addressing the molecular architecture of HCV replication will aid in elucidating its pathogenesis and devising preventive interventions that impede persistent infection and prevent disease progression. This is possible via repurposing the available therapeutic agents that alter cLDs metabolism. This review highlights the role of cLD in HCV replication.
Collapse
Affiliation(s)
- Abdullah A. Awadh
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah 21423, Saudi Arabia
| |
Collapse
|
28
|
Diaz O, Vidalain PO, Ramière C, Lotteau V, Perrin-Cocon L. What role for cellular metabolism in the control of hepatitis viruses? Front Immunol 2022; 13:1033314. [PMID: 36466918 PMCID: PMC9713817 DOI: 10.3389/fimmu.2022.1033314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/02/2022] [Indexed: 11/26/2023] Open
Abstract
Hepatitis B, C and D viruses (HBV, HCV, HDV, respectively) specifically infect human hepatocytes and often establish chronic viral infections of the liver, thus escaping antiviral immunity for years. Like other viruses, hepatitis viruses rely on the cellular machinery to meet their energy and metabolite requirements for replication. Although this was initially considered passive parasitism, studies have shown that hepatitis viruses actively rewire cellular metabolism through molecular interactions with specific enzymes such as glucokinase, the first rate-limiting enzyme of glycolysis. As part of research efforts in the field of immunometabolism, it has also been shown that metabolic changes induced by viruses could have a direct impact on the innate antiviral response. Conversely, detection of viral components by innate immunity receptors not only triggers the activation of the antiviral defense but also induces in-depth metabolic reprogramming that is essential to support immunological functions. Altogether, these complex triangular interactions between viral components, innate immunity and hepatocyte metabolism may explain why chronic hepatitis infections progressively lead to liver inflammation and progression to cirrhosis, fibrosis and hepatocellular carcinoma (HCC). In this manuscript, we first present a global overview of known connections between the innate antiviral response and cellular metabolism. We then report known molecular mechanisms by which hepatitis viruses interfere with cellular metabolism in hepatocytes and discuss potential consequences on the innate immune response. Finally, we present evidence that drugs targeting hepatocyte metabolism could be used as an innovative strategy not only to deprive viruses of key metabolites, but also to restore the innate antiviral response that is necessary to clear infection.
Collapse
Affiliation(s)
- Olivier Diaz
- CIRI, Centre International de Recherche en Infectiologie, Team VIRal Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Pierre-Olivier Vidalain
- CIRI, Centre International de Recherche en Infectiologie, Team VIRal Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Christophe Ramière
- CIRI, Centre International de Recherche en Infectiologie, Team VIRal Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Laboratoire de Virologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Vincent Lotteau
- CIRI, Centre International de Recherche en Infectiologie, Team VIRal Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Laure Perrin-Cocon
- CIRI, Centre International de Recherche en Infectiologie, Team VIRal Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| |
Collapse
|
29
|
Host Cell Receptors Implicated in the Cellular Tropism of BVDV. Viruses 2022; 14:v14102302. [PMID: 36298858 PMCID: PMC9607657 DOI: 10.3390/v14102302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 12/02/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is one of the most hazardous viruses, which causes huge economic losses in the cattle industry around the world. In recent years, there has been a continuous increase in the diversity of pestivirus worldwide. As a member of the genus Pestivirus in the Flaviviridae family, BVDV has a wide range of host animals including cattle, goat, sheep, pig, camel and other cloven-hoofed animals, and it has multi-tissue tropism as well. The recognition of their permissive cells by viruses via interaction with the cellular receptors is a prerequisite for successful infection. So far, little is known about the cellular receptors essential for BVDV entry and their detailed functions during BVDV infection. Thus, discovery of the cellular receptors involved in the entry of BVDV and other pestiviruses is significant for development of the novel intervention. The viral envelope glycoprotein Erns and E2 are crucial determinants of the cellular tropism of BVDV. The cellular proteins bound with Erns and E2 potentially participate in BVDV entry, and their abundance might determine the cellular tropism of BVDV. Here, we summarize current knowledge regarding the cellular molecules have been described for BVDV entry, such as, complement regulatory protein 46 (CD46), heparan sulfate (HS), the low-density lipoprotein (LDL) receptor, and a disintegrin and metalloproteinase 17 (ADAM17). Furthermore, we focus on their implications of the recently identified cellular receptors for pestiviruses in BVDV life cycle. This knowledge provides a theoretical basis for BVDV prevention and treatment by targeting the cellular receptors essential for BVDV infection.
Collapse
|
30
|
Abstract
SARS-CoV-2, the virus that causes coronavirus disease (COVID)-19, has become a persistent global health threat. Individuals who are symptomatic for COVID-19 frequently exhibit respiratory illness, which is often accompanied by neurological symptoms of anosmia and fatigue. Mounting clinical data also indicate that many COVID-19 patients display long-term neurological disorders postinfection such as cognitive decline, which emphasizes the need to further elucidate the effects of COVID-19 on the central nervous system. In this review article, we summarize an emerging body of literature describing the impact of SARS-CoV-2 infection on central nervous system (CNS) health and highlight important areas of future investigation.
