1
|
Iqbal U, Malik A, Sial NT, Mehmood MH, Uttra AM, Tulain UR, Erum A, Fayyaz-Ur-Rehman M, Welson NN, Mahmoud MH, Alexiou A, Papadakis M, El-Saber Bathia G. Eucalyptol attenuates indomethacin-induced gastric ulcers in rats by modulating the ICAM-1, eNOS and COX/LOX pathways: Insights from in silico, in vitro and in vivo approaches. Food Chem Toxicol 2025; 199:115319. [PMID: 39965739 DOI: 10.1016/j.fct.2025.115319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/07/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
In order to evaluate anti-inflammatory role of eucalyptol (100, 200, and 400 mg/kg orally), inflammation was induced in rats using 0.1 ml of histamine and 0.1 ml of formaldehyde. Furthermore, in vivo gastroprotective potential of eucalyptol (100, 200 and 400 mg/kg) was determined via the intraperitoneal injection of 25 mg/kg indomethacin as an ulcerative agent and omeprazole (30 mg/kg) orally as a standard. Estimation of biochemical (PGE2, ICAM-1, COX-I, COX-II, eNOS and 5-LOX) and oxidative stress (SOD, CAT, GSH, and MDA) markers were carried out in gastric tissues using ELISA. The morphological and histopathological features of the gastric tissues were studied. In vitro, eucalyptol stabilized red blood cell membranes and inhibited protein denaturation, with the maximum effect observed at a concentration of 6400 μg/mL. Eucalyptol significantly reduced rat paw edema in histamine- and formaldehyde-induced inflammation models. It increased gastric PGE2, COX-I and eNOS levels, and decreased COX-II, 5-LOX and ICAM-1. Eucalyptol reduced ulcer indices and improved histopathological changes. Eucalyptol also increased antioxidants levels with decreased MDA levels in isolated rat stomach tissues. Therefore, eucalyptol shows gastroprotective effects against histamine- and formaldehyde induced inflammation and indomethacin-induced gastric ulcers through the modulation of the COX/LOX, ICAM-1, eNOS pathways and oxidative stress biomarkers.
Collapse
Affiliation(s)
- Urooj Iqbal
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Pakistan; Primary and Secondary Health Care Department, Lahore, Punjab, Pakistan.
| | - Abdul Malik
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Pakistan.
| | - Nabeela Tabassum Sial
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Pakistan; Institute of Pharmacy, Lahore College for Women University, Lahore, Pakistan.
| | - Malik Hassan Mehmood
- Department of Pharmaceutical Sciences, Government College University Lahore, Pakistan.
| | - Ambreen Malik Uttra
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Pakistan.
| | - Ume Ruqia Tulain
- Department of Pharmaceutics, College of Pharmacy, University of Sargodha, Pakistan.
| | - Alia Erum
- Department of Pharmaceutics, College of Pharmacy, University of Sargodha, Pakistan.
| | | | - Nermeen N Welson
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, 62511, Beni Suef, Egypt.
| | - Mohamed H Mahmoud
- Department of Biochemistry, College of Science, King Saud University, Kingdom of Saudi Arabia.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India; Department of Research & Development, Funogen, Athens, 11741, Greece.
| | - Marios Papadakis
- University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Gaber El-Saber Bathia
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Damanhour, 22511, Egypt.
| |
Collapse
|
2
|
Gopalsamy RG, Antony PJ, Athesh K, Hillary VE, Montalvão MM, Hariharan G, Santana LADM, Borges LP, Gurgel RQ. Dietary essential oil components: A systematic review of preclinical studies on the management of gastrointestinal diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156630. [PMID: 40085990 DOI: 10.1016/j.phymed.2025.156630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND The gut is responsible for the digestion and absorption of nutrients, immune regulation, and barrier function. However, factors like poor diet, stress, and infection, can disrupt the balance of the gut microbiota and lead to intestinal inflammation and dysfunction. PURPOSE This systematic review aims to evaluate the effects of dietary plants-derived essential oil components on gut health and intestinal functions in animal models. METHODS The literature was gathered from the Scopus, Web of Science, PubMed, and Embase databases by using related search terms, such as "dietary plants", "dietary sources", "essential oils", "gut health", "intestine", "anti-inflammatory", "antioxidant", and "gut microbiota". RESULTS The results indicate that plant-derived dietary essential oil components, such as butyrolactone-I, carvacrol, cinnamaldehyde, citral, D-limonene, eugenol, farnesol, geraniol, indole, nerolidol, oleic acid, thymol, trans-anethole, vanillin, α-bisabolol, α-linolenic acid, α-pinene, α-terpineol, β-carotene, β-caryophyllene, and β-myrcene have been found to regulate gut health by influencing vital signalling pathways associated with inflammation. Dietary essential oil components modulate the expression of tumor necrosis factor alpha, interleukin 1 beta (IL-1β), interleukin (IL)-6, IL-10, inducible nitric oxide synthase, cyclooxygenase-2, toll-like receptor-4, matrix metalloproteinase, and interferon gamma in mitigating gut inflammation. The primary signalling molecules controlled by these molecules were AMP-activated protein kinase (AMPK), protein kinase B, extracellular signal-regulated kinase, c-Jun N-terminal kinase, mitogen-activated protein kinase, myeloid differentiation primary response 88, nuclear factor erythroid-2-related factor-2, and phosphoinositide 3-kinase (PI3K). Moreover, these phytochemicals have been shown to improve glucose homeostasis by regulating glucose transporter 4, glucagon-like peptide-1, peroxisome proliferator-activated receptor gamma, nuclear factor kappa B, AMPK, PI3K, and uncoupling protein-1. They can also reduce thiobarbituric acid reactive substance, malondialdehyde, and oxidative stress and enhance superoxide dismutase, catalase, and glutathione peroxidase levels. CONCLUSION In conclusion, dietary plants-derived essential oil components have the potential to mitigate inflammation and oxidative stress in the gut. However, additional clinical investigations are necessary to confirm their complete potential in improving human gut health functions.
Collapse
Affiliation(s)
- Rajiv Gandhi Gopalsamy
- Division of Phytochemistry and Drug-Design, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kochi, Kerala, India; Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe, Campus Prof. João Cardoso Nascimento, Aracaju, Sergipe, Brazil
| | - Poovathumkal James Antony
- Department of Microbiology, North Bengal University, St. Joseph's College, Darjeeling, West Bengal, India
| | - Kumaraswamy Athesh
- School of Sciences, Bharata Mata College (Autonomous), Kochi, Kerala, India
| | - Varghese Edwin Hillary
- Division of Phytochemistry and Drug-Design, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kochi, Kerala, India
| | | | | | | | - Lysandro Pinto Borges
- Department of Pharmacy, Federal University of Sergipe, São Cristovão, Sergipe, Brazil
| | - Ricardo Queiroz Gurgel
- Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe, Campus Prof. João Cardoso Nascimento, Aracaju, Sergipe, Brazil.
| |
Collapse
|
3
|
Feng Q, Song Y, Liu X, Huang Y, Yang J, Li Y, Li Q, Sun T. Application of tea tree oil nanoemulsion pads in Lateolabrax japonicas fillets. Food Sci Biotechnol 2025; 34:1921-1933. [PMID: 40196340 PMCID: PMC11972239 DOI: 10.1007/s10068-024-01812-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 04/09/2025] Open
Abstract
Abstract To improve the efficiency of biological preservatives, a novel slow-release system was constructed. The oil-in-water (O/W) nanoemulsions were prepared with tea tree essential oil (TTO) and its main components, 1,8-cineole (CN) and terpinen-4-oil (T4O) as core materials, and with tea saponin as surfactant. The preservation properties of the pad containing nanoemulsion slow-release system on Lateolabrax japonicus fillets were measured. The results showed that the nanoemulsion had good stability and can delay the release of essential oil, and the cumulative release percentage of TTO was as high as 81 % at 72 h. The establishment of nanoemulsions slow-release system effectively improved the preservation properties of the pad, and TTO nanoemulsion pad (TTO-NE-P) had the optimal preservation properties due to the synergistic effect of preservative ingredients and the sustained release system of the nanoemulsion. This study can provide technical support for the combined application of biological preservative agent and aquatic product pads. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01812-9.
Collapse
Affiliation(s)
- Qian Feng
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013 Liaoning China
| | - Ying Song
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013 Liaoning China
- SGS-CSTC Standards Technical Services Co., Ltd, Dalian, 116699 Liaoning China
| | - Xinyu Liu
- Department of Geriatrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000 Liaoning China
| | - Yanru Huang
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013 Liaoning China
| | - Junyi Yang
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013 Liaoning China
| | - Yingchang Li
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013 Liaoning China
| | - Qiuying Li
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013 Liaoning China
| | - Tong Sun
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013 Liaoning China
| |
Collapse
|
4
|
Liu Y, Wang K, Bi K, Xu L, Chisoro P, Pan F, Yang P, Zhang C, Blank I. Molecule Structural and Dynamic Properties Reveal the Release Rate of Odor-Active Compounds in Stewed Chicken. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40241257 DOI: 10.1021/acs.jafc.5c01080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
This study investigated the mechanism of odor release in meat proteins, using stewed chicken as a model. The aim was to substantiate to which extent odor release rates (ORR) depend on structural features of odorants. 52 odor-active compounds were screened following the molecular sensory science approach. Machine learning methods were trained with 14 key molecular descriptors to find correlation between ORR and the molecular structure of odorants. Molecular dynamics simulations were used to investigate the interaction between 18 odorants having odor activity values (OAV) ≥ 1 and heat-denatured myosin (HDM). The ORR is determined by the binding between odor molecules and HDM, with hydrophobic interactions acting as the primary driving force. These findings were confirmed by headspace measurements and the use of bond-disrupting agents. For the first time, this study examines the release behavior and structure-activity relationship of odor compounds with food proteins from a molecular structure perspective.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kangyu Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ke Bi
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lina Xu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Prince Chisoro
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Ping Yang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Imre Blank
- Zhejiang Yiming Food Co., LTD., Jiuting Center Huting North Street No.199, Shanghai 201600, China
| |
Collapse
|
5
|
Asle-Rousta M, Abdollahi M, Aghajari HM, Peirovy Y. Eucalyptol Attenuates Lead-Induced Anxiety-like Behaviors by Suppressing Oxidative Stress and Neuroinflammation, Modulating SIRT1/NF-κB Signaling, and Upregulating BDNF Expression. Biol Trace Elem Res 2025:10.1007/s12011-025-04616-y. [PMID: 40205256 DOI: 10.1007/s12011-025-04616-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Lead is an environmental pollutant that possesses harmful effects on the nervous system. The current study was conducted to investigate the impacts of eucalyptol, a type of monoterpene, on anxiety behaviors, oxidative stress, neuroinflammation, and neuronal death in the hippocampus of rats exposed to lead and its possible protective mechanism. Adult male Wistar rats were divided into Control, Lead, Eucalyptol, and Lead + Eucalyptol groups. The Lead and Lead + Eucalyptol groups were given lead acetate (25 mg/kg, gavage) daily for fourteen days. The Eucalyptol and Lead + Eucalyptol groups also received eucalyptol (100 mg/kg, gavage). The results showed that eucalyptol prevented an increase in malondialdehyde levels and a decrease in glutathione levels, as well as a reduction in the activity of superoxide dismutase and glutathione peroxidase enzymes in the hippocampus of Lead + Eucalyptol animals. It also prevented an increase in the expression of pro-inflammatory cytokines tumor necrosis factor-α, interleukin (IL)- 1β, and IL- 6, and a decrease in the expression of anti-inflammatory cytokine IL- 10. In addition, this monoterpene prevented the reduction in sirtuin 1 (SIRT1) expression and the increase in nuclear factor kappa b (NF-κB) expression. It enhanced the expression of brain-derived neurotrophic factor (BDNF) at the level of mRNA and protein and reduced neuronal death in different subfields of the hippocampus. Eucalyptol also improved the performance of rats receiving lead acetate in elevated plus maze and open field tests. We concluded that eucalyptol reduces anxiety behaviors in lead-exposed rats by suppressing oxidative stress, neuroinflammation, and neuronal death in the hippocampus. The anxiolytic effect of eucalyptol in lead pollution is likely mediated by modulating SIRT1/NF-κB signaling and increasing BDNF expression.
Collapse
Affiliation(s)
| | - Mojdeh Abdollahi
- Nanobiotechnology Research Center, Za.C., Islamic Azad University, Zanjan, Iran
| | | | - Yasaman Peirovy
- Nanobiotechnology Research Center, Za.C., Islamic Azad University, Zanjan, Iran
| |
Collapse
|
6
|
Luo D, Zhang Y, Jin L, Wu X, Yang C, Zhang T, Li G. Transcriptomic and metabolomic study of the biosynthetic pathways of bioactive components in Amomum tsaoko fruits. BMC PLANT BIOLOGY 2025; 25:212. [PMID: 39966750 PMCID: PMC11834249 DOI: 10.1186/s12870-025-06239-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
Amomum tsaoko is a significant medicinal and edible plant with documented efficacy in the treatment of various diseases. Additionally, it is a crucial food additive and spice. 1,8-cineole and curcumin are the main bioactive compounds of A. tsaoko, and research on these compounds has mainly focused on their chemical composition and pharmacological activity, with relatively less exploration of synthetic pathways and identification of key genes. This study employed transcriptome sequencing and metabolomic analysis of A. tsaoko at five different developmental stages (May fruit - September fruit) to assess the accumulation patterns of terpenoid and curcuminoid compounds and to explore the key genes and transcription factors (TFs) involved in their synthesis pathways. The results showed that three genes encoding 1-deoxy-D-xylulose-5-phosphate synthase (DXS), hydroxymethylglutaryl-CoA synthase (HMGCS) and phosphomevalonate kinase (mvaK2) and TFs such as AP2-ERF, bHLH, WRKY were screened for involvement in terpenoid biosynthesis. In addition, three genes encoding trans-cinnamate 4-monooxygenase (C4H), curcumin synthase (CURS) and TFs such as MYB, bHLH, bZIP were screened for involvement in curcuminoid biosynthesis. This study provides a theoretical foundation for further research into the biosynthesis of active components in A. tsaoko, establishing a basis for in-depth investigations into the mechanisms underlying its medicinal quality formation. Additionally, it offers guidance for the utilisation of its aromatic components and natural pigments.
Collapse
Affiliation(s)
- Dengli Luo
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China
| | - Yingmin Zhang
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Ling Jin
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Xien Wu
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Congwei Yang
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Ticao Zhang
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Guodong Li
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China.
