1
|
Brayan MT, Alejandro AA, Quesada-Gómez C, Chaves-Olarte E, Elías BC. Polymorphonuclear neutrophil depletion in ileal tissues reduces the immunopathology induced by Clostridioides difficile toxins. Anaerobe 2025; 92:102947. [PMID: 40023364 DOI: 10.1016/j.anaerobe.2025.102947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/28/2025] [Accepted: 02/16/2025] [Indexed: 03/04/2025]
Abstract
INTRODUCTION Clostridioides difficile, a leading cause of healthcare-associated infections, causes significant morbidity and mortality. Its pathogenesis centers on TcdA and TcdB toxins, which disrupt intestinal integrity, trigger inflammation, and promote extensive neutrophil infiltration. OBJECTIVE The main objective of this study was to evaluate the role of PMNs in CDI using neutrophil depletion in a murine-ileal-ligated loop. METHODS Mice were treated with C. difficile toxins TcdA, TcdB, and TcdBv, with PMN depletion achieved via intraperitoneal injections of Ly6G/Ly6C antibody. Histopathological analysis, cytokine quantification, and MPO activity assays were performed to assess the inflammatory and tissue damage responses. RESULTS PMN depletion significantly reduced histopathological damage and proinflammatory responses. TcdA induced the highest inflammation and epithelial damage, while TcdB showed lower activity, except for MPO. TcdBvNAP1's activity was comparable to that of TcdBNAP1 but less than TcdA. The findings indicate that TcdA's enterotoxin effects are more damaging than TcdBs from different strains and confirm the critical role of PMNs in CDI pathogenesis. CONCLUSION Our results show that PMN depletion reduced inflammatory responses and tissue damage, highlighting potential therapeutic strategies targeting PMN regulation. Further research on PMN extracellular traps (NETs) and their role in CDI is necessary to develop comprehensive treatments. Future studies should focus on combined in vivo and in vitro approaches to fully understand the pathological mechanisms and identify effective biomarkers for CDI therapy.
Collapse
Affiliation(s)
- Montoya-Torres Brayan
- International Center for Food Industry Excellence (ICFIE), Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, 79409, USA; Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Costa Rica
| | - Alfaro-Alarcón Alejandro
- Departamento de Patología, Escuela de Medicina Veterinaria, Universidad Nacional, Costa Rica; Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Carlos Quesada-Gómez
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, Costa Rica
| | - Esteban Chaves-Olarte
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, Costa Rica
| | - Barquero-Calvo Elías
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Costa Rica.
| |
Collapse
|
2
|
Nhu NTQ, Lin H, Pigli Y, Sia JK, Kuhn P, Snitkin ES, Young V, Kamboj M, Pamer EG, Rice PA, Shen A, Dong Q. Flagellar switch inverted repeat impacts flagellar invertibility and varies Clostridioides difficile RT027/MLST1 virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.22.546185. [PMID: 39386689 PMCID: PMC11463649 DOI: 10.1101/2023.06.22.546185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Clostridioides difficile RT027 strains cause infections that vary in severity from asymptomatic to lethal, but the molecular basis for this variability is poorly understood. Through comparative analyses of RT027 clinical isolates, we determined that isolates that exhibit greater variability in their flagellar gene expression exhibit greater virulence in vivo. C. difficile flagellar genes are phase-variably expressed due to the site-specific inversion of the flgB 5'UTR region, which reversibly generates ON vs. OFF orientations for the flagellar switch. We found that longer inverted repeat (IR) sequences in this switch region correlate with greater disease severity, with RT027 strains carrying 6A/6T IR sequences exhibiting greater phenotypic heterogeneity in flagellar gene expression (60%-75% ON) and causing more severe disease than those with shorter IRs (> 99% ON or OFF). Taken together, our results reveal that phenotypic heterogeneity in flagellar gene expression may contribute to the variable disease severity observed in C. difficile patients.
Collapse
Affiliation(s)
- Nguyen T. Q. Nhu
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Ying Pigli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Jonathan K. Sia
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Pola Kuhn
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Evan S. Snitkin
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Vincent Young
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Mini Kamboj
- Infection Control, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Eric G. Pamer
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Phoebe A. Rice
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Qiwen Dong
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Bernabè G, Castagliuolo I, Porzionato A, Casarotto G, Monte RD, Carpi A, Brun P. Insoluble polysaccharides produced in plant cell cultures protect from Clostridioides difficile colitis. Microbiol Res 2024; 286:127812. [PMID: 38954992 DOI: 10.1016/j.micres.2024.127812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/18/2024] [Accepted: 06/16/2024] [Indexed: 07/04/2024]
Abstract
Clostridioides difficile infection (CDI) poses a significant health threat due to high recurrence rates. Antimicrobial agents are commonly used to manage CDI-related diarrhoea; however, by aggravating intestinal dysbiosis, antibiotics enable C. difficile spores germination and production of toxins, the main virulence factors. Therefore, the binding of exotoxins using adsorbents represents an attractive alternative medication for the prevention and treatment of relapses. In this study, we provided evidence that the natural insoluble polysaccharides, named ABR119, extracted by plant cell cultures, effectively trap C. difficile toxins. In our experiments, ABR119 exhibited no cytotoxicity in vitro and was safely administered in vivo. In the animal model of C. difficile-associated colitis, ABR119 (50 mg/kg body weight) significantly reduced the colonic myeloperoxidase activity and severity of inflammation, preventing body weight loss. These effects were not evident when we treated animals with wheat bran polysaccharides. We did not detect bacterial killing effects of ABR119 against C. difficile nor against bacterial species of the normal gut microbiota. Moreover, ABR119 did not interfere in vitro with the antimicrobial activities of most clinically used antibiotics. In summary, ABR119 holds promise for treating and preventing C. difficile colitis by trapping the bacterial toxins, warranting further studies to assess the ABR119 potential in human infections caused by C. difficile.
Collapse
Affiliation(s)
- Giulia Bernabè
- University of Padova, Department of Molecular Medicine via A. Gabelli, 63, Padova 35121, Italy
| | - Ignazio Castagliuolo
- University of Padova, Department of Molecular Medicine via A. Gabelli, 63, Padova 35121, Italy; Microbiology Unit of Padua University Hospital, via N. Giustiniani, 2, Padova 35128, Italy
| | - Andrea Porzionato
- University of Padova, Department of Neurosciences, via A. Gabelli, 65, Padova 35121, Italy
| | - Gino Casarotto
- Active Botanicals Research, Via dell'Impresa, 1, Brendola, Vicenza 36040, Italy
| | - Renzo Dal Monte
- Active Botanicals Research, Via dell'Impresa, 1, Brendola, Vicenza 36040, Italy
| | - Andrea Carpi
- Active Botanicals Research, Via dell'Impresa, 1, Brendola, Vicenza 36040, Italy
| | - Paola Brun
- University of Padova, Department of Molecular Medicine via A. Gabelli, 63, Padova 35121, Italy.
| |
Collapse
|
4
|
Schneider S, Wirth C, Jank T, Hunte C, Aktories K. Tyrosine-modifying glycosylation by Yersinia effectors. J Biol Chem 2024; 300:107331. [PMID: 38703997 PMCID: PMC11152714 DOI: 10.1016/j.jbc.2024.107331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 05/06/2024] Open
Abstract
Mono-O-glycosylation of target proteins by bacterial toxins or effector proteins is a well-known mechanism by which bacteria interfere with essential functions of host cells. The respective glycosyltransferases are important virulence factors such as the Clostridioides difficile toxins A and B. Here, we describe two glycosyltransferases of Yersinia species that have a high sequence identity: YeGT from the zoonotic pathogen Yersinia enterocolitica and YkGT from the murine pathogen Yersinia kristensenii. We show that both modify Rho family proteins by attachment of GlcNAc at tyrosine residues (Tyr-34 in RhoA). Notably, the enzymes differed in their target protein specificity. While YeGT modified RhoA, B, and C, YkGT possessed a broader substrate spectrum and glycosylated not only Rho but also Rac and Cdc42 subfamily proteins. Mutagenesis studies indicated that residue 177 is important for this broader target spectrum. We determined the crystal structure of YeGT shortened by 16 residues N terminally (sYeGT) in the ligand-free state and bound to UDP, the product of substrate hydrolysis. The structure assigns sYeGT to the GT-A family. It shares high structural similarity to glycosyltransferase domains from toxins. We also demonstrated that the 16 most N-terminal residues of YeGT and YkGT are important for the mediated translocation into the host cell using the pore-forming protective antigen of anthrax toxin. Mediated introduction into HeLa cells or ectopic expression of YeGT and YkGT caused morphological changes and redistribution of the actin cytoskeleton. The data suggest that YeGT and YkGT are likely bacterial effectors belonging to the family of tyrosine glycosylating bacterial glycosyltransferases.
Collapse
Affiliation(s)
- Silvia Schneider
- Faculty of Medicine, Institute for Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Christophe Wirth
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Freiburg, Germany.
| | - Thomas Jank
- Faculty of Medicine, Institute for Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Carola Hunte
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Freiburg, Germany; Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Klaus Aktories
- Faculty of Medicine, Institute for Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany; Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
5
|
Donta ST. Borrelia burgdorferi 0755, a Novel Cytotoxin with Unknown Function in Lyme Disease. Toxins (Basel) 2024; 16:233. [PMID: 38922128 PMCID: PMC11209185 DOI: 10.3390/toxins16060233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 06/27/2024] Open
Abstract
The pathophysiology of Lyme disease, especially in its persistent form, remains to be determined. As many of the neurologic symptoms are similar to those seen in other toxin-associated disorders, a hypothesis was generated that B. burgdorferi, the causative agent of Lyme disease, may produce a neurotoxin to account for some of the symptoms. Using primers against known conserved bacterial toxin groups, and PCR technology, a candidate neurotoxin was discovered. The purified protein was temporarily named BbTox, and was subsequently found to be identical to BB0755, a protein deduced from the genome sequence of B. burgdorferi that has been annotated as a Z ribonuclease. BbTox has cytotoxic activity against cells of neural origin in tissue culture. Its toxic activity appears to be directed against cytoskeletal elements, similar to that seen with toxins of Clostridioides difficile and Clostridioides botulinum, but differing from that of cholera and E. coli toxins, and other toxins. It remains to be determined whether BbTox has direct cytotoxic effects on neural or glial cells in vivo, or its activity is primarily that of a ribonuclease analogous to other bacterial ribonucleases that are involved in antibiotic tolerance remains to be determined.
Collapse
Affiliation(s)
- Sam T. Donta
- Department of Medicine, Division of Molecular Medicine and Division of Infectious Disease, Boston University Medical Center, Boston, MA 02118, USA; ; Tel.: +1-508-548-5300; Fax: +1-508-540-0133
- Department of Medicine, Falmouth Hospital, 100 Ter Heun Drive, Falmouth, MA 02540, USA
| |
Collapse
|
6
|
Barth H, Worek F, Steinritz D, Papatheodorou P, Huber-Lang M. Trauma-toxicology: concepts, causes, complications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2935-2948. [PMID: 37999755 PMCID: PMC11074020 DOI: 10.1007/s00210-023-02845-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Trauma and toxic substances are connected in several aspects. On the one hand, toxic substances can be the reason for traumatic injuries in the context of accidental or violent and criminal circumstances. Examples for the first scenario is the release of toxic gases, chemicals, and particles during house fires, and for the second scenario, the use of chemical or biological weapons in the context of terroristic activities. Toxic substances can cause or enhance severe, life-threatening trauma, as described in this review for various chemical warfare, by inducing a tissue trauma accompanied by break down of important barriers in the body, such as the blood-air or the blood-gut barriers. This in turn initiates a "vicious circle" as the contribution of inflammatory responses to the traumatic damage enhances the macro- and micro-barrier breakdown and often results in fatal outcome. The development of sophisticated methods for detection and identification of toxic substances as well as the special treatment of the intoxicated trauma patient is summarized in this review. Moreover, some highly toxic substances, such as the protein toxins from the pathogenic bacterium Clostridioides (C.) difficile, cause severe post-traumatic complications which significantly worsens the outcome of hospitalized patients, in particular in multiply injured trauma patients. Therefore, novel pharmacological options for the treatment of such patients are necessarily needed and one promising strategy might be the neutralization of the toxins that cause the disease. This review summarizes recent findings on the molecular and cellular mechanisms of toxic chemicals and bacterial toxins that contribute to barrier breakdown in the human body as wells pharmacological options for treatment, in particular in the context of intoxicated trauma patients. "trauma-toxicology" comprises concepts regrading basic research, development of novel pharmacological/therapeutic options and clinical aspects in the complex interplay and "vicious circle" of severe tissue trauma, barrier breakdown, pathogen and toxin exposure, tissue damage, and subsequent clinical complications.
Collapse
Affiliation(s)
- Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany.
