1
|
Sterilizing Immunity against COVID-19: Developing Helper T cells I and II activating vaccines is imperative. Biomed Pharmacother 2021; 144:112282. [PMID: 34624675 PMCID: PMC8486642 DOI: 10.1016/j.biopha.2021.112282] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 01/04/2023] Open
Abstract
Six months after the publication of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) sequence, a record number of vaccine candidates were listed, and quite a number of them have since been approved for emergency use against the novel coronavirus disease 2019 (COVID-19). This unprecedented pharmaceutical feat did not only show commitment, creativity and collaboration of the scientific community, but also provided a swift solution that prevented global healthcare system breakdown. Notwithstanding, the available data show that most of the approved COVID-19 vaccines protect only a proportion of recipients against severe disease but do not prevent clinical manifestation of COVID-19. There is therefore the need to probe further to establish whether these vaccines can induce sterilizing immunity, otherwise, COVID-19 vaccination would have to become a regular phenomenon. The emergence of SARS-CoV-2 variants could further affect the capability of the available COVID-19 vaccines to prevent infection and protect recipients from a severe form of the disease. These notwithstanding, data about which vaccine(s), if any, can confer sterilizing immunity are unavailable. Here, we discuss the immune responses to viral infection with emphasis on COVID-19, and the specific adaptive immune response to SARS-CoV-2 and how it can be harnessed to develop COVID-19 vaccines capable of conferring sterilizing immunity. We further propose factors that could be considered in the development of COVID-19 vaccines capable of stimulating sterilizing immunity. Also, an old, but effective vaccine development technology that can be applied in the development of COVID-19 vaccines with sterilizing immunity potential is reviewed.
Collapse
|
2
|
Andrianov AK, Langer R. Polyphosphazene immunoadjuvants: Historical perspective and recent advances. J Control Release 2021; 329:299-315. [PMID: 33285104 PMCID: PMC7904599 DOI: 10.1016/j.jconrel.2020.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022]
Abstract
The development of successful vaccines has been increasingly reliant on the use of immunoadjuvants - additives, which can enhance and modulate immune responses to vaccine antigens. Immunoadjuvants of the polyphosphazene family encompass synthetic biodegradable macromolecules, which attain in vivo activity via antigen delivery and immunostimulation mechanisms. Over the last decades, the technology has witnessed evolvement of next generation members, expansion to include various antigens and routes of administration, and progression to clinical phase. This was accompanied by gaining important insights into the mechanism of action and the development of a novel class of virus-mimicking nano-assemblies for antigen delivery. The present review evaluates in vitro and in vivo data generated to date in the context of latest advances in understanding the primary function and biophysical behavior of these macromolecules. It also provides an overview of relevant synthetic and characterization methods, macromolecular biodegradation pathways, and polyphosphazene-based multi-component, nanoparticulate, and microfabricated formulations.
Collapse
Affiliation(s)
- Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA.
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Jin H, Li D, Lin MH, Li L, Harrich D. Tat-Based Therapies as an Adjuvant for an HIV-1 Functional Cure. Viruses 2020; 12:v12040415. [PMID: 32276443 PMCID: PMC7232260 DOI: 10.3390/v12040415] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 12/18/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV) establishes a chronic infection that can be well controlled, but not cured, by combined antiretroviral therapy (cART). Interventions have been explored to accomplish a functional cure, meaning that a patient remains infected but HIV is undetectable in the blood, with the aim of allowing patients to live without cART. Tat, the viral transactivator of transcription protein, plays a critical role in controlling HIV transcription, latency, and viral rebound following the interruption of cART treatment. Therefore, a logical approach for controlling HIV would be to block Tat. Tackling Tat with inhibitors has been a difficult task, but some recent discoveries hold promise. Two anti-HIV proteins, Nullbasic (a mutant of Tat) and HT1 (a fusion of HEXIM1 and Tat functional domains) inhibit viral transcription by interfering with the interaction of Tat and cellular factors. Two small molecules, didehydro-cortistatin A (dCA) and triptolide, inhibit Tat by different mechanisms: dCA through direct binding and triptolide through enhanced proteasomal degradation. Finally, two Tat-based vaccines under development elicit Tat-neutralizing antibodies. These vaccines have increased the levels of CD4+ cells and reduced viral loads in HIV-infected people, suggesting that the new vaccines are therapeutic. This review summarizes recent developments of anti-Tat agents and how they could contribute to a functional cure for HIV.
Collapse
Affiliation(s)
- Hongping Jin
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (H.J.); (D.L.); (M.-H.L.)
| | - Dongsheng Li
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (H.J.); (D.L.); (M.-H.L.)
| | - Min-Hsuan Lin
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (H.J.); (D.L.); (M.-H.L.)
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia;
| | - David Harrich
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (H.J.); (D.L.); (M.-H.L.)
- Correspondence: ; Tel.: +617-3845-3679
| |
Collapse
|
4
|
Cafaro A, Tripiciano A, Picconi O, Sgadari C, Moretti S, Buttò S, Monini P, Ensoli B. Anti-Tat Immunity in HIV-1 Infection: Effects of Naturally Occurring and Vaccine-Induced Antibodies Against Tat on the Course of the Disease. Vaccines (Basel) 2019; 7:vaccines7030099. [PMID: 31454973 PMCID: PMC6789840 DOI: 10.3390/vaccines7030099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/08/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023] Open
Abstract
HIV-1 Tat is an essential protein in the virus life cycle, which is required for virus gene expression and replication. Most Tat that is produced during infection is released extracellularly and it plays a key role in HIV pathogenesis, including residual disease upon combination antiretroviral therapy (cART). Here, we review epidemiological and experimental evidence showing that antibodies against HIV-1 Tat, infrequently occurring in natural infection, play a protective role against disease progression, and that vaccine targeting Tat can intensify cART. In fact, Tat vaccination of subjects on suppressive cART in Italy and South Africa promoted immune restoration, including CD4+ T-cell increase in low immunological responders, and a reduction of proviral DNA even after six years of cART, when both CD4+ T-cell gain and DNA decay have reached a plateau. Of note, DNA decay was predicted by the neutralization of Tat-mediated entry of Env into dendritic cells by anti-Tat antibodies, which were cross-clade binding and neutralizing. Anti-Tat cellular immunity also contributed to the DNA decay. Based on these data, we propose the Tat therapeutic vaccine as a pathogenesis-driven intervention that effectively intensifies cART and it may lead to a functional cure, providing new perspectives and opportunities also for prevention and virus eradication strategies.
Collapse
Affiliation(s)
- Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Antonella Tripiciano
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Orietta Picconi
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Cecilia Sgadari
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Sonia Moretti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Stefano Buttò
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Paolo Monini
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy.
| |
Collapse
|
5
|
Kadkhodayan S, Jafarzade BS, Sadat SM, Motevalli F, Agi E, Bolhassani A. Combination of cell penetrating peptides and heterologous DNA prime/protein boost strategy enhances immune responses against HIV-1 Nef antigen in BALB/c mouse model. Immunol Lett 2017; 188:38-45. [DOI: 10.1016/j.imlet.2017.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/26/2017] [Accepted: 06/05/2017] [Indexed: 11/30/2022]
|
6
|
The grafting of universal T-helper epitopes enhances immunogenicity of HIV-1 Tat concurrently improving its safety profile. PLoS One 2014; 9:e114155. [PMID: 25531437 PMCID: PMC4273983 DOI: 10.1371/journal.pone.0114155] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/04/2014] [Indexed: 12/16/2022] Open
Abstract
Extracellular Tat (eTat) plays an important role in HIV-1 pathogenesis. The presence of anti-Tat antibodies is negatively correlated with disease progression, hence making Tat a potential vaccine candidate. The cytotoxicity and moderate immunogenicity of Tat however remain impediments for developing Tat-based vaccines. Here, we report a novel strategy to concurrently enhance the immunogenicity and safety profile of Tat. The grafting of universal helper T-lymphocyte (HTL) epitopes, Pan DR Epitope (PADRE) and Pol711 into the cysteine rich domain (CRD) and the basic domain (BD) abolished the transactivation potential of the Tat protein. The HTL-Tat proteins elicited a significantly higher titer of antibodies as compared to the wild-type Tat in BALB/c mice. While the N-terminal epitope remained immunodominant in HTL-Tat immunizations, an additional epitope in exon-2 was recognized with comparable magnitude suggesting a broader immune recognition. Additionally, the HTL-Tat proteins induced cross-reactive antibodies of high avidity that efficiently neutralized exogenous Tat, thus blocking the activation of a Tat-defective provirus. With advantages such as presentation of multiple B-cell epitopes, enhanced antibody response and importantly, transactivation-deficient Tat protein, this approach has potential application for the generation of Tat-based HIV/AIDS vaccines.
Collapse
|
7
|
Lata S, Ronsard L, Sood V, Dar SA, Ramachandran VG, Das S, Banerjea AC. Effect on HIV-1 gene expression, Tat-Vpr interaction and cell apoptosis by natural variants of HIV-1 Tat exon 1 and Vpr from Northern India. PLoS One 2013; 8:e82128. [PMID: 24367500 PMCID: PMC3868622 DOI: 10.1371/journal.pone.0082128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/18/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Since HIV-1 Tat and Vpr genes are involved in promoter transactivation, apoptosis, etc, we carried out studies to find out nature and extent of natural variation in the two genes from seropositive patients from Northern India and determined their functional implications. METHODS HIV-1 tat exon 1 and vpr were amplified from the genomic DNA isolated from the blood of HIV-1 infected individuals using specific primers by Polymerase Chain reaction (PCR) and subjected to extensive genetic analysis (CLUSTAL W, Simplot etc). Their expression was monitored by generating myc fusion clones. Tat exon 1 and Vpr variants were co-transfected with the reporter gene construct (LTR-luc) and their transactivation potential was monitored by measuring luciferase activity. Apoptosis and cell cycle analysis was done by Propidium Iodide (PI) staining followed by FACS. RESULTS Exon 1 of tat was amplified from 21 samples and vpr was amplified from 16 samples. One of the Tat exon 1 variants showed phylogenetic relatedness to subtype B & C and turned out to be a unique recombinant. Two of the Vpr variants were B/C/D recombinants. These natural variations were found to have no impact on the stability of Tat and Vpr. These variants differed in their ability to transactivate B LTR and C LTR promoters. B/C recombinant Tat showed better co-operative interaction with Vpr. B/C/D recombination in Vpr was found to have no effect on its co-operativity with Tat. Recombinant Tat (B/C) induced more apoptosis than wild type B and C Tat. The B/C/D recombination in Vpr did not affect its G2 arrest induction potential but reduced its apoptosis induction ability. CONCLUSIONS Extensive sequence and region-specific variations were observed in Tat and Vpr genes from HIV-1 infected individuals from Northern India. These variations have functional implications & therefore important for the pathogenicity of virus.