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
7
|
Krol A, Kokotkiewicz A, Zabiegala B, Ciesielska-Figlon K, Bryl E, Witkowski JM, Bucinski A, Luczkiewicz M. Elicited Production of Essential Oil with Immunomodulatory Activity in Salvia apiana Microshoot Culture. Molecules 2025; 30:815. [PMID: 40005127 PMCID: PMC11858325 DOI: 10.3390/molecules30040815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Salvia apiana Jepson is an endemic North American species characterized by a rich phytochemical profile including abietane-type diterpenoids, phenolic acids, flavonoids, and thujone-free essential oil (EO). The current study was aimed at increasing EO production in bioreactor-grown S. apiana microshoot culture through biotic elicitation using chitosan, ergosterol, and yeast extract (YE). Additionally, the immunomodulatory effects of the major volatile constituent of white sage-1,8-cineole-as well as EOs obtained from both S. apiana microshoots and leaves of field-grown plants, were assessed. EOs were isolated via hydrodistillation and analyzed by GC/MS and GC/FID. Biological assays included flow cytometric evaluation of the proliferation and apoptosis rates of human CD4 and CD8 T lymphocytes, obtained from healthy volunteers and subjected to different concentrations of EOs and 1,8-cineole. Elicitation with 100 mg/L YE improved the production of EO in S. apiana microshoots by 9.4% (1.20% v/m). EOs from both microshoots and leaves of field-grown plants, as well as 1,8-cineole, demonstrated dose-dependent anti-proliferative and pro-apoptotic effects on CD4+ and CD8+ T cells. These findings highlight the potential of S. apiana microshoot cultures capable of producing EO with significant immunomodulatory activity.
Collapse
Affiliation(s)
- Agata Krol
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Gdansk, Gen. J. Hallera Street 107, 80-416 Gdansk, Poland; (A.K.); (M.L.)
| | - Adam Kokotkiewicz
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Gdansk, Gen. J. Hallera Street 107, 80-416 Gdansk, Poland; (A.K.); (M.L.)
| | - Bozena Zabiegala
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdansk, Poland;
| | - Klaudia Ciesielska-Figlon
- Department of Pathophysiology, Faculty of Medicine, Medical University of Gdansk, M. Skłodowskiej-Curie 3a Street, 80-211 Gdansk, Poland; (K.C.-F.); (E.B.); (J.M.W.)
| | - Ewa Bryl
- Department of Pathophysiology, Faculty of Medicine, Medical University of Gdansk, M. Skłodowskiej-Curie 3a Street, 80-211 Gdansk, Poland; (K.C.-F.); (E.B.); (J.M.W.)
| | - Jacek Maciej Witkowski
- Department of Pathophysiology, Faculty of Medicine, Medical University of Gdansk, M. Skłodowskiej-Curie 3a Street, 80-211 Gdansk, Poland; (K.C.-F.); (E.B.); (J.M.W.)
- Department of Embryology, Faculty of Medicine, Medical University of Gdansk, M. Skłodowskiej-Curie 3a Street, 80-211 Gdansk, Poland
| | - Adam Bucinski
- Department of Biopharmacy, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Jagiellonska Street 15, 85-067 Bydgoszcz, Poland;
| | - Maria Luczkiewicz
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Gdansk, Gen. J. Hallera Street 107, 80-416 Gdansk, Poland; (A.K.); (M.L.)
| |
Collapse
|
8
|
Strzelecki P, Karczewska M, Szalewska-Pałasz A, Nowicki D. Phytochemicals Controlling Enterohemorrhagic Escherichia coli (EHEC) Virulence-Current Knowledge of Their Mechanisms of Action. Int J Mol Sci 2025; 26:381. [PMID: 39796236 PMCID: PMC11719993 DOI: 10.3390/ijms26010381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a common pathotype of E. coli that causes numerous outbreaks of foodborne illnesses. EHEC is a zoonotic pathogen that is transmitted from animals to humans. Ruminants, particularly cattle, are considered important reservoirs for virulent EHEC strains. Humans can become infected with EHEC through the consumption of contaminated food and water or through direct contact with infected animals or humans. E. coli O157:H7 is one of the most commonly reported causes of foodborne illnesses in developed countries. The formation of attaching and effacing (A/E) lesions on the intestinal epithelium, combined with Shiga toxin production, is a hallmark of EHEC infection and can lead to lethal hemolytic-uremic syndrome (HUS). For the phage-dependent regulation of Shiga toxin production, antibiotic treatment is contraindicated, as it may exacerbate toxin production, limiting therapeutic options to supportive care. In response to this challenge and the growing threat of antibiotic resistance, phytochemicals have emerged as promising antivirulence agents. These plant-derived compounds target bacterial virulence mechanisms without promoting resistance. Therefore, the aim of this study is to summarize the recent knowledge on the use of phytochemicals targeting EHEC. We focused on the molecular basis of their action, targeting the principal virulence determinants of EHEC.
Collapse
Affiliation(s)
| | | | - Agnieszka Szalewska-Pałasz
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (P.S.); (M.K.)
| | - Dariusz Nowicki
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (P.S.); (M.K.)
| |
Collapse
|
9
|
Pereira GA, Copatti CE, Rocha ADS, Marchão RS, de Santana AS, Rocha DR, da Costa MM, Almeida JRGDS, de Figueiredo RACR, de Souza AM, Melo JFB. Physiological and growth responses of tambaqui (Colossoma macropomum) fed Croton conduplicatus essential oil and challenged with Aeromonas hydrophila. Vet Res Commun 2024; 49:58. [PMID: 39731705 DOI: 10.1007/s11259-024-10631-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024]
Abstract
This study aimed to assess the effect of Croton conduplicatus essential oil (CCEO) in diets for tambaqui (Colossoma macropomum) (14.50 ± 0.07 g), a native Amazonian fish. Five diets (29.25% digestible protein; 3063.14 kcal digestible energy) were prepared: 0.00 (control), 0.25, 0.50, 1.00, and 1.50 mL CCEO kg diet-1 and evaluated for 60 days, followed by 14 additional days of bacterial infection with Aeromonas hydrophila. Fish were fed until apparent satiation four times daily and maintained in 1,000-L tanks (n = 15 fish per tank; 5 tanks per treatment; randomized design) in a recirculatory aquaculture system. The main chemical compounds of CCEO were the monoterpenes 1,8-Cineole (20.72%), p-Cymene (12.45%), and α-Phellandrene (11.46%). Animals had no mortality, even after the bacterial infection, and CCEO did not influence the number of lesions in infected fish. According to quadratic regression analysis, feeding fish diets containing 0.85 mL CCEO kg-1 increased their growth parameters and feed intake. The feed conversion ratio was reduced with 0.25 mL CCEO kg diet-1. Before infection, the regression showed that the 1.00 mL CCEO kg diet-1 reduced erythrocytes and increased hemoglobin, hematimetric indices, plasma glucose, total cholesterol, albumin levels, and plasma and liver alanine aminotransferase (ALT) activities. After bacterial infection, quadratic regression analysis showed that the control group had the highest plasma glucose and albumin values, and the treatment 0.50 mL CCEO kg diet-1 increased mean corpuscular volume values and decreased plasma ALT activity. In conclusion, 0.85 mL CCEO kg diet-1 is recommended for tambaqui because it can potentially improve growth performance and hemato-biochemical responses; however, CCEO did not influence responses against aeromoniasis.
Collapse
Affiliation(s)
- Gilmar Amaro Pereira
- Universidade Federal do Vale do São Francisco (UNIVASF), Campus Ciências Agrárias, Km 12, BR 407, Lote 543, s/n, Projeto de Irrigação Senador Nilo Coelho, Petrolina, CEP 56300-000, PE, Brazil
| | - Carlos Eduardo Copatti
- Programa de Pós-Graduação em Zootecnia, Universidade Federal da Bahia (UFBA), Av. Milton Santos, 500, Ondina, Salvador, CEP 40170-110, BA, Brazil.
| | - Aline da Silva Rocha
- Programa de Pós-Graduação em Zootecnia, Universidade Federal da Bahia (UFBA), Av. Milton Santos, 500, Ondina, Salvador, CEP 40170-110, BA, Brazil
| | - Rafael Silva Marchão
- Universidade Federal do Vale do São Francisco (UNIVASF), Campus Ciências Agrárias, Km 12, BR 407, Lote 543, s/n, Projeto de Irrigação Senador Nilo Coelho, Petrolina, CEP 56300-000, PE, Brazil
| | - Aline Silva de Santana
- Universidade Federal do Vale do São Francisco (UNIVASF), Campus Ciências Agrárias, Km 12, BR 407, Lote 543, s/n, Projeto de Irrigação Senador Nilo Coelho, Petrolina, CEP 56300-000, PE, Brazil
| | - David Ramos Rocha
- Universidade Federal do Vale do São Francisco (UNIVASF), Campus Ciências Agrárias, Km 12, BR 407, Lote 543, s/n, Projeto de Irrigação Senador Nilo Coelho, Petrolina, CEP 56300-000, PE, Brazil
| | - Mateus Matiuzzi da Costa
- Universidade Federal do Vale do São Francisco (UNIVASF), Campus Ciências Agrárias, Km 12, BR 407, Lote 543, s/n, Projeto de Irrigação Senador Nilo Coelho, Petrolina, CEP 56300-000, PE, Brazil
| | - Jackson Roberto Guedes da Silva Almeida
- Núcleo de Estudos e Pesquisas de Plantas Medicinais, Universidade Federal do Vale do São Francisco (UNIVASF), Av. José de Sá Maniçoba, s/n - Centro, Petrolina, CEP 56304-205, PE, Brazil
| | | | - Anderson Miranda de Souza
- Universidade Federal do Vale do São Francisco (UNIVASF), Campus Ciências Agrárias, Km 12, BR 407, Lote 543, s/n, Projeto de Irrigação Senador Nilo Coelho, Petrolina, CEP 56300-000, PE, Brazil
| | - José Fernando Bibiano Melo
- Universidade Federal do Vale do São Francisco (UNIVASF), Campus Ciências Agrárias, Km 12, BR 407, Lote 543, s/n, Projeto de Irrigação Senador Nilo Coelho, Petrolina, CEP 56300-000, PE, Brazil
| |
Collapse
|
10
|
Pham TV, Ho DV, Tuan Le A, Duy Ngo Y, Thanh Thi Dang N, Quoc Le T, Nguyen BC. Chemical composition and biological activities of essential oil from Grewia bulot leaves. Nat Prod Res 2024; 38:4106-4112. [PMID: 37910669 DOI: 10.1080/14786419.2023.2275739] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
This study focused on the chemical composition and biological activities of the essential oil derived from Grewia bulot, a plant species known for its medicinal properties. The analysis of Grewia bulot essential oil revealed the presence of 78 constituents. The major compounds were α-cadinol (13.5%), 1,8-cineole (12.7%), 1,10-di-epi-cubenol (9.8%), epi-α-cadinol (6.7%), (E,E)-α-farnesene (5.9%), (E)-citral (4.0%), selin-11-en-4-α-ol (4.0%), citronellol isobutanoate (3.9%), and geranic acid (3.7%). The essential oil exhibited promising antioxidant potential with an IC50 value of 452.65 ± 28.40 µg/mL in DPPH model. This oil did not show NO production inhibitory effect in RAW 264.7 cells. In addition, the essential oil exhibited significant cytotoxicity against KB, Hep-G2, MCF-7, and SK-LU-1 cancer cell lines, with IC50 values ranging from 44.04 ± 1.47 to 74.20 ± 3.71 μg/mL.
Collapse
Affiliation(s)
- Ty Viet Pham
- Faculty of Chemistry, University of Education, Hue University, Hue City, Vietnam
| | - Duc Viet Ho
- Faculty of Pharmacy, University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Anh Tuan Le
- Mien Trung Institute for Scientific Research, Vietnam National Museum of Nature, VAST, Hue City, Vietnam
| | - Y Duy Ngo
- Faculty of Chemistry, University of Education, Hue University, Hue City, Vietnam
| | - Nhan Thanh Thi Dang
- Faculty of Chemistry, University of Education, Hue University, Hue City, Vietnam
| | - Thang Quoc Le
- Faculty of Chemistry, University of Education, Hue University, Hue City, Vietnam
| | - Bao Chi Nguyen
- Department of Science, Technology and International Relations, Hue University, Hue City, Vietnam
| |
Collapse
|
11
|
Baskaran D, Sathiamoorthy M, Govindarasu R, Byun HS. Comparing diverse extraction methodologies to infer the performance of 1,8-cineole extraction from Eucalyptus cinerea: process optimization, kinetics, and interaction mechanisms. RSC Adv 2024; 14:35529-35552. [PMID: 39507694 PMCID: PMC11539893 DOI: 10.1039/d4ra06050d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
Eucalyptus oil is highly valued for its anti-inflammatory, antiviral, and antibacterial qualities. Research has shown that it is a powerful combatant against cancer cells, making it an extremely interesting area of research. For the first time, the present study proposes to extract 1,8-cineole from Eucalyptus cinerea leaves using different extraction methodologies, namely, hydro-distillation (HD), Soxhlet (SE), ultrasonication (UE), and microwave (ME) extraction techniques. In conventional extraction, HD yielded a maximum of 72.85% 1,8-cineole using a minimum solid-solvent ratio of 1 : 10 g mL-1 within 3 h compared to SE. The first-order kinetic equation was applied in the HD experimental dataset to understand the extraction mechanism. In modern extraction technology, ME achieved the highest yield of 1,8-cineole (95.62%) at the optimal solid-solvent ratio of 2 g mL-1, extraction time of 4.5 min, and irradiation power of 640 W using the response surface methodology (RSM). Furthermore, the kinetic analysis of UE was investigated using three different empirical models. The chemical components of the essential oil extracted using each extraction method were identified as oxygenated monoterpenes, sesquiterpenes, and oxygenated sesquiterpenes using gas chromatography. Following extraction using various techniques, the morphology of spent leaves lost its distinct texture, their oil glands were entirely distorted, and their vascular bundles could still be identified. It was observed that the hydrogen bond interaction between the solvent molecule and 1,8-cineole-like value-added components played a role in the extraction. Among the investigated techniques, the solvent-free ME method is the most environmentally acceptable method and could effectively extract essential oil from E. cinerea leaves.
Collapse
Affiliation(s)
- Divya Baskaran
- Department of Chemical and Biomolecular Engineering, Chonnam National University Yeosu Jeonnam-59626 South Korea
- Department of Biomaterials, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences Chennai-600077 India
| | - Madhumitha Sathiamoorthy
- Department of Chemical Engineering, Sri Venkateswara College of Engineering Chennai-602117 India
| | - Ramasamy Govindarasu
- Department of Chemical Engineering, Sri Venkateswara College of Engineering Chennai-602117 India
| | - Hun-Soo Byun
- Department of Chemical and Biomolecular Engineering, Chonnam National University Yeosu Jeonnam-59626 South Korea
| |
Collapse
|
12
|
Savla SR, Bhatt LK. Exploration of anti-atherosclerotic activity of 1,8-cineole through network pharmacology, molecular docking, and in vivo efficacy studies in high-fat-diet-induced atherosclerosis in hamsters. Mol Divers 2024:10.1007/s11030-024-11015-3. [PMID: 39463214 DOI: 10.1007/s11030-024-11015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
The anti-atherogenic potential of liver X receptors (LXRs) has been attributed to their inhibitory role in macrophage-mediated inflammation and promotion of reverse cholesterol transport. This study aimed to evaluate the efficacy of an LXR agonist, 1,8-cineole (Eucalyptol), in atherosclerosis through network pharmacology, molecular docking, and in vivo efficacy studies in high-fat-diet-induced atherosclerosis in hamsters. Network pharmacology analysis was performed by identifying potential targets of 1,8-Cineole and atherosclerosis, followed by the construction of component-target-disease and protein-protein interaction networks. Gene Ontology and KEGG pathway enrichment analysis of targets were performed. The top 5 targets were selected for molecular docking studies. Atherosclerosis was induced in male Golden Syrian hamsters, and the results of network pharmacology were verified. Fifty-one overlapped targets were identified for 1,8-cineole and atherosclerosis. In the protein-protein interaction studies, the top 5 ranked proteins were PPARG, FXR, ABCA-1, ABCG1, and LXRΑ. KEGG pathway analysis and molecular docking showed that ABCA-1 and LXRΑ were correlated in atherosclerosis. Animal studies showed amelioration of atherosclerotic lesions in the aorta of animals treated with 1,8-cineole compared to disease control aortas. A dose-dependent attenuation in ABCA-1 levels and inflammatory markers was observed in animals treated with 1,8-cineole, comparable to its levels in normal animals. In conclusion, 1,8-cineole showed anti-atherosclerotic effects in Golden Syrian hamsters via LXRΑ-induced ABCA-1 overexpression.