Collapse
Affiliation(s)
- Nick R. Natale
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Global Biothreats Graduate Training Program, University of Virginia, Charlottesville, VA, USA
| | - John R. Lukens
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Global Biothreats Graduate Training Program, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - William A. Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Global Biothreats Graduate Training Program, University of Virginia, Charlottesville, VA, USA
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
31
|
Lu A, Yang J, Huang X, Huang X, Yin G, Cai Y, Feng X, Zhang X, Li Y, Liu Q. The Function behind the Relation between Lipid Metabolism and Vimentin on H9N2 Subtype AIV Replication. Viruses 2022; 14:v14081814. [PMID: 36016436 PMCID: PMC9416647 DOI: 10.3390/v14081814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Avian influenza caused by H9N2 subtype avian influenza virus (AIV) poses a great threat to the healthy development of the poultry industry. Vimentin is closely related to intracellular lipid metabolism, which plays an important role during the viral infection process. However, the function of lipid metabolism and vimentin on H9N2 AIV replication is unclear. In this paper, the cholesterol level and 3-hydroxy-3-methylglutaryl coenzyme a reductase (HMGCR) phosphorylation were investigated in vimentin knockout (KO) and human cervical carcinoma cells (HeLa) cell with or without AIV infection. The results showed that compared to the control group without infected with H9N2 subtype AIV, the cholesterol contents were significantly increased, while HMGCR phosphorylation level was reduced in both KO and HeLa cell after virus infection. Furthermore, viral replication was significantly inhibited in the cells treated with the cholesterol inhibitor lovastatin. Compared with the control group, adenylate activated protein kinase (AMPK), a kinase regulating HMGCR enzymatic activity was inhibited in both KO and HeLa cells in the infected virus group, and AMPK phosphorylation levels were significantly lower in KO HeLa cell than that of HeLa cells. Additionally, after MβCD treatment, viral hemagglutinin (HA) gene level was significantly decreased in HeLa cells, while it was significantly increased in KO HeLa cells. In addition, vimentin expression was significantly increased in MβCD-treated HeLa cells with the viral infection and returned to normal levels after exogenous cholesterol to backfill the MβCD-treated cells. Therefore, the disruption of lipid rafts during the binding phase of viral invasion of cells significantly reduced viral infection. These studies indicated that the lipid rafts and cholesterol levels might be critical for H9N2 subtype AIV infection of human-derived cells and that vimentin might play an important role in the regulation of lipids on viral replication, which provided an important antiviral target against influenza virus.
Collapse
Affiliation(s)
- Anran Lu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Yang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiangyu Huang
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinmei Huang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Guihu Yin
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiqin Cai
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiuli Feng
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaofei Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yin Li
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Qingtao Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Correspondence:
| |
Collapse
|
32
|
Direct-Acting Antiviral Agents for Hepatitis C Virus Infection-From Drug Discovery to Successful Implementation in Clinical Practice. Viruses 2022; 14:v14061325. [PMID: 35746796 PMCID: PMC9231290 DOI: 10.3390/v14061325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/13/2022] Open
Abstract
Today, hepatitis C virus infection affects up to 1.5 million people per year and is responsible for 29 thousand deaths per year. In the 1970s, the clinical observation of unclear, transfusion-related cases of hepatitis ignited scientific curiosity, and after years of intensive, basic research, the hepatitis C virus was discovered and described as the causative agent for these cases of unclear hepatitis in 1989. Even before the description of the hepatitis C virus, clinicians had started treating infected individuals with interferon. However, intense side effects and limited antiviral efficacy have been major challenges, shaping the aim for the development of more suitable and specific treatments. Before direct-acting antiviral agents could be developed, a detailed understanding of viral properties was necessary. In the years after the discovery of the new virus, several research groups had been working on the hepatitis C virus biology and finally revealed the replication cycle. This knowledge was the basis for the later development of specific antiviral drugs referred to as direct-acting antiviral agents. In 2011, roughly 22 years after the discovery of the hepatitis C virus, the first two drugs became available and paved the way for a revolution in hepatitis C therapy. Today, the treatment of chronic hepatitis C virus infection does not rely on interferon anymore, and the treatment response rate is above 90% in most cases, including those with unsuccessful pretreatments. Regardless of the clinical and scientific success story, some challenges remain until the HCV elimination goals announced by the World Health Organization are met.