Collapse
Affiliation(s)
- Sneh Lata
- Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, India
| | - Larance Ronsard
- Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, India
- Laboratory of Virology, National Institute of Immunology, New Delhi, India
| | - Vikas Sood
- Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, India
- Laboratory of Virology, National Institute of Immunology, New Delhi, India
| | - Sajad A. Dar
- Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, India
| | - Vishnampettai G. Ramachandran
- Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, India
- * E-mail: (VGR); (ACB)
| | - Shukla Das
- Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, India
| | - Akhil C. Banerjea
- Laboratory of Virology, National Institute of Immunology, New Delhi, India
- * E-mail: (VGR); (ACB)
| |
Collapse
|
8
|
Novel biopanning strategy to identify epitopes associated with vaccine protection. J Virol 2013; 87:4403-16. [PMID: 23388727 DOI: 10.1128/jvi.02888-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Identifying immune correlates of protection is important to develop vaccines against infectious diseases. We designed a novel, universally applicable strategy to profile the antibody (Ab) repertoire of protected vaccine recipients, using recombinant phages encoding random peptide libraries. The new approach, termed "protection-linked (PL) biopanning," probes the Ab paratopes of protected vaccinees versus those with vaccine failure. As proof of concept, we screened plasma samples from vaccinated rhesus macaques (RMs) that had completely resisted multiple mucosal challenges with R5-tropic simian-human immunodeficiency viruses (SHIVs). The animals had been immunized with a multicomponent vaccine (multimeric HIV-1 gp160, HIV-1 Tat, and SIV Gag-Pol particles). After PL biopanning, we analyzed the phagotopes selected for amino acid homologies; in addition to the expected Env mimotopes, one recurring motif reflected the neutralizing Ab epitope at the N terminus (NT) of HIV-1 Tat. Subsequent binding and functional assays indicated that anti-Tat NT Abs were present only in completely or partially protected RMs; peak viremia of the latter was inversely correlated with anti-Tat NT Ab titers. In contrast, highly viremic, unvaccinated controls did not develop detectable Abs against the same epitope. Based upon the protective effect observed in vivo, we suggest that Tat should be included in multicomponent HIV-1 vaccines. Our data highlight the power of the new PL-biopanning strategy to identify Ab responses with significant association to vaccine protection, regardless of the mechanism(s) or targets of the protective Abs. PL biopanning is also unbiased with regard to pathogens or disease model, making it a universal tool.
Collapse
|
9
|
|
10
|
Girard MP, Osmanov S, Assossou OM, Kieny MP. Human immunodeficiency virus (HIV) immunopathogenesis and vaccine development: a review. Vaccine 2011; 29:6191-218. [PMID: 21718747 DOI: 10.1016/j.vaccine.2011.06.085] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/20/2011] [Accepted: 06/22/2011] [Indexed: 02/08/2023]
Abstract
The development of a safe, effective and globally affordable HIV vaccine offers the best hope for the future control of the HIV-1 pandemic. Since 1987, scores of candidate HIV-1 vaccines have been developed which elicited varying degrees of protective responses in nonhuman primate models, including DNA vaccines, subunit vaccines, live vectored recombinant vaccines and various prime-boost combinations. Four of these candidate vaccines have been tested for efficacy in human volunteers, but, to the exception of the recent RV144 Phase III trial in Thailand, which elicited a modest but statistically significant level of protection against infection, none has shown efficacy in preventing HIV-1 infection or in controlling virus replication and delaying progression of disease in humans. Protection against infection was observed in the RV144 trial, but intensive research is needed to try to understand the protective immune mechanisms at stake. Building-up on the results of the RV144 trial and deciphering what possibly are the immune correlates of protection are the top research priorities of the moment, which will certainly accelerate the development of an highly effective vaccine that could be used in conjunction with other HIV prevention and treatment strategies. This article reviews the state of the art of HIV vaccine development and discusses the formidable scientific challenges met in this endeavor, in the context of a better understanding of the immunopathogenesis of the disease.
Collapse
Affiliation(s)
- Marc P Girard
- University Paris 7, French National Academy of Medicine, 39 rue Seignemartin, FR 69008 Lyon, France.
| | | | | | | |
Collapse
|
11
|
Role of HIV-1 Tat in AIDS pathogenesis: its effects on cytokine dysregulation and contributions to the pathogenesis of opportunistic infection. AIDS 2010; 24:1609-23. [PMID: 20588103 DOI: 10.1097/qad.0b013e32833ac6a0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Caputo A, Gavioli R, Bellino S, Longo O, Tripiciano A, Francavilla V, Sgadari C, Paniccia G, Titti F, Cafaro A, Ferrantelli F, Monini P, Ensoli F, Ensoli B. HIV-1 Tat-based vaccines: an overview and perspectives in the field of HIV/AIDS vaccine development. Int Rev Immunol 2009; 28:285-334. [PMID: 19811313 DOI: 10.1080/08830180903013026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The HIV epidemic continues to represent one of the major problems worldwide, particularly in the Asia and Sub-Saharan regions of the world, with social and economical devastating effects. Although antiretroviral drugs have had a dramatically beneficial impact on HIV-infected individuals that have access to treatment, it has had a negligible impact on the global epidemic. Hence, the inexorable spreading of the HIV pandemic and the increasing deaths from AIDS, especially in developing countries, underscore the urgency for an effective vaccine against HIV/AIDS. However, the generation of such a vaccine has turned out to be extremely challenging. Here we provide an overview on the rationale for the use of non-structural HIV proteins, such as the Tat protein, alone or in combination with other HIV early and late structural HIV antigens, as novel, promising preventative and therapeutic HIV/AIDS vaccine strategies.
Collapse
Affiliation(s)
- Antonella Caputo
- Department of Histology, Microbiology and Medical Biotechnology, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Goldstein G, Chicca JJ. A universal anti-HIV-1 Tat epitope vaccine that is fully synthetic and self-adjuvanting. Vaccine 2009; 28:1008-14. [PMID: 19931501 DOI: 10.1016/j.vaccine.2009.10.129] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 10/27/2009] [Accepted: 10/28/2009] [Indexed: 10/20/2022]
Abstract
Circulating HIV-1 Tat protein is essential for maintenance of the chronic HIV replication that predicates both HIV transmission and clinical progression to AIDS/death. A synthetic anti-Tat epitope vaccine (TUTI-16) was designed to induce neutralizing antibodies to Tat and, hopefully, provide immunological control of HIV replication. TUTI-16 is composed of (1) a conserved Tat B cell epitope (Tat 4-12), rendered universal by introducing known variant amino acids at variable positions 7, 9 and 12 during solid phase synthesis, (2) a promiscuous T helper sequence and (3) a lipopeptide toll-like receptor 2 (TLR2) agonist. TUTI-16 induced high titer antibodies against all 8 known variants of the Tat epitope.
Collapse
|
14
|
Muller S. AVOIDING DECEPTIVE IMPRINTING OF THE IMMUNE RESPONSE TO HIV-1 INFECTION IN VACCINE DEVELOPMENT. Int Rev Immunol 2009; 23:423-36. [PMID: 15370274 DOI: 10.1080/08830180490432802] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Lymphocyte clonal restriction is caused by priming the immune system with an antigen and has been referred to infectious disease study as "original antigenic sin" (OAS), described first for influenza by Francis. OAS is a dominant feature of a normal immune response. Benefits of OAS come from the initial contact with the pathogen, which induces immunological memory. Memory is achieved by priming B and T cells of an immunologically naïve host, and confers protection against infection with the antigen-related pathogen. Thus, a restricted antibody response to viral or parasite antigens is not per se pathogenic. However, the interplay between a "locked-in" immune response and the high genetic variation of the pathogenic agent can result in a deception of the immune system. In the following, clonal restriction of the immune response to HIV is described by giving examples of restricted anti-HIV antibody formation in maternally infected children. Clonal restriction results in host resistance of infected individuals to emerging HIV variants and quasispecies. The problems of classical approaches of vaccine design in AIDS and the lack of protection in vaccinated patients is reviewed.
Collapse
|
15
|
Caputo A, Gavioli R, Bellino S, Longo O, Tripiciano A, Francavilla V, Sgadari C, Paniccia G, Titti F, Cafaro A, Ferrantelli F, Monini P, Ensoli F, Ensoli B. HIV-1 Tat-Based Vaccines: An Overview and Perspectives in the Field of HIV/AIDS Vaccine Development. Int Rev Immunol 2009. [DOI: 10.1080/08830180903013026 10.1080/08830180903013026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
16
|
Abstract
Tests for immunoglobulin reactivity with specific antigens are some of the oldest and most used assays in immunology. With efforts to understand B cell development, B cell dysregulation in autoimmunity, and to generate B cell vaccines for infectious agents, investigators have found the need to understand the ontogeny and regulation of epitope-specific B cell responses. The synchrony between surface and secreted antibodies for individual B cells has led to the development of reagents and techniques to identify antigen-specific B cells via reagent interactions with the B cell receptor complex. B cell antigen-specific reagents have been reported for model systems of haptens, for whole proteins, and for identification of double stranded (ds) DNA antibody-producing B cells using peptide mimics. Here we provide an overview of reported techniques for the detection of antigen-specific B cell responses via secreted antibody or by the surface B cell receptor and briefly discuss our recent work developing a panel of reagents to probe the B cell response to HIV-1 envelope. We also present an analysis of strengths and weaknesses of various methods for flow cytometric analysis of antigen-specific B cells.
