1
|
Yin Q, Song S, Liu Z. Novel nanoemulsion adjuvant stabilized by TPGS possesses equivalent physicochemical properties, Turbiscan stability, and adjuvanticity to AS03 for eliciting robust immunogenicity of subunit vaccines in mice. Hum Vaccin Immunother 2025; 21:2486635. [PMID: 40172023 PMCID: PMC11970742 DOI: 10.1080/21645515.2025.2486635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/05/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025] Open
Abstract
Emulsion-based antigen delivery systems have emerged as a novel approach to enhance the effectiveness of subunit vaccines. This study presents the development of a newly formulated oil-in-water (o/w) nanoemulsion adjuvant (NEA) composed of squalene oil and α-tocopheryl polyethylene glycol 1000 succinate (TPGS), which serves dual roles as an emulsifier and an immunostimulator. In comparison to AS03, an FDA-approved emulsion adjuvant that includes α-tocopherol, squalene, and polysorbate 80, NEA is devoid of α-tocopherol and exhibits comparable physicochemical properties, including particle size, polydispersity index, morphology, pH, zeta potential, and viscosity. Stability assessments conducted using Turbiscan Lab indicated that NEA undergoes an uplift process without experiencing flocculation, agglomeration or delamination. Model subunit antigens of recombinant glycoprotein E (gE) targeting the varicella-zoster virus (VZV) and highly purified hemagglutinin (HA) protein against trivalent seasonal influenza viruses (TIV) were employed to assess the adjuvanticity of NEA. It was revealed that the specific anti-gE IgG titers induced by the gE/NEA were markedly higher than those generated by gE alone, with titers of 13,000 vs 3,000 for the primary vaccination, and 5 × 106 vs 5 × 104 for the booster vaccination. Additionally, the TIV/NEA group exhibited a significantly improved immunogenic response relative to TIV alone across all three HA antigens at six-week after immunization, as evidenced by anti-HA titers of 256 vs 32. Furthermore, the NEA demonstrated no significant difference in efficacy compared to AS03 in both the VZV and TIV vaccines. Consequently, NEA presents a promising alternative to AS03 for the development of effective subunit vaccines.
Collapse
Affiliation(s)
- Quanyi Yin
- Department of Research & Development, Yither Biotech Co. Ltd, Shanghai, China
| | - Shuoyao Song
- Department of Research & Development, Yither Biotech Co. Ltd, Shanghai, China
| | - Zhilei Liu
- Department of Research & Development, Yither Biotech Co. Ltd, Shanghai, China
| |
Collapse
|
2
|
Xie Y, Guo J, Hu J, Li Y, Zhang Z, Zhu Y, Deng F, Qi J, Zhou Y, Chen W. A factorial design-optimized microfluidic LNP vaccine elicits potent magnesium-adjuvating cancer immunotherapy. Mater Today Bio 2025; 32:101703. [PMID: 40230646 PMCID: PMC11994397 DOI: 10.1016/j.mtbio.2025.101703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/19/2025] [Accepted: 03/23/2025] [Indexed: 04/16/2025] Open
Abstract
Human papillomavirus (HPV)-associated cancers remain a critical health challenge, prompting the development of effective therapeutic vaccines. This study presents a lipid nanoparticle (LNP)-based vaccine co-loading E7 antigen peptide and magnesium ions as the adjuvant. Microfluidic technology was employed to optimize LNP preparation and formulation, ensuring efficient co-delivery of antigen and adjuvant. Magnesium ions were chosen over conventional aluminum-based adjuvants, which often suffer from limited efficacy and adverse effects, particularly for cancer immunotherapy. Compared to aluminum, magnesium ions exhibited superior capabilities in enhancing T-cell activation and promoting cellular immune response. Mechanistic insights suggest that magnesium ions facilitate dendritic cell maturation and antigen presentation via a collagen-CD36 axis, contributing to the adjuvant activity of magnesium. Through design of experiments (DoE) optimization, the LNP formulation was tailored for enhanced encapsulation and stability, positioning it as a targeted system for immune activation. These findings support the promise of magnesium ions as effective and safer adjuvants in LNP-based vaccines, marking a potential advancement for therapeutic cancer vaccination.
Collapse
Affiliation(s)
- Yongyi Xie
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Jiaxin Guo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Jialin Hu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yuan Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Zhongqian Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yongcheng Zhu
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Fei Deng
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, UNSW Sydney, NSW, 2052, Australia
| | - Jialong Qi
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, PR China
| | - You Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Wenjie Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| |
Collapse
|
3
|
Liang Z, Gao H, Ren Q, Li X, Ma Y, Xue C, Sun B. Suspension stability of aluminum-based adjuvants. NANOSCALE 2025. [PMID: 40338162 DOI: 10.1039/d5nr00699f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Aluminum hydroxyphosphate (AAHP) and aluminum oxyhydroxide (AlOOH) are widely used adjuvants in human vaccines. However, vaccines formulated with aluminum-based adjuvants often exist as suspensions that can experience phase separation, spontaneous aggregation, layering, and settling, potentially compromising their immunogenic efficacy. Despite their widespread use, research into the suspension stability of aluminum-based adjuvants remains limited. In this study, we synthesized a series of aluminum hydroxyphosphate and AlOOH nanoparticles and systematically evaluated their suspension stabilities under various conditions. Our findings reveal that for aluminum hydroxyphosphate, particle size and ζ potential are the primary determinants of suspension stability, aligning with DLVO theory and Stokes' law. For AlOOH, the suspension stability is governed by a combination of factors, including particle size, ζ potential, surface free energy (SFE) and hydrophobicity. Notably, the commercial adjuvant Alhydrogel® exhibited low suspension stability compared to our synthesized AlOOH nanoparticles, a result attributed to its high SFE. Furthermore, under specific formulation conditions, aluminum-based adjuvants with enhanced suspension stability improved the suspension stability of their corresponding adjuvant-antigen complexes. This study provides a foundation for optimizing the suspension stability of aluminum-based adjuvants and offers valuable insights for their rational design and transportation in vaccine development.
Collapse
Affiliation(s)
- Zhihui Liang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China.
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
- Department of Biomedical Engineering, The Chinese University of Hong, Kong, Shatin, New Territories, Hong Kong SAR
| | - Hongyang Gao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China.
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Qian Ren
- MOE Key Laboratory Bio-Intelligent Manufacturing, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China.
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Xin Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China.
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Yubin Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China.
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Changying Xue
- MOE Key Laboratory Bio-Intelligent Manufacturing, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China.
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China.
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| |
Collapse
|
4
|
Zhong H, Li Y, Raza F, Xie J, Rong R, Qiu M, Su J. RBCs as a Bioinspired Drug Delivery System for Co-delivery of Irinotecan and Nanoalumina Enhances Colorectal Cancer Therapy. Mol Pharm 2025; 22:2521-2534. [PMID: 40251121 DOI: 10.1021/acs.molpharmaceut.4c01396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
Colorectal cancer (CRC) is a malignant epithelial tumor with high morbidity and mortality. In CRC treatment, irinotecan (CPT-11) as a chemotherapeutic drug is widely applied. However, its half-life is short, leading to large dosages and severe side effects. Red blood cells (RBCs) are biocompatible drug carriers with high capacity, avoiding premature drug degradation and achieving slow drug release. Nanoalumina (AN) is an emerging immune adjuvant that can enhance the immune response. Here, we used RBCs as carriers and absorbed AN to construct AN-CPT-11-RBCs. CPT-11 would induce tumor cell death, releasing much tumor antigen, while AN would activate immune cells to recognize newly released antigens and induce lymphocyte proliferation, enhancing the antitumor effect simultaneously. With loading amounts of 4 mg of CPT-11 and 3 mg of AN per 109 RBCs, AN-CPT-11-RBCs had similar properties to natural RBCs. In vivo, AN-CPT-11-RBCs could circulate for 9 days and stimulate the proliferation of lymphocytes in the spleen and tumor tissue, having a higher tumor growth inhibition rate of 74.01% and a lower frequency of administration. In conclusion, AN-CPT-11-RBCs attain the co-delivery of CPT-11 and AN for the synergistic treatment of CRC.
Collapse
Affiliation(s)
- Hongyu Zhong
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yichen Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiyuan Xie
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruonan Rong
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Li Z, Chen P, Qu A, Sun M, Xu L, Xu C, Hu S, Kuang H. Opportunities and Challenges for Nanomaterials as Vaccine Adjuvants. SMALL METHODS 2025:e2402059. [PMID: 40277301 DOI: 10.1002/smtd.202402059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/29/2025] [Indexed: 04/26/2025]
Abstract
Adjuvants, as a critical component of vaccines, are capable of eliciting more robust and sustained immune responses. Nanomaterials have shown unique advantages and broad application prospects in adjuvant development due to their high adjustability and distinctive physicochemical properties. This review focuses on nanoadjuvants and their immunological mechanisms. First, various types of adjuvants are introduced with an emphasis on metal and metal oxide nanoparticles, coordination polymers, liposomes, polymer nanoparticles, and other inorganic nanoparticles that can serve as vaccine adjuvants. Second, this review describes the current status of the clinical applications of nanoadjuvants. Next, the mechanisms of action for nanoadjuvants have been thoroughly elucidated, including the depot effect, NLRP3 inflammasome activation, targeting C-type lectin receptors, activation of toll-like receptors, and activation of the cGAS-STING signaling pathway. Finally, the challenges and opportunities associated with the development of nanoadjuvants have also been addressed.
Collapse
Affiliation(s)
- Zongda Li
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Panpan Chen
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Aihua Qu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Shudong Hu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
6
|
Sun R, Xia L, She G, Li J, Wang Y, Chen Y, Yang Q, Zhang S, Liu F, Chen Y, Zhang L, Zhang C, Lv W, Huang E, Zhang L. Repeated-dose toxicity and immunogenicity evaluation of a recombinant subunit COVID-19 vaccine (ZF2001) in rats. Front Cell Infect Microbiol 2025; 15:1548787. [PMID: 40330020 PMCID: PMC12053236 DOI: 10.3389/fcimb.2025.1548787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/24/2025] [Indexed: 05/08/2025] Open
Abstract
Coronavirus disease 19 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), had given rise to a massive epidemic. Owing to the high morbidity and mortality of COVID-19 and the lack of effective therapies, safe and effective vaccination is the optimum choice for controlling this epidemic and preventing infection. The protein subunit vaccine ZF2001, which targets the receptor-binding domain (RBD) protein of SARS-CoV-2, has a significant protective effect against COVID-19. At the beginning of the COVID-19 epidemic, to promote the early approval of ZF2001 for clinical trials by the National Medical Products Administration of China (NMPA), a comprehensive evaluation of its toxicity in vivo was warranted. In the present study, a major part of the above series of studies, we evaluated the safety, immunogenicity and efficacy of the ZF2001 vaccine for the first time in adult Sprague Dawley (SD) rats. The male and female rats were administered three doses of the ZF2001 vaccine (25 μg or 50 μg NCP-RBD protein/dose, containing the aluminum-based adjuvant). The safety profile of ZF2001 was assessed by observing the general health status, local toxicity at the site of administration, immunotoxicity, immunogenicity, blood chemistry and hematology parameters in SD rats. In general, our results indicated that the ZF2001 vaccine did not induce significant systemic toxicity in rats, with a no-observed adverse effect level (NOAEL) of 50 μg NCP-RBD protein/rat. Moreover, the ZF2001 vaccine showed good immunogenicity by inducing the production of specific IgG antibodies in rats after three consecutive immunizations. In addition, histological examination revealed recoverable inflammatory changes in quadricep muscles and adjacent lymph nodes at the vaccine injection site. In summary, our systematic toxicology study proves the safety, tolerability and immunogenicity of the ZF2001 vaccine, which further supports the results of clinical trials of ZF2001.