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Panagiotis Papatheodorou
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University of Ulm Medical Center, Ulm, Germany.
| |
Collapse
|
7
|
Aminzadeh A, Hilgers L, Paul Platenburg P, Riou M, Perrot N, Rossignol C, Cauty A, Barc C, Jørgensen R. Immunogenicity and safety in rabbits of a Clostridioides difficile vaccine combining novel toxoids and a novel adjuvant. Vaccine 2024; 42:1582-1592. [PMID: 38336558 DOI: 10.1016/j.vaccine.2024.01.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 12/12/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
Clostridioides difficile infection (CDI) is a serious healthcare-associated disease, causing symptoms such as diarrhea and pseudomembranous colitis. The major virulence factors responsible for the disease symptoms are two secreted cytotoxic proteins, TcdA and TcdB. A parenteral vaccine based on formaldehyde-inactivated TcdA and TcdB supplemented with alum adjuvant, has previously been investigated in humans but resulted in an insufficient immune response. In search for an improved response, we investigated a novel toxin inactivation method and a novel, potent adjuvant. Inactivation of toxins by metal-catalyzed oxidation (MCO) was previously shown to preserve neutralizing epitopes and to annihilate reversion to toxicity. The immunogenicity and safety of TcdA and TcdB inactivated by MCO and combined with a novel carbohydrate fatty acid monosulphate ester-based (CMS) adjuvant were investigated in rabbits. Two or three intramuscular immunizations generated high serum IgG and neutralizing antibody titers against both toxins. The CMS adjuvant increased antibody responses to both toxins while an alum adjuvant control was effective only against TcdA. Systemic safety was evaluated by monitoring body weight, body temperature, and analysis of red and white blood cell counts shortly after immunization. Local safety was assessed by histopathologic examination of the injection site at the end of the study. Body weight gain was constant in all groups. Body temperature increased up to 1 ˚C one day after the first immunization but less after the second or third immunization. White blood cell counts, and percentage of neutrophils increased one day after immunization with CMS-adjuvanted vaccines, but not with alum. Histopathology of the injection sites 42 days after the last injection did not reveal any abnormal tissue reactions. From this study, we conclude that TcdA and TcdB inactivated by MCO and combined with CMS adjuvant demonstrated promising immunogenicity and safety in rabbits and could be a candidate for a vaccine against CDI.
Collapse
Affiliation(s)
- Aria Aminzadeh
- Proxi Biotech ApS, Egeskellet 6, 2000 Frederiksberg, Denmark; Department of Science and Environment, University of Roskilde, 4000 Roskilde, Denmark
| | - Luuk Hilgers
- LiteVax BV, Akkersestraat 50, 4061BJ Ophemert, the Netherlands
| | | | - Mickaël Riou
- INRAE, UE-1277 Plateforme d'Infectiologie expérimentale (PFIE), Centre Val de Loire, 37380 Nouzilly, France
| | - Noémie Perrot
- INRAE, UE-1277 Plateforme d'Infectiologie expérimentale (PFIE), Centre Val de Loire, 37380 Nouzilly, France
| | - Christelle Rossignol
- INRAE-Université de Tours, UMR-1282 Infectiologie et Santé publique (ISP), équipe IMI, Centre Val de Loire, 37380 Nouzilly, France
| | - Axel Cauty
- INRAE, UE-1277 Plateforme d'Infectiologie expérimentale (PFIE), Centre Val de Loire, 37380 Nouzilly, France
| | - Céline Barc
- INRAE, UE-1277 Plateforme d'Infectiologie expérimentale (PFIE), Centre Val de Loire, 37380 Nouzilly, France
| | - René Jørgensen
- Proxi Biotech ApS, Egeskellet 6, 2000 Frederiksberg, Denmark; Department of Science and Environment, University of Roskilde, 4000 Roskilde, Denmark.
| |
Collapse
|
8
|
Winter K, Houle S, Dozois CM, Ward BJ. Multimodal vaccination targeting the receptor binding domains of Clostridioides difficile toxins A and B with an attenuated Salmonella Typhimurium vector (YS1646) protects mice from lethal challenge. Microbiol Spectr 2024; 12:e0310922. [PMID: 38189293 PMCID: PMC10846063 DOI: 10.1128/spectrum.03109-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Developing a vaccine against Clostridioides difficile is a key strategy to protect the elderly. Two candidate vaccines using a traditional approach of intramuscular (IM) delivery of recombinant antigens targeting C. difficile toxins A (TcdA) and B (TcdB) failed to meet their primary endpoints in large phase 3 trials. To elicit a mucosal response against C. difficile, we repurposed an attenuated strain of Salmonella Typhimurium (YS1646) to deliver the receptor binding domains (rbd) of TcdA and TcdB to the gut-associated lymphoid tissues, to elicit a mucosal response against C. difficile. In this study, YS1646 candidates with either rbdA or rbdB expression cassettes integrated into the bacterial chromosome at the attTn7 site were generated and used in a short-course multimodal vaccination strategy that combined oral delivery of the YS1646 candidate(s) on days 0, 2, and 4 and IM delivery of recombinant antigen(s) on day 0. Five weeks after vaccination, mice had high serum IgG titers and increased intestinal antigen-specific IgA titers. Multimodal vaccination increased the IgG avidity compared to the IM-only control. In the mesenteric lymph nodes, we observed increased IL-5 secretion and increased IgA+ plasma cells. Oral vaccination skewed the IgG response toward IgG2c dominance (vs IgG1 dominance in the IM-only group). Both oral alone and multimodal vaccination against TcdA protected mice from lethal C. difficile challenge (100% survival vs 30% in controls). Given the established safety profile of YS1646, we hope to move this vaccine candidate forward into a phase I clinical trial.IMPORTANCEClostridioides difficile remains a major public health threat, and new approaches are needed to develop an effective vaccine. To date, the industry has focused on intramuscular vaccination targeting the C. difficile toxins. Multiple disappointing results in phase III trials have largely confirmed that this may not be the best strategy. As C. difficile is a pathogen that remains in the intestine, we believe that targeting mucosal immune responses in the gut will be a more successful strategy. We have repurposed a highly attenuated Salmonella Typhimurium (YS1646), originally pursued as a cancer therapeutic, as a vaccine vector. Using a multimodal vaccination strategy (both recombinant protein delivered intramuscularly and YS1646 expressing antigen delivered orally), we elicited both systemic and local immune responses. Oral vaccination alone completely protected mice from lethal challenge. Given the established safety profile of YS1646, we hope to move these vaccine candidates forward into a phase I clinical trial.
Collapse
Affiliation(s)
- Kaitlin Winter
- Department of Microbiology and Immunology, McGill University, Montreal, Québec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| | - Sébastien Houle
- Institut National de Recherche Scientifique–Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Charles M. Dozois
- Institut National de Recherche Scientifique–Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Brian J. Ward
- Department of Microbiology and Immunology, McGill University, Montreal, Québec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| |
Collapse
|
9
|
Papatheodorou P, Minton NP, Aktories K, Barth H. An Updated View on the Cellular Uptake and Mode-of-Action of Clostridioides difficile Toxins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:219-247. [PMID: 38175478 DOI: 10.1007/978-3-031-42108-2_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Research on the human gut pathogen Clostridioides (C.) difficile and its toxins continues to attract much attention as a consequence of the threat to human health posed by hypervirulent strains. Toxin A (TcdA) and Toxin B (TcdB) are the two major virulence determinants of C. difficile. Both are single-chain proteins with a similar multidomain architecture. Certain hypervirulent C. difficile strains also produce a third toxin, namely binary toxin CDT (C. difficile transferase). C. difficile toxins are the causative agents of C. difficile-associated diseases (CDADs), such as antibiotics-associated diarrhea and pseudomembranous colitis. For that reason, considerable efforts have been expended to unravel their molecular mode-of-action and the cellular mechanisms responsible for their uptake. Many of these studies have been conducted in European laboratories. Here, we provide an update on our previous review (Papatheodorou et al. Adv Exp Med Biol, 2018) on important advances in C. difficile toxins research.
Collapse
Affiliation(s)
- Panagiotis Papatheodorou
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany.
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre, University of Nottingham, Nottingham, UK
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
10
|
Belyy A, Heilen P, Hagel P, Hofnagel O, Raunser S. Structure and activation mechanism of the Makes caterpillars floppy 1 toxin. Nat Commun 2023; 14:8226. [PMID: 38086871 PMCID: PMC10716152 DOI: 10.1038/s41467-023-44069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
The bacterial Makes caterpillars floppy 1 (Mcf1) toxin promotes apoptosis in insects, leading to loss of body turgor and death. The molecular mechanism underlying Mcf1 intoxication is poorly understood. Here, we present the cryo-EM structure of Mcf1 from Photorhabdus luminescens, revealing a seahorse-like shape with a head and tail. While the three head domains contain two effectors, as well as an activator-binding domain (ABD) and an autoprotease, the tail consists of two putative translocation and three putative receptor-binding domains. Rearrangement of the tail moves the C-terminus away from the ABD and allows binding of the host cell ADP-ribosylation factor 3, inducing conformational changes that position the cleavage site closer to the protease. This distinct activation mechanism that is based on a hook-loop interaction results in three autocleavage reactions and the release of two toxic effectors. Unexpectedly, the BH3-like domain containing ABD is not an active effector. Our findings allow us to understand key steps of Mcf1 intoxication at the molecular level.
Collapse
Affiliation(s)
- Alexander Belyy
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Philipp Heilen
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Philine Hagel
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Oliver Hofnagel
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany.
| |
Collapse
|
11
|
Braune-Yan M, Jia J, Wahba M, Schmid J, Papatheodorou P, Barth H, Ernst K. Domperidone Protects Cells from Intoxication with Clostridioides difficile Toxins by Inhibiting Hsp70-Assisted Membrane Translocation. Toxins (Basel) 2023; 15:384. [PMID: 37368685 DOI: 10.3390/toxins15060384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Clostridioides difficile infections cause severe symptoms ranging from diarrhea to pseudomembranous colitis due to the secretion of AB-toxins, TcdA and TcdB. Both toxins are taken up into cells through receptor-mediated endocytosis, autoproteolytic processing and translocation of their enzyme domains from acidified endosomes into the cytosol. The enzyme domains glucosylate small GTPases such as Rac1, thereby inhibiting processes such as actin cytoskeleton regulation. Here, we demonstrate that specific pharmacological inhibition of Hsp70 activity protected cells from TcdB intoxication. In particular, the established inhibitor VER-155008 and the antiemetic drug domperidone, which was found to be an Hsp70 inhibitor, reduced the number of cells with TcdB-induced intoxication morphology in HeLa, Vero and intestinal CaCo-2 cells. These drugs also decreased the intracellular glucosylation of Rac1 by TcdB. Domperidone did not inhibit TcdB binding to cells or enzymatic activity but did prevent membrane translocation of TcdB's glucosyltransferase domain into the cytosol. Domperidone also protected cells from intoxication with TcdA as well as CDT toxin produced by hypervirulent strains of Clostridioides difficile. Our results reveal Hsp70 requirement as a new aspect of the cellular uptake mechanism of TcdB and identified Hsp70 as a novel drug target for potential therapeutic strategies required to combat severe Clostridioides difficile infections.
Collapse
Affiliation(s)
- Maria Braune-Yan
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jinfang Jia
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Mary Wahba
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Johannes Schmid
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Panagiotis Papatheodorou
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Katharina Ernst
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
12
|
Ok MT, Liu J, Bliton RJ, Hinesley CM, San Pedro EET, Breau KA, Gomez-Martinez I, Burclaff J, Magness ST. A leaky human colon model reveals uncoupled apical/basal cytotoxicity in early Clostridioides difficile toxin exposure. Am J Physiol Gastrointest Liver Physiol 2023; 324:G262-G280. [PMID: 36749911 PMCID: PMC10010926 DOI: 10.1152/ajpgi.00251.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 02/09/2023]
Abstract
Clostridioides difficile (C. difficile) toxins A (TcdA) and B (TcdB) cause antibiotic-associated colitis in part by disrupting epithelial barrier function. Accurate in vitro models are necessary to detect early toxicity kinetics, investigate disease etiology, and develop preclinical models for new therapies. Properties of cancer cell lines and organoids inherently limit these efforts. We developed adult stem cell-derived monolayers of differentiated human colonic epithelium (hCE) with barrier function, investigated the impact of toxins on apical/basal aspects of monolayers, and evaluated whether a leaky epithelial barrier enhances toxicity. Single-cell RNA-sequencing (scRNAseq) mapped C. difficile-relevant genes to human lineages. Transcriptomics compared hCE to Caco-2, informed timing of in vitro stem cell differentiation, and revealed transcriptional responses to TcdA. Transepithelial electrical resistance (TEER) and fluorescent permeability assays measured cytotoxicity. Contribution of TcdB toxicity was evaluated in a diclofenac-induced leaky gut model. scRNAseq demonstrated broad and variable toxin receptor expression. Absorptive colonocytes in vivo displayed increased toxin receptor, Rho GTPase, and cell junction gene expression. Advanced TcdA toxicity generally decreased cytokine/chemokine and increased tight junction and death receptor genes. Differentiated Caco-2 cells remained immature whereas hCE monolayers were similar to mature colonocytes in vivo. Basal exposure of TcdA/B caused greater toxicity and apoptosis than apical exposure. Apical exposure to toxins was enhanced by diclofenac. Apical/basal toxicities are uncoupled with more rapid onset and increased magnitude postbasal toxin exposure. Leaky junctions enhance toxicity of apical TcdB exposure. hCE monolayers represent a physiologically relevant and sensitive system to evaluate the impact of microbial toxins on gut epithelium.NEW & NOTEWORTHY Novel human colonocyte monolayer cultures, benchmarked by transcriptomics for physiological relevance, detect early cytopathic impacts of Clostridioides difficile toxins TcdA and TcdB. A fluorescent ZO-1 reporter in primary human colonocytes is used to track epithelial barrier disruption in response to TcdA. Basal TcdA/B exposure generally caused more rapid onset and cytotoxicity than apical exposure. Transcriptomics demonstrate changes in tight junction, chemokine, and cytokine receptor gene expression post-TcdA exposure. Diclofenac-induced leaky epithelium enhanced apical exposure toxicity.