Collapse
Affiliation(s)
- M Anthony Moody
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
17
|
Koopman G, Mortier D, Hofman S, Mathy N, Koutsoukos M, Ertl P, Overend P, van Wely C, Thomsen LL, Wahren B, Voss G, Heeney JL. Immune-response profiles induced by human immunodeficiency virus type 1 vaccine DNA, protein or mixed-modality immunization: increased protection from pathogenic simian–human immunodeficiency virus viraemia with protein/DNA combination. J Gen Virol 2008; 89:540-5533. [PMID: 18198386 DOI: 10.1099/vir.0.83384-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Current data suggest that prophylactic human immunodeficiency virus type 1 (HIV) vaccines will be most efficacious if they elicit a combination of adaptive humoral and T-cell responses. Here, we explored the use of different vaccine strategies in heterologous prime–boost regimes and evaluated the breadth and nature of immune responses in rhesus monkeys induced by epidermally delivered plasmid DNA or recombinant HIV proteins formulated in the AS02A adjuvant system. These immunogens were administered alone or as either prime or boost in mixed-modality regimes. DNA immunization alone induced cell-mediated immune (CMI) responses, with a strong bias towards Th1-type cytokines, and no detectable antibodies to the vaccine antigens. Whenever adjuvanted protein was used as a vaccine, either alone or in a regime combined with DNA, high-titre antibody responses to all vaccine antigens were detected in addition to strong Th1- and Th2-type CMI responses. As the vaccine antigens included HIV-1 Env, Nef and Tat, as well as simian immunodeficiency virus (SIV)mac239 Nef, the animals were subsequently exposed to a heterologous, pathogenic simian–human immunodeficiency virus (SHIV)89.6p challenge. Protection against sustained high virus load was observed to some degree in all vaccinated groups. Suppression of virus replication to levels below detection was observed most frequently in the group immunized with protein followed by DNA immunization, and similarly in the group immunized with DNA alone. Interestingly, control of virus replication was associated with increased SIV Nef- and Gag-specific gamma interferon responses observed immediately following challenge.
Collapse
MESH Headings
- AIDS Vaccines/immunology
- Animals
- Antibodies, Viral/immunology
- Antibodies, Viral/pharmacology
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, env/metabolism
- Gene Products, tat/genetics
- Gene Products, tat/immunology
- Gene Products, tat/metabolism
- HIV/genetics
- HIV/immunology
- HIV/metabolism
- Human Immunodeficiency Virus Proteins/administration & dosage
- Human Immunodeficiency Virus Proteins/genetics
- Humans
- Immunization
- Macaca mulatta
- Simian Immunodeficiency Virus/physiology
- Vaccines, DNA/immunology
- Vaccines, Subunit/immunology
- Viremia
- Virus Replication
Collapse
Affiliation(s)
- Gerrit Koopman
- Department of Virology, Biomedical Primate Research Center (BPRC), 2288 GH Rijswijk, The Netherlands
| | - Daniella Mortier
- Department of Virology, Biomedical Primate Research Center (BPRC), 2288 GH Rijswijk, The Netherlands
| | - Sam Hofman
- Department of Virology, Biomedical Primate Research Center (BPRC), 2288 GH Rijswijk, The Netherlands
| | | | | | - Peter Ertl
- GlaxoSmithKline Biopharmaceuticals CEDD Biology, Stevenage, UK
| | - Phil Overend
- GlaxoSmithKline Biopharmaceuticals CEDD Biology, Stevenage, UK
| | - Cathy van Wely
- GlaxoSmithKline Biopharmaceuticals CEDD Biology, Stevenage, UK
| | - Lindy L Thomsen
- GlaxoSmithKline Biopharmaceuticals CEDD Biology, Stevenage, UK
| | - Britta Wahren
- Swedish Institute for Infectious Disease Control, Karolinska Institutet, Stockholm, Sweden
| | - Gerald Voss
- GlaxoSmithKline Biologicals, Rixensart, Belgium
| | - Jonathan L Heeney
- Department of Veterinary Medicine, University of Cambridge, UK
- Department of Virology, Biomedical Primate Research Center (BPRC), 2288 GH Rijswijk, The Netherlands
| |
Collapse
|
18
|
Titti F, Cafaro A, Ferrantelli F, Tripiciano A, Moretti S, Caputo A, Gavioli R, Ensoli F, Robert-Guroff M, Barnett S, Ensoli B. Problems and emerging approaches in HIV/AIDS vaccine development. Expert Opin Emerg Drugs 2007; 12:23-48. [PMID: 17355212 DOI: 10.1517/14728214.12.1.23] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
According to recent estimates, 39.5 million people have been infected with HIV and 2.9 million have already died. The effect of HIV infection on individuals and communities is socially and economically devastating. Although antiretroviral drugs have had a dramatically beneficial impact on HIV-infected individuals who have access to treatment, it has had a negligible impact on the global epidemic. Therefore, the need for an efficacious HIV/AIDS vaccine remains the highest priority of the world HIV/AIDS agenda. The generation of a vaccine against HIV/AIDS has turned out to be extremely challenging, as indicated by > 20 years of unsuccessful attempts. This review discusses the major challenges in the field and key experimental evidence providing a rationale for the use of non-structural HIV proteins, such as Rev, Tat and Nef, either in the native form or expressed by viral vectors such as a replicating adeno-vector. These non-structural proteins alone or in combination with modified structural HIV-1 Env proteins represent a novel strategy for both preventative and therapeutic HIV/AIDS vaccine development.
Collapse
Affiliation(s)
- Fausto Titti
- Istituto Superiore di Sanità, National AIDS Center, V.le Regina Elena 299, Rome 00161, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Demberg T, Florese RH, Heath MJ, Larsen K, Kalisz I, Kalyanaraman VS, Lee EM, Pal R, Venzon D, Grant R, Patterson LJ, Korioth-Schmitz B, Buzby A, Dombagoda D, Montefiori DC, Letvin NL, Cafaro A, Ensoli B, Robert-Guroff M. A replication-competent adenovirus-human immunodeficiency virus (Ad-HIV) tat and Ad-HIV env priming/Tat and envelope protein boosting regimen elicits enhanced protective efficacy against simian/human immunodeficiency virus SHIV89.6P challenge in rhesus macaques. J Virol 2007; 81:3414-27. [PMID: 17229693 PMCID: PMC1866031 DOI: 10.1128/jvi.02453-06] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We previously demonstrated that replication-competent adenovirus (Ad)-simian immunodeficiency virus (SIV) recombinant prime/protein boost regimens elicit potent immunogenicity and strong, durable protection of rhesus macaques against SIV(mac251). Additionally, native Tat vaccines have conferred strong protection against simian/human immunodeficiency virus SHIV(89.6P) challenge of cynomolgus monkeys, while native, inactivated, or vectored Tat vaccines have failed to elicit similar protective efficacy in rhesus macaques. Here we asked if priming rhesus macaques with replicating Ad-human immunodeficiency virus (HIV) tat and boosting with the Tat protein would elicit protection against SHIV(89.6P). We also evaluated a Tat/Env regimen, adding an Ad-HIV env recombinant and envelope protein boost to test whether envelope antibodies would augment acute-phase protection. Further, expecting cellular immunity to enhance chronic viremia control, we tested a multigenic group: Ad-HIV tat, -HIV env, -SIV gag, and -SIV nef recombinants and Tat, Env, and Nef proteins. All regimens were immunogenic. A hierarchy was observed in enzyme-linked immunospot responses (with the strongest response for Env, followed by Gag, followed by Nef, followed by Tat) and antibody titers (with the highest titer for Env, followed by Tat, followed by Nef, followed by Gag). Following intravenous SHIV(89.6P) challenge, all macaques became infected. Compared to controls, no protection was seen in the Tat-only group, confirming previous reports for rhesus macaques. However, the multigenic group blunted acute viremia by approximately 1 log (P = 0.017), and both the multigenic and Tat/Env groups reduced chronic viremia by 3 and 4 logs, respectively, compared to controls (multigenic, P = 0.0003; Tat/Env, P < 0.0001). The strikingly greater reduction in the Tat/Env group than in the multigenic group (P = 0.014) was correlated with Tat and Env binding antibodies. Since prechallenge anti-Env antibodies lacked SHIV(89.6P)-neutralizing activity, other functional anti-Env and anti-Tat activities are under investigation, as is a possible synergy between the Tat and Env immunogens.
Collapse
Affiliation(s)
- Thorsten Demberg
- Vaccine Branch, National Cancer Institute/NIH, 41 Medlars Drive, Building 41, Bethesda, MD 20892-5065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Pistello M, Bonci F, Flynn JN, Mazzetti P, Isola P, Zabogli E, Camerini V, Matteucci D, Freer G, Pelosi P, Bendinelli M. AIDS vaccination studies with an ex vivo feline immunodeficiency virus model: analysis of the accessory ORF-A protein and DNA as protective immunogens. J Virol 2006; 80:8856-68. [PMID: 16940498 PMCID: PMC1563914 DOI: 10.1128/jvi.00397-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Determining which antigen must be included in AIDS vaccines to confer maximum protection is of utmost importance. In primate models, vaccines consisting of or including accessory viral proteins have yielded conflicting results. We investigated the protective potential of the accessory protein ORF-A of feline immunodeficiency virus (FIV) in cats. All three immunization strategies used (protein alone in alum adjuvant, DNA alone, or DNA prime-protein boost) clearly generated detectable immune responses. Upon challenge with ex vivo homologous FIV, ORF-A-immunized cats showed distinct enhancement of acute-phase infection relative to mock-immunized animals given alum or empty vector DNA. This effect was tentatively attributed to increased expression of the FIV receptor CD134 that was observed in the immunized cats. However, at subsequent sampling points that were continued for up to 10 months postchallenge, the average plasma viral loads of the ORF-A-immunized animals were slightly but consistently reduced relative to those of the control animals. In addition, CD4(+) T lymphocytes in the circulation system declined more slowly in immunized animals than in control animals. These findings support the contention that immunization with lentiviral accessory proteins can improve the host's ability to control virus replication and slow down disease progression but also draw attention to the fact that even simple immunogens that eventually contribute to protective activity can transiently exacerbate subsequent lentiviral infections.