Collapse
MESH Headings
- Animals
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- COVID-19 Vaccines/toxicity
- COVID-19 Vaccines/adverse effects
- Male
- Rats
- Female
- Rats, Sprague-Dawley
- SARS-CoV-2/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- Vaccines, Subunit/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/toxicity
- Vaccines, Subunit/adverse effects
- Antibodies, Viral/blood
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Immunogenicity, Vaccine
- Antibodies, Neutralizing/blood
- Spike Glycoprotein, Coronavirus/immunology
- Immunoglobulin G/blood
Collapse
Affiliation(s)
- Ruimin Sun
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Lijuan Xia
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Guangbiao She
- Anhui Zhifei Longcom Biopharmaceutical Co., Ltd., HeFei, China
- Recombinant Vaccine Research and Development Joint Laboratory of Anhui Province, HeFei, China
| | - Jinrong Li
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China
| | - Yiru Wang
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Yunxiang Chen
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Qian Yang
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China
| | - Siming Zhang
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China
| | - Fang Liu
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China
| | - Ying Chen
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China
| | - Liyan Zhang
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China
| | - Chengda Zhang
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China
| | - Wanqiang Lv
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Enqi Huang
- Anhui Zhifei Longcom Biopharmaceutical Co., Ltd., HeFei, China
- Recombinant Vaccine Research and Development Joint Laboratory of Anhui Province, HeFei, China
| | - Lijiang Zhang
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Qingshan Lake Science and Technology Innovation Center, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
7
|
Zaitseva NV, Zemlyanova МА, Gekht AB, Dedaev SI, Kol'dibekova YV, Peskova ЕV, Stepankov МS, Tinkov AA, Martins AC, Skalny AV, Aschner M. Neurotoxic effects of aluminum and manganese: From molecular to clinical effects. J Neurol Sci 2025; 473:123480. [PMID: 40233648 DOI: 10.1016/j.jns.2025.123480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 02/25/2025] [Accepted: 03/26/2025] [Indexed: 04/17/2025]
Abstract
The existing data demonstrate that aluminum (Al) and manganese (Mn) possess neurotoxic effects upon overexposure due to induction of neuronal oxidative stress and apoptosis, synaptic dysfunction and neurotransmitter metabolism, neuroinflammation, and cytoskeletal pathology. However, systematic evidence regarding contribution of these metals to development of neurological diseases are lacking. Therefore, in this review we provide a summary of the existing data on contribution of Al and Mn exposure to brain diseases and its symptoms. Causal relations were demonstrated for development of parkinsonism upon exposure to high doses of Mn, whereas Al overload is considered the key contributor to dialysis encephalopathy. Certain studies demonstrate that Al and Mn overexposure is associated with neurodegenerative diseases including Alzheimer's and Parkinson's diseases, as well as neurodevelopmental disorders like autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). Although laboratory studies demonstrate the potential contribution of Al and Mn to molecular pathogenesis of these diseases, clinical findings supporting the causal role of metals is these pathologies are yet insufficient. Therefore, estimation of the contribution of these metals to neurological disorders is essential for development of more effective early diagnostics and prevention of diseases under exposure to adverse neurological effects of Al and Mn compounds.
Collapse
Affiliation(s)
- N V Zaitseva
- Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, Russian Federation.
| | - М А Zemlyanova
- Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, Russian Federation
| | - A B Gekht
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow, Russian Federation; Pirogov Russian Medical Research University, Moscow, Russian Federation
| | - S I Dedaev
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow, Russian Federation
| | - Yu V Kol'dibekova
- Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, Russian Federation
| | - Е V Peskova
- Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, Russian Federation
| | - М S Stepankov
- Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, Russian Federation
| | - Alexey A Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russian Federation; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russian Federation
| | - Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Anatoly V Skalny
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russian Federation; Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
8
|
Khalifa AZ, Perrie Y, Shahiwala A. Subunit antigen delivery: emulsion and liposomal adjuvants for next-generation vaccines. Expert Opin Drug Deliv 2025; 22:583-597. [PMID: 40021342 DOI: 10.1080/17425247.2025.2474088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 02/26/2025] [Indexed: 03/03/2025]
Abstract
INTRODUCTION Developing new vaccines to combat emerging infectious diseases has gained more significance after the COVID-19 pandemic. Vaccination is the most cost-effective method for preventing infectious diseases, and subunit antigens are a safer alternative to traditional live, attenuated, and inactivated vaccines. AREAS COVERED Challenges in delivering subunit antigens and the status of different vaccine adjuvants. Recent research developments involving emulsion and liposomal adjuvants and their compositions and properties affecting their adjuvancy. EXPERT OPINION Lipid-based adjuvants, e.g. emulsions and liposomes, represent a paradigm shift in vaccine technology by enabling robust humoral and cellular immune responses with lower antigen doses, a property that is particularly critical during pandemics or in resource-limited settings. These adjuvants can optimize vaccine administration strategies by potentially reducing the frequency of booster doses, thereby improving patient compliance and lowering healthcare costs. While emulsions excel in dose-sparing and broadening immune responses, liposomes offer customization and precision in antigen delivery. However, the broader clinical application of these technologies is not without challenges. Stability issues, e.g. the susceptibility of emulsion-based adjuvants to freezing and their reliance on cold-chain logistics, pose significant barriers to their use in remote/underserved regions. Future developments will likely focus on improving manufacturing scalability and cost-effectiveness.
Collapse
Affiliation(s)
- Al Zahraa Khalifa
- Department of Pharmaceutical Sciences, Dubai Pharmacy College for Girls, Dubai Medical University, Dubai, United Arab Emirates
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Aliasgar Shahiwala
- Department of Pharmaceutical Sciences, Dubai Pharmacy College for Girls, Dubai Medical University, Dubai, United Arab Emirates
| |
Collapse
|
9
|
Arte TM, Patil SR, Adediran E, Singh R, Bagwe P, Gulani MA, Pasupuleti D, Ferguson A, Zughaier SM, D’Souza MJ. Microneedle Delivery of Heterologous Microparticulate COVID-19 Vaccine Induces Cross Strain Specific Antibody Levels in Mice. Vaccines (Basel) 2025; 13:380. [PMID: 40333230 PMCID: PMC12031464 DOI: 10.3390/vaccines13040380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/26/2025] [Accepted: 03/29/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND In recent years, the COVID-19 pandemic has significantly impacted global health, largely driven by the emergence of various genetic mutations within the SARS-CoV-2 virus. Although the pandemic phase has passed, the full extent of the virus's evolutionary trajectory remains uncertain, highlighting the need for continued research in vaccine development to establish a cross-reactive approach that can effectively address different variants. This proof-of-concept study aimed to assess the effectiveness of microparticulate vaccine delivery through the minimally invasive microneedle route of administration, using a heterologous prime-booster strategy against the SARS-CoV-2 virus. METHOD This strategy uses the whole inactivated virus of the Delta variant for the prime dose and the whole inactivated virus of the Omicron variant for the booster dose, with alum as an adjuvant. The formulation of microparticles involves encapsulating the antigens in poly lactic-co-glycolic acid (PLGA) polymer, which provides sustained release and enhances immunogenicity while protecting the antigen. Microparticles were tested for in vitro assays, and characterization included particle size, zeta potential, and encapsulation efficacy. Furthermore, serum was collected post-administration of the vaccine in mice and was tested for antibody levels. RESULT In vitro assays confirmed the non-cytotoxicity and the ability of microparticles to activate the immune response of the vaccine particles. Administering this microparticulate vaccine via microneedles has proven effective for delivering vaccines through the skin. We also observed significantly higher antigen-specific antibody levels and cross-reactivity in the strains. CONCLUSIONS Our adjuvanted microparticulate-based heterologous prime-booster vaccine strategy showed cross-reactivity among the strains and was successfully delivered using microneedles.
Collapse
Affiliation(s)
- Tanisha Manoj Arte
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (T.M.A.); (S.R.P.); (E.A.); (R.S.); (P.B.); (M.A.G.); (D.P.); (A.F.)
| | - Smital Rajan Patil
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (T.M.A.); (S.R.P.); (E.A.); (R.S.); (P.B.); (M.A.G.); (D.P.); (A.F.)
| | - Emmanuel Adediran
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (T.M.A.); (S.R.P.); (E.A.); (R.S.); (P.B.); (M.A.G.); (D.P.); (A.F.)
| | - Revanth Singh
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (T.M.A.); (S.R.P.); (E.A.); (R.S.); (P.B.); (M.A.G.); (D.P.); (A.F.)
| | - Priyal Bagwe
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (T.M.A.); (S.R.P.); (E.A.); (R.S.); (P.B.); (M.A.G.); (D.P.); (A.F.)
| | - Mahek Anil Gulani
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (T.M.A.); (S.R.P.); (E.A.); (R.S.); (P.B.); (M.A.G.); (D.P.); (A.F.)
| | - Dedeepya Pasupuleti
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (T.M.A.); (S.R.P.); (E.A.); (R.S.); (P.B.); (M.A.G.); (D.P.); (A.F.)
| | - Amarae Ferguson
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (T.M.A.); (S.R.P.); (E.A.); (R.S.); (P.B.); (M.A.G.); (D.P.); (A.F.)
| | - Susu M. Zughaier
- College of Medicine, Qatar University, Doha P. O. Box 2713, Qatar;
| | - Martin J. D’Souza
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (T.M.A.); (S.R.P.); (E.A.); (R.S.); (P.B.); (M.A.G.); (D.P.); (A.F.)
| |
Collapse
|
10
|
Gaspar EB, Orts DJB, Costa HHM, Souza PEA, Honório NTBS, Prudêncio CR, Silva LP, Bonatto CC, Bastos APA, Adriani PP, de Oliveira GS, Domingues R, De Gaspari E, Portilho AI, Martins MF, Machado MA, Brandão HM, Diavão J, Campos MM, Carvalho WA. Adjuvant-driven antibody response to use cows as biofactories of anti-SARS-CoV-2 neutralizing antibodies in colostrum. J Dairy Sci 2025; 108:4079-4088. [PMID: 39892600 DOI: 10.3168/jds.2024-25930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/27/2024] [Indexed: 02/04/2025]
Abstract
Cows produce a substantial amount of immunoglobulin in the colostrum, and nutraceutical products derived from these antibodies are gaining attention for their potential role in human viral disease prevention. The objective of our study was to develop an immunization schedule for pregnant cows to produce hyperimmune colostrum with antibodies presenting high avidity and neutralizing activity against SARS-CoV-2. The recombinant spike receptor-binding domain (RBD) from SARS-CoV-2, expressed using the Expi293F system and purified via Ni-affinity chromatography, was solubilized in (1) saponin (QuilA) or (2) a suspension of potassium and aluminum hydroxide (Alum). Vaccination of pregnant cows and serum sample collection were performed 45, 30, and 15 d before the expected calving date. Serum and colostrum were also collected on the day of parturition. Anti-RBD IgG, IgG1, and IgG2 production, viral neutralization, and antibody avidity were evaluated by ELISA. Cows immunized with recombinant RBD with the QuilA adjuvant produced higher amounts of all antibody subclasses than cows in the Alum group. The viral neutralization index from serum samples was also higher in the QuilA group. Significant differences were not observed in the avidity of antibodies, except for that of IgG2, which was higher in the serum of cows receiving the Alum formulation. As the IgG1 antibody subclass and its avidity are crucial for SARS-CoV-2 neutralization, QuilA might be the optimal adjuvant for producing hyperimmune colostrum in cows. These findings support the use of cows as biofactories of neutralizing antibodies against SARS-CoV-2 or any future emerging and re-emerging viral diseases, with the possibility of simply substituting the subunit antigen in the vaccine formulation. Further tests must be done to evaluate the efficacy of using hyperimmune colostrum as a nutraceutical or purified bovine antibodies as a pharmacological approach for COVID-19 prevention.
