1
|
Sarsenbayeva A, Sadak S, Kucuk I, Kudreyeva L, Bakytzhanovna AM, Uslu B. Molybdenum-Based Electrochemical Sensors for Breast Cancer Biomarker Detection: Advances and Challenges. Crit Rev Anal Chem 2025:1-21. [PMID: 40257753 DOI: 10.1080/10408347.2025.2487581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Breast cancer, which is considered the most common type of cancer among women worldwide, is estimated to reach 4.4 million cases in 2070. Early diagnosis has become very important to prevent this expected increase. Various traditional methods, such as mammography, biopsy, enzyme immunoassay (EI), liquid biopsy, immunohistochemistry (IGH), fluorescence in situ hybridization (FISH) are used to diagnose breast cancer, but the fact that these methods are very expensive, have low sensitivity, and cause mutations in tissues due to X-rays has led researchers to discover faster, more cost-effective, and easily detectable methods. In particular, increased levels of new blood-based biomarkers in the circulation can be detected sensitively and selectively by electrochemical methods to facilitate early disease screening and rapid diagnosis. This comprehensive review focuses on the prevalence and pathology of breast cancer, clinical diagnosis of breast cancer, and electrochemical sensors of molybdenum-based compounds for the detection of various breast cancer biomarkers in recent years. Electrochemical analysis studies carried out in the field in recent years are compiled and are considered as aptamer-based, nucleotide-based, and immunosensors. The chemical properties of molybdenum compounds are discussed, and the modifications of these compounds to the electrode surface are discussed under 4 headings: drop casting, electrodeposition, atomic layer deposition, and electrophoretic deposition.
Collapse
Affiliation(s)
- Aliya Sarsenbayeva
- Department of Analytical Chemistry, Colloidal Chemistry and Technology of Rare Elements, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Selenay Sadak
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- The Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Ipek Kucuk
- The Graduate School of Health Sciences, Ankara University, Ankara, Turkey
- Department of Analytical Chemistry, Faculty of Pharmacy, Başkent University, Ankara, Turkey
| | - Leila Kudreyeva
- Department of Analytical Chemistry, Colloidal Chemistry and Technology of Rare Elements, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Abu Moldir Bakytzhanovna
- Department of Analytical Chemistry, Colloidal Chemistry and Technology of Rare Elements, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Bengi Uslu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
2
|
Lee TY, Chen PT, Huang CC, Chen HC, Chen LY, Lee PT, Chen FC, Horng RH, Kuo HC. Advances in core technologies for semiconductor manufacturing: applications and challenges of atomic layer etching, neutral beam etching and atomic layer deposition. NANOSCALE ADVANCES 2025:d4na00784k. [PMID: 40226206 PMCID: PMC11986675 DOI: 10.1039/d4na00784k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/07/2025] [Indexed: 04/15/2025]
Abstract
This article comprehensively reviews the technological advancements, emerging materials, processing techniques adopted (atomic layer deposition, atomic layer etching, and neutral beam etching), geometric influences, and fabrication challenges in the development of advanced semiconductor devices. These technologies are recognized for their precision at the atomic scale and are crucial in fabricating next-generation silicon photonics optoelectronic devices. They also play an important role in the development of RF/power third-generation compound semiconductors and advanced semiconductor devices. Atomic layer deposition (ALD) offers superior control over thin film growth, ensuring uniformity and material conformity. Atomic layer etching (ALE) enables precise layer-by-layer material removal, making it ideal for high-aspect-ratio structures. Neutral beam etching (NBE) minimizes surface damage, a key factor in maintaining device reliability, particularly for GaN-based semiconductors. This article also assesses the role of these technologies in enhancing semiconductor device performance, with a focus on overcoming the limitations of traditional methods. The combined application of ALD, ALE, and NBE technologies is driving innovations in advanced semiconductor fabrication, making these processes indispensable for advancements in areas such as micro-LEDs, optical communication, and high-frequency, high-power electronic devices.
Collapse
Affiliation(s)
- Tzu-Yi Lee
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan
- Semiconductor Research Center, Foxconn Research Taipei 11492 Taiwan
| | - Pei-Tien Chen
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan
| | - Chien-Chi Huang
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan
| | - Hsin-Chu Chen
- Institute of Advanced Semiconductor Packaging and Testing, National Sun Yat-sen University Kaohsiung 804201 Taiwan
| | - Li-Yin Chen
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan
| | - Po-Tsung Lee
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan
| | - Fang-Chung Chen
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan
| | - Ray-Hua Horng
- Institute of Electronics, National Yang Ming Chiao Tung University 1001 University Road Hsinchu 30010 Taiwan
| | - Hao-Chung Kuo
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan
- Semiconductor Research Center, Foxconn Research Taipei 11492 Taiwan
| |
Collapse
|
3
|
Cho Y, D'Acunto G, Nanda J, Bent SF. Atomic and molecular layer deposition on unconventional substrates: challenges and perspectives from energy applications. NANOTECHNOLOGY 2025; 36:182002. [PMID: 40048750 DOI: 10.1088/1361-6528/adbd49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 03/06/2025] [Indexed: 04/02/2025]
Abstract
The use of atomic layer deposition (ALD) and molecular layer deposition (MLD) in energy sectors such as catalysis, batteries, and membranes has emerged as a growing approach to fine-tune surface and interfacial properties at the nanoscale, thereby enhancing performance. However, compared to the microelectronics field where ALD is well established on conventional substrates such as silicon wafers, employing ALD and MLD in energy applications often requires depositing films on unconventional substrates such as nanoparticles, secondary particles, composite electrodes, membranes with a wide pore size distribution, and two-dimensional materials. This review examines the challenges and perspectives associated with implementing ALD and MLD on these unconventional substrates. We discuss how the complex surface chemistries and intricate morphologies of these substrates can lead to non-ideal growth behaviors, resulting in inconsistent film properties compared to those grown on standard wafers, even within the same deposition process. Additionally, the review outlines the strengths and limitations of several characterization techniques when employed for ALD or MLD films grown on unconventional substrates, and it highlights a few example studies in which these growth methods have been applied for energy applications with a focus on energy storage. With ALD and MLD continuing to gain attention, this review aims to deepen the understanding of how to achieve controllable, predictable, and scalable deposition with atomic-scale precision, ultimately advancing the development of more efficient and durable energy devices.
Collapse
Affiliation(s)
- Yukio Cho
- Applied Energy Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States of America
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Giulio D'Acunto
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Jagjit Nanda
- Applied Energy Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States of America
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Stacey F Bent
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United States of America
- Department of Energy Science and Engineering, Stanford University, Stanford, CA 94305, United States of America
| |
Collapse
|
4
|
Qiao S, Shi Z, Tong A, Luo Y, Zhang Y, Wang M, Huang Z, Xu W, Chen F. Atomic layer deposition paves the way for next-generation smart and functional textiles. Adv Colloid Interface Sci 2025; 341:103500. [PMID: 40158416 DOI: 10.1016/j.cis.2025.103500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 02/18/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
As technology evolves and consumer needs diversify, textiles have become crucial to determining the future of fashion, sustainability, and functionality. Functional textiles, which not only provide comfort and aesthetics as traditional textiles but also endow textiles with special functions such as antibacterial, anti-odor, moisture absorption and perspiration, anti-ultraviolet (UV), flame-retardant, self-cleaning, and anti-static properties through technological innovation and upgrading, have attracted increasing attention because they satisfy the specific needs of people in different environments and occasions. However, functionality often occurs at the expense of comfort in existing functional products. Endowing textiles with excellent multi-functionality with marginal effects on comfort and wearability properties continues to be a challenge. Atomic layer deposition (ALD) paves the way for creating functional fabrics by enabling the formation of highly conforming inorganic/organic coatings over a large area with precise atomic-level film thickness control from a self-limiting reaction mechanism. Therefore, this paper introduces the reaction mechanism of ALD and the unique advantages of depositing inorganic nanofilms on fiber and textile surfaces. The factors influencing ALD and the commonly used ALD-derived technologies are then discussed. Subsequently, the research progress and breakthroughs in inorganic nanofilms prepared by ALD in conferring multifunctional properties on textile surfaces, such as antimicrobial, UV-resistant, heat-insulating, multifunctional wetting, structural coloring, thermoelectric elements, and flexible sensing, are reviewed. Finally, future developments and possible challenges of ALD for the large-scale production of multifunctional fabrics are proposed, which are expected to promote the development of next-generation advanced functional textiles.
Collapse
Affiliation(s)
- Sijie Qiao
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Hubei, Wuhan 430000, China
| | - Zhicheng Shi
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Hubei, Wuhan 430000, China
| | - Aixin Tong
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Hubei, Wuhan 430000, China
| | - Yuxin Luo
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Hubei, Wuhan 430000, China
| | - Yu Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Hubei, Wuhan 430000, China
| | - Mengqi Wang
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Hubei, Wuhan 430000, China
| | - Zhiyu Huang
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Hubei, Wuhan 430000, China
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Hubei, Wuhan 430000, China
| | - Fengxiang Chen
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Hubei, Wuhan 430000, China.
| |
Collapse
|
5
|
Magliano E, Di Giacomo F, Sathy HR, Pourmotlagh SM, Giliberti G, Becerril Rodriguez D, Ammirati G, Mariani P, Zarotti F, Matteocci F, Luce M, Usatii I, Bobeico E, Della Noce M, Cricenti A, Cappelluti F, Mercaldo LV, Delli Veneri P, Di Carlo A. Solution-Processed Metal-Oxide Nanoparticles to Prevent The Sputtering Damage in Perovskite/Silicon Tandem Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17599-17610. [PMID: 40063700 PMCID: PMC11931493 DOI: 10.1021/acsami.5c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/21/2025]
Abstract
Semitransparent perovskite solar cells (ST-PSCs) for tandem applications typically use a buffer layer deposited via atomic layer deposition (ALD) to protect the cell stack from the damage induced by the sputtering of the transparent electrode. Here, we present a simple yet effective solution-processed buffer layer based on metal-oxide nanoparticles to mitigate sputter-induced damage. We exploit this strategy in a monolithic tandem integrating the optimized ST-PSC on a polished front-side/unpolished rear-side p-type silicon heterojunction (SHJ) solar cell. The intrinsic roughness on the backside significantly boosts the absorption, thus suppressing the need for a dedicated texturization step and leading to a final maximum efficiency of 25.3%. Our findings highlight the potential of solution-processed buffer layers as a practical and scalable solution to mitigate the sputtering damage, as well as the potential of silicon wafers with an unpolished rear surface for enhanced photocurrent.
Collapse
Affiliation(s)
- Erica Magliano
- CHOSE (Centre
for Hybrid and Organic Solar Energy), Department of Electronic Engineering, Tor Vergata University of Rome, Via del Politecnico 1, Rome 00118, Italy
| | - Francesco Di Giacomo
- CHOSE (Centre
for Hybrid and Organic Solar Energy), Department of Electronic Engineering, Tor Vergata University of Rome, Via del Politecnico 1, Rome 00118, Italy
| | - Harshavardhan Reddy Sathy
- CHOSE (Centre
for Hybrid and Organic Solar Energy), Department of Electronic Engineering, Tor Vergata University of Rome, Via del Politecnico 1, Rome 00118, Italy
| | - Shirin M. Pourmotlagh
- CHOSE (Centre
for Hybrid and Organic Solar Energy), Department of Electronic Engineering, Tor Vergata University of Rome, Via del Politecnico 1, Rome 00118, Italy
| | - Gemma Giliberti
- Department
of Electronics and Telecommunication, Politecnico
di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy
| | - David Becerril Rodriguez
- Istituto
di Struttura della Materia (CNR-ISM) National Research Council, via del Fosso del Cavaliere 100, Rome 00133, Italy
| | - Giuseppe Ammirati
- Istituto
di Struttura della Materia (CNR-ISM) National Research Council, via del Fosso del Cavaliere 100, Rome 00133, Italy
| | - Paolo Mariani
- CHOSE (Centre
for Hybrid and Organic Solar Energy), Department of Electronic Engineering, Tor Vergata University of Rome, Via del Politecnico 1, Rome 00118, Italy
| | - Francesca Zarotti
- CHOSE (Centre
for Hybrid and Organic Solar Energy), Department of Electronic Engineering, Tor Vergata University of Rome, Via del Politecnico 1, Rome 00118, Italy
| | - Fabio Matteocci
- CHOSE (Centre
for Hybrid and Organic Solar Energy), Department of Electronic Engineering, Tor Vergata University of Rome, Via del Politecnico 1, Rome 00118, Italy
| | - Marco Luce
- Istituto
di Struttura della Materia (CNR-ISM) National Research Council, via del Fosso del Cavaliere 100, Rome 00133, Italy
| | - Iurie Usatii
- ENEA −
Portici Research Center, P.le Enrico Fermi 1, Portici (Naples) 80055, Italy
| | - Eugenia Bobeico
- ENEA −
Portici Research Center, P.le Enrico Fermi 1, Portici (Naples) 80055, Italy
| | - Marco Della Noce
- ENEA −
Portici Research Center, P.le Enrico Fermi 1, Portici (Naples) 80055, Italy
| | - Antonio Cricenti
- Istituto
di Struttura della Materia (CNR-ISM) National Research Council, via del Fosso del Cavaliere 100, Rome 00133, Italy
| | - Federica Cappelluti
- Department
of Electronics and Telecommunication, Politecnico
di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy
| | - Lucia V. Mercaldo
- ENEA −
Portici Research Center, P.le Enrico Fermi 1, Portici (Naples) 80055, Italy
| | - Paola Delli Veneri
- ENEA −
Portici Research Center, P.le Enrico Fermi 1, Portici (Naples) 80055, Italy
| | - Aldo Di Carlo
- CHOSE (Centre
for Hybrid and Organic Solar Energy), Department of Electronic Engineering, Tor Vergata University of Rome, Via del Politecnico 1, Rome 00118, Italy
- Istituto
di Struttura della Materia (CNR-ISM) National Research Council, via del Fosso del Cavaliere 100, Rome 00133, Italy
| |
Collapse
|
6
|
Astaneh SH, Faverani LP, Bhatia H, Dallazen E, Costa MG, Ervolino E, Barão VA, Sukotjo C, Takoudis CG. Functionalization of collagen fiber with nano-islands of silver via atomic layer deposition to promote bone healing. Heliyon 2025; 11:e42177. [PMID: 39931468 PMCID: PMC11808621 DOI: 10.1016/j.heliyon.2025.e42177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
Modern techniques of thin film deposition (e.g., atomic layer deposition [ALD]) have paved the way for the modification of the surface of target substrates with thin films, nanoparticles, or other types of nanomaterials. This novel way can improve the base material's properties and enhance specific properties through adding functionalized groups to the surface. In this study, ALD of silver was conducted on commercially available Type I collagen membrane to improve its bioactivity and promote bone healing. Two different sample groups were studied: pristine collagen and silver-coated collagen via ALD (Ag/Collagen). Chemical and morphological changes of the collagen membrane were investigated with X-ray photoelectron spectroscopy and scanning electron microscopy and the bioactivity of functionalized collagen with silver was studied in vitro and in vivo. Nano-islands of silver were obtained on collagen fibrils with an average diameter of ∼16 nm. Comparison of gingival cells cultured on pristine collagen, and silver-coated collagen, demonstrated that the attained silver nanoparticle size and concentration are below the toxicity level of silver. In vivo assessment in rat model showed the biocompatibility of the Ag/Collagen, and greater new bone formation compared to control. This novel solvent-free method can be used to functionalize sensitive materials used in surgeries as bone grafting agents to enhance osteopromotive properties without any adverse effects to the cellular environment.