Collapse
Affiliation(s)
- Mauro Pistello
- Dipartimento di Patologia Sperimentale, Università di Pisa, Via San Zeno 37, I-56127 Pisa, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Vieillard V, Costagliola D, Simon A, Debré P. Specific adaptive humoral response against a gp41 motif inhibits CD4 T-cell sensitivity to NK lysis during HIV-1 infection. AIDS 2006; 20:1795-804. [PMID: 16954720 DOI: 10.1097/01.aids.0000244198.65263.17] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We have recently found that during HIV-1 infection, CD4 T cells overexpress a ligand of the NK activating receptor NKp44 (NKp44L) and are sensitized to NK lysis. Expression of NKp44L is triggered by a motif (3S) from the gp41, highly conserved in all HIV-1 clades. The objectives were to determine whether anti-3S antibodies were produced, could counteract 3S-CD4 interactions and were correlated to CD4 cell count and NKp44L expression in HIV-infected patients. DESIGN Anti-3S antibodie production was studied in HIV-infected patients at various stages of the disease, including a longitudinal study in Asymptomatiques à Long Terme (ALT) patients. METHODS Specimens from 193 HIV-1 infected patients were examined. Anti-3S antibodies were detected by ELISA, and NKp44L expression was analysed by flow cytometry. NK cytotoxicity against CD4NKp44L cells was determined in the presence of anti-3S antibodies. RESULTS Anti-3S antibodies were detected in 28.5% of HIV-infected patients. They were positively correlated to CD4 cell counts (P = 0.01) and inversely correlated to NKp44L expression (P = 0.007). Particularly, in ALT patients, a longitudinal study revealed that the CD4 cell count slope differed according to the presence or absence of anti-3S antibodies (-0.98 cells/month versus -7.48 cells/month, P > 0.001). In addition, a clear inhibition of CD4NKp44L NK lysis was observed in relationship to anti-3S antibodies titres. CONCLUSIONS These results strongly suggested that anti-3S antibodies might affect disease course in inhibiting NKp44L expression and CD4 sensitivity to NK lysis. In linking specific adaptive immunity to the innate immunity induced by the 3S motif, this study may have important implications for therapeutic vaccines against AIDS.
Collapse
Affiliation(s)
- Vincent Vieillard
- Laboratoire d'Immunologie Cellulaire et Tissulaire, INSERM U543, Hôpital Pitié-Salpétrière, Paris, France.
| | | | | | | |
Collapse
|
22
|
Kittiworakarn J, Lecoq A, Moine G, Thai R, Lajeunesse E, Drevet P, Vidaud C, Ménez A, Léonetti M. HIV-1 Tat Raises an Adjuvant-free Humoral Immune Response Controlled by Its Core Region and Its Ability to Form Cysteine-mediated Oligomers. J Biol Chem 2006; 281:3105-15. [PMID: 16321975 DOI: 10.1074/jbc.m509899200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins are poor immunogens that require an adjuvant to raise an immune response. Here we show that the human immunodeficiency virus, type 1 Tat protein possesses an autoadjuvant property, and we have identified the determinants and the molecular events that are associated with this unusual property. Using a series of chemically synthesized Tat101 derivatives, we show that the core region controls the autoadjuvant phenomenon independently of the B-cell recognition and T-cell stimulation that are associated with epitopes respectively located on the N-terminal region and the cysteine-rich region. We also show that cysteine-mediated oligomerization is a key molecular event of the adjuvant-free antibody response. In particular, a Tat dimer formed by the oxidation of two cysteine residues, at position 34 only, raises an adjuvant-free antibody response that is comparable with that observed with the wild-type protein. Unlike the parent protein, the Tat dimer has no transactivating activity and remains homogeneous for several weeks in solution. This construct might be of value for the design of an adjuvant-free Tat-based vaccine. Furthermore, we suggest that the specific autoadjuvanticity determinant of Tat could be used to provide other proteins with adjuvant-free immunogenicity.
Collapse
Affiliation(s)
- Jongrak Kittiworakarn
- Département d'Ingénierie et d'Etudes des Protéines, C.E. SACLAY, CEA, 91191 Gif-sur-Yvette CEDEX, France
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Watkins JD, Lancelot S, Campbell GR, Esquieu D, Mareuil JD, Opi S, Annappa S, Salles JP, Loret EP. Reservoir cells no longer detectable after a heterologous SHIV challenge with the synthetic HIV-1 Tat Oyi vaccine. Retrovirology 2006; 3:8. [PMID: 16441880 PMCID: PMC1434768 DOI: 10.1186/1742-4690-3-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 01/27/2006] [Indexed: 11/17/2022] Open
Abstract
Background Extra-cellular roles of Tat might be the main cause of maintenance of HIV-1 infected CD4 T cells or reservoir cells. We developed a synthetic vaccine based on a Tat variant of 101 residues called Tat Oyi, which was identified in HIV infected patients in Africa who did not progress to AIDS. We compared, using rabbits, different adjuvants authorized for human use to test on ELISA the recognition of Tat variants from the five main HIV-1 subtypes. A formulation was tested on macaques followed by a SHIV challenge with a European strain. Results Tat Oyi with Montanide or Calcium Phosphate gave rabbit sera able to recognize all Tat variants. Five on seven Tat Oyi vaccinated macaques showed a better control of viremia compared to control macaques and an increase of CD8 T cells was observed only on Tat Oyi vaccinated macaques. Reservoir cells were not detectable at 56 days post-challenge in all Tat Oyi vaccinated macaques but not in the controls. Conclusion The Tat Oyi vaccine should be efficient worldwide. No toxicity was observed on rabbits and macaques. We show in vivo that antibodies against Tat could restore the cellular immunity and make it possible the elimination of reservoir cells.
Collapse
Affiliation(s)
- Jennifer D Watkins
- UMR Univ. Med./CNRS FRE 2737, Faculté de Pharmacie, Université de la Méditerranée, 27 Bd Jean Moulin, 13385 Marseille, France
| | - Sophie Lancelot
- UMR Univ. Med./CNRS FRE 2737, Faculté de Pharmacie, Université de la Méditerranée, 27 Bd Jean Moulin, 13385 Marseille, France
| | - Grant R Campbell
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0672, USA
| | - Didier Esquieu
- SynProsis, Hôtel Technologique BP 100, Technopôle de Château Gombert, 13013 Marseille, France
| | - Jean de Mareuil
- UMR Univ. Med./CNRS FRE 2737, Faculté de Pharmacie, Université de la Méditerranée, 27 Bd Jean Moulin, 13385 Marseille, France
| | - Sandrine Opi
- Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| | - Sylvie Annappa
- SynProsis, Hôtel Technologique BP 100, Technopôle de Château Gombert, 13013 Marseille, France
| | - Jean-Pierre Salles
- SynProsis, Hôtel Technologique BP 100, Technopôle de Château Gombert, 13013 Marseille, France
| | - Erwann P Loret
- UMR Univ. Med./CNRS FRE 2737, Faculté de Pharmacie, Université de la Méditerranée, 27 Bd Jean Moulin, 13385 Marseille, France
| |
Collapse
|
24
|
Affiliation(s)
- Robert C Gallo
- Institute of Human Virology, University of Maryland Biotechnology Institute, University of Maryland Baltimore, Baltimore, MD, USA.
| |
Collapse
|
25
|
Liang X, Casimiro DR, Schleif WA, Wang F, Davies ME, Zhang ZQ, Fu TM, Finnefrock AC, Handt L, Citron MP, Heidecker G, Tang A, Chen M, Wilson KA, Gabryelski L, McElhaugh M, Carella A, Moyer C, Huang L, Vitelli S, Patel D, Lin J, Emini EA, Shiver JW. Vectored Gag and Env but not Tat show efficacy against simian-human immunodeficiency virus 89.6P challenge in Mamu-A*01-negative rhesus monkeys. J Virol 2005; 79:12321-31. [PMID: 16160159 PMCID: PMC1211517 DOI: 10.1128/jvi.79.19.12321-12331.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian-human immunodeficiency virus (SHIV) challenge studies in rhesus macaques were conducted to evaluate the efficacy of adenovirus-based vaccines in the context of different major histocompatibility complex class I genetic backgrounds and different vaccine compositions. Mamu-A*01 allele-negative rhesus monkeys were immunized with one of the following vaccine constructs: (i) replication-defective recombinant adenovirus type 5 (Ad5) expressing human immunodeficiency virus type 1 (HIV-1) Tat (Ad5/HIVTat); (ii) Ad5 vector expressing simian immunodeficiency virus (SIV) Gag (Ad5/SIVGag); (iii) Ad5 vector expressing the truncated HIV-1(jrfl) Env, gp140 (Ad5/gp140_jrfl); (iv) Ad5 vector expressing the SHIV-89.6P gp140 (Ad5/gp140_89.6P); or (v) the combination of Ad5/SIVGag and Ad5/gp140_jrfl. Following intravenous challenge with SHIV-89.6P, only those cohorts that received vaccines expressing Gag or Env exhibited an attenuation of the acute viremia and associated CD4-cell lymphopenia. While no prechallenge neutralizing antibody titers were detectable in either Ad5/gp140-vaccinated group, an accelerated neutralizing antibody response was observed in the Ad5/gp140_89.6P-vaccinated group upon viral challenge. The set-point viral loads in the Ad5/SIVGag- and Ad5/gp140_jrfl-vaccinated groups were associated with the overall strength of the induced cellular immune responses. To examine the contribution of Mamu-A*01 allele in vaccine efficacy against SHIV-89.6P challenge, Mamu-A*01-positive monkeys were immunized with Ad5/SIVGag. Vaccine-mediated protection was significantly more pronounced in the Mamu-A*01-positive monkeys than in Mamu-A*01-negative monkeys, suggesting the strong contributions of T-cell epitopes restricted by the Mamu-A*01 molecule. The implications of these results in the development of an HIV-1 vaccine will be discussed.