Collapse
Affiliation(s)
- E B Gaspar
- Embrapa Dairy Cattle, Brazilian Agricultural Research Corporation, Juiz de Fora, Minas Gerais, Brazil 36038-330
| | - D J B Orts
- Laboratory of CardioBiology, Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil 04023-062; Center of Immunology, Instituto Adolfo Lutz, São Paulo, São Paulo, Brazil 01246-000
| | - H H M Costa
- Center of Immunology, Instituto Adolfo Lutz, São Paulo, São Paulo, Brazil 01246-000
| | - P E A Souza
- Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil 36036-900
| | - N T B S Honório
- Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil 36036-900
| | - C R Prudêncio
- Center of Immunology, Instituto Adolfo Lutz, São Paulo, São Paulo, Brazil 01246-000
| | - L P Silva
- Embrapa Genetic Resources and Biotechnology, Brazilian Agricultural Research Corporation, Brasília, Distrito Federal, Brazil 70770-917
| | - C C Bonatto
- Embrapa Genetic Resources and Biotechnology, Brazilian Agricultural Research Corporation, Brasília, Distrito Federal, Brazil 70770-917
| | - A P A Bastos
- Embrapa Swine and Poultry, Brazilian Agricultural Research Corporation, Concórdia, Santa Catarina, Brazil 89715-899
| | - P P Adriani
- Laboratory of Nanopharmaceuticals and Delivery Systems, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil 05508-000
| | - G S de Oliveira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil 05508-000
| | - R Domingues
- Embrapa Dairy Cattle, Brazilian Agricultural Research Corporation, Juiz de Fora, Minas Gerais, Brazil 36038-330
| | - E De Gaspari
- Center of Immunology, Instituto Adolfo Lutz, São Paulo, São Paulo, Brazil 01246-000
| | - A I Portilho
- Center of Immunology, Instituto Adolfo Lutz, São Paulo, São Paulo, Brazil 01246-000
| | - M F Martins
- Embrapa Dairy Cattle, Brazilian Agricultural Research Corporation, Juiz de Fora, Minas Gerais, Brazil 36038-330
| | - M A Machado
- Embrapa Dairy Cattle, Brazilian Agricultural Research Corporation, Juiz de Fora, Minas Gerais, Brazil 36038-330
| | - H M Brandão
- Embrapa Dairy Cattle, Brazilian Agricultural Research Corporation, Juiz de Fora, Minas Gerais, Brazil 36038-330
| | - J Diavão
- Embrapa Dairy Cattle, Brazilian Agricultural Research Corporation, Juiz de Fora, Minas Gerais, Brazil 36038-330
| | - M M Campos
- Embrapa Dairy Cattle, Brazilian Agricultural Research Corporation, Juiz de Fora, Minas Gerais, Brazil 36038-330
| | - W A Carvalho
- Embrapa Dairy Cattle, Brazilian Agricultural Research Corporation, Juiz de Fora, Minas Gerais, Brazil 36038-330.
| |
Collapse
|
11
|
Meng F, Wang Y, Chen C, Pan T, Li J, Xu Y, Wang Z, Yao H, Jiao X, Yin Y. The inactivated and ISA 61 VG adjuvanted vaccine enhances protection against cross-serotype Listeria monocytogenes. Vet Res 2025; 56:60. [PMID: 40114194 PMCID: PMC11924870 DOI: 10.1186/s13567-025-01483-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 01/17/2025] [Indexed: 03/22/2025] Open
Abstract
Listeriosis is a zoonotic disease caused by Listeria monocytogenes (Lm), posing a significant threat to the breeding industry and public health. Ruminant livestock are particularly susceptible to Lm, thus effective strategies are needed for controlling ovine listeriosis. In this study, we developed two inactivated vaccines and evaluated their efficacy against Lm infection in murine and ovine models. We inactivated the Lm serotype 4h XYSN strain and adjuvanted it with water-in-oil ISA 61 VG (61 VG-AIV) or aluminum (Al-AIV). Pathological observations confirmed the safety of both vaccines in mice and sheep. The immunological assays demonstrated that, compared with the Al-AIV, the 61 VG-AIV induced higher levels of Lm-specific antibodies and proinflammatory cytokines, suggesting that the ISA 61 VG adjuvant has superior immunostimulatory effects compared with the alum adjuvant. 61 VG-AIV elicited greater immunoprotection than Al-AIV (83.4% vs. 50%) against serotype 4h Lm strain challenge in mice. Additionally, 61 VG-AIV afforded cross-protection against challenges with serotypes 1/2a, 1/2b, and 4b Lm strains. Importantly, high immunoprotection in sheep was conferred by the 61 VG-AIV group (83.4%). Taken together, our findings demonstrate that the ISA 61 VG adjuvant contributes to enhancing the humoral and cellular immune responses of inactivated Lm, and 61 VG-AIV is a promising vaccine candidate for the prevention and control of animal listeriosis. This research lays a solid foundation for its application in veterinary medicine.
Collapse
Affiliation(s)
- Fanzeng Meng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Ye Wang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Chao Chen
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Tianxiang Pan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Jing Li
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Yao Xu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Zegang Wang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Hao Yao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Xin'an Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Yuelan Yin
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
12
|
Rinee KC, Patton ZE, Gillilan RE, Huang Q, Pingali SV, Heroux L, Xu AY. Elucidating the porous structure of aluminum adjuvants via in-situ small-angle scattering technique. Vaccine 2025; 50:126813. [PMID: 39914255 DOI: 10.1016/j.vaccine.2025.126813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/18/2025] [Accepted: 01/25/2025] [Indexed: 02/25/2025]
Abstract
Aluminum-based adjuvants are widely used in vaccine formulations due to their immunostimulatory properties and strong safety profile. Despite their effectiveness and safety, the exact mechanisms by which they enhance vaccine efficacy remain unclear. One proposed mechanism is that aluminum adjuvants form a depot that gradually releases antigens, thereby improving antigen uptake by antigen-presenting cells. This study investigates the porous structures of two commonly used aluminum adjuvants, aluminum hydroxide (AH) and aluminum phosphate (AP), using small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS). Our measurements reveal that AH nanoparticles, with their needle-like morphology, form smaller, interconnected pores within the aggregated architecture. In contrast, AP nanoparticles, with a plate-like shape, form more discrete, isolated porous structures. Both adjuvants have pore sizes within the range of commonly used vaccine antigens, supporting the depot theory. Our findings also reveal that antigen retention is prolonged when the antigen size is comparable to the average pore size of the adjuvant. This study highlights the utility of SAXS and SANS for in-situ characterization of adjuvant porosity and provides insights into how nanoparticle morphology affects antigen retention and release. By elucidating these structural details, our research underscores the importance of porous structure in adjuvant function and offers potential pathways for improving vaccine formulations through tailored adjuvant design.
Collapse
Affiliation(s)
- Khaleda C Rinee
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Zoe E Patton
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - Qingqiu Huang
- Cornell High Energy Synchrotron Source, Ithaca, NY 14853, USA
| | - Sai Venkatesh Pingali
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Luke Heroux
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Amy Y Xu
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
13
|
Çakır DA, Yirün A, Erdemli-Köse SB, Demirel G, Secerli J, Güdül-Bacanlı M, Erkekoğlu P. The combined effects of HSV-1 glycoprotein D and aluminum hydroxide on human neuroblastoma cells: Insights into oxidative DNA damage, apoptosis, and epigenetic modifications. Neurotoxicology 2025; 108:123-133. [PMID: 40112954 DOI: 10.1016/j.neuro.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Herpes simplex virus type 1 (HSV-1) infections are a significant global health concern due to the virus's ability to evade apoptosis and establish lifelong latency in the peripheral nervous system. The specific viral components responsible for these effects remain unclear, necessitating individual examination of their molecular impacts. This study focused on investigating the effects of recombinant HSV-1 glycoprotein D (HSV-1 gD), a viral protein essential for host cell entry, and/or aluminum hydroxide, a known neurotoxic agent, on reactive oxygen species (ROS) production, apoptotic markers, and epigenetic modifications in SH-SY5Y neuroblastoma cells. Using inhibitory concentration 20 (IC20) values for HSV-1 gD and aluminum hydroxide, experimental groups were established. Intracellular ROS levels, oxidative DNA damage, and the expression and activity of key apoptotic proteins were measured. Additionally, global DNA methylation, histone H3 and H4 acetylation, and the activities of histone deacetylases (HDAC3 and HDAC8) were evaluated. Results of the study showed that both HSV-1 gD and aluminum hydroxide independently increased ROS production and induced apoptosis in SH-SY5Y cells. Notably, significant alterations in epigenetic markers were observed, including decreased global DNA methylation and histone acetylation levels. These epigenetic modifications suggest potential underlying mechanisms for the neurotoxic effects of aluminum hydroxide and HSV-1 gD. In addition to the traditional suggestions for HSV-1 gD as an anti-apoptotic factor, our findings indicate that it may also contribute to neurotoxicity. This study provides new insights into the molecular interactions between viral components and neurotoxic agents and emphasizes the importance of epigenetic regulation in neuronal cell death.
Collapse
Affiliation(s)
- Deniz Arca Çakır
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, Ankara, Turkey; Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Anıl Yirün
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey; Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Çukurova University, Adana, Turkey
| | - Selinay Başak Erdemli-Köse
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey; Department of Chemistry, Faculty of Arts and Sciences, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Göksun Demirel
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Çukurova University, Adana, Turkey
| | - Jülide Secerli
- Department of Pharmaceutical Toxicology, Gülhane Faculty of Pharmacy, University of Health Sciences Turkey, Ankara, Turkey
| | - Merve Güdül-Bacanlı
- Department of Pharmaceutical Toxicology, Gülhane Faculty of Pharmacy, University of Health Sciences Turkey, Ankara, Turkey
| | - Pınar Erkekoğlu
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, Ankara, Turkey; Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
14
|
Yang K, Liu YJ, Zhang JN, Chen YJ, Yang J, Xiao JP, Lin HB, Yang HJ. Advances in the structural characterization and pharmacological activity of Salvia miltiorrhiza polysaccharides. Front Chem 2025; 13:1492533. [PMID: 40161004 PMCID: PMC11949878 DOI: 10.3389/fchem.2025.1492533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Background Salvia miltiorrhiza Bunge is the dried root and rhizome of Salvia miltiorrhiza Bunge, a labiatae plant. Salvia miltiorrhiza polysaccharide (SMP) is the main active component of Salvia miltiorrhiza Bunge. The extraction methods of SMP mainly include water extraction, ultrasonic extraction, enzyme extraction, microwave-assisted extraction and acid-base extraction. It is mainly composed of glucose, arabinose, rhamnose, galactose and other monosaccharides. SMP has a variety of biological activities, including immune regulation, anti-tum, anti-oxidation, myocardial protection, liver protection and so on. Purpose Salvia miltiorrhiza polysaccharide is widely used in nutraceuticals and pharmaceuticals, and has high research value. Natural polysaccharides are non-toxic, soluble in water, and have a wide range of biological activities, so they have broad research prospects. Methods The data was collected using different online resources including PubMed, Google Scholar, and Web of Science using keywords given below. Results In the past decades, various reports have shown that the pharmacological activities of Salvia miltiorrhiza polysaccharides have good effects, and the side effects are small. Conclusion This paper summarizes the extraction and purification methods, molecular weight, monosaccharide composition, glycosidic linkage, pharmacological activity, toxicity, product development, clinical research and other contents of Salvia miltiorrhiza polysaccharides in recent years, providing a theoretical basis for further study of Salvia miltiorrhiza polysaccharides.