Collapse
Affiliation(s)
- Shreya R Savla
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India.
| |
Collapse
|
13
|
Ma M, Fu H, Wang T, Xiong L, Feng P, Lu B. Widely targeted volatilomics and transcriptome analyses reveal the differences in volatile organic components in differently shaped Amomum tsao-ko fruits. BMC PLANT BIOLOGY 2024; 24:915. [PMID: 39350013 PMCID: PMC11443856 DOI: 10.1186/s12870-024-05594-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Amomum tsao-ko is an important aromatic crop used in medicines and food. It can be categorized into three main types based on the fruit shape: long (L), oval (O), and round (R). However, limited information is available on the volatile substances present in differently shaped A. tsao-ko fruits. This study investigated the characteristics and biosynthesis of volatile organic compounds (VOCs) in fresh and dried A. tsao-ko fruits of different shapes using widely targeted volatilomics and transcriptome analyses. RESULTS In total, 978 VOCs, primarily terpenoids, esters, and heterocyclic compounds, were detected. The number of differentially accumulated volatile organic compounds (DAVOCs) in dried fruits of various shapes was significantly higher than that in fresh fruits, with terpenoids, esters, and heterocyclic compounds accounting for approximately 50% of the total DAVOCs. Notably, α-phellandrene, identified as a shared differential accumulated terpenoid across various fruit shapes, was detected in both fresh and dried fruits. Through transcriptome analysis, 40 candidate genes implicated in the terpenoid biosynthesis pathway were screened. An integrated analysis of the metabolome and transcriptome revealed that the structural genes HMGR-2, TPS7, TPS5-10, TPS21-3, TPS21-5, TPS21-6, TPS21-7, and TPS21-9, along with 81 transcription factors (including 17 NACs, 16 MYBs, 16 AP2/ERFs, 13 WRKYs, 13 bHLHs, and 6 bZIPs), co-regulate the biosynthesis of volatile terpenoids. CONCLUSIONS This study expands our understanding of the volatile metabolism profile of A. tsao-ko and provides a solid foundation for future investigations of the mechanisms governing fruit quality.
Collapse
Affiliation(s)
- Mengli Ma
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661199, China
| | - Hongbo Fu
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661199, China
| | - Tiantao Wang
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661199, China
| | - Lina Xiong
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661199, China
| | - Ping Feng
- Jinping Shili Medicinal Materials Development Co., Ltd, Jinping, Yunnan, 661500, China
| | - Bingyue Lu
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661199, China.
| |
Collapse
|
14
|
Noor AAM. Exploring the Therapeutic Potential of Terpenoids for Depression and Anxiety. Chem Biodivers 2024; 21:e202400788. [PMID: 38934531 DOI: 10.1002/cbdv.202400788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
This review focus on the terpenoids as potential therapeutic agents for depression and anxiety disorders, which naturally found in a variety of plants and exhibit a wide range of biological activities. Among the terpenoids discussed in this review are α-pinene, β-caryophyllene, α-phellandrene, limonene, β-linalool, 1, 8-cineole, β-pinene, caryophyllene oxide, p-cymene, and eugenol. All of these compounds have been studied extensively regarding their pharmacological properties, such as neuroprotective effect, anti-inflammation, antibacterial, regulation of neurotransmitters and antioxidant effect. Preclinical evidence are reviewed to highlight their diverse mechanisms of action and therapeutic potential to support antidepressant and anxiolytic properties. Additionally, challenges and future directions are also discussed to emphasize therapeutic utility of terpenoids for mental health disorders. Overall, this review provides a promising role of terpenoids as novel therapeutic agents for depression and anxiety, with potential implications for the development of more effective and well-tolerated treatments in the field of psychopharmacology.
Collapse
Affiliation(s)
- Arif Azimi Md Noor
- Harvard Medical School, Department of Biomedical Informatics, 10 Shattuck Street Suite 514, Boston MA, 02115, United States of America
- Eyes Specialist Clinic, Raja Perempuan Zainab 2 Hospital, 15586, Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
15
|
Ghavam M, Castangia I, Manconi M, Bacchetta G, Manca ML. Chemical composition and antimicrobial activity of a newly identified chemotype of Achillea wilhelmsii K.Koch from Kashan, Iran. Sci Rep 2024; 14:22655. [PMID: 39349567 PMCID: PMC11443101 DOI: 10.1038/s41598-024-73284-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024] Open
Abstract
Achillea wilhelmsii K.Koch (Asteraceae) is traditionally used in Kashan (Iran) to control diabetes, headaches, kidney stones and heartburn. Due to its beneficial properties, the aerial parts of the plant were collected from the area of Maragheh (Kashan, Isfahan, Iran), in June 2022, during its full flowering, and the essential oil was obtained by hydrodistillation (Clevenger). The yield, composition and antimicrobial activity of the extractive solution were measured. Qualitative evaluation was performed by means of gas chromatography-mass spectroscopy method, and antimicrobial activity was determined against 12 strains of microorganisms by measuring inhibition halo, minimum inhibitory concentration, and minimum bactericidal concentration (MBC). The yield of essential oil was ~ 0.1071% (w/w) and it mainly contained oxygenated monoterpenes (47.87%), being for the first time fragranol (33.22%), fragranyl acetate (16.18%) and oleic acid (6.33%) the most abundant. The highest inhibitory halo was found against Candida albicans and Gram-positive Staphylococcus aureus (~ 10 mm). The essential oil was also effective against gram-negative bacteria such as Acinetobacter baumannii and Shigella dysenteriae, as the inhibition halo was ~ 9 mm and similar to that of rifampin, used as a reference. Therefore, it seems that this essential oil from and endemic species has a unique chemotype with potential antimicrobial activity, which may be a possible option for fragranol isolation and the production of natural antibiotics effective against various microorganisms.
Collapse
Affiliation(s)
- Mansureh Ghavam
- Department of Nature Engineering, Faculty of Natural Resources and Earth Sciences, University of Kashan, Kashan, Iran.
| | - Ines Castangia
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042, Monserrato, CA, Italy
| | - Maria Manconi
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042, Monserrato, CA, Italy
| | - Gianluigi Bacchetta
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042, Monserrato, CA, Italy
| | - Maria Letizia Manca
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042, Monserrato, CA, Italy
| |
Collapse
|
16
|
Wang YE, Chen J, Yang H, He J, Varier KM, Chen Y, Wu X, Guo Q, Liang Y, Shen X, Wei M, Li W, Tao L. Polysialic acid driving cardiovascular targeting co-delivery 1,8-cineole and miR-126 to synergistically alleviate lipopolysaccharide-induced acute cardiovascular injury. Int J Biol Macromol 2024; 280:135970. [PMID: 39332566 DOI: 10.1016/j.ijbiomac.2024.135970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
Infection-induced cardiovascular damage is the primary pathological mechanism underlying septic cardiac dysfunction. This condition affects the majority of patients in intensive care unit and has an unfavorable prognosis due to the lack of effective therapies available. Vascular cell adhesion molecule-1 (VCAM-1) plays a vital role in coordinating the inflammatory response and recruitment of leukocytes in cardiac tissue, making it a potential target for developing novel therapies. MicroRNA-126 (miR-126) has been shown to downregulate VCAM-1 expression in endothelial cells, reducing leukocyte adhesion and exerting anti-inflammatory effects. Therefore, this work described a polysialic acid (PSA) modified ROS-responsive nanosystem to targeted co-delivery 1,8-Cineole and miR-126 for mitigating septic cardiac dysfunction. The nanosystem consists of 1,8-Cineole nanoemulsion (CNE) conjugated with PEI/miR126 complex by a ROS-sensitive linker, with PSA on its surface to facilitate targeted delivery via specific interactions with selectins on endothelial cells. CNE has demonstrated protective effects against inflammation in the cardiovascular system and synergistic anti-inflammatory effects when combined with miR-126. The targeted nanosystem successfully delivered miR-126 and 1,8-Cineole to the injured heart tissues and vessels, reducing inflammatory responses and improving cardiac function. In summary, this work provides a promising therapy for alleviating the inflammatory response in sepsis while boosting cardiovascular protection.
Collapse
Affiliation(s)
- Yu-E Wang
- Department of Cardiovascular medicine, Affiliated Hospital of Guizhou Medical University, Beijing Road, Yunyan District, Guiyang 550025, China; The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Jianbo Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Hong Yang
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Jinggang He
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Krishnapriya M Varier
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Ying Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Xingjie Wu
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Qianqian Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Yuanxian Liang
- School of Clinical Medicine, Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China.
| | - Maochen Wei
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China.
| | - Wei Li
- Department of Cardiovascular medicine, Affiliated Hospital of Guizhou Medical University, Beijing Road, Yunyan District, Guiyang 550025, China.
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China.
| |
Collapse
|
17
|
Zhang J, Li X, Cui W, Lu D, Zhang Y, Liao J, Guo L, Jiao C, Tao L, Xu Y, Shen X. 1,8-cineole ameliorates experimental diabetic angiopathy by inhibiting NLRP3 inflammasome-mediated pyroptosis in HUVECs via SIRT2. Biomed Pharmacother 2024; 177:117085. [PMID: 38972150 DOI: 10.1016/j.biopha.2024.117085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024] Open
Abstract
Accumulating evidence strongly support the key role of NLRP3-mediated pyroptosis in the pathogenesis and progression of vascular endothelial dysfunction associated with diabetes mellitus. Various studies have demonstrated that the activation or upregulation of Silent Information Regulation 2 homolog 2 (SIRT2) exerts inhibitory effect on the expression of NLRP3. Although 1,8-cineole has been found to protect against endothelial dysfunction and cardiovascular diseases, its role and mechanism in diabetic angiopathy remain unknown. Therefore, the aim of this study was to investigate the ameliorative effect of 1,8-cineole through SIRT2 on pyroptosis associated with diabetic angiopathy in human umbilical vein endothelial cells (HUVECs) and to elucidate the underlying mechanism. The findings revealed that 1,8-cineole exhibited a protective effect against vascular injury and ameliorated pathological alterations in the thoracic aorta of diabetic mice. Moreover, it effectively mitigated pyroptosis induced by palmitic acid-high glucose (PA-HG) in HUVECs. Treatment with 1,8-cineole effectively restored the reduced levels of SIRT2 and suppressed the elevated expression of pyroptosis-associated proteins. Additionally, our findings demonstrated the occurrence of NLRP3 deacetylation and the physical interaction between NLRP3 and SIRT2. The SIRT2 inhibitor AGK2 and siRNA-SIRT2 effectively attenuated the effect of 1,8-cineole on NLRP3 deacetylation in HUVECs and compromised its inhibitory effect against pyroptosis in HUVECs. However, overexpression of SIRT2 inhibited PA-HG-induced pyroptosis in HUVECs. 1,8-Cineole inhibited the deacetylation of NLRP3 by regulating SIRT2, thereby reducing pyroptosis in HUVECs. In conclusion, our findings suggest that PA-HG-induced pyroptosis in HUVECs plays a crucial role in the development of diabetic angiopathy, which can be mitigated by 1,8-cineole.
Collapse
Affiliation(s)
- Jian Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Xinlin Li
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Wenqing Cui
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Dingchun Lu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Yanyan Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Jiajia Liao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Linlin Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Chunen Jiao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Yini Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China.
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China.
| |
Collapse
|
18
|
Burke BE, Baillie JE. Randomized placebo controlled trial of phytoterpenes in DMSO for the treatment of plantar fasciitis. Sci Rep 2024; 14:17621. [PMID: 39085322 PMCID: PMC11291970 DOI: 10.1038/s41598-024-65979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Plantar fasciitis is the most common cause of heel pain in adults with an overall prevalence of 0.85% in the adult population of the US, affecting over 2 million adults annually. Most current treatment modalities are not supported by sufficient evidence to recommend one particular strategy over another. Topical application of analgesics for soft tissue pain is well established, however the plantar fascia presents challenges in this regard due to thick skin, fibrotic tissue, and an often thickened fat pad. Sixty-two patients with plantar fasciitis were randomized to a placebo controlled trial testing the efficacy of a topical solution of plant terpenes containing camphor, menthol, eugenol, eucalyptol, and vanillin. Skin permeation of the mixture was enhanced with 15% dimethylsulfoxide (DMSO), 1% limonene, and rosemary oil. One ml of solution was applied topically twice daily, and pain scores evaluated on Day 0, Day 1, Day 3, and Day 10. Using the validated foot function index 78.1% of patients reported an 85% or greater decrease in their total pain score by day 10 while placebo treatment was without effect (One Way ANOVA, P < 0.01). This study adapts the treatment modality of topical analgesia for soft tissue pain to a problematic area of the body and shows therapeutic promise.ClinicalTrials.gov Identifier: NCT05467631.
Collapse
Affiliation(s)
- Briant E Burke
- Institute for Biomedical Sciences, 967 East Parkcenter Blvd, Ste 205, Boise, ID, 83706, USA.
| | - Jon E Baillie
- Institute for Biomedical Sciences, 967 East Parkcenter Blvd, Ste 205, Boise, ID, 83706, USA
| |
Collapse
|
19
|
Massoud RI, Bouaziz M, Abdallah H, Zeiz A, Flamini G, El-Dakdouki MH. Comparative Study on the Chemical Composition and Biological Activities of the Essential Oils of Lavandula angustifolia and Lavandula x intermedia Cultivated in Lebanon. ACS OMEGA 2024; 9:30244-30255. [PMID: 39035964 PMCID: PMC11256343 DOI: 10.1021/acsomega.4c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 07/23/2024]
Abstract
The phytochemical profile of essential oils is influenced by genetic and paragenetic factors. In this research, we studied the essential oils of Lavandula angustifolia and Lavandula x intermedia cultivated in Lebanon. The latter is a cross hybrid between Lavandula angustifolia and Lavandula latifolia and is also known as lavandin and Lavandula hybrida. Specifically, the chemical composition and biological activities (antibacterial, antioxidant, anticancer, and hemolytic) of the essential oils were assessed. GC-MS results showed marked differences in the chemical compositions of the oils. For example, linalool was more abundant in L. x intermedia (44.15%) than in L. angustifolia (32%), while an opposite trend was observed for the percentages of 1,8-cineole (8.6% in L. angustifolia and 4.0% in L. x intermedia). FTIR analysis confirmed the richness of both oils in monoterpenes and sesquiterpenes. In terms of antioxidant activity, L. angustifolia essential oil demonstrated significantly better activity (IC50= 5.24 ± 1.20 mg/mL) compared to L. x intermedia oil in the DPPH radical scavenging assay. MTT cell viability assays revealed that L. angustifolia essential oil was a slightly more potent antiproliferative agent than L. x intermedia oil on human colorectal (HCT-116) and human breast (MCF-7) cancer cells. The antibacterial activity of the essential oils was tested against Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli, and Serratia marcescens. Both oils showed good antibacterial activities with MIC values of 0.174 and 0.169 mg/mL for L. angustifolia and L. x intermedia oils, respectively. MBC determinations revealed that the antibacterial activity was bactericidal against all bacteria, except Staphylococcus aureus. Furthermore, both essential oils did not exhibit notable hemolytic activity on red blood cells. Overall, Lebanese L. angustifolia and L. x intermedia essential oils have promising industrial and medicinal values.