Collapse
MESH Headings
- AIDS Vaccines/immunology
- Acquired Immunodeficiency Syndrome/prevention & control
- Adenoviridae/genetics
- Animals
- Antibodies, Viral/blood
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- CD4 Lymphocyte Count
- Disease Models, Animal
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, gag/immunology
- Gene Products, tat/genetics
- Gene Products, tat/immunology
- Genetic Vectors
- HIV/genetics
- HIV/immunology
- Histocompatibility Antigens Class I/genetics
- Immunity, Cellular
- Macaca mulatta
- Neutralization Tests
- SAIDS Vaccines/immunology
- Simian Acquired Immunodeficiency Syndrome/prevention & control
- Simian Immunodeficiency Virus/genetics
- Simian Immunodeficiency Virus/immunology
- Viral Load
- Viremia
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Xiaoping Liang
- Merck Research Laboratories, P. O. Box 4, WP16-306, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mascarell L, Fayolle C, Bauche C, Ladant D, Leclerc C. Induction of neutralizing antibodies and Th1-polarized and CD4-independent CD8+ T-cell responses following delivery of human immunodeficiency virus type 1 Tat protein by recombinant adenylate cyclase of Bordetella pertussis. J Virol 2005; 79:9872-84. [PMID: 16014948 PMCID: PMC1181576 DOI: 10.1128/jvi.79.15.9872-9884.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-Tat, a conserved protein playing a key role in the early life cycle of the human immunodeficiency virus (HIV) has been proposed as a potential AIDS vaccine. An HIV-Tat-based vaccine should elicit a broad, long-lasting, and neutralizing immune response. We have previously demonstrated that the adenylate cyclase (CyaA) from Bordetella pertussis targets dendritic cells and delivers CD8(+) and CD4(+) T-cell epitopes into the major histocompatibility complex class I and class II presentation pathways. We have also showed that CyaA induced specific and protective cytotoxic T cell responses in vivo. Here, we designed a prototype vaccine based on the HIV type 1 Tat delivered by CyaA (CyaA-E5-Tat) and tested its capacity to induce HIV-Tat-specific cellular as well as antibody responses. We showed that immunization of mice by CyaA-E5-Tat in the absence of adjuvant elicited strong and long-lasting neutralizing anti-Tat antibody responses more efficient than those obtained after immunization with Tat toxoid in aluminum hydroxide adjuvant. Analyses of the anti-Tat immunoglobulin G isotypes and the cytokine pattern showed that CyaA-E5-Tat induced a Th1-polarized immune response in contrast to the Th2-polarized immune responses obtained with the Tat toxoid. In addition, our data demonstrated that HIV-Tat-specific gamma interferon-producing CD8(+) T cells were generated after vaccination with CyaA-E5-Tat in a CD4(+) T-cell-independent manner. Based on these findings, CyaA-E5-Tat represents an attractive vaccine candidate for both preventive and therapeutic vaccination involving CyaA as an efficient nonreplicative vector for protein delivery.
Collapse
Affiliation(s)
- Laurent Mascarell
- Unité de Biologie des Régulations Immunitaires, INSERM E 352, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
27
|
Zhao J, Voltan R, Peng B, Davis-Warren A, Kalyanaraman VS, Alvord WG, Aldrich K, Bernasconi D, Buttò S, Cafaro A, Ensoli B, Robert-Guroff M. Enhanced cellular immunity to SIV Gag following co-administration of adenoviruses encoding wild-type or mutant HIV Tat and SIV Gag. Virology 2005; 342:1-12. [PMID: 16109434 DOI: 10.1016/j.virol.2005.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 06/15/2005] [Accepted: 07/14/2005] [Indexed: 11/16/2022]
Abstract
Among candidate antigens for human immunodeficiency virus (HIV) prophylactic vaccines, the regulatory protein Tat is a critical early target, but has a potential for immune suppression. Adenovirus (Ad) recombinants encoding wild-type HIV Tat (Tat-wt) and a transdominant negative mutant HIV Tat (Tat22) were constructed and administered to mice separately or together with Ad-SIVgag. Immunogenicity and effects on immune responses to the co-administered Gag immunogen were evaluated. Wild-type and mutant Tat recombinants elicited similar Tat-specific cellular and humoral immune responses. Co-administration of either Tat immunogen with Ad-SIVgag induced modest but significant enhancement of Gag-specific interferon-gamma secreting T cells and lymphoproliferative responses. Neither the Ad-recombinant encoding Tat-wt nor Tat22 suppressed induction of anti-Tat or anti-Gag antibodies. Based on the immune responses observed in mice, both recombinants appear to be suitable vaccine candidates. Their contribution to protective efficacy remains to be determined in a non-human primate model.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Adenoviridae/genetics
- Adenoviridae/immunology
- Animals
- Antibodies, Viral/biosynthesis
- Base Sequence
- DNA, Recombinant/genetics
- Female
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, tat/genetics
- Gene Products, tat/immunology
- Genes, gag
- Genes, tat
- Genetic Vectors
- HIV Antibodies/biosynthesis
- HIV-1/genetics
- HIV-1/immunology
- Humans
- Immunity, Cellular
- Immunization
- Interferon-gamma/biosynthesis
- Macaca mulatta
- Mice
- Mice, Inbred BALB C
- Mutation
- Simian Immunodeficiency Virus/genetics
- Simian Immunodeficiency Virus/immunology
- T-Lymphocytes/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Jun Zhao
- National Cancer Institute, 41 Medlars Drive, Building 41, Room D804, Bethesda, MD 20892-5065, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gibellini D, Re MC, Ponti C, Vitone F, Bon I, Fabbri G, Grazia Di Iasio M, Zauli G. HIV-1 Tat protein concomitantly down-regulates apical caspase-10 and up-regulates c-FLIP in lymphoid T cells: a potential molecular mechanism to escape TRAIL cytotoxicity. J Cell Physiol 2005; 203:547-56. [PMID: 15573381 DOI: 10.1002/jcp.20252] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, we showed the existence of a positive correlation between the amount of human immunodeficiency virus-type 1 (HIV-1) RNA in HIV-1 seropositive subjects and the plasma levels of TRAIL. Since it has been previously demonstrated that HIV-1 Tat protein up-regulates the expression of TRAIL in monocytic cells whereas tat-expressing lymphoid cells are more resistant to TRAIL cytotoxicity, we next investigated the effect of Tat on the expression/activity of both apical caspase-8 and -10, which play a key role in mediating the initial phases of apoptosis by TRAIL, and c-FLIP. Jurkat lymphoblastoid human T cell lines stably transfected with a plasmid expressing wild-type (HIV-1) tat gene showed normal levels of caspase-8 but significantly decreased levels of caspase-10 at both mRNA and protein levels with respect to Jurkat transfected with the control plasmid or with a mutated (cys22) non-functional tat cDNA. A significant decrease of caspase-10 expression/activity was also observed in transient transfection experiments with plasmid carrying tat cDNA. Moreover, c-FLIP(L) and c-FLIP(S) isoforms were up-regulated in tat-expressing cells at both mRNA and protein level in comparison with control cells. Taken together, these results provide a molecular basis to explain the resistance of tat-expressing Jurkat cells to apoptosis induced by TRAIL and, possibly, to other death-inducing ligands.
Collapse
Affiliation(s)
- Davide Gibellini
- Department of Clinical and Experimental Medicine, Microbiology Section, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Salguero FJ, Sánchez-Martín MA, Díaz-San Segundo F, de Avila A, Sevilla N. Foot-and-mouth disease virus (FMDV) causes an acute disease that can be lethal for adult laboratory mice. Virology 2005; 332:384-96. [PMID: 15661169 DOI: 10.1016/j.virol.2004.11.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 10/29/2004] [Accepted: 11/06/2004] [Indexed: 11/27/2022]
Abstract
Foot-and-mouth disease virus (FMDV) is a picornavirus that causes an acute vesicular disease of cloven-hoofed animals. This virus continues to be threat to livestock worldwide with outbreaks causing severe economic losses. However, very little is known about FMDV pathogenesis, partially due to the inconveniences of working with cattle and swine, the main natural hosts of the virus. Here we demonstrate that C57BL/6 and BALB/C adult mice are highly susceptible to FMDV infection when the virus is administered subcutaneously or intraperitoneally. The first clinical signs are ruffled fur, apathy, humped posture, and wasting, which are followed by neurological signs such as hind-limb paralysis. Within 2-3 days of disease onset, the animals die. Virus is found in all major organs, indicating a systemic infection. Mice developed microvesicles near the basal layer of the epithelium, event that precedes the vesiculation characteristics of FMD. In addition, a lymphoid depletion in spleen and thymus and severe lymphopenia is observed in the infected mice. When these mice were immunized with conventional inactivated FMDV vaccine, they were protected (100% of vaccinated animals) against challenge with a lethal dose of FMDV. The data indicate that this mouse model may facilitate the study of FMDV pathogenesis, and the development of new effective vaccines for FMD.