Collapse
Affiliation(s)
- Ke Yang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi-Jun Liu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Jia-Ning Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Ya-Jing Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Dexing Research and Training Center of Chinese Medical Sciences, Dexing, China
| | - Jun-Ping Xiao
- Jiangxi Prozin Pharmaceutical Co., Ltd., Ji’an City, Jiangxi, China
| | - Han-Bin Lin
- Zhongshan Institute for Drug Discovery, Zhongke Zhongshan Pharmaceutical Innovation Research Institute (SIMM CAS), Zhongshan, Guangdong, China
| | - Hong-Jun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Chen R, Nie M, Jiang Y, Wu S, Wu J, Qiu D, Wu Y, Yuan Q, Wang S, Jiang Y, Zhang T. A respiratory mucosal vaccine based on chitosan/aluminum adjuvant induces both mucosal and systemic immune responses. Int J Pharm 2025; 670:125168. [PMID: 39756594 DOI: 10.1016/j.ijpharm.2025.125168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
The respiratory mucosa serves as a critical barrier against the invasion of pathogens. Effective mucosal vaccines are essential for enhancing local immunity. However, there is an urgent need to develop new mucosal adjuvants. Chitosan is preferred as a mucosal adjuvant due to its mucosal adhesion and immunostimulatory properties. In this work, a novel mucosal adjuvant was synthesized by combining nano-aluminum hydroxide and chitosan (Al-CS), formulating a particle size approximately 1.5 μm. In vitro assays revealed that Al-CS notably promotes antigen uptake by enhancing activation and maturation of dendritic cells and macrophages. Furthermore, in vivo experiments indicated that Al-CS could extend antigen release duration, facilitate immune cell migration to the lungs, stimulates antigen-presenting cell maturation, enhances antigen presentation and significantly improves both humoral and cellular immunity as well as B/T cell memory differentiation. The immunological potential of Al-CS exceeds that of either aluminum or chitosan alone, making it a promising and safe adjuvant for the advancement of mucosal vaccine carrier systems.
Collapse
Affiliation(s)
- Ruitong Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health (School of Life Science), Xiamen University, Xiamen, Fujian 351002, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Meifeng Nie
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health (School of Life Science), Xiamen University, Xiamen, Fujian 351002, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuetong Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health (School of Life Science), Xiamen University, Xiamen, Fujian 351002, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Shuyu Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health (School of Life Science), Xiamen University, Xiamen, Fujian 351002, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Junwei Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health (School of Life Science), Xiamen University, Xiamen, Fujian 351002, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Dekui Qiu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health (School of Life Science), Xiamen University, Xiamen, Fujian 351002, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yangtao Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health (School of Life Science), Xiamen University, Xiamen, Fujian 351002, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Quan Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health (School of Life Science), Xiamen University, Xiamen, Fujian 351002, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Shaojuan Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health (School of Life Science), Xiamen University, Xiamen, Fujian 351002, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China.
| | - Yao Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health (School of Life Science), Xiamen University, Xiamen, Fujian 351002, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China.
| | - Tianying Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health (School of Life Science), Xiamen University, Xiamen, Fujian 351002, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
16
|
Wijesundara YH, Arora N, Ehrman RN, Howlett TS, Weyman TM, Trashi I, Trashi O, Kumari S, Diwakara SD, Tang W, Senarathna MC, Drewniak KH, Wang Z, Smaldone RA, Gassensmith JJ. A Self-Adjuvanting Large Pore 2D Covalent Organic Framework as a Vaccine Platform. Angew Chem Int Ed Engl 2025; 64:e202413020. [PMID: 39621809 DOI: 10.1002/anie.202413020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/01/2024] [Indexed: 12/17/2024]
Abstract
Vaccines are one of the greatest human achievements in public health, as they help prevent the spread of diseases, reduce illness and death rates, saving thousands of lives with few side effects. Traditional vaccine development is centered around using live attenuated or inactivated pathogens, which is expensive and has resulted in vaccine-associated illnesses. Advancements have led to the development of safer subunit vaccines, which contain recombinant proteins isolated from pathogens. Their short half-life and small size make most subunit vaccines less immunogenic. Here, we introduce a large pore 2D covalent organic framework (COF), PyCOFamide, as a promising solution for an effective subunit platform. Our study demonstrates that simple adsorption of a model antigen, ovalbumin (OVA), onto PyCOFamide (OVA@COF) significantly enhances humoral and cell-mediated immune response compared to free OVA. OVA@COF exhibited heightened immune cell activation and acts as an antigen reservoir, facilitating antigen-presenting cell trafficking to the draining lymph nodes, amplifying the humoral immune response. Additionally, the breakdown of the COF releases monomers that adjuvant the activation of immune cells vital to creating strong immunity. This platform offers a potential avenue for safer, more effective subunit vaccines.
Collapse
Affiliation(s)
- Yalini H Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Niyati Arora
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Ryanne N Ehrman
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Thomas Sinclair Howlett
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Trevor M Weyman
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Ikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Orikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Sneha Kumari
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Shashini D Diwakara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Wendy Tang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Milinda C Senarathna
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Katarzyna H Drewniak
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Ziqi Wang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Ronald A Smaldone
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
- Department of Bioengineering, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| |
Collapse
|
17
|
Ridelfi M, Pierleoni G, Zucconi Galli Fonseca V, Batani G, Rappuoli R, Sala C. State of the Art and Emerging Technologies in Vaccine Design for Respiratory Pathogens. Semin Respir Crit Care Med 2025. [PMID: 39870103 DOI: 10.1055/a-2500-1878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
In this review, we present the efforts made so far in developing effective solutions to prevent infections caused by seven major respiratory pathogens: influenza virus, respiratory syncytial virus (RSV), the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Bordetella pertussis, Streptococcus pneumoniae (pneumococcus), Mycobacterium tuberculosis, and Pseudomonas aeruginosa. Advancements driven by the recent coronavirus disease 2019 (COVID-19) crisis have largely focused on viruses, but effective prophylactic solutions for bacterial pathogens are also needed, especially in light of the antimicrobial resistance (AMR) phenomenon. Here, we discuss various innovative key technologies that can help address this critical need, such as (a) the development of Lung-on-Chip ex vivo models to gain a better understanding of the pathogenesis process and the host-microbe interactions; (b) a more thorough investigation of the mechanisms behind mucosal immunity as the first line of defense against pathogens; (c) the identification of correlates of protection (CoPs) which, in conjunction with the Reverse Vaccinology 2.0 approach, can push a more rational and targeted design of vaccines. By focusing on these critical areas, we expect substantial progress in the development of new vaccines against respiratory bacterial pathogens, thereby enhancing global health protection in the framework of the increasingly concerning AMR emergence.
Collapse
Affiliation(s)
- Matteo Ridelfi
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Giulio Pierleoni
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | | | - Giampiero Batani
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | | | - Claudia Sala
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| |
Collapse
|
18
|
Dollinger E, Hernandez-Davies J, Felgner J, Jain A, Hwang M, Strahsburger E, Nakajima R, Jasinskas A, Nie Q, Pone EJ, Othy S, Davies DH. Combination adjuvant improves influenza virus immunity by downregulation of immune homeostasis genes in lymphocytes. Immunohorizons 2025; 9:vlae007. [PMID: 39849993 PMCID: PMC11841980 DOI: 10.1093/immhor/vlae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 01/30/2025] Open
Abstract
Adjuvants play a central role in enhancing the immunogenicity of otherwise poorly immunogenic vaccine antigens. Combining adjuvants has the potential to enhance vaccine immunogenicity compared with single adjuvants, although the cellular and molecular mechanisms of combination adjuvants are not well understood. Using the influenza virus hemagglutinin H5 antigen, we define the immunological landscape of combining CpG and MPLA (TLR-9 and TLR-4 agonists, respectively) with a squalene nanoemulsion (AddaVax) using immunologic and transcriptomic profiling. Mice immunized and boosted with recombinant H5 in AddaVax, CpG+MPLA, or AddaVax plus CpG+MPLA (IVAX-1) produced comparable levels of neutralizing antibodies and were equally well protected against the H5N1 challenge. However, after challenge with H5N1 virus, H5/IVAX-1-immunized mice had 100- to 300-fold lower virus lung titers than mice receiving H5 in AddaVax or CpG+MPLA separately. Consistent with enhanced viral clearance, unsupervised expression analysis of draining lymph node cells revealed the combination adjuvant IVAX-1 significantly downregulated immune homeostasis genes, and induced higher numbers of antibody-producing plasmablasts than either AddaVax or CpG+MPLA. IVAX-1 was also more effective after single-dose administration than either AddaVax or CpG+MPLA. These data reveal a novel molecular framework for understanding the mechanisms of combination adjuvants, such as IVAX-1, and highlight their potential for the development of more effective vaccines against respiratory viruses.
Collapse
Affiliation(s)
- Emmanuel Dollinger
- Department of Mathematics, University of California Irvine, Irvine, CA, United States
| | - Jenny Hernandez-Davies
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Jiin Felgner
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Aarti Jain
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Michael Hwang
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Erwin Strahsburger
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Rie Nakajima
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Algimantas Jasinskas
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Qing Nie
- Department of Mathematics, University of California Irvine, Irvine, CA, United States
| | - Egest James Pone
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Shivashankar Othy
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - David Huw Davies
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| |
Collapse
|
19
|
Kraiem A, Pelamatti E, Grosse-Kathoefer S, Demir H, Vollmann U, Ehgartner C, Stigler M, Punz B, Johnson L, Hüsing N, Bohle B, Aglas L. Reducing the solubility of the major birch pollen allergen Bet v 1 by particle-loading mitigates Th2 responses. Allergol Int 2025; 74:126-135. [PMID: 39155214 DOI: 10.1016/j.alit.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Solubility is a common feature of allergens. However, the causative relationship between this protein-intrinsic feature and sensitization capacity of allergens is not fully understood. This study aimed to proof the concept of solubility as a protein intrinsic feature of allergens. METHODS The soluble birch pollen allergen Bet v 1 was covalently coupled to 1 μm silica particles. IgE-binding and -cross-linking capacity was assessed by inhibition ELISA and mediator release assay, respectively. Alterations in adjuvanticity by particle-loading were investigated by activation of dendritic cells, mast cells and the Toll-like receptor 4 pathway as well as by Th2 polarization in an IL-4 reporter mouse model. In BALB/c mice, particle-loaded and soluble Bet v 1 were compared in a model of allergic sensitization. Antigen uptake and presentation was analysed by restimulating human Bet v 1-specific T cell lines. RESULTS Covalent coupling of Bet v 1 to silica particles resulted in an insoluble antigen with retained IgE-binding and -cross-linking capacity and no increase in adjuvanticity. In vivo, particle-loaded Bet v 1 induced significantly lower Bet v 1-specific (s)IgE, whereas sIgG1 and sIgG2a levels remained unaffected. The ratio of Th2 to Th1 cells was significantly lower in mice sensitized with particle-loaded Bet v 1. Particle-loading of Bet v 1 resulted in a 24-fold higher T cell activation capacity in Bet v 1-specific T cell lines, indicating more efficient uptake and presentation than of soluble Bet v 1. CONCLUSIONS Our results show that solubility is a decisive factor contributing to the sensitization capacity of allergens. The reduction in sensitization capacity of insoluble, particle-loaded antigens results from enhanced antigen uptake and presentation compared to soluble allergens.
Collapse
Affiliation(s)
- Amin Kraiem
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Erica Pelamatti
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | | | - Hilal Demir
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ute Vollmann
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Caroline Ehgartner
- Department of Chemistry and Physics of Materials, University of Salzburg, Salzburg, Austria
| | - Maria Stigler
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Benjamin Punz
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Litty Johnson
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Nicola Hüsing
- Department of Chemistry and Physics of Materials, University of Salzburg, Salzburg, Austria
| | - Barbara Bohle
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
20
|
Gupta A, Rudra A, Reed K, Langer R, Anderson DG. Advanced technologies for the development of infectious disease vaccines. Nat Rev Drug Discov 2024; 23:914-938. [PMID: 39433939 DOI: 10.1038/s41573-024-01041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/23/2024]
Abstract
Vaccines play a critical role in the prevention of life-threatening infectious disease. However, the development of effective vaccines against many immune-evading pathogens such as HIV has proven challenging, and existing vaccines against some diseases such as tuberculosis and malaria have limited efficacy. The historically slow rate of vaccine development and limited pan-variant immune responses also limit existing vaccine utility against rapidly emerging and mutating pathogens such as influenza and SARS-CoV-2. Additionally, reactogenic effects can contribute to vaccine hesitancy, further undermining the ability of vaccination campaigns to generate herd immunity. These limitations are fuelling the development of novel vaccine technologies to more effectively combat infectious diseases. Towards this end, advances in vaccine delivery systems, adjuvants, antigens and other technologies are paving the way for the next generation of vaccines. This Review focuses on recent advances in synthetic vaccine systems and their associated challenges, highlighting innovation in the field of nano- and nucleic acid-based vaccines.
