1
|
Li Y, Ye R, Dai H, Lin J, Cheng Y, Zhou Y, Lu Y. Exploring TNFR1: from discovery to targeted therapy development. J Transl Med 2025; 23:71. [PMID: 39815286 PMCID: PMC11734553 DOI: 10.1186/s12967-025-06122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
This review seeks to elucidate the therapeutic potential of tumor necrosis factor receptor 1 (TNFR1) and enhance our comprehension of its role in disease mechanisms. As a critical cell-surface receptor, TNFR1 regulates key signaling pathways, such as nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK), which are associated with pro-inflammatory responses and cell death. The intricate regulatory mechanisms of TNFR1 signaling and its involvement in various diseases, including inflammatory disorders, infectious diseases, cancer, and metabolic syndromes, have attracted increasing scholarly attention. Given the potential risks associated with targeting tumor necrosis factor-alpha (TNF-α), selective inhibition of the TNFR1 signaling pathway has been proposed as a promising strategy to reduce side effects and enhance therapeutic efficacy. This review emphasizes the emerging field of targeted therapies aimed at selectively modulating TNFR1 activity, identifying promising therapeutic strategies that exploit TNFR1 as a drug target through an evaluation of current clinical trials and preclinical studies. In conclusion, this study contributes novel insights into the biological functions of TNFR1 and presents potential therapeutic strategies for clinical application, thereby having substantial scientific and clinical significance.
Collapse
Affiliation(s)
- Yingying Li
- School of Medicine, Shanghai Baoshan Luodian Hospital, Shanghai University, Shanghai, 201908, China
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Ruiwei Ye
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Haorui Dai
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jiayi Lin
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yue Cheng
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yonghong Zhou
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China.
| | - Yiming Lu
- School of Medicine, Shanghai Baoshan Luodian Hospital, Shanghai University, Shanghai, 201908, China.
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
2
|
Szalanczy AM, Key CCC, Woods LCS. Genetic variation in satiety signaling and hypothalamic inflammation: merging fields for the study of obesity. J Nutr Biochem 2022; 101:108928. [PMID: 34936921 PMCID: PMC8959400 DOI: 10.1016/j.jnutbio.2021.108928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/08/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
Although obesity has been a longstanding health crisis, the genetic architecture of the disease remains poorly understood. Genome-wide association studies have identified many genomic loci associated with obesity, with genes being enriched in the brain, particularly in the hypothalamus. This points to the role of the central nervous system (CNS) in predisposition to obesity, and we emphasize here several key genes along the satiety signaling pathway involved in genetic susceptibility. Interest has also risen regarding the chronic, low-grade obesity-associated inflammation, with a growing concern toward inflammation in the hypothalamus as a precursor to obesity. Recent studies have found that genetic variation in inflammatory genes play a role in obesity susceptibility, and we highlight here several key genes. Despite the interest in the genetic variants of these pathways individually, there is a lack of research that investigates the relationship between the two. Understanding the interplay between genetic variation in obesity genes enriched in the CNS and inflammation genes will advance our understanding of obesity etiology and heterogeneity, improve genetic risk prediction analyses, and highlight new drug targets for the treatment of obesity. Additionally, this increased knowledge will assist in physician's ability to develop personalized nutrition and medication strategies for combating the obesity epidemic. Though it often seems to present universally, obesity is a highly individual disease, and there remains a need in the field to develop methods to treat at the individual level.
Collapse
|
3
|
Răzvan-Valentin S, Güler SA, Utkan T, Şahin TD, Gacar G, Yazir Y, Rencber SF, Mircea L, Cristian B, Bogdan P, Utkan NZ. Etanercept Prevents Endothelial Dysfunction in Cafeteria Diet-Fed Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042138. [PMID: 35206342 PMCID: PMC8872388 DOI: 10.3390/ijerph19042138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023]
Abstract
Obesity is associated with endothelial dysfunction and this relationship is probably mediated in part by inflammation. Objective: The current study evaluated the effects of etanercept, a tumor necrosis factor-alpha (TNF-α) inhibitor, on endothelial and vascular reactivity, endothelial nitric oxide synthase (eNOS) immunoreactivity, and serum and aortic concentrations of TNF-α in a diet-induced rat model. Design and results: Male weanling Wistar rats were exposed to a standard diet and cafeteria diet (CD) for 12 weeks and etanercept was administered during CD treatment. Isolated aortas of the rats were used for isometric tension recording. Carbachol-induced relaxant responses were impaired in CD-fed rats, while etanercept treatment improved these endothelium-dependent relaxations. No significant change was observed in papaverine- and sodium nitroprusside (SNP)-induced relaxant responses. eNOS expression decreased in CD-fed rats, but no change was observed between etanercept-treated CD-fed rats and control rats. CD significantly increased both the serum and the aortic levels of TNF-α, while etanercept treatment suppressed these elevated levels. CD resulted in a significant increase in the body weight of the rats. Etanercept-treated (ETA) CD-fed rats gained less weight than both CD-fed and control rats.
Collapse
Affiliation(s)
- Scăunaşu Răzvan-Valentin
- Department of General Surgery, Faculty of General Medicine, “Coltea” Hospital, Carol Davila University, 020021 Bucharest, Romania; (L.M.); (B.C.); (P.B.)
- Correspondence: (S.R.-V.); (S.A.G.)
| | - Sertaç Ata Güler
- Department of General Surgery, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkey;
- Correspondence: (S.R.-V.); (S.A.G.)
| | - Tijen Utkan
- Department of Pharmacology, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkey; (T.U.); (T.D.Ş.)
- Experimental Medical Research and Application Center, Kocaeli University, Kocaeli 41380, Turkey
| | - Tuğçe Demirtaş Şahin
- Department of Pharmacology, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkey; (T.U.); (T.D.Ş.)
| | - Gulcin Gacar
- Stem Cell and Gene Therapy Research and Application Center, Kocaeli University, Kocaeli 41380, Turkey; (G.G.); (Y.Y.)
| | - Yusufhan Yazir
- Stem Cell and Gene Therapy Research and Application Center, Kocaeli University, Kocaeli 41380, Turkey; (G.G.); (Y.Y.)
- Department of Histology and Embryology, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkey;
| | - Selenay Furat Rencber
- Department of Histology and Embryology, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkey;
| | - Lupușoru Mircea
- Department of General Surgery, Faculty of General Medicine, “Coltea” Hospital, Carol Davila University, 020021 Bucharest, Romania; (L.M.); (B.C.); (P.B.)
| | - Bălălău Cristian
- Department of General Surgery, Faculty of General Medicine, “Coltea” Hospital, Carol Davila University, 020021 Bucharest, Romania; (L.M.); (B.C.); (P.B.)
| | - Popescu Bogdan
- Department of General Surgery, Faculty of General Medicine, “Coltea” Hospital, Carol Davila University, 020021 Bucharest, Romania; (L.M.); (B.C.); (P.B.)
| | - Nihat Zafer Utkan
- Department of General Surgery, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkey;
| |
Collapse
|
4
|
Abstract
Over the past decade, hypothalamic microinflammation has been studied and appreciated as a core mechanism involved in the advancement of metabolic syndrome and aging. Accumulating evidence suggests that atypical microinflammatory insults disturb hypothalamic regulation resulting in metabolic imbalance and aging progression, establishing a common causality for these two pathophysiologic statuses. Studies have causally linked these changes to activation of key proinflammatory pathways, especially NF-κB signaling within the hypothalamus, which leads to hypothalamic neuronal dysregulation, astrogliosis, microgliosis, and loss of adult hypothalamic neural stem/progenitor cells. While hypothalamic microinflammation is a complex, multifaceted process, initial work has been done to reveal how it contributes to the pathogenesis of metabolic syndrome and aging, and studies inhibiting hypothalamic microinflammation through targeting proinflammatory signaling pathways have shown to be beneficial against these disorders and diseases. In this chapter, we provide a broad overview on hypothalamic microinflammation, focusing on its features, inducers, and shared pathogenic roles in metabolic syndrome and aging.
Collapse
Affiliation(s)
- Dongsheng Cai
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Sinan Khor
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
5
|
Diet-Induced Obesity Mice Execute Pulmonary Cell Apoptosis via Death Receptor and ER-Stress Pathways after E. coli Infection. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6829271. [PMID: 32685099 PMCID: PMC7338970 DOI: 10.1155/2020/6829271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/15/2020] [Accepted: 05/30/2020] [Indexed: 12/11/2022]
Abstract
Obesity has developed into a considerable health problem in the whole world. Escherichia coli (E. coli) can cause nosocomial pneumonia and induce cell apoptosis during injury and infection. Normal (lean) and diet-induced obesity mice (DIO, fed with high-fat diet) were chosen to perform nasal instillation with E. coli to establish a nonfatal acute pneumonia model. At 0 h, 12 h, 24 h, and 72 h postinfection, lung tissues were obtained to measure cell apoptosis. As shown in this study, both lean and DIO mice exhibited histopathological lesions of acute pneumonia and increased cell apoptosis in the lung infected with E. coli. Interestingly, the relative mRNA and protein expressions associated with either endoplasmic reticulum stress or death receptor apoptotic pathway were all dramatically increased in the DIO mice after infection, while only significant upregulation of death receptor apoptotic pathway in the lean mice at 72 h. These results indicated that the DIO mice executed excess cell apoptosis in the nonfatal acute pneumonia induced by E. coli infection through endoplasmic reticulum stress and death receptor apoptotic pathway.
Collapse
|
6
|
Buie JJ, Watson LS, Smith CJ, Sims-Robinson C. Obesity-related cognitive impairment: The role of endothelial dysfunction. Neurobiol Dis 2019; 132:104580. [PMID: 31454547 PMCID: PMC6834913 DOI: 10.1016/j.nbd.2019.104580] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/27/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022] Open
Abstract
Obesity is a global pandemic associated with macro- and microvascular endothelial dysfunction. Microvascular endothelial dysfunction has recently emerged as a significant risk factor for the development of cognitive impairment. In this review, we present evidence from clinical and preclinical studies supporting a role for obesity in cognitive impairment. Next, we discuss how obesity-related hyperinsulinemia/insulin resistance, systemic inflammation, and gut dysbiosis lead to cognitive impairment through induction of endothelial dysfunction and disruption of the blood brain barrier. Finally, we outline the potential clinical utility of dietary interventions, exercise, and bariatric surgery in circumventing the impacts of obesity on cognitive function.