Collapse
Affiliation(s)
- Francisco J Salguero
- Centro de Investigación en Sanidad Animal, INIA, 28130 Valdeolmos, Madrid, Spain
| | | | | | | | | |
Collapse
|
30
|
Abstract
Traditional successful antiviral vaccines have relied mostly on live-attenuated viruses. Live-attenuated HIV vaccine candidates are not ideal as they pose risks of reversion, recombination or mutations. Other current HIV vaccine candidates have difficulties generating broadly effective neutralising antibodies and cytotoxic T cell immune responses to primary HIV isolates. Virus-like-particles (VLPs) have been demonstrated to be safe to administer to animals and human patients as well as being potent and efficient stimulators of cellular and humoral immune responses. Therefore, VLPs are being considered as possible HIV vaccines. Chimeric HIV-1 VLPs constructed with either HIV or SIV capsid protein plus HIV immune epitopes and immuno-stimulatory molecules have further improved on early VLP designs, leading to enhanced immune stimulation. The administration of VLP vaccines via mucosal surfaces has also emerged as a promising strategy with which to elicit mucosal and systemic humoral and cellular immune responses. Additionally, new information on antigen processing and the presentation of particulate antigens by dendritic cells (DCs) has created new strategies for improved VLP vaccine candidates. This paper reviews the field of HIV-1 VLP vaccine development, focusing on recent studies that will likely uncover promising prospects for new HIV vaccines.
Collapse
Affiliation(s)
- Linh X Doan
- Molecular Surgeon Research Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | |
Collapse
|
31
|
Ruckwardt TJ, Tikhonov I, Berg S, Hatfield GS, Chandra A, Chandra P, Gilliam B, Redfield RR, Gallo RC, Pauza CD. Sequence variation within the dominant amino terminus epitope affects antibody binding and neutralization of human immunodeficiency virus type 1 Tat protein. J Virol 2004; 78:13190-6. [PMID: 15542671 PMCID: PMC524972 DOI: 10.1128/jvi.78.23.13190-13196.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tat is among the required regulatory genes of human immunodeficiency virus type 1 (HIV-1). Tat functions both within infected cells as a transcription factor and as an extracellular factor that binds and alters bystander cells. Some functions of extracellular Tat can be neutralized by immune serum or monoclonal antibodies. In order to understand the antibody response to Tat, we are defining antibody epitopes and the effects of natural Tat sequence variation on antibody recognition. The dominant Tat epitope in macaque sera is within the first 15 amino acids of the protein amino terminus. Together with a subdominant response to amino acids 57 to 60, these two regions account for most of the macaque response to linear Tat epitopes and both regions are also sites for the binding of neutralizing antibodies. However, the dominant and subdominant epitope sequences differ among virus strains, and this natural variation can preclude antibody binding and Tat neutralization. We also examined serum samples from 31 HIV-positive individuals that contained Tat binding antibodies; 23 of the 31 sera recognized the amino terminus peptide. Similar to binding in macaques, human antibody binding to the amino terminus was affected by variations at positions 7 and 12, sequences that are distinct for clade B compared to other viral clades. Tat-neutralizing antibodies to the dominant amino terminus epitope are affected by HIV clade variation.
Collapse
Affiliation(s)
- Tracy J Ruckwardt
- Institute of Human Virology, University of Maryland Biotechnology Institute, 725 W. Lombard St., Room N546, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ferrantelli F, Cafaro A, Ensoli B. Nonstructural HIV proteins as targets for prophylactic or therapeutic vaccines. Curr Opin Biotechnol 2004; 15:543-56. [PMID: 15560981 DOI: 10.1016/j.copbio.2004.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
By the end of 2004, more than 20 HIV-1 vaccine candidates will have entered clinical testing in at least 30 trials worldwide. Almost half of these vaccines include nonstructural HIV-1 gene products. This represents an important innovation in the HIV vaccine field, because until 9 years ago not even preclinical testing in small animal models had been carried out with such immunogens. This review briefly discusses the experimental evidence that provides the rationale for the use of nonstructural HIV-1 gene products as vaccine antigens, and summarizes the current status and the future development of these novel vaccines.
Collapse
Affiliation(s)
- Flavia Ferrantelli
- AIDS Division, Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | |
Collapse
|
33
|
Ramakrishna L, Anand KK, Mohankumar KM, Ranga U. Codon optimization of the tat antigen of human immunodeficiency virus type 1 generates strong immune responses in mice following genetic immunization. J Virol 2004; 78:9174-89. [PMID: 15308713 PMCID: PMC506957 DOI: 10.1128/jvi.78.17.9174-9189.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA vaccines have been successful in eliciting potent immune responses in mice. Their efficiency, however, is restricted in larger animals. One reason for the limited performance of the DNA vaccines is the lack of molecular strategies to enhance immune responses. Additionally, genes directly cloned from pathogenic organisms may not be efficiently translated in a heterologous host expression system as a consequence of codon bias. To evaluate the influence of codon optimization on the immune response, we elected to use the Tat antigens of human immunodeficiency virus type 1 (HIV-1) (subtype C) and HIV-2, as these viral antigens are poorly immunogenic in natural infection and in experimental immunization and they are functionally important in viral infectivity and pathogenesis. Substituting codons that are optimally used in the mammalian system, we synthetically assembled Tat genes and compared them with the wild-type counterparts in two different mouse strains. Codon-optimized Tat genes induced qualitatively and quantitatively superior immune responses as measured in a T-cell proliferation assay, enzyme-linked immunospot assay, and chromium release assay. Importantly, while the wild-type genes promoted a mixed Th1-Th2-type cytokine profile, the codon-optimized genes induced a predominantly Th1 profile. Using a pepscan strategy, we mapped an immunodominant T-helper epitope to the core and basic domains of HIV-1 Tat. We also identified cross-clade immune responses between HIV-1 subtype B and C Tat proteins mapped to this T-helper epitope. Developing molecular strategies to optimize the immunogenicity of DNA vaccines is critical for inducing strong immune responses, especially to antigens like Tat. Our identification of a highly conserved T-helper epitope in the first exon of HIV-1 Tat of subtype C and the demonstration of a cross-clade immune response between subtypes B and C are important for a more rational design of an HIV vaccine.
Collapse
MESH Headings
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Amino Acid Sequence
- Animals
- Cell Division
- Codon/genetics
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Gene Products, tat/biosynthesis
- Gene Products, tat/chemistry
- Gene Products, tat/genetics
- Gene Products, tat/immunology
- Genes, Viral/genetics
- Genetic Vectors/genetics
- HIV Antibodies/analysis
- HIV Antigens/biosynthesis
- HIV Antigens/chemistry
- HIV Antigens/genetics
- HIV Antigens/immunology
- HIV-1/classification
- HIV-1/genetics
- HIV-1/immunology
- Immunization
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Molecular Sequence Data
- Protein Biosynthesis
- T-Lymphocytes, Cytotoxic/immunology
- Th1 Cells/immunology
- Transcription, Genetic/genetics
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Lakshmi Ramakrishna
- Molecular Virology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | | | | | | |
Collapse
|
34
|
Nkolola JP, Wee EGT, Im EJ, Jewell CP, Chen N, Xu XN, McMichael AJ, Hanke T. Engineering RENTA, a DNA prime-MVA boost HIV vaccine tailored for Eastern and Central Africa. Gene Ther 2004; 11:1068-80. [PMID: 15164090 DOI: 10.1038/sj.gt.3302241] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For the development of human immunodeficiency virus type 1 (HIV-1) vaccines, traditional approaches inducing virus-neutralizing antibodies have so far failed. Thus the effort is now focused on elicitation of cellular immunity. We are currently testing in clinical trials in the United Kingdom and East Africa a T-cell vaccine consisting of HIV-1 clade A Gag-derived immunogen HIVA delivered in a prime-boost regimen by a DNA plasmid and modified vaccinia virus Ankara (MVA). Here, we describe engineering and preclinical development of a second immunogen RENTA, which will be used in combination with the present vaccine in a four-component DNA/HIVA-RENTA prime-MVA/HIVA-RENTA boost formulation. RENTA is a fusion protein derived from consensus HIV clade A sequences of Tat, reverse transcriptase, Nef and gp41. We inactivated the natural biological activities of the HIV components and confirmed immunogenicities of the pTHr.RENTA and MVA.RENTA vaccines in mice. Furthermore, we demonstrated in mice and rhesus monkeys broadening of HIVA-elicited T-cell responses by a parallel induction of HIVA- and RENTA-specific responses recognizing multiple HIV epitopes.
Collapse
Affiliation(s)
- J P Nkolola
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhang L, Ribeiro RM, Mascola JR, Lewis MG, Stiegler G, Katinger H, Perelson AS, Davenport MP. Effects of antibody on viral kinetics in simian/human immunodeficiency virus infection: implications for vaccination. J Virol 2004; 78:5520-2. [PMID: 15113932 PMCID: PMC400367 DOI: 10.1128/jvi.78.10.5520-5522.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Passive antibody treatment of macaques prior to simian/human immunodeficiency virus infection produces "sterilizing immunity" in some animals and long-term reductions in viral loads in others. Analysis of viral kinetics suggests that antibody mediates sterilizing immunity by its effects on the initial viral inoculum. By contrast, reduction in peak viral load later in infection prevents CD4 depletion and contributes to long-term viral control.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Haematology, Prince of Wales Hospital and Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Mooij P, Nieuwenhuis IG, Knoop CJ, Doms RW, Bogers WMJM, Ten Haaft PJF, Niphuis H, Koornstra W, Bieler K, Köstler J, Morein B, Cafaro A, Ensoli B, Wagner R, Heeney JL. Qualitative T-helper responses to multiple viral antigens correlate with vaccine-induced immunity to simian/human immunodeficiency virus infection. J Virol 2004; 78:3333-42. [PMID: 15016855 PMCID: PMC371051 DOI: 10.1128/jvi.78.7.3333-3342.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Evidence is accumulating that CD4(+) T-helper (Th) responses play a critical role in facilitating effector responses which are capable of controlling and even preventing human immunodeficiency virus (HIV) infection. The present work was undertaken to determine whether immunization with multiple antigens influenced individual Th responses and increased protection relative to a single antigen. Rhesus macaques were primed with DNA and boosted (immune-stimulating complex-formulated protein) with a combination of regulatory and structural antigens (Tat-Env-Gag) or with Tat alone. Immunization with combined antigens reduced the magnitude of the responses to Tat compared to the single-antigen immunization. Interestingly, the Th immune responses to the individual antigens were noticeably different. To determine whether the qualitative differences in vaccine-induced Th responses correlated with vaccine efficacy, animals were challenged intravenously with simian/human immunodeficiency virus (strain SHIV(89.6p)) 2 months following the final immunization. Animals that developed combined Th1- and Th2-like responses to Gag and Th2 dominant Env-specific responses were protected from disease progression. Interestingly, one animal that was completely protected from infection had the strongest IFN-gamma and interleukin-2 (IL-2) responses prior to challenge, in addition to very strong IL-4 responses to Gag and Env. In contrast, animals with only a marked vaccine-induced Tat-specific Th2 response (no IFN-gamma) were not protected from infection or disease. These data support the rationale that effective HIV vaccine-induced immunity requires a combination of potent Th1- and Th2-like responses best directed to multiple antigens.