Collapse
Affiliation(s)
- Meryem T Ok
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
| | - Jintong Liu
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
| | - R Jarrett Bliton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
| | - Caroline M Hinesley
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
| | - Ekaterina Ellyce T San Pedro
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
| | - Keith A Breau
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Ismael Gomez-Martinez
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Joseph Burclaff
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
| | - Scott T Magness
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| |
Collapse
|
13
|
Cheng JKJ, Unnikrishnan M. Clostridioides difficile infection: traversing host-pathogen interactions in the gut. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36848200 DOI: 10.1099/mic.0.001306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
C. difficile is the primary cause for nosocomial infective diarrhoea. For a successful infection, C. difficile must navigate between resident gut bacteria and the harsh host environment. The perturbation of the intestinal microbiota by broad-spectrum antibiotics alters the composition and the geography of the gut microbiota, deterring colonization resistance, and enabling C. difficile to colonize. This review will discuss how C. difficile interacts with and exploits the microbiota and the host epithelium to infect and persist. We provide an overview of C. difficile virulence factors and their interactions with the gut to aid adhesion, cause epithelial damage and mediate persistence. Finally, we document the host responses to C. difficile, describing the immune cells and host pathways that are associated and triggered during C. difficile infection.
Collapse
Affiliation(s)
- Jeffrey K J Cheng
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Meera Unnikrishnan
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
14
|
Aktories K. From signal transduction to protein toxins-a narrative review about milestones on the research route of C. difficile toxins. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:173-190. [PMID: 36203094 PMCID: PMC9831965 DOI: 10.1007/s00210-022-02300-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/22/2022] [Indexed: 01/29/2023]
Abstract
Selected findings about Clostridioides difficile (formerly Clostridium difficile) toxins are presented in a narrative review. Starting with a personal view on research about G proteins, adenylyl cyclase, and ADP-ribosylating toxins in the laboratory of Günter Schultz in Heidelberg, milestones of C. difficile toxin research are presented with the focus on toxin B (TcdB), covering toxin structure, receptor binding, toxin up-take and refolding, the intracellular actions of TcdB, and the treatment of C. difficile infection.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.
| |
Collapse
|
15
|
Dandamudi A, Akbar H, Cancelas J, Zheng Y. Rho GTPase Signaling in Platelet Regulation and Implication for Antiplatelet Therapies. Int J Mol Sci 2023; 24:ijms24032519. [PMID: 36768837 PMCID: PMC9917354 DOI: 10.3390/ijms24032519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
Platelets play a vital role in regulating hemostasis and thrombosis. Rho GTPases are well known as molecular switches that control various cellular functions via a balanced GTP-binding/GTP-hydrolysis cycle and signaling cascade through downstream effectors. In platelets, Rho GTPases function as critical regulators by mediating signal transduction that drives platelet activation and aggregation. Mostly by gene targeting and pharmacological inhibition approaches, Rho GTPase family members RhoA, Rac1, and Cdc42 have been shown to be indispensable in regulating the actin cytoskeleton dynamics in platelets, affecting platelet shape change, spreading, secretion, and aggregation, leading to thrombus formation. Additionally, studies of Rho GTPase function using platelets as a non-transformed model due to their anucleated nature have revealed valuable information on cell signaling principles. This review provides an updated summary of recent advances in Rho GTPase signaling in platelet regulation. We also highlight pharmacological approaches that effectively inhibited platelet activation to explore their possible development into future antiplatelet therapies.
Collapse
Affiliation(s)
- Akhila Dandamudi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
- Department of Pathology, University of Cincinnati Graduate School, Cincinnati, OH 45267, USA
| | - Huzoor Akbar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Jose Cancelas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
- Hoxworth Blood Center, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
- Department of Pathology, University of Cincinnati Graduate School, Cincinnati, OH 45267, USA
- Correspondence: ; Tel.: +1-513-636-0595
| |
Collapse
|
16
|
Redistribution of the Novel Clostridioides difficile Spore Adherence Receptor E-Cadherin by TcdA and TcdB Increases Spore Binding to Adherens Junctions. Infect Immun 2023; 91:e0047622. [PMID: 36448839 PMCID: PMC9872679 DOI: 10.1128/iai.00476-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Clostridioides difficile causes antibiotic-associated diseases in humans, ranging from mild diarrhea to severe pseudomembranous colitis and death. A major clinical challenge is the prevention of disease recurrence, which affects nearly ~20 to 30% of the patients with a primary C. difficile infection (CDI). During CDI, C. difficile forms metabolically dormant spores that are essential for recurrence of CDI (R-CDI). In prior studies, we have shown that C. difficile spores interact with intestinal epithelial cells (IECs), which contribute to R-CDI. However, this interaction remains poorly understood. Here, we provide evidence that C. difficile spores interact with E-cadherin, contributing to spore adherence and internalization into IECs. C. difficile toxins TcdA and TcdB lead to adherens junctions opening and increase spore adherence to IECs. Confocal micrographs demonstrate that C. difficile spores associate with accessible E-cadherin; spore-E-cadherin association increases upon TcdA and TcdB intoxication. The presence of anti-E-cadherin antibodies decreased spore adherence and entry into IECs. By enzyme-linked immunosorbent assay (ELISA), immunofluorescence, and immunogold labeling, we observed that E-cadherin binds to C. difficile spores, specifically to the hairlike projections of the spore, reducing spore adherence to IECs. Overall, these results expand our knowledge of how C. difficile spores bind to IECs by providing evidence that E-cadherin acts as a spore adherence receptor to IECs and by revealing how toxin-mediated damage affects spore interactions with IECs.
Collapse
|
17
|
Chen B, Perry K, Jin R. Neutralizing epitopes on Clostridioides difficile toxin A revealed by the structures of two camelid VHH antibodies. Front Immunol 2022; 13:978858. [PMID: 36466927 PMCID: PMC9709291 DOI: 10.3389/fimmu.2022.978858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
Toxin A (TcdA) and toxin B (TcdB) are two key virulence factors secreted by Clostridioides difficile, which is listed as an urgent threat by the CDC. These two large homologous exotoxins are mainly responsible for diseases associated with C. difficile infection (CDI) with symptoms ranging from diarrhea to life threatening pseudomembranous colitis. Single-domain camelid antibodies (VHHs) AH3 and AA6 are two potent antitoxins against TcdA, which when combined with two TcdB-targeting VHHs showed effective protection against both primary and recurrent CDI in animal models. Here, we report the co-crystal structures of AH3 and AA6 when they form complexes with the glucosyltransferase domain (GTD) and a fragment of the delivery and receptor-binding domain (DRBD) of TcdA, respectively. Based on these structures, we find that AH3 binding enhances the overall stability of the GTD and interferes with its unfolding at acidic pH, and AA6 may inhibit the pH-dependent conformational changes in the DRBD that is necessary for pore formation of TcdA. These studies reveal two functionally critical epitopes on TcdA and shed new insights into neutralizing mechanisms and potential development of epitope-focused vaccines against TcdA.
Collapse
Affiliation(s)
- Baohua Chen
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, United States
| | - Kay Perry
- NE-CAT, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, United States,Department of Chemistry and Chemical Biology, Cornell University, Argonne, IL, United States
| | - Rongsheng Jin
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, United States,*Correspondence: Rongsheng Jin,
| |
Collapse
|
18
|
Zhang D, Wang Z, Yamamoto N, Wang M, Yi X, Li P, Lin R, Nasimi Z, Okada K, Mochida K, Noutoshi Y, Zheng A. Secreted Glycosyltransferase RsIA_GT of Rhizoctonia solani AG-1 IA Inhibits Defense Responses in Nicotiana benthamiana. Pathogens 2022; 11:pathogens11091026. [PMID: 36145458 PMCID: PMC9501517 DOI: 10.3390/pathogens11091026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Anastomosis group AG-1 IA of Rhizoctonia solani Khün has a wide host range and threatens crop production. Various glycosyltransferases secreted by phytopathogenic fungi play an essential role in pathogenicity. Previously, we identified a glycosyltransferase RsIA_GT (AG11A_09161) as a secreted protein-encoding gene of R. solani AG-1 IA, whose expression levels increased during infection in rice. In this study, we further characterized the virulence function of RsIA_GT. It is conserved not only in Basidiomycota, including multiple anastomosis groups of R. solani, but also in other primary fungal taxonomic categories. RsIA_GT possesses a signal peptide (SP) for protein secretion, and its functionality was proven using yeast and Nicotiana benthamiana. The SP-truncated form of RsIA_GT (RsIA_GT(ΔS)) expressed in Escherichia coli-induced lesion-like phenotype in rice leaves when applied to punched leaves. However, Agrobacterium-mediated transient expressions of both the full-length RsIA_GT and RsIA_GT(ΔS) did not induce cell death in N. benthamiana leaves. Instead, only RsIA_GT(ΔS) suppressed the cell death induced by two reference cell death factors BAX and INF1 in N.benthamiana. RsIA_GT(ΔS)R154A D168A D170A, a mutant RsIA_GT(ΔS) for the glycosyltransferase catalytic domain, still suppressed the BAX- or INF1-induced cell death, suggesting that the cell death suppression activity of RsIA_GT(ΔS) would be independent from its enzymatic activity. RsIA_GT(ΔS) also suppressed the H2O2 production and callose deposition and showed an effect on the induction of defense genes associated with the expression of BAX and INF1. The transient expression of RsIA_GT(ΔS) in N. benthamiana enhanced the lesion area caused by R. solani AG-1 IA. The secreted glycosyltransferase, RsIA_GT, of R. solani AG-1 IA is likely to have a dual role in virulence inside and outside of host cells.
Collapse
Affiliation(s)
- Danhua Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhaoyilin Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Naoki Yamamoto
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyue Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoqun Yi
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Runmao Lin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zohreh Nasimi
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Kazunori Okada
- Agro-Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama 2300045, Japan
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama 2300045, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 2440813, Japan
- School of Information and Data Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Aiping Zheng
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
19
|
Chen B, Liu Z, Perry K, Jin R. Structure of the glucosyltransferase domain of TcdA in complex with RhoA provides insights into substrate recognition. Sci Rep 2022; 12:9028. [PMID: 35637242 PMCID: PMC9151644 DOI: 10.1038/s41598-022-12909-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/17/2022] [Indexed: 01/05/2023] Open
Abstract
Clostridioides difficile is one of the most common causes of antibiotic-associated diarrhea in developed countries. As key virulence factors of C. difficile, toxin A (TcdA) and toxin B (TcdB) act by glucosylating and inactivating Rho and Ras family small GTPases in host cells, which leads to actin cytoskeleton disruption, cell rounding, and ultimately cell death. Here we present the co-crystal structure of the glucosyltransferase domain (GTD) of TcdA in complex with its substrate human RhoA at 2.60-angstrom resolution. This structure reveals that TcdA GTD grips RhoA mainly through its switch I and switch II regions, which is complemented by interactions involving RhoA's pre-switch I region. Comprehensive structural comparisons between the TcdA GTD-RhoA complex and the structures of TcdB GTD in complex with Cdc42 and R-Ras reveal both the conserved and divergent features of these two toxins in terms of substrate recognition. Taken together, these findings establish the structural basis for TcdA recognition of small GTPases and advance our understanding of the substrates selectivity of large clostridial toxins.
Collapse
Affiliation(s)
- Baohua Chen
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Zheng Liu
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Argonne National Laboratory, Cornell University, Argonne, IL, 60439, USA
| | - Rongsheng Jin
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
20
|
Kordus SL, Thomas AK, Lacy DB. Clostridioides difficile toxins: mechanisms of action and antitoxin therapeutics. Nat Rev Microbiol 2022; 20:285-298. [PMID: 34837014 PMCID: PMC9018519 DOI: 10.1038/s41579-021-00660-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 01/03/2023]
Abstract
Clostridioides difficile is a Gram-positive anaerobe that can cause a spectrum of disorders that range in severity from mild diarrhoea to fulminant colitis and/or death. The bacterium produces up to three toxins, which are considered the major virulence factors in C. difficile infection. These toxins promote inflammation, tissue damage and diarrhoea. In this Review, we highlight recent biochemical and structural advances in our understanding of the mechanisms that govern host-toxin interactions. Understanding how C. difficile toxins affect the host forms a foundation for developing novel strategies for treatment and prevention of C. difficile infection.