Collapse
Affiliation(s)
- Joy Jones Buie
- WISSDOM Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Luke S Watson
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA; Molecular and Cellular Biology and Pathobiology Program, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Crystal J Smith
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Catrina Sims-Robinson
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA; Molecular and Cellular Biology and Pathobiology Program, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
7
|
Di Gregorio I, Busiello RA, Burgos Aceves MA, Lepretti M, Paolella G, Lionetti L. Environmental Pollutants Effect on Brown Adipose Tissue. Front Physiol 2019; 9:1891. [PMID: 30687113 PMCID: PMC6333681 DOI: 10.3389/fphys.2018.01891] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 12/14/2018] [Indexed: 12/19/2022] Open
Abstract
Brown adipose tissue (BAT) with its thermogenic function due to the presence of the mitochondrial uncoupling protein 1 (UCP1), has been positively associated with improved resistance to obesity and metabolic diseases. During recent years, the potential influence of environmental pollutants on energetic homoeostasis and obesity development has drawn increased attention. The purpose of this review is to discuss how regulation of BAT function could be involved in the environmental pollutant effect on body energy metabolism. We mainly focused in reviewing studies on animal models, which provide a better insight into the cellular mechanisms involved in this effect on body energy metabolism. The current literature supports the hypothesis that some environmental pollutants, acting as endocrine disruptors (EDCs), such as dichlorodiphenyltrichoroethane (DDT) and its metabolite dichlorodiphenylethylene (DDE) as well as some, traffic pollutants, are associated with increased obesity risk, whereas some other chemicals, such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), had a reverse association with obesity. Noteworthy, the EDCs associated with obesity and metabolic disorders impaired BAT mass and function. Perinatal exposure to DDT impaired BAT thermogenesis and substrate utilization, increasing susceptibility to metabolic syndrome. Ambient particulate air pollutions induced insulin resistance associated with BAT mitochondrial dysfunction. On the other hand, the environmental pollutants (PFOS/PFOA) elicited a reduction in body weight and adipose mass associated with upregulation of UCP1 and increased oxidative capacity in brown-fat mitochondria. Further research is needed to better understand the physiological role of BAT in response to exposure to both obesogenic and anti-obesogenic pollutants and to confirm the same role in humans.
Collapse
Affiliation(s)
| | | | | | | | | | - Lillà Lionetti
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Fisciano, Italy
| |
Collapse
|
8
|
Ferguson BS, Nam H, Morrison RF. Dual-specificity phosphatases regulate mitogen-activated protein kinase signaling in adipocytes in response to inflammatory stress. Cell Signal 2019; 53:234-245. [DOI: 10.1016/j.cellsig.2018.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 01/14/2023]
|
9
|
Pahlavani M, Wijayatunga NN, Kalupahana NS, Ramalingam L, Gunaratne PH, Coarfa C, Rajapakshe K, Kottapalli P, Moustaid-Moussa N. Transcriptomic and microRNA analyses of gene networks regulated by eicosapentaenoic acid in brown adipose tissue of diet-induced obese mice. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1523-1531. [PMID: 30261280 PMCID: PMC6298436 DOI: 10.1016/j.bbalip.2018.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/01/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022]
Abstract
Brown adipose tissue (BAT) dissipates chemical energy as heat via thermogenesis and protects against obesity by increasing energy expenditure. However, regulation of BAT by dietary factors remains largely unexplored at the mechanistic level. We investigated the effect of eicosapentaenoic acid (EPA) on BAT metabolism. Male C57BL/6J (B6) mice were fed either a high-fat diet (HF, 45% kcal fat) or HF diet supplemented with EPA (HF-EPA, 6.75% kcal EPA) for 11 weeks. RNA sequencing (RNA-Seq) and microRNA (miRNA) profiling were performed on RNA from BAT using Illumina HiSeq and Illumina Genome Analyzer NextSeq, respectively. We conducted pathway analyses using ingenuity pathway analysis software (IPA®) and validated some genes and miRNAs using qPCR. We identified 479 genes that were differentially expressed (2-fold change, n = 3, P ≤ 0.05) in BAT from HF compared to HF-EPA. Genes negatively correlated with thermogenesis such as hypoxia inducible factor 1 alpha subunit inhibitor (Hif1an), were downregulated by EPA. Pathways related to thermogenesis such as peroxisome proliferator-activated receptor (PPAR) were upregulated by EPA while pathways associated with obesity and inflammation such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were downregulated by EPA. MiRNA profiling identified nine and six miRNAs that were upregulated and downregulated by EPA, respectively (log2 fold change > 1.25, n = 3, P ≤ 0.05). Key regulatory miRNAs which were involved in thermogenesis, such as miR-455-3p and miR-129-5p were validated using qPCR. In conclusion, the depth of transcriptomic and miRNA profiling revealed novel mRNA-miRNA interaction networks in BAT which are involved in thermogenesis, and regulated by EPA.
Collapse
Affiliation(s)
- Mandana Pahlavani
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States; Obesity Research Cluster, Texas Tech University, Lubbock, TX, United States
| | - Nadeeja N Wijayatunga
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States
| | - Nishan S Kalupahana
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States; Obesity Research Cluster, Texas Tech University, Lubbock, TX, United States; Department of Physiology, University of Peradeniya, Sri Lanka
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States; Obesity Research Cluster, Texas Tech University, Lubbock, TX, United States
| | - Preethi H Gunaratne
- Department of Biology and Biochemistry, University of Houston, United States
| | - Cristian Coarfa
- Department of Molecular and Cell Biology, Houston, TX, United States
| | - Kimal Rajapakshe
- Department of Molecular and Cell Biology, Houston, TX, United States
| | - Pratibha Kottapalli
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, United States
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States; Obesity Research Cluster, Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|
10
|
Abstract
The hypothalamus is the brain region responsible for the maintenance of energetic homeostasis. The regulation of this process arises from the ability of the hypothalamus to orchestrate complex physiological responses such as food intake and energy expenditure, circadian rhythm, stress response, and fertility. Metabolic alterations such as obesity can compromise these hypothalamic regulatory functions. Alterations in circadian rhythm, stress response, and fertility further contribute to aggravate the metabolic dysfunction of obesity and contribute to the development of chronic disorders such as depression and infertility.At cellular level, obesity caused by overnutrition can damage the hypothalamus promoting inflammation and impairing hypothalamic neurogenesis. Furthermore, hypothalamic neurons suffer apoptosis and impairment in synaptic plasticity that can compromise the proper functioning of the hypothalamus. Several factors contribute to these phenomena such as ER stress, oxidative stress, and impairments in autophagy. All these observations occur at the same time and it is still difficult to discern whether inflammatory processes are the main drivers of these cellular dysfunctions or if the hypothalamic hormone resistance (insulin, leptin, and ghrelin) can be pinpointed as the source of several of these events.Understanding the mechanisms that underlie the pathophysiology of obesity in the hypothalamus is crucial for the development of strategies that can prevent or attenuate the deleterious effects of obesity.
Collapse
|
11
|
Nelson CN, List EO, Ieremia M, Constantin L, Chhabra Y, Kopchick JJ, Waters MJ. Growth hormone activated STAT5 is required for induction of beige fat in vivo. Growth Horm IGF Res 2018; 42-43:40-51. [PMID: 30193158 DOI: 10.1016/j.ghir.2018.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/21/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The anti-obesity actions of growth hormone (GH) led us to investigate if GH signaling is able to regulate beige/brite fat development of white adipose tissue (WAT). METHODS We studied WAT in GHR-391 mice engineered to be unable to activate STAT5 in response to GH, in mice with adipose specific deletion of GHR, in GHR-/- mice and in bGH transgenic mice. QPCR, immunoblots and immunohistochemistry were used to characterize WAT. The in vivo effects of β-3 adrenergic activation with CL-316,243 and that of FGF21 infusion were also studied. RESULTS GHR-391 mice had lower surface temperature than WT, with deficiency in β-oxidation and beiging transcripts including Ucp1. Oxidative phosphorylation complex subunit proteins were decreased dramatically in GHR-391 inguinal white adipose tissue (iWAT), but increased in bGH iWAT, as were proteins for beige/brown markers. In accord with its lack of β-3 adrenergic receptors, iWAT of GHR-391 mice did not beige in response to administration of the β-3 specific agonist CL-316,243 in contrast to WT mice. GHR-391 mice are deficient in FGF21, but unlike WT, infusion of the purified protein was without effect on extent of beiging. Finally, fat-specific deletion of the GHR replicated the loss of beiging associated transcripts. CONCLUSION In addition to promoting lipolysis, our study suggests that GH is able to promote formation of beige adipose tissue through activation of STAT5 and induction of Adrb3. This sensitizes WAT to adrenergic input, and may contribute to the anti-obesity actions of GH.
Collapse
Affiliation(s)
- Caroline N Nelson
- Institute for Molecular Bioscience, University of Queensland, 4069, Australia
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Makerita Ieremia
- Institute for Molecular Bioscience, University of Queensland, 4069, Australia
| | - Lena Constantin
- Institute for Molecular Bioscience, University of Queensland, 4069, Australia
| | - Yash Chhabra
- Institute for Molecular Bioscience, University of Queensland, 4069, Australia
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Michael J Waters
- Institute for Molecular Bioscience, University of Queensland, 4069, Australia.
| |
Collapse
|
12
|
Paradoxical role of tumor necrosis factor on metabolic dysfunction and adipose tissue expansion in mice. Nutrition 2018; 50:1-7. [DOI: 10.1016/j.nut.2017.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 06/30/2017] [Accepted: 07/08/2017] [Indexed: 12/20/2022]
|
13
|
Kim J, Kwon YH, Kim CS, Tu TH, Kim BS, Joe Y, Chung HT, Goto T, Kawada T, Park T, Choi MS, Kim MS, Yu R. The involvement of 4-1BB/4-1BBL signaling in glial cell-mediated hypothalamic inflammation in obesity. FEBS Open Bio 2018; 8:843-853. [PMID: 29744298 PMCID: PMC5929936 DOI: 10.1002/2211-5463.12426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/09/2018] [Accepted: 03/29/2018] [Indexed: 01/12/2023] Open
Abstract
Obesity‐induced inflammation occurs not only in peripheral tissues but also in areas of the central nervous system. Glial cells such as astrocytes and microglia play crucial roles in obesity‐related hypothalamic inflammation, leading to the derangement of energy metabolism and neurodegenerative pathologies. Here, we show that the interaction of 4‐1BB/4‐1BBL between lipid‐laden astrocytes/microglia promotes hypothalamic inflammation in obesity. Stimulation of 4‐1BB, a member of the TNF receptor superfamily, and/or its ligand 4‐1BBL on astrocytes and/or microglia with a specific agonist resulted in activation of the inflammatory signaling pathway and enhanced production of inflammatory mediators. Contact coculture of lipid‐laden astrocytes and microglia increased the production of inflammatory mediators, and blockade of the 4‐1BB/4‐1BBL interaction reduced the inflammatory response. Moreover, deficiency of 4‐1BB reduced hypothalamic inflammation in obese mice fed an high‐fat diet. These findings suggest that 4‐1BBL/4‐1BB signaling enhances the glial cell‐mediated inflammatory cross talk and participates in obesity‐induced hypothalamic inflammation.