Collapse
Affiliation(s)
- Rana I. Massoud
- Department
of Chemistry, Faculty of Science, Beirut
Arab University, P.O.
Box 11-5020, Riad El Solh, Beirut 11072809, Lebanon
| | - Mohamed Bouaziz
- Laboratory
of Electrochemistry and Environment, National School of Engineers
of Sfax, University of Sfax, Sfax BP117 33038, Tunisia
| | - Hiba Abdallah
- Department
of Chemistry, Faculty of Sciences I, Lebanese
University, Hadath Campus, Beirut 11-5020, Lebanon
| | - Ali Zeiz
- Department
of Biological Sciences, Faculty of Science, Beirut Arab University, P.O. Box 11-5020, Beirut 11072809, Lebanon
| | - Guido Flamini
- Dipartimento
di Farmacia, Università di Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Mohammad H. El-Dakdouki
- Department
of Chemistry, Faculty of Science, Beirut
Arab University, P.O.
Box 11-5020, Riad El Solh, Beirut 11072809, Lebanon
| |
Collapse
|
20
|
Mansinhos I, Gonçalves S, Romano A. How climate change-related abiotic factors affect the production of industrial valuable compounds in Lamiaceae plant species: a review. FRONTIERS IN PLANT SCIENCE 2024; 15:1370810. [PMID: 39049861 PMCID: PMC11266143 DOI: 10.3389/fpls.2024.1370810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/06/2024] [Indexed: 07/27/2024]
Abstract
The interest in medicinal and aromatic plants (MAPs) has increased significantly in recent years, driven by the growing demand for natural products. MAPs are a valuable source of secondary metabolites, which renders them useful to a number of industries, including cosmetics, pharmaceuticals, and food. The Lamiaceae family includes economically important MAPs that produce valuable secondary metabolites such as essential oils (EOs) and phenolic compounds (PCs). The quantity and quality of these secondary metabolites are affected by abiotic stress factors. In a climate change scenario, the Lamiaceae is one of the most affected families, especially due to its wide distribution in the Mediterranean region. In the present study, the most common climate-related environmental stress factors, namely, drought, salinity, temperature, light, and heavy metals, were reviewed and discussed in order to assess their impact on the chemical profiles of EOs and PCs, as well as on the biological properties (antioxidant, antibacterial, antimelanogenic, pest-repellent, and UV-protective) of Lamiaceae species. It can be posited that these stresses typically act as a catalyst for the secondary metabolism of these plants, resulting in increased production of EO compounds (e.g., 1,8-cineole, linalool, camphor, borneol, and limonene) and PCs (e.g., rosmarinic, caffeic, and salvianolic acids) and subsequent enhancement of their biological activities. In view of the industrial applications of these bioactive compounds, it is of interest to explore the changes in secondary metabolism induced by environmental factors as it is possible to increase the accumulation of valuable secondary metabolites.
Collapse
Affiliation(s)
| | - Sandra Gonçalves
- Mediterranean Institute for Agriculture, Environment and Development (MED) and CHANGE – Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Anabela Romano
- Mediterranean Institute for Agriculture, Environment and Development (MED) and CHANGE – Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| |
Collapse
|
21
|
Karimnejad M, Ghavam M. Comparison of quantity, quality and antibacterial activity of essential oil Mentha longifolia (L.) L. under different traditional and modern extraction methods. PLoS One 2024; 19:e0301558. [PMID: 38985711 PMCID: PMC11236116 DOI: 10.1371/journal.pone.0301558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/12/2024] [Indexed: 07/12/2024] Open
Abstract
Extraction is the first and most important step in obtaining the effective ingredients of medicinal plants. Mentha longifolia (L.) L. is of considerable economic importance as a natural raw material for the food and pharmaceutical industries. Since the effect of different extraction methods (traditional and modern methods) on the quantity, quality and antimicrobial activity of the essential oil of this plant has not been done simultaneously; the present study was designed for the first time with the aim of identifying the best extraction method in terms of these features. For this purpose, extracting the essential oil of M. longifolia with the methods of hydrodistillation with Clevenger device (HDC), steam distillation with Kaiser device (SDK), simultaneous distillation with a solvent (SDE), hydrodistillation with microwave device (HDM), pretreatment of ultrasonic waves and Clevenger (U+HDC) and supercritical fluid (SF) were performed. Chemical compounds were identified by gas chromatography coupled with mass spectrometer (GC-MS). Antimicrobial activity of essential oils against various clinical microbial strains was evaluated by agar diffusion method and determination of the minimum inhibitory concentration and minimum bactericidal concentration (MIC and MBC). The results showed that the highest and lowest yields of M. longifolia leaf essential oil belonged to HDC (1.6083%) and HDM (0.3416%). The highest number of compounds belonged to SDK essential oil and was equal to 72 compounds (with a relative percentage of 87.13%) and the lowest number of compounds was related to the SF essential oil sample (7 compounds with a relative percentage of 100%). Piperitenone (25.2-41.38%), piperitenone oxide (22.02-0%), pulegone (10.81-0%) and 1,8-cineole (5-35.0%) are the dominant and main components of M. longifolia essential oil were subjected to different extraction methods. Antimicrobial activity results showed that the lowest MIC value belonged to essential oils extracted by HDM, SDK, SDE and U+HDC methods with a value of 1000 μg/mL was observed against Gram-negative bacteria Shigella dysenteriae, which was 5 times weaker than rifampin and 7 times weaker than gentamicin. Therefore, it can be concluded that in terms of efficiency of the HDC method, in terms of the percentage of compounds of the HDM method, and in terms of microbial activity, the SDK, HDM and U+HDC methods performed better.
Collapse
Affiliation(s)
- Masoumeh Karimnejad
- Department of Nature Engineering, Faculty of Natural Resources and Earth Sciences, University of Kashan, Kashan, Iran
| | - Mansureh Ghavam
- Department of Nature Engineering, Faculty of Natural Resources and Earth Sciences, University of Kashan, Kashan, Iran
| |
Collapse
|
22
|
Ivanova S, Dzhakova Z, Staynova R, Ivanov K. Salvia verticillata (L.)-Biological Activity, Chemical Profile, and Future Perspectives. Pharmaceuticals (Basel) 2024; 17:859. [PMID: 39065710 PMCID: PMC11280111 DOI: 10.3390/ph17070859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Species belonging to the genus Salvia, Lamiaceae, have been deeply involved in the folk medicine of different nations since ancient times. Lilac sage, or Salvia verticillata L. (S. verticillata) is a less studied species from the genus. However, it seems to have a prominent potential for the future drug discovery strategies of novel phytopharmaceuticals. This review aims to summarise the data on the biological activity and the phytochemical profile of extracts and essential oils derived from S. verticillata. This review is based on data from 57 in vitro and in vivo studies. The chemical profile of S. verticillata includes different synergic compounds like phenolic acids, flavonoids, terpenes, and salvianolic acids. Although some small amounts of salvianolic acid B were found in S. verticillata extracts, the major compound among the salvianolic acids is salvianolic acid C, a compound associated with the potential for improving liver fibrosis, cardio- and hepatoprotection, and the inhibition of SARS-CoV-2 infection. The cannabinoid type 2 receptor agonist β-caryophyllene is one of the major compounds in S. verticillata essential oils. It is a compound with a prominent potential in regenerative medicine, neurology, immunology, and other medical fields. The in vivo and the in vitro studies, regarding S. verticillata highlighted good antioxidant potential, anti-inflammatory, antibacterial, and antifungal activity. S.verticillata was also reported as a potential source of drug candidates for the treatment of neurodegenerative diseases such as Alzheimer's disease, because of the inhibitory activity on the acetylcholinesterase. However, the number of studies in this direction is limited.
Collapse
Affiliation(s)
- Stanislava Ivanova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (Z.D.); (K.I.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Zoya Dzhakova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (Z.D.); (K.I.)
| | - Radiana Staynova
- Department of Organisation and Economics of Pharmacy, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Kalin Ivanov
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (Z.D.); (K.I.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
23
|
Masoori L, Khalaf AK, Ezzatkhah F, Balaña-Fouce R, Mahmoudvand H. Promising effects of 1,8 Cineole to control Giardia lamblia infection: Targeting the inflammation, oxidative stress, and infectivity. Acta Trop 2024; 255:107201. [PMID: 38604329 DOI: 10.1016/j.actatropica.2024.107201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
Reportedly, synthetic drugs such as metronidazole, furazolidone, tinidazole, and quinacrine are used for the treatment of giardiasis but are associated with adverse effects. In this study, we aimed to investigate the in vitro and in vivo effects of eucalyptol (ECT, 1,8 cineole) alone and in combination with metronidazole (MNZ) on Giardia lamblia. The effects of ECT on cell viability, plasma membrane permeability, and gene expression levels of adenylate cyclase (AK) and extracellular signal kinases 1 and 2 (ERK1 and ERK2) in trophozoites of G. lamblia were assessed. In vivo, the effects of ECT alone and in combination with MNZ were assessed on mice infected with G. lamblia. In addition, the gene expression of inflammatory genes (e.g., TNF-α, IL-1β, and IL-10) and antioxidant genes (catalase (CAT), superoxide dismutase 1 (SOD1), glutathione peroxidase 2 (GPX2)) was determined by real-time PCR. The IC50 values of ECT, MNZ, and ECT+MNZ on trophozoites were 30.2 µg/mL, 21.6 µg/mL, and 8.5 µg/mL, respectively. The estimated Fractional inhibitory concentration index (FICI) values for ECT and MNZ were 0.28 and 0.39, respectively. The application of ECT on G. lamblia trophozoites resulted in a dose-dependent increase in plasma membrane permeability, particularly at concentrations of ½ IC50 and IC50 (P < 0.05). The treatment of infected mice with various doses of ECT, mainly in combination with MNZ for 7 days, resulted in a significant decrease (P < 0.001) in the average number and viability of cysts. ECT, especially when combined with MNZ, caused a significant (P < 0.001) reduction in the expression of TNF-α and IL-6 genes, and an increase (P < 0.05) in the expression of IL-10 genes. ECT alone and mainly in combination with MNZ leads to a significant (P < 0.001) increase in the gene expression of CAT, SOD, and GPX genes. These findings demonstrate that the use of ECT in these doses, even for 14 days, does not have any toxic effects on the function of vital liver and kidney tissues. The study findings confirmed the promising effects of ECT against G. lamblia infection both in vitro and in vivo. Considering the possible mechanisms, ECT increases plasma membrane permeability and reduces the expression levels of infectivity-related genes. In addition, ECT suppresses inflammation and oxidative stress, controlling giardiasis in mice. More studies are needed to clarify these findings.
Collapse
Affiliation(s)
- Leila Masoori
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Amal Khudair Khalaf
- Department of Microbiology, College of Medicine, University of Thiqar, Thiqar, Iraq
| | - Fatemeh Ezzatkhah
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Instituto de Biomedicina (IBIOMED), Campus de Vegazana s/n, Universidad de León 24071 León, Spain
| | - Hossein Mahmoudvand
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
24
|
Gu J, Yang M, Qi M, Yang T, Wang L, Yang W, Zhang J. Analysis of the Volatile Components in Different Parts of Three Species of the Genus Amomum via Combined HS-SPME-GC-TOF-MS and Multivariate Statistical Analysis. Foods 2024; 13:1925. [PMID: 38928865 PMCID: PMC11202860 DOI: 10.3390/foods13121925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The study used headspace solid-phase microextraction coupled with gas chromatography-time-of-flight mass spectrometry (HS-SPME-GC-TOF-MS) to analyze volatile compounds in leaves and fruits of Amomum tsaoko, Amomum paratsaoko, and Amomum koenigii. The composition and aroma of distinct metabolites were analyzed using multivariate statistical methods. A total of 564 volatile compounds were identified from three species of the genus Amomum, which were further divided into nine categories: terpenoids, carboxylic acids, alcohols, hydrocarbons, aldehydes, ketones, phenols, ethers, and other compounds. Terpenoids and alcohols were the most abundant. The content and types of compounds vary in A. tsaoko, A. paratsaoko, and A. koenigii, so mixing or substituting them is not advisable. We selected 45 metabolites based on the criteria of the variable importance in projection values (VIP > 1.5) and one-way ANOVA (p < 0.05). The top 19 metabolites with the most significant VIP values were chosen. Interestingly, (Z)-2-decenal was only found in Amomum koenigii, while nitroethane and nonanal were only present in cultivated A. tsaoko. Additionally, linalool, cineole, and (D)-limonene were the main components affecting the aroma of three species of the genus Amomum. The volatile components identified in this study provide a theoretical basis for analyzing the unique flavor of A. tsaoko, A. paratsaoko, and A. koenigii.
Collapse
Affiliation(s)
- Jingjing Gu
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China; (J.G.); (L.W.); (W.Y.)
- School of Agriculture, Yunnan University, Kunming 650504, China
| | - Meiquan Yang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China; (J.G.); (L.W.); (W.Y.)
| | - Mingju Qi
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China; (J.G.); (L.W.); (W.Y.)
| | - Tianmei Yang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China; (J.G.); (L.W.); (W.Y.)
| | - Li Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China; (J.G.); (L.W.); (W.Y.)
| | - Weize Yang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China; (J.G.); (L.W.); (W.Y.)
| | - Jinyu Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China; (J.G.); (L.W.); (W.Y.)
| |
Collapse
|
25
|
Wu J, Cao Y, Teng D, Shan S, Geng T, Huang X, Zhang Y. Volatiles of different resistant cotton varieties mediate the host preference of Mirid bug Apolygus lucorum. FRONTIERS IN PLANT SCIENCE 2024; 15:1428234. [PMID: 38933460 PMCID: PMC11199722 DOI: 10.3389/fpls.2024.1428234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Cotton, a crucial economic crop, is also the preferred host plant of the mirid bug Apolygus lucorum. In our previous field experiments, we found that cotton cultivars Kelin 08-15 and BR-S-10 (healthy and herbivore-damaged plants) exhibit distinct attraction and repellence to A. lucorum, respectively. However, the key plant volatiles determining attraction or repulsion effects remain unknown. Here, we investigated the volatiles emitted by these two cotton cultivars before and after herbivore infestation. We found that susceptible Kelin 08-15 emitted a greater diversity and quantity of volatiles than those of BR-S-10, with herbivore-damaged cottons releasing more volatile substances. Electroantennogram (EAG) recordings further revealed that 15 representative volatiles identified above could elicited electrophysiological responses in female and male A. lucorum antennae. Among them, behavioral assays showed that two compounds, 1,3-Diethylbenzene and 4-Ethylbenzaldehyde, exhibited attractive properties, whereas six volatiles including Hexyl Acrylate, Cumene, 2,4-Dimethylstyrene, Eucalyptol, Linalool and Butyl Acrylate demonstrated repellent effects on A. lucorum. Taken together, our findings suggest the critical role of volatile compounds in mediating bug-plant interactions and provide a foundation for the development of strategies to prevent and control of A. lucorum in cotton fields.