Collapse
Affiliation(s)
- Shannon L. Kordus
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Structural Biology, Vanderbilt University, Nashville, TN, USA,These authors contributed equally: Shannon L. Kordus, Audrey K. Thomas
| | - Audrey K. Thomas
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Structural Biology, Vanderbilt University, Nashville, TN, USA,These authors contributed equally: Shannon L. Kordus, Audrey K. Thomas
| | - D. Borden Lacy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Structural Biology, Vanderbilt University, Nashville, TN, USA,The Veterans Affairs, Tennessee Valley Healthcare, System, Nashville, TN, USA,
| |
Collapse
|
21
|
Human α-Defensin-6 Neutralizes Clostridioides difficile Toxins TcdA and TcdB by Direct Binding. Int J Mol Sci 2022; 23:ijms23094509. [PMID: 35562899 PMCID: PMC9101188 DOI: 10.3390/ijms23094509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Rising incidences and mortalities have drawn attention to Clostridioides difficile infections (CDIs) in recent years. The main virulence factors of this bacterium are the exotoxins TcdA and TcdB, which glucosylate Rho-GTPases and thereby inhibit Rho/actin-mediated processes in cells. This results in cell rounding, gut barrier disruption and characteristic clinical symptoms. So far, treatment of CDIs is limited and mainly restricted to some antibiotics, often leading to a vicious circle of antibiotic-induced disease recurrence. Here, we demonstrate the protective effect of the human antimicrobial peptide α-defensin-6 against TcdA, TcdB and the combination of both toxins in vitro and in vivo and unravel the underlying molecular mechanism. The defensin prevented toxin-mediated glucosylation of Rho-GTPases in cells and protected human cells, model epithelial barriers as well as zebrafish embryos from toxic effects. In vitro analyses revealed direct binding to TcdB in an SPR approach and the rapid formation of TcdB/α-defensin-6 complexes, as analyzed with fluorescent TcdB by time-lapse microscopy. In conclusion, the results imply that α-defensin-6 rapidly sequesters the toxin into complexes, which prevents its cytotoxic activity. These findings extend the understanding of how human peptides neutralize bacterial protein toxins and might be a starting point for the development of novel therapeutic options against CDIs.
Collapse
|
22
|
Chen B, Basak S, Chen P, Zhang C, Perry K, Tian S, Yu C, Dong M, Huang L, Bowen ME, Jin R. Structure and conformational dynamics of Clostridioides difficile toxin A. Life Sci Alliance 2022; 5:5/6/e202201383. [PMID: 35292538 PMCID: PMC8924006 DOI: 10.26508/lsa.202201383] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 01/05/2023] Open
Abstract
This study presents a complete structural model of TcdA holotoxin and sheds new lights into the conformational dynamics of TcdA and its roles in TcdA intoxication. Clostridioides difficile toxin A and B (TcdA and TcdB) are two major virulence factors responsible for diseases associated with C. difficile infection (CDI). Here, we report the 3.18-Å resolution crystal structure of a TcdA fragment (residues L843–T2481), which advances our understanding of the complete structure of TcdA holotoxin. Our structural analysis, together with complementary single molecule FRET and limited proteolysis studies, reveal that TcdA adopts a dynamic structure and its CROPs domain can sample a spectrum of open and closed conformations in a pH-dependent manner. Furthermore, a small globular subdomain (SGS) and the CROPs protect the pore-forming region of TcdA in the closed state at neutral pH, which could contribute to modulating the pH-dependent pore formation of TcdA. A rationally designed TcdA mutation that trapped the CROPs in the closed conformation showed drastically reduced cytotoxicity. Taken together, these studies shed new lights into the conformational dynamics of TcdA and its roles in TcdA intoxication.
Collapse
Affiliation(s)
- Baohua Chen
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Sujit Basak
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Peng Chen
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Changcheng Zhang
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL, USA
| | - Songhai Tian
- Department of Urology, Boston Children's Hospital, Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Clinton Yu
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Lan Huang
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Mark E Bowen
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Rongsheng Jin
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
23
|
Peritore-Galve FC, Shupe JA, Cave RJ, Childress KO, Washington MK, Kuehne SA, Lacy DB. Glucosyltransferase-dependent and independent effects of Clostridioides difficile toxins during infection. PLoS Pathog 2022; 18:e1010323. [PMID: 35176123 PMCID: PMC8890742 DOI: 10.1371/journal.ppat.1010323] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/02/2022] [Accepted: 01/30/2022] [Indexed: 11/17/2022] Open
Abstract
Clostridioides difficile infection (CDI) is the leading cause of nosocomial diarrhea and pseudomembranous colitis in the USA. In addition to these symptoms, patients with CDI can develop severe inflammation and tissue damage, resulting in life-threatening toxic megacolon. CDI is mediated by two large homologous protein toxins, TcdA and TcdB, that bind and hijack receptors to enter host cells where they use glucosyltransferase (GT) enzymes to inactivate Rho family GTPases. GT-dependent intoxication elicits cytopathic changes, cytokine production, and apoptosis. At higher concentrations TcdB induces GT-independent necrosis in cells and tissue by stimulating production of reactive oxygen species via recruitment of the NADPH oxidase complex. Although GT-independent necrosis has been observed in vitro, the relevance of this mechanism during CDI has remained an outstanding question in the field. In this study we generated novel C. difficile toxin mutants in the hypervirulent BI/NAP1/PCR-ribotype 027 R20291 strain to test the hypothesis that GT-independent epithelial damage occurs during CDI. Using the mouse model of CDI, we observed that epithelial damage occurs through a GT-independent process that does not involve immune cell influx. The GT-activity of either toxin was sufficient to cause severe edema and inflammation, yet GT activity of both toxins was necessary to produce severe watery diarrhea. These results demonstrate that both TcdA and TcdB contribute to disease pathogenesis when present. Further, while inactivating GT activity of C. difficile toxins may suppress diarrhea and deleterious GT-dependent immune responses, the potential of severe GT-independent epithelial damage merits consideration when developing toxin-based therapeutics against CDI.
Collapse
Affiliation(s)
- F. Christopher Peritore-Galve
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - John A. Shupe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Rory J. Cave
- School of Biomedical Sciences, University of West London, London, United Kingdom
| | - Kevin O. Childress
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - M. Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Sarah A. Kuehne
- Oral Microbiology Group, School of Dentistry and Institute of Microbiology and Infection, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - D. Borden Lacy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Veterans Affairs Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
24
|
Belyi Y, Levanova N, Schroeder GN. Glycosylating Effectors of Legionella pneumophila: Finding the Sweet Spots for Host Cell Subversion. Biomolecules 2022; 12:255. [PMID: 35204756 PMCID: PMC8961657 DOI: 10.3390/biom12020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
Work over the past two decades clearly defined a significant role of glycosyltransferase effectors in the infection strategy of the Gram-negative, respiratory pathogen Legionella pneumophila. Identification of the glucosyltransferase effectors Lgt1-3, specifically modifying elongation factor eEF1A, disclosed a novel mechanism of host protein synthesis manipulation by pathogens and illuminated its impact on the physiological state of the target cell, in particular cell cycle progression and immune and stress responses. Recent characterization of SetA as a general O-glucosyltransferase with a wide range of targets including the proteins Rab1 and Snx1, mediators of membrane transport processes, and the discovery of new types of glycosyltransferases such as LtpM and SidI indicate that the vast effector arsenal might still hold more so-far unrecognized family members with new catalytic features and substrates. In this article, we review our current knowledge regarding these fascinating biomolecules and discuss their role in introducing new or overriding endogenous post-translational regulatory mechanisms enabling the subversion of eukaryotic cells by L. pneumophila.
Collapse
Affiliation(s)
- Yury Belyi
- Laboratory of Molecular Pathogenesis, Gamaleya Research Centre, 123098 Moscow, Russia
| | | | - Gunnar N. Schroeder
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
25
|
Heber S, Barthold L, Baier J, Papatheodorou P, Fois G, Frick M, Barth H, Fischer S. Inhibition of Clostridioides difficile Toxins TcdA and TcdB by Ambroxol. Front Pharmacol 2022; 12:809595. [PMID: 35058787 PMCID: PMC8764291 DOI: 10.3389/fphar.2021.809595] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/10/2021] [Indexed: 02/04/2023] Open
Abstract
Clostridioides (C.) difficile produces the exotoxins TcdA and TcdB, which are the predominant virulence factors causing C. difficile associated disease (CDAD). TcdA and TcdB bind to target cells and are internalized via receptor-mediated endocytosis. Translocation of the toxins’ enzyme subunits from early endosomes into the cytosol depends on acidification of endosomal vesicles, which is a prerequisite for the formation of transmembrane channels. The enzyme subunits of the toxins translocate into the cytosol via these channels where they are released after auto-proteolytic cleavage. Once in the cytosol, both toxins target small GTPases of the Rho/Ras-family and inactivate them by mono-glucosylation. This in turn interferes with actin-dependent processes and ultimately leads to the breakdown of the intestinal epithelial barrier and inflammation. So far, therapeutic approaches to treat CDAD are insufficient, since conventional antibiotic therapy does not target the bacterial protein toxins, which are the causative agents for the clinical symptoms. Thus, directly targeting the exotoxins represents a promising approach for the treatment of CDAD. Lately, it was shown that ambroxol (Ax) prevents acidification of intracellular organelles. Therefore, we investigated the effect of Ax on the cytotoxic activities of TcdA and TcdB. Ax significantly reduced toxin-induced morphological changes as well as the glucosylation of Rac1 upon intoxication with TcdA and TcdB. Most surprisingly, Ax, independent of its effects on endosomal acidification, decreased the toxins’ intracellular enzyme activity, which is mediated by a catalytic glucosyltransferase domain. Considering its undoubted safety profile, Ax might be taken into account as therapeutic option in the context of CDAD.
Collapse
Affiliation(s)
- Sebastian Heber
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Lara Barthold
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Jan Baier
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | | | - Giorgio Fois
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Stephan Fischer
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
26
|
Augustyn W, Chruściel A, Hreczuch W, Kalka J, Tarka P, Kierat W. Inactivation of Spores and Vegetative Forms of Clostridioides difficile by Chemical Biocides: Mechanisms of Biocidal Activity, Methods of Evaluation, and Environmental Aspects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020750. [PMID: 35055571 PMCID: PMC8775970 DOI: 10.3390/ijerph19020750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Abstract
Clostridioides difficile infections (CDIs) are the most common cause of acquired diseases in hospitalized patients. Effective surface disinfection, focused on the inactivation of the spores of this pathogen, is a decisive factor in reducing the number of nosocomial cases of CDI infections. An efficient disinfection procedure is the result of both the properties of the biocidal agent used and the technology of its implementation as well as a reliable, experimental methodology for assessing the activity of the biocidal active substance based on laboratory models that adequately represent real clinical conditions. This study reviews the state of knowledge regarding the properties and biochemical basis of the action mechanisms of sporicidal substances, with emphasis on chlorine dioxide (ClO2). Among the analyzed biocides, in addition to ClO2, active chlorine, hydrogen peroxide, peracetic acid, and glutaraldehyde were characterized. Due to the relatively high sporicidal effectiveness and effective control of bacterial biofilm, as well as safety in a health and environmental context, the use of ClO2 is an attractive alternative in the control of nosocomial infections of CD etiology. In terms of the methods of assessing the biocidal effectiveness, suspension and carrier standards are discussed.
Collapse
Affiliation(s)
- Weronika Augustyn
- MEXEO-Wiesław Hreczuch, Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland; (W.A.); (W.H.)
- Environmental Biotechnology Department, Silesian University of Technology, Faculty of Power and Environmental Engineering, 44-100 Gliwice, Poland;
| | - Arkadiusz Chruściel
- MEXEO-Wiesław Hreczuch, Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland; (W.A.); (W.H.)
- Correspondence:
| | - Wiesław Hreczuch
- MEXEO-Wiesław Hreczuch, Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland; (W.A.); (W.H.)
| | - Joanna Kalka
- Environmental Biotechnology Department, Silesian University of Technology, Faculty of Power and Environmental Engineering, 44-100 Gliwice, Poland;
| | - Patryk Tarka
- Department of Social Medicine and Public Health, Medical University of Warsaw, 02-007 Warszawa, Poland;
| | - Wojciech Kierat
- Department of Digital Systems, Silesian University of Technology, 44-100 Gliwice, Poland;
| |
Collapse
|
27
|
Marquardt I, Jakob J, Scheibel J, Hofmann JD, Klawonn F, Neumann-Schaal M, Gerhard R, Bruder D, Jänsch L. Clostridioides difficile Toxin CDT Induces Cytotoxic Responses in Human Mucosal-Associated Invariant T (MAIT) Cells. Front Microbiol 2022; 12:752549. [PMID: 34992584 PMCID: PMC8727052 DOI: 10.3389/fmicb.2021.752549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/24/2021] [Indexed: 12/31/2022] Open
Abstract
Clostridioides difficile is the major cause of antibiotic-associated colitis (CDAC) with increasing prevalence in morbidity and mortality. Severity of CDAC has been attributed to hypervirulent C. difficile strains, which in addition to toxin A and B (TcdA, TcdB) produce the binary toxin C. difficile transferase (CDT). However, the link between these toxins and host immune responses as potential drivers of immunopathology are still incompletely understood. Here, we provide first experimental evidence that C. difficile toxins efficiently activate human mucosal-associated invariant T (MAIT) cells. Among the tested toxins, CDT and more specifically, the substrate binding and pore-forming subunit CDTb provoked significant MAIT cell activation resulting in selective MAIT cell degranulation of the lytic granule components perforin and granzyme B. CDT-induced MAIT cell responses required accessory immune cells, and we suggest monocytes as a potential CDT target cell population. Within the peripheral blood mononuclear cell fraction, we found increased IL-18 levels following CDT stimulation and MAIT cell response was indeed partly dependent on this cytokine. Surprisingly, CDT-induced MAIT cell activation was found to be partially MR1-dependent, although bacterial-derived metabolite antigens were absent. However, the role of antigen presentation in this process was not analyzed here and needs to be validated in future studies. Thus, MR1-dependent induction of MAIT cell cytotoxicity might be instrumental for hypervirulent C. difficile to overcome cellular barriers and may contribute to pathophysiology of CDAC.