Collapse
|
33
|
Ma Y, Wang L, Jiang X, Yao X, Huang X, Zhou K, Yang Y, Wang Y, Sun X, Guan X, Xu Y. Integrative Transcriptomics and Proteomics Analysis Provide a Deep Insight Into Bovine Viral Diarrhea Virus-Host Interactions During BVDV Infection. Front Immunol 2022; 13:862828. [PMID: 35371109 PMCID: PMC8966686 DOI: 10.3389/fimmu.2022.862828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/25/2022] [Indexed: 12/20/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is the causative agent of bovine viral diarrhea-mucosal disease (BVD-MD), an important viral disease in cattle that is responsible for extensive economic losses to the cattle industry worldwide. Currently, several underlying mechanisms involved in viral replication, pathogenesis, and evading host innate immunity of BVDV remain to be elucidated, particularly during the early stage of virus infection. To further explore the mechanisms of BVDV-host interactions, the transcriptomics and proteomics profiles of BVDV-infected MDBK cells were sequenced using RNA-seq and iTRAQ techniques, respectively, and followed by an integrative analysis. Compared with mock-infected MDBK cells, a total of 665 differentially expressed genes (DEGs) (391 down-regulated, 274 up-regulated) and 725 differentially expressed proteins (DEPs) (461 down-regulated, 264 up-regulated) were identified. Among these, several DEGs and DEPs were further verified using quantitative RT-PCR and western blot. Following gene ontology (GO) annotation and KEGG enrichment analysis, we determined that these DEGs and DEPs were significantly enriched in multiple important cellular signaling pathways including NOD-like receptor, Toll-like receptor, TNF, NF-κB, MAPK, cAMP, lysosome, protein processing in endoplasmic reticulum, lipid metabolism, and apoptosis signaling pathways. Significantly, the down-regulated DEGs and DEPs were predominantly associated with apoptosis-regulated elements, inflammatory factors, and antiviral elements that were involved in innate immunity, thus, indicating that BVDV could inhibit apoptosis and the expression of host antiviral genes to facilitate viral replication. Meanwhile, up-regulated DEGs and DEPs were primarily involved in metabolism and autophagy signaling pathways, indicating that BVDV could utilize the host metabolic resources and cell autophagy to promote replication. However, the potential mechanisms BVDV-host interactions required further experimental validation. Our data provide an overview of changes in transcriptomics and proteomics profiles of BVDV-infected MDBK cells, thus, providing an important basis for further exploring the mechanisms of BVDV-host interactions.
Collapse
Affiliation(s)
- Yingying Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaoxia Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xin Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinning Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Kun Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yaqi Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yixin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaobo Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xueting Guan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yigang Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China.,Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
34
|
Tréguier Y, Bull-Maurer A, Roingeard P. Apolipoprotein E, a Crucial Cellular Protein in the Lifecycle of Hepatitis Viruses. Int J Mol Sci 2022; 23:ijms23073676. [PMID: 35409035 PMCID: PMC8998859 DOI: 10.3390/ijms23073676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
Apolipoprotein E (ApoE) is a multifunctional protein expressed in several tissues, including those of the liver. This lipoprotein component is responsible for maintaining lipid content homeostasis at the plasma and tissue levels by transporting lipids between the liver and peripheral tissues. The ability of ApoE to interact with host-cell surface receptors and its involvement in several cellular pathways raised questions about the hijacking of ApoE by hepatotropic viruses. Hepatitis C virus (HCV) was the first hepatitis virus reported to be dependent on ApoE for the completion of its lifecycle, with ApoE being part of the viral particle, mediating its entry into host cells and contributing to viral morphogenesis. Recent studies of the hepatitis B virus (HBV) lifecycle have revealed that this virus and its subviral envelope particles also incorporate ApoE. ApoE favors HBV entry and is crucial for the morphogenesis of infectious particles, through its interaction with HBV envelope glycoproteins. This review summarizes the data highlighting the crucial role of ApoE in the lifecycles of HBV and HCV and discusses its potential role in the lifecycle of other hepatotropic viruses.
Collapse
Affiliation(s)
- Yannick Tréguier
- INSERM U1259 MAVIVH, Université de Tours et CHU de Tours, 37032 Tours, France; (Y.T.); (A.B.-M.)
| | - Anne Bull-Maurer
- INSERM U1259 MAVIVH, Université de Tours et CHU de Tours, 37032 Tours, France; (Y.T.); (A.B.-M.)
| | - Philippe Roingeard
- INSERM U1259 MAVIVH, Université de Tours et CHU de Tours, 37032 Tours, France; (Y.T.); (A.B.-M.)