Collapse
Affiliation(s)
- Jiye Kim
- Department of Food Science and Nutrition University of Ulsan South Korea
| | - Yoon-Hee Kwon
- Department of Food Science and Nutrition University of Ulsan South Korea
| | - Chu-Sook Kim
- Department of Food Science and Nutrition University of Ulsan South Korea
| | - Thai H Tu
- Department of Food Science and Nutrition University of Ulsan South Korea
| | - Byung-Sam Kim
- Department of Biological Science University of Ulsan South Korea
| | - Yeonsoo Joe
- Department of Biological Science University of Ulsan South Korea
| | - Hun T Chung
- Department of Biological Science University of Ulsan South Korea
| | - Tsuyoshi Goto
- Graduate School of Agriculture Kyoto University Uji Japan
| | - Teruo Kawada
- Graduate School of Agriculture Kyoto University Uji Japan
| | - Taesun Park
- Department of Food and Nutrition Yonsei University Seoul South Korea
| | - Myung-Sook Choi
- Department of Food Science and Nutrition Center for Food and Nutritional Genomics Research Kyungpook National University Daegu South Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism University of Ulsan College of Medicine Seoul South Korea
| | - Rina Yu
- Department of Food Science and Nutrition University of Ulsan South Korea
| |
Collapse
|
14
|
Marthandam Asokan S, Hung TH, Chiang WD, Lin WT. Lipolysis-Stimulating Peptide from Soybean Protects Against High Fat Diet-Induced Apoptosis in Skeletal Muscles. J Med Food 2018; 21:225-232. [DOI: 10.1089/jmf.2017.3941] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Shibu Marthandam Asokan
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Tsu-Han Hung
- Department of Hospitality Management, College of Agriculture, Tunghai University, Taichung, Taiwan, Republic of China
| | - Wen-Dee Chiang
- Department of Food Science, College of Agriculture, Tunghai University, Taichung, Taiwan, Republic of China
| | - Wan-Teng Lin
- Department of Hospitality Management, College of Agriculture, Tunghai University, Taichung, Taiwan, Republic of China
| |
Collapse
|
15
|
Habibian JS, Jefic M, Bagchi RA, Lane RH, McKnight RA, McKinsey TA, Morrison RF, Ferguson BS. DUSP5 functions as a feedback regulator of TNFα-induced ERK1/2 dephosphorylation and inflammatory gene expression in adipocytes. Sci Rep 2017; 7:12879. [PMID: 29018280 PMCID: PMC5635013 DOI: 10.1038/s41598-017-12861-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue inflammation is a central pathological element that regulates obesity-mediated insulin resistance and type II diabetes. Evidence demonstrates that extracellular signal-regulated kinase (ERK 1/2) activation (i.e. phosphorylation) links tumor necrosis factor α (TNFα) to pro-inflammatory gene expression in the nucleus. Dual specificity phosphatases (DUSPs) inactivate ERK 1/2 through dephosphorylation and can thus inhibit inflammatory gene expression. We report that DUSP5, an ERK1/2 phosphatase, was induced in epididymal white adipose tissue (WAT) in response to diet-induced obesity. Moreover, DUSP5 mRNA expression increased during obesity development concomitant to increases in TNFα expression. Consistent with in vivo findings, DUSP5 mRNA expression increased in adipocytes in response to TNFα, parallel with ERK1/2 dephosphorylation. Genetic loss of DUSP5 exacerbated TNFα-mediated ERK 1/2 signaling in 3T3-L1 adipocytes and in adipose tissue of mice. Furthermore, inhibition of ERK 1/2 and c-Jun N terminal kinase (JNK) signaling attenuated TNFα-induced DUSP5 expression. These data suggest that DUSP5 functions in the feedback inhibition of ERK1/2 signaling in response to TNFα, which resulted in increased inflammatory gene expression. Thus, DUSP5 potentially acts as an endogenous regulator of adipose tissue inflammation; although its role in obesity-mediated inflammation and insulin signaling remains unclear.
Collapse
Affiliation(s)
- Justine S Habibian
- University of Nevada, Department of Agriculture, Nutrition, and Veterinary Sciences, Reno, Reno, Nevada, 89557, USA
| | - Mitra Jefic
- University of Nevada, Department of Agriculture, Nutrition, and Veterinary Sciences, Reno, Reno, Nevada, 89557, USA
| | - Rushita A Bagchi
- University of Colorado Denver-Anschutz Medical Campus, Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, Aurora, Colorado, 80045, USA
| | - Robert H Lane
- Medical College of Wisconsin, Department of Pediatrics, Milwaukee, Wisconsin, 53226, USA
| | - Robert A McKnight
- University of Utah, Department of Pediatrics, Salt Lake City, Utah, 84108, USA
| | - Timothy A McKinsey
- University of Colorado Denver-Anschutz Medical Campus, Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, Aurora, Colorado, 80045, USA
| | - Ron F Morrison
- University of North Carolina Greensboro, Department of Nutrition, Greensboro, North Carolina, 27412, USA.
| | - Bradley S Ferguson
- University of Nevada, Department of Agriculture, Nutrition, and Veterinary Sciences, Reno, Reno, Nevada, 89557, USA.
| |
Collapse
|
16
|
Abstract
The hypothalamus is an evolutionarily conserved brain structure that regulates an organism's basic functions, such as homeostasis and reproduction. Several hypothalamic nuclei and neuronal circuits have been the focus of many studies seeking to understand their role in regulating these basic functions. Within the hypothalamic neuronal populations, the arcuate melanocortin system plays a major role in controlling homeostatic functions. The arcuate pro-opiomelanocortin (POMC) neurons in particular have been shown to be critical regulators of metabolism and reproduction because of their projections to several brain areas both in and outside of the hypothalamus, such as autonomic regions of the brain stem and spinal cord. Here, we review and discuss the current understanding of POMC neurons from their development and intracellular regulators to their physiological functions and pathological dysregulation.
Collapse
Affiliation(s)
- Chitoku Toda
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut 06520; .,Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Anna Santoro
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut 06520; .,Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Jung Dae Kim
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut 06520; .,Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Sabrina Diano
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut 06520; .,Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520.,Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520.,Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
17
|
Hu Z, Chen M, Zhou H, Tharakan A, Wang X, Qiu L, Liang S, Qin X, Zhang Y, Wang W, Xu Y, Ying Z. Inactivation of TNF/LT locus alters mouse metabolic response to concentrated ambient PM 2.5. Toxicology 2017; 390:100-108. [PMID: 28917655 DOI: 10.1016/j.tox.2017.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/24/2017] [Accepted: 09/13/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Exposure to ambient fine particulate matter (PM2.5) is associated with increased cardiometabolic morbidity and mortality. This is widely believed to be attributable to PM2.5 exposure-induced pulmonary and subsequent systemic inflammation. Tumor necrosis factor alpha (TNFα), lymphotoxin α (LTα), and lymphotoxin β (LTβ) are three homologous pro-inflammatory cytokines, each with both unique and redundant activities in inflammation. Their role in PM2.5 exposure-induced inflammation and adverse cardiometabolic effects has to be determined. METHODS AND RESULTS LTα/TNFα/LTβ triple-knockout (TNF/LT KO) and wildtype (WT) mice were exposed to concentrated ambient PM2.5 (CAP) for 5 months. Lung pathological analysis revealed that TNF/LT deficiency reduced CAP exposure-induced pulmonary inflammation. However, glucose homeostasis assessments showed that TNF/LT deficiency significantly aggravated CAP exposure-induced glucose intolerance and insulin resistance. Consistent with glucose homeostasis assessments, CAP exposure significantly increased the body weight and adiposity of TNF/LT KO but not WT mice. In contrast to its body weight effects, CAP exposure reduced food intake of WT but not TNF/LT KO mice. On the other hand, CAP exposure induced marked fat droplet accumulation in brown adipose tissues of WT mice and significantly decreased their uncoupling protein 1 (UCP1) expression, and these effects were markedly exacerbated in TNF/LT KO mice. CONCLUSION The present study suggests that TNF/LT deficiency influences PM2.5 exposure-induced response of energy metabolism through alterations in both food intake and energy expenditure.
Collapse
Affiliation(s)
- Ziying Hu
- Department of Endocrinology, The People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, Henan 450003, China; Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Minjie Chen
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Huifen Zhou
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Pathology, Hubei University of Science and Technology, Xianning, Hubei 437100, China.
| | - Anui Tharakan
- Department of Otolaryngology, John Hopkins University, Baltimore, MD 21205, USA.
| | - Xiaoke Wang
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Occupational and Environmental Health, School of Public Health, Nantong University, Nantong 226019, China.
| | - Lianglin Qiu
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Occupational and Environmental Health, School of Public Health, Nantong University, Nantong 226019, China.
| | - Shuai Liang
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Xiaobo Qin
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Yuhao Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Wanjun Wang
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Zhekang Ying
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
18
|
Abstract
Obesity, a major risk factor for the development of diabetes mellitus, cardiovascular diseases and certain types of cancer, arises from a chronic positive energy balance that is often due to unlimited access to food and an increasingly sedentary lifestyle on the background of a genetic and epigenetic vulnerability. Our understanding of the humoral and neuronal systems that mediate the control of energy homeostasis has improved dramatically in the past few decades. However, our ability to develop effective strategies to slow the current epidemic of obesity has been hampered, largely owing to the limited knowledge of the mechanisms underlying resistance to the action of metabolic hormones such as leptin and ghrelin. The development of resistance to leptin and ghrelin, hormones that are crucial for the neuroendocrine control of energy homeostasis, is a hallmark of obesity. Intensive research over the past several years has yielded tremendous progress in our understanding of the cellular pathways that disrupt the action of leptin and ghrelin. In this Review, we discuss the molecular mechanisms underpinning resistance to leptin and ghrelin and how they can be exploited as targets for pharmacological management of obesity.
Collapse
Affiliation(s)
- Huxing Cui
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52246, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - Miguel López
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52246, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
19
|
Kwan HY, Wu J, Su T, Chao XJ, Liu B, Fu X, Chan CL, Lau RHY, Tse AKW, Han QB, Fong WF, Yu ZL. Cinnamon induces browning in subcutaneous adipocytes. Sci Rep 2017; 7:2447. [PMID: 28550279 PMCID: PMC5446408 DOI: 10.1038/s41598-017-02263-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/10/2017] [Indexed: 11/24/2022] Open
Abstract
Browning is the process of increasing the number of brite cells, which helps to increase energy expenditure and reduce obesity. Consumption of natural and non-toxic herbal extracts that possess the browning effect is an attractive anti-obesity strategy. In this study, we examined the browning effect of cinnamon extract. We found that cinnamon extract (CE) induced typical brown adipocyte multiocular phenotype in 3T3-L1 adipocytes. The treatment also increased brown adipocytes markers and reduced white adipocytes markers in the 3T3-L1 adipocytes. In ex vivo studies, we found that CE increased brown adipocytes markers in the subcutaneous adipocytes isolated from db/db mice and diet-induced obesity (DIO) mice. However, CE did not significantly affect UCP1 expression in the adipocytes isolated from perinephric adipose tissue and epididymal adipose tissue. β3-adernergic receptor (β3-AR) antagonist reduced the CE-enhanced UCP1 expression, suggesting an involvement of the β3-AR activity. Oral administration of CE significantly increased UCP1 expression in the subcutaneous adipose tissue in vivo and reduced the body weight of the DIO mice. Taken together, our data suggest that CE has a browning effect in subcutaneous adipocytes. Our study suggests a natural non-toxic herbal remedy to reduce obesity.