Collapse
Affiliation(s)
- Isabel Marquardt
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Medical Microbiology and Hospital Hygiene, Infection Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Josefine Jakob
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Medical Microbiology and Hospital Hygiene, Infection Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jessica Scheibel
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Julia Danielle Hofmann
- Braunschweig Integrated Centre of Systems Biology (BRICS), Department of Bioinformatics and Biochemistry, Technical University Braunschweig, Braunschweig, Germany
| | - Frank Klawonn
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Braunschweig Integrated Centre of Systems Biology (BRICS), Department of Bioinformatics and Biochemistry, Technical University Braunschweig, Braunschweig, Germany.,Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Ralf Gerhard
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Dunja Bruder
- Institute of Medical Microbiology and Hospital Hygiene, Infection Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lothar Jänsch
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
28
|
Aminzadeh A, Larsen CE, Boesen T, Jørgensen R. High-resolution structure of native toxin A from Clostridioides difficile. EMBO Rep 2022; 23:e53597. [PMID: 34817920 PMCID: PMC8728606 DOI: 10.15252/embr.202153597] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/07/2023] Open
Abstract
Clostridioides difficile infections have emerged as the leading cause of healthcare-associated infectious diarrhea. Disease symptoms are mainly caused by the virulence factors, TcdA and TcdB, which are large homologous multidomain proteins. Here, we report a 2.8 Å resolution cryo-EM structure of native TcdA, unveiling its conformation at neutral pH. The structure uncovers the dynamic movement of the CROPs domain which is induced in response to environmental acidification. Furthermore, the structure reveals detailed information about the interaction area between the CROPs domain and the tip of the delivery and receptor-binding domain, which likely serves to shield the C-terminal part of the hydrophobic pore-forming region from solvent exposure. Similarly, extensive interactions between the globular subdomain and the N-terminal part of the pore-forming region suggest that the globular subdomain shields the upper part of the pore-forming region from exposure to the surrounding solvent. Hence, the TcdA structure provides insights into the mechanism of preventing premature unfolding of the pore-forming region at neutral pH, as well as the pH-induced inter-domain dynamics.
Collapse
Affiliation(s)
- Aria Aminzadeh
- Department of Bacteria, Parasites and FungiStatens Serum InstitutCopenhagenDenmark
| | - Christian Engelbrecht Larsen
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhusDenmark
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Thomas Boesen
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhusDenmark
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - René Jørgensen
- Department of Bacteria, Parasites and FungiStatens Serum InstitutCopenhagenDenmark
- Department of Science and EnvironmentUniversity of RoskildeRoskildeDenmark
| |
Collapse
|
29
|
Trzilova D, Warren MAH, Gadda NC, Williams CL, Tamayo R. Flagellum and toxin phase variation impacts intestinal colonization and disease development in a mouse model of Clostridioides difficile infection. Gut Microbes 2022; 14:2038854. [PMID: 35192433 PMCID: PMC8890394 DOI: 10.1080/19490976.2022.2038854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
Clostridioides difficile is a major nosocomial pathogen that can cause severe, toxin-mediated diarrhea and pseudomembranous colitis. Recent work has shown that C. difficile exhibits heterogeneity in swimming motility and toxin production in vitro through phase variation by site-specific DNA recombination. The recombinase RecV reversibly inverts the flagellar switch sequence upstream of the flgB operon, leading to the ON/OFF expression of flagellum and toxin genes. How this phenomenon impacts C. difficile virulence in vivo remains unknown. We identified mutations in the right inverted repeat that reduced or prevented flagellar switch inversion by RecV. We introduced these mutations into C. difficile R20291 to create strains with the flagellar switch "locked" in either the ON or OFF orientation. These mutants exhibited a loss of flagellum and toxin phase variation during growth in vitro, yielding precisely modified mutants suitable for assessing virulence in vivo. In a hamster model of acute C. difficile infection, the phase-locked ON mutant caused greater toxin accumulation than the phase-locked OFF mutant but did not differ significantly in the ability to cause acute disease symptoms. In contrast, in a mouse model, preventing flagellum and toxin phase variation affected the ability of C. difficile to colonize the intestinal tract and to elicit weight loss, which is attributable to differences in toxin production during infection. These results show that the ability of C. difficile to phase vary flagella and toxins influences colonization and disease development and suggest that the phenotypic variants generated by flagellar switch inversion have distinct capacities for causing disease.
Collapse
Affiliation(s)
- Dominika Trzilova
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Mercedes A. H. Warren
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Nicole C. Gadda
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Caitlin L. Williams
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
30
|
Simpson HL, Roberts CL, Thompson LM, Leiper CR, Gittens N, Trotter E, Duckworth CA, Papoutsopoulou S, Miyajima F, Roberts P, O’Kennedy N, Rhodes JM, Campbell BJ. Soluble Non-Starch Polysaccharides From Plantain ( Musa x paradisiaca L.) Diminish Epithelial Impact of Clostridioides difficile. Front Pharmacol 2021; 12:766293. [PMID: 34955836 PMCID: PMC8707065 DOI: 10.3389/fphar.2021.766293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Clostridioides difficile infection (CDI) is a leading cause of antibiotic-associated diarrhoea. Adhesion of this Gram-positive pathogen to the intestinal epithelium is a crucial step in CDI, with recurrence and relapse of disease dependent on epithelial interaction of its endospores. Close proximity, or adhesion of, hypervirulent strains to the intestinal mucosa are also likely to be necessary for the release of C. difficile toxins, which when internalized, result in intestinal epithelial cell rounding, damage, inflammation, loss of barrier function and diarrhoea. Interrupting these C. difficile-epithelium interactions could therefore represent a promising therapeutic strategy to prevent and treat CDI. Intake of dietary fibre is widely recognised as being beneficial for intestinal health, and we have previously shown that soluble non-starch polysaccharides (NSP) from plantain banana (Musa spp.), can block epithelial adhesion and invasion of a number of gut pathogens, such as E. coli and Salmonellae. Here, we assessed the action of plantain NSP, and a range of alternative soluble plant fibres, for inhibitory action on epithelial interactions of C. difficile clinical isolates, purified endospore preparations and toxins. We found that plantain NSP possessed ability to disrupt epithelial adhesion of C. difficile vegetative cells and spores, with inhibitory activity against C. difficile found within the acidic (pectin-rich) polysaccharide component, through interaction with the intestinal epithelium. Similar activity was found with NSP purified from broccoli and leek, although seen to be less potent than NSP from plantain. Whilst plantain NSP could not block the interaction and intracellular action of purified C. difficile toxins, it significantly diminished the epithelial impact of C. difficile, reducing both bacteria and toxin induced inflammation, activation of caspase 3/7 and cytotoxicity in human intestinal cell-line and murine intestinal organoid cultures. Dietary supplementation with soluble NSP from plantain may therefore confer a protective effect in CDI patients by preventing adhesion of C. difficile to the mucosa, i.e. a "contrabiotic" effect, and diminishing its epithelial impact. This suggests that plantain soluble dietary fibre may be a therapeutically effective nutritional product for use in the prevention or treatment of CDI and antibiotic-associated diarrhoea.
Collapse
Affiliation(s)
- Hannah L. Simpson
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Carol L. Roberts
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Louise M. Thompson
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Cameron R. Leiper
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Nehana Gittens
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Ellie Trotter
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Carrie A. Duckworth
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Stamatia Papoutsopoulou
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection Veterinary and Ecological Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Fabio Miyajima
- Wolfson Centre for Personalised Medicine, Department of Molecular & Clinical Pharmacology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Oswaldo Cruz Foundation (Fiocruz), Eusébio, Brazil
| | - Paul Roberts
- Department of Microbiology, Liverpool Clinical Laboratories, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom
- School for Medicine and Clinical Practice, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Niamh O’Kennedy
- Provexis PLC, c/o The University of Aberdeen, Aberdeen, United Kingdom
| | - Jonathan M. Rhodes
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Barry J. Campbell
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
31
|
Yakovlieva L, Fülleborn JA, Walvoort MTC. Opportunities and Challenges of Bacterial Glycosylation for the Development of Novel Antibacterial Strategies. Front Microbiol 2021; 12:745702. [PMID: 34630370 PMCID: PMC8498110 DOI: 10.3389/fmicb.2021.745702] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/27/2021] [Indexed: 12/29/2022] Open
Abstract
Glycosylation is a ubiquitous process that is universally conserved in nature. The various products of glycosylation, such as polysaccharides, glycoproteins, and glycolipids, perform a myriad of intra- and extracellular functions. The multitude of roles performed by these molecules is reflected in the significant diversity of glycan structures and linkages found in eukaryotes and prokaryotes. Importantly, glycosylation is highly relevant for the virulence of many bacterial pathogens. Various surface-associated glycoconjugates have been identified in bacteria that promote infectious behavior and survival in the host through motility, adhesion, molecular mimicry, and immune system manipulation. Interestingly, bacterial glycosylation systems that produce these virulence factors frequently feature rare monosaccharides and unusual glycosylation mechanisms. Owing to their marked difference from human glycosylation, bacterial glycosylation systems constitute promising antibacterial targets. With the rise of antibiotic resistance and depletion of the antibiotic pipeline, novel drug targets are urgently needed. Bacteria-specific glycosylation systems are especially promising for antivirulence therapies that do not eliminate a bacterial population, but rather alleviate its pathogenesis. In this review, we describe a selection of unique glycosylation systems in bacterial pathogens and their role in bacterial homeostasis and infection, with a focus on virulence factors. In addition, recent advances to inhibit the enzymes involved in these glycosylation systems and target the bacterial glycan structures directly will be highlighted. Together, this review provides an overview of the current status and promise for the future of using bacterial glycosylation to develop novel antibacterial strategies.
Collapse
Affiliation(s)
- Liubov Yakovlieva
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| | - Julius A Fülleborn
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| | - Marthe T C Walvoort
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| |
Collapse
|
32
|
Pagano C, Navarra G, Pastorino O, Avilia G, Coppola L, Della Monica R, Chiariotti L, Florio T, Corsaro A, Torelli G, Caiazzo P, Gazzerro P, Bifulco M, Laezza C. N6-Isopentenyladenosine Hinders the Vasculogenic Mimicry in Human Glioblastoma Cells through Src-120 Catenin Pathway Modulation and RhoA Activity Inhibition. Int J Mol Sci 2021; 22:ijms221910530. [PMID: 34638872 PMCID: PMC8508824 DOI: 10.3390/ijms221910530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Vasculogenic mimicry (VM) is a functional microcirculation pattern formed by aggressive tumor cells. Thus far, no effective drugs have been developed to target VM. Glioblastoma (GBM) is the most malignant form of brain cancer and is a highly vascularized tumor. Vasculogenic mimicry represents a means whereby GBM can escape anti-angiogenic therapies. METHODS Here, using an in vitro tube formation assay on Matrigel, we evaluated the ability of N6-isopentenyladenosine (iPA) to interfere with vasculogenic mimicry (VM). RhoA activity was assessed using a pull-down assay, while the modulation of the adherens junctions proteins was analyzed by Western blot analysis. RESULTS We found that iPA at sublethal doses inhibited the formation of capillary-like structures suppressing cell migration and invasion of U87MG, U343MG, and U251MG cells, of patient-derived human GBM cells and GBM stem cells. iPA reduces the vascular endothelial cadherin (VE-cadherin) expression levels in a dose-dependent manner, impairs the vasculogenic mimicry network by modulation of the Src/p120-catenin pathway and inhibition of RhoA-GTPase activity. CONCLUSIONS Taken together, our results revealed iPA as a promising novel anti-VM drug in GBM clinical therapeutics.
Collapse
Affiliation(s)
- Cristina Pagano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80145 Naples, Italy; (C.P.); (G.N.); (O.P.); (G.A.); (L.C.); (R.D.M.); (L.C.)
| | - Giovanna Navarra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80145 Naples, Italy; (C.P.); (G.N.); (O.P.); (G.A.); (L.C.); (R.D.M.); (L.C.)
| | - Olga Pastorino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80145 Naples, Italy; (C.P.); (G.N.); (O.P.); (G.A.); (L.C.); (R.D.M.); (L.C.)
| | - Giorgio Avilia
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80145 Naples, Italy; (C.P.); (G.N.); (O.P.); (G.A.); (L.C.); (R.D.M.); (L.C.)
| | - Laura Coppola
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80145 Naples, Italy; (C.P.); (G.N.); (O.P.); (G.A.); (L.C.); (R.D.M.); (L.C.)
| | - Rosa Della Monica
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80145 Naples, Italy; (C.P.); (G.N.); (O.P.); (G.A.); (L.C.); (R.D.M.); (L.C.)
- CEINGE—Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Lorenzo Chiariotti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80145 Naples, Italy; (C.P.); (G.N.); (O.P.); (G.A.); (L.C.); (R.D.M.); (L.C.)