- Plateforme IBiSA des Microscopies, Université de Tours et CHU de Tours, 37032 Tours, France
- Correspondence: ; Tel.: +33-0247-366-232
| |
Collapse
|
35
|
Samadi M, Salimi V, Haghshenas MR, Miri SM, Mohebbi SR, Ghaemi A. Clinical and molecular aspects of human pegiviruses in the interaction host and infectious agent. Virol J 2022; 19:41. [PMID: 35264187 PMCID: PMC8905790 DOI: 10.1186/s12985-022-01769-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/16/2022] [Indexed: 12/11/2022] Open
Abstract
Background Human pegivirus 1 (HPgV-1) is a Positive-sense single-stranded RNA (+ ssRNA) virus, discovered in 1995 as a Flaviviridae member, and the closest human virus linked to HCV. In comparison to HCV, HPgV-1 seems to be lymphotropic and connected to the viral group that infects T and B lymphocytes. HPgV-1 infection is not persuasively correlated to any known human disease; nevertheless, multiple studies have reported a connection between chronic HPgV-1 infection and improved survival in HPgV-1/HIV co-infected patients with a delayed and favorable impact on HIV infection development. While the process has not been thoroughly clarified, different mechanisms for these observations have been proposed. HPgV-1 is categorized into seven genotypes and various subtypes. Infection with HPgV-1 is relatively common globally. It can be transferred parenterally, sexually, and through vertical ways, and thereby its co-infection with HIV and HCV is common. In most cases, the clearance of HPgV-1 from the body can be achieved by developing E2 antibodies after infection. Main body In this review, we thoroughly discuss the current knowledge and recent advances in understanding distinct epidemiological, molecular, and clinical aspects of HPgV-1. Conclusion Due to the unique characteristics of the HPgV-1, so advanced research on HPgV-1, particularly in light of HIV co-infection and other diseases, should be conducted to explore the essential mechanisms of HIV clearance and other viruses and thereby suggest novel strategies for viral therapy in the future.
Collapse
Affiliation(s)
- Mehdi Samadi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Microbiology, Molecular and Cell-Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Haghshenas
- Department of Microbiology, Molecular and Cell-Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mohammad Miri
- Department of Virology, Pasteur Institute of Iran, P.O. Box: 1316943551, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, P.O. Box: 1316943551, Tehran, Iran.
| |
Collapse
|
36
|
A Review on Transcriptional Responses of Interactions between Insect Vectors and Plant Viruses. Cells 2022; 11:cells11040693. [PMID: 35203347 PMCID: PMC8870222 DOI: 10.3390/cells11040693] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
This review provides a synopsis of transcriptional responses pertaining to interactions between plant viruses and the insect vectors that transmit them in diverse modes. In the process, it attempts to catalog differential gene expression pertinent to virus–vector interactions in vectors such as virus reception, virus cell entry, virus tissue tropism, virus multiplication, and vector immune responses. Whiteflies, leafhoppers, planthoppers, and thrips are the main insect groups reviewed, along with aphids and leaf beetles. Much of the focus on gene expression pertinent to vector–virus interactions has centered around whole-body RNA extraction, whereas data on virus-induced tissue-specific gene expression in vectors is limited. This review compares transcriptional responses in different insect groups following the acquisition of non-persistent, semi-persistent, and persistent (non-propagative and propagative) plant viruses and identifies parallels and divergences in gene expression patterns. Understanding virus-induced changes in vectors at a transcriptional level can aid in the identification of candidate genes for targeting with RNAi and/or CRISPR editing in insect vectors for management approaches.
Collapse
|
37
|
Yu Y, Wan Z, Wang JH, Yang X, Zhang C. Review of human pegivirus: Prevalence, transmission, pathogenesis, and clinical implication. Virulence 2022; 13:324-341. [PMID: 35132924 PMCID: PMC8837232 DOI: 10.1080/21505594.2022.2029328] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human pegivirus (HPgV-1), previously known as GB virus C (GBV-C) or hepatitis G virus (HGV), is a single-stranded positive RNA virus belonging to the genus Pegivirus of the Flaviviridae family. It is transmitted by percutaneous injuries (PIs), contaminated blood and/or blood products, sexual contact, and vertical mother-to-child transmission. It is widely prevalent in general population, especially in high-risk groups. HPgV-1 viremia is typically cleared within the first 1–2 years of infection in most healthy individuals, but may persist for longer periods of time in immunocompromised individuals and/or those co-infected by other viruses. A large body of evidences indicate that HPgV-1 persistent infection has a beneficial clinical effect on many infectious diseases, such as acquired immunodeficiency syndrome (AIDS) and hepatitis C. The beneficial effects seem to be related to a significant reduction of immune activation, and/or the inhabitation of co-infected viruses (e.g. HIV-1). HPgV-1 has a broad cellular tropism for lymphoid and myeloid cells, and preferentially replicates in bone marrow and spleen without cytopathic effect, implying a therapeutic potential. The paper aims to summarize the natural history, prevalence and distribution characteristics, and pathogenesis of HPgV-1, and discuss its association with other human viral diseases, and potential use in therapy as a biovaccine or viral vector.
Collapse
Affiliation(s)
- Yaqi Yu
- College of Life Sciences, Henan Normal University, Xinxiang, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhenzhou Wan
- Medical Laboratory of Taizhou Fourth People's Hospital, Taizhou, China
| | - Jian-Hua Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xianguang Yang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Chiyu Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Abstract
In the 1970s, an unknown virus was suspected for documented cases of transfusion-associated hepatitis, a phenomenon called non-A, non-B hepatitis. In 1989, the infectious transmissible agent was identified and named hepatitis C virus (HCV) and, soon enough, the first diagnostic HCV antibody test was developed, which led to a dramatic decrease in new infections. Today, HCV infection remains a global health burden and a major cause of liver cirrhosis, hepatocellular carcinoma and liver transplantation. However, tremendous advances have been made over the decades, and HCV became the first curable, chronic viral infection. The introduction of direct antiviral agents revolutionized antiviral treatment, leading to viral eradication in more than 98% of all patients infected with HCV. This Perspective discusses the history of HCV research, which reads like a role model for successful translational research: starting from a clinical observation, specific therapeutic agents were developed, which finally were implemented in national and global elimination programmes.