Collapse
Affiliation(s)
- Sarah Hashemi Astaneh
- Chemical Engineering Department, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Leonardo P. Faverani
- Department of Diagnosis and Surgery, Sao Paulo State University (UNESP), Araçatuba, São Paulo, 16015-050, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Harshdeep Bhatia
- Chemical Engineering Department, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Eduardo Dallazen
- Department of Diagnosis and Surgery, Sao Paulo State University (UNESP), Araçatuba, São Paulo, 16015-050, Brazil
| | - Monique Gonçalves Costa
- Department of Diagnosis and Surgery, Sao Paulo State University (UNESP), Araçatuba, São Paulo, 16015-050, Brazil
| | - Edilson Ervolino
- Department of Basic Sciences, Sao Paulo State University (UNESP), Araçatuba, São Paulo, 16015-050, Brazil
| | - Valentim A.R. Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Cortino Sukotjo
- Department of Prosthodontics, School of Dental Medicine, University of Pittsburgh, PA, 15213, USA
| | - Christos G. Takoudis
- Chemical Engineering Department, University of Illinois Chicago, Chicago, IL, 60607, USA
- Biomedical Engineering Department, University of Illinois Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
7
|
Mahfuz MA, Habib MS. Highly scalable solid-core inhibited-coupling fiber-based plasmonic refractive index sensor. OPTICS EXPRESS 2025; 33:2745-2758. [PMID: 39876415 DOI: 10.1364/oe.547833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025]
Abstract
Advancements in plasmonic sensing require simultaneous detection capability that ensures large-scale detection with reduced losses. In this work, we propose a new solid-core fiber-based refractive index (RI) sensor with an ultra-broad detection range. The proposed fiber consists of a relatively simple single-ring cladding with six circular tubes in which the light is guided in the core based on the inhibited-coupling (IC) mechanism. The sensing performance is investigated using extensive finite-element modeling (FEM) through the combination of IC and surface plasmon resonance (SPR) sensing technology. Our results show a low loss of <3 dB/cm across the RI detection range from 1 to 1.60, peaking the wavelength sensitivity (WS) of 3000 nm/RIU and figure of merit (FOM) of 120 RIU-1. Our study also includes the investigation of the fabrication tolerance, fiber bending, and the use of alternative plasmonic materials, providing insights into the practical implementation capability of the proposed sensor. Our findings highlight the potential of the proposed sensor in emerging applications such as detecting air pollutants, biochemical substances, and DNA, paving the way towards bio-sensing within a lab-on-a-chip platform.
Collapse
|
8
|
Morales C, Tschammer R, Pożarowska E, Kosto J, Villar-Garcia IJ, Pérez-Dieste V, Favaro M, Starr DE, Kapuścik P, Mazur M, Wojcieszak D, Domaradzki J, Alvarado C, Wenger C, Henkel K, Flege JI. Hydrogen Sensing via Heterolytic H 2 Activation at Room Temperature by Atomic Layer Deposited Ceria. CHEMSUSCHEM 2025:e202402342. [PMID: 39821714 DOI: 10.1002/cssc.202402342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/19/2025]
Abstract
Ultrathin atomic layer deposited ceria films (<20 nm) are capable of H2 heterolytic activation at room temperature, undergoing a significant reduction regardless of the absolute pressure, as measured under in-situ conditions by near ambient pressure X-ray photoelectron spectroscopy. ALD-ceria can gradually reduce as a function of H2 concentration under H2/O2 environments, especially for diluted mixtures below 10 %. At room temperature, this reduction is limited to the surface region, where the hydroxylation of the ceria surface induces a charge transfer towards the ceria matrix, reducing Ce4+ cations to Ce3+. Thus, ALD-ceria replicates the expected sensing mechanism of metal oxides at low temperatures without using any noble metal decorating the oxide surface to enhance H2 dissociation. The intrinsic defects of the ALD deposit seem to play a crucial role since the post-annealing process capable of healing these defects leads to decreased film reactivity. The sensing behavior was successfully demonstrated in sensor test structures by resistance changes towards low concentrations of H2 at low operating temperatures without using noble metals. These promising results call for combining ALD-ceria with more conductive metal oxides, taking advantage of the charge transfer at the interface and thus modifying the depletion layer formed at the heterojunction.
Collapse
Affiliation(s)
- Carlos Morales
- Applied Physics and Semiconductor Spectroscopy, Brandenburg University of Technology Cottbus-Senftenberg, Konrad-Zuse-Straße 1, 03046, Cottbus, Germany
| | - Rudi Tschammer
- Applied Physics and Semiconductor Spectroscopy, Brandenburg University of Technology Cottbus-Senftenberg, Konrad-Zuse-Straße 1, 03046, Cottbus, Germany
| | - Emilia Pożarowska
- Applied Physics and Semiconductor Spectroscopy, Brandenburg University of Technology Cottbus-Senftenberg, Konrad-Zuse-Straße 1, 03046, Cottbus, Germany
| | - Julia Kosto
- Applied Physics and Semiconductor Spectroscopy, Brandenburg University of Technology Cottbus-Senftenberg, Konrad-Zuse-Straße 1, 03046, Cottbus, Germany
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, Present address: Charles University, Prague, 18000, Czech Republic
| | - Ignacio J Villar-Garcia
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, 08290, Barcelona, Cerdanyola del Vallès, Spain
- Departamento de Química, Facultad de Farmacia, Universidad San Pablo CEU, Pl. Montepríncipe s/n, 28668, Alcorcón, Madrid
| | - Virginia Pérez-Dieste
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, 08290, Barcelona, Cerdanyola del Vallès, Spain
| | - Marco Favaro
- Institute for Solar Fuels, Helmholtz Zentrum Berlin für Materialien und Energie GmbH, 14109, Berlin, Germany
| | - David E Starr
- Institute for Solar Fuels, Helmholtz Zentrum Berlin für Materialien und Energie GmbH, 14109, Berlin, Germany
| | - Paulina Kapuścik
- Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, Janiszewskiego 11/17, 50-372, Wroclaw, Poland
| | - Michał Mazur
- Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, Janiszewskiego 11/17, 50-372, Wroclaw, Poland
| | - Damian Wojcieszak
- Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, Janiszewskiego 11/17, 50-372, Wroclaw, Poland
| | - Jarosław Domaradzki
- Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, Janiszewskiego 11/17, 50-372, Wroclaw, Poland
| | - Carlos Alvarado
- IHP - Leibniz-Institut für innovative Mikroelektronik, Im Technologiepark 25, 15236, Frankfurt (Oder), Germany
| | - Christian Wenger
- IHP - Leibniz-Institut für innovative Mikroelektronik, Im Technologiepark 25, 15236, Frankfurt (Oder), Germany
| | - Karsten Henkel
- Applied Physics and Semiconductor Spectroscopy, Brandenburg University of Technology Cottbus-Senftenberg, Konrad-Zuse-Straße 1, 03046, Cottbus, Germany
| | - Jan Ingo Flege
- Applied Physics and Semiconductor Spectroscopy, Brandenburg University of Technology Cottbus-Senftenberg, Konrad-Zuse-Straße 1, 03046, Cottbus, Germany
| |
Collapse
|
9
|
Qiu S, Amaro A, Fabulyak D, Appleby‐Millette J, Conover C, Zhang D, Yeddu V, Cheong IT, Paci I, Saidaminov MI. Impact of Tetrakis(dimethylamido)tin(IV) Degradation on Atomic Layer Deposition of Tin Oxide Films and Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2404966. [PMID: 39506526 PMCID: PMC11707587 DOI: 10.1002/smll.202404966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/17/2024] [Indexed: 11/08/2024]
Abstract
Tin oxide (SnOx) films synthesized by atomic layer deposition (ALD) are widely explored in a range of optoelectronic devices including electrochemical sensors, transistors, and photovoltaics. However, the integrity of the key ALD-SnOx precursor, namely tetrakis(dimethylamido)tin (IV) (TDMASn), and its influence on the properties of ultimate films remain unexplored. Here a significant degradation of TDMASn into bis(dimethylamido)tin(II) via the Sn-imine complex is reported, and its impact on the corresponding films and devices is examined. It is found, surprisingly, that this degradation does not affect the growth kinetics and morphology of ALD-SnOx films. But it notably deteriorates their electronic properties, resulting in films with twice the electrical resistance due to different oxidation mechanisms of the degradation products. Perovskite solar cells employing such films exhibit a significant loss in power conversion efficiency, primarily due to charge transport and transfer losses. These findings urge strategies to stabilize TDMASn, a critical precursor for ALD-SnOx films, or to identify alternative materials to achieve efficient and reliable devices.
Collapse
Affiliation(s)
- Shuang Qiu
- Department of ChemistryDepartment of Electrical and Computer EngineeringCenter for Advanced Materials and Related Technologies (CAMTEC)University of VictoriaVictoriaBritish ColumbiaV8P 5C2Canada
| | - Augusto Amaro
- Department of ChemistryDepartment of Electrical and Computer EngineeringCenter for Advanced Materials and Related Technologies (CAMTEC)University of VictoriaVictoriaBritish ColumbiaV8P 5C2Canada
| | - Diana Fabulyak
- Seastar Chemicals ULC2061 Henry Avenue WestSidneyBCCanada V8L 5Z6Canada
| | - Julien Appleby‐Millette
- Department of ChemistryDepartment of Electrical and Computer EngineeringCenter for Advanced Materials and Related Technologies (CAMTEC)University of VictoriaVictoriaBritish ColumbiaV8P 5C2Canada
| | - Cassidy Conover
- Seastar Chemicals ULC2061 Henry Avenue WestSidneyBCCanada V8L 5Z6Canada
| | - Dongyang Zhang
- Department of ChemistryDepartment of Electrical and Computer EngineeringCenter for Advanced Materials and Related Technologies (CAMTEC)University of VictoriaVictoriaBritish ColumbiaV8P 5C2Canada
| | - Vishal Yeddu
- Department of ChemistryDepartment of Electrical and Computer EngineeringCenter for Advanced Materials and Related Technologies (CAMTEC)University of VictoriaVictoriaBritish ColumbiaV8P 5C2Canada
| | - I Teng Cheong
- Department of ChemistryDepartment of Electrical and Computer EngineeringCenter for Advanced Materials and Related Technologies (CAMTEC)University of VictoriaVictoriaBritish ColumbiaV8P 5C2Canada
| | - Irina Paci
- Department of ChemistryDepartment of Electrical and Computer EngineeringCenter for Advanced Materials and Related Technologies (CAMTEC)University of VictoriaVictoriaBritish ColumbiaV8P 5C2Canada
| | - Makhsud I. Saidaminov
- Department of ChemistryDepartment of Electrical and Computer EngineeringCenter for Advanced Materials and Related Technologies (CAMTEC)University of VictoriaVictoriaBritish ColumbiaV8P 5C2Canada
| |
Collapse
|
10
|
Wu J, Chen W, Hao B, Jiang ZJ, Jin G, Jiang Z. Garnet-Type Solid-State Electrolytes: Crystal-Phase Regulation and Interface Modification for Enhanced Lithium Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407983. [PMID: 39558693 DOI: 10.1002/smll.202407983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/21/2024] [Indexed: 11/20/2024]
Abstract
Due to their substantial energy density, rapid charging and discharging rates, and extended lifespan, lithium-ion batteries have attained broad application across various industries. However, their limited theoretical capacity struggles to meet the growing demand for battery capacity in consumer electronics, automotive, and aerospace applications. As a promising substitute, solid-state lithium-metal batteries (SSLBs) have emerged, utilizing a lithium-metal anode that boasts a significant theoretical specific capacity and non-flammable solid-state electrolytes (SSEs) to address energy density limitations and safety concerns. For SSLBs to attain large-scale commercial viability, SSEs require heightened ionic-conductivity, improved mechanical characteristics, and enhanced chemical and electrochemical stability. Furthermore, tackling the challenges related to interfacial contacts between SSEs and the lithium-metal anode is imperative. This review comprehensively overviews the primary methods used to prepare garnet SSEs and summarizes doping strategies for various sites on Li7La3Zr2O12 (LLZO) garnet SSEs, aiming to optimize the crystal phase to achieve more favorable properties in SSE applications. Additionally, it discusses strategies for modifying the interfacial contact between the lithium-metal anode and SSEs, classifying them into three areas: surface modification, interlayer-modification, and composite anodes. This review aims to serve as a valuable reference for future researchers working on high-performance garnet SSEs and effective interfacial-modification strategies.