Collapse
Affiliation(s)
- Juan Wu
- School of Agriculture and Life Science, Shanxi Datong University, Datong, China
| | - Yang Cao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dong Teng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ting Geng
- National Plant Protection Scientific Observation and Experiment Station, Chinese Academy of Agricultural Sciences, Langfang, China
| | - Xinzheng Huang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, China
| |
Collapse
|
26
|
Silvestre WP, Pansera MR, Andrade LB, Vicenço CB, Rota LD, Pauletti GF. Vacuum fractional distillation of Cunila galioides Benth. essential oil: chemical composition and biological activities of raw oil and its fractions. Nat Prod Res 2024:1-11. [PMID: 38829275 DOI: 10.1080/14786419.2024.2360149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024]
Abstract
This work aimed to rectify Cunila galioides essential oil and evaluate the raw oil and the fractions' antifungal, allelopathic, and antioxidant activities. The results showed that the raw essential oil and the bottom fraction were primarily composed of linalyl propionate (42.9 wt.% and 60.2 wt.%). The top fraction was composed mainly of limonene (45.7 wt.%). The antioxidant activity changed with the radical and the fraction. The bottom had a weaker antifungal effect than the raw oil and the top. Nevertheless, the essential oil and the fractions had a similar antifungal activity at 0.50 % v/v and higher. Similar behavior was observed for the allelopathic tests. No difference occurred between the raw oil and the fractions, with reduced germination percentages and speed at 0.25 % v/v and complete inhibition at 0.50 % v/v. The oil can be rectified, and the fractions may be used without harming their biological activity.
Collapse
Affiliation(s)
- Wendel P Silvestre
- Laboratory of Studies of the Soil, Plant, and Atmosphere System and Plant Metabolism, University of Caxias do Sul, Caxias do Sul, RS, Brazil
- Postgraduate Program in Process Engineering and Technologies (PGEPROTEC), University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | - Márcia R Pansera
- Postgraduate Program in Process Engineering and Technologies (PGEPROTEC), University of Caxias do Sul, Caxias do Sul, RS, Brazil
- Laboratory of Phytopathology, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | - Luciana B Andrade
- Laboratory of Oxidative Stress and Antioxidants, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | - Camila B Vicenço
- Laboratory of Studies of the Soil, Plant, and Atmosphere System and Plant Metabolism, University of Caxias do Sul, Caxias do Sul, RS, Brazil
- Postgraduate Program in Biotechnology (PPGBIO), University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | - Luciana D Rota
- Postgraduate Program in Biotechnology (PPGBIO), University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | - Gabriel F Pauletti
- Laboratory of Studies of the Soil, Plant, and Atmosphere System and Plant Metabolism, University of Caxias do Sul, Caxias do Sul, RS, Brazil
- Postgraduate Program in Process Engineering and Technologies (PGEPROTEC), University of Caxias do Sul, Caxias do Sul, RS, Brazil
| |
Collapse
|
27
|
Chañi-Paucar LO, Chagua-Rodríguez P, Cuadrado-Campó WJ, Lobato Calderón GR, Maceda Santivañez JC, Figueiredo Angolini CF, Meireles MAA. Tumbo, an Andean fruit: Uses, nutrition, processing, and biomolecules. Heliyon 2024; 10:e30327. [PMID: 38707414 PMCID: PMC11066424 DOI: 10.1016/j.heliyon.2024.e30327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/28/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
Tumbo fruit has potential for industrialization due to its nutritional and functional properties, but scientific knowledge of this species is still limited compared to other species of the same genus, Passiflora. This review compiles the latest scientific advances on Tumbo, which cover the food technological aspects of Tumbo fruit, its uses and its potential as a source of bioactives for different industries, especially food, pharmaceutical, and cosmetics. The products (nectar, jellies, jams, wines, others) and by-products of the processing of the Tumbo fruit have various nutritional, sensory, and composition attributes for developing new food and non-food products. The potential applications of the fruit and its derivatives are broad, such as cosmetics, drugs, functional foods, and additives; these applications are due to its technological properties and its content of bioactive molecules. The Tumbo biorefinery presents an important perspective, especially for its bioactivity of high biological value for different industries.
Collapse
Affiliation(s)
- Larry Oscar Chañi-Paucar
- Grupo de Investigación en Ingeniería de Alimentos y Agroindustria (GIIAA), Universidad Nacional Autónoma Altoandina de Tarma (UNAAT), La Florida-Cochayoc Highway, Huancucro, 2092, Zip code: 12651, Junin, Peru
| | - Perfecto Chagua-Rodríguez
- Grupo de Investigación en Ingeniería de Alimentos y Agroindustria (GIIAA), Universidad Nacional Autónoma Altoandina de Tarma (UNAAT), La Florida-Cochayoc Highway, Huancucro, 2092, Zip code: 12651, Junin, Peru
| | - Walter Javier Cuadrado-Campó
- Grupo de Investigación en Ingeniería de Alimentos y Agroindustria (GIIAA), Universidad Nacional Autónoma Altoandina de Tarma (UNAAT), La Florida-Cochayoc Highway, Huancucro, 2092, Zip code: 12651, Junin, Peru
| | | | - Julio Cesar Maceda Santivañez
- Mass Spectrometry and Chemical Ecology Laboratory (MS-CELL), Center for Natural and Human Sciences, Federal University of ABC, UFABC, Av. dos Estados 5001-Bangú, Santo André, São Paulo State, Brazil
| | - Célio Fernando Figueiredo Angolini
- Mass Spectrometry and Chemical Ecology Laboratory (MS-CELL), Center for Natural and Human Sciences, Federal University of ABC, UFABC, Av. dos Estados 5001-Bangú, Santo André, São Paulo State, Brazil
| | - Maria Angela A Meireles
- Grupo de Investigación en Ingeniería de Alimentos y Agroindustria (GIIAA), Universidad Nacional Autónoma Altoandina de Tarma (UNAAT), La Florida-Cochayoc Highway, Huancucro, 2092, Zip code: 12651, Junin, Peru
- School of Food Engineering, University of Campinas (UNICAMP), R. Monteiro Lobato 80, Campinas, 13083-862, SP, Brazil
| |
Collapse
|
28
|
Gostin IN, Blidar CF. Glandular Trichomes and Essential Oils Variability in Species of the Genus Phlomis L.: A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:1338. [PMID: 38794409 PMCID: PMC11125434 DOI: 10.3390/plants13101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
The genus Phlomis is one of the largest genera in the Lamiaceae family and includes species used since ancient times in traditional medicine, as flavoring for food and as fragrance in cosmetics. The secretory structures (represented by glandular trichomes) as well as the essential oils produced by them constitute the subject of this review. While representatives of this genus are not typically regarded as large producers of essential oils compared to other species of the Lamiaceae family, the components identified in their essential oils and their biological properties necessitate more investigation of this genus. A comprehensive analysis of the specialized literature was conducted for each of the 93 currently accepted species to identify all the results obtained by researchers regarding the secretory structures and essential oils of this genus up to the present time. Glandular trichomes, still insufficiently studied, present morphological peculiarities that differentiate this genus within the family: they are of two categories: capitate (with a wide distribution in this genus) and dendroid. The peltate trichomes, characteristic of many species of this family, are absent. The essential oils from the species of the genus Phlomis have been much more widely studied than the secretory structures. They show considerable variability depending on the species and the environmental conditions.
Collapse
Affiliation(s)
- Irina Neta Gostin
- Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Bdul Carol I, No. 11, 700506 Iasi, Romania
| | - Cristian Felix Blidar
- Department of Biology, Faculty of Informatics and Sciences, University of Oradea, Street Universităţii No. 1, 410087 Oradea, Romania;
| |
Collapse
|
29
|
Akcakavak G, Kazak F, Karatas O, Alakus H, Alakus I, Kirgiz O, Celik Z, Yilmaz Deveci MZ, Ozdemir O, Tuzcu M. Eucalyptol regulates Nrf2 and NF-kB signaling and alleviates gentamicin-induced kidney injury in rats by downregulating oxidative stress, oxidative DNA damage, inflammation, and apoptosis. Toxicol Mech Methods 2024; 34:413-422. [PMID: 38115227 DOI: 10.1080/15376516.2023.2297234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Gentamicin, an aminoglycoside antibiotic, is nowadays widely used in the treatment of gram-negative microorganisms. The antimicrobial, anti-inflammatory, and antioxidant activities of eucalyptol, a type of saturated monoterpene, have been reported in many studies. The aim of this study was to examine the possible effects of eucalyptol on gentamicin-induced renal toxicity. A total of 32 rats were divided into 4 groups; Control (C), Eucalyptol (EUC), Gentamicin (GEN), and Gentamicin + Eucalyptol (GEN + EUC). In order to induce renal toxicity, 100 mg/kg gentamicin was administered intraperitoneally (i.p.) for 10 consecutive days in the GEN and GEN + EUC groups. EUC and GEN + EUC groups were given 100 mg/kg orally of eucalyptol for 10 consecutive days. Afterwards, rats were euthanized and samples were taken and subjected to histopathological, biochemical, immunohistochemical, and real-time PCR examinations. The blood urea nitrogen (BUN) and creatinine (CRE) levels were significantly decreased in the GEN + EUC group (0.76 and 0.69-fold, respectively) compared to the GEN group. The glutathione peroxidase (GPx) and catalase (CAT) activities were significantly increased in the GEN + EUC group (1.35 and 2.67-fold, respectively) compared to the GEN group. In GEN group, Nuclear factor kappa B (NF-kB), Interleukin 1-beta (IL-1β), Inducible nitric oxide synthase (iNOS), Tumor necrosis factor-α (TNF-α), Caspase-3, 8-Hydroxy-2'-deoxyguanosine (8-OHdG) and Nuclear factor erythroid 2-related factor (Nrf2) expression levels were found to be quite irregular. GEN + EUC group decreased the expressions of NF-kB, IL-1β, iNOS, TNF-α, Caspase-3, and 8-OHdG (0.55, 0.67, 0.54, 0.54, 0.63 and 0.67-fold, respectively), while it caused increased expression of Nrf2 (3.1 fold). In addition, eucalyptol treatment ameliorated the histopathological changes that occurred with gentamicin. The results of our study show that eucalyptol has anti-inflammatory, antioxidative, antiapoptotic, nephroprotective, and curative effects on gentamicin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Gokhan Akcakavak
- Department of Pathology, Yozgat Bozok University, Yozgat, Turkey
| | - Filiz Kazak
- Department of Biochemistry, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Ozhan Karatas
- Department of Pathology, Cumhuriyet University, Sivas, Turkey
| | - Halil Alakus
- Department of Surgery Hatay Mustafa Kemal University, Hatay, Turkey
| | - Ibrahim Alakus
- Department of Surgery Hatay Mustafa Kemal University, Hatay, Turkey
| | - Omer Kirgiz
- Department of Surgery Hatay Mustafa Kemal University, Hatay, Turkey
| | - Zeynep Celik
- Department of Pathology, Selcuk University, Konya, Turkey
| | | | - Ozgur Ozdemir
- Department of Pathology, Selcuk University, Konya, Turkey
| | - Mehmet Tuzcu
- Department of Pathology, Selcuk University, Konya, Turkey
| |
Collapse
|
30
|
Xu F, Wang J, Zhu E, Feng Y, Xu T, Ru X, Gu S, Liu X. Research Note: Effects of the intermittent feeding of microencapsulation essential oil on laying performance, egg quality, immune response, intestinal morphology, and oxidation status of laying hens. Poult Sci 2024; 103:103600. [PMID: 38471230 PMCID: PMC11067763 DOI: 10.1016/j.psj.2024.103600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The aim of this study was to evaluate the effect of microencapsulated essential oils (MEO) on the laying performance, egg quality, immunity, intestinal morphology, and oxidative status of laying hens. A total of 640 Hy-line Brown laying hens, 41 wk of age, were randomly divided into 4 groups, each with 8 replicates containing 20 birds per replicate. The dietary conditions tested included a basal diet (Control) or the basal diet supplemented with various levels of MEO at 100 mg/kg (MEO100), 300 mg/kg (MEO300), and 500 mg/kg (MEO500). The three treatment groups were intermittently fed MEO, following an alternating schedule of 1 wk on and 1 wk off for a total of 56 d. Results showed that feeding MEO at levels of 300 and 500 mg/kg improved both egg production and feed conversion ratios compared to the control group. Hens consumed MEO-supplemented diets exhibited a significant decrease in the breaking egg ratio (P < 0.05) compared to those fed the control diet. Shell thickness and Haugh unit values significantly increased in the groups receiving 300 and 500 mg/kg of MEO (P < 0.05). Both the MEO300 and MEO500 treatments led to improvements in immunoglobulin (IgA, IgM, and IgG) and cytokine (IL-2 and IFN-γ) levels in serum. Hens in the MEO300 and MEO500 groups exhibited higher values for parameters related to intestinal morphometry compared to the control group. Furthermore, supplementation with 300 and 500 mg/kg of MEO enhanced the antioxidant capacity of plasma, as evidenced by increased activities of glutathione peroxidase (GSH-Px), total superoxide dismutase (T-SOD), and catalase (CAT) (P < 0.05). In summary, the intermittent feeding of MEO improved egg production, enhanced antioxidative processes, immune functions, and intestinal morphology, leading to an amelioration in the egg quality of laying hens. Our data demonstrate that supplementation of 300 mg/kg of MEO in feed can significantly improve animal health and egg quality. Implementation of these feeding practices could have a positive economic impact on poultry and egg industry.
Collapse
Affiliation(s)
- Fazhi Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Jinbin Wang
- College of Animal Science, Anhui Agricultural University, Hefei 230036, China
| | - Enyu Zhu
- College of Animal Science, Anhui Agricultural University, Hefei 230036, China
| | - Yao Feng
- College of Animal Science, Anhui Agricultural University, Hefei 230036, China
| | - Tiantian Xu
- College of Animal Science, Anhui Agricultural University, Hefei 230036, China
| | - Xin Ru
- College of Animal Science, Anhui Agricultural University, Hefei 230036, China
| | - Siqin Gu
- College of Animal Science, Anhui Agricultural University, Hefei 230036, China
| | - Xuelan Liu
- College of Animal Science, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
31
|
Kendir G, Özek G, Köroğlu A, Özek T. The quality evaluation of the laurel leaf samples sold in the market under the name of "Defne Yaprağı". PROTOPLASMA 2024; 261:303-316. [PMID: 37816984 DOI: 10.1007/s00709-023-01897-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023]
Abstract
Laurus nobilis L. is an aromatic shrub or tree, Mediterranean element. The leaves are employed as a spice and for medicinal purposes. It is known by various names in Turkey, such as "defne, har and tehnel." In this study, 15 different laurel leaf samples were purchased from 6 different cities in Turkey, diagnosed, and evaluated in terms of quality. The conditions of use and sale of these samples were evaluated. The essential oils obtained from the leaf samples were analyzed, and their physical properties such as density, refractive index, and optical rotation were determined. In the chemical composition of the oils, 1,8-cineole (41.2-64.4%), sabinene (1.5-15.9%), and α-terpinyl acetate (1.5-15%) have been found to be the major components. However, in one station, the presence of 1,8-cineole was not be determined. Laurel leaf drugs offered for sale in some provinces of Turkey were purchased from the market and their morphological characteristics and essential oil profiles were examined and evaluated in terms of public health. It was determined that these samples should be standardized and quality-controlled before being released to the market.