Collapse
Affiliation(s)
- Akash Gupta
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnab Rudra
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kaelan Reed
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
21
|
Zhang H, Liu Z, Li Y, Tao Z, Shen L, Shang Y, Huang X, Liu Q. Adjuvants for Helicobacter pylori vaccines: Outer membrane vesicles provide an alternative strategy. Virulence 2024; 15:2425773. [PMID: 39501551 PMCID: PMC11583678 DOI: 10.1080/21505594.2024.2425773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/19/2024] [Accepted: 10/31/2024] [Indexed: 11/12/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a gram-negative, spiral-shaped bacterium that colonizes the human stomach, leading to various gastric diseases. The efficacy of traditional treatments, such as bismuth-based triple and quadruple therapies, has been reduced due to increasing antibiotic resistance and drug toxicity. As a result, the development of effective vaccines was proposed to control H. pylori-induced infections; however, one of the primary challenges is the lack of potent adjuvants. Although various adjuvants, both toxic (e.g. cholera toxin and Escherichia coli heat-labile toxin) and non-toxic (e.g. aluminum and propolis), have been tested for vaccine development, no clinically favorable adjuvants have been identified due to high toxicity, weak immunostimulatory effects, inability to elicit specific immune responses, or latent side effects. Outer membrane vesicles (OMVs), mainly secreted by gram-negative bacteria, have emerged as promising candidates for H. pylori vaccine adjuvants due to their potential applications. OMVs enhance mucosal immunity and Th1 and Th17 cell responses, which have been recognized to have protective effects and guarantee safety and efficacy. The development of an effective vaccine against H. pylori infection is ongoing, with clinical trials expected in the future.
Collapse
Affiliation(s)
- Hanchi Zhang
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- The Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Zhili Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yi Li
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- The First Clinical Medical College, Nanchang University, Nanchang, China
| | - Ziwei Tao
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lu Shen
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yinpan Shang
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
22
|
Tammas I, Bitchava K, Gelasakis AI. Advances in Vaccine Adjuvants for Teleost Fish: Implications for Aquatic Welfare and the Potential of Nanoparticle-Based Formulations. Vaccines (Basel) 2024; 12:1347. [PMID: 39772009 PMCID: PMC11679523 DOI: 10.3390/vaccines12121347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Vaccine adjuvants are crucial for reinforcing the immunogenicity of vaccines. Therefore, they are widely used in the aquaculture sector as vaccine components, facilitating the efficient prevention of infectious diseases and promoting sustainable teleost fish growth. Despite their benefits, there has been a growing concern about the potential adverse effects of vaccine adjuvants in teleost fish, connoting a valid impact on their overall health and welfare. Among the adjuvants used in aquaculture vaccinology, nanoparticle-based formulations have given rise to a promising new alternative to traditional options, such as oil-based emulsions and aluminum compounds, offering the benefit of minimizing relevant side effects. The aim of this paper was to review the current status of the adjuvants used in aquaculture, provide a description and an evaluation of their mode of action and side effects, and explore the potential use of nanoparticle formulations as adjuvants to improve the efficacy of aquaculture vaccines. By demonstrating and assessing the equilibrium between teleost fish welfare and immunological efficacy, this review presents a collective perspective that will assist in establishing a framework for the utilization of effective species-specific practices around adjuvant use in aquaculture, while also addressing the challenges of welfare-friendly immunization.
Collapse
Affiliation(s)
- Iosif Tammas
- Laboratory of Applied Hydrobiology, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Konstantina Bitchava
- Laboratory of Applied Hydrobiology, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Athanasios I. Gelasakis
- Laboratory of Anatomy & Physiology of Farm Animals, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
23
|
Danielsson R, Mile I, Eriksson H. Adsorption and Desorption of Immune-Modulating Substances by Aluminium-Based Adjuvants: An Overlooked Feature of the Immune-Stimulating Mechanisms of Aluminium-Based Adjuvants. Int J Mol Sci 2024; 25:12399. [PMID: 39596470 PMCID: PMC11594729 DOI: 10.3390/ijms252212399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Vaccine antigens are partly adsorbed onto aluminium-based adjuvant particles, forming an unstable corona. At the inoculation site, the corona will be restructured, and the adsorbed antigens will be released through replacement with biomolecules from the interstitial fluid of the recipient. Aluminium-based adjuvants (ABAs) carrying a corona of serum proteins as a model of particles with a pre-formed antigen corona were shown to adsorb several categories of cytokines and growth factors, as assessed from a protein array covering 18 different analytes. Out of the 18 analytes, 12 were shown to be adsorbed by the aluminium-based adjuvant Alhydrogel®, which had a pre-formed protein corona. The adsorption of TNF-α, IL-2, IL-4, IL-10, and IFN-γ was studied in detail. Among the studied cytokines, IL-2, IL-4, and IFN-γ, were adsorbed by Alhydrogel®. Adsorbed IFN-γ was further studied to show that the adsorption of IFN-γ did not denature the cytokine, and the cytokine could be desorbed from adjuvant particles in a biologically active form and in relevant amounts. The adsorption of immune-stimulating molecules onto ABAs at the administration site of a vaccine is a neglected event in the mode of action of aluminium-based adjuvants. This process may modulate the immune response with a profound impact on initiating the innate immune response and consequently the adaptive immune response.
Collapse
Affiliation(s)
| | | | - Håkan Eriksson
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden
| |
Collapse
|
24
|
Bhurt M, Li X, Zhang N, Yang W, Xu M, Liu Y, Yu Y, Sun B. Glycoside-Mediated Enhancement of Stability in Aluminum Oxyhydroxide Nanoadjuvants during Freeze-Drying. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24613-24621. [PMID: 39504510 DOI: 10.1021/acs.langmuir.4c03474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Aluminum-based adjuvants have been indispensable to vaccine potency. However, their effectiveness is difficult to maintain after freeze-drying, which limits the storage and application of aluminum-adjuvanted vaccines. In this study, the impact of freeze-drying on aluminum oxyhydroxide nanorods (AlOOH NRs) was investigated. Freeze-drying led to aggregation and resulted in the loss of the surface hydroxyl content of aluminum adjuvants. To alleviate freeze-drying-induced damage, the potency of different alkyl glycosides as protectants was further evaluated. It was demonstrated that the structural balance of the head and tail of a glycoside was more conducive to protecting AlOOH NRs from aggregation and loss of surface hydroxyl groups. These results underline the proper selection of protectants to protect adjuvants against functional defects caused by freeze-drying, which is important for the stability and efficacy of vaccines and biopharmaceutical products.
Collapse
Affiliation(s)
- Mudasira Bhurt
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Xin Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Nan Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Wenqi Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Muzhe Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Yang Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Yejiong Yu
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, U.K
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| |
Collapse
|
25
|
Liu X, Min Q, Li Y, Chen S. Enhanced Cellular Immunity for Hepatitis B Virus Vaccine: A Novel Polyinosinic-Polycytidylic Acid-Incorporated Adjuvant Leveraging Cytoplasmic Retinoic Acid-Inducible Gene-Like Receptor Activation and Increased Antigen Uptake. Biomater Res 2024; 28:0096. [PMID: 39469105 PMCID: PMC11513446 DOI: 10.34133/bmr.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
Conventional aluminum adjuvants exhibit limited cellular immunity. Polyinosinic-polycytidylic acid (poly I:C) activates cytoplasmic retinoic acid-inducible gene-like receptor (RLR), triggering strong T cell activation and cellular responses. However, when applied as an adjuvant, its limited endocytosis and restricted cytoplasmic delivery diminish its effectiveness and increase its toxicity. Hybrid polymer-lipid nanoparticle (PLNP) possesses numerous benefits such as good stability, reduced drug leakage, simple fabrication, easy property modulation, and excellent reproducibility compared to the lipid nanoparticle or the polymeric vector. Here, we developed a novel cationic polymer-lipid hybrid adjuvant capable of incorporating poly I:C to enhance cellular immunity. The hepatitis B surface antigen (HBsAg) was immobilized onto poly I:C-incorprated PLNP (PPLNP) via electrostatic interactions, forming the HBsAg/PPLNP vaccine formulation. The PPLNP adjuvant largely enhanced the cellular endocytosis and cytoplasmic transport of poly I:C, activating RLR followed by promoting type I interferon (IFN) secretion. Meanwhile, PPLNP obviously enhanced the antigen uptake, prolonged antigen retention at the site of administration, and facilitated enhanced transport of antigens to lymph nodes. The HBsAg/PPLNP nanovaccine led to amplified concentrations of antigen-specific immunoglobulin G (IgG), IFN-γ, granzyme B, and an enhanced IgG2a/IgG1 ratio, alongside the FasL+/CD8+ T cell activation, favoring a T helper 1 (TH1)-driven immune response. PPLNP, distinguished by its biocompatibility, ease of fabrication, and effectiveness in augmenting cellular immunity, holds significant promise as a new adjuvant.
Collapse
Affiliation(s)
- Xuhan Liu
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Qiuxia Min
- Department of Pharmacy, First People’s Hospital of Yunnan Province,
Kunming University of Science and Technology, Kunming, 650034 Yunnan, China
| | - Yihui Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Siyuan Chen
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816 China
| |
Collapse
|
26
|
Griffin C, Locke S, Montiani-Ferreira F, Lopes Grego A, Soto J, Cray C. Clinical Pathology Evaluation in Pet Rabbits Vaccinated Against Rabbit Hemorrhagic Disease Virus 2 (RHDV2). Animals (Basel) 2024; 14:3029. [PMID: 39457958 PMCID: PMC11504023 DOI: 10.3390/ani14203029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
A recombinant vaccine for rabbit hemorrhagic disease virus 2, a highly pathogenic virus, was granted emergency use authorization in the United States after the detection and spread of the virus starting in 2018. The goal of the current study was to assess pet rabbits (n = 29) through physical examination and routine clinical pathology testing using repeated assessments post-vaccination. In addition, seroconversion was also monitored after the initial vaccination and booster vaccination. Neither owners nor clinicians detected any physical abnormalities in relationship to the vaccine protocol. Hematological and clinical biochemistry testing showed some changes although median values were within species specific reference intervals. A significant increase in antibody levels was observed at day 21 (post-initial vaccination) and day 49 (post-booster vaccination) versus that present at baseline (p < 0.0001). However, variability in study rabbits was noted with some individuals showing low antibody levels as well as a lower overall response in older rabbits (r = -0.56, p = 0.006). A second cohort of rabbits was assessed at 11-12 months post-initial vaccination. In this second group, antibody levels were not significantly different from baseline levels (p = 0.21). Additional studies should be conducted to further define the variability in seroconversion and the term of protection in pet rabbits as the industry moves forward in the optimization of RHDV2 vaccines.