Collapse
Affiliation(s)
- Michael P. Manns
- grid.10423.340000 0000 9529 9877Hannover Medical School, Hannover, Germany
| | - Benjamin Maasoumy
- grid.10423.340000 0000 9529 9877Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
39
|
Maqsood H, Chughtai T, Khan AB, Younus S, Abbas A, Akbar UA, Qazi S. Association of Lipid and Body Mass Index Profile With Chronic Hepatitis C Infection Stratified by Age and Gender. Cureus 2021; 13:e20665. [PMID: 35103215 PMCID: PMC8784145 DOI: 10.7759/cureus.20665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2021] [Indexed: 12/16/2022] Open
Abstract
Background In this study, we aimed to determine the association of lipid and body mass index (BMI) profiles among cases having chronic hepatitis C virus (CHCV) infection. Methodology This cross-sectional study was conducted in the outpatient department of a tertiary care hospital. A total of 320 cases of both genders, aged 18 to 60 years, with CHCV infection were enrolled in the study. After obtaining relevant history and conducting a physical examination, the venous blood sample of each patient was taken and sent to the institutional laboratory to analyze serum total cholesterol, serum triglyceride, low-density lipoprotein, and high-density lipoprotein levels. BMI of all the study participants was also noted. Results Of the total 320 cases, there were 152 (47.5%) males and 168 (52.5%) females. The overall mean age was 42.92 ± 11.38 years. Most cases [97 (30.3%)] were in the 41 to 50-year age group. Overall, the mean BMI was 27.75 ± 4.59 kg/m2. Dyslipidemia was noted in 144 (45.0%) cases. Increasing age and increasing BMI were found to have statistical significance with the presence of dyslipidemia (p < 0.05). Conclusions Increasing age and BMI have a significant association with dyslipidemia in patients with CHCV infection. Lipid profile appears to differ among different age and BMI groups.
Collapse
|
40
|
Clark LE, Clark SA, Lin C, Liu J, Coscia A, Nabel KG, Yang P, Neel DV, Lee H, Brusic V, Stryapunina I, Plante KS, Ahmed AA, Catteruccia F, Young-Pearse TL, Chiu IM, Llopis PM, Weaver SC, Abraham J. VLDLR and ApoER2 are receptors for multiple alphaviruses. Nature 2021; 602:475-480. [PMID: 34929721 PMCID: PMC8808280 DOI: 10.1038/s41586-021-04326-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/09/2021] [Indexed: 12/03/2022]
Abstract
Alphaviruses, like many other arthropod-borne viruses, infect vertebrate species and insect vectors separated by hundreds of millions of years of evolutionary history. Entry into evolutionarily divergent host cells can be accomplished by recognition of different cellular receptors in different species, or by binding to receptors that are highly conserved across species. Although multiple alphavirus receptors have been described1–3, most are not shared among vertebrate and invertebrate hosts. Here we identify the very low-density lipoprotein receptor (VLDLR) as a receptor for the prototypic alphavirus Semliki forest virus. We show that the E2 and E1 glycoproteins (E2–E1) of Semliki forest virus, eastern equine encephalitis virus and Sindbis virus interact with the ligand-binding domains (LBDs) of VLDLR and apolipoprotein E receptor 2 (ApoER2), two closely related receptors. Ectopic expression of either protein facilitates cellular attachment, and internalization of virus-like particles, a VLDLR LBD–Fc fusion protein or a ligand-binding antagonist block Semliki forest virus E2–E1-mediated infection of human and mouse neurons in culture. The administration of a VLDLR LBD–Fc fusion protein has protective activity against rapidly fatal Semliki forest virus infection in mouse neonates. We further show that invertebrate receptor orthologues from mosquitoes and worms can serve as functional alphavirus receptors. We propose that the ability of some alphaviruses to infect a wide range of hosts is a result of their engagement of evolutionarily conserved lipoprotein receptors and contributes to their pathogenesis. Studies using viral coat glycoproteins show that alphaviruses can enter cells via the very low-density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2), members of an evolutionarily conserved family of lipoprotein receptors.