Collapse
Affiliation(s)
- Hiu Yee Kwan
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China. .,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.
| | - Jiahui Wu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Tao Su
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Xiao-Juan Chao
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Bin Liu
- Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiuqiong Fu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Chi Leung Chan
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Rebecca Hiu Ying Lau
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Anfernee Kai Wing Tse
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Quan Bin Han
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Wang Fun Fong
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Zhi-Ling Yu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China. .,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.
| |
Collapse
|
20
|
Jussara ( Euterpe edulis Mart.) supplementation during pregnancy and lactation modulates UCP-1 and inflammation biomarkers induced by trans-fatty acids in the brown adipose tissue of offspring. CLINICAL NUTRITION EXPERIMENTAL 2017. [DOI: 10.1016/j.yclnex.2016.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Pascoal LB, Bombassaro B, Ramalho AF, Coope A, Moura RF, Correa-da-Silva F, Ignacio-Souza L, Razolli D, de Oliveira D, Catharino R, Velloso LA. Resolvin RvD2 reduces hypothalamic inflammation and rescues mice from diet-induced obesity. J Neuroinflammation 2017; 14:5. [PMID: 28086928 PMCID: PMC5234140 DOI: 10.1186/s12974-016-0777-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/09/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Diet-induced hypothalamic inflammation is an important mechanism leading to dysfunction of neurons involved in controlling body mass. Studies have shown that polyunsaturated fats can reduce hypothalamic inflammation. Here, we evaluated the presence and function of RvD2, a resolvin produced from docosahexaenoic acid, in the hypothalamus of mice. METHODS Male Swiss mice were fed either chow or a high-fat diet. RvD2 receptor and synthetic enzymes were evaluated by real-time PCR and immunofluorescence. RvD2 was determined by mass spectrometry. Dietary and pharmacological approaches were used to modulate the RvD2 system in the hypothalamus, and metabolic phenotype consequences were determined. RESULTS All enzymes involved in the synthesis of RvD2 were detected in the hypothalamus and were modulated in response to the consumption of dietary saturated fats, leading to a reduction of hypothalamic RvD2. GPR18, the receptor for RvD2, which was detected in POMC and NPY neurons, was also modulated by dietary fats. The substitution of saturated by polyunsaturated fats in the diet resulted in increased hypothalamic RvD2, which was accompanied by reduced body mass and improved glucose tolerance. The intracerebroventricular treatment with docosahexaenoic acid resulted in increased expression of the RvD2 synthetic enzymes, increased expression of anti-inflammatory cytokines and improved metabolic phenotype. Finally, intracerebroventricular treatment with RvD2 resulted in reduced adiposity, improved glucose tolerance and increased hypothalamic expression of anti-inflammatory cytokines. CONCLUSIONS Thus, RvD2 is produced in the hypothalamus, and its receptor and synthetic enzymes are modulated by dietary fats. The improved metabolic outcomes of RvD2 make this substance an attractive approach to treat obesity.
Collapse
Affiliation(s)
- Livia B Pascoal
- Obesity and Comorbidities Research Center, Laboratory of Cell Signaling, University of Campinas, Campinas, SP, 13084-761, Brazil
| | - Bruna Bombassaro
- Obesity and Comorbidities Research Center, Laboratory of Cell Signaling, University of Campinas, Campinas, SP, 13084-761, Brazil
| | - Albina F Ramalho
- Obesity and Comorbidities Research Center, Laboratory of Cell Signaling, University of Campinas, Campinas, SP, 13084-761, Brazil
| | - Andressa Coope
- Obesity and Comorbidities Research Center, Laboratory of Cell Signaling, University of Campinas, Campinas, SP, 13084-761, Brazil
| | - Rodrigo F Moura
- Obesity and Comorbidities Research Center, Laboratory of Cell Signaling, University of Campinas, Campinas, SP, 13084-761, Brazil
| | - Felipe Correa-da-Silva
- Obesity and Comorbidities Research Center, Laboratory of Cell Signaling, University of Campinas, Campinas, SP, 13084-761, Brazil
| | - Leticia Ignacio-Souza
- Obesity and Comorbidities Research Center, Laboratory of Cell Signaling, University of Campinas, Campinas, SP, 13084-761, Brazil
| | - Daniela Razolli
- Obesity and Comorbidities Research Center, Laboratory of Cell Signaling, University of Campinas, Campinas, SP, 13084-761, Brazil
| | - Diogo de Oliveira
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Rodrigo Catharino
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Licio A Velloso
- Obesity and Comorbidities Research Center, Laboratory of Cell Signaling, University of Campinas, Campinas, SP, 13084-761, Brazil.
| |
Collapse
|
22
|
Jais A, Brüning JC. Hypothalamic inflammation in obesity and metabolic disease. J Clin Invest 2017; 127:24-32. [PMID: 28045396 DOI: 10.1172/jci88878] [Citation(s) in RCA: 326] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Over the last years, hypothalamic inflammation has been linked to the development and progression of obesity and its sequelae. There is accumulating evidence that this inflammation not only impairs energy balance but also contributes to obesity-associated insulin resistance. Elevated activation of key inflammatory mediators such as JNK and IκB kinase (IKK) occurs rapidly upon consumption of a high-fat diet, even prior to significant weight gain. This activation of hypothalamic inflammatory pathways results in the uncoupling of caloric intake and energy expenditure, fostering overeating and further weight gain. In addition, these inflammatory processes contribute to obesity-associated insulin resistance and deterioration of glucose metabolism via altered neurocircuit functions. An understanding of the contributions of different neuronal and non-neuronal cell types to hypothalamic inflammatory processes, and delineation of the differences and similarities between acute and chronic activation of these inflammatory pathways, will be critical for the development of novel therapeutic strategies for the treatment of obesity and metabolic syndrome.
Collapse
|
23
|
Wauman J, Zabeau L, Tavernier J. The Leptin Receptor Complex: Heavier Than Expected? Front Endocrinol (Lausanne) 2017; 8:30. [PMID: 28270795 PMCID: PMC5318964 DOI: 10.3389/fendo.2017.00030] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/01/2017] [Indexed: 12/31/2022] Open
Abstract
Under normal physiological conditions, leptin and the leptin receptor (ObR) regulate the body weight by balancing food intake and energy expenditure. However, this adipocyte-derived hormone also directs peripheral processes, including immunity, reproduction, and bone metabolism. Leptin, therefore, can act as a metabolic switch connecting the body's nutritional status to high energy consuming processes. We provide an extensive overview of current structural insights on the leptin-ObR interface and ObR activation, coupling to signaling pathways and their negative regulation, and leptin functioning under normal and pathophysiological conditions (obesity, autoimmunity, cancer, … ). We also discuss possible cross-talk with other receptor systems on the receptor (extracellular) and signaling cascade (intracellular) levels.
Collapse
Affiliation(s)
- Joris Wauman
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Medical Biotechnology Center, VIB, Ghent, Belgium
| | - Lennart Zabeau
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Medical Biotechnology Center, VIB, Ghent, Belgium
| | - Jan Tavernier
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Medical Biotechnology Center, VIB, Ghent, Belgium
- *Correspondence: Jan Tavernier,
| |
Collapse
|
24
|
Barateiro A, Mahú I, Domingos AI. Leptin Resistance and the Neuro-Adipose Connection. Front Endocrinol (Lausanne) 2017; 8:45. [PMID: 28321206 PMCID: PMC5337508 DOI: 10.3389/fendo.2017.00045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/20/2017] [Indexed: 01/30/2023] Open
Affiliation(s)
- Andreia Barateiro
- Obesity Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| | - Ines Mahú
- Obesity Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Ana I. Domingos
- Obesity Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
- *Correspondence: Ana I. Domingos,
| |
Collapse
|
25
|
Abstract
Brown adipose tissue (BAT) is the main site of adaptive thermogenesis and experimental studies have associated BAT activity with protection against obesity and metabolic diseases, such as type 2 diabetes mellitus and dyslipidaemia. Active BAT is present in adult humans and its activity is impaired in patients with obesity. The ability of BAT to protect against chronic metabolic disease has traditionally been attributed to its capacity to utilize glucose and lipids for thermogenesis. However, BAT might also have a secretory role, which could contribute to the systemic consequences of BAT activity. Several BAT-derived molecules that act in a paracrine or autocrine manner have been identified. Most of these factors promote hypertrophy and hyperplasia of BAT, vascularization, innervation and blood flow, processes that are all associated with BAT recruitment when thermogenic activity is enhanced. Additionally, BAT can release regulatory molecules that act on other tissues and organs. This secretory capacity of BAT is thought to be involved in the beneficial effects of BAT transplantation in rodents. Fibroblast growth factor 21, IL-6 and neuregulin 4 are among the first BAT-derived endocrine factors to be identified. In this Review, we discuss the current understanding of the regulatory molecules (the so-called brown adipokines or batokines) that are released by BAT that influence systemic metabolism and convey the beneficial metabolic effects of BAT activation. The identification of such adipokines might also direct drug discovery approaches for managing obesity and its associated chronic metabolic diseases.
Collapse
Affiliation(s)
- Francesc Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona, Avda Diagonal 643, 08028-Barcelona, Catalonia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Facultat de Biologia, Universitat de Barcelona, Avda Diagonal 643, 08028-Barcelona, Catalonia, Spain
| | - Rubén Cereijo
- CIBER Fisiopatología de la Obesidad y Nutrición, Facultat de Biologia, Universitat de Barcelona, Avda Diagonal 643, 08028-Barcelona, Catalonia, Spain
| | - Joan Villarroya
- CIBER Fisiopatología de la Obesidad y Nutrición, Facultat de Biologia, Universitat de Barcelona, Avda Diagonal 643, 08028-Barcelona, Catalonia, Spain
| | - Marta Giralt
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona, Avda Diagonal 643, 08028-Barcelona, Catalonia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Facultat de Biologia, Universitat de Barcelona, Avda Diagonal 643, 08028-Barcelona, Catalonia, Spain
| |
Collapse
|
26
|
Calegari VC, Torsoni AS, Vanzela EC, Araújo EP, Morari J, Zoppi CC, Sbragia L, Boschero AC, Velloso LA. Inflammation of the hypothalamus leads to defective pancreatic islet function. J Biol Chem 2016; 291:26935. [PMID: 28011877 DOI: 10.1074/jbc.a110.173021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
27
|
Relationship Between Obesity, Alzheimer’s Disease, and Parkinson’s Disease: an Astrocentric View. Mol Neurobiol 2016; 54:7096-7115. [PMID: 27796748 DOI: 10.1007/s12035-016-0193-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/03/2016] [Indexed: 12/13/2022]
|
28
|
Hanatani S, Motoshima H, Takaki Y, Kawasaki S, Igata M, Matsumura T, Kondo T, Senokuchi T, Ishii N, Kawashima J, Kukidome D, Shimoda S, Nishikawa T, Araki E. Acetate alters expression of genes involved in beige adipogenesis in 3T3-L1 cells and obese KK-Ay mice. J Clin Biochem Nutr 2016; 59:207-214. [PMID: 27895388 PMCID: PMC5110936 DOI: 10.3164/jcbn.16-23] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/13/2016] [Indexed: 12/15/2022] Open
Abstract
The induction of beige adipogenesis within white adipose tissue, known as "browning", has received attention as a novel potential anti-obesity strategy. The expression of some characteristic genes including PR domain containing 16 is induced during the browning process. Although acetate has been reported to suppress weight gain in both rodents and humans, its potential effects on beige adipogenesis in white adipose tissue have not been fully characterized. We examined the effects of acetate treatment on 3T3-L1 cells and in obese diabetic KK-Ay mice. The mRNA expression levels of genes involved in beige adipocyte differentiation and genes selectively expressed in beige adipocytes were significantly elevated in both 3T3-L1 cells incubated with 1.0 mM acetate and the visceral white adipose tissue from mice treated with 0.6% acetate for 16 weeks. In KK-Ay mice, acetate reduced the food efficiency ratio and increased the whole-body oxygen consumption rate. Additionally, reduction of adipocyte size and uncoupling protein 1-positive adipocytes and interstitial areas with multilocular adipocytes appeared in the visceral white adipose tissue of acetate-treated mice, suggesting that acetate induced initial changes of "browning". In conclusion, acetate alters the expression of genes involved in beige adipogenesis and might represent a potential therapeutic agent to combat obesity.