Collapse
Affiliation(s)
- Chris Griffin
- Griffin Avian & Exotic Veterinary Hospital, Kannapolis, NC 28083, USA
| | - Salina Locke
- Avian and Exotic Animal Care, Raleigh, NC 27617, USA
| | - Fabiano Montiani-Ferreira
- Departamento de Medicina Veterinária, Universidade Federal do Paraná, Curitiba 80035-050, PR, Brazil
- Division of Comparative Pathology, Department of Pathology & Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andressa Lopes Grego
- Departamento de Medicina Veterinária, Universidade Federal do Paraná, Curitiba 80035-050, PR, Brazil
| | - Jeny Soto
- Division of Comparative Pathology, Department of Pathology & Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Carolyn Cray
- Division of Comparative Pathology, Department of Pathology & Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
27
|
Lan J, Feng D, He X, Zhang Q, Zhang R. Basic Properties and Development Status of Aluminum Adjuvants Used for Vaccines. Vaccines (Basel) 2024; 12:1187. [PMID: 39460352 PMCID: PMC11511158 DOI: 10.3390/vaccines12101187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Aluminum adjuvants, renowned for their safety and efficacy, act as excellent adsorbents and vaccine immunogen enhancers, significantly contributing to innate, endogenous, and humoral immunity. An ideal adjuvant not only boosts the immune response but also ensures optimal protective immunity. Aluminum adjuvants are the most widely used vaccine adjuvants and have played a crucial role in both the prevention of existing diseases and the development of new vaccines. With the increasing emergence of new vaccines, traditional immune adjuvants are continually being researched and upgraded. The future of vaccine development lies in the exploration and integration of novel adjuvant technologies that surpass the capabilities of traditional aluminum adjuvants. One promising direction is the incorporation of nanoparticles, which offer precise delivery and controlled release of antigens, thereby enhancing the overall immune response. CONCLUSIONS This review summarizes the types, mechanisms, manufacturers, patents, advantages, disadvantages, and future prospects of aluminum adjuvants. Although aluminum adjuvants have certain limitations, their contribution to enhancing vaccine immunity is significant and cannot be ignored. Future research should continue to explore their mechanisms of action and address potential adverse reactions to achieve improved vaccine efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Rong Zhang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 117004, China; (J.L.); (D.F.); (Q.Z.)
| |
Collapse
|
28
|
Hu T, Wang Y, Wang Y, Cui H, Zhang J, Chen H, Wu B, Hao S, Chu CC, Wu Y, Zeng W. Production and evaluation of three kinds of vaccines against largemouth bass virus, and DNA vaccines show great application prospects. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109841. [PMID: 39173984 DOI: 10.1016/j.fsi.2024.109841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
Largemouth bass virus (LMBV) infections has resulted in high mortality and economic losses to the global largemouth bass industry and has seriously restricted the healthy development of the bass aquaculture industry. There are currently no antiviral therapies available for the control of this disease. In this study, we developed three types of vaccine against LMBV; whole virus inactivated vaccine (I), a subunit vaccine composed of the major viral capsid protein MCP (S) as well as an MCP DNA vaccine(D), These were employed using differing immunization and booster strategies spaced 2 weeks apart as follows: II, SS, DD and DS. We found that all vaccine groups induced humoral and cellular immune responses and protected largemouth bass from a lethal LMBV challenge to varying degrees and DD produced the best overall effect. Specifically, the levels of specific IgM in serum in all immunized groups were elevated and significantly higher than those in the control group. Moreover, the expression of humoral immunity (CD4 and IgM) and cellular immunity (MHCI-α) as well as cytokines (IL-1β) was increased, and the activity of immunity-related enzymes ACP, AKP, LZM, and T-SOD in the serum was significantly enhanced. In addition, the relative percent survival of fish following an LMBV lethal challenge 4 weeks after the initial immunizations were high for each group: DD(89.5 %),DS(63.2 %),SS(50 %) and II (44.7 %). These results indicated that the MCP DNA vaccine is the most suitable and promising vaccine candidate for the effective control of LMBV disease.
Collapse
Affiliation(s)
- Tianmei Hu
- School of Life Science and Engineering, Foshan University, Foshan, 528225, PR China
| | - Yaoda Wang
- School of Life Science and Engineering, Foshan University, Foshan, 528225, PR China
| | - Yuhui Wang
- School of Life Science and Engineering, Foshan University, Foshan, 528225, PR China
| | - Hongye Cui
- School of Life Science and Engineering, Foshan University, Foshan, 528225, PR China
| | - Jiping Zhang
- School of Life Science and Engineering, Foshan University, Foshan, 528225, PR China
| | - Haiyue Chen
- School of Life Science and Engineering, Foshan University, Foshan, 528225, PR China
| | - Baozhou Wu
- School of Life Science and Engineering, Foshan University, Foshan, 528225, PR China
| | - Shuguang Hao
- School of Life Science and Engineering, Foshan University, Foshan, 528225, PR China
| | - Chien Chi Chu
- School of Life Science and Engineering, Foshan University, Foshan, 528225, PR China
| | - Yali Wu
- Foshan Institute of Agricultural Sciences, Foshan, 528145, Guangdong, PR China
| | - Weiwei Zeng
- School of Life Science and Engineering, Foshan University, Foshan, 528225, PR China.
| |
Collapse
|
29
|
Han J, Mao K, Yang YG, Sun T. Impact of inorganic/organic nanomaterials on the immune system for disease treatment. Biomater Sci 2024; 12:4903-4926. [PMID: 39190428 DOI: 10.1039/d4bm00853g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The study of nanomaterials' nature, function, and biocompatibility highlights their potential in drug delivery, imaging, diagnostics, and therapeutics. Advancements in nanotechnology have fostered the development and application of diverse nanomaterials. These materials facilitate drug delivery and influence the immune system directly. Yet, understanding of their impact on the immune system is incomplete, underscoring the need to select materials to achieve desired outcomes carefully. In this review, we outline and summarize the distinctive characteristics and effector functions of inorganic nanomaterials and organic materials in inducing immune responses. We highlight the role and advantages of nanomaterial-induced immune responses in the treatment of immune-related diseases. Finally, we briefly discuss the current challenges and future opportunities for disease treatment and clinical translation of these nanomaterials.
Collapse
Affiliation(s)
- Jing Han
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Kuirong Mao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
30
|
Song T, Cao F, Huang X, Wu S, Zhou Y, Ngai T, Xia Y, Ma G. Augmenting vaccine efficacy: Tailored immune strategy with alum-stabilized Pickering emulsion. Vaccine 2024; 42:126022. [PMID: 38876839 DOI: 10.1016/j.vaccine.2024.05.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND The achievement of optimal vaccine efficacy is contingent upon the collaborative interactions between T and B cells in adaptive immunity. Although multiple immunization strategies have been proposed, there is a notable scarcity of comprehensive investigations pertaining to enhance immune effects through immune strategy adjustments for individual vaccine. METHODS The hierarchically structured aluminum hydroxide microgel-stabilized Pickering emulsion (ASPE) was prepared by ultrasonic method. This study explored the influence of the immune strategy of ASPE to immune responses, including antigen exposure pattern, adjuvants and antigen dosage, and administration interval. RESULTS The findings revealed that external antigen adsorption facilitated increased exposure of antigen epitopes, leading to elevated IgG titers and secretion of cytokines such as interferon-gamma (IFN-γ) or interleukin-4 (IL-4). Additionally, even a low dose (1 μg/dose) of antigens of ASPE boosted sufficient neutralizing antibody levels and memory T cells compared to high-dose antigens, which consistent with the adjuvant dosage effect. Furthermore, maintaining a 4-week immunization interval yielded optimal levels of antigen-specific IgG titers in both short-term and long-term scenarios, as compared to intervals of 2, 3, and 5 weeks. A consistent trend was observed in the proliferation of memory B cells, reaching a superior level at the 4-week interval, which could enhance protection against viral re-infection. CONCLUSION Tailoring immunization strategies for specific vaccines has emerged as powerful driver in maximizing vaccine efficacy and eliciting robust immune responses, thereby presenting cutting-edge approaches to enhanced vaccination.
Collapse
Affiliation(s)
- Tiantian Song
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fengqiang Cao
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Medicine, Linyi University, Linyi 276000, PR China
| | - Xiaonan Huang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China; Sinovac Biotech Ltd., Beijing, PR China
| | - Sihua Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100081, PR China; Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu 376-8515, Japan
| | - Yan Zhou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T. 999077, Hong Kong, China
| | - Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
31
|
Sun X, Zhou X, Shi X, Abed OA, An X, Lei YL, Moon JJ. Strategies for the development of metalloimmunotherapies. Nat Biomed Eng 2024; 8:1073-1091. [PMID: 38914800 PMCID: PMC11410547 DOI: 10.1038/s41551-024-01221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/30/2024] [Indexed: 06/26/2024]
Abstract
Metal ions play crucial roles in the regulation of immune pathways. In fact, metallodrugs have a long record of accomplishment as effective treatments for a wide range of diseases. Here we argue that the modulation of interactions of metal ions with molecules and cells involved in the immune system forms the basis of a new class of immunotherapies. By examining how metal ions modulate the innate and adaptive immune systems, as well as host-microbiota interactions, we discuss strategies for the development of such metalloimmunotherapies for the treatment of cancer and other immune-related diseases.
Collapse
Affiliation(s)
- Xiaoqi Sun
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Editas Medicine, Cambridge, MA, USA.
| | - Xingwu Zhou
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoyue Shi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Omar A Abed
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Xinran An
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Yu Leo Lei
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
32
|
Shams N, Jaydari A, Najafi H, Hataminejad M, Khanizadeh S, Pouladi I. An Overview of the Types of Adjuvants Used in the Vaccination Industry And Their Mechanisms of Action. Viral Immunol 2024; 37:324-336. [PMID: 39172659 DOI: 10.1089/vim.2024.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
The widespread use of efficient vaccines against infectious diseases is regarded as one of the most significant advancements in public health and techniques for preventing and protecting against infectious diseases and cancer. Because the purpose of vaccination is to elicit an appropriate, powerful, and long-lasting immune response against the pathogen, compounds such as adjuvants must be used to enhance these responses. Adjuvants have been widely used since their discovery to boost immune responses, prevent diseases, and activate protective immunity. Today, several types of adjuvants with varying properties are available for specific applications. Adjuvants are supramolecular substances or complexes that strengthen and prolong the immune response to antigens. These compounds have long-term immunological effects and are low in toxicity. They also lower the amount of antigen or the number of immunogenic reactions needed to improve vaccine efficacy and are used in specific populations. This article provides an overview of the adjuvants commonly used in the vaccination industry, their respective mechanisms of action, and discusses how they function to stimulate the immune system. Understanding the mechanisms of action of adjuvants is crucial for the development of effective and safe vaccines.
Collapse
Affiliation(s)
- Nemat Shams
- Department of Microbiology and Food Hygiene, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Amin Jaydari
- Department of Microbiology and Food Hygiene, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Hamideh Najafi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Maryam Hataminejad
- Department of Parasitology and Mycology, Faculty of Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Sayyad Khanizadeh
- Hepatitis Research Center, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Iman Pouladi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
33
|
Portilho AI, Silva VO, Da Costa HHM, Yamashiro R, de Oliveira IP, de Campos IB, Prudencio CR, Matsuda EM, de Macedo Brígido LF, De Gaspari E. An unexpected IgE anti-receptor binding domain response following natural infection and different types of SARS-CoV-2 vaccines. Sci Rep 2024; 14:20003. [PMID: 39198569 PMCID: PMC11358332 DOI: 10.1038/s41598-024-71047-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024] Open
Abstract
Humoral response to SARS-CoV-2 has been studied, predominantly the classical IgG and its subclasses. Although IgE antibodies are typically specific to allergens or parasites, a few reports describe their production in response to SARS-CoV-2 and other viruses. Here, we investigated IgE specific to receptor binding domain (RBD) of SARS-CoV-2 in a Brazilian cohort following natural infection and vaccination. Samples from 59 volunteers were assessed after infection (COVID-19), primary immunization with vectored (ChAdOx1) or inactivated (CoronaVac) vaccines, and booster immunization with mRNA (BNT162b2) vaccine. Natural COVID-19 induced IgE, but vaccination increased its levels. Subjects vaccinated with two doses of ChAdOx1 exhibited a more robust response than those immunized with two doses of CoronaVac; however, after boosting with BNT162b2, all groups presented similar IgE levels. IgE showed intermediate-to-high avidity, especially after the booster vaccine. We also found IgG4 antibodies, mainly after the booster, and they moderately correlated with IgE. ELISA results were confirmed by control assays, using IgG depletion by protein G and lack of reactivity with heterologous antigen. In our cohort, no clinical data could be associated with the IgE response. We advocate for further research on IgE and its role in viral immunity, extending beyond allergies and parasitic infections.