Collapse
Affiliation(s)
- Jialong Wu
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, P. R. China
| | - Weiheng Chen
- Vehicle Energy and Safety Laboratory, Department of Mechanical Engineering, Ningbo University of Technology, Ningbo, 315211, P. R. China
| | - Bin Hao
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, P. R. China
| | - Zhong-Jie Jiang
- Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy Materials & Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Guangri Jin
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, P. R. China
| | - Zhongqing Jiang
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, P. R. China
| |
Collapse
|
11
|
Pan Y, Cao L, Chen L, Gao L, Wei X, Lin H, Jiang L, Wang Y, Cheng H. Enhanced Bacterial and Biofilm Adhesion Resistance of ALD Nano-TiO 2 Coatings Compared to AO Coatings on Titanium Abutments. Int J Nanomedicine 2024; 19:11143-11159. [PMID: 39502638 PMCID: PMC11537173 DOI: 10.2147/ijn.s482478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
Purpose The study was intended to compare the surface properties and the bacterial and biofilm adhesion resistance of two potential antibacterial nanometer titanium dioxide (nano-TiO2) coatings on dental titanium (Ti) abutments prepared by atomic layer deposition (ALD) and the anodic oxidation (AO) techniques. Methods Nano-TiO₂ coatings were developed using ALD and AO techniques and applied to Ti surfaces. The surface properties and the bacterial and biofilm adhesion resistance of these coatings were evaluated against commonly used Ti and Zirconia (ZrO₂) surfaces. The chemical compositions, crystalline forms, surface topography, roughness and hydrophilicity were characterized. The antibacterial performance was assessed by the scanning electron microscope (SEM), the Colony-forming unit (CFU) assay and the 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) assay using in vitro models of Staphylococcus aureus (S. aureus), Streptococcus mutans (S. mutans), and Porphyromonas gingivalis (P. gingivalis) in both single- and mixed-species bacterial compositions. Results ALD-prepared nano-TiO₂ coatings resulted in a dense, smooth, and less hydrophilic surface with an anatase phase, significantly reducing the adhesion of the three bacteria by over 50%, comparable to ZrO₂. In contrast, AO-prepared coatings led to a less hydrophilic surface, characterized by various nano-sized pores within the oxide film. This alteration, however, had no impact on the adhesion of the three bacteria. The adhesion patterns for mixed-species bacteria were generally consistent with single-species results. Conclusion ALD-prepared nano-TiO₂ coatings on Ti abutments demonstrated promising antibacterial properties comparable to ZrO₂ surfaces, suggesting potential in preventing peri-implantitis. However, the bacterial and biofilm adhesion resistance of AO-produced nano-TiO₂ coatings was limited.
Collapse
Affiliation(s)
- Yu Pan
- Department of Prosthodontics, Institute of Stomatology & Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Lili Cao
- Department of Prosthodontics, Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Libing Chen
- Department of Prosthodontics, Institute of Stomatology & Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Linjuan Gao
- Department of Prosthodontics, Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Xia Wei
- Department of Prosthodontics, Institute of Stomatology & Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Honglei Lin
- Department of Prosthodontics, Institute of Stomatology & Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Lei Jiang
- Department of Prosthodontics, Institute of Stomatology & Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Yinghui Wang
- Department of Prosthodontics, Institute of Stomatology & Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Prosthodontics, Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Hui Cheng
- Department of Prosthodontics, Institute of Stomatology & Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Prosthodontics, Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| |
Collapse
|
12
|
Guan T, Huang N, Song R, Mao T, Jagannath A, Wang W, Fang F, Zhang N. Toward Defect-Free Nanoimprinting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312254. [PMID: 38874100 DOI: 10.1002/smll.202312254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Nanoimprinting large-area structures, especially high-density features like meta lenses, poses challenges in achieving defect-free nanopatterns. Conventional high-resolution molds for nanoimprinting are often expensive, typically constructed from inorganic materials such as silicon, nickel (Ni), or quartz. Unfortunately, replicated nanostructures frequently suffer from breakage or a lack of definition during demolding due to the high adhesion and friction at the polymer-mold interface. Moreover, mold degradation after a limited number of imprinting cycles, attributed to contamination and damaged features, is a common issue. In this study, a disruptive approach is presented to address these challenges by successfully developing an anti-sticking nanocomposite mold. This nanocomposite mold is created through the co-deposition of nickel atoms and low surface tension polytetrafluoroethylene (PTFE) nanoparticles via electroforming. The incorporation of PTFE enhances the ease of polymer release from the mold. The resulting Ni-PTFE nanocomposite mold exhibits exceptional lubrication properties and a significantly reduced surface energy. This robust nanocomposite mold proves effective in imprinting fine, densely packed nanostructures down to 100 nm using thermal nanoimprinting for at least 20 cycles. Additionally, UV nanoimprint lithography (UV-NIL) is successfully performed with this nanocomposite mold. This work introduces a novel and cost-effective approach to reusable high-resolution molds, ensuring defect-reduction production in nanoimprinting.
Collapse
Affiliation(s)
- Tianyu Guan
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical & Materials Engineering, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Ning Huang
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical & Materials Engineering, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Rijian Song
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Tianyu Mao
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical & Materials Engineering, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Akshaya Jagannath
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical & Materials Engineering, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Fengzhou Fang
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical & Materials Engineering, University College Dublin, Dublin, D04 V1W8, Ireland
- State Key Laboratory of Precision Measuring Technology and Instruments, Laboratory of Micro/Nano Manufacturing Technology (MNMT), Tianjin University, Tianjin, 300072, China
| | - Nan Zhang
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical & Materials Engineering, University College Dublin, Dublin, D04 V1W8, Ireland
| |
Collapse
|
13
|
Sharme RK, Quijada M, Terrones M, Rana MM. Thin Conducting Films: Preparation Methods, Optical and Electrical Properties, and Emerging Trends, Challenges, and Opportunities. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4559. [PMID: 39336302 PMCID: PMC11432801 DOI: 10.3390/ma17184559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024]
Abstract
Thin conducting films are distinct from bulk materials and have become prevalent over the past decades as they possess unique physical, electrical, optical, and mechanical characteristics. Comprehending these essential properties for developing novel materials with tailored features for various applications is very important. Research on these conductive thin films provides us insights into the fundamental principles, behavior at different dimensions, interface phenomena, etc. This study comprehensively analyzes the intricacies of numerous commonly used thin conducting films, covering from the fundamentals to their advanced preparation methods. Moreover, the article discusses the impact of different parameters on those thin conducting films' electronic and optical properties. Finally, the recent future trends along with challenges are also highlighted to address the direction the field is heading towards. It is imperative to review the study to gain insight into the future development and advancing materials science, thus extending innovation and addressing vital challenges in diverse technological domains.
Collapse
Affiliation(s)
- Razia Khan Sharme
- Division of Physics, Engineering, Mathematics and Computer Sciences, and Research on Nanomaterial-Based Integrated Circuits and Electronics (NICE), Delaware State University, Dover, DE 19901, USA;
| | - Manuel Quijada
- NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA;
| | - Mauricio Terrones
- Department of Physics, The Pennsylvania State University, 104 Davey Lab, PMB 196, University Park, PA 16802, USA;
| | - Mukti M. Rana
- Division of Physics, Engineering, Mathematics and Computer Sciences, and Research on Nanomaterial-Based Integrated Circuits and Electronics (NICE), Delaware State University, Dover, DE 19901, USA;
| |
Collapse
|
14
|
Krsek A, Jagodic A, Baticic L. Nanomedicine in Neuroprotection, Neuroregeneration, and Blood-Brain Barrier Modulation: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1384. [PMID: 39336425 PMCID: PMC11433843 DOI: 10.3390/medicina60091384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
Nanomedicine is a newer, promising approach to promote neuroprotection, neuroregeneration, and modulation of the blood-brain barrier. This review includes the integration of various nanomaterials in neurological disorders. In addition, gelatin-based hydrogels, which have huge potential due to biocompatibility, maintenance of porosity, and enhanced neural process outgrowth, are reviewed. Chemical modification of these hydrogels, especially with guanidine moieties, has shown improved neuron viability and underscores tailored biomaterial design in neural applications. This review further discusses strategies to modulate the blood-brain barrier-a factor critically associated with the effective delivery of drugs to the central nervous system. These advances bring supportive solutions to the solving of neurological conditions and innovative therapies for their treatment. Nanomedicine, as applied to neuroscience, presents a significant leap forward in new therapeutic strategies that might help raise the treatment and management of neurological disorders to much better levels. Our aim was to summarize the current state-of-knowledge in this field.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Ana Jagodic
- Department of Family Medicine, Community Health Center Krapina, 49000 Krapina, Croatia;
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
15
|
Yusuf BO, Umar M, Kotob E, Abdulhakam A, Taialla OA, Awad MM, Hussain I, Alhooshani KR, Ganiyu SA. Recent Advances in Bimetallic Catalysts for Methane Steam Reforming in Hydrogen Production: Current Trends, Challenges, and Future Prospects. Chem Asian J 2024; 19:e202300641. [PMID: 37740712 DOI: 10.1002/asia.202300641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023]
Abstract
As energy demand continues to rise and the global population steadily grows, there is a growing interest in exploring alternative, clean, and renewable energy sources. The search for alternatives, such as green hydrogen, as both a fuel and an industrial feedstock, is intensifying. Methane steam reforming (MSR) has long been considered a primary method for hydrogen production, despite its numerous advantages, the activity and stability of the conventional Ni catalysts are major concerns due to carbon formation and metal sintering at high temperatures, posing significant drawbacks to the process. In recent years, significant attention has been given to bimetallic catalysts as a potential solution to overcome the challenges associated with methane steam reforming. Thus, this review focuses on the recent advancements in bimetallic catalysts for hydrogen production through methane steam reforming. The review explores various aspects including reactor type, catalyst selection, and the impact of different operating parameters such as reaction temperature, pressure, feed composition, reactor configuration, and feed and sweep gas flow rates. The analysis and discussion revolve around key performance indicators such as methane conversion, hydrogen recovery, and hydrogen yield.
Collapse
Affiliation(s)
- Basiru O Yusuf
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Mustapha Umar
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals (IRC-RAC), King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Esraa Kotob
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Abdullahi Abdulhakam
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Omer Ahmed Taialla
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Mohammed Mosaad Awad
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Ijaz Hussain
- Interdisciplinary Research Center for Refining and Advanced Chemicals (IRC-RAC), King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Khalid R Alhooshani
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals (IRC-RAC), King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Saheed A Ganiyu
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals (IRC-RAC), King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| |
Collapse
|
16
|
Yeom WK, Lee JW, Bae JA, Sung DI, Kim T, Lee JH, Yeom GY. Biocompatible Co-organic Composite Thin Film Deposited by VHF Plasma-Enhanced Atomic Layer Deposition at a Low Temperature. ACS OMEGA 2024; 9:33735-33742. [PMID: 39130588 PMCID: PMC11307275 DOI: 10.1021/acsomega.4c02845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 08/13/2024]
Abstract
Although metal-organic thin films are required for many biorelated applications, traditional deposition methods have proven challenging in preparing these composite materials. Here, a Co-organic composite thin film was prepared by plasma-enhanced atomic layer deposition (PEALD) with cobaltocene (Co(Cp)2) on polydimethylsiloxane (PDMS), using two very high frequency (VHF) NH3 plasmas (60 and 100 MHz), for use as a tissue culture scaffold. VHF PEALD was employed to reduce the temperature and control the thickness and composition. In the result of the VHF PEALD process, the Young's modulus of the Co-organic composite thin film ranged from 82.0 ± 28.6 to 166.0 ± 15.2 MPa, which is similar to the Young's modulus of soft tissues. In addition, the deposited Co ion on the Co-organic composite thin film was released into the cell culture media under a nontoxic level for the biological environment. The proliferation of both L929, the mouse fibroblast cell line, and C2C12, the mouse myoblast cell line, increased to 164.9 ± 23.4% during 7 days of incubation. Here, this novel bioactive Co-organic composite thin film on an elastic PDMS substrate enhanced the proliferation of L929 and C2C12 cell lines, thereby expanding the application range of VHF PEALD in biological fields.
Collapse
Affiliation(s)
- Won Kyun Yeom
- SKKU
Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Jin Woong Lee
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Research
Center for Advanced Materials Technology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Jin-A Bae
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Da In Sung
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Taeyeop Kim
- School
of Mechanical Engineering, Sungkyunkwan
University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic
of Korea
| | - Jung Heon Lee
- SKKU
Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Research
Center for Advanced Materials Technology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Biomedical
Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Geun Young Yeom
- SKKU
Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
17
|
Sha T, Zhang X, Zhou R, Du G, Xiong Y, Pan Q, Yao J, Feng Z, Gao X, You Y. Organic-Inorganic Hybrid Perovskite Ferroelectric Nanosheets Synthesized by a Room-Temperature Antisolvent Method. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400636. [PMID: 38778554 PMCID: PMC11304249 DOI: 10.1002/advs.202400636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Over the past years, the application potential of ferroelectric nanomaterials with unique physical properties for modern electronics is highlighted to a large extent. However, it is relatively challenging to fabricate inorganic ferroelectric nanomaterials, which is a process depending on a vacuum atmosphere at high temperatures. As significant complements to inorganic ferroelectric nanomaterials, the nanomaterials of molecular ferroelectrics are rarely reported. Here a low-cost room-temperature antisolvent method is used to synthesize free-standing 2D organic-inorganic hybrid perovskite (OIHP) ferroelectric nanosheets (NSs), that is, (CHA)2PbBr4 NSs (CHA = cyclohexylammonium), with an average lateral size of 357.59 nm and a thickness ranging from 10 to 70 nm. This method shows high repeatability and produces NSs with excellent crystallinity. Moreover, ferroelectric domains in single NSs can be clearly visualized and manipulated using piezoresponse force microscopy (PFM). The domain switching and PFM-switching spectroscopy indicate the robust in-plane ferroelectricity of the NSs. This work not only introduces a feasible, low-cost, and scalable method for preparing molecular ferroelectric NSs but also promotes the research on molecular ferroelectric nanomaterials.