Collapse
Affiliation(s)
- Satoko Hanatani
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Hiroyuki Motoshima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yuki Takaki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Shuji Kawasaki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Motoyuki Igata
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Takeshi Matsumura
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Tatsuya Kondo
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Takafumi Senokuchi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Norio Ishii
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Junji Kawashima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Daisuke Kukidome
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Seiya Shimoda
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Takeshi Nishikawa
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| |
Collapse
|
29
|
Han C, Rice MW, Cai D. Neuroinflammatory and autonomic mechanisms in diabetes and hypertension. Am J Physiol Endocrinol Metab 2016; 311:E32-41. [PMID: 27166279 PMCID: PMC4967151 DOI: 10.1152/ajpendo.00012.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/03/2016] [Indexed: 02/07/2023]
Abstract
Interdisciplinary studies in the research fields of endocrinology and immunology show that obesity-associated overnutrition leads to neuroinflammatory molecular changes, in particular in the hypothalamus, chronically causing various disorders known as elements of metabolic syndrome. In this process, neural or hypothalamic inflammation impairs the neuroendocrine and autonomic regulation of the brain over blood pressure and glucose homeostasis as well as insulin secretion, and elevated sympathetic activation has been appreciated as a critical mediator. This review describes the involved physiology and mechanisms, with a focus on glucose and blood pressure balance, and suggests that neuroinflammation employs the autonomic nervous system to mediate the development of diabetes and hypertension.
Collapse
Affiliation(s)
- Cheng Han
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York
| | - Matthew W Rice
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York
| | - Dongsheng Cai
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
30
|
Han C, Wu W, Ale A, Kim MS, Cai D. Central Leptin and Tumor Necrosis Factor-α (TNFα) in Diurnal Control of Blood Pressure and Hypertension. J Biol Chem 2016; 291:15131-42. [PMID: 27226618 DOI: 10.1074/jbc.m116.730408] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Indexed: 12/21/2022] Open
Abstract
Leptin and TNFα can individually work in the brain to affect blood pressure; however, it remains unknown whether these two cytokines might have an interactive role in this process and, if so, how. In this work, we found that leptin stimulation led to TNFα production under both in vitro and in vivo conditions, and diurnal fluctuation of leptin concentrations in the cerebrospinal fluid predicted the circadian changes of TNFα gene expression in the hypothalamus. Signaling analysis showed that leptin stimulation led to a rapid and strong STAT3 activation followed by a second-phase moderate STAT3 activation, which was selectively abolished by anti-inflammatory chemical PS1145 or TNFα antagonist WP9QY. Physiological study in normal mice revealed that diurnal rise of blood pressure was abrogated following central administration of PS1145 or a leptin receptor antagonist. Central TNFα pretreatment was found to potentiate the effect of leptin in elevating blood pressure in normal mice. In pathophysiology, dietary obesity mimicked TNFα pretreatment in promoting leptin-induced blood pressure rise, and this effect was blocked by central treatment with either PS1145 or WP9QY. Hence, central leptin employs TNFα to mediate the diurnal blood pressure elevation in physiology while enhancement of this mechanism can contribute to hypertension development.
Collapse
Affiliation(s)
- Cheng Han
- From the Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York 10461 and
| | - Wenhe Wu
- From the Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York 10461 and Key Laboratory of Laboratory Medicine, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Albert Ale
- From the Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York 10461 and
| | - Min Soo Kim
- From the Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York 10461 and
| | - Dongsheng Cai
- From the Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York 10461 and
| |
Collapse
|
31
|
Coope A, Torsoni AS, Velloso LA. MECHANISMS IN ENDOCRINOLOGY: Metabolic and inflammatory pathways on the pathogenesis of type 2 diabetes. Eur J Endocrinol 2016; 174:R175-87. [PMID: 26646937 DOI: 10.1530/eje-15-1065] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/07/2015] [Indexed: 12/17/2022]
Abstract
Obesity is the main risk factor for type 2 diabetes (T2D). Studies performed over the last 20 years have identified inflammation as the most important link between these two diseases. During the development of obesity, there is activation of subclinical inflammatory activity in tissues involved in metabolism and energy homeostasis. Intracellular serine/threonine kinases activated in response to inflammatory factors can catalyse the inhibitory phosphorylation of key proteins of the insulin-signalling pathway, leading to insulin resistance. Moreover, during the progression of obesity and insulin resistance, the pancreatic islets are also affected by inflammation, contributing to β-cell failure and leading to the onset of T2D. In this review, we will present the main mechanisms involved in the activation of obesity-associated metabolic inflammation and discuss potential therapeutic opportunities that can be developed to treat obesity-associated metabolic diseases.
Collapse
Affiliation(s)
- Andressa Coope
- Laboratory of Cell SignalingApplied Sciences FacultyUniversity of Campinas, 13084-970 Campinas, São Paulo, Brazil
| | - Adriana S Torsoni
- Laboratory of Cell SignalingApplied Sciences FacultyUniversity of Campinas, 13084-970 Campinas, São Paulo, Brazil
| | - Licio A Velloso
- Laboratory of Cell SignalingApplied Sciences FacultyUniversity of Campinas, 13084-970 Campinas, São Paulo, Brazil
| |
Collapse
|
32
|
Sakamoto T, Nitta T, Maruno K, Yeh YS, Kuwata H, Tomita K, Goto T, Takahashi N, Kawada T. Macrophage infiltration into obese adipose tissues suppresses the induction of UCP1 level in mice. Am J Physiol Endocrinol Metab 2016; 310:E676-E687. [PMID: 26884382 DOI: 10.1152/ajpendo.00028.2015] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/13/2016] [Indexed: 12/12/2022]
Abstract
Emergence of thermogenic adipocytes such as brown and beige adipocytes is critical for whole body energy metabolism. Promoting the emergence of these adipocytes, which increase energy expenditure, could be a viable strategy in treating obesity and its related diseases. However, little is known regarding the mechanisms that regulate the emergence of these adipocytes in obese adipose tissue. Here, we demonstrated that classically activated macrophages (M1 Mϕ) suppress the induction of thermogenic adipocytes in obese adipose tissues of mice. Cold exposure significantly induced the expression levels of uncoupling protein-1 (UCP1), which is a mitochondrial protein unique in thermogenic adipocytes, in C57BL/6 mice fed a normal diet. However, UCP1 induction was significantly suppressed in adipose tissues of C57BL/6 mice fed a high-fat diet, into which M1 Mϕ infiltrated. Depletion of M1 Mϕ using clodronate liposomes eliminated the suppressive effect and markedly reduced the mRNA level of tumor necrosis factor-α (TNFα) in the adipose tissues. Importantly, consistent with the observed changes in the expression levels of marker genes for thermogenic adipocytes, combination treatment of clodronate liposome and cold exposure resulted in metabolic benefits such as lowered body weight and blood glucose level in obese mice. Moreover, intraperitoneal injection of recombinant TNFα protein suppressed UCP1 induction in lean adipose tissues of mice. Collectively, our data indicate that infiltrated M1 Mϕ suppress the induction of thermogenic adipocytes in obese adipose tissues via TNFα. This report suggests that inflammation induced by infiltrated Mϕ could cause not only insulin resistance but also reduction of energy expenditure in adipose tissues.
Collapse
Affiliation(s)
- Tomoya Sakamoto
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Uji, Kyoto University, Kyoto, Japan
| | - Takahiro Nitta
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Uji, Kyoto University, Kyoto, Japan
| | - Koji Maruno
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Uji, Kyoto University, Kyoto, Japan
| | - Yu-Sheng Yeh
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Uji, Kyoto University, Kyoto, Japan
| | - Hidetoshi Kuwata
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Uji, Kyoto University, Kyoto, Japan
| | - Koichi Tomita
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi, Japan
| | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Uji, Kyoto University, Kyoto, Japan
- Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Nobuyuki Takahashi
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Uji, Kyoto University, Kyoto, Japan
- Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Teruo Kawada
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Uji, Kyoto University, Kyoto, Japan;
- Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| |
Collapse
|
33
|
Shahid M, Javed AA, Chandra D, Ramsey HE, Shah D, Khan MF, Zhao L, Wu MX. IEX-1 deficiency induces browning of white adipose tissue and resists diet-induced obesity. Sci Rep 2016; 6:24135. [PMID: 27063893 PMCID: PMC4827096 DOI: 10.1038/srep24135] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/21/2016] [Indexed: 12/27/2022] Open
Abstract
Chronic inflammation plays a crucial role in the pathogenesis of obesity and insulin resistance. However, the primary mediators that affect energy homeostasis remain ill defined. Here, we report an unexpected role for immediate early response gene X-1 (IEX-1), a downstream target of NF-κB, in energy metabolism. We found that IEX-1 expression was highly induced in white adipose tissue (WAT) in both epidydmal and subcutaneous depots but not in interscapular brown adipose tissue (BAT) in mice fed a high fat diet (HFD). Null mutation of IEX-1 protected mice against HFD-induced adipose and hepatic inflammation, hepatic steatosis, and insulin resistance. Unexpectedly, IEX-1 knockout (IEX-1(-/-)) mice gained markedly less weight on HFD for 20 weeks as compared to wild-type (WT) littermates (37 ± 3 versus 48 ± 2 gm) due to increased energy expenditure. Mechanistically, we showed that IEX-1 deficiency induced browning and activated thermogenic genes program in WAT but not in BAT by promoting alternative activation of adipose macrophages. Consequently, IEX-1(-/-) mice exhibited enhanced thermogenesis (24 ± 0.1 versus 22 ± 0.1 kcal/hour/kg in WT mice) explaining increased energy expenditure and lean phenotype in these mice. In conclusion, the present study suggests that IEX-1 is a novel physiological regulator of energy homeostasis via its action in WAT.