Collapse
Affiliation(s)
- Petra Mooij
- Department of Virology, Biomedical Primate Research Center, 2280 GH Rijswijk, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Régulier EG, Reiss K, Khalili K, Amini S, Zagury JF, Katsikis PD, Rappaport J. T-cell and neuronal apoptosis in HIV infection: implications for therapeutic intervention. Int Rev Immunol 2004; 23:25-59. [PMID: 14690854 DOI: 10.1080/08830180490265538] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The pathogenesis of HIV infection involves the selective loss of CD4+ T cells contributing to immune deficiency. Although loss of T cells leading to immune dysfunction in HIV infection is mediated in part by viral infection, there is a much larger effect on noninfected T cells undergoing apoptosis in response to activation stimuli. In the subset of patients with HIV dementia complex, neuronal injury, loss, and apoptosis are observed. Viral proteins, gp120 and Tat, exhibit proapoptotic activities when applied to T cell and neuronal cultures by direct and indirect mechanisms. The pathways leading to cell death involve the activation of one or more death receptor pathways (i.e., TNF-alpha, Fas, and TRAIL receptors), chemokine receptor signaling, cytokine dysregulation, caspase activation, calcium mobilization, and loss of mitochondrial membrane potential. In this review, the mechanisms involved in T-cell and neuronal apoptosis, as well as antiapoptotic pathways potentially amenable to therapeutic application, are discussed.
Collapse
Affiliation(s)
- Emmanuel G Régulier
- Center for Neurovirology and Cancer Biology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Smith SM, Pentlicky S, Klase Z, Singh M, Neuveut C, Lu CY, Reitz MS, Yarchoan R, Marx PA, Jeang KT. An in vivo replication-important function in the second coding exon of Tat is constrained against mutation despite cytotoxic T lymphocyte selection. J Biol Chem 2003; 278:44816-25. [PMID: 12947089 DOI: 10.1074/jbc.m307546200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human and simian immunodeficiency virus (HIV/SIV) Tat proteins are specified by two coding exons. Tat functions in the transcription of primate lentiviruses. A plethora of in vitro data currently suggests that the second coding exon of Tat is largely devoid of function. However, whether the second exon of Tat contributes functionally to viral pathogenesis in vivo remains unknown. To address this question directly, we compared infection of rhesus macaques with an SIV, engineered to express only the first coding exon of Tat (SIVtat1ex), to counterpart infection with wild-type SIVmac239 virus, which expresses the full 2-exon Tat. This comparison showed that the second coding exon of Tat contributes to chronic SIV replication in vivo. Interestingly, in macaques, we observed a cytotoxic T lymphocytes (CTL) response to the second coding exon of Tat, which appears to durably control SIV replication. When SIV mutated in an attempt to escape this second Tat-exon-CTL, the resulting virus was less replicatively fit and failed to populate the host in vivo. Our study provides the first evidence that the second coding exon in Tat embodies an important function for in vivo replication. We suggest the second coding exon of Tat as an example of a functionally constrained "epitope" whose elicited CTL response cannot be escaped by virus mutation without producing a virus that replicates poorly in vivo.
Collapse
Affiliation(s)
- Stephen M Smith
- Saint Michael's Medical Center, Newark, New Jersey 07102, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Marinaro M, Riccomi A, Rappuoli R, Pizza M, Fiorelli V, Tripiciano A, Cafaro A, Ensoli B, De Magistris MT. Mucosal delivery of the human immunodeficiency virus-1 Tat protein in mice elicits systemic neutralizing antibodies, cytotoxic T lymphocytes and mucosal IgA. Vaccine 2003; 21:3972-81. [PMID: 12922133 DOI: 10.1016/s0264-410x(03)00295-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Human immunodeficiency virus (HIV)-1 Tat protein induces protection in non-human primates upon systemic vaccination. In view of the design of mucosal vaccines against HIV-1 we studied the immune response to native Tat (aa 1-86) in mice following intranasal delivery of the protein with two mucosal adjuvants, Escherichia coli heat-labile enterotoxin (LT) and LT-R72, a non-toxic mutant of LT. Immunization with Tat and the two adjuvants induced in BALB/c but not in C57BL/6 mice high and persistent levels of serum IgG and secretory IgA in vaginal and intestinal fluids. Mice sera neutralized Tat and recognized two epitopes mapping in the regions 1-20 and 46-60. Furthermore, their splenocytes proliferated and secreted IFN-gamma and IL-6 in response to Tat. Finally, CTLs were also elicited and they recognized an epitope localized within aa 11-40 of Tat.
Collapse
Affiliation(s)
- Mariarosaria Marinaro
- Laboratory of Bacteriology and Medical Mycology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Matano T, Kano M, Takeda A, Nakamura H, Nomura N, Furuta Y, Shioda T, Nagai Y. No significant enhancement of protection by Tat-expressing Sendai viral vector-booster in a macaque AIDS model. AIDS 2003; 17:1392-4. [PMID: 12799562 DOI: 10.1097/00002030-200306130-00015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Tetsuro Matano
- Department of Microbiology, Graduate School of Medicine, The University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Yang Y, Tikhonov I, Ruckwardt TJ, Djavani M, Zapata JC, Pauza CD, Salvato MS. Monocytes treated with human immunodeficiency virus Tat kill uninfected CD4(+) cells by a tumor necrosis factor-related apoptosis-induced ligand-mediated mechanism. J Virol 2003; 77:6700-8. [PMID: 12767990 PMCID: PMC156176 DOI: 10.1128/jvi.77.12.6700-6708.2003] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The human immunodeficiency virus (HIV) Tat protein has a critical role in viral transcription, but this study focuses on its additional role as an extracellular effector of lymphocyte cell death. It is well known that Tat induces tumor necrosis factor-related apoptosis-induced ligand (TRAIL) in peripheral blood mononuclear cells (PBMC), and we show that the majority of TRAIL is produced by the monocyte subset of PBMC. Human monocytes and U937 monoblastoid cells did not take up soluble HIV Tat-86, as T cells did, yet produced more TRAIL than did T cells. TRAIL secretion was induced by Tat and by a cysteine-rich peptide of Tat but not by sulfhydryl-modified Tat toxoid. Although there was only a slight increase in cell surface expression of TRAIL on monocytes, sufficient TRAIL was secreted to be toxic for T cells. The cytotoxicity of Tat-stimulated monocyte medium could be blocked by a TRAIL-neutralizing antibody. T cells treated with Tat did not secrete enough TRAIL to mediate cell death in our assay. Remarkably, uninfected T cells are more susceptible to TRAIL than are HIV-infected T cells. The production of TRAIL by Tat-stimulated monocytes provides a mechanism by which HIV infection can destroy uninfected bystander cells.
Collapse
Affiliation(s)
- Yida Yang
- Institute of Human Virology, University of Maryland Biotechnology Center, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The human immunodeficiency virus Tat protein is essential for virus replication and is a candidate vaccine antigen. Macaques immunized with Tat or chemically modified Tat toxoid having the same clade B sequence developed strong antibody responses. We compared these antisera for their abilities to recognize diverse Tat sequences. An overlapping peptide array covering three clade B and two clade C Tat sequences was constructed to help identify reactive linear epitopes. Sera from Tat-immunized macaques were broadly cross-reactive with clade B and clade C sequences but recognized a clade B-specific epitope in the basic domain. Sera from Tat toxoid-immunized macaques had a more restricted pattern of recognition, reacting mainly with clade B and with only one clade B basic domain sequence, which included the rare amino acids RPPQ at positions 57 to 60. Monoclonal antibodies against the amino terminus or the domain RPPQ sequence blocked Tat uptake into T cells and neutralized Tat in a cell-based transactivation assay. Macaques immunized with Tat or Tat toxoid proteins varied in their responses to minor epitopes, but all developed a strong response to the amino terminus, and antisera were capable of neutralizing Tat in a transactivation assay.
Collapse
Affiliation(s)
- Ilia Tikhonov
- Institute of Human Virology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
43
|
Voss G, Manson K, Montefiori D, Watkins DI, Heeney J, Wyand M, Cohen J, Bruck C. Prevention of disease induced by a partially heterologous AIDS virus in rhesus monkeys by using an adjuvanted multicomponent protein vaccine. J Virol 2003; 77:1049-58. [PMID: 12502820 PMCID: PMC140820 DOI: 10.1128/jvi.77.2.1049-1058.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant protein subunit AIDS vaccines have been based predominantly on the virus envelope protein. Such vaccines elicit neutralizing antibody responses that can provide type-specific sterilizing immunity, but in most cases do not confer protection against divergent viruses. In this report we demonstrate that a multiantigen subunit protein vaccine was able to prevent the development of disease induced in rhesus monkeys by a partially heterologous AIDS virus. The vaccine was composed of recombinant human immunodeficiency virus type 1 (HIV-1) gp120, NefTat fusion protein, and simian immunodeficiency virus (SIV) Nef formulated in the clinically tested adjuvant AS02A. Upon challenge of genetically unselected rhesus monkeys with the highly pathogenic and partially heterologous SIV/HIV strain SHIV(89.6p) the vaccine was able to reduce virus load and protect the animals from a decline in CD4-positive cells. Furthermore, vaccination prevented the development of AIDS for more than 2.5 years. The combination of the regulatory proteins Nef and Tat together with the structural protein gp120 was required for vaccine efficacy.