- CEINGE—Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Tullio Florio
- Department of Internal Medicine, University of Genova, Viale Benedetto XV 2, 16136 Genova, Italy; (T.F.); (A.C.)
- IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Alessandro Corsaro
- Department of Internal Medicine, University of Genova, Viale Benedetto XV 2, 16136 Genova, Italy; (T.F.); (A.C.)
| | - Giovanni Torelli
- Neurosurgery Unit A.O. San Giovanni di Dio e Ruggi d’Aragona—Salerno’s School of Medicine Largo Città di Ippocrate, 84131 Salerno, Italy;
- Neurosurgery, Unit A.O. “A.Cardarelli”, 80145 Naples, Italy;
| | | | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, Fisciano, 84084 Salerno, Italy;
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80145 Naples, Italy; (C.P.); (G.N.); (O.P.); (G.A.); (L.C.); (R.D.M.); (L.C.)
- Correspondence: (M.B.); or (C.L.)
| | - Chiara Laezza
- Institute of Endocrinology and Experimental Oncology (IEOS), National Research Council (CNR), 80145 Naples, Italy
- Correspondence: (M.B.); or (C.L.)
| |
Collapse
|
33
|
Roth KDR, Wenzel EV, Ruschig M, Steinke S, Langreder N, Heine PA, Schneider KT, Ballmann R, Fühner V, Kuhn P, Schirrmann T, Frenzel A, Dübel S, Schubert M, Moreira GMSG, Bertoglio F, Russo G, Hust M. Developing Recombinant Antibodies by Phage Display Against Infectious Diseases and Toxins for Diagnostics and Therapy. Front Cell Infect Microbiol 2021; 11:697876. [PMID: 34307196 PMCID: PMC8294040 DOI: 10.3389/fcimb.2021.697876] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Antibodies are essential molecules for diagnosis and treatment of diseases caused by pathogens and their toxins. Antibodies were integrated in our medical repertoire against infectious diseases more than hundred years ago by using animal sera to treat tetanus and diphtheria. In these days, most developed therapeutic antibodies target cancer or autoimmune diseases. The COVID-19 pandemic was a reminder about the importance of antibodies for therapy against infectious diseases. While monoclonal antibodies could be generated by hybridoma technology since the 70ies of the former century, nowadays antibody phage display, among other display technologies, is robustly established to discover new human monoclonal antibodies. Phage display is an in vitro technology which confers the potential for generating antibodies from universal libraries against any conceivable molecule of sufficient size and omits the limitations of the immune systems. If convalescent patients or immunized/infected animals are available, it is possible to construct immune phage display libraries to select in vivo affinity-matured antibodies. A further advantage is the availability of the DNA sequence encoding the phage displayed antibody fragment, which is packaged in the phage particles. Therefore, the selected antibody fragments can be rapidly further engineered in any needed antibody format according to the requirements of the final application. In this review, we present an overview of phage display derived recombinant antibodies against bacterial, viral and eukaryotic pathogens, as well as microbial toxins, intended for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Kristian Daniel Ralph Roth
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Esther Veronika Wenzel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Maximilian Ruschig
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Steinke
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nora Langreder
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kai-Thomas Schneider
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rico Ballmann
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Viola Fühner
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | | - Stefan Dübel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Giulio Russo
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| |
Collapse
|
34
|
Abstract
Large clostridial toxins (LCTs) are a family of bacterial exotoxins that infiltrate and destroy target cells. Members of the LCT family include Clostridioides difficile toxins TcdA and TcdB, Paeniclostridium sordellii toxins TcsL and TcsH, Clostridium novyi toxin TcnA, and Clostridium perfringens toxin TpeL. Since the 19th century, LCT-secreting bacteria have been isolated from the blood, organs, and wounds of diseased individuals, and LCTs have been implicated as the primary virulence factors in a variety of infections, including C. difficile infection and some cases of wound-associated gas gangrene. Clostridia express and secrete LCTs in response to various physiological signals. LCTs invade host cells by binding specific cell surface receptors, ultimately leading to internalization into acidified vesicles. Acidic pH promotes conformational changes within LCTs, which culminates in translocation of the N-terminal glycosyltransferase and cysteine protease domain across the endosomal membrane and into the cytosol, leading first to cytopathic effects and later to cytotoxic effects. The focus of this review is on the role of LCTs in infection and disease, the mechanism of LCT intoxication, with emphasis on recent structural work and toxin subtyping analysis, and the genomic discovery and characterization of LCT homologues. We provide a comprehensive review of these topics and offer our perspective on emerging questions and future research directions for this enigmatic family of toxins.
Collapse
|
35
|
Markham NO, Bloch SC, Shupe JA, Laubacher EN, Thomas AK, Kroh HK, Childress KO, Peritore-Galve FC, Washington MK, Coffey RJ, Lacy DB. Murine Intrarectal Instillation of Purified Recombinant Clostridioides difficile Toxins Enables Mechanistic Studies of Pathogenesis. Infect Immun 2021; 89:e00543-20. [PMID: 33468584 PMCID: PMC8090962 DOI: 10.1128/iai.00543-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/09/2021] [Indexed: 12/15/2022] Open
Abstract
Clostridioides difficile is linked to nearly 225,000 antibiotic-associated diarrheal infections and almost 13,000 deaths per year in the United States. Pathogenic strains of C. difficile produce toxin A (TcdA) and toxin B (TcdB), which can directly kill cells and induce an inflammatory response in the colonic mucosa. Hirota et al. (S. A. Hirota et al., Infect Immun 80:4474-4484, 2012) first introduced the intrarectal instillation model of intoxication using TcdA and TcdB purified from VPI 10463 (VPI 10463 reference strain [ATCC 43255]) and 630 C. difficile strains. Here, we expand this technique by instilling purified, recombinant TcdA and TcdB, which allows for the interrogation of how specifically mutated toxins affect tissue. Mouse colons were processed and stained with hematoxylin and eosin for blinded evaluation and scoring by a board-certified gastrointestinal pathologist. The amount of TcdA or TcdB needed to produce damage was lower than previously reported in vivo and ex vivo Furthermore, TcdB mutants lacking either endosomal pore formation or glucosyltransferase activity resemble sham negative controls. Immunofluorescent staining revealed how TcdB initially damages colonic tissue by altering the epithelial architecture closest to the lumen. Tissue sections were also immunostained for markers of acute inflammatory infiltration. These staining patterns were compared to slides from a human C. difficile infection (CDI). The intrarectal instillation mouse model with purified recombinant TcdA and/or TcdB provides the flexibility needed to better understand structure/function relationships across different stages of CDI pathogenesis.
Collapse
Affiliation(s)
- Nicholas O Markham
- Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Sarah C Bloch
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John A Shupe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Erin N Laubacher
- Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Audrey K Thomas
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Heather K Kroh
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kevin O Childress
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - F Christopher Peritore-Galve
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Robert J Coffey
- Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - D Borden Lacy
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
36
|
AAV-mediated delivery of actoxumab and bezlotoxumab results in serum and mucosal antibody concentrations that provide protection from C. difficile toxin challenge. Gene Ther 2021; 30:455-462. [PMID: 33608675 DOI: 10.1038/s41434-021-00236-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/16/2021] [Accepted: 01/29/2021] [Indexed: 12/15/2022]
Abstract
Clostridium difficile is the leading cause of antibiotic-associated nosocomial diarrhea in the developed world. When the host-associated colon microbiome is disrupted by the ingestion of antibiotics, C. difficile spores can germinate, resulting in infection. C. difficile secretes enterotoxin A (TcdA) and cytotoxin B (TcdB) that are responsible for disease pathology. Treatment options are limited as the bacterium demonstrates resistance to many antibiotics, and even with antibacterial therapies, recurrences of C. difficile are common. Actotoxumab and bezlotoxumab are human monoclonal antibodies that bind and neutralize TcdA and TcdB, respectively. In 2016, the US food and drug administration (FDA) approved bezlotoxumab for use in the prevention of C. difficile infection recurrence. To ensure the long-term expression of antibodies, gene therapy can be used. Here, adeno-associated virus (AAV)6.2FF, a novel triple mutant of AAV6, was engineered to express either actotoxumab or bezlotoxumab in mice and hamsters. Both antibodies expressed at greater than 90 μg/mL in the serum and were detected at mucosal surfaces in both models. Hundred percent of mice given AAV6.2FF-actoxumab survived a lethal dose of TcdA. This proof of concept study demonstrates that AAV-mediated expression of C. difficile toxin antibodies is a viable approach for the prevention of recurrent C. difficile infections.
Collapse
|
37
|
Normington C, Moura IB, Bryant JA, Ewin DJ, Clark EV, Kettle MJ, Harris HC, Spittal W, Davis G, Henn MR, Ford CB, Wilcox MH, Buckley AM. Biofilms harbour Clostridioides difficile, serving as a reservoir for recurrent infection. NPJ Biofilms Microbiomes 2021; 7:16. [PMID: 33547298 PMCID: PMC7864922 DOI: 10.1038/s41522-021-00184-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022] Open
Abstract
C. difficile infection (CDI) is a worldwide healthcare problem with ~30% of cases failing primary therapy, placing a burden on healthcare systems and increasing patient morbidity. We have little understanding of why these therapies fail. Here, we use a clinically validated in vitro gut model to assess the contribution of biofilms towards recurrent disease and to investigate biofilm microbiota-C. difficile interactions. Initial experiments show that C. difficile cells became associated with the colonic biofilm microbiota and are not depleted by vancomycin or faecal microbiota transplant therapies. We observe that transferring biofilm encased C. difficile cells into a C. difficile naïve but CDI susceptible model induces CDI. Members of the biofilm community can impact C. difficile biofilm formation by acting either antagonistically or synergistically. We highlight the importance of biofilms as a reservoir for C. difficile, which can be a cause for recurrent infections.
Collapse
Affiliation(s)
- Charmaine Normington
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, LS1 9JT, UK
| | - Ines B Moura
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, LS1 9JT, UK
| | - Jessica A Bryant
- Microbiome Sciences, Seres Therapeutics Inc., Cambridge, MA, USA
| | - Duncan J Ewin
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, LS1 9JT, UK
| | - Emma V Clark
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, LS1 9JT, UK
| | - Morgan J Kettle
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, LS1 9JT, UK
| | - Hannah C Harris
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, LS1 9JT, UK
| | - William Spittal
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, LS1 9JT, UK
| | - Georgina Davis
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, LS1 9JT, UK
| | - Matthew R Henn
- Microbiome Sciences, Seres Therapeutics Inc., Cambridge, MA, USA
| | | | - Mark H Wilcox
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, LS1 9JT, UK
| | - Anthony M Buckley
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, LS1 9JT, UK.
| |
Collapse
|
38
|
Buckley AM, Altringham J, Clark E, Bently K, Spittal W, Ewin D, Wilkinson V, Davis G, Moura IB, Wilcox MH. Eravacycline, a novel tetracycline derivative, does not induce Clostridioides difficile infection in an in vitro human gut model. J Antimicrob Chemother 2021; 76:171-178. [PMID: 32929459 DOI: 10.1093/jac/dkaa386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/18/2020] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES The approval of new antibiotics is essential to combat infections caused by antimicrobial-resistant pathogens; however, such agents should be tested to determine their effect on the resident microbiota and propensity to select for opportunistic pathogens, such as Clostridioides difficile. Eravacycline is a new antibiotic for the treatment of complicated intra-abdominal infections. Here, we determined the effects of eravacycline compared with moxifloxacin on the microbiota and if these were conducive to induction of C. difficile infection (CDI). METHODS We seeded in vitro chemostat models, which simulate the physiological conditions of the human colon, with a human faecal slurry and instilled gut-reflective concentrations of either eravacycline or moxifloxacin. RESULTS Eravacycline instillation was associated with decreased Bifidobacterium, Lactobacillus and Clostridium species, which recovered 1 week after exposure. However, Bacteroides spp. levels decreased to below the limit of detection and did not recover prior to the end of the experiment. Post-eravacycline, a bloom of aerobic bacterial species occurred, including Enterobacteriaceae, compared with pre-antibiotic, which remained high for the duration of the experiment. These changes in microbiota were not associated with induction of CDI, as we observed a lack of C. difficile spore germination and thus no toxin was detected. Moxifloxacin exposure sufficiently disrupted the microbiota to induce simulated CDI, where C. difficile spore germination, outgrowth and toxin production were seen. CONCLUSIONS These model data suggest that, despite the initial impact of eravacycline on the intestinal microbiota, similar to clinical trial data, this novel tetracycline has a low propensity to induce CDI.