Collapse
Affiliation(s)
- Lars E Clark
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Sarah A Clark
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - ChieYu Lin
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jianying Liu
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Adrian Coscia
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Katherine G Nabel
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Pan Yang
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Dylan V Neel
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Hyo Lee
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vesna Brusic
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Iryna Stryapunina
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kenneth S Plante
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Asim A Ahmed
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Isaac M Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Paula Montero Llopis
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,MicRoN Core, Harvard Medical School, Boston, MA, USA
| | - Scott C Weaver
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Jonathan Abraham
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA. .,Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
41
|
Leumi S, El Kassas M, Zhong J. Hepatitis C virus genotype 4: A poorly characterized endemic genotype. J Med Virol 2021; 93:6079-6088. [PMID: 34185316 DOI: 10.1002/jmv.27165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/26/2021] [Indexed: 12/16/2022]
Abstract
Globally, 13% of all hepatitis C virus (HCV) infections are caused by genotype 4 (GT4), which consists of 17 subtypes with various levels of susceptibility to anti-HCV therapy. This genotype is endemic in the Middle East and Africa and has considerably spread to Europe lately. The molecular features of HCV-GT4 infection, as well as its appropriate therapeutics, are poorly characterized as it has not been the subject of widespread basic research. As such, in this review, we aim to gather the current state of knowledge of this genotype with a particular emphasis on its heterogeneity, sequence signatures, resistance-associated substitutions, and available in vivo and in vitro models used for its study. We urge developing more cell-culture models based on different GT4 subtypes to better understand the virology and therapeutic response of this particular genotype. This review may raise more awareness about this genotype and trigger more basic research work to develop its research tools. This will be critical to design better therapeutics and help to provide adequate guidelines for physicians working with HCV-GT4 patients.
Collapse
Affiliation(s)
- Steve Leumi
- Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mohamed El Kassas
- Department of Endemic Medicine, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Jin Zhong
- Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
Aldana-Bitar J, Moore J, Budoff MJ. LDL receptor and pathogen processes: Functions beyond normal lipids. J Clin Lipidol 2021; 15:773-781. [PMID: 34645587 DOI: 10.1016/j.jacl.2021.09.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
Although the role of the LDL receptor concerning lipids is well known, its role in various viral and parasitic infections, and in regulating the inflammatory response is poorly understood. Several infectious agents use the LDL receptor as a port of entry, and others depend on it for their cycle of infection. In this review, we focus on the discovery, structure, and normal function of the LDL receptor, as well as its role in a selection of infections. The LDL receptor plays an important role in certain infections and is a potential target for treatment deserving further research.
Collapse
Affiliation(s)
- Jairo Aldana-Bitar
- Division of Cardiology, The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA.
| | - Jeff Moore
- Division of Cardiology, The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
| | - Matthew J Budoff
- Division of Cardiology, The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA.
| |
Collapse
|
43
|
Abstract
Viral fusion glycoproteins catalyze membrane fusion during viral entry. Unlike most enzymes, however, they lack a conventional active site in which formation or scission of a specific covalent bond is catalyzed. Instead, they drive the membrane fusion reaction by cojoining highly regulated changes in conformation to membrane deformation. Despite the challenges in applying inhibitor design approaches to these proteins, recent advances in knowledge of the structures and mechanisms of viral fusogens have enabled the development of small-molecule inhibitors of both class I and class II viral fusion proteins. Here, we review well-validated inhibitors, including their discovery, targets, and mechanism(s) of action, while highlighting mechanistic similarities and differences. Together, these examples make a compelling case for small-molecule inhibitors as tools for probing the mechanisms of viral glycoprotein-mediated fusion and for viral glycoproteins as druggable targets.
Collapse
Affiliation(s)
- Han-Yuan Liu
- Department of Microbiology and Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Current affiliation: Department of Microbiology and Immunology, Stanford University School of Medicine, Palo Alto, California 94305, USA;
| | - Priscilla L Yang
- Department of Microbiology and Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Current affiliation: Department of Microbiology and Immunology, Stanford University School of Medicine, Palo Alto, California 94305, USA;
| |
Collapse
|
44
|
Theken KN, Tang SY, Sengupta S, FitzGerald GA. The roles of lipids in SARS-CoV-2 viral replication and the host immune response. J Lipid Res 2021; 62:100129. [PMID: 34599996 PMCID: PMC8480132 DOI: 10.1016/j.jlr.2021.100129] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
Abstract
The significant morbidity and mortality associated with severe acute respiratory syndrome coronavirus 2 infection has underscored the need for novel antiviral strategies. Lipids play essential roles in the viral life cycle. The lipid composition of cell membranes can influence viral entry by mediating fusion or affecting receptor conformation. Upon infection, viruses can reprogram cellular metabolism to remodel lipid membranes and fuel the production of new virions. Furthermore, several classes of lipid mediators, including eicosanoids and sphingolipids, can regulate the host immune response to viral infection. Here, we summarize the existing literature on the mechanisms through which these lipid mediators may regulate viral burden in COVID-19. Furthermore, we define the gaps in knowledge and identify the core areas in which lipids offer therapeutic promise for severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Katherine N Theken
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Oral Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Soon Yew Tang
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shaon Sengupta
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Garret A FitzGerald
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
45
|
Challenges and Prospects of Plant-Derived Oral Vaccines against Hepatitis B and C Viruses. PLANTS 2021; 10:plants10102037. [PMID: 34685844 PMCID: PMC8537828 DOI: 10.3390/plants10102037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022]
Abstract
Hepatitis B and C viruses chronically affect approximately 3.5% of the global population, causing more than 800,000 deaths yearly due to severe liver pathogenesis. Current HBV vaccines have significantly contributed to the reduction of chronic HBV infections, supporting the notion that virus eradication is a feasible public health objective in the near future. In contrast to HBV, a prophylactic vaccine against HCV infection is not available yet; however, intense research efforts within the last decade have significantly advanced the field and several vaccine candidates are shortlisted for clinical trials. A successful vaccine against an infectious disease of global importance must not only be efficient and safe, but also easy to produce, distribute, administer, and economically affordable to ensure appropriate coverage. Some of these requirements could be fulfilled by oral vaccines that could complement traditional immunization strategies. In this review, we discuss the potential of edible plant-based oral vaccines in assisting the worldwide fight against hepatitis B and C infections. We highlight the latest research efforts to reveal the potential of oral vaccines, discuss novel antigen designs and delivery strategies, as well as the limitations and controversies of oral administration that remain to be addressed to make this approach successful.