Collapse
Affiliation(s)
- Tai‐Ting Sha
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189P. R. China
| | - Xing‐Chen Zhang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials and Institute for Advanced MaterialsSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006P. R. China
| | - Ru‐Jie Zhou
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189P. R. China
| | - Guo‐Wei Du
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189P. R. China
| | - Yu‐An Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189P. R. China
| | - Qiang Pan
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189P. R. China
| | - Jie Yao
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189P. R. China
| | - Zi‐Jie Feng
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189P. R. China
| | - Xing‐Sen Gao
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials and Institute for Advanced MaterialsSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006P. R. China
| | - Yu‐Meng You
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189P. R. China
| |
Collapse
|
18
|
Wang S, Hu X, Liu N, Liu H. Flow Behavior of Nanoparticle Agglomerates in a Fluidized Bed Simulated with Porous-Structure-Based Drag Laws. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1057. [PMID: 38921933 PMCID: PMC11207026 DOI: 10.3390/nano14121057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Fluidization bed reactor is an attractive method to synthesize and process quantities of functional nanoparticles, due to the large gas-solid contact area and its potential scalability. Nanoparticles fluidize not individually but as a form of porous agglomerates with a typical porosity above 90%. The porous structure has a significant effect on the hydrodynamic behavior of a single nanoparticle agglomerate, but its influence on the flow behavior of nanoparticle agglomerates in a fluidized bed is currently unclear. In the present study, a drag model was developed to consider the porous structure effects of nanoparticle agglomerates by incorporating porous-structure-based drag laws in the Eulerian-Eulerian two-fluid model. Numerical simulations were performed from particulate to bubbling fluidization state to evaluate the applicability of porous-structure-based drag laws. Results obtained for the minimum fluidization and bubbling velocities, bed expansion ratio, and agglomerate dispersion coefficient show that, compared with the drag law of solid sphere, the porous-structure-based drag laws, especially the drag law of fractal porous spheres, provide a closer fit to the experimental data. This indicates that the pore structures have a great impact on gas-solid flow behavior of nanoparticle agglomerates, and the porous-structure-based drag laws are more suitable for describing flows in nanoparticle agglomerate fluidized beds.
Collapse
Affiliation(s)
- Shaowei Wang
- Energy and Power Engineering Institute, Henan University of Science and Technology, Luoyang 471003, China
| | - Xiaobing Hu
- Energy and Power Engineering Institute, Henan University of Science and Technology, Luoyang 471003, China
| | - Niannian Liu
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1QU, UK
| | - Huanpeng Liu
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150006, China;
| |
Collapse
|
19
|
Lemasters R, Manjare M, Freeman R, Wang F, Pierce LG, Hua G, Urazhdin S, Harutyunyan H. Non-thermal emission in gap-mode plasmon photoluminescence. Nat Commun 2024; 15:4468. [PMID: 38796475 PMCID: PMC11127923 DOI: 10.1038/s41467-024-48928-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/16/2024] [Indexed: 05/28/2024] Open
Abstract
Photoluminescence from spatially inhomogeneous plasmonic nanostructures exhibits fascinating wavelength-dependent nonlinear behaviors due to the intraband recombination of hot electrons excited into the conduction band of the metal. The properties of the excited carrier distribution and the role of localized plasmonic modes are subjects of debate. In this work, we use plasmonic gap-mode resonators with precise nanometer-scale confinement to show that the nonlinear photoluminescence behavior can become dominated by non-thermal contributions produced by the excited carrier population that strongly deviates from the Fermi-Dirac distribution due to the confinement-induced large-momentum free carrier absorption beyond the dipole approximation. These findings open new pathways for controllable light conversion using nonequilibrium electron states at the nanoscale.
Collapse
Affiliation(s)
- Robert Lemasters
- Department of Physics, Emory University, Atlanta, GA, 30322, USA.
| | - Manoj Manjare
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
| | - Ryan Freeman
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
| | - Feng Wang
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
| | - Luka Guy Pierce
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
| | - Gordon Hua
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
| | - Sergei Urazhdin
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
| | - Hayk Harutyunyan
- Department of Physics, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
20
|
Ebrahimi M, Luo B, Wang Q, Attarilar S. High-Performance Nanoscale Metallic Multilayer Composites: Techniques, Mechanical Properties and Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2124. [PMID: 38730930 PMCID: PMC11085667 DOI: 10.3390/ma17092124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Due to their exceptional properties and diverse applications, including to magnetic devices, thermoelectric materials, catalysis, biomedicine, and energy storage, nanoscale metallic multilayer composites (NMMCs) have recently attracted great attention. The alternating layers of two or more metals that make up NMMCs are each just a few nanometers thick. The difficulties in producing and synthesizing new materials can be overcome by using nanoscale multilayer architectures. By adjusting the layer thickness, composition, and interface structure, the mechanical properties of these materials can be controlled. In addition, NMMCs exhibit unusually high strength at thin layer thicknesses because the multilayers have exceptionally high strength, as the individual layer thicknesses are reduced to the nanoscale. The properties of NMMCs depend on the individual layers. This means that the properties can be tuned by varying the layer thickness, composition, and interface structure. Therefore, this review article aims to provide a comprehensive overview of the mechanical properties and the application of high-performance NMMCs. The paper briefly discusses the fabrication methods used to produce these composites and highlights their potential in various fields, such as electronics, energy storage, aerospace, and biomedical engineering. Furthermore, the electrical conductivity, mechanical properties, and thermal stability of the above composite materials are analyzed in detail. The review concludes with a discussion of the future prospects and challenges associated with the development of NMMCs.
Collapse
Affiliation(s)
- Mahmoud Ebrahimi
- Department of Mechanical Engineering, Faculty of Engineering, University of Maragheh, Maragheh 83111-55181, Iran;
| | - Bangcai Luo
- Ningbo Major Draft Beer Equipment Co., Ltd., Ningbo 315033, China;
| | - Qudong Wang
- National Engineering Research Center of Light Alloy Net Forming and Key State Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shokouh Attarilar
- Department of Materials Engineering, Faculty of Engineering, University of Maragheh, Maragheh 83111-55181, Iran;
| |
Collapse
|
21
|
Myint P, Woodward JM, Wang C, Zhang X, Wiegart L, Fluerasu A, Headrick RL, Eddy CR, Ludwig KF. Coherent X-ray Spectroscopy Elucidates Nanoscale Dynamics of Plasma-Enhanced Thin-Film Growth. ACS NANO 2024; 18:1982-1994. [PMID: 38194518 PMCID: PMC10811697 DOI: 10.1021/acsnano.3c07619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024]
Abstract
Sophisticated thin film growth techniques increasingly rely on the addition of a plasma component to open or widen a processing window, particularly at low temperatures. Taking advantage of continued increases in accelerator-based X-ray source brilliance, this real-time study uses X-ray Photon Correlation Spectroscopy (XPCS) to elucidate the nanoscale surface dynamics during Plasma-Enhanced Atomic Layer Deposition (PE-ALD) of an epitaxial indium nitride film. Ultrathin films are synthesized from repeated cycles of alternating self-limited surface reactions induced by temporally separated pulses of the material precursor and plasma reactant, allowing the influence of each on the evolving morphology to be examined. During the heteroepitaxial 3D growth examined here, sudden changes in the surface structure during initial film growth, consistent with numerous overlapping stress-relief events, are observed. When the film becomes continuous, the nanoscale surface morphology abruptly becomes long-lived with a correlation time spanning the period of the experiment. Throughout the growth experiment, there is a consistent repeating pattern of correlations associated with the cyclic growth process, which is modeled as transitions between different surface states. The plasma exposure does not simply freeze in a structure that is then built upon in subsequent cycles, but rather, there is considerable surface evolution during all phases of the growth cycle.
Collapse
Affiliation(s)
- Peco Myint
- X-ray
Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Jeffrey M. Woodward
- Electronics
Science and Technology Division, U.S. Naval
Research Laboratory, 4555 Overlook Avenue SW, Washington, D.C. 20375, United States
| | - Chenyu Wang
- Department
of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Xiaozhi Zhang
- Department
of Physics and Materials Science Program, University of Vermont, 82 University Place, Burlington, Vermont 05405, United States
| | - Lutz Wiegart
- National
Synchrotron Light Source II, Brookhaven
National Laboratory, 744 Ring Road, Upton, New
York 11973, United States
| | - Andrei Fluerasu
- National
Synchrotron Light Source II, Brookhaven
National Laboratory, 744 Ring Road, Upton, New
York 11973, United States
| | - Randall L. Headrick
- Department
of Physics and Materials Science Program, University of Vermont, 82 University Place, Burlington, Vermont 05405, United States
| | - Charles R. Eddy
- Office of
Naval Research Global, 86 Blenheim Crescent, West Ruislip, Middlesex HA4 7HB, U.K.
| | - Karl F. Ludwig
- Department
of Physics and Division of Materials Science and Engineering, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
22
|
Deshpande RA, Navne J, Adelmark MV, Shkondin E, Crovetto A, Hansen O, Bachmann J, Taboryski R. Understanding the light induced hydrophilicity of metal-oxide thin films. Nat Commun 2024; 15:124. [PMID: 38167376 PMCID: PMC10761860 DOI: 10.1038/s41467-023-44603-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Photocatalytic effects resulting in water splitting, reduction of carbon dioxide to fuels using solar energy, decomposition of organic compounds, and light-induced hydrophilicity observed on surfaces of various metal oxides (MOx), all rely on the same basic physical mechanisms, and have attracted considerable interest over the past decades. TiO2 and ZnO, two natively n-type doped wide bandgap semiconductors exhibit the effects mentioned above. In this study we propose a model for the photo-induced hydrophilicity in MOx films, and we test the model for TiO2/Si and ZnO/Si heterojunctions. Experimentally, we employ a wet exposure technique whereby the MOx surface is exposed to UV light while a water droplet is sitting on the surface, which allows for a continuous recording of contact angles during illumination. The proposed model and the experimental techniques allow a determination of minority carrier diffusion lengths by contact angle measurements and suggest design rules for materials exhibiting photocatalytic hydrophilicity. We expect that this methodology can be extended to improve our physical understanding of other photocatalytic surface effects.
Collapse
Affiliation(s)
- Rucha Anil Deshpande
- Technical University of Denmark, DTU Nanolab, National Centre for Nano Fabrication and Characterization, Ørsteds Plads B347, DK-2800 Kgs, Lyngby, Denmark
| | - Jesper Navne
- Technical University of Denmark, DTU Nanolab, National Centre for Nano Fabrication and Characterization, Ørsteds Plads B347, DK-2800 Kgs, Lyngby, Denmark
| | - Mathias Vadmand Adelmark
- Technical University of Denmark, DTU Nanolab, National Centre for Nano Fabrication and Characterization, Ørsteds Plads B347, DK-2800 Kgs, Lyngby, Denmark
| | - Evgeniy Shkondin
- Technical University of Denmark, DTU Nanolab, National Centre for Nano Fabrication and Characterization, Ørsteds Plads B347, DK-2800 Kgs, Lyngby, Denmark
| | - Andrea Crovetto
- Technical University of Denmark, DTU Nanolab, National Centre for Nano Fabrication and Characterization, Ørsteds Plads B347, DK-2800 Kgs, Lyngby, Denmark
| | - Ole Hansen
- Technical University of Denmark, DTU Nanolab, National Centre for Nano Fabrication and Characterization, Ørsteds Plads B347, DK-2800 Kgs, Lyngby, Denmark
| | - Julien Bachmann
- Technical University of Denmark, DTU Nanolab, National Centre for Nano Fabrication and Characterization, Ørsteds Plads B347, DK-2800 Kgs, Lyngby, Denmark
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Chemistry of Thin Film Materials, IZNF, Cauerstr. 3, 91058, Erlangen, Germany
| | - Rafael Taboryski
- Technical University of Denmark, DTU Nanolab, National Centre for Nano Fabrication and Characterization, Ørsteds Plads B347, DK-2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
23
|
Yuan X, Shi J, Kang Y, Dong J, Pei Z, Ji X. Piezoelectricity, Pyroelectricity, and Ferroelectricity in Biomaterials and Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308726. [PMID: 37842855 DOI: 10.1002/adma.202308726] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Piezoelectric, pyroelectric, and ferroelectric materials are considered unique biomedical materials due to their dielectric crystals and asymmetric centers that allow them to directly convert various primary forms of energy in the environment, such as sunlight, mechanical energy, and thermal energy, into secondary energy, such as electricity and chemical energy. These materials possess exceptional energy conversion ability and excellent catalytic properties, which have led to their widespread usage within biomedical fields. Numerous biomedical applications have demonstrated great potential with these materials, including disease treatment, biosensors, and tissue engineering. For example, piezoelectric materials are used to stimulate cell growth in bone regeneration, while pyroelectric materials are applied in skin cancer detection and imaging. Ferroelectric materials have even found use in neural implants that record and stimulate electrical activity in the brain. This paper reviews the relationship between ferroelectric, piezoelectric, and pyroelectric effects and the fundamental principles of different catalytic reactions. It also highlights the preparation methods of these three materials and the significant progress made in their biomedical applications. The review concludes by presenting key challenges and future prospects for efficient catalysts based on piezoelectric, pyroelectric, and ferroelectric nanomaterials for biomedical applications.