Collapse
Affiliation(s)
- Gülsen Kendir
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Süleyman Demirel University, Isparta, Türkiye.
| | - Gülmira Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskişehir, Türkiye
| | - Ayşegül Köroğlu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Tandoğan, Ankara, Türkiye
| | - Temel Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskişehir, Türkiye
| |
Collapse
|
32
|
Ramírez J, Gilardoni G, Radice M, Morocho V. Phytochemistry, Bioactivity, and Ethnopharmacology of the Genus Lepechinia Willd. (Lamiaceae): A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:481. [PMID: 38498420 PMCID: PMC10893467 DOI: 10.3390/plants13040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 03/20/2024]
Abstract
The genus Lepechinia (Lamiaceae) involves several aromatic shrubs that are distributed only in the American continent, inhabiting mountain areas, mainly in the Andean region of South America. Based on the PRISMA approach, we selected and critically analyzed 48 research articles. From a phytochemical point of view, most of the secondary metabolites reported in Lepechinia spp. are terpenes and terpenoids, with a few exceptions comprising flavonoids and other shikimic acid derivatives. On the one hand, sesquiterpenoids of the guajane, aromadendrane, eudesmane, and cadinane groups are characteristic of essential oils, together with (E)-β-caryophyllene as the main representative of its chemical family. On the other hand, abietane diterpenoids are the prevalent compounds described in non-volatile fractions. Many biological activities and traditional medical uses have been reported for both pure metabolites and complex mixtures (e.g., essential oils). Regarding ethno-medical uses, the treatment of muscle pain, headache, toothache, diabetes mellitus, uterine tumors, uterine infections, and diarrhea has been reported. Concerning their verified biological activities, insecticidal, antifungal, antioxidant, and anticholinesterase properties have been described. Furthermore, some data concerning anti-herpetic activity have been reported.
Collapse
Affiliation(s)
- Jorge Ramírez
- Departamento de Química, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (G.G.); (V.M.)
| | - Gianluca Gilardoni
- Departamento de Química, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (G.G.); (V.M.)
| | - Matteo Radice
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy;
| | - Vladimir Morocho
- Departamento de Química, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (G.G.); (V.M.)
| |
Collapse
|
33
|
Troisio I, Bertocchi M, Ventrella D, Scozzoli M, Di Vito M, Truzzi E, Benvenuti S, Mattarelli P, Bacci ML, Elmi A. Short- and long-term effects of essential oils on swine spermatozoa during liquid phase refrigeration. Sci Rep 2024; 14:285. [PMID: 38168599 PMCID: PMC10762118 DOI: 10.1038/s41598-023-51030-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
The application of essential oils as potential alternatives to antibiotics in swine semen storage is promising, due to their antioxidant and antibacterial properties. However, detrimental effects on spermatozoa should be clarified first. The aim of this study was to evaluate 9 essential oils (EOs; Satureja montana, Pelargonium graveolens, Cymbopogon nardus, Melaleuca leucadendron, Eucaliptus globulus, Citrus limon, Lavandula angustifolia, Lavandula hybrida, Mentha piperita) and a blend (GL mix) on key morpho-functional parameters of swine spermatozoa. Test compounds were firstly chemo-characterized and experimental doses were prepared by suspending a fixed number of spermatozoa with 3 different concentrations (0.1, 0.5, 1 mg/mL) of EOs. Experimental doses were stored at 16 °C and sampled after 3 and 120 h for analysis. Overall, S. montana, P. graveolens and L. angustifolia EOs induced the strongest alterations, with C. nardus and E. globulus EOs being the best tolerated. Swine spermatozoa represent a good preliminary testing platform to screen toxicity and its different patterns. The comprehensive overview on the potential mechanisms of action of some of the most common EOs, despite of the direct aim of the study being swine reproduction, may be exploited in other fields of research within both veterinary and human medicine.
Collapse
Affiliation(s)
- Ilaria Troisio
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Martina Bertocchi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Domenico Ventrella
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, BO, Italy.
| | - Maurizio Scozzoli
- Italian Society for Research on Essential Oils (Società Italiana per la Ricerca sugli Oli Essenziali-SIROE), Rome, RM, Italy
| | - Maura Di Vito
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Rome, RM, Italy
| | - Eleonora Truzzi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, MO, Italy
| | - Stefania Benvenuti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, MO, Italy
| | - Paola Mattarelli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, BO, Italy
| | - Maria Laura Bacci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Alberto Elmi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, BO, Italy
| |
Collapse
|
34
|
Heydarian A, Tahvilian N, Shahinfar H, Abbas‐Hashemi SA, Daryabeygi‐Khotbehsara R, Aryaeian N. Effect of cardamom consumption on inflammation and blood pressure in adults: A systematic review and meta-analysis of randomized clinical trials. Food Sci Nutr 2024; 12:3-12. [PMID: 38268891 PMCID: PMC10804083 DOI: 10.1002/fsn3.3738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 01/26/2024] Open
Abstract
Cardamom has the potential to offer anti-inflammatory and antihypertensive advantages, but the findings from clinical trials have been inconsistent. To address this knowledge gap, the present systematic review and meta-analysis were conducted to evaluate the anti-inflammatory and antihypertensive effects of cardamom in adults. We systematically searched databases including PubMed, Scopus, and ISI Web of Sciences, for papers published up to October 2022 to identify clinical studies. Eight eligible studies were included in the meta-analysis. A fixed model was used to estimate weighted mean difference (WMD), standardized mean difference (SMD), and 95% confidence interval (95% CI). The results showed that cardamom significantly reduced the levels of inflammatory factors, including hs-CRP (SMD: -0.60 mg/dL; 95% CI: -0.78 to 0.42), IL-6 (WMD: -1.25 mg/dL; 95% CI: -1.48 to -1.03), TNF-α (WMD: -2.10 kg; 95% CI: -2.36 to -1.84, p < .001), and measures of systolic (WMD: -0.54 mmHg, 95% CI: -0.88, -0.19, p = .002) and diastolic (WMD: -0.90 mmHg; 95% CI: -1.07 to -0.73) blood pressure. The current meta-analysis showed that cardamom can help reduce inflammation and improve blood pressure. However, due to the limited number of studies, caution must be exercised when interpreting the current results.
Collapse
Affiliation(s)
- Azadeh Heydarian
- Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran
- Student Research Committee, School of Public HealthIran University of Medical SciencesTehranIran
| | - Negin Tahvilian
- Department of Nutrition, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
- Nutrition and Food Security Research CenterShahid Sadoughi University of Medical SciencesYazdIran
| | - Hossein Shahinfar
- Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran
- Student Research Committee, School of Public HealthIran University of Medical SciencesTehranIran
| | - Seyed Ali Abbas‐Hashemi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food TechnologyNational Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical SciencesTehranIran
| | | | - Naheed Aryaeian
- Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran
| |
Collapse
|
35
|
Navrátilová Z. 1,8-cineole (eucalyptol) in a therapy of respiratory diseases. CESKA A SLOVENSKA FARMACIE : CASOPIS CESKE FARMACEUTICKE SPOLECNOSTI A SLOVENSKE FARMACEUTICKE SPOLECNOSTI 2024; 73:181-186. [PMID: 39937641 DOI: 10.36290/csf.2024.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
1,8-cineole (eucalyptol) in a therapy of respiratory diseases 1,8-cineole (eucalyptol) is a natural terpenic compound isolated from eucalyptus essential oil, it is present also in other plant species, especially from Lamiaceae, Myrtaceae, and Zingiberaceae family. Plants containing 1,8-cineole have long been used to treat common cold and other respiratory diseases, gastrointestinal complaints, fever, infections, asthma, rheumatism, and skin conditions. 1,8-cineole is used in foods, cosmetics, perfumery, and also in pharmaceutical industry. 1,8-cineole exerts an antimicrobial, antiviral, mucolytic, anti-inflammatory and bronchodilatory effect and is suitable for the treatment of respiratory infections and other diseases. Medicinal effects were confirmed not only in vitro and in animal studies, but also in clinical trials. Medicinal products and dietary supplements containing 1,8-cineole are available.
Collapse
|
36
|
Ben Akacha B, Michalak M, Generalić Mekinić I, Kačániová M, Chaari M, Brini F, Ben Saad R, Mnif W, Garzoli S, Ben Hsouna A. Mixture design of α-pinene, α-terpineol, and 1,8-cineole: A multiobjective response followed by chemometric approaches to optimize the antibacterial effect against various bacteria and antioxidant activity. Food Sci Nutr 2024; 12:574-589. [PMID: 38268912 PMCID: PMC10804091 DOI: 10.1002/fsn3.3780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/01/2023] [Accepted: 10/07/2023] [Indexed: 01/26/2024] Open
Abstract
α-Pinene, α-terpineol, and 1,8-cineole are compounds naturally present in essential oils, although their amounts vary from oil to oil. Although several studies have reported their antibacterial and antioxidant effects, there are few reports on the synergistic or antagonistic effects of their combinations. The objective of this study was to investigate the combined antibacterial effect of these three compounds. To our knowledge, this is the first report on the prediction of their optimal combination using the mixture design approach. The experimental antibacterial activity of the α-pinene, α-terpineol, and 1,8-cineole mixtures depended on the proportion of each compound in the mixture and the target strain, with minimum inhibitory concentrations (MIC) ranging from 0.31 to 1.85 mg/mL. Using the increased simplex-centroid mixture design, the mixture containing 0.33% of each molecule proved to be the most effective against Bacillus cereus and had the lowest MIC values. In addition, α-pinene, α-terpineol, and 1,8-cineole showed significant antioxidant activity against 2,2-picryl-1-hydrazyl radical (DPPH), with IC50 values of 24.53 ± 0.05, 65.63 ± 0.71, and 63.58 ± 0.01 μg/mL, respectively. Statistical planning and the development of utility profiles of the substance mixtures can predict the optimal composition that will exhibit the highest antibacterial activity against B. cereus as well as antioxidant properties. Furthermore, the synergistic effect of the mixtures can contribute significantly to their successful use as natural preservatives in various applications.
Collapse
Affiliation(s)
- Boutheina Ben Akacha
- Laboratory of Biotechnology and Plant ImprovementCentre of Biotechnology of SfaxSfaxTunisia
| | | | - Ivana Generalić Mekinić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and TechnologyUniversity of SplitSplitCroatia
| | - Miroslava Kačániová
- Faculty of Horticulture, Institute of HorticultureSlovak University of AgricultureNitraSlovakia
| | - Moufida Chaari
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE)Center of Biotechnology of Sfax (CBS)University of SfaxSfaxTunisia
| | - Faical Brini
- Laboratory of Biotechnology and Plant ImprovementCentre of Biotechnology of SfaxSfaxTunisia
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant ImprovementCentre of Biotechnology of SfaxSfaxTunisia
| | - Wissem Mnif
- Department of Chemistry, College of Sciences at BishaUniversity of BishaBishaSaudi Arabia
| | - Stefania Garzoli
- Department of Chemistry and Technologies of DrugSapienza UniversityRomeItaly
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant ImprovementCentre of Biotechnology of SfaxSfaxTunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of MahdiaUniversity of MonastirMonastirTunisia
| |
Collapse
|
37
|
Xia T, Su S, Guo K, Wang L, Tang Z, Huo J, Song H. Characterization of key aroma-active compounds in blue honeysuckle (Lonicera caerulea L.) berries by sensory-directed analysis. Food Chem 2023; 429:136821. [PMID: 37478599 DOI: 10.1016/j.foodchem.2023.136821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/23/2023]
Abstract
Blue honeysuckle (Lonicera caerulea L.) berries are nutritionally rich and unique in flavor. However, its aroma compounds have not been known well. In this study, the key aroma-active compounds in 8 different varieties of blue honeysuckle berries were studied by sensory-directed analysis. Sensory evaluation suggested that the aroma profile of blue honeysuckle berry was fruity, floral, grassy, sweet, and sour. A total of 68 aroma compounds were detected by two-dimensional comprehensive gas chromatography-olfactometry-mass spectrometry analysis (GC × GC-O-MS). Then, aroma extraction dilution analysis (AEDA) and odor activity value (OAV) showed that 12 compounds were indicated to be the major aroma contributors. According to the principal component analysis (PCA) results, eight varieties were divided into three categories for their differences on alcohols and terpenoids content. Finally, the aroma recombination and omission experiments determined that linalool, hexanal, eucalyptol, octanal, nonanal, and ethyl 2-methylbutyrate were the key aroma-active compounds in blue honeysuckle berries.
Collapse
Affiliation(s)
- Tianze Xia
- Laboratory of Molecular Sensory Science, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Shang Su
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Kunlun Guo
- Laboratory of Molecular Sensory Science, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Lijin Wang
- Laboratory of Molecular Sensory Science, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Zhongqiu Tang
- Forestry and Agricultural Academy of the Greater Khingan Mountains, Jiagedaqi 165000, China
| | - Junwei Huo
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150006, China
| | - Huanlu Song
- Laboratory of Molecular Sensory Science, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
38
|
Roman H, Niculescu AG, Lazăr V, Mitache MM. Antibacterial Efficiency of Tanacetum vulgare Essential Oil against ESKAPE Pathogens and Synergisms with Antibiotics. Antibiotics (Basel) 2023; 12:1635. [PMID: 37998837 PMCID: PMC10669310 DOI: 10.3390/antibiotics12111635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Medicinal plants with multiple targets of action have become one of the most promising solutions in the fight against multidrug-resistant (MDR) bacterial infections. Tanacetum vulgare (Tansy) is one of the medicinal plants with antibacterial qualities that deserve to be studied. Thus, this research takes a closer look at tansy extract's composition and antibacterial properties, aiming to highlight its potential against clinically relevant bacterial strains. In this respect, the antibacterial test was performed against several drug-resistant pathogenic strains, and we correlated them with the main isolated compounds, demonstrating the therapeutic properties of the extract. The essential oil was extracted via hydrodistillation, and its composition was characterized via gas chromatography. The main isolated compounds known for their antibacterial effects were α-Thujone, β-Thujone, Eucalyptol, Sabinene, Chrysanthenon, Camphor, Linalool oxide acetate, cis-Carveol, trans-Carveyl acetate, and Germacrene. The evaluation of the antibacterial activity was carried out using the Kirby-Bauer and binary microdilution methods on Gram-positive and Gram-negative MDR strains belonging to the ESKAPE group (i.e., Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.). Tansy essential oil showed MIC values ranging from 62.5 to 500 μg/mL against the tested strains. Synergistic activity with different classes of antibiotics (penicillins, cephalosporins, carbapenems, monobactams, aminoglycosides, and quinolones) has also been noted. The obtained results demonstrate that tansy essential oil represents a promising lead for developing new antimicrobials active against MDR alone or in combination with antibiotics.