Collapse
Affiliation(s)
- Amanda Izeli Portilho
- Immunology Center, Adolfo Lutz Institute, Av Dr Arnaldo, 355, 11th floor, room 1116, Pacaembu, São Paulo, SP, 01246-902, Brazil
- Post Graduate Program Interunits in Biotechnology, University of São Paulo, São Paulo, SP, Brazil
| | - Valéria Oliveira Silva
- Virology Center, Adolfo Lutz Institute, São Paulo, SP, Brazil
- Post Graduate Program in Public Health Surveillance, Disease Control Coordination, São Paulo, SP, Brazil
| | - Hernan Hermes Monteiro Da Costa
- Immunology Center, Adolfo Lutz Institute, Av Dr Arnaldo, 355, 11th floor, room 1116, Pacaembu, São Paulo, SP, 01246-902, Brazil
- Post Graduate Program Interunits in Biotechnology, University of São Paulo, São Paulo, SP, Brazil
| | - Rosemeire Yamashiro
- Immunology Center, Adolfo Lutz Institute, Av Dr Arnaldo, 355, 11th floor, room 1116, Pacaembu, São Paulo, SP, 01246-902, Brazil
| | | | | | - Carlos Roberto Prudencio
- Immunology Center, Adolfo Lutz Institute, Av Dr Arnaldo, 355, 11th floor, room 1116, Pacaembu, São Paulo, SP, 01246-902, Brazil
- Post Graduate Program Interunits in Biotechnology, University of São Paulo, São Paulo, SP, Brazil
| | | | - Luís Fernando de Macedo Brígido
- Virology Center, Adolfo Lutz Institute, São Paulo, SP, Brazil
- Post Graduate Program in Public Health Surveillance, Disease Control Coordination, São Paulo, SP, Brazil
| | - Elizabeth De Gaspari
- Immunology Center, Adolfo Lutz Institute, Av Dr Arnaldo, 355, 11th floor, room 1116, Pacaembu, São Paulo, SP, 01246-902, Brazil.
- Post Graduate Program Interunits in Biotechnology, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
34
|
Ding X, Sun M, Guo F, Qian X, Yuan H, Lou W, Wang Q, Lei X, Zeng W. Picrasidine S Induces cGAS-Mediated Cellular Immune Response as a Novel Vaccine Adjuvant. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310108. [PMID: 38900071 PMCID: PMC11348072 DOI: 10.1002/advs.202310108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/26/2024] [Indexed: 06/21/2024]
Abstract
New adjuvants that trigger cellular immune responses are urgently needed for the effective development of cancer and virus vaccines. Motivated by recent discoveries that show activation of type I interferon (IFN-I) signaling boosts T cell immunity, this study proposes that targeting this pathway can be a strategic approach to identify novel vaccine adjuvants. Consequently, a comprehensive chemical screening of 6,800 small molecules is performed, which results in the discovery of the natural compound picrasidine S (PS) as an IFN-I inducer. Further analysis reveals that PS acts as a powerful adjuvant, significantly enhancing both humoral and cellular immune responses. At the molecular level, PS initiates the activation of the cGAS-IFN-I pathway, leading to an enhanced T cell response. PS vaccination notably increases the population of CD8+ central memory (TCM)-like cells and boosts the CD8+ T cell-mediated anti-tumor immune response. Thus, this study identifies PS as a promising candidate for developing vaccine adjuvants in cancer prevention.
Collapse
Affiliation(s)
- Xiaofan Ding
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Mengxue Sun
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Fusheng Guo
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Xinmin Qian
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Haoyu Yuan
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Wenjiao Lou
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Qixuan Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
- Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
- Institute of Cancer ResearchShen Zhen Bay LaboratoryShen Zhen518107China
| | - Wenwen Zeng
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
- SXMU‐Tsinghua Collaborative Innovation Center for Frontier MedicineTaiyuan030001China
- Tsinghua‐Peking Center for Life SciencesBeijing100084China
| |
Collapse
|
35
|
Liu T, Li M, Tian Y, Dong Y, Liu N, Wang Z, Zhang H, Zheng A, Cui C. Immunogenicity and safety of a self-assembling ZIKV nanoparticle vaccine in mice. Int J Pharm 2024; 660:124320. [PMID: 38866086 DOI: 10.1016/j.ijpharm.2024.124320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/07/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that highly susceptibly causes Guillain-Barré syndrome and microcephaly in newborns. Vaccination is one of the most effective measures for preventing infectious diseases. However, there is currently no approved vaccine to prevent ZIKV infection. Here, we developed nanoparticle (NP) vaccines by covalently conjugating self-assembled 24-subunit ferritin to the envelope structural protein subunit of ZIKV to achieve antigen polyaggregation. The immunogenicityof the NP vaccine was evaluated in mice. Compared to monomer vaccines, the NP vaccine achieved effective antigen presentation, promoted the differentiation of follicular T helper cells in lymph nodes, and induced significantly greater antigen-specific humoral and cellular immune responses. Moreover, the NP vaccine enhanced high-affinity antigen-specific IgG antibody levels, increased secretion of the cytokines IL-4 and IFN-γ by splenocytes, significantly activated T/B lymphocytes, and improved the generation of memory T/B cells. In addition, no significant adverse reactions occurred when NP vaccine was combined with adjuvants. Overall, ferritin-based NP vaccines are safe and effective ZIKV vaccine candidates.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China; Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Meng Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yang Tian
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China; Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Yuhan Dong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Nan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zengming Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Hui Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Chunying Cui
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China; Beijing Laboratory of Biomedical Materials, Beijing 100069, China.
| |
Collapse
|
36
|
Guisasola-Serrano A, Bilbao-Arribas M, Varela-Martínez E, Abendaño N, Pérez M, Luján L, Jugo BM. Identifying transcriptomic profiles in ovine spleen after repetitive vaccination. Front Immunol 2024; 15:1386590. [PMID: 39076984 PMCID: PMC11284609 DOI: 10.3389/fimmu.2024.1386590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/24/2024] [Indexed: 07/31/2024] Open
Abstract
Aluminum hydroxide has long been employed as a vaccine adjuvant for its safety profile, although its precise mechanism of action remains elusive. In this study, we investigated the transcriptomic responses in sheep spleen following repetitive vaccination with aluminum adjuvanted vaccines and aluminum hydroxide alone. Notably, this work represents the first exploration of the sheep spleen transcriptome in such conditions. Animals were splitted in 3 treatment groups: vaccine group, adjuvant alone group and control group. A total of 18 high-depth RNA-seq libraries were sequenced, resulting in a rich dataset which also allowed isoform-level analysis. The comparisons between vaccine-treated and control groups (V vs C) as well as between vaccine-treated and adjuvant-alone groups (V vs A) revealed significant alterations in gene expression profiles, including protein coding genes and long non-coding RNAs. Among the differentially expressed genes, many were associated with processes such as endoplasmic reticulum (ER) stress, immune response and cell cycle. The analysis of co-expression modules further indicated a correlation between vaccine treatment and genes related to ER stress and unfolded protein response. Surprisingly, adjuvant-alone treatment had little impact on the spleen transcriptome. Additionally, the role of alternative splicing in the immune response was explored. We identified isoform switches in genes associated with immune regulation and inflammation, potentially influencing protein function. In conclusion, this study provides valuable insights into the transcriptomic changes in sheep spleen following vaccination with aluminum adjuvanted vaccines and aluminum hydroxide alone. These findings shed light on the molecular mechanisms underlying vaccine-induced immune responses and emphasize the significance of antigenic components in aluminum adjuvant mechanism of action. Furthermore, the analysis of alternative splicing revealed an additional layer of complexity in the immune response to vaccination in a livestock species.
Collapse
Affiliation(s)
- Aitor Guisasola-Serrano
- Genetics, Physical Anthropology and Animal Physiology Dpt., Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Martin Bilbao-Arribas
- Genetics, Physical Anthropology and Animal Physiology Dpt., Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Endika Varela-Martínez
- Genetics, Physical Anthropology and Animal Physiology Dpt., Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Naiara Abendaño
- Genetics, Physical Anthropology and Animal Physiology Dpt., Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Marta Pérez
- Animal Pathology Dpt., Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
| | - Lluís Luján
- Animal Pathology Dpt., Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
| | - Begoña Marina Jugo
- Genetics, Physical Anthropology and Animal Physiology Dpt., Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
37
|
Matos ADS, Soares IF, Rodrigues-da-Silva RN, Rodolphi CM, Albrecht L, Donassolo RA, Lopez-Camacho C, Ano Bom APD, Neves PCDC, Conte FDP, Pratt-Riccio LR, Daniel-Ribeiro CT, Totino PRR, Lima-Junior JDC. Immunogenicity of PvCyRPA, PvCelTOS and Pvs25 chimeric recombinant protein of Plasmodium vivax in murine model. Front Immunol 2024; 15:1392043. [PMID: 38962015 PMCID: PMC11219565 DOI: 10.3389/fimmu.2024.1392043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
In the Americas, P. vivax is the predominant causative species of malaria, a debilitating and economically significant disease. Due to the complexity of the malaria parasite life cycle, a vaccine formulation with multiple antigens expressed in various parasite stages may represent an effective approach. Based on this, we previously designed and constructed a chimeric recombinant protein, PvRMC-1, composed by PvCyRPA, PvCelTOS, and Pvs25 epitopes. This chimeric protein was strongly recognized by naturally acquired antibodies from exposed population in the Brazilian Amazon. However, there was no investigation about the induced immune response of PvRMC-1. Therefore, in this work, we evaluated the immunogenicity of this chimeric antigen formulated in three distinct adjuvants: Stimune, AddaVax or Aluminum hydroxide (Al(OH)3) in BALB/c mice. Our results suggested that the chimeric protein PvRMC-1 were capable to generate humoral and cellular responses across all three formulations. Antibodies recognized full-length PvRMC-1 and linear B-cell epitopes from PvCyRPA, PvCelTOS, and Pvs25 individually. Moreover, mice's splenocytes were activated, producing IFN-γ in response to PvCelTOS and PvCyRPA peptide epitopes, affirming T-cell epitopes in the antigen. While aluminum hydroxide showed notable cellular response, Stimune and Addavax induced a more comprehensive immune response, encompassing both cellular and humoral components. Thus, our findings indicate that PvRMC-1 would be a promising multistage vaccine candidate that could advance to further preclinical studies.
Collapse
MESH Headings
- Animals
- Plasmodium vivax/immunology
- Plasmodium vivax/genetics
- Mice
- Antigens, Protozoan/immunology
- Antigens, Protozoan/genetics
- Malaria, Vivax/immunology
- Malaria, Vivax/prevention & control
- Antibodies, Protozoan/immunology
- Mice, Inbred BALB C
- Malaria Vaccines/immunology
- Female
- Protozoan Proteins/immunology
- Protozoan Proteins/genetics
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/genetics
- Disease Models, Animal
- Adjuvants, Immunologic
- Immunogenicity, Vaccine
- Antigens, Surface
Collapse
Affiliation(s)
- Ada da Silva Matos
- Immunoparasitology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Isabela Ferreira Soares
- Immunoparasitology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | | | | | - Letusa Albrecht
- Apicomplexa Research Laboratory, Carlos Chagas Institute, Curitiba, Brazil
| | | | - Cesar Lopez-Camacho
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Ana Paula Dinis Ano Bom
- Immunological Technology Laboratory, Immunobiological Technology Institute (Bio-Manguinhos/Fiocruz), Rio de Janeiro, Brazil
| | | | - Fernando de Paiva Conte
- Eukaryotic Pilot Laboratory, Immunobiological Technology Institute (Bio-Manguinhos/Fiocruz), Rio de Janeiro, Brazil
| | | | | | | | - Josué da Costa Lima-Junior
- Immunoparasitology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
38
|
Saleemi MA, Zhang Y, Zhang G. Current Progress in the Science of Novel Adjuvant Nano-Vaccine-Induced Protective Immune Responses. Pathogens 2024; 13:441. [PMID: 38921739 PMCID: PMC11206999 DOI: 10.3390/pathogens13060441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Vaccinations are vital as they protect us from various illness-causing agents. Despite all the advancements in vaccine-related research, developing improved and safer vaccines against devastating infectious diseases including Ebola, tuberculosis and acquired immune deficiency syndrome (AIDS) remains a significant challenge. In addition, some of the current human vaccines can cause adverse reactions in some individuals, which limits their use for massive vaccination program. Therefore, it is necessary to design optimal vaccine candidates that can elicit appropriate immune responses but do not induce side effects. Subunit vaccines are relatively safe for the vaccination of humans, but they are unable to trigger an optimal protective immune response without an adjuvant. Although different types of adjuvants have been used for the formulation of vaccines to fight pathogens that have high antigenic diversity, due to the toxicity and safety issues associated with human-specific adjuvants, there are only a few adjuvants that have been approved for the formulation of human vaccines. Recently, nanoparticles (NPs) have gain specific attention and are commonly used as adjuvants for vaccine development as well as for drug delivery due to their excellent immune modulation properties. This review will focus on the current state of adjuvants in vaccine development, the mechanisms of human-compatible adjuvants and future research directions. We hope this review will provide valuable information to discovery novel adjuvants and drug delivery systems for developing novel vaccines and treatments.