Collapse
Affiliation(s)
- Xue Yuan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Jiacheng Shi
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Yong Kang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Jinrui Dong
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Zhengcun Pei
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, Medical College, Linyi University, Linyi, 276000, China
| |
Collapse
|
24
|
Ansari MZ, Hussain I, Mohapatra D, Ansari SA, Rahighi R, Nandi DK, Song W, Kim S. Atomic Layer Deposition-A Versatile Toolbox for Designing/Engineering Electrodes for Advanced Supercapacitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303055. [PMID: 37937382 PMCID: PMC10767429 DOI: 10.1002/advs.202303055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/07/2023] [Indexed: 11/09/2023]
Abstract
Atomic layer deposition (ALD) has become the most widely used thin-film deposition technique in various fields due to its unique advantages, such as self-terminating growth, precise thickness control, and excellent deposition quality. In the energy storage domain, ALD has shown great potential for supercapacitors (SCs) by enabling the construction and surface engineering of novel electrode materials. This review aims to present a comprehensive outlook on the development, achievements, and design of advanced electrodes involving the application of ALD for realizing high-performance SCs to date, as organized in several sections of this paper. Specifically, this review focuses on understanding the influence of ALD parameters on the electrochemical performance and discusses the ALD of nanostructured electrochemically active electrode materials on various templates for SCs. It examines the influence of ALD parameters on electrochemical performance and highlights ALD's role in passivating electrodes and creating 3D nanoarchitectures. The relationship between synthesis procedures and SC properties is analyzed to guide future research in preparing materials for various applications. Finally, it is concluded by suggesting the directions and scope of future research and development to further leverage the unique advantages of ALD for fabricating new materials and harness the unexplored opportunities in the fabrication of advanced-generation SCs.
Collapse
Affiliation(s)
- Mohd Zahid Ansari
- School of Materials Science and EngineeringYeungnam University280 Daehak‐RoGyeongsanGyeongbuk38541Republic of Korea
| | - Iftikhar Hussain
- Department of Mechanical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowoonHong Kong
| | - Debananda Mohapatra
- Graduate School of Semiconductor Materials and Devices EngineeringUlsan National Institute of Science & Technology (UNIST)50 UNIST‐gilUlju‐gunUlsan44919Republic of Korea
| | - Sajid Ali Ansari
- Department of PhysicsCollege of ScienceKing Faisal UniversityP.O. Box 400HofufAl‐Ahsa31982Saudi Arabia
| | - Reza Rahighi
- SKKU Advanced Institute of Nano‐Technology (SAINT)Sungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Dip K Nandi
- Plessey Semiconductors LtdTamerton Road RoboroughPlymouthDevonPL6 7BQUK
| | - Wooseok Song
- Thin Film Materials Research CenterKorea Research Institute of Chemical TechnologyDaejeon34114Republic of Korea
| | - Soo‐Hyun Kim
- Graduate School of Semiconductor Materials and Devices EngineeringUlsan National Institute of Science & Technology (UNIST)50 UNIST‐gilUlju‐gunUlsan44919Republic of Korea
- Department of Materials Science and EngineeringUlsan National Institute of Science & Technology (UNIST)50 UNIST‐gilUlju‐gunUlsan44919Republic of Korea
| |
Collapse
|
25
|
Vora K, Kordas N, Seidl K. Label-Free, Impedance-Based Biosensor for Kidney Disease Biomarker Uromodulin. SENSORS (BASEL, SWITZERLAND) 2023; 23:9696. [PMID: 38139542 PMCID: PMC10747639 DOI: 10.3390/s23249696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
We demonstrate the development of a label-free, impedance-based biosensor by using a passivation layer of 50-nm tantalum pentoxide (Ta2O5) on interdigitated electrodes (IDE). This layer was fabricated by atomic layer deposition (ALD) and has a high dielectric constant (high-κ), which improves the capacitive property of the IDE. We validate the biosensor's performance by measuring uromodulin, a urine biomarker for kidney tubular damage, from artificial urine samples. The passivation layer is functionalized with uromodulin antibodies for selective binding. The passivated IDE enables the non-faradaic impedance measurement of uromodulin concentrations with a measurement range from 0.5 ng/mL to 8 ng/mL and with a relative change in impedance of 15 % per ng/mL at a frequency of 150 Hz (log scale). This work presents a concept for point-of-care biosensing applications for disease biomarkers.
Collapse
Affiliation(s)
- Kunj Vora
- Fraunhofer Institute for Microelectronic Circuits and Systems, 47057 Duisburg, Germany; (N.K.); (K.S.)
| | - Norbert Kordas
- Fraunhofer Institute for Microelectronic Circuits and Systems, 47057 Duisburg, Germany; (N.K.); (K.S.)
| | - Karsten Seidl
- Fraunhofer Institute for Microelectronic Circuits and Systems, 47057 Duisburg, Germany; (N.K.); (K.S.)
- Department of Electronic Components and Circuits, University of Duisburg-Essen, Forsthausweg 2, 47057 Duisburg, Germany
| |
Collapse
|
26
|
Nazarov D, Kozlova L, Rogacheva E, Kraeva L, Maximov M. Atomic Layer Deposition of Antibacterial Nanocoatings: A Review. Antibiotics (Basel) 2023; 12:1656. [PMID: 38136691 PMCID: PMC10740478 DOI: 10.3390/antibiotics12121656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
In recent years, antibacterial coatings have become an important approach in the global fight against bacterial pathogens. Developments in materials science, chemistry, and biochemistry have led to a plethora of materials and chemical compounds that have the potential to create antibacterial coatings. However, insufficient attention has been paid to the analysis of the techniques and technologies used to apply these coatings. Among the various inorganic coating techniques, atomic layer deposition (ALD) is worthy of note. It enables the successful synthesis of high-purity inorganic nanocoatings on surfaces of complex shape and topography, while also providing precise control over their thickness and composition. ALD has various industrial applications, but its practical application in medicine is still limited. In recent years, a considerable number of papers have been published on the proposed use of thin films and coatings produced via ALD in medicine, notably those with antibacterial properties. The aim of this paper is to carefully evaluate and analyze the relevant literature on this topic. Simple oxide coatings, including TiO2, ZnO, Fe2O3, MgO, and ZrO2, were examined, as well as coatings containing metal nanoparticles such as Ag, Cu, Pt, and Au, and mixed systems such as TiO2-ZnO, TiO2-ZrO2, ZnO-Al2O3, TiO2-Ag, and ZnO-Ag. Through comparative analysis, we have been able to draw conclusions on the effectiveness of various antibacterial coatings of different compositions, including key characteristics such as thickness, morphology, and crystal structure. The use of ALD in the development of antibacterial coatings for various applications was analyzed. Furthermore, assumptions were made about the most promising areas of development. The final section provides a comparison of different coatings, as well as the advantages, disadvantages, and prospects of using ALD for the industrial production of antibacterial coatings.
Collapse
Affiliation(s)
- Denis Nazarov
- Peter the Great Saint Petersburg Polytechnic University, Polytechnicheskaya, 29, 195221 Saint Petersburg, Russia;
- Saint Petersburg State University, Universitetskaya Nab, 7/9, 199034 Saint Petersburg, Russia;
| | - Lada Kozlova
- Saint Petersburg State University, Universitetskaya Nab, 7/9, 199034 Saint Petersburg, Russia;
| | - Elizaveta Rogacheva
- Saint-Petersburg Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, 197101 Saint Petersburg, Russia; (E.R.); (L.K.)
| | - Ludmila Kraeva
- Saint-Petersburg Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, 197101 Saint Petersburg, Russia; (E.R.); (L.K.)
| | - Maxim Maximov
- Peter the Great Saint Petersburg Polytechnic University, Polytechnicheskaya, 29, 195221 Saint Petersburg, Russia;
| |
Collapse
|
27
|
Choi H, Park C, Lee SK, Ryu JY, Son SU, Eom T, Chung TM. New Heteroleptic Germanium Precursors for GeO 2 Thin Films by Atomic Layer Deposition. ACS OMEGA 2023; 8:43759-43770. [PMID: 38027341 PMCID: PMC10666237 DOI: 10.1021/acsomega.3c05657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
This study describes the synthesis of 12 new germanium complexes containing β-diketonate and/or N-alkoxy carboxamidate-type ligands as precursors for GeO2 through atomic layer deposition (ALD). A series of Ge(β-diketonate)Cl complexes such as Ge(acac)Cl (1) and Ge(tmhd)Cl (2) were synthesized by using acetylacetone (acacH) and 2,2,6,6-tetramethyl-3,5-heptanedione (tmhdH). N-Alkoxy carboxamidate-type ligands such as N-methoxypropanamide (mpaH), N-methoxy-2,2-dimethylpropanamide (mdpaH), N-ethoxy-2-methylpropanamide (empaH), N-ethoxy-2,2-dimethylpropanamide (edpaH), and N-methoxybenzamide (mbaH) were used to afford further substituted complexes Ge(acac)(mpa) (3), Ge(acac)(mdpa) (4), Ge(acac)(empa) (5), Ge(acac)(edpa) (6), Ge(acac)(mba) (7), Ge(tmhd)(mpa) (8), Ge(tmhd)(mdpa) (9), Ge(tmhd)(empa) (10), Ge(tmhd)(edpa) (11), and Ge(tmhd)(mba) (12), respectively. Thermogravimetric analysis curves, which mostly exhibited single-step weight losses, were used to determine the evaporation properties of complexes 1-12. Interestingly, liquid complex 2 has no residue at 198 °C and therefore exhibits excellent vaporization properties and high volatility. Single-crystal X-ray diffraction studies of 1 and 7 demonstrated that the complexes had monomeric molecular structures with germanium chelated by the oxygen atoms of one or two bidentate ligands, respectively. An ALD process was developed for the growth of GeO2 using Ge(tmhd)Cl (2) as a new precursor and H2O2 as an oxidant. This study demonstrates the achievement of self-limiting growth of GeO2 films by varying the duration of injection/purge, with an observed ALD window at deposition temperatures ranging from 300 to 350 °C. The saturated growth per cycle of the GeO2 film was determined as 0.27 Å/cycle at a deposition temperature of 300 °C. The deposited films were observed to be amorphous consisting of GeO2.
Collapse
Affiliation(s)
- Heenang Choi
- Thin
Film Materials Research Center, Korea Research
Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
- Department
of Chemistry, Sungkyunkwan University (SKKU), 2066 Seobu-ro,
Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic
of Korea
| | - Chanwoo Park
- Thin
Film Materials Research Center, Korea Research
Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Sung Kwang Lee
- Thin
Film Materials Research Center, Korea Research
Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Ji Yeon Ryu
- Thin
Film Materials Research Center, Korea Research
Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Seung Uk Son
- Department
of Chemistry, Sungkyunkwan University (SKKU), 2066 Seobu-ro,
Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic
of Korea
| | - Taeyong Eom
- Thin
Film Materials Research Center, Korea Research
Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Taek-Mo Chung
- Thin
Film Materials Research Center, Korea Research
Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
- Department
of Chemical Convergence Materials, University
of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic
of Korea
| |
Collapse
|
28
|
Khosla H, Seche W, Ammerman D, Elyahoodayan S, Caputo GA, Hettinger J, Amini S, Feng G. Development of antibacterial neural stimulation electrodes via hierarchical surface restructuring and atomic layer deposition. Sci Rep 2023; 13:19778. [PMID: 37957282 PMCID: PMC10643707 DOI: 10.1038/s41598-023-47256-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023] Open
Abstract
Miniaturization and electrochemical performance enhancement of electrodes and microelectrode arrays in emerging long-term implantable neural stimulation devices improves specificity, functionality, and performance of these devices. However, surgical site and post-implantation infections are amongst the most devastating complications after surgical procedures and implantations. Additionally, with the increased use of antibiotics, the threat of antibiotic resistance is significant and is increasingly being recognized as a global problem. Therefore, the need for alternative strategies to eliminate post-implantation infections and reduce antibiotic use has led to the development of medical devices with antibacterial properties. In this work, we report on the development of electrochemically active antibacterial platinum-iridium electrodes targeted for use in neural stimulation and sensing applications. A two-step development process was used. Electrodes were first restructured using femtosecond laser hierarchical surface restructuring. In the second step of the process, atomic layer deposition was utilized to deposit conformal antibacterial copper oxide thin films on the hierarchical surface structure of the electrodes to impart antibacterial properties to the electrodes with minimal impact on electrochemical performance of the electrodes. Morphological, compositional, and structural properties of the electrodes were studied using multiple modalities of microscopy and spectroscopy. Antibacterial properties of the electrodes were also studied, particularly, the killing effect of the hierarchically restructured antibacterial electrodes on Escherichia coli and Staphylococcus aureus-two common types of bacteria responsible for implant infections.
Collapse
Affiliation(s)
- Henna Khosla
- Department of Mechanical Engineering, Villanova University, Villanova, PA, 19085, USA
| | - Wesley Seche
- Pulse Technologies Inc., Research and Development, Quakertown, PA, 18951, USA
| | - Daniel Ammerman
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, 08028, USA
| | - Sahar Elyahoodayan
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Gregory A Caputo
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, 08028, USA
| | - Jeffrey Hettinger
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ, 08028, USA
| | - Shahram Amini
- Pulse Technologies Inc., Research and Development, Quakertown, PA, 18951, USA.