Collapse
Affiliation(s)
- Mohd Shahid
- The Wellman Center for Photomedicine, Massachusetts General Hospital (MGH) and Department of Dermatology, Harvard Medical School (HMS), Boston, Massachusetts 02114 USA
| | - Ammar A Javed
- The Wellman Center for Photomedicine, Massachusetts General Hospital (MGH) and Department of Dermatology, Harvard Medical School (HMS), Boston, Massachusetts 02114 USA
| | - David Chandra
- The Wellman Center for Photomedicine, Massachusetts General Hospital (MGH) and Department of Dermatology, Harvard Medical School (HMS), Boston, Massachusetts 02114 USA
| | - Haley E Ramsey
- The Wellman Center for Photomedicine, Massachusetts General Hospital (MGH) and Department of Dermatology, Harvard Medical School (HMS), Boston, Massachusetts 02114 USA
| | - Dilip Shah
- The Wellman Center for Photomedicine, Massachusetts General Hospital (MGH) and Department of Dermatology, Harvard Medical School (HMS), Boston, Massachusetts 02114 USA
| | - Mohammed F Khan
- Department of Anesthesia, Critical Care and Pain Medicine, Shriners Hospitals for Children, MGH and HMS, Boston, MA 02114, USA
| | - Liping Zhao
- Department of Molecular Biology, MGH and HMS, Boston, Massachusetts USA
| | - Mei X Wu
- The Wellman Center for Photomedicine, Massachusetts General Hospital (MGH) and Department of Dermatology, Harvard Medical School (HMS), Boston, Massachusetts 02114 USA.,Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Boston, Massachusetts USA
| |
Collapse
|
34
|
Kwon O, Kim KW, Kim MS. Leptin signalling pathways in hypothalamic neurons. Cell Mol Life Sci 2016; 73:1457-77. [PMID: 26786898 PMCID: PMC11108307 DOI: 10.1007/s00018-016-2133-1] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/20/2015] [Accepted: 01/07/2016] [Indexed: 12/25/2022]
Abstract
Leptin is the most critical hormone in the homeostatic regulation of energy balance among those so far discovered. Leptin primarily acts on the neurons of the mediobasal part of hypothalamus to regulate food intake, thermogenesis, and the blood glucose level. In the hypothalamic neurons, leptin binding to the long form leptin receptors on the plasma membrane initiates multiple signaling cascades. The signaling pathways known to mediate the actions of leptin include JAK-STAT signaling, PI3K-Akt-FoxO1 signaling, SHP2-ERK signaling, AMPK signaling, and mTOR-S6K signaling. Recent evidence suggests that leptin signaling in hypothalamic neurons is also linked to primary cilia function. On the other hand, signaling molecules/pathways mitigating leptin actions in hypothalamic neurons have been extensively investigated in an effort to treat leptin resistance observed in obesity. These include SOCS3, tyrosine phosphatase PTP1B, and inflammatory signaling pathways such as IKK-NFκB and JNK signaling, and ER stress-mitochondrial signaling. In this review, we discuss leptin signaling pathways in the hypothalamus, with a particular focus on the most recently discovered pathways.
Collapse
Affiliation(s)
- Obin Kwon
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, 05505, Korea
| | - Ki Woo Kim
- Department of Pharmacology, Yonsei University Wonju College of Medicine, Wonju, 26426, Korea
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, 26426, Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, 05505, Korea.
| |
Collapse
|
35
|
Rummel C, Bredehöft J, Damm J, Schweighöfer H, Peek V, Harden LM. Obesity Impacts Fever and Sickness Behavior During Acute Systemic Inflammation. Physiology (Bethesda) 2016; 31:117-30. [PMID: 26889017 DOI: 10.1152/physiol.00049.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Obesity is reaching dramatic proportions in humans and is associated with a higher risk for cardiovascular disease, diabetes, and cognitive alterations, and a higher mortality during infection and inflammation. The focus of the present review is on the influence of obesity on the presentation of fever, sickness behavior, and inflammatory responses during acute systemic inflammation.
Collapse
Affiliation(s)
- Christoph Rummel
- Department of Veterinary-Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany; and
| | - Janne Bredehöft
- Department of Veterinary-Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany; and
| | - Jelena Damm
- Department of Veterinary-Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany; and
| | - Hanna Schweighöfer
- Department of Veterinary-Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany; and
| | - Verena Peek
- Department of Veterinary-Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany; and
| | - Lois M Harden
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
36
|
Zhang G, Sun Q, Liu C. Influencing Factors of Thermogenic Adipose Tissue Activity. Front Physiol 2016; 7:29. [PMID: 26903879 PMCID: PMC4742553 DOI: 10.3389/fphys.2016.00029] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/18/2016] [Indexed: 12/18/2022] Open
Abstract
Obesity is an escalating public health challenge and contributes tremendously to the disease burden globally. New therapeutic strategies are required to alleviate the health impact of obesity-related metabolic dysfunction. Brown adipose tissue (BAT) is specialized for dissipating chemical energy for thermogenesis as a defense against cold environment. Intriguingly, the brown-fat like adipocytes that dispersed throughout white adipose tissue (WAT) in rodents and humans, called "brite" or "beige" adipocytes, share similar thermogenic characteristics to brown adipocytes. Recently, researchers have focused on cognition of these thermogenic adipose tissues. Some factors have been identified to regulate the development and function of thermogenic adipose tissues. Cold exposure, pharmacological conditions, and lifestyle can enhance non-shivering thermogenesis and metabolism via some mechanisms. However, environmental pollutants, such as ambient fine particulates and ozone, may impair the function of these thermogenic adipose tissues and thereby induce metabolic dysfunction. In this review, the origin, function and influencing factors of thermogenic adipose tissues were summarized and it will provide insights into identifying new therapeutic strategies for the treatment of obesity and obesity-related diseases.
Collapse
Affiliation(s)
- Guoqing Zhang
- Department of Occupational and Environmental Health, Dalian Medical UniversityDalian, China; Basic Medical College, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Qinghua Sun
- Basic Medical College, Zhejiang Chinese Medical UniversityHangzhou, China; Division of Environmental Health Sciences, College of Public Health, Ohio State UniversityColumbus, OH, USA
| | - Cuiqing Liu
- Basic Medical College, Zhejiang Chinese Medical University Hangzhou, China
| |
Collapse
|
37
|
Valdearcos M, Xu AW, Koliwad SK. Hypothalamic inflammation in the control of metabolic function. Annu Rev Physiol 2015; 77:131-60. [PMID: 25668019 DOI: 10.1146/annurev-physiol-021014-071656] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diet-induced obesity leads to devastating and common chronic diseases, fueling ongoing interest in determining new mechanisms underlying both obesity and its consequences. It is now well known that chronic overnutrition produces a unique form of inflammation in peripheral insulin target tissues, and efforts to limit this inflammation have met with some success in preserving insulin sensitivity in obese individuals. Recently, the activation of inflammatory pathways by dietary excess has also been observed among cells located in the mediobasal hypothalamus, a brain area that exerts central control over peripheral glucose, fat, and energy metabolism. Here we review progress in the field of diet-induced hypothalamic inflammation, drawing key distinctions between metabolic inflammation in the hypothalamus and that occurring in peripheral tissues. We focus on specific stimuli of the inflammatory response, the roles of individual hypothalamic cell types, and the links between hypothalamic inflammation and metabolic function under normal and pathophysiological circumstances. Finally, we explore the concept of controlling hypothalamic inflammation to mitigate metabolic disease.
Collapse
|
38
|
Hypothalamic stearoyl-CoA desaturase-2 (SCD2) controls whole-body energy expenditure. Int J Obes (Lond) 2015; 40:471-8. [PMID: 26392016 DOI: 10.1038/ijo.2015.188] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 07/02/2015] [Accepted: 08/01/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND/OBJECTIVES Stearoyl-CoA desaturase-2 (SCD2) is the main δ9 desaturase expressed in the central nervous system. Because of its potential involvement in controlling whole-body adiposity, we evaluated the expression and function of SCD2 in the hypothalami of mice. SUBJECTS/METHODS Male mice of different strains were used in real-time PCR, immunoblot and metabolic experiments. In addition, antisense oligonucleotides and lentiviral vectors were used to reduce and increase the expression of SCD2 in the hypothalamus. RESULTS The level of SCD2 in the hypothalamus is similar to other regions of the central nervous system and is ~10-fold higher than in any other region of the body. In the arcuate nucleus, SCD2 is expressed in proopiomelanocortin and neuropeptide-Y neurons. Upon high fat feeding, the level of hypothalamic SCD2 increases. Inhibition of hypothalamic SCD2 as accomplished by two distinct approaches, an antisense oligonucleotide or a short-hairpin RNA delivered by a lentivirus, resulted in reduced body mass gain mostly due to increased energy expenditure and increased spontaneous activity. Increasing hypothalamic SCD2 by a lentivirus approach resulted in no change in body mass and food intake. CONCLUSIONS Thus, SCD2 is highly expressed in the hypothalami of rodents and its knockdown reduces body mass due to increased whole-body energy expenditure.
Collapse
|
39
|
Of mice and men: novel insights regarding constitutive and recruitable brown adipocytes. INTERNATIONAL JOURNAL OF OBESITY SUPPLEMENTS 2015; 5:S15-20. [PMID: 27152169 DOI: 10.1038/ijosup.2015.5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 02/12/2015] [Indexed: 01/02/2023]
Abstract
Recently, there has been great attention given to the possibility of combating obesity by targeting brown fat activity or increasing differentiation of brown adipocytes in white fat depots through a process termed 'browning'. Sympathetic innervation of brown and white adipose tissues provides adrenergic input that drives thermogenesis and regulates fatty acid metabolism, as well as stimulating adipogenesis of recruitable brown adipocyte tissue (rBAT, also known as beige or brite) in white fat. Other factors acting in an endocrine or autocrine/paracrine manner in adipose tissue may also stimulate browning. There have been significant recent advances in understanding the mechanisms of increasing adipose tissue energy expenditure, as well as how brown adipocytes appear in white fat depots, including via de novo adipogenesis from tissue precursor cells. In this article, we integrate this new knowledge with a historical perspective on the discovery of 'browning'. We also provide an overview of constitutive BAT vs rBAT in mouse and human.
Collapse
|
40
|
Velloso LA, Folli F, Saad MJ. TLR4 at the Crossroads of Nutrients, Gut Microbiota, and Metabolic Inflammation. Endocr Rev 2015; 36:245-71. [PMID: 25811237 DOI: 10.1210/er.2014-1100] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is accompanied by the activation of low-grade inflammatory activity in metabolically relevant tissues. Studies have shown that obesity-associated insulin resistance results from the inflammatory targeting and inhibition of key proteins of the insulin-signaling pathway. At least three apparently distinct mechanisms-endoplasmic reticulum stress, toll-like receptor (TLR) 4 activation, and changes in gut microbiota-have been identified as triggers of obesity-associated metabolic inflammation; thus, they are expected to represent potential targets for the treatment of obesity and its comorbidities. Here, we review the data that place TLR4 in the center of the events that connect the consumption of dietary fats with metabolic inflammation and insulin resistance. Changes in the gut microbiota can lead to reduced integrity of the intestinal barrier, leading to increased leakage of lipopolysaccharides and fatty acids, which can act upon TLR4 to activate systemic inflammation. Fatty acids can also trigger endoplasmic reticulum stress, which can be further stimulated by cross talk with active TLR4. Thus, the current data support a connection among the three main triggers of metabolic inflammation, and TLR4 emerges as a link among all of these mechanisms.