Collapse
|
46
|
Interdependent Impact of Lipoprotein Receptors and Lipid-Lowering Drugs on HCV Infectivity. Cells 2021; 10:cells10071626. [PMID: 34209751 PMCID: PMC8303410 DOI: 10.3390/cells10071626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
The HCV replication cycle is tightly associated with host lipid metabolism: Lipoprotein receptors SR-B1 and LDLr promote entry of HCV, replication is associated with the formation of lipid-rich membranous organelles and infectious particle assembly highjacks the very-low-density lipoprotein (VLDL) secretory pathway. Hence, medications that interfere with the lipid metabolism of the cell, such as statins, may affect HCV infection. Here, we study the interplay between lipoprotein receptors, lipid homeostasis, and HCV infection by genetic and pharmacological interventions. We found that individual ablation of the lipoprotein receptors SR-B1 and LDLr did not drastically affect HCV entry, replication, or infection, but double lipoprotein receptor knock-outs significantly reduced HCV infection. Furthermore, we could show that this effect was neither due to altered expression of additional HCV entry factors nor caused by changes in cellular cholesterol content. Strikingly, whereas lipid-lowering drugs such as simvastatin or fenofibrate did not affect HCV entry or infection of immortalized hepatoma cells expressing SR-B1 and/or LDLr or primary human hepatocytes, ablation of these receptors rendered cells more susceptible to these drugs. Finally, we observed no significant differences between statin users and control groups with regards to HCV viral load in a cohort of HCV infected patients before and during HCV antiviral treatment. Interestingly, statin treatment, which blocks the mevalonate pathway leading to decreased cholesterol levels, was associated with mild but appreciable lower levels of liver damage markers before HCV therapy. Overall, our findings confirm the role of lipid homeostasis in HCV infection and highlight the importance of the mevalonate pathway in the HCV replication cycle.
Collapse
|
47
|
Saraceni C, Birk J. A Review of Hepatitis B Virus and Hepatitis C Virus Immunopathogenesis. J Clin Transl Hepatol 2021; 9:409-418. [PMID: 34221927 PMCID: PMC8237136 DOI: 10.14218/jcth.2020.00095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/21/2021] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the advances in therapy, hepatitis B virus (HBV) and hepatitis C virus (HCV) still represent a significant global health burden, both as major causes of cirrhosis, hepatocellular carcinoma, and death worldwide. HBV is capable of incorporating its covalently closed circular DNA into the host cell's hepatocyte genome, making it rather difficult to eradicate its chronic stage. Successful viral clearance depends on the complex interactions between the virus and host's innate and adaptive immune response. One encouraging fact on hepatitis B is the development and effective distribution of the HBV vaccine. This has significantly reduced the spread of this virus. HCV is a RNA virus with high mutagenic capacity, thus enabling it to evade the immune system and have a high rate of chronic progression. High levels of HCV heterogeneity and its mutagenic capacity have made it difficult to create an effective vaccine. The recent advent of direct acting antivirals has ushered in a new era in hepatitis C therapy. Sustained virologic response is achieved with DAAs in 85-99% of cases. However, this still leads to a large population of treatment failures, so further advances in therapy are still needed. This article reviews the immunopathogenesis of HBV and HCV, their properties contributing to host immune system avoidance, chronic disease progression, vaccine efficacy and limitations, as well as treatment options and common pitfalls of said therapy.