- Biomedical Engineering Department, University of Connecticut, Storrs, CT, 06269, USA.
| | - Gang Feng
- Department of Mechanical Engineering, Villanova University, Villanova, PA, 19085, USA
| |
Collapse
|
29
|
Nguyen TTH, Nguyen CM, Huynh MA, Vu HH, Nguyen TK, Nguyen NT. Field effect transistor based wearable biosensors for healthcare monitoring. J Nanobiotechnology 2023; 21:411. [PMID: 37936115 PMCID: PMC10629051 DOI: 10.1186/s12951-023-02153-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
The rapid advancement of wearable biosensors has revolutionized healthcare monitoring by screening in a non-invasive and continuous manner. Among various sensing techniques, field-effect transistor (FET)-based wearable biosensors attract increasing attention due to their advantages such as label-free detection, fast response, easy operation, and capability of integration. This review explores the innovative developments and applications of FET-based wearable biosensors for healthcare monitoring. Beginning with an introduction to the significance of wearable biosensors, the paper gives an overview of structural and operational principles of FETs, providing insights into their diverse classifications. Next, the paper discusses the fabrication methods, semiconductor surface modification techniques and gate surface functionalization strategies. This background lays the foundation for exploring specific FET-based biosensor designs, including enzyme, antibody and nanobody, aptamer, as well as ion-sensitive membrane sensors. Subsequently, the paper investigates the incorporation of FET-based biosensors in monitoring biomarkers present in physiological fluids such as sweat, tears, saliva, and skin interstitial fluid (ISF). Finally, we address challenges, technical issues, and opportunities related to FET-based biosensor applications. This comprehensive review underscores the transformative potential of FET-based wearable biosensors in healthcare monitoring. By offering a multidimensional perspective on device design, fabrication, functionalization and applications, this paper aims to serve as a valuable resource for researchers in the field of biosensing technology and personalized healthcare.
Collapse
Affiliation(s)
- Thi Thanh-Ha Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
- School of Engineering and Built Environment, Griffith University, Nathan, QLD, 4111, Australia
| | - Cong Minh Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
- School of Environment and Science (ESC), Griffith University, Nathan, QLD, 4111, Australia
| | - Minh Anh Huynh
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
- School of Engineering and Built Environment, Griffith University, Nathan, QLD, 4111, Australia
| | - Hoang Huy Vu
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
- School of Engineering and Built Environment, Griffith University, Nathan, QLD, 4111, Australia
| | - Tuan-Khoa Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia.
| |
Collapse
|
30
|
Park H, Choi H, Shin S, Park BK, Kang K, Ryu JY, Eom T, Chung TM. Evaluation of tin nitride (Sn 3N 4) via atomic layer deposition using novel volatile Sn precursors. Dalton Trans 2023; 52:15033-15042. [PMID: 37812132 DOI: 10.1039/d3dt02138f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Novel Sn precursors, Sn(tbip)2, Sn(tbtp)2, and Sn(tbta)2, were synthesized and characterized using various analytical techniques and density functional theory calculations. These precursors contained cyclic amine ligands derived from iminopyrrolidine. X-ray crystallography revealed the formation of monomeric SnL2 with distorted seesaw geometry. Thermogravimetric analysis demonstrated the exceptional volatility of all complexes. Sn(tbtp)2 showed the lowest residual weight of 2.7% at 265 °C. Sn3N4 thin films were successfully synthesized using Sn(tbtp)2 as the Sn precursor and NH3 plasma. The precursor exhibited ideal characteristics for atomic layer deposition, with a saturated growth per cycle value of 1.9 Å cy-1 and no need for incubation when the film was deposited at 150-225 °C. The indirect optical bandgap of the Sn3N4 film was approximately 1-1.2 eV, as determined through ultraviolet-visible spectroscopy. Therefore, this study suggests that the Sn3N4 thin films prepared using the newly synthesized Sn precursor are suitable for application in thin-film photovoltaic devices.
Collapse
Affiliation(s)
- Hyeonbin Park
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.
- Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Heenang Choi
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.
- Department of Chemistry, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Sunyoung Shin
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.
| | - Bo Keun Park
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.
- Department of Chemical Convergence Materials, University of Science and Technology (UST) 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Kibum Kang
- Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ji Yeon Ryu
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.
| | - Taeyong Eom
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.
| | - Taek-Mo Chung
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.
- Department of Chemical Convergence Materials, University of Science and Technology (UST) 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
31
|
Magliano E, Mariani P, Agresti A, Pescetelli S, Matteocci F, Taheri B, Cricenti A, Luce M, Di Carlo A. Semitransparent Perovskite Solar Cells with Ultrathin Protective Buffer Layers. ACS APPLIED ENERGY MATERIALS 2023; 6:10340-10353. [PMID: 37886223 PMCID: PMC10598631 DOI: 10.1021/acsaem.3c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/13/2023] [Indexed: 10/28/2023]
Abstract
Semitransparent perovskite solar cells (ST-PSCs) are increasingly important in a range of applications, including top cells in tandem devices and see-through photovoltaics. Transparent conductive oxides (TCOs) are commonly used as transparent electrodes, with sputtering being the preferred deposition method. However, this process can damage exposed layers, affecting the electrical performance of the devices. In this study, an indium tin oxide (ITO) deposition process that effectively suppresses sputtering damage was developed using a transition metal oxides (TMOs)-based buffer layer. An ultrathin (<10 nm) layer of evaporated vanadium oxide or molybdenum oxide was found to be effective in protecting against sputtering damage in ST-PSCs for tandem applications, as well as in thin perovskite-based devices for building-integrated photovoltaics. The identification of minimal parasitic absorption, the high work function and the analysis of oxygen vacancies denoted that the TMO layers are suitable for use in ST-PSCs. The highest fill factor (FF) achieved was 76%, and the efficiency (16.4%) was reduced by less than 10% when compared with the efficiency of gold-based PSCs. Moreover, up-scaling to 1 cm2-large area ST-PSCs with the buffer layer was successfully demonstrated with an FF of ∼70% and an efficiency of 15.7%. Comparing the two TMOs, the ST-PSC with an ultrathin V2Ox layer was slightly less efficient than that with MoOx, but its superior transmittance in the near infrared and greater light-soaking stability (a T80 of 600 h for V2Ox compared to a T80 of 12 h for MoOx) make V2Ox a promising buffer layer for preventing ITO sputtering damage in ST-PSCs.
Collapse
Affiliation(s)
- Erica Magliano
- C.H.O.S.E.
(Center for Hybrid and Organic Solar Energy), Electronic Engineering
Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy
| | - Paolo Mariani
- C.H.O.S.E.
(Center for Hybrid and Organic Solar Energy), Electronic Engineering
Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy
| | - Antonio Agresti
- C.H.O.S.E.
(Center for Hybrid and Organic Solar Energy), Electronic Engineering
Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy
| | - Sara Pescetelli
- C.H.O.S.E.
(Center for Hybrid and Organic Solar Energy), Electronic Engineering
Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy
| | - Fabio Matteocci
- C.H.O.S.E.
(Center for Hybrid and Organic Solar Energy), Electronic Engineering
Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy
| | - Babak Taheri
- ENEA
- Centro Ricerche Frascati, Via Enrico Fermi, 45, 00044, Frascati, Rome, Italy
| | - Antonio Cricenti
- Istituto
di Struttura della Materia (CNR-ISM) National Research Council, via del Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Marco Luce
- Istituto
di Struttura della Materia (CNR-ISM) National Research Council, via del Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Aldo Di Carlo
- C.H.O.S.E.
(Center for Hybrid and Organic Solar Energy), Electronic Engineering
Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy
- Istituto
di Struttura della Materia (CNR-ISM) National Research Council, via del Fosso del Cavaliere 100, 00133, Rome, Italy
| |
Collapse
|
32
|
Lee H, Kim H, Kim K, Jeong K, Leem M, Park S, Kang J, Yeom G, Kim H. Three-Dimensional Surface Treatment of MoS 2 Using BCl 3 Plasma-Derived Radicals. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46513-46519. [PMID: 37729007 DOI: 10.1021/acsami.3c09311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The realization of next-generation gate-all-around field-effect transistors (FETs) using two-dimensional transition metal dichalcogenide (TMDC) semiconductors necessitates the exploration of a three-dimensional (3D) and damage-free surface treatment method to achieve uniform atomic layer-deposition (ALD) of a high-k dielectric film on the inert surface of a TMDC channel. This study developed a BCl3 plasma-derived radical treatment for MoS2 to functionalize MoS2 surfaces for the subsequent ALD of an ultrathin Al2O3 film. Microstructural verification demonstrated a complete coverage of an approximately 2 nm-thick Al2O3 film on a planar MoS2 surface, and the applicability of the technique to 3D structures was confirmed using a suspended MoS2 channel floating from the substrate. Density functional theory calculations supported by optical emission spectroscopy and X-ray photoelectron spectroscopy measurements revealed that BCl radicals, predominantly generated by the BCl3 plasma, adsorbed on MoS2 and facilitated the uniform nucleation of ultrathin ALD-Al2O3 films. Raman and photoluminescence measurements of monolayer MoS2 and electrical measurements of a bottom-gated FET confirmed negligible damage caused by the BCl3 plasma-derived radical treatment. Finally, the successful operation of a top-gated FET with an ultrathin ALD-Al2O3 (∼5 nm) gate dielectric film was demonstrated, indicating the effectiveness of the pretreatment.
Collapse
Affiliation(s)
- Heesoo Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hoijoon Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kihyun Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kwangsik Jeong
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea
| | - Mirine Leem
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seunghyun Park
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jieun Kang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Geunyoung Yeom
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyoungsub Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
33
|
Zhang Y, Ai L, Gong Y, Jin Y. Preparation and usage of nanomaterials in biomedicine. Biotechnol Bioeng 2023; 120:2777-2792. [PMID: 37366272 DOI: 10.1002/bit.28472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/17/2023] [Accepted: 06/03/2023] [Indexed: 06/28/2023]
Abstract
Nanotechnology is one of the most promising and decisive technologies in the world. Nanomaterials, as the primary research aspect of nanotechnology, are quite different from macroscopic materials because of their unique optical, electrical, magnetic, thermal properties, and more robust mechanical properties, which make them play an essential role in the field of materials science, biomedical field, aerospace field, and environmental energy. Different preparation methods for nanomaterials have various physical and chemical properties and are widely used in different areas. In this review, we focused on the preparation methods, including chemical, physical, and biological methods due to the properties of nanomaterials. We mainly clarified the characteristics, advantages, and disadvantages of different preparation methods. Then, we focused on the applications of nanomaterials in biomedicine, including biological detection, tumor diagnosis, and disease treatment, which provide a development trend and promising prospects for nanomaterials.
Collapse
Affiliation(s)
- Yueyang Zhang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Lisi Ai
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Yongsheng Gong
- Cardiothoracic surgery, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Yanxia Jin
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, China
| |
Collapse
|
34
|
Schilirò E, Fiorenza P, Lo Nigro R, Galizia B, Greco G, Di Franco S, Bongiorno C, La Via F, Giannazzo F, Roccaforte F. Al 2O 3 Layers Grown by Atomic Layer Deposition as Gate Insulator in 3C-SiC MOS Devices. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5638. [PMID: 37629929 PMCID: PMC10456437 DOI: 10.3390/ma16165638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Metal-oxide-semiconductor (MOS) capacitors with Al2O3 as a gate insulator are fabricated on cubic silicon carbide (3C-SiC). Al2O3 is deposited both by thermal and plasma-enhanced Atomic Layer Deposition (ALD) on a thermally grown 5 nm SiO2 interlayer to improve the ALD nucleation and guarantee a better band offset with the SiC. The deposited Al2O3/SiO2 stacks show lower negative shifts of the flat band voltage VFB (in the range of about -3 V) compared with the conventional single SiO2 layer (in the range of -9 V). This lower negative shift is due to the combined effect of the Al2O3 higher permittivity (ε = 8) and to the reduced amount of carbon defects generated during the short thermal oxidation process for the thin SiO2. Moreover, the comparison between thermal and plasma-enhanced ALD suggests that this latter approach produces Al2O3 layers possessing better insulating behavior in terms of distribution of the leakage current breakdown. In fact, despite both possessing a breakdown voltage of 26 V, the T-ALD Al2O3 sample is characterised by a higher current density starting from 15 V. This can be attributable to the slightly inferior quality (in terms of density and defects) of Al2O3 obtained by the thermal approach and, which also explains its non-uniform dC/dV distribution arising by SCM maps.
Collapse
Affiliation(s)
- Emanuela Schilirò
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR-IMM), Strada VIII 5, Zona Industriale, 95121 Catania, Italy; (P.F.); (R.L.N.); (B.G.); (G.G.); (S.D.F.); (C.B.); (F.L.V.); (F.G.); (F.R.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Roostaei T, Rahimpour MR, Zhao H, Eisapour M, Chen Z, Hu J. Recent advances and progress in biotemplate catalysts for electrochemical energy storage and conversion. Adv Colloid Interface Sci 2023; 318:102958. [PMID: 37453344 DOI: 10.1016/j.cis.2023.102958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/05/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Complex structures and morphologies in nature endow materials with unexpected properties and extraordinary functions. Biotemplating is an emerging strategy for replicating nature structures to obtain materials with unique morphologies and improved properties. Recently, efforts have been made to use bio-inspired species as a template for producing morphology-controllable catalysts. Fundamental information, along with recent advances in biotemplate metal-based catalysts are presented in this review through discussions of various structures and biotemplates employed for catalyst preparation. This review also outlines the recent progress on preparation routes of biotemplate catalysts and discusses how the properties and structures of these templates play a crucial role in the final performance of metal-based catalysts. Additionally, the application of bio-based metal and metal oxide catalysts is highlighted for various key energy and environmental technologies, including photocatalysis, fuel cells, and lithium batteries. Biotemplate metal-based catalysts display high efficiency in several energy and environmental systems. Note that this review provides guidance for further research in this direction.