Collapse
Affiliation(s)
| | | | - Guoquan Zhang
- Department of Molecular Microbiology and Immunology, College of Sciences, University of Texas at San Antonio, San Antonio, TX 78249, USA; (M.A.S.); (Y.Z.)
| |
Collapse
|
39
|
Akhmatova NK, Kurbatova EA, Zaytsev AE, Akhmatova EA, Yastrebova NE, Sukhova EV, Yashunsky DV, Tsvetkov YE, Nifantiev NE. Synthetic BSA-conjugated disaccharide related to the Streptococcus pneumoniae serotype 3 capsular polysaccharide increases IL-17A Levels, γδ T cells, and B1 cells in mice. Front Immunol 2024; 15:1388721. [PMID: 38840926 PMCID: PMC11150546 DOI: 10.3389/fimmu.2024.1388721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
The disaccharide (β-D-glucopyranosyluronic acid)-(1→4)-β-D-glucopyranoside represents a repeating unit of the capsular polysaccharide of Streptococcus pneumoniae serotype 3. A conjugate of the disaccharide with BSA (di-BSA conjugate) adjuvanted with aluminum hydroxide induced - in contrast to the non-adjuvanted conjugate - IgG1 antibody production and protected mice against S. pneumoniae serotype 3 infection after intraperitoneal prime-boost immunization. Adjuvanted and non-adjuvanted conjugates induced production of Th1 (IFNγ, TNFα); Th2 (IL-5, IL-13); Th17 (IL-17A), Th1/Th17 (IL-22), and Th2/Th17 cytokines (IL-21) after immunization. The concentration of cytokines in mice sera was higher in response to the adjuvanted conjugate, with the highest level of IL-17A production after the prime and boost immunizations. In contrast, the non-adjuvanted conjugate elicited only weak production of IL-17A, which gradually decreased after the second immunization. After boost immunization of mice with the adjuvanted di-BSA conjugate, there was a significant increase in the number of CD45+/CD19+ B cells, TCR+ γδ T cell, CD5+ В1 cells, and activated cells with MHC II+ expression in the spleens of the mice. IL-17A, TCR+ γδ T cells, and CD5+ В1 cells play a crucial role in preventing pneumococcal infection, but can also contribute to autoimmune diseases. Immunization with the adjuvanted and non-adjuvanted di-BSA conjugate did not elicit autoantibodies against double-stranded DNA targeting cell nuclei in mice. Thus, the molecular and cellular markers associated with antibody production and protective activity in response to immunization with the di-BSA conjugate adjuvanted with aluminum hydroxide are IL-17A, TCR+ γδ T cells, and CD5+ В1 cells against the background of increasing MHC II+ expression.
Collapse
MESH Headings
- Polysaccharides, Bacterial/administration & dosage
- Polysaccharides, Bacterial/chemical synthesis
- Polysaccharides, Bacterial/chemistry
- Polysaccharides, Bacterial/immunology
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/immunology
- Streptococcus pneumoniae/chemistry
- Streptococcus pneumoniae/immunology
- Aluminum Hydroxide/administration & dosage
- Serum Albumin, Bovine/administration & dosage
- Serum Albumin, Bovine/chemistry
- Vaccines, Conjugate/administration & dosage
- Vaccines, Conjugate/chemistry
- Streptococcal Vaccines/administration & dosage
- Streptococcal Vaccines/chemical synthesis
- Streptococcal Vaccines/chemistry
- Streptococcal Vaccines/immunology
- Adjuvants, Vaccine/administration & dosage
- Immunogenicity, Vaccine
- Animals
- Mice
- Pneumococcal Infections/immunology
- Pneumococcal Infections/microbiology
- Pneumococcal Infections/prevention & control
- Interleukin-17/blood
- Interleukin-17/immunology
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Intraepithelial Lymphocytes/immunology
- Serogroup
- Mice, Inbred BALB C
- Male
- Bacterial Capsules/chemistry
- Bacterial Capsules/immunology
- B-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Nelli K. Akhmatova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Ekaterina A. Kurbatova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Anton E. Zaytsev
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Elina A. Akhmatova
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Natalya E. Yastrebova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Elena V. Sukhova
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Dmitriy V. Yashunsky
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Yury E. Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
40
|
Dillard JA, Taft-Benz SA, Knight AC, Anderson EJ, Pressey KD, Parotti B, Martinez SA, Diaz JL, Sarkar S, Madden EA, De la Cruz G, Adams LE, Dinnon KH, Leist SR, Martinez DR, Schäfer A, Powers JM, Yount BL, Castillo IN, Morales NL, Burdick J, Evangelista MKD, Ralph LM, Pankow NC, Linnertz CL, Lakshmanane P, Montgomery SA, Ferris MT, Baric RS, Baxter VK, Heise MT. Adjuvant-dependent impact of inactivated SARS-CoV-2 vaccines during heterologous infection by a SARS-related coronavirus. Nat Commun 2024; 15:3738. [PMID: 38702297 PMCID: PMC11068739 DOI: 10.1038/s41467-024-47450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/02/2024] [Indexed: 05/06/2024] Open
Abstract
Whole virus-based inactivated SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide have been critical to the COVID-19 pandemic response. Although these vaccines are protective against homologous coronavirus infection, the emergence of novel variants and the presence of large zoonotic reservoirs harboring novel heterologous coronaviruses provide significant opportunities for vaccine breakthrough, which raises the risk of adverse outcomes like vaccine-associated enhanced respiratory disease. Here, we use a female mouse model of coronavirus disease to evaluate inactivated vaccine performance against either homologous challenge with SARS-CoV-2 or heterologous challenge with a bat-derived coronavirus that represents a potential emerging disease threat. We show that inactivated SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide can cause enhanced respiratory disease during heterologous infection, while use of an alternative adjuvant does not drive disease and promotes heterologous viral clearance. In this work, we highlight the impact of adjuvant selection on inactivated vaccine safety and efficacy against heterologous coronavirus infection.
Collapse
Affiliation(s)
- Jacob A Dillard
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sharon A Taft-Benz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Audrey C Knight
- Department of Pathology & Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elizabeth J Anderson
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katia D Pressey
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Breantié Parotti
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sabian A Martinez
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer L Diaz
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sanjay Sarkar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily A Madden
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gabriela De la Cruz
- Pathology Services Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lily E Adams
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth H Dinnon
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John M Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Boyd L Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Izabella N Castillo
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Noah L Morales
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jane Burdick
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Lauren M Ralph
- Pathology Services Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicholas C Pankow
- Pathology Services Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Colton L Linnertz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Premkumar Lakshmanane
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie A Montgomery
- Department of Pathology & Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Dallas Tissue Research, Farmers Branch, TX, USA
| | - Martin T Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ralph S Baric
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Victoria K Baxter
- Department of Pathology & Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Mark T Heise
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
41
|
Cui Y, Ho M, Hu Y, Shi Y. Vaccine adjuvants: current status, research and development, licensing, and future opportunities. J Mater Chem B 2024; 12:4118-4137. [PMID: 38591323 PMCID: PMC11180427 DOI: 10.1039/d3tb02861e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Vaccines represent one of the most significant inventions in human history and have revolutionized global health. Generally, a vaccine functions by triggering the innate immune response and stimulating antigen-presenting cells, leading to a defensive adaptive immune response against a specific pathogen's antigen. As a key element, adjuvants are chemical materials often employed as additives to increase a vaccine's efficacy and immunogenicity. For over 90 years, adjuvants have been essential components in many human vaccines, improving their efficacy by enhancing, modulating, and prolonging the immune response. Here, we provide a timely and comprehensive review of the historical development and the current status of adjuvants, covering their classification, mechanisms of action, and roles in different vaccines. Additionally, we perform systematic analysis of the current licensing processes and highlights notable examples from clinical trials involving vaccine adjuvants. Looking ahead, we anticipate future trends in the field, including the development of new adjuvant formulations, the creation of innovative adjuvants, and their integration into the broader scope of systems vaccinology and vaccine delivery. The article posits that a deeper understanding of biochemistry, materials science, and vaccine immunology is crucial for advancing vaccine technology. Such advancements are expected to lead to the future development of more effective vaccines, capable of combating emerging infectious diseases and enhancing public health.
Collapse
Affiliation(s)
- Ying Cui
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA.
| | - Megan Ho
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Yongjie Hu
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA.
| | - Yuan Shi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
42
|
Yu X, Min H, Yao S, Yao G, Zhang D, Zhang B, Chen M, Liu F, Cui L, Zheng L, Cao Y. Evaluation of different types of adjuvants in a malaria transmission-blocking vaccine. Int Immunopharmacol 2024; 131:111817. [PMID: 38460299 PMCID: PMC11090627 DOI: 10.1016/j.intimp.2024.111817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
Adjuvants are critical components for vaccines, which enhance the strength and longevity of the antibody response and influence the types of immune response. Limited research has been conducted on the immunogenicity and protective efficacy of various adjuvants in malaria transmission-blocking vaccines (TBVs). In this study, we formulated a promising TBV candidate antigen, the P. berghei ookinete surface antigen PSOP25, with different types of adjuvants, including the TLR4 agonist monophosphoryl lipid A (MPLA), the TLR9 agonist cytosine phosphoguanosine oligodeoxynucleotides (CpG ODN 1826) (CpG), a saponin adjuvant QS-21, aluminum hydroxide (Alum), and two combination adjuvants MPLA + QS-21 and QS-21 + CpG. We demonstrated that adjuvanted vaccines results in elevated elicited antibody levels, increased proliferation of plasma cells, and efficient formation of germinal centers (GCs), leading to enhanced long-term protective immune responses. Furthermore, CpG group exhibited the most potent inhibition of ookinete formation and transmission-blocking activity. We found that the rPSOP25 with CpG adjuvant was more effective than MPLA, QS-21, MPLA + QS-21, QS-21 + CpG adjuvants in dendritic cells (DCs) activation and differentiation. Additionally, the CpG adjuvant elicited more rubust immune memory response than Alum adjuvant. CpG and QS-21 adjuvants could activate the Th1 response and promote the secretion of IFN-γ and TNF-α. PSOP25 induced a higher number of Tfh cells in splenocytes when combined with MPLA, CpG, and QS-21 + CpG; and there was no increase in these cell populations when PSOP25 was administered with Alum. In conclusion, CpG may confer enhanced efficacy for the rPSOP25 vaccine, as evidenced by the ability of the elicited antisera to induce protective immune responses and improved transmission-blocking activity.
Collapse
Affiliation(s)
- Xinxin Yu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Hui Min
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Shijie Yao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Guixiang Yao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Di Zhang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Biying Zhang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Muyan Chen