Collapse
Affiliation(s)
- Anthony M Buckley
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds LS1 9JT, UK
| | - James Altringham
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds LS1 9JT, UK
| | - Emma Clark
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds LS1 9JT, UK
| | - Karen Bently
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds LS1 9JT, UK
| | - William Spittal
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds LS1 9JT, UK
| | - Duncan Ewin
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds LS1 9JT, UK
| | - Vikki Wilkinson
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds LS1 9JT, UK
| | - Georgina Davis
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds LS1 9JT, UK
| | - Ines B Moura
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds LS1 9JT, UK
| | - Mark H Wilcox
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds LS1 9JT, UK
| |
Collapse
|
39
|
Hernandez BG, Vinithakumari AA, Sponseller B, Tangudu C, Mooyottu S. Prevalence, Colonization, Epidemiology, and Public Health Significance of Clostridioides difficile in Companion Animals. Front Vet Sci 2020; 7:512551. [PMID: 33062657 PMCID: PMC7530174 DOI: 10.3389/fvets.2020.512551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
Clostridioides difficile, previously Clostrdium difficile, is a major cause of antibiotic-associated enteric disease in humans in hospital settings. Increased incidence of C. difficile infection (CDI) in community settings raises concerns over an alternative source of CDI for humans. The detection of genetically similar and toxigenic C. difficile isolates in companion animals, including asymptomatic pets, suggests the potential role of household pets as a source of community-associated CDI. The close association between companion animals and humans, in addition to the use of similar antibiotics in both species, could provide a selective advantage for the emergence of new C. difficile strains and thus increase the incidental transmission of CDI to humans. Therefore, screening household pets for C. difficile is becoming increasingly important from a public health standpoint and may become a part of routine testing in the future, for the benefit of susceptible or infected individuals within a household. In this review, we analyze available information on prevalence, pathophysiology, epidemiology, and molecular genetics of C. difficile infection, focusing on companion animals and evaluate the risk of pet-borne transmission of CDI as an emerging public health concern. Molecular epidemiological characterization of companion animal C. difficile strains could provide further insights into the interspecies transmission of CDI. The mosaic nature of C. difficile genomes and their susceptibility to horizontal gene transfer may facilitate the inter-mixing of genetic material, which could increase the possibility of the emergence of new community-associated CDI strains. However, detailed genome-wide characterization and comparative genome analysis are warranted to confirm this hypothesis.
Collapse
Affiliation(s)
- Belen G. Hernandez
- Department of Veterinary Pathology, Iowa State University, Ames, IA, United States
| | | | - Brett Sponseller
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Chandra Tangudu
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Shankumar Mooyottu
- Department of Veterinary Pathology, Iowa State University, Ames, IA, United States
| |
Collapse
|
40
|
Pietrangeli P, Corpetti C, Seguella L, Del Re A, Pesce M, Vincenzi M, Lori C, Annunziata G, Mateescu MA, Sarnelli G, Esposito G, Marcocci L. Lathyrus sativus diamine oxidase reduces Clostridium difficile toxin A-induced toxicity in Caco-2 cells by rescuing RhoA-GTPase and inhibiting pp38-MAPK/NF-κB/HIF-1α activation. Phytother Res 2020; 35:415-423. [PMID: 32914548 DOI: 10.1002/ptr.6814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/16/2020] [Accepted: 07/01/2020] [Indexed: 12/16/2022]
Abstract
Clostridium difficile toxin A (TcdA) impairs the intestinal epithelial barrier, increasing the mucosa permeability and triggering a robust inflammatory response. Lathyrus sativus diamino oxidase (LSAO) is a nutraceutical compound successfully used in various gastrointestinal dysfunctions. Here, we evaluated the LSAO (0.004-0.4 μM) ability to counter TcdA-induced (30 ng/mL) toxicity and damage in Caco-2 cells, investigating its possible mechanism of action. LSAO has improved the transepithelial electrical resistance (TEER) score and increased cell viability in TcdA-treated cells, significantly rescuing the protein expression of Ras homolog family members, A-GTPase (RhoA-GTPase), occludin, and zonula occludens-1 (ZO-1). LSAO has also exhibited an anti-apoptotic effect by inhibiting the TcdA-induced expression of Bcl-2-associated X protein (Bax), p50 nuclear factor-kappa-B (p50), p65nuclear factor-kappa-B (p65), and hypoxia-inducible transcription factor-1 alpha (HIF-1α), and the release of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and vascular endothelial growth factor (VEGF) in the cell milieu. Our data showed that LSAO exerts a protective effect on TcdA-induced toxicity in Caco-2 cells, placing itself as an interesting nutraceutical to supplement the current treatment of the Clostridium difficile infections.
Collapse
Affiliation(s)
- Paola Pietrangeli
- Department of Biochemical Sciences "A. Rossi Fanelli", Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
| | - Chiara Corpetti
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Luisa Seguella
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Alessandro Del Re
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Marcella Pesce
- Department of Clinical Medicine and Surgery, section of Gastroenterology, University Federico II, Naples, Italy
| | - Martina Vincenzi
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Chiara Lori
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | | | - Mircea A Mateescu
- Department of Chemistry and Centre CERMO-FC, Université du Québec à Montreal, CP8888 Branch A, Montreal (Québec), Montreal, Québec, Canada
| | - Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, section of Gastroenterology, University Federico II, Naples, Italy
| | - Giuseppe Esposito
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Lucia Marcocci
- Department of Biochemical Sciences "A. Rossi Fanelli", Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
41
|
Shah HB, Smith K, Scott EJ, Larabee JL, James JA, Ballard JD, Lang ML. Human C. difficile toxin-specific memory B cell repertoires encode poorly neutralizing antibodies. JCI Insight 2020; 5:138137. [PMID: 32663199 PMCID: PMC7455132 DOI: 10.1172/jci.insight.138137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022] Open
Abstract
Clostridioides difficile is a leading cause of nosocomial infection responsible for significant morbidity and mortality with limited options for therapy. Secreted C. difficile toxin B (TcdB) is a major contributor to disease pathology, and select TcdB-specific Abs may protect against disease recurrence. However, the high frequency of recurrence suggests that the memory B cell response, essential for new Ab production following C. difficile reexposure, is insufficient. We therefore isolated TcdB-specific memory B cells from individuals with a history of C. difficile infection and performed single-cell deep sequencing of their Ab genes. Herein, we report that TcdB-specific memory B cell-encoded antibodies showed somatic hypermutation but displayed limited isotype class switch. Memory B cell-encoded mAb generated from the gene sequences revealed low to moderate affinity for TcdB and a limited ability to neutralize TcdB. These findings indicate that memory B cells are an important factor in C. difficile disease recurrence.
Collapse
Affiliation(s)
- Hemangi B. Shah
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC)
| | - Kenneth Smith
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, and
| | - Edgar J. Scott
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC)
| | - Jason L. Larabee
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC)
| | - Judith A. James
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, and
- Departments of Medicine and Pathology, OUHSC, University of Oklahoma, Oklahoma City, Oklahoma, USA
| | - Jimmy D. Ballard
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC)
| | - Mark L. Lang
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC)
| |
Collapse
|
42
|
Trzilova D, Anjuwon-Foster BR, Torres Rivera D, Tamayo R. Rho factor mediates flagellum and toxin phase variation and impacts virulence in Clostridioides difficile. PLoS Pathog 2020; 16:e1008708. [PMID: 32785266 PMCID: PMC7446863 DOI: 10.1371/journal.ppat.1008708] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/24/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022] Open
Abstract
The intestinal pathogen Clostridioides difficile exhibits heterogeneity in motility and toxin production. This phenotypic heterogeneity is achieved through phase variation by site-specific recombination via the DNA recombinase RecV, which reversibly inverts the "flagellar switch" upstream of the flgB operon. A recV mutation prevents flagellar switch inversion and results in phenotypically locked strains. The orientation of the flagellar switch influences expression of the flgB operon post-transcription initiation, but the specific molecular mechanism is unknown. Here, we report the isolation and characterization of spontaneous suppressor mutants in the non-motile, non-toxigenic recV flg OFF background that regained motility and toxin production. The restored phenotypes corresponded with increased expression of flagellum and toxin genes. The motile suppressor mutants contained single-nucleotide polymorphisms (SNPs) in rho, which encodes the bacterial transcription terminator Rho factor. Analyses using transcriptional reporters indicate that Rho contributes to heterogeneity in flagellar gene expression by preferentially terminating transcription of flg OFF mRNA within the 5' leader sequence. Additionally, Rho is important for initial colonization of the intestine in a mouse model of infection, which may in part be due to the sporulation and growth defects observed in the rho mutants. Together these data implicate Rho factor as a regulator of gene expression affecting phase variation of important virulence factors of C. difficile.
Collapse
Affiliation(s)
- Dominika Trzilova
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Brandon R. Anjuwon-Foster
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Dariana Torres Rivera
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
43
|
Varela-Chavez C, Blondel A, Popoff MR. Bacterial intracellularly active toxins: Membrane localisation of the active domain. Cell Microbiol 2020; 22:e13213. [PMID: 32353188 DOI: 10.1111/cmi.13213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/06/2020] [Accepted: 04/17/2020] [Indexed: 12/31/2022]
Abstract
Numerous bacterial toxins exert their activity by inactivating or modulating a specific intracellular host target. For this purpose, these toxins have developed efficient strategies to overcome the different host cell defences including specific binding to cell surface, internalisation, passage through the endosome or plasma membrane, exploiting intracellular trafficking and addressing to intracellular targets. Several intracellularly active toxins deliver an active domain into the cytosol that interacts with a target localised to the inner face of the plasma membrane. Thus, the large clostridial glucosylating toxins (LCGTs) target Rho/Ras-GTPases, certain virulence factors of Gram negative bacteria, Rho-GTPases, while Pasteurella multocida toxin (PMT) targets trimeric G-proteins. Others such as botulinum neurotoxins and tetanus neurotoxin have their substrate on synaptic vesicle membrane. LCGTs, PMT, and certain virulence factors from Vibrio sp. show a particular structure constituted of a four-helix bundle membrane (4HBM) protruding from the catalytic site that specifically binds to the membrane phospholipids and then trap the catalytic domain at the proximity of the membrane anchored substrate. Structural and functional analysis indicate that the 4HBM tip of the Clostridium sordellii lethal toxin (TcsL) from the LCGT family contain two loops forming a cavity that mediates the binding to phospholipids and more specifically to phosphatidylserine.
Collapse
Affiliation(s)
| | - Arnaud Blondel
- Unité de Bio-Informatique Structurale, Institut Pasteur, Paris, France
| | | |
Collapse
|
44
|
Identification of the role of toxin B in the virulence of Clostridioides difficile based on integrated bioinformatics analyses. Int Microbiol 2020; 23:575-587. [PMID: 32388701 DOI: 10.1007/s10123-020-00128-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/03/2020] [Accepted: 04/13/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Clostridioides difficile toxin B (TcdB) plays a critical role in C. difficile infection (CDI), a common and costly healthcare-associated disease. The aim of the current study was to explore the intracellular and potent systemic effects of TcdB on human colon epithelial cells utilizing Gene Expression Omnibus and bioinformatic methods. METHODS Two datasets (GSE63880 and GSE29008) were collected to extract data components of mRNA of TcdB-treated human colon epithelial cells; "limma" package of "R" software was used to screen the differential genes, and "pheatmap" package was applied to construct heat maps for the differential genes; Metascape website was utilized for protein-protein interaction network and Molecular Complex Detection analysis, and Genome Ontology (GO) was used to analyze the selected differential genes. Quantitative real-time PCR (qRT-PCR) and Western blot were performed to validate the expression of hub genes. RESULTS GO terms involved in DNA replication and cell cycle were identified significantly enriched in TcdB-treated human colon epithelial cells. Moreover, the decreased expression of DNA replication-related genes, MCM complex, and CDC45 in C. difficile (TcdA-/TcdB+)-infected Caco-2 cells were validated via qRT-PCR and Western blot assays. CONCLUSIONS In conclusion, the integrated analysis of different gene expression datasets allowed us to identify a set of genes and GO terms underlying the mechanisms of CDI induced by TcdB. It would aid in understanding of the molecular mechanisms underlying TcdB-exposed colon epithelial cells and provide the basis for developing diagnosis biomarkers, treatment, and prevention strategies.
Collapse
|
45
|
Jeong CG, Seo BJ, Nazki S, Jung BK, Khatun A, Yang MS, Kim SC, Noh SH, Shin JH, Kim B, Kim WI. Characterization of Clostridium novyi isolated from a sow in a sudden death case in Korea. BMC Vet Res 2020; 16:127. [PMID: 32375805 PMCID: PMC7203850 DOI: 10.1186/s12917-020-02349-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/29/2020] [Indexed: 01/06/2023] Open
Abstract
Background Multifocal spherical nonstaining cavities and gram-positive, rod-shaped, and endospore-forming bacteria were found in the liver of a sow that died suddenly. Clostridium novyi type B was identified and isolated from the sudden death case, and the isolate was characterized by molecular analyses and bioassays in the current study. Results C. novyi was isolated from the liver of a sow that died suddenly and was confirmed as C. novyi type B by differential PCR. The C. novyi isolate fermented glucose and maltose and demonstrated lecithinase activity, and the cell-free culture supernatant of the C. novyi isolate exhibited cytotoxicity toward Vero cells, demonstrating that the isolate produces toxins. In addition, whole-genome sequencing of the C. novyi isolate was performed, and the complete sequences of the chromosome (2.29 Mbp) and two plasmids (134 and 68 kbp) were identified for the first time. Based on genome annotation, 7 genes were identified as glycosyltransferases, which are known as alpha toxins; 23 genes were found to be related to sporulation; 12 genes were found to be related to germination; and 20 genes were found to be related to chemotaxis. Conclusion C. novyi type B was isolated from a sow in a sudden death case and confirmed by biochemical and molecular characterization. Various virulence-associated genes were identified for the first time based on whole-genome sequencing.