Collapse
Affiliation(s)
- Tayebeh Roostaei
- Department of Chemical Engineering, Shiraz University, Shiraz, Iran; Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N1N4, Canada
| | | | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N1N4, Canada
| | - Mehdi Eisapour
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N1N4, Canada
| | - Zhangxin Chen
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N1N4, Canada; Eastern Institute for Advanced Study, Ningbo, Zhengjiang 315200, China
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N1N4, Canada.
| |
Collapse
|
36
|
Almawgani AHM, Awasthi SK, Mehaney A, Ali GA, Elsayed HA, Sayed H, Ahmed AM. A theoretical approach for a new design of an ultrasensitive angular plasmonic chemical sensor using black phosphorus and aluminum oxide architecture. RSC Adv 2023; 13:16154-16164. [PMID: 37260718 PMCID: PMC10227845 DOI: 10.1039/d3ra01984e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023] Open
Abstract
In this study, the biosensing capabilities of conventional and hybrid multilayer structures were theoretically examined based on surface plasmon resonance (SPR). The transfer matrix method is adopted to obtain the reflectance spectra of the hybrid multilayer structure in the visible region. In this regard, the considered SPR sensor is configured as, [prism (CaF2)/Al2O3/Ag/Al2O3/2D material/Al2O3/Sensing medium]. Interestingly, many optimization steps were conducted to obtain the highest sensitivity of the new SPR biosensor from the hybrid structure. Firstly, the thickness of an Al2O3 layer with a 2D material (Blue P/WS2) is optimized to obtain an upgraded sensitivity of 360° RIU-1. Secondly, the method to find the most appropriate 2D material for the proposed design is investigated to obtain an ultra-high sensitivity. Meanwhile, the inclusion of black phosphorus (BP) increases the sensor's sensitivity to 466° RIU-1. Thus, black phosphorus (BP) was obtained as the most suitable 2D material for the proposed design. In this regard, the proposed hybrid SPR biosensing design may pave the way for further opportunities for the development of various SPR sensors to be utilized in chemical and biomedical engineering fields.
Collapse
Affiliation(s)
- Abdulkarem H M Almawgani
- Electrical Engineering Department, College of Engineering, Najran University Najran Kingdom of Saudi Arabia
| | - Suneet Kumar Awasthi
- Department of Physics and Material Science and Engineering, Jaypee Institute of Information Technology Noida 201304 U.P. India
| | - Ahmed Mehaney
- Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 62512 Egypt
| | - Ghassan Ahmed Ali
- Information Systems Department, College of Computer Sciences and Information Systems, Najran University Najran Saudi Arabia
| | - Hussein A Elsayed
- Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 62512 Egypt
| | - Hassan Sayed
- Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 62512 Egypt
| | - Ashour M Ahmed
- Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 62512 Egypt
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh 11623 Saudi Arabia
| |
Collapse
|
37
|
Kylmäoja E, Abushahba F, Holopainen J, Ritala M, Tuukkanen J. Monocyte Differentiation on Atomic Layer-Deposited (ALD) Hydroxyapatite Coating on Titanium Substrate. Molecules 2023; 28:molecules28083611. [PMID: 37110845 PMCID: PMC10143381 DOI: 10.3390/molecules28083611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Hydroxyapatite (HA; Ca10(PO4)6(OH)2) coating of bone implants has many beneficial properties as it improves osseointegration and eventually becomes degraded and replaced with new bone. We prepared HA coating on a titanium substrate with atomic layer deposition (ALD) and compared monocyte differentiation and material resorption between ALD-HA and bone. After stimulation with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-B ligand (RANKL), human peripheral blood monocytes differentiated into resorbing osteoclasts on bovine bone, but non-resorbing foreign body cells were observed on ALD-HA. The analysis of the topography of ALD-HA and bone showed no differences in wettability (water contact angle on ALD-HA 86.2° vs. 86.7° on the bone), but the surface roughness of ALD-HA (Ra 0.713 µm) was significantly lower compared to bone (Ra 2.30 µm). The cellular reaction observed on ALD-HA might be a consequence of the topographical properties of the coating. The absence of resorptive osteoclasts on ALD-HA might indicate inhibition of their differentiation or the need to modify the coating to induce osteoclast differentiation.
Collapse
Affiliation(s)
- Elina Kylmäoja
- Department of Anatomy and Cell Biology, Institute of Cancer Research and Translational Medicine, Medical Research Center, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
| | - Faleh Abushahba
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
| | - Jani Holopainen
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - Mikko Ritala
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - Juha Tuukkanen
- Department of Anatomy and Cell Biology, Institute of Cancer Research and Translational Medicine, Medical Research Center, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
| |
Collapse
|
38
|
Kochanneck L, Rönn J, Tewes A, Hoffmann GA, Virtanen S, Maydannik P, Sneck S, Wienke A, Ristau D. Enabling rotary atomic layer deposition for optical applications. APPLIED OPTICS 2023; 62:3112-3117. [PMID: 37133158 DOI: 10.1364/ao.477448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Atomic layer deposition (ALD) has been proven as an excellent method for depositing high-quality optical coatings due to its outstanding film quality and precise process control. Unfortunately, batch ALD requires time-consuming purge steps, which leads to low deposition rates and highly time-intensive processes for complex multilayer coatings. Recently, rotary ALD has been proposed for optical applications. In this, to the best of our knowledge, novel concept, each process step takes place in a separate part of the reactor divided by pressure and nitrogen curtains. To be coated, substrates are rotated through these zones. During each rotation, an ALD cycle is completed, and the deposition rate depends primarily on the rotation speed. In this work, the performance of a novel rotary ALD coating tool for optical applications is investigated and characterized with S i O 2 and T a 2 O 5 layers. Low absorption levels of <3.1p p m and <6.0p p m are demonstrated at 1064 nm for around 186.2 nm thick single layers of T a 2 O 5 and 1032 nm S i O 2, respectively. Growth rates up to 0.18 nm/s on fused silica substrates were achieved. Furthermore, excellent non-uniformity is also demonstrated, with values reaching as low as ±0.53% and ±1.07% over an area of 135×60m m for T a 2 O 5 and S i O 2, respectively.
Collapse
|
39
|
Cuevas AL, Vega V, Domínguez A, González AS, Prida VM, Benavente J. Optical Characterization of ALD-Coated Nanoporous Alumina Structures: Effect of Sample Geometry or Coated Layer Material. MICROMACHINES 2023; 14:839. [PMID: 37421072 DOI: 10.3390/mi14040839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 07/09/2023]
Abstract
Optical characterization of nanoporous alumina-based structures (NPA-bSs), obtained by ALD deposition of a thin conformal SiO2 layer on two alumina nanosupports with different geometrical parameters (pore size and interpore distance), was performed by two noninvasive and nondestructive techniques such as spectroscopic ellipsometry (SE) and photoluminescence (Ph) spectra. SE measurements allow us to estimate the refraction index and extinction coefficient for the studied samples and their dependence with wavelength for the 250-1700 nm interval, showing the effect of sample geometry and cover-layer material (SiO2, TiO2, or Fe2O3), which significantly affect the oscillatory character of both parameters, as well as changes associated with the light incidence angle, which are attributed to surface impurities and inhomogeneity. Photoluminescence curves exhibit a similar shape independently of sample pore-size/porosity, but they seem to affect intensity values. This analysis shows the potential application of these NPA-bSs platforms to nanophotonics, optical sensing, or biosensing.
Collapse
Affiliation(s)
- Ana Laura Cuevas
- Unidad de Nanotecnología, SCBI Centro, Universidad de Málaga, E-29071 Málaga, Spain
| | - Víctor Vega
- Laboratorio de Membranas Nanoporosas, Servicicios Científico-Técnicos, Universidad de Oviedo, E-33006 Oviedo, Spain
| | - Antonia Domínguez
- Unidad de Nanotecnología, SCBI Centro, Universidad de Málaga, E-29071 Málaga, Spain
| | - Ana Silvia González
- Departmento de Física, Facultad de Ciencias, Universidad de Oviedo, E-33007 Oviedo, Spain
| | - Víctor M Prida
- Departmento de Física, Facultad de Ciencias, Universidad de Oviedo, E-33007 Oviedo, Spain
| | - Juana Benavente
- Departmento de Física Aplicada I, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain
| |
Collapse
|
40
|
Guo RT, Hu X, Chen X, Bi ZX, Wang J, Pan WG. Recent Progress of Three-dimensionally Ordered Macroporous (3DOM) Materials in Photocatalytic Applications: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207767. [PMID: 36624608 DOI: 10.1002/smll.202207767] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 12/28/2022] [Indexed: 06/17/2023]
Abstract
In recent years, three-dimensionally ordered macroporous (3DOM) materials have attracted tremendous interest in the field of photocatalysis due to the periodic spatial structure and unique physicochemical properties of 3DOM catalysts. In this review, the fundamentals and principles of 3DOM photocatalysts are briefly introduced, including the overview of 3DOM materials, the photocatalytic principles based on 3DOM materials, and the advantages of 3DOM materials in photocatalysis. The preparation methods of 3DOM materials are also presented. The structure and properties of 3DOM materials and their effects on photocatalytic performance are briefly summarized. More importantly, 3DOM materials, as a supported catalyst, are extensively employed to combine with various common materials, including metal nanoparticles, metal oxides, metal sulfides, and carbon materials, to enhance photocatalytic performance. Finally, the prospects and challenges for the development of 3DOM materials in the field of photocatalysis are presented.
Collapse
Affiliation(s)
- Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Xing Hu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Xin Chen
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Zhe-Xu Bi
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Juan Wang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| |
Collapse
|
41
|
Behroozi AH, Vatanpour V, Meunier L, Mehrabi M, Koupaie EH. Membrane Fabrication and Modification by Atomic Layer Deposition: Processes and Applications in Water Treatment and Gas Separation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36898166 DOI: 10.1021/acsami.2c22627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Membrane-based separation processes are part of most water purification plants worldwide. Industrial separation applications, primarily water purification and gas separation, can be improved with novel membranes or modification to existing ones. Atomic layer deposition (ALD) is an emerging technique that is proposed to upgrade certain kinds of membranes independent of their chemistry and morphology. ALD deposits thin, defect-free, angstrom-scale, and uniform coating layers on a substrate's surface by reacting with gaseous precursors. The surface-modifying effects of ALD are described in the present review, followed by a description of various types of inorganic and organic barrier films and how these can be used in combination with ALD. The role of ALD in membrane fabrication and modification is categorized into different membrane-based groups according to the treated medium, i.e., water or gas. In all membrane types, the ALD-based direct deposition of inorganic materials, mainly metal oxides, on the membrane surface can improve antifouling, selectivity, permeability, and hydrophilicity. Therefore, the ALD technique can broaden the applications of membranes to the treatment of emerging contaminants in water and air. Finally, the advancement, limitations, and challenges of ALD-based membrane fabrication and modification are compared to provide a comprehensive guideline for developing next-generation membranes with improved filtration and separation performance.
Collapse
Affiliation(s)
- Amir Hossein Behroozi
- Department of Chemical Engineering, Queen's University, Kingston K7L 3N6, Ontario, Canada
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul Turkey
- Environmental Engineering Department, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Louise Meunier
- Department of Chemical Engineering, Queen's University, Kingston K7L 3N6, Ontario, Canada
| | - Mohammad Mehrabi
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Ehssan H Koupaie
- Department of Chemical Engineering, Queen's University, Kingston K7L 3N6, Ontario, Canada
| |
Collapse
|
42
|
Dyrvik EG, Warby JH, McCarthy MM, Ramadan AJ, Zaininger KA, Lauritzen AE, Mahesh S, Taylor RA, Snaith HJ. Reducing Nonradiative Losses in Perovskite LEDs through Atomic Layer Deposition of Al 2O 3 on the Hole-Injection Contact. ACS NANO 2023; 17:3289-3300. [PMID: 36790329 PMCID: PMC9979650 DOI: 10.1021/acsnano.2c04786] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Halide perovskite light-emitting diodes (PeLEDs) exhibit great potential for use in next-generation display technologies. However, scale-up will be challenging due to the requirement of very thin transport layers for high efficiencies, which often present spatial inhomogeneities from improper wetting and drying during solution processing. Here, we show how a thin Al2O3 layer grown by atomic layer deposition can be used to preferentially cover regions of imperfect hole transport layer deposition and form an intermixed composite with the organic transport layer, allowing hole conduction and injection to persist through the organic hole transporter. This has the dual effect of reducing nonradiative recombination at the heterojunction and improving carrier selectivity, which we infer to be due to the inhibition of direct contact between the indium tin oxide and perovskite layers. We observe an immediate improvement in electroluminescent external quantum efficiency in our p-i-n LEDs from an average of 9.8% to 13.5%, with a champion efficiency of 15.0%. The technique uses industrially available equipment and can readily be scaled up to larger areas and incorporated in other applications such as thin-film photovoltaic cells.
Collapse
Affiliation(s)
- Emil G. Dyrvik
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford, OX1
3PU, U.K.
| | - Jonathan H. Warby
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford, OX1
3PU, U.K.
| | - Melissa M. McCarthy
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford, OX1
3PU, U.K.
| | - Alexandra J. Ramadan
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford, OX1
3PU, U.K.
| | - Karl-Augustin Zaininger
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford, OX1
3PU, U.K.
| | - Andreas E. Lauritzen
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford, OX1
3PU, U.K.
| | - Suhas Mahesh
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford, OX1
3PU, U.K.
| | - Robert A. Taylor
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford, OX1
3PU, U.K.
| | - Henry J. Snaith
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford, OX1
3PU, U.K.
| |
Collapse
|
43
|
Kunene K, Sayegh S, Weber M, Sabela M, Voiry D, Iatsunskyi I, Coy E, Kanchi S, Bisetty K, Bechelany M. Smart electrochemical immunosensing of aflatoxin B1 based on a palladium nanoparticle-boron nitride-coated carbon felt electrode for the wine industry. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Lin SC, Wang CC, Tien CL, Tung FC, Wang HF, Lai SH. Fabrication of Aluminum Oxide Thin-Film Devices Based on Atomic Layer Deposition and Pulsed Discrete Feed Method. MICROMACHINES 2023; 14:279. [PMID: 36837979 PMCID: PMC9967533 DOI: 10.3390/mi14020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
This study demonstrates the low-temperature (<100 °C) process for growing a thin silica buffer layer and aluminum oxide by atomic layer deposition (ALD) in the same reaction chamber. Heterogeneous multilayer thin films are prepared by a dual-mode equipment based on atomic layer deposition and plasma-enhanced chemical vapor deposition (PECVD) techniques. The pulse discrete feeding method (DFM) was used to divide the precursor purging steps into smaller intervals and generate discrete feeds, which improved the saturated distribution of gas precursors, film density and deposition selectivity. The experimental results show that the process method produces a uniform microstructure and that the best film uniformity is ±2.3% and growth rate is 0.69 Å/cycle. The thickness of aluminum oxide film has a linear relationship with the cyclic growth number from 360 to 1800 cycles. Meanwhile, the structural and mechanical stress properties of aluminum oxide thin films were also verified to meet the requirements of advanced thin-film devices.