Collapse
Affiliation(s)
- Licio A Velloso
- Department of Internal Medicine (L.A.V., F.F., M.J.S.), University of Campinas, 13084-970 Campinas SP, Brazil; and Department of Medicine (F.F.), Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Franco Folli
- Department of Internal Medicine (L.A.V., F.F., M.J.S.), University of Campinas, 13084-970 Campinas SP, Brazil; and Department of Medicine (F.F.), Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Mario J Saad
- Department of Internal Medicine (L.A.V., F.F., M.J.S.), University of Campinas, 13084-970 Campinas SP, Brazil; and Department of Medicine (F.F.), Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| |
Collapse
|
41
|
Portovedo M, Ignacio-Souza LM, Bombassaro B, Coope A, Reginato A, Razolli DS, Torsoni MA, Torsoni AS, Leal RF, Velloso LA, Milanski M. Saturated fatty acids modulate autophagy's proteins in the hypothalamus. PLoS One 2015; 10:e0119850. [PMID: 25786112 PMCID: PMC4364755 DOI: 10.1371/journal.pone.0119850] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 01/19/2015] [Indexed: 11/18/2022] Open
Abstract
Autophagy is an important process that regulates cellular homeostasis by degrading dysfunctional proteins, organelles and lipids. In this study, the hypothesis that obesity could lead to impairment in hypothalamic autophagy in mice was evaluated by examining the hypothalamic distribution and content of autophagic proteins in animal with obesity induced by 8 or 16 weeks high fat diet to induce obesity and in response to intracerebroventricular injections of palmitic acid. The results showed that chronic exposure to a high fat diet leads to an increased expression of inflammatory markers and downregulation of autophagic proteins. In obese mice, autophagic induction leads to the downregulation of proteins, such as JNK and Bax, which are involved in the stress pathways. In neuron cell- line, palmitate has a direct effect on autophagy even without inflammatory activity. Understanding the cellular and molecular bases of overnutrition is essential for identifying new diagnostic and therapeutic targets for obesity.
Collapse
Affiliation(s)
- Mariana Portovedo
- Faculty of Applied Science, University of Campinas, UNICAMP, Limeira, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
| | | | - Bruna Bombassaro
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
| | - Andressa Coope
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
| | - Andressa Reginato
- Faculty of Applied Science, University of Campinas, UNICAMP, Limeira, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
| | - Daniela S. Razolli
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
| | - Márcio A. Torsoni
- Faculty of Applied Science, University of Campinas, UNICAMP, Limeira, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
| | - Adriana S. Torsoni
- Faculty of Applied Science, University of Campinas, UNICAMP, Limeira, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
| | - Raquel F. Leal
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
| | - Licio A. Velloso
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
| | - Marciane Milanski
- Faculty of Applied Science, University of Campinas, UNICAMP, Limeira, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
- * E-mail:
| |
Collapse
|
42
|
de Git KCG, Adan RAH. Leptin resistance in diet-induced obesity: the role of hypothalamic inflammation. Obes Rev 2015; 16:207-24. [PMID: 25589226 DOI: 10.1111/obr.12243] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/03/2014] [Accepted: 11/12/2014] [Indexed: 12/13/2022]
Abstract
The consumption of Western diets, high in sugar and saturated fat, is a crucial contributor to the alarming incidence of obesity and its associated morbidities. These diets have been reported to induce an inflammatory response in the hypothalamus, which promotes the development of central leptin resistance and obesity. This inflammatory signalling involves dynamic changes in the expression and activity of several mediators of the innate immune system, including toll-like receptor 4, IκB kinase-β/nuclear factor-κB, c-Jun N-terminal kinase, suppressor of cytokine signalling 3 and pro-inflammatory cytokines, as well as the induction of endoplasmic reticulum stress and autophagy defect. Although the exact cellular mechanisms remain incompletely understood, recent evidence suggests that the inflammatory response is at least mediated by interactions between neurons and non-neuronal cells such as microglia and astrocytes. Current evidence of the contribution of each inflammatory mediator to leptin resistance and diet-induced obesity (DIO), including their reciprocal interactions and cell-type-specific effects, is reviewed and integrated in a conceptual model. Based upon this model and pharmacological intervention studies, several inflammatory mediators are proposed to be promising therapeutic targets for the treatment of DIO.
Collapse
Affiliation(s)
- K C G de Git
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
43
|
Clarke JR, Lyra E Silva NM, Figueiredo CP, Frozza RL, Ledo JH, Beckman D, Katashima CK, Razolli D, Carvalho BM, Frazão R, Silveira MA, Ribeiro FC, Bomfim TR, Neves FS, Klein WL, Medeiros R, LaFerla FM, Carvalheira JB, Saad MJ, Munoz DP, Velloso LA, Ferreira ST, De Felice FG. Alzheimer-associated Aβ oligomers impact the central nervous system to induce peripheral metabolic deregulation. EMBO Mol Med 2015; 7:190-210. [PMID: 25617315 PMCID: PMC4328648 DOI: 10.15252/emmm.201404183] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 12/12/2014] [Accepted: 12/17/2014] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is associated with peripheral metabolic disorders. Clinical/epidemiological data indicate increased risk of diabetes in AD patients. Here, we show that intracerebroventricular infusion of AD-associated Aβ oligomers (AβOs) in mice triggered peripheral glucose intolerance, a phenomenon further verified in two transgenic mouse models of AD. Systemically injected AβOs failed to induce glucose intolerance, suggesting AβOs target brain regions involved in peripheral metabolic control. Accordingly, we show that AβOs affected hypothalamic neurons in culture, inducing eukaryotic translation initiation factor 2α phosphorylation (eIF2α-P). AβOs further induced eIF2α-P and activated pro-inflammatory IKKβ/NF-κB signaling in the hypothalamus of mice and macaques. AβOs failed to trigger peripheral glucose intolerance in tumor necrosis factor-α (TNF-α) receptor 1 knockout mice. Pharmacological inhibition of brain inflammation and endoplasmic reticulum stress prevented glucose intolerance in mice, indicating that AβOs act via a central route to affect peripheral glucose homeostasis. While the hypothalamus has been largely ignored in the AD field, our findings indicate that AβOs affect this brain region and reveal novel shared molecular mechanisms between hypothalamic dysfunction in metabolic disorders and AD.
Collapse
Affiliation(s)
- Julia R Clarke
- Institute of Medical Biochemistry Leopoldo de Meis Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil School of Pharmacy Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Natalia M Lyra E Silva
- Institute of Medical Biochemistry Leopoldo de Meis Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Claudia P Figueiredo
- School of Pharmacy Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rudimar L Frozza
- Institute of Medical Biochemistry Leopoldo de Meis Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jose H Ledo
- Institute of Medical Biochemistry Leopoldo de Meis Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Danielle Beckman
- Institute of Medical Biochemistry Leopoldo de Meis Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Carlos K Katashima
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil
| | - Daniela Razolli
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil
| | - Bruno M Carvalho
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil
| | - Renata Frazão
- Department of Anatomy, Institute of Biomedical Sciences University of São Paulo, SP, Brazil
| | - Marina A Silveira
- Department of Anatomy, Institute of Biomedical Sciences University of São Paulo, SP, Brazil
| | - Felipe C Ribeiro
- Institute of Medical Biochemistry Leopoldo de Meis Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Theresa R Bomfim
- Institute of Medical Biochemistry Leopoldo de Meis Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fernanda S Neves
- School of Pharmacy Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - William L Klein
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Rodrigo Medeiros
- Institute for Memory Impairments and Neurological Disorders University of California, Irvine, CA, USA
| | - Frank M LaFerla
- Institute for Memory Impairments and Neurological Disorders University of California, Irvine, CA, USA
| | - Jose B Carvalheira
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil
| | - Mario J Saad
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil
| | - Douglas P Munoz
- Center for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Licio A Velloso
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil Institute of Biophysics Carlos Chagas Filho Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
44
|
Sáinz N, Barrenetxe J, Moreno-Aliaga MJ, Martínez JA. Leptin resistance and diet-induced obesity: central and peripheral actions of leptin. Metabolism 2015; 64:35-46. [PMID: 25497342 DOI: 10.1016/j.metabol.2014.10.015] [Citation(s) in RCA: 315] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 12/15/2022]
Abstract
Obesity is a chronic disease that represents one of the most serious global health burdens associated to an excess of body fat resulting from an imbalance between energy intake and expenditure, which is regulated by environmental and genetic interactions. The adipose-derived hormone leptin acts via a specific receptor in the brain to regulate energy balance and body weight, although this protein can also elicit a myriad of actions in peripheral tissues. Obese individuals, rather than be leptin deficient, have in most cases, high levels of circulating leptin. The failure of these high levels to control body weight suggests the presence of a resistance process to the hormone that could be partly responsible of disturbances on body weight regulation. Furthermore, leptin resistance can impair physiological peripheral functions of leptin such as lipid and carbohydrate metabolism and nutrient intestinal utilization. The present document summarizes those findings regarding leptin resistance development and the role of this hormone in the development and maintenance of an obese state. Thus, we focused on the effect of the impaired leptin action on adipose tissue, liver, skeletal muscle and intestinal function and the accompanying relationships with diet-induced obesity. The involvement of some inflammatory mediators implicated in the development of obesity and their roles in leptin resistance development are also discussed.
Collapse
Affiliation(s)
- Neira Sáinz
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain
| | - Jaione Barrenetxe
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain
| | - María J Moreno-Aliaga
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Alfredo Martínez
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
45
|
Morari J, Anhe GF, Nascimento LF, de Moura RF, Razolli D, Solon C, Guadagnini D, Souza G, Mattos AH, Tobar N, Ramos CD, Pascoal VD, Saad MJ, Lopes-Cendes I, Moraes JC, Velloso LA. Fractalkine (CX3CL1) is involved in the early activation of hypothalamic inflammation in experimental obesity. Diabetes 2014; 63:3770-84. [PMID: 24947351 DOI: 10.2337/db13-1495] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hypothalamic inflammation is a common feature of experimental obesity. Dietary fats are important triggers of this process, inducing the activation of toll-like receptor-4 (TLR4) signaling and endoplasmic reticulum stress. Microglia cells, which are the cellular components of the innate immune system in the brain, are expected to play a role in the early activation of diet-induced hypothalamic inflammation. Here, we use bone marrow transplants to generate mice chimeras that express a functional TLR4 in the entire body except in bone marrow-derived cells or only in bone marrow-derived cells. We show that a functional TLR4 in bone marrow-derived cells is required for the complete expression of the diet-induced obese phenotype and for the perpetuation of inflammation in the hypothalamus. In an obesity-prone mouse strain, the chemokine CX3CL1 (fractalkine) is rapidly induced in the neurons of the hypothalamus after the introduction of a high-fat diet. The inhibition of hypothalamic fractalkine reduces diet-induced hypothalamic inflammation and the recruitment of bone marrow-derived monocytic cells to the hypothalamus; in addition, this inhibition reduces obesity and protects against diet-induced glucose intolerance. Thus, fractalkine is an important player in the early induction of diet-induced hypothalamic inflammation, and its inhibition impairs the induction of the obese and glucose intolerance phenotypes.