Collapse
Affiliation(s)
- Horațiu Roman
- Interdisciplinary School of Doctoral Studies (ISDS), University of Bucharest, 050095 Bucharest, Romania;
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050095 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania;
| | - Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050095 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Veronica Lazăr
- Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania;
| | | |
Collapse
|
39
|
Hoch CC, Petry J, Griesbaum L, Weiser T, Werner K, Ploch M, Verschoor A, Multhoff G, Bashiri Dezfouli A, Wollenberg B. 1,8-cineole (eucalyptol): A versatile phytochemical with therapeutic applications across multiple diseases. Biomed Pharmacother 2023; 167:115467. [PMID: 37696087 DOI: 10.1016/j.biopha.2023.115467] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023] Open
Abstract
1,8-cineole (Eucalyptol), a naturally occurring compound derived from botanical sources such as eucalyptus, rosemary, and camphor laurel, has a long history of use in traditional medicine and exhibits an array of biological properties, including anti-inflammatory, antioxidant, antimicrobial, bronchodilatory, analgesic, and pro-apoptotic effects. Recent evidence has also indicated its potential role in managing conditions such as Alzheimer's disease, neuropathic pain, and cancer. This review spotlights the health advantages of 1,8-cineole, as demonstrated in clinical trials involving patients with respiratory disorders, including chronic obstructive pulmonary disease, asthma, bronchitis, and rhinosinusitis. In addition, we shed light on potential therapeutic applications of 1,8-cineole in various conditions, such as depression, epilepsy, peptic ulcer disease, diarrhea, cardiac-related heart diseases, and diabetes mellitus. A comprehensive understanding of 1,8-cineole's pharmacodynamics and safety aspects as well as developing effective formulations, might help to leverage its therapeutic value. This thorough review sets the stage for future research on diverse health benefits and potential uses of 1,8-cineole in tackling complex medical conditions.
Collapse
Affiliation(s)
- Cosima C Hoch
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Julie Petry
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Lena Griesbaum
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Tobias Weiser
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Kathrin Werner
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | | | - Admar Verschoor
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Ali Bashiri Dezfouli
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Barbara Wollenberg
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany.
| |
Collapse
|
40
|
Wen H, Yang T, Yang W, Yang M, Wang Y, Zhang J. Comparison of Metabolites and Species Classification of Thirteen Zingiberaceae Spices Based on GC-MS and Multi-Spectral Fusion Technology. Foods 2023; 12:3714. [PMID: 37893607 PMCID: PMC10606731 DOI: 10.3390/foods12203714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Due to a similar plant morphology in the majority of Zingiberaceae spices, substitution and adulteration frequently take place during the sales process. Therefore, it is important to analyze the metabolites and species classification of different Zingiberaceae spices. This study preliminarily explored the differences in the metabolites in thirteen Zingiberaceae spices through untargeted gas chromatography-mass spectrometry (GC-MS) and combined spectroscopy, establishing models for classifying different Zingiberaceae spices. On one hand, a total of 81 metabolites were successfully identified by GC-MS. Thirty-seven differential metabolites were screened using variable important in projection (VIP ≥ 1). However, the orthogonal partial least squares discriminant analysis (OPLS-DA) model established using GC-MS data only explained about 30% of the variation. On the other hand, the partial least squares discriminant analysis (PLS-DA) models with three spectral data fusion strategies were compared, and their classification accuracy reached 100%. Among them, the mid-level data fusion model based on latent variables had the best performance. This study provides a powerful tool for distinguishing different Zingiberaceae spices and assists in reducing the occurrence of substitution and adulteration phenomena.
Collapse
Affiliation(s)
- Hui Wen
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China; (H.W.); (T.Y.); (W.Y.); (M.Y.); (Y.W.)
- School of Agriculture, Yunnan University, Kunming 650504, China
| | - Tianmei Yang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China; (H.W.); (T.Y.); (W.Y.); (M.Y.); (Y.W.)
| | - Weize Yang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China; (H.W.); (T.Y.); (W.Y.); (M.Y.); (Y.W.)
| | - Meiquan Yang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China; (H.W.); (T.Y.); (W.Y.); (M.Y.); (Y.W.)
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China; (H.W.); (T.Y.); (W.Y.); (M.Y.); (Y.W.)
| | - Jinyu Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China; (H.W.); (T.Y.); (W.Y.); (M.Y.); (Y.W.)
| |
Collapse
|
41
|
Pavarino M, Marengo A, Cagliero C, Bicchi C, Rubiolo P, Sgorbini B. Elettaria cardamomum (L.) Maton Essential Oil: An Interesting Source of Bioactive Specialized Metabolites as Inhibitors of Acetylcholinesterase and Butyrylcholinesterase. PLANTS (BASEL, SWITZERLAND) 2023; 12:3463. [PMID: 37836202 PMCID: PMC10575282 DOI: 10.3390/plants12193463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
Elettaria cardamomum (L.) Maton (Zingiberaceae family) is a plant traditionally used in Ayurvedic and Chinese medicine. In this work, the essential oil of E. cardamomum was found to inhibit the enzymes AChE (62.6% of inhibition, IC50 24.9 μg/mL) and BChE (55.8% of inhibition, IC50 25.9 μg/mL) by performing an in vitro colorimetric assay using the Ellman method. A bio-guided fractionation approach was used to isolate fractions/pure compounds that were tested individually to evaluate their activity. The resulting oxygenated fraction was found to be active against both AChE (percentage inhibition 42.8%) and BChE (percentage inhibition 63.7%), while the hydrocarbon fraction was inactive. The activity was attributed to a pool of oxygenated terpenes (α-terpinyl acetate, 1,8-cineole, linalool, linalyl acetate, and α-terpineol) that synergistically contributed to the overall activity of the essential oil.
Collapse
Affiliation(s)
| | | | | | | | - Patrizia Rubiolo
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Pietro Giuria 9, I-10125 Turin, Italy; (M.P.); (A.M.); (C.C.); (C.B.)
| | - Barbara Sgorbini
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Pietro Giuria 9, I-10125 Turin, Italy; (M.P.); (A.M.); (C.C.); (C.B.)
| |
Collapse
|
42
|
Kaggwa B, Anywar G, Munanura EI, Wangalwa R, Kyeyune H, Okella H, Kamba FP, Engeu OP. Application of the herbal chemical marker ranking system (Herb MaRS) to the standardization of herbal raw materials: a case study. BMC Complement Med Ther 2023; 23:348. [PMID: 37777721 PMCID: PMC10542261 DOI: 10.1186/s12906-023-04178-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023] Open
Abstract
INTRODUCTION Phytochemical standardization of herbal materials involves establishing consistent levels of one or more active ingredients or markers. It ensures the authenticity and quality of herbal materials, extracts, and their products. This research aimed to apply the herbal chemical marker ranking system (Herb MaRS) originally proposed for quality assurance of complex herbal products to establish markers for controlling the quality of herbal raw materials. METHODS The assessment of compounds for suitability as markers was based on the Herb MaRS, with minor modifications as follows: for more objective scoring, evidence of biological activity of the potential marker compound(s) was determined at three levels based on the number of symptoms of the disease condition a compound can treat or alleviate: (i) one symptom (1 point), two symptoms (2 points), and 3 or more symptoms (3 points). The reported concentrations of the compounds were also scored as follows: concentration not determined (0 points), concentration ≥ 5 ppm (1 point), concentration ≥ 50 ppm (2 points) and availability of analytical standards (1 point). Finally, the compounds were scored for the availability of an analytical method (1 point). The compounds were scored from 0 to 8, where 8 indicated the most suitable chemical marker. RESULTS The selected markers were as follows: aromadendrine, α-terpineol, globulol, and 1,8-cineol (in Eucalyptus globulus Labill. ); aloin, aloe emodin, acemannan (in Aloe barbadensis (L.) Burm.f. ), lupeol, lupenone, betulinic acid, betulin, and catechin (in Albizia coriaria Oliv.); mangiferin, catechin, quercetin, and gallic acid (in Mangifera indica L.); polygodial (in Warburgia ugandensis Sprague); azadirachtin, nimbin, nimbidin (in Azadirachta indica A. Juss. ); and 6,8,10-gingerols, and 6-shogaol (in Zingiber officinalis Roscoe). CONCLUSIONS Herb MaRS can be efficiently applied to select marker compounds for quality control of herbal materials. However, for herbs whose phytochemicals have not been sufficiently researched, it is difficult to establish evidence of activity, and there are no analytical standards and/or methods; this is the case for plants exclusively used in Africa. The markers identified should be incorporated into chromatographic fingerprints, their quantitative methods developed, and evaluated for applicability at the various stages of the production chain of herbal medicines; then, they can be included in future local plant monographs. There is also a need to build local capacity to isolate marker compounds, particularly those that are not sold by current vendors.
Collapse
Affiliation(s)
- Bruhan Kaggwa
- Mbarara University of Science and Technology, Pharm-Bio Technology and Traditional Medicine Center (PHARMBIOTRAC), PO Box 1410, Mbarara, Uganda.
- Department of Pharmacy, Makerere University, College of Health Sciences, P.O. Box 7062, Kampala, Uganda.
| | - Godwin Anywar
- Department of Plant Sciences, Microbiology & Biotechnology, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Edson Ireeta Munanura
- Department of Pharmacy, Makerere University, College of Health Sciences, P.O. Box 7062, Kampala, Uganda
| | - Raphael Wangalwa
- Department of Biology, Faculty of Science, Mbarara University of Science and Technology, P. O BOX 1410, Mbarara, Uganda
| | - Henry Kyeyune
- Department of Pharmacy, Makerere University, College of Health Sciences, P.O. Box 7062, Kampala, Uganda
| | - Hedmon Okella
- Mbarara University of Science and Technology, Pharm-Bio Technology and Traditional Medicine Center (PHARMBIOTRAC), PO Box 1410, Mbarara, Uganda
| | - Fadhiru Pakoyo Kamba
- Department of Pharmacy, Makerere University, College of Health Sciences, P.O. Box 7062, Kampala, Uganda
| | - Ogwang Patrick Engeu
- Mbarara University of Science and Technology, Pharm-Bio Technology and Traditional Medicine Center (PHARMBIOTRAC), PO Box 1410, Mbarara, Uganda
| |
Collapse
|
43
|
Chen M, Hu Q, Wang S, Tao L, Hu X, Shen X. 1,8-Cineole ameliorates endothelial injury and hypertension induced by L-NAME through regulation of autophagy via PI3K/mTOR signaling pathway. Eur J Pharmacol 2023; 954:175863. [PMID: 37380045 DOI: 10.1016/j.ejphar.2023.175863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023]
Abstract
Our previous data confirmed that 1,8-Cineole had an antihypertensive effect in animal models. However, it is unclear whether antihypertension is dependent on the protective effect of 1,8-Cineole on endothelial function and structure. At present, the purpose was to investigate the protective effects of 1,8-Cineole on vascular endothelial tissue in hypertensive rats and human umbilical vein endothelial cells (HUVECs). Our results showed that 1,8-Cineole significantly reduced the blood pressure and improved the vascular endothelial lesion, attenuated vascular oxidative stress and inflammation induced by Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) in rats. Pretreatment with 1,8-Cineole was able to inhibit the increase in malondialdehyde (MDA) and reactive oxygen species (ROS) induced by L-NAME, and increased the release and expression of superoxide dismutase (SOD) and nitric oxide (NO). In addition, 1,8-Cineole also reversed the increase of autophagy-associated protein LC3Ⅱ/LC3Ⅰ and the decrease of P62 in vivo and in vitro respectively. There was a synergistic effect between PI3K agonists and drugs, while PI3K inhibitors blocked the efficacy of 1,8-Cineole. The addition of autophagy inhibitor chloroquine increases the expression of eNOS. Taken together, our results indicate that 1,8-Cineole has potential beneficial promising antihypertension depending on the integrity of vascular endothelial structure and function induced by L-NAME, and the mechanism involves ameliorating autophagy by regulating of PI3K/mTOR.
Collapse
Affiliation(s)
- Meng Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China.
| | - Qilan Hu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China.
| | - Shengquan Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China.
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China.
| | - Xiaoxia Hu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China.
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, Guizhou Medical University, Guiyang, China; The Department of Pharmacology, College of Basic Medical Sciences of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
44
|
Kayaian MR, Hawker MJ. Using 1,8-cineole plasma with both pulsed and continuous depositions to modify commercially available wound dressing materials. Biointerphases 2023; 18:051002. [PMID: 37850854 PMCID: PMC10586874 DOI: 10.1116/6.0003009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023] Open
Abstract
The current clinical standards for infected chronic wounds are oral and topical antibiotics. These strategies are problematic because antibiotic resistance can occur with prolonged use. As an alternative to clinical methods, essential oils show promise in preventing bacterial growth. Specifically, 1,8-cineole-an active component in eucalyptus oil-exhibits antifungal, anti-inflammatory, and antibacterial properties. Applying 1,8-cineole directly onto a wound is challenging, however, due to its volatile nature. To combat this issue, plasma-enhanced chemical vapor deposition (PECVD) has been established as a method to deposit a stable 1,8-cineole-derived film on model surfaces (e.g., glass and electrospun polystyrene nanofibers). The current study represents an extension of previous work, where both pulsed and continuous 1,8-cineole plasmas were used to deposit a 1,8-cineole-derived film on two commercially available wound dressings. Three surface analyses were conducted to characterize the plasma-modified dressings. First, water contact angle goniometry data demonstrated a decrease in hydrofiber wettability after treatment. Through scanning electron spectroscopy, the surface morphology of both materials did not change upon treatment. When comparing pulsed and continuous treatments, deconvolution of high-resolution C1s x-ray photoelectron spectra showed no differences in functional group retention. Importantly, the chemical compositions of treated wound dressings were different compared to untreated materials. Overall, this work seeks to elucidate how different PECVD parameters affect the surface properties of wound dressings. Understanding these parameters represents a key step toward developing alternative chronic wound therapies.
Collapse
Affiliation(s)
- Mia-Rose Kayaian
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Ave, SB70, Fresno, California 93740-8034
| | - Morgan J Hawker
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Ave, SB70, Fresno, California 93740-8034
| |
Collapse
|
45
|
Rahati Quchani M, Farmanesh E, Esmaili A, Moghimi A, Fereidoni M, Rahati Quchani S. Behavioral and electrophysiological (ECoG) effects of haplophyllum robustum and TRPA1 antagonist in adult male wistar rats. Toxicon 2023; 233:107233. [PMID: 37541601 DOI: 10.1016/j.toxicon.2023.107233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
This article aimed to investigate the effects of Haplophyllum robustum hydroalcoholic extract on animals' behavioral and electrocorticographic changes. This plant is mainly found in Turkey, Iran, and Central Asia, and is reported to have convulsive effects. In this article, we worked on the effects of its hydroalcoholic extract on electrocorticography (ECoG), along with changes induced by intracerebroventricular administration of GABAA antagonists. Furthermore, the effects of low doses of this extract on behavioral depression were examined. Four animal sets were used to compare ECoG in Wistar rats. A group of negative control, a group of positive control (PTZ), and two groups received an injection of plant extract (500 mg/kg, ip), with or without administration of Diazepam (5 mg/kg). Also, three sets were applied to compare receiving and not receiving intracerebroventricular (icv) injection of Transient receptor potential ankyrin 1 antagonist (HC-030031) (2 μg/kg) on plant-induced seizure delay and animal death. Two groups of control and a group with plant extract together with TRPA1 antagonist were administrated. Furthermore, in the present study, the forced swimming test (FST) was used as a model of depression. The behaviors of animals in three groups of negative control and positive control (Fluoxetine) and plant extract (200 mg/kg, ip) were compared. According to the ECoG, high doses of extract of plants led to seizures similar to PTZ, which were then reduced by diazepam injection. At this dose, injection of TRPA1 antagonist did not significantly delay the onset of seizures or the death of the animals. Further, a subconvulsive dose of hydroalcoholic plant extracts was equally effective in treating depression as Fluoxetine injections.