Collapse
Affiliation(s)
- Shih-Chin Lin
- Mechanical and Systems Research Lab, Industrial Technology Research Institute, Hsinchu 310401, Taiwan
| | - Ching-Chiun Wang
- Mechanical and Systems Research Lab, Industrial Technology Research Institute, Hsinchu 310401, Taiwan
| | - Chuen-Lin Tien
- Department of Electrical Engineering, Feng Chia University, Taichung 40724, Taiwan
| | - Fu-Ching Tung
- Mechanical and Systems Research Lab, Industrial Technology Research Institute, Hsinchu 310401, Taiwan
| | - Hsuan-Fu Wang
- Mechanical and Systems Research Lab, Industrial Technology Research Institute, Hsinchu 310401, Taiwan
| | - Shih-Hsiang Lai
- Mechanical and Systems Research Lab, Industrial Technology Research Institute, Hsinchu 310401, Taiwan
| |
Collapse
|
45
|
Li H, Chang BS, Kim H, Xie Z, Lainé A, Ma L, Xu T, Yang C, Kwon J, Shelton SW, Klivansky LM, Altoé V, Gao B, Schwartzberg AM, Peng Z, Ritchie RO, Xu T, Salmeron M, Ruiz R, Sharpless KB, Wu P, Liu Y. High-performing polysulfate dielectrics for electrostatic energy storage under harsh conditions. JOULE 2023; 7:95-111. [PMID: 37034575 PMCID: PMC10078921 DOI: 10.1016/j.joule.2022.12.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
High capacity polymer dielectrics that operate with high efficiencies under harsh electrification conditions are essential components for advanced electronics and power systems. It is, however, fundamentally challenging to design polymer dielectrics that can reliably withstand demanding temperatures and electric fields, which necessitate the balance of key electronic, electrical and thermal parameters. Herein, we demonstrate that polysulfates, synthesized by sulfur(VI) fluoride exchange (SuFEx) catalysis, another near-perfect click chemistry reaction, serve as high-performing dielectric polymers that overcome such bottlenecks. Free-standing polysulfate thin films from convenient solution processes exhibit superior insulating properties and dielectric stability at elevated temperatures, which are further enhanced when ultrathin (~5 nm) oxide coatings are deposited by atomic layer deposition. The corresponding electrostatic film capacitors display high breakdown strength (>700 MV m-1) and discharged energy density of 8.64 J cm-3 at 150 °C, outperforming state-of-the-art free-standing capacitor films based on commercial and synthetic dielectric polymers and nanocomposites.
Collapse
Affiliation(s)
- He Li
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- These authors contributed equally
| | - Boyce S. Chang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- These authors contributed equally
- Present address: Department of Materials Science and Engineering, Iowa State University, Ames, IA 50010, USA
| | - Hyunseok Kim
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Zongliang Xie
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Antione Lainé
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Le Ma
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Tianlei Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Chongqing Yang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Junpyo Kwon
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Steve W. Shelton
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Liana M. Klivansky
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Virginia Altoé
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Bing Gao
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adam M. Schwartzberg
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Zongren Peng
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Robert O. Ritchie
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ting Xu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Miquel Salmeron
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ricardo Ruiz
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - K. Barry Sharpless
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yi Liu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Lead contact
| |
Collapse
|
46
|
Courbaron G, Petit E, Serrano-Sevillano J, Labrugère-Sarroste C, Olchowka J, Carlier D, Delpuech N, Aymonier C, Croguennec L. Improved Electrochemical Performance for High-Voltage Spinel LiNi 0.5Mn 1.5O 4 Modified by Supercritical Fluid Chemical Deposition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2812-2824. [PMID: 36622885 DOI: 10.1021/acsami.2c14777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Among candidates at the positive electrode of the next generation of Li-ion technology and even beyond post Li-ion technology as all-solid-state batteries, spinel LiNi0.5Mn1.5O4 (LNMO) is one of the favorites. Nevertheless, before its integration into commercial systems, challenges still remain to be tackled, especially the stabilization of interfaces with the electrolyte (liquid or solid) at high voltage. In this work, a simple, fast, and cheap process is used to prepare a homogeneous coating of Al2O3 type to modify the surface of the spinel LNMO: the supercritical fluid chemical deposition (SFCD) route. This process is, to the best of our knowledge, used for the first time in the battery field. Significantly improved performance was demonstrated vs those of bare LNMO, especially at high rates and for highly loaded electrodes.
Collapse
Affiliation(s)
- Gwenaëlle Courbaron
- Bordeaux INP, ICMCB, UMR 5026, Université de Bordeaux, CNRS, F-33600 Pessac, France
- Technocentre, Renault SAS, 1 Avenue du Golf, 78280 Guyancourt, France
| | - Emmanuel Petit
- Bordeaux INP, ICMCB, UMR 5026, Université de Bordeaux, CNRS, F-33600 Pessac, France
- RS2E, Réseau Français sur le Stockage Electrochimique de l'Energie, FR CNRS 3459, 80039 Amiens Cedex, France
| | - Jon Serrano-Sevillano
- Bordeaux INP, ICMCB, UMR 5026, Université de Bordeaux, CNRS, F-33600 Pessac, France
- ALISTORE-ERI European Research Institute, FR CNRS 3104, 80039 Amiens Cedex, France
- Centro de Investigación Cooperativa de Energías Alternativas (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain
| | | | - Jacob Olchowka
- Bordeaux INP, ICMCB, UMR 5026, Université de Bordeaux, CNRS, F-33600 Pessac, France
- RS2E, Réseau Français sur le Stockage Electrochimique de l'Energie, FR CNRS 3459, 80039 Amiens Cedex, France
- ALISTORE-ERI European Research Institute, FR CNRS 3104, 80039 Amiens Cedex, France
| | - Dany Carlier
- Bordeaux INP, ICMCB, UMR 5026, Université de Bordeaux, CNRS, F-33600 Pessac, France
- RS2E, Réseau Français sur le Stockage Electrochimique de l'Energie, FR CNRS 3459, 80039 Amiens Cedex, France
- ALISTORE-ERI European Research Institute, FR CNRS 3104, 80039 Amiens Cedex, France
| | - Nathalie Delpuech
- Technocentre, Renault SAS, 1 Avenue du Golf, 78280 Guyancourt, France
- RS2E, Réseau Français sur le Stockage Electrochimique de l'Energie, FR CNRS 3459, 80039 Amiens Cedex, France
- ALISTORE-ERI European Research Institute, FR CNRS 3104, 80039 Amiens Cedex, France
| | - Cyril Aymonier
- Bordeaux INP, ICMCB, UMR 5026, Université de Bordeaux, CNRS, F-33600 Pessac, France
- RS2E, Réseau Français sur le Stockage Electrochimique de l'Energie, FR CNRS 3459, 80039 Amiens Cedex, France
| | - Laurence Croguennec
- Bordeaux INP, ICMCB, UMR 5026, Université de Bordeaux, CNRS, F-33600 Pessac, France
- RS2E, Réseau Français sur le Stockage Electrochimique de l'Energie, FR CNRS 3459, 80039 Amiens Cedex, France
- ALISTORE-ERI European Research Institute, FR CNRS 3104, 80039 Amiens Cedex, France
| |
Collapse
|
47
|
Narayanan M, Devarajan N, Salmen SH, Alharbi SA, Lavarti R, Lan Chi NT, Brindhadevi K. Characterization of NiONPs synthesized by aqueous extract of orange fruit waste and assessed their antimicrobial and antioxidant potential. ENVIRONMENTAL RESEARCH 2023; 216:114734. [PMID: 36343715 DOI: 10.1016/j.envres.2022.114734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
This research was performed to evaluate the nickel oxide nanoparticles (NiONPs) fabricating potential of orange fruit waste (OFW) aqueous extract. Moreover characterize the synthesized OFW-NiONPs through standard techniques such as UV-vis. spectrophotometer, Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) and Scanning Electron Microscope (SEM) analyses. Furthermore, the antimicrobial and antioxidant potential of OFW-NiONPs were studied against most common microbial pathogens (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, and Aspergillus niger) and free radicals (2,2-diphenyl-1-picrylhydrazyl (DPPH), H2O2, OH, and FRAP). A sharp absorbance peak was obtained at 324 nm under UV-vis spectrum analysis that confirmed that the synthesis of OFW-NiONPs and it has been capped and stabilized by numbers of active functional groups studied through FTIR analysis. SEM and DLS analyses revealed that the cubic and triangle shaped OFW-NiONPs with the size intensity distribution was ranging from 21 nm to 130 nm. Interestingly, the OFW-NiONPs showed remarkable antimicrobial activity against the common microbial pathogens in the order of E. coli > A. niger > K. pneumoniae > B. subtilis > S. aureus at increased concentration of 200 μg mL-1. Similarly, the synthesized OFW-NiONPs also possess significant free radicals scavenging activity against DPPH, OH, and FRAP. These results conclude that this OFW-NiONPs can be considered for some biomedical applications after the investigations of some in-vivo research.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 602105, Tamil Nadu, India
| | | | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Rupa Lavarti
- Pharmacology and Toxicology Department, Augusta University, USA
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Kathirvel Brindhadevi
- Computational Engineering and Design Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
48
|
Paras, Yadav K, Kumar P, Teja DR, Chakraborty S, Chakraborty M, Mohapatra SS, Sahoo A, Chou MMC, Liang CT, Hang DR. A Review on Low-Dimensional Nanomaterials: Nanofabrication, Characterization and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:160. [PMID: 36616070 PMCID: PMC9824826 DOI: 10.3390/nano13010160] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 09/02/2023]
Abstract
The development of modern cutting-edge technology relies heavily on the huge success and advancement of nanotechnology, in which nanomaterials and nanostructures provide the indispensable material cornerstone. Owing to their nanoscale dimensions with possible quantum limit, nanomaterials and nanostructures possess a high surface-to-volume ratio, rich surface/interface effects, and distinct physical and chemical properties compared with their bulk counterparts, leading to the remarkably expanded horizons of their applications. Depending on their degree of spatial quantization, low-dimensional nanomaterials are generally categorized into nanoparticles (0D); nanorods, nanowires, and nanobelts (1D); and atomically thin layered materials (2D). This review article provides a comprehensive guide to low-dimensional nanomaterials and nanostructures. It begins with the classification of nanomaterials, followed by an inclusive account of nanofabrication and characterization. Both top-down and bottom-up fabrication approaches are discussed in detail. Next, various significant applications of low-dimensional nanomaterials are discussed, such as photonics, sensors, catalysis, energy storage, diverse coatings, and various bioapplications. This article would serve as a quick and facile guide for scientists and engineers working in the field of nanotechnology and nanomaterials.
Collapse
Affiliation(s)
- Paras
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Kushal Yadav
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Chemical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Prashant Kumar
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Dharmasanam Ravi Teja
- Department of Civil Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Sudipto Chakraborty
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Monojit Chakraborty
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | | | - Abanti Sahoo
- Department of Chemical Engineering, National Institute of Technology, Rourkela 769008, India
| | - Mitch M. C. Chou
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chi-Te Liang
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Center for Quantum Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Taiwan Consortium of Emergent Crystalline Materials, National Taiwan University, Taipei 10617, Taiwan
| | - Da-Ren Hang
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
49
|
Zheng Y, Zhao H, Cai Y, Jurado-Sánchez B, Dong R. Recent Advances in One-Dimensional Micro/Nanomotors: Fabrication, Propulsion and Application. NANO-MICRO LETTERS 2022; 15:20. [PMID: 36580129 PMCID: PMC9800686 DOI: 10.1007/s40820-022-00988-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/22/2022] [Indexed: 05/14/2023]
Abstract
Due to their tiny size, autonomous motion and functionalize modifications, micro/nanomotors have shown great potential for environmental remediation, biomedicine and micro/nano-engineering. One-dimensional (1D) micro/nanomotors combine the characteristics of anisotropy and large aspect ratio of 1D materials with the advantages of functionalization and autonomous motion of micro/nanomotors for revolutionary applications. In this review, we discuss current research progress on 1D micro/nanomotors, including the fabrication methods, driving mechanisms, and recent advances in environmental remediation and biomedical applications, as well as discuss current challenges and possible solutions. With continuous attention and innovation, the advancement of 1D micro/nanomotors will pave the way for the continued development of the micro/nanomotor field.
Collapse
Affiliation(s)
- Yuhong Zheng
- School of Chemistry, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - He Zhao
- School of Chemistry, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Yuepeng Cai
- School of Chemistry, South China Normal University, Guangzhou, 510006, People's Republic of China.
| | - Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, Universidad de Alcala, 28871, Alcalá de Henares, Madrid, Spain.
- Chemical Research Institute "Andrés M. del Río", University of Alcala, 28871, Alcalá de Henares, Madrid, Spain.
| | - Renfeng Dong
- School of Chemistry, South China Normal University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
50
|
Liu C, Liu J, Godin R. ALD-Deposited NiO Approaches the Performance of Platinum as a Hydrogen Evolution Cocatalyst on Carbon Nitride. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chang Liu
- Department of Chemistry, The University of British Columbia, 3247 University Way, Kelowna, British ColumbiaV1V 1V7, Canada
| | - Jian Liu
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, British ColumbiaV1V 1V7, Canada
| | - Robert Godin
- Department of Chemistry, The University of British Columbia, 3247 University Way, Kelowna, British ColumbiaV1V 1V7, Canada
| |
Collapse
|