Collapse
Affiliation(s)
- Joseane Morari
- Laboratory of Cell Signaling, University of Campinas, Campinas, Brazil
| | - Gabriel F Anhe
- Department of Pharmacology, University of Campinas, Campinas, Brazil
| | | | | | - Daniela Razolli
- Laboratory of Cell Signaling, University of Campinas, Campinas, Brazil
| | - Carina Solon
- Laboratory of Cell Signaling, University of Campinas, Campinas, Brazil
| | - Dioze Guadagnini
- Laboratory of Experimental Endocrinology, University of Campinas, Campinas, Brazil
| | - Gabriela Souza
- Laboratory of Cell Signaling, University of Campinas, Campinas, Brazil
| | - Alexandre H Mattos
- Department of Medical Genetics, University of Campinas, Campinas, Brazil
| | - Natalia Tobar
- Department of Radiology, University of Campinas, Campinas, Brazil
| | - Celso D Ramos
- Department of Radiology, University of Campinas, Campinas, Brazil
| | - Vinicius D Pascoal
- Department of Medical Genetics, University of Campinas, Campinas, Brazil
| | - Mario J Saad
- Laboratory of Experimental Endocrinology, University of Campinas, Campinas, Brazil
| | - Iscia Lopes-Cendes
- Department of Medical Genetics, University of Campinas, Campinas, Brazil
| | - Juliana C Moraes
- Laboratory of Cell Signaling, University of Campinas, Campinas, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling, University of Campinas, Campinas, Brazil
| |
Collapse
|
46
|
Liu C, Fonken LK, Wang A, Maiseyeu A, Bai Y, Wang TY, Maurya S, Ko YA, Periasamy M, Dvonch T, Morishita M, Brook RD, Harkema J, Ying Z, Mukherjee B, Sun Q, Nelson RJ, Rajagopalan S. Central IKKβ inhibition prevents air pollution mediated peripheral inflammation and exaggeration of type II diabetes. Part Fibre Toxicol 2014; 11:53. [PMID: 25358444 PMCID: PMC4226918 DOI: 10.1186/s12989-014-0053-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 09/29/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Prior experimental and epidemiologic data support a link between exposure to fine ambient particulate matter (<2.5 μm in aerodynamic diameter, PM2.5) and development of insulin resistance/Type II diabetes mellitus (Type II DM). We investigated the role of hypothalamic inflammation in PM2.5-mediated diabetes development. METHODS KKay mice, a genetically susceptible model of Type II DM, were assigned to either concentrated PM2.5 or filtered air (FA) for 4-8 weeks via a versatile aerosol concentrator and exposure system, or administered intra-cerebroventricular with either IKKβ inhibitor (IMD-0354) or TNFα antibody (infliximab) for 4-5 weeks simultaneously with PM2.5 exposure. Glucose tolerance, insulin sensitivity, oxygen consumption and heat production were evaluated. At euthanasia, blood, spleen, visceral adipose tissue and hypothalamus were collected to measure inflammatory cells using flow cytometry. Standard immunohistochemical methods and quantitative PCR were used to assess targets of interest. RESULTS PM2.5 exposure led to hyperglycemia and insulin resistance, which was accompanied by increased hypothalamic IL-6, TNFα, and IKKβ mRNA expression and microglial/astrocyte reactivity. Targeting the NFκB pathway with intra-cerebroventricular administration of an IKKβ inhibitor [IMD-0354, n = 8 for each group)], but not TNFα blockade with infliximab [(n = 6 for each group], improved glucose tolerance, insulin sensitivity, rectified energy homeostasis (O2 consumption, CO2 production, respiratory exchange ratio and heat generation) and reduced peripheral inflammation in response to PM2.5. CONCLUSIONS Central inhibition of IKKβ prevents PM2.5 mediated peripheral inflammation and exaggeration of type II diabetes. These results provide novel insights into how air pollution may mediate susceptibility to insulin resistance and Type II DM.
Collapse
Affiliation(s)
- Cuiqing Liu
- />Department of Physiology, Hangzhou Normal University, Hangzhou, China
- />Wexner Medical Center, The Ohio State University, Columbus, OH USA
| | - Laura K Fonken
- />Wexner Medical Center, The Ohio State University, Columbus, OH USA
| | - Aixia Wang
- />Wexner Medical Center, The Ohio State University, Columbus, OH USA
| | - Andrei Maiseyeu
- />Division of Cardiovascular Medicine, University of Maryland, Baltimore, MD USA
| | - Yuntao Bai
- />Wexner Medical Center, The Ohio State University, Columbus, OH USA
| | - Tse-Yao Wang
- />Wexner Medical Center, The Ohio State University, Columbus, OH USA
| | - Santosh Maurya
- />Wexner Medical Center, The Ohio State University, Columbus, OH USA
| | - Yi-An Ko
- />Department of Biostatistics, University of Michigan, Ann Arbor, MI USA
| | - Muthu Periasamy
- />Wexner Medical Center, The Ohio State University, Columbus, OH USA
| | - Timothy Dvonch
- />Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI USA
| | - Masako Morishita
- />Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI USA
| | - Robert D Brook
- />Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI USA
| | - Jack Harkema
- />Center for Integrative Toxicology, Michigan State University, Lansing, MI USA
| | - Zhekang Ying
- />Division of Cardiovascular Medicine, University of Maryland, Baltimore, MD USA
| | - Bhramar Mukherjee
- />Department of Biostatistics, University of Michigan, Ann Arbor, MI USA
| | - Qinghua Sun
- />Wexner Medical Center, The Ohio State University, Columbus, OH USA
| | - Randy J Nelson
- />Wexner Medical Center, The Ohio State University, Columbus, OH USA
| | - Sanjay Rajagopalan
- />Division of Cardiovascular Medicine, University of Maryland, Baltimore, MD USA
| |
Collapse
|
47
|
Sharma BK, Patil M, Satyanarayana A. Negative regulators of brown adipose tissue (BAT)-mediated thermogenesis. J Cell Physiol 2014; 229:1901-7. [PMID: 24809334 DOI: 10.1002/jcp.24664] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/06/2014] [Indexed: 12/12/2022]
Abstract
Brown adipose tissue (BAT) is specialized for energy expenditure, a process called adaptive thermogenesis. PET-CT scans recently demonstrated the existence of metabolically active BAT in adult humans, which revitalized our interest in BAT. Increasing the amount and/or activity of BAT holds tremendous promise for the treatment of obesity and its associated diseases. PGC1α is the master regulator of UCP1-mediated thermogenesis in BAT. A number of proteins have been identified to influence thermogenesis either positively or negatively through regulating the expression or transcriptional activity of PGC1α. Therefore, BAT activation can be achieved by either inducing the expression of positive regulators of PGC1α or by inhibiting the repressors of the PGC1α/UCP1 pathway. Here, we review the most important negative regulators of PGC1α/UCP1 signaling and their mechanism of action in BAT-mediated thermogenesis.
Collapse
Affiliation(s)
- Bal Krishan Sharma
- Department of Biochemistry and Molecular Biology, Molecular Oncology and Biomarkers Program, Georgia Regents University Cancer Center, Georgia Regents University, Augusta, Georgia
| | | | | |
Collapse
|
48
|
Khan M, Joseph F. Adipose tissue and adipokines: the association with and application of adipokines in obesity. SCIENTIFICA 2014; 2014:328592. [PMID: 25309775 PMCID: PMC4182896 DOI: 10.1155/2014/328592] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/09/2014] [Indexed: 06/01/2023]
Abstract
2014 marks the 20th anniversary of adipokines. Through the identification of leptin, our perceived understanding of adipose tissue was changed instantaneously. From a simple dormant site of energy storage, adipose tissue is now recognized as an integral hub of various hormones known as adipokines. Although great strides have been made in characterizing these hormones in health, research also shows they are significantly implicated in a series of pathologies. One such condition is obesity. Defined as an excess of adipose tissue, obesity remains one of the greatest healthcare epidemics of the 21st century. With no definitive treatment, attention has shifted to understanding the role of adipokines in obesity. This review provides an introduction to the salient obesity-related adipokines and their possible application as a treatment for obesity.
Collapse
Affiliation(s)
- Muhammad Khan
- Countess of Chester Hospital NHS Foundation Trust, Countess of Chester Health Park, Liverpool Road, Chester CH2 1UL, UK
| | - Frank Joseph
- Countess of Chester Hospital NHS Foundation Trust, Countess of Chester Health Park, Liverpool Road, Chester CH2 1UL, UK
| |
Collapse
|
49
|
Chou CF, Lin YY, Wang HK, Zhu X, Giovarelli M, Briata P, Gherzi R, Garvey WT, Chen CY. KSRP ablation enhances brown fat gene program in white adipose tissue through reduced miR-150 expression. Diabetes 2014; 63:2949-61. [PMID: 24722250 PMCID: PMC4141372 DOI: 10.2337/db13-1901] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Brown adipose tissue oxidizes chemical energy for heat generation and energy expenditure. Promoting brown-like transformation in white adipose tissue (WAT) is a promising strategy for combating obesity. Here, we find that targeted deletion of KH-type splicing regulatory protein (KSRP), an RNA-binding protein that regulates gene expression at multiple levels, causes a reduction in body adiposity. The expression of brown fat-selective genes is increased in subcutaneous/inguinal WAT (iWAT) of Ksrp(-/-) mice because of the elevated expression of PR domain containing 16 and peroxisome proliferator-activated receptor gamma coactivator 1α, which are key regulators promoting the brown fat gene program. The expression of microRNA (miR)-150 in iWAT is decreased due to impaired primary miR-150 processing in the absence of KSRP. We show that miR-150 directly targets and represses Prdm16 and Ppargc1a, and that forced expression of miR-150 attenuates the elevated expression of brown fat genes caused by KSRP deletion. This study reveals the in vivo function of KSRP in controlling brown-like transformation of iWAT through post-transcriptional regulation of miR-150 expression.
Collapse
Affiliation(s)
- Chu-Fang Chou
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Yi-Yu Lin
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Hsu-Kun Wang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Xiaolin Zhu
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Matteo Giovarelli
- Gene Expression Regulation Laboratory, Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Paola Briata
- Gene Expression Regulation Laboratory, Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Roberto Gherzi
- Gene Expression Regulation Laboratory, Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - W Timothy Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Ching-Yi Chen
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
50
|
Gruben N, Shiri-Sverdlov R, Koonen DPY, Hofker MH. Nonalcoholic fatty liver disease: A main driver of insulin resistance or a dangerous liaison? Biochim Biophys Acta Mol Basis Dis 2014; 1842:2329-2343. [PMID: 25128743 DOI: 10.1016/j.bbadis.2014.08.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/02/2014] [Accepted: 08/07/2014] [Indexed: 12/17/2022]
Abstract
Insulin resistance is one of the key components of the metabolic syndrome and it eventually leads to the development of type 2 diabetes, making it one of the biggest medical problems of modern society. Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are tightly associated with insulin resistance. While it is fairly clear that insulin resistance causes hepatic steatosis, it is not known if NAFLD causes insulin resistance. Hepatic inflammation and lipid accumulation are believed to be the main drivers of hepatic insulin resistance in NAFLD. Here we give an overview of the evidence linking hepatic lipid accumulation to the development of insulin resistance, including the accumulation of triacylglycerol and lipid metabolites, such as diacylglycerol and ceramides. In particular, we discuss the role of obesity in this relation by reviewing the current evidence in terms of the reported changes in body weight and/or adipose tissue mass. We further discuss whether the activation or inhibition of inflammatory pathways, Kupffer cells and other immune cells influences the development of insulin resistance. We show that, in contrast to what is commonly believed, neither hepatic steatosis nor hepatic inflammation is sufficient to cause insulin resistance. Many studies show that obesity cannot be ignored as an underlying factor in this relationship and NAFLD is therefore less likely to be one of the main drivers of insulin resistance.
Collapse
Affiliation(s)
- Nanda Gruben
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Molecular Genetics Section, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Ronit Shiri-Sverdlov
- Maastricht University, Department of Molecular Genetics, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | - Debby P Y Koonen
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Molecular Genetics Section, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Marten H Hofker
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Molecular Genetics Section, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|