Collapse
Affiliation(s)
- Maedeh Rahati Quchani
- Rayan Research Center for Neuroscience & Behavior, Dept of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
| | - Elham Farmanesh
- Rayan Research Center for Neuroscience & Behavior, Dept of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
| | - Asieh Esmaili
- Rayan Research Center for Neuroscience & Behavior, Dept of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
| | - Ali Moghimi
- Rayan Research Center for Neuroscience & Behavior, Dept of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran.
| | - Masoud Fereidoni
- Rayan Research Center for Neuroscience & Behavior, Dept of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
| | - Saeed Rahati Quchani
- Dept of Biomedical Engineering, Faculty of Engineering, Islamic Azad University, Central Tehran Branch, Iran
| |
Collapse
|
46
|
Break MKB, Hussein W, Huwaimel B, Alafnan A, Almansour K, Alafnan D, Alshammari AS, Alanazi IA, Alshammari DS, Alanzi FS, Alsnaideh FF, Almuhaysin A, Alanazi YS, Algharbi S, AlHarbi S. Artemisia sieberi Besser essential oil inhibits the growth and migration of breast cancer cells via induction of S-phase arrest, caspase-independent cell death and downregulation of ERK. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116492. [PMID: 37059248 DOI: 10.1016/j.jep.2023.116492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia sieberi Besser is a medicinal herb that has been traditionally used across the Middle East for the treatment of cancer. Further pharmacological studies on its extracts revealed that they possess cytotoxic activity against certain cancer cells, however, there were no studies conducted on the anticancer potential of Artemisia sieberi essential oil (ASEO). AIM OF THE STUDY To evaluate the anticancer potential of ASEO, elucidate the oil's mode of action for the first time and investigate its chemical composition. MATERIALS AND METHODS Artemisia sieberi was collected from Hail, Saudi Arabia, and its essential oil was obtained via hydrodistillation. The oil's activity against HCT116, HepG2, A549 and MCF-7 cells was assessed using SRB assay, while its anti-metastatic potential was assessed via a migration assay. Cell-cycle analysis and apoptosis assay were conducted via flow cytometry, while protein expression levels were investigated using Western blotting. The oil's chemical constituents were identified using GCMS. RESULTS ASEO exerted its highest cytotoxic activity against MCF-7 with an IC50 value of 38.7 μg/ml. Further studies showed that the oil inhibited MCF-7 cells' migration, induced S-phase arrest and apoptosis. Western blot analysis showed no change in the expression level of caspase-3 after treatment, indicating the induction of caspase-independent apoptosis-like cell death in MCF-7. Treatment of MCF-7 with the oil resulted in downregulation of the protein expression levels of total ERK and its downstream target, LC3, indicating that any potential activation of the ERK signalling pathway during the cancer cells' growth would be inhibited. Finally, GCMS analysis identified the oil's major components as cis-crysanthenyl acetate (48.56%), davanone (10.28%), 1,8-cineole (6.81%) and caryophyllene diepoxide (5.34%), whereby it is suggested that these compounds might be responsible for the oil's bioactivity. CONCLUSION ASEO possessed in vitro anticancer activity and modulated the ERK signalling pathway. This is the first study to explore the anticancer potential of ASEO in detail and reflects the significance of investigating essential oils from medicinal plants that have been traditionally used against cancer. This work might pave the way for further in vivo studies that could result in developing the oil into a natural effective anticancer treatment.
Collapse
Affiliation(s)
- Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia.
| | - Weiam Hussein
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Bader Huwaimel
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia; Medical and Diagnostic Research Center, University of Ha'il, Hail, 55473, Saudi Arabia
| | - Ahmed Alafnan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Khaled Almansour
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Dalal Alafnan
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | | | - Ibrahim Awadh Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Dera Salah Alshammari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Fares Saud Alanzi
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Faisal Fahad Alsnaideh
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Abduldaem Almuhaysin
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Yasir Salem Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Saleh Algharbi
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Sami AlHarbi
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
47
|
Alimpić Aradski A, Oalđe Pavlović M, Janošević D, Todorović S, Gašić U, Mišić D, Pljevljakušić D, Šavikin K, Marin PD, Giweli A, Duletić-Laušević S. Leaves micromorphology, chemical profile, and bioactivity of in vitro-propagated Nepeta cyrenaica (Lamiaceae). PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:661-679. [PMID: 37387322 DOI: 10.1002/pca.3257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/09/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
INTRODUCTION The endemic species Nepeta cyrenaica Quézel & Zaffran, native to northeastern Libya, is valued as an important honey-bearing plant. OBJECTIVES This study was aimed to examine the micromorphology, phytochemistry, and bioactivity of in vitro-propagated N. cyrenaica for the first time. MATERIALS AND METHODS The leaf indumentum was examined using light and scanning electron microscopy and further characterised for histochemistry. The chemical composition of essential oil (EO) was performed using GC-MS analysis, while dichloromethane (DCM), methanol (ME), ethanol (ET), and aqueous (AQ) extracts were analysed using qualitative and quantitative LC/MS analyses. The antioxidant activities of EO and extracts were assessed using three parallel assays, while enzyme-inhibiting effects were evaluated against four enzymes. RESULTS The leaves bear various types of glandular trichomes, with lipophilic secretion predominating. The main EO component of EO was 1,8-cineole. A considerable number of phenolics and iridoids were tentatively identified in the ME extract. Quantitative LC/MS analysis confirmed that ferulic acid, rosmarinic acid, and epigallocatechin gallate were present in the highest amount in the extracts, in which three iridoids were also quantified. Although the ME extract contained the highest amount of polyphenolics and iridoids, the DCM extract showed the best overall biological potential. Additionally, EO exerted the strongest acetylcholinesterase and tyrosinase inhibition. CONCLUSION This study demonstrated that the endemic N. cyrenaica can be efficiently grown under in vitro conditions, where it develops various glandular trichomes that are thought to secrete and/or accumulate bioactive compounds with valuable medicinal potential.
Collapse
Affiliation(s)
- Ana Alimpić Aradski
- Faculty of Biology, Institute of Botany and Botanical Garden "Jevremovac", University of Belgrade, Belgrade, Serbia
| | - Mariana Oalđe Pavlović
- Faculty of Biology, Institute of Botany and Botanical Garden "Jevremovac", University of Belgrade, Belgrade, Serbia
| | - Dušica Janošević
- Faculty of Biology, Institute of Botany and Botanical Garden "Jevremovac", University of Belgrade, Belgrade, Serbia
| | - Slađana Todorović
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Uroš Gašić
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danijela Mišić
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dejan Pljevljakušić
- Institute for Medicinal Plants Research "Dr. Josif Pančić", Belgrade, Serbia
| | - Katarina Šavikin
- Institute for Medicinal Plants Research "Dr. Josif Pančić", Belgrade, Serbia
| | - Petar D Marin
- Faculty of Biology, Institute of Botany and Botanical Garden "Jevremovac", University of Belgrade, Belgrade, Serbia
| | - Abdulhmid Giweli
- Faculty of Science, University of Al-Zintan, Zintan, Libya
- National Research Center for Tropical and Transboundary Diseases, Zintan, Libya
| | - Sonja Duletić-Laušević
- Faculty of Biology, Institute of Botany and Botanical Garden "Jevremovac", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
48
|
Liu Z, Gan S, Fu L, Xu Y, Wang S, Zhang G, Pan D, Tao L, Shen X. 1,8-Cineole ameliorates diabetic retinopathy by inhibiting retinal pigment epithelium ferroptosis via PPAR-γ/TXNIP pathways. Biomed Pharmacother 2023; 164:114978. [PMID: 37271074 DOI: 10.1016/j.biopha.2023.114978] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023] Open
Abstract
1,8-Cineole, the main component of volatile oil in aromatic plants, has diverse pharmacological properties, including antioxidant, anti-inflammatory, and anti-cancer properties. Diabetic retinopathy (DR) is a common microvascular complication of diabetes mellitus (DM). Here, we investigated the protective effect of 1,8-cineole on DR and found that 1,8-cineole treatment could alter the expression of several genes in both high glucose (HG)-induced ARPE-19 cells and retinal tissues of DM mice, as well as inhibit ferroptosis. Subsequent investigations into the molecular mechanisms underlying this inhibition revealed that expression of thioredoxin-interacting protein (TXNIP) was significantly upregulated while that of peroxisome proliferator-activated receptor γ (PPAR-γ) was significantly downregulated in HG-induced ARPE-19 cells, and treatment with 1,8-cineole could effectively reverse these changes. Treatment with a PPAR-γ pharmacological agonist (rosiglitazone), alone or combined with 1,8-cineole, significantly inhibited the transcription of TXNIP and ferroptosis in HG-induced ARPE-19 cells. Conversely, pretreatment with GW9662, a PPAR-γ inhibitor, upregulated the transcription and expression of TXNIP in HG-induced ARPE-19 cells; 1,8-cineole failed to reverse this upregulated expression. To explore these relationships, we constructed a PPAR-γ adenovirus shRNA to elucidate the effect of 1,8-cineole on the negative regulation of TXNIP by PPAR-γ. Taken together, the present findings indicate that HG-induced ferroptosis in retinal tissue plays an essential role in the pathogenesis of DR, which can be ameliorated by 1,8-cineole.
Collapse
Affiliation(s)
- Zhangnian Liu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Shiquan Gan
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Lingyun Fu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Yini Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Shengquan Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Guangqiong Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Di Pan
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China.
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
49
|
Cruz JN, Oliveira MSD, Cascaes M, Mali SN, Tambe S, Santos CBRD, Zoghbi MDGB, Andrade EHDA. Variation in the Chemical Composition of Endemic Specimens of Hedychium coronarium J. Koenig from the Amazon and In Silico Investigation of the ADME/Tox Properties of the Major Compounds. PLANTS (BASEL, SWITZERLAND) 2023; 12:2626. [PMID: 37514241 PMCID: PMC10384162 DOI: 10.3390/plants12142626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023]
Abstract
Four species of the genus Hedychium can be found in Brazil. Hedychium coronarium is a species endemic to India and Brazil. In this paper, we collected six specimens of H. coronarium for evaluation of their volatile chemical profiles. For this, the essential oils of these specimens were extracted using hydrodistillation from plant samples collected in the state of Pará, Brazil, belonging to the Amazon region in the north of the country. Substance compounds were identified with GC/MS. The most abundant constituent identified in the rhizome and root oils was 1,8-cineole (rhizome: 35.0-66.1%; root: 19.6-20.8%). Leaf blade oil was rich in β-pinene (31.6%) and (E)-caryophyllene (31.6%). The results from this paper allow for greater knowledge about the volatile chemical profile of H. coronarium specimens, in addition to disseminating knowledge about the volatile compounds present in plant species in the Amazon region.
Collapse
Affiliation(s)
- Jorddy Neves Cruz
- Adolpho Ducke Laboratory, Botany Coordination, Museu Paraense Emílio Goeldi, Belém 66075-110, Pará, Brazil
| | | | - Marcia Cascaes
- Adolpho Ducke Laboratory, Botany Coordination, Museu Paraense Emílio Goeldi, Belém 66075-110, Pará, Brazil
| | - Suraj N Mali
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Main Campus at Mumbai, Deemed University, Nathalal Parekh Marg, Mumbai 400019, Maharashtra, India
| | - Srushti Tambe
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Main Campus at Mumbai, Deemed University, Nathalal Parekh Marg, Mumbai 400019, Maharashtra, India
| | - Cleydson Breno Rodrigues Dos Santos
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, Amapá, Brazil
| | | | - Eloisa Helena de Aguiar Andrade
- Adolpho Ducke Laboratory, Botany Coordination, Museu Paraense Emílio Goeldi, Belém 66075-110, Pará, Brazil
- Faculty of Chemistry, Federal University of Pará, Rua Augusto Corrêa, Belém 66075-750, Pará, Brazil
| |
Collapse
|
50
|
Glumac M, Jažo Z, Paštar V, Golemac A, Čikeš Čulić V, Bektić S, Radan M, Carev I. Chemical Profiling and Bioactivity Assessment of Helichrysum italicum (Roth) G. Don. Essential Oil: Exploring Pure Compounds and Synergistic Combinations. Molecules 2023; 28:5299. [PMID: 37513174 PMCID: PMC10384098 DOI: 10.3390/molecules28145299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Helichrysum italicum (Roth) G. Don., immortelle, is a plant species used in ethnomedicine and the food industry as a spice added to food, beverages, and bakery products. It has been shown to possess various biological activities, such as antioxidant and antibacterial activity, making it useful as a natural preservative. We investigated the phytochemical profile and biological activity of H. italicum essential oils from wild-grown plant material collected from natural habitats in the Republic of Croatia and Bosnia and Herzegovina. Using high-resolution scanning electron microscopy (SEM), a visual investigation of plant organs (stem, leaf, and flower) was performed, confirming the presence of essential oil reservoirs on the surface of all examined plant organs. Essential oils were isolated by hydrodistillation in the Clevenger apparatus. The chemical composition of the essential oils was determined using the GC-MS analytical technique. Cytotoxic activity tests were performed in vitro on three cell lines: skin (fibroblast), lung, and breast cancer. Using statistical tools, the synergistic and selective effects of H. italicum essential oil on healthy and tumor cells were correlated to chemical composition and cytotoxic activity. The synergistic and antagonistic effects of H. italicum essential oil's individual components were simulated by testing pure compounds and their mixture of cytotoxic activity on fibroblasts and breast cancer cells. The results confirm that essential oil's biological activity is much greater than the sum of the effects of its components. The present data are novel contributions to the body of knowledge on the biological activity of this species used in the food industry.
Collapse
Affiliation(s)
- Mateo Glumac
- Department of Biochemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
- School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia
| | - Zvonimir Jažo
- Department of Biochemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
- Regional Laboratory Split, Croatian Veterinary Institute, Poljička Cesta 33, 21000 Split, Croatia
| | - Vlatka Paštar
- Mediterranean Institute for Life Science, Meštrovićevo Šetalište 45, 21000 Split, Croatia
| | - Anja Golemac
- Mediterranean Institute for Life Science, Meštrovićevo Šetalište 45, 21000 Split, Croatia
| | | | - Sanida Bektić
- Faculty of Sciences, University of Tuzla, Univerzitetska 4, 75 000 Tuzla, Bosnia and Herzegovina
| | - Mila Radan
- Department of Biochemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| | - Ivana Carev
- Department of Biochemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
- Mediterranean Institute for Life Science, Meštrovićevo Šetalište 45, 21000 Split, Croatia
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
- NAOS Institute of Life Science, 355, Rue Pierre-Simon Laplace, 13290 Aix, France
| |
Collapse
|