Collapse
Affiliation(s)
- Corey Saraceni
- Correspondence to: Corey Saraceni, University of Connecticut School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, 263 Farmington Avenue, Farmington, CT 06030-8074, USA. Tel: +1-203-733-7408, Fax: +1-860-679-3159, E-mail:
| | | |
Collapse
|
48
|
Xian H, Huang W, Sun T, Yang S, Zhang C, Wang J, Zhang Y, Cui J. Unanchored ubiquitin chain sustains RIG-I-induced interferon-I activation and controls selective gene expression. Sci Bull (Beijing) 2021; 66:794-802. [PMID: 36654136 DOI: 10.1016/j.scib.2020.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/21/2020] [Accepted: 10/23/2020] [Indexed: 01/20/2023]
Abstract
Ubiquitination plays a crucial role in retinoic acid-inducible gene I (RIG-I)-induced antiviral responses. However, the precise regulatory mechanisms of RIG-I activity mediated by conjugated and unanchored ubiquitin chains remain to be determined. In this study, we discovered that T55 of RIG-I was required for its binding ability for the unanchored ubiquitin chains. Experimental and mathematical analysis showed that unanchored ubiquitin chains associated with RIG-I were essential for sustained activation of type I interferon (IFN) signaling. Transcriptomics study revealed that the binding of RIG-I with unanchored ubiquitin chains additionally regulated the expression of a subset of metabolic and cell fate decision genes. Moreover, we found that ubiquitin-specific peptidase 21 (USP21) and USP3 deubiquitinate conjugated and unanchored ubiquitin chains on RIG-I respectively. Taken together, characterization of the regulation mode and functions of conjugated ubiquitination and the unconjugated ubiquitin chain-binding of RIG-I may provide means to fine-tune RIG-I-mediated type I IFN signaling.
Collapse
Affiliation(s)
- Huifang Xian
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Wanming Huang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Tingzhe Sun
- School of Life Sciences, Anqing Normal University, Anqing 246133, China
| | - Shuai Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Chuanxia Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jun Wang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yuxia Zhang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
49
|
Impact of IL10, MTP, SOD2, and APOE Gene Polymorphisms on the Severity of Liver Fibrosis Induced by HCV Genotype 4. Viruses 2021; 13:v13040714. [PMID: 33924242 PMCID: PMC8074775 DOI: 10.3390/v13040714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Complications of hepatitis C virus (HCV) chronic infection cause ~400,000 deaths worldwide annually. One complication, liver fibrosis, is influenced by host genetic factors. Genes influencing fibrosis include immune, metabolic, oxidative stress, and viral entry genes, such as interleukin 10 (IL10), microsomal triglyceride-transfer protein (MTP), superoxide dismutase-2 (SOD2), and apolipoprotein E (APOE)-encoding genes, respectively. Thus, correlating variations in these genes with HCV-induced fibrosis represents an attractive biomarker for the prognosis of fibrosis severity in chronically infected patients. Here, we aimed to test whether polymorphisms in IL10, MTP, SOD2, and APOE genes correlated with the severity of fibrosis induced by HCV genotype 4 (HCV-gt4) in a cohort of chronically infected Egyptian patients. Our results demonstrate a significant association between the severity of fibrosis and specific SNPs in IL-10, SOD2, and ApoE-encoding genes. Haplotype-combination analysis for IL10, MTP, SOD2, and APOE showed statistically significant associations between specific haplotype combinations and fibrosis severity. Identifying biomarkers correlating with the severity of HCV-gt4-induced fibrosis would significantly impact precision prophylaxis and treatment of patients at risk.
Collapse
|
50
|
Shiha G, Soliman R, Elbasiony M, Darwish NHE, Mousa SA. Novel combined single dose anti-hepatitis C therapy: a pilot study. Sci Rep 2021; 11:4623. [PMID: 33633233 PMCID: PMC7907074 DOI: 10.1038/s41598-021-84066-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
The new anti-hepatitis C virus (HCV) molecules improve treatment regimens and outcomes, but there are drawbacks. New combinations should target the HCV infectious cycle and be effective against all HCV genotypes. We developed the novel formulation Catvira, composed of epigallocatechingallate (EGCG) + sofosbuvir + ribavirin. Here, we compared Catvira to sofosbuvir + ribavirin tablets in patients with CHC genotype 4 in a randomized open-label efficacy and safety study. Treatment-naïve and treatment-experienced patients (n = 80) were randomly assigned to receive a single daily fixed dose of Catvira or sofosbuvir + ribavirin for 12 or 24 weeks. Both Catvira and sofosbuvir + ribavirin yielded similar outcomes of viral load (p < 0.001). Patients receiving Catvira had a significantly more rapid rate of viral load decline with sustained virologic response (SVR12) achieved by 90% of patients receiving 12 weeks of treatment. Catvira did not impact hemoglobin levels while sofosbuvir + ribavirin showed significant decline in hemoglobin levels after 24 weeks (p < 0.05). In this clinical trial (ClinicalTrials.gov Identifier NCT02483156), we found that Catvira administered daily for 12 or 24 weeks is safe, effective, and well-tolerated in both naïve and treatment-experienced patients with HCV genotype 4.
Collapse
Affiliation(s)
- Gamal Shiha
- Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt
| | - Reham Soliman
- Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt
- Tropical Medicine Department, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Mohamed Elbasiony
- Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt
| | - Noureldien H E Darwish
- Hematology Unit, Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, 12144, USA
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, 12144, USA.
- Virothera Pharmaceuticals, Rensselaer, NY, USA.
| |
Collapse
|