Collapse
Affiliation(s)
- Chang-Gi Jeong
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Byoung-Joo Seo
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Salik Nazki
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Byung Kwon Jung
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Amina Khatun
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, 54596, Republic of Korea.,Department of Pathology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh
| | - Myeon-Sik Yang
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Seung-Chai Kim
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Sang-Hyun Noh
- MSD Animal Health Korea Ltd., Seoul, 04637, Republic of Korea
| | - Jae-Ho Shin
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Bumseok Kim
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, 54596, Republic of Korea.
| |
Collapse
|
46
|
Engevik MA, Danhof HA, Chang-Graham AL, Spinler JK, Engevik KA, Herrmann B, Endres BT, Garey KW, Hyser JM, Britton RA, Versalovic J. Human intestinal enteroids as a model of Clostridioides difficile-induced enteritis. Am J Physiol Gastrointest Liver Physiol 2020; 318:G870-G888. [PMID: 32223302 PMCID: PMC7272722 DOI: 10.1152/ajpgi.00045.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Clostridioides difficile is an important nosocomial pathogen that produces toxins to cause life-threatening diarrhea and colitis. Toxins bind to epithelial receptors and promote the collapse of the actin cytoskeleton. C. difficile toxin activity is commonly studied in cancer-derived and immortalized cell lines. However, the biological relevance of these models is limited. Moreover, no model is available for examining C. difficile-induced enteritis, an understudied health problem. We hypothesized that human intestinal enteroids (HIEs) express toxin receptors and provide a new model to dissect C. difficile cytotoxicity in the small intestine. We generated biopsy-derived jejunal HIE and Vero cells, which stably express LifeAct-Ruby, a fluorescent label of F-actin, to monitor actin cytoskeleton rearrangement by live-cell microscopy. Imaging analysis revealed that toxins from pathogenic C. difficile strains elicited cell rounding in a strain-dependent manner, and HIEs were tenfold more sensitive to toxin A (TcdA) than toxin B (TcdB). By quantitative PCR, we paradoxically found that HIEs expressed greater quantities of toxin receptor mRNA and yet exhibited decreased sensitivity to toxins when compared with traditionally used cell lines. We reasoned that these differences may be explained by components, such as mucins, that are present in HIEs cultures, that are absent in immortalized cell lines. Addition of human-derived mucin 2 (MUC2) to Vero cells delayed cell rounding, indicating that mucus serves as a barrier to toxin-receptor binding. This work highlights that investigation of C. difficile infection in that HIEs can provide important insights into the intricate interactions between toxins and the human intestinal epithelium.NEW & NOTEWORTHY In this article, we developed a novel model of Clostridioides difficile-induced enteritis using jejunal-derived human intestinal enteroids (HIEs) transduced with fluorescently tagged F-actin. Using live-imaging, we identified that jejunal HIEs express high levels of TcdA and CDT receptors, are more sensitive to TcdA than TcdB, and secrete mucus, which delays toxin-epithelial interactions. This work also optimizes optically clear C. difficile-conditioned media suitable for live-cell imaging.
Collapse
Affiliation(s)
- Melinda A. Engevik
- 1Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,2Department of Pathology, Texas Children’s Hospital, Houston, Texas
| | - Heather A. Danhof
- 3Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, Texas,4Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | | | - Jennifer K. Spinler
- 1Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,2Department of Pathology, Texas Children’s Hospital, Houston, Texas
| | - Kristen A. Engevik
- 3Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, Texas,4Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Beatrice Herrmann
- 1Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,2Department of Pathology, Texas Children’s Hospital, Houston, Texas
| | - Bradley T. Endres
- 5Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas
| | - Kevin W. Garey
- 5Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas
| | - Joseph M. Hyser
- 1Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,2Department of Pathology, Texas Children’s Hospital, Houston, Texas
| | - Robert A. Britton
- 3Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, Texas,4Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - James Versalovic
- 1Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,2Department of Pathology, Texas Children’s Hospital, Houston, Texas
| |
Collapse
|
47
|
Lin B, Qing X, Liao J, Zhuo K. Role of Protein Glycosylation in Host-Pathogen Interaction. Cells 2020; 9:E1022. [PMID: 32326128 PMCID: PMC7226260 DOI: 10.3390/cells9041022] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
Host-pathogen interactions are fundamental to our understanding of infectious diseases. Protein glycosylation is one kind of common post-translational modification, forming glycoproteins and modulating numerous important biological processes. It also occurs in host-pathogen interaction, affecting host resistance or pathogen virulence often because glycans regulate protein conformation, activity, and stability, etc. This review summarizes various roles of different glycoproteins during the interaction, which include: host glycoproteins prevent pathogens as barriers; pathogen glycoproteins promote pathogens to attack host proteins as weapons; pathogens glycosylate proteins of the host to enhance virulence; and hosts sense pathogen glycoproteins to induce resistance. In addition, this review also intends to summarize the roles of lectin (a class of protein entangled with glycoprotein) in host-pathogen interactions, including bacterial adhesins, viral lectins or host lectins. Although these studies show the importance of protein glycosylation in host-pathogen interaction, much remains to be discovered about the interaction mechanism.
Collapse
Affiliation(s)
- Borong Lin
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou 510642, China; (B.L.); (J.L.)
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Xue Qing
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Jinling Liao
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou 510642, China; (B.L.); (J.L.)
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
- Guangdong Eco-Engineering Polytechnic, Guangzhou 510520, China
| | - Kan Zhuo
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou 510642, China; (B.L.); (J.L.)
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
48
|
Schwartz R, Guichard A, Franc NC, Roy S, Bier E. A Drosophila Model for Clostridium difficile Toxin CDT Reveals Interactions with Multiple Effector Pathways. iScience 2020; 23:100865. [PMID: 32058973 PMCID: PMC7011083 DOI: 10.1016/j.isci.2020.100865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/05/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
Clostridium difficile infections (CDIs) cause severe and occasionally life-threatening diarrhea. Hyper-virulent strains produce CDT, a toxin that ADP-ribosylates actin monomers and inhibits actin polymerization. We created transgenic Drosophila lines expressing the catalytic subunit CDTa to investigate its interaction with host signaling pathways in vivo. When expressed in the midgut, CDTa reduces body weight and fecal output and compromises survival, suggesting severe impairment of digestive functions. At the cellular level, CDTa induces F-actin network collapse, elimination of the intestinal brush border, and disruption of intercellular junctions. We confirm toxin-dependent re-distribution of Rab11 to enterocytes' apical surface and observe suppression of CDTa phenotypes by a Dominant-Negative form of Rab11 or RNAi of the dedicated Rab11GEF Crag (DENND4). We also report that Calmodulin (Cam) is required to mediate CDTa activity. In parallel, chemical inhibition of the Cam/Calcineurin pathway by Cyclosporin A or FK506 also reduces CDTa phenotypes, potentially opening new avenues for treating CDIs.
Collapse
Affiliation(s)
- Ruth Schwartz
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0335, USA
| | - Annabel Guichard
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0335, USA; Tata Institute for Genetics and Society-UCSD, La Jolla, CA 92093-0335, USA
| | - Nathalie C Franc
- Franc Consulting, San Diego, CA 92117-3314, USA; The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sitara Roy
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0335, USA
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0335, USA; Tata Institute for Genetics and Society-UCSD, La Jolla, CA 92093-0335, USA.
| |
Collapse
|
49
|
Strain-Dependent RstA Regulation of Clostridioides difficile Toxin Production and Sporulation. J Bacteriol 2020; 202:JB.00586-19. [PMID: 31659010 DOI: 10.1128/jb.00586-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/21/2019] [Indexed: 02/04/2023] Open
Abstract
The anaerobic spore former Clostridioides difficile causes significant diarrheal disease in humans and other mammals. Infection begins with the ingestion of dormant spores, which subsequently germinate within the host gastrointestinal tract. There, the vegetative cells proliferate and secrete two exotoxins, TcdA and TcdB, which cause disease symptoms. Although spore formation and toxin production are critical for C. difficile pathogenesis, the regulatory links between these two physiological processes are not well understood and are strain dependent. Previously, we identified a conserved C. difficile regulator, RstA, that promotes sporulation initiation through an unknown mechanism and directly and indirectly represses toxin and motility gene transcription in the historical isolate 630Δerm To test whether perceived strain-dependent differences in toxin production and sporulation are mediated by RstA, we created an rstA mutant in the epidemic ribotype 027 strain R20291. RstA affected sporulation and toxin gene expression similarly but more robustly in R20291 than in 630Δerm In contrast, no effect on motility gene expression was observed in R20291. Reporter assays measuring transcriptional regulation of tcdR, the sigma factor gene essential for toxin gene expression, identified sequence-dependent effects influencing repression by RstA and CodY, a global nutritional sensor, in four diverse C. difficile strains. Finally, sequence- and strain-dependent differences were evident in RstA negative autoregulation of rstA transcription. Altogether, our data suggest that strain-dependent differences in RstA regulation contribute to the sporulation and toxin phenotypes observed in R20291. Our data establish RstA as an important regulator of C. difficile virulence traits.IMPORTANCE Two critical traits of Clostridioides difficile pathogenesis are toxin production, which causes disease symptoms, and spore formation, which permits survival outside the gastrointestinal tract. The multifunctional regulator RstA promotes sporulation and prevents toxin production in the historical strain 630Δerm Here, we show that RstA exhibits stronger effects on these phenotypes in an epidemic isolate, R20291, and additional strain-specific effects on toxin and rstA expression are evident. Our data demonstrate that sequence-specific differences within the promoter for the toxin regulator TcdR contribute to the regulation of toxin production by RstA and CodY. These sequence differences account for some of the variability in toxin production among isolates and may allow strains to differentially control toxin production in response to a variety of signals.
Collapse
|
50
|
di Masi A, Leboffe L, Polticelli F, Tonon F, Zennaro C, Caterino M, Stano P, Fischer S, Hägele M, Müller M, Kleger A, Papatheodorou P, Nocca G, Arcovito A, Gori A, Ruoppolo M, Barth H, Petrosillo N, Ascenzi P, Di Bella S. Human Serum Albumin Is an Essential Component of the Host Defense Mechanism Against Clostridium difficile Intoxication. J Infect Dis 2019; 218:1424-1435. [PMID: 29868851 DOI: 10.1093/infdis/jiy338] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 06/01/2018] [Indexed: 01/05/2023] Open
Abstract
Background The pathogenic effects of Clostridium difficile are primarily attributable to the production of the large protein toxins (C difficile toxins [Tcd]) A (TcdA) and B (TcdB). These toxins monoglucosylate Rho GTPases in the cytosol of host cells, causing destruction of the actin cytoskeleton with cytotoxic effects. Low human serum albumin (HSA) levels indicate a higher risk of acquiring and developing a severe C difficile infection (CDI) and are associated with recurrent and fatal disease. Methods We used a combined approach based on docking simulation and biochemical analyses that were performed in vitro on purified proteins and in human epithelial colorectal adenocarcinoma cells (Caco-2), and in vivo on stem cell-derived human intestinal organoids and zebrafish embryos. Results Our results show that HSA specifically binds via its domain II to TcdA and TcdB and thereby induces their autoproteolytic cleavage at physiological concentrations. This process impairs toxin internalization into the host cells and reduces the toxin-dependent glucosylation of Rho proteins. Conclusions Our data provide evidence for a specific HSA-dependent self-defense mechanism against C difficile toxins and provide an explanation for the clinical correlation between CDI severity and hypoalbuminemia.
Collapse
Affiliation(s)
| | - Loris Leboffe
- Department of Sciences, Roma Tre University, Roma, Italy
| | - Fabio Polticelli
- Department of Sciences, Roma Tre University, Roma, Italy.,National Institute of Nuclear Physics, Roma Tre Section, Roma, Italy
| | - Federica Tonon
- Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Cristina Zennaro
- Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Napoli "Federico II", Napoli, Italy.,Associazione Culturale DiSciMuS RCF, Casoria, Napoli, Italy
| | - Pasquale Stano
- Department of Sciences, Roma Tre University, Roma, Italy
| | - Stephan Fischer
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Marlen Hägele
- Department of Internal Medicine I, University of Ulm Medical Center, Germany
| | - Martin Müller
- Department of Internal Medicine I, University of Ulm Medical Center, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, University of Ulm Medical Center, Germany
| | - Panagiotis Papatheodorou
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany.,Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Giuseppina Nocca
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Sacred Heart, Roma, Italy.,Institute of Chemistry of Molecular Recognition, CNR, Roma, Italy
| | - Alessandro Arcovito
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Sacred Heart, Roma, Italy
| | - Andrea Gori
- Clinic of Infectious Diseases, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Napoli "Federico II", Napoli, Italy.,Associazione Culturale DiSciMuS RCF, Casoria, Napoli, Italy.,CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Nicola Petrosillo
- 2nd Infectious Diseases Division, National Institute for Infectious Diseases "L. Spallanzani", Roma, Italy
| | - Paolo Ascenzi
- Department of Sciences, Roma Tre University, Roma, Italy
| | - Stefano Di Bella
- 2nd Infectious Diseases Division, National Institute for Infectious Diseases "L. Spallanzani", Roma, Italy
| |
Collapse
|