Collapse
Affiliation(s)
- Gerald Voss
- GlaxoSmithKline Biologicals, Rixensart, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The AIDS epidemic continues to advance, and the development of a preventive HIV vaccine has become a major objective for scientific research. An effective vaccine against this virus is not available and complete protection still has not been achieved in animal models. In this review the major challenges related to the development of a vaccine against HIV are analyzed, particularly the mechanisms involved in viral escape from the immune response, and the results obtained with the various therapeutic and preventive vaccine prototypes are summarized. Finally, the social, economic and health aspects related to research on HIV vaccines and the current controversy around the performance of clinical trials with these agents is discussed.
Collapse
Affiliation(s)
- José Alcami
- Unidad de Inmunopatología del SIDA. Centro Nacional de Microbiología. Instituto de Salud Carlos III. Madrid. España.
| |
Collapse
|
45
|
Sherman MP, Schubert U, Williams SA, de Noronha CMC, Kreisberg JF, Henklein P, Greene WC. HIV-1 Vpr displays natural protein-transducing properties: implications for viral pathogenesis. Virology 2002; 302:95-105. [PMID: 12429519 DOI: 10.1006/viro.2002.1576] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 14-kDa Vpr protein of human immunodeficiency virus type 1 (HIV-1) serves multiple functions in the retroviral life cycle, including the enhancement of viral replication in nondividing macrophages, the induction of G2 cell-cycle arrest in proliferating T lymphocytes, and the modulation of HIV-1-induced apoptosis. Extracellular Vpr has been detected in the sera and cerebral spinal fluid of HIV-infected patients. However, it is not known whether such forms of Vpr are biologically active. Vpr contains a carboxy-terminal basic amino acid rich segment stretch that is homologous to domains that mediate the energy- and receptor-independent cellular uptake of polypeptides by a process termed protein transduction. Similar functional protein-transducing domains are present in HIV-1 Tat, herpes simplex virus-1 DNA-binding protein VP22, and the Drosophila antennapedia homeotic transcription factor. We now demonstrate effective transduction of biologically active, synthetic Vpr (sVpr) as well as the Vpr-beta-galactosidase fusion protein. However, in contrast to other transducing proteins, Vpr transduction is not enhanced by protein denaturation, and Vpr's carboxy-terminal basic domain alone is not sufficient for its transduction across biological membranes. In contrast, the full-length Vpr protein effectively transduces a broad array of cells, leading to dose-dependent G2 cell-cycle arrest and apoptosis. Addition of Vpr into the extracellular medium also rescues the replication of Vpr-deficient strains of HIV-1 in human macrophage cultures. Native Vpr may thus be optimized for protein transduction, a feature that might enhance and extend the pathological effects of HIV infection.
Collapse
Affiliation(s)
- Michael P Sherman
- Gladstone Institute of Virology and Immunology, San Fransisco, California 94141, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Opi S, Péloponèse JM, Esquieu D, Campbell G, de Mareuil J, Walburger A, Solomiac M, Grégoire C, Bouveret E, Yirrell DL, Loret EP. Tat HIV-1 primary and tertiary structures critical to immune response against non-homologous variants. J Biol Chem 2002; 277:35915-9. [PMID: 12080071 DOI: 10.1074/jbc.m204393200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clinical studies show that in the absence of anti-retroviral therapy an immune response against the human immunodeficiency virus type 1 (HIV-1), transacting transcriptional activator (Tat) protein correlates with long term non-progression. The purpose of this study is to try to understand what can trigger an effective immune response against Tat. We used five Tat variants from HIV strains identified in different parts of the world and showed that mutations of as much as 38% exist without any change in activity. Rabbit sera were raised against Tat variants identified in rapid-progressor patients (Tat HXB2, a European variant and Tat Eli, an African variant) and a long term non-progressor patient (Tat Oyi, an inactive African variant). Enzyme-linked immunosorbent assay (ELISA) results showed that anti-Tat Oyi serum had the highest antibody titer and was the only one to have a broad antibody response against heterologous Tat variants. Surprisingly, Tat HXB2 was better recognized by anti-Tat Oyi serum compared with anti-Tat HXB2 serum. Western blots showed that non-homologous Tat variants were recognized by antibodies directed against conformational epitopes. This study suggests that the primary and tertiary structures of the Tat variant from the long term non-progressor patient are critical to the induction of a broad and effective antibody response against Tat.
Collapse
Affiliation(s)
- Sandrine Opi
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Biologie Structurale et Microbiologie, Centre National de la Recherche Scientifique Unité Propre de Rechereche 9027, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Warren J. Preclinical AIDS vaccine research: survey of SIV, SHIV, and HIV challenge studies in vaccinated nonhuman primates. J Med Primatol 2002; 31:237-56. [PMID: 12390546 DOI: 10.1034/j.1600-0684.2002.02010.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This current supplementary and systematic survey of 237 preclinical AIDS vaccine challenge/protection studies in nonhuman primates enumerates and broadly describes the recent status of different vaccine strategies in macaque and chimpanzee experimental models. Published studies since the previous survey were compiled and categorized by their vaccine types, challenge parameters, and challenge results. These models have supportively verified that some prophylactic vaccine approaches, though rarely preventing infection (which is observed in these models with some passively administered antibody-based vaccines), can control to some degree primate lentivirus replication and disease development, and this is encouraging because it places more potentially effective immunogens on the precipice for early clinical studies. Many of these promising approaches may benefit from more testing in mucosal challenge models, and resources will be needed to follow more of these partially protected vaccinees for longer periods.
Collapse
Affiliation(s)
- Jon Warren
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-7628, USA.
| |
Collapse
|
48
|
Agwale SM, Shata MT, Reitz MS, Kalyanaraman VS, Gallo RC, Popovic M, Hone DM. A Tat subunit vaccine confers protective immunity against the immune-modulating activity of the human immunodeficiency virus type-1 Tat protein in mice. Proc Natl Acad Sci U S A 2002; 99:10037-41. [PMID: 12096189 PMCID: PMC126620 DOI: 10.1073/pnas.152313899] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The rational design of new therapies against HIV-1 necessitates an improved understanding of the mechanisms underlying the production of ineffective immune responses to HIV-1 in most infected individuals. This report shows that the CD8(+) T cell responses to gp120 were greatly diminished in mice vaccinated with a bicistronic gp120-Tat DNA vaccine, compared with those induced by a DNA vaccine encoding gp120 alone. The CD8(+) T cell responses induced by the latter included strong gp120-specific IFN-gamma secretion and protective antiviral immunity against challenge by a vaccinia-env pseudotype. The degree to which Tat influenced CD8(+) T cell responses depended on the bioactivity of Tat. Thus, a bicistronic DNA vaccine that expresses gp120 and a truncated Tat defective for LTR activation elicited strong IFN-gamma -secreting CD8(+) T cell responses to gp120 but conferred only marginal protection against the vaccinia-env challenge. The effect of Tat was completely blocked, however, by immunization with inactivated Tat protein before vaccination with the bicistronic gp120-Tat DNA vaccine.
Collapse
Affiliation(s)
- S M Agwale
- Division of Vaccine Research, Institute of Human Virology, University of Maryland Biotechnology Institute, Baltimore, MD 21202, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Brès V, Kiernan R, Emiliani S, Benkirane M. Tat acetyl-acceptor lysines are important for human immunodeficiency virus type-1 replication. J Biol Chem 2002; 277:22215-21. [PMID: 11956210 DOI: 10.1074/jbc.m201895200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human immunodeficiency virus type-1 trans-activator Tat is a transcription factor that activates the HIV-1 promoter through binding to the trans-activation-responsive region (TAR) localized at the 5'-end of all viral transcripts. We and others have recently shown that Tat is directly acetylated at lysine 28, within the activation domain, and lysine 50, in the TAR RNA binding domain, by Tat-associated histone acetyltransferases p300, p300/CBP-associating factor, and hGCN5. Here, we show that mutation of acetyl-acceptor lysines to arginine or glutamine affects virus replication. Interestingly, mutation of lysine 28 and lysine 50 differentially affected Tat trans-activation of integrated versus nonintegrated long terminal repeat. Our results highlight the importance of lysine 28 and lysine 50 of Tat in virus replication and Tat-mediated trans-activation.
Collapse
Affiliation(s)
- Vanessa Brès
- Institut de Génétique Humaine, CNRS UPR 1142, 141 rue de la Cardonille, 34396 Montpellier cedex 5, France
| | | | | | | |
Collapse
|
50
|
Vandepapelière P. Therapeutic vaccination against chronic viral infections. THE LANCET. INFECTIOUS DISEASES 2002; 2:353-67. [PMID: 12144898 DOI: 10.1016/s1473-3099(02)00289-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chronic viral infections such as those caused by hepatitis B virus, human papilloma virus, herpes simplex virus, and HIV, in theory, present logical targets of active specific immunotherapy. Indeed, immunological mechanisms are involved in several aspects of their pathogenesis and natural course, such as virus persistence, destruction of infected cells and control of viral replication. Therapeutic vaccination could therefore be an adequate replacement for, or adjunct to, existing therapies. Almost all approaches to therapeutic vaccination have been evaluated in those four disease areas. Despite encouraging results in animals none of these attempts has, so far, been completely successful in the human setting. However, with a better understanding of the immunological mechanisms involved in the control of disease successful therapeutic vaccines, used alone or in combination with other therapies, are an achievable goal.
Collapse
Affiliation(s)
- Pierre Vandepapelière
- Clinical R&D HIV vaccines and anti-infective therapeutic vaccines, GlaxoSmithKline Biologicals, Rue de l'Institut 89, B-1330, Rixensart, Belgium.
| |
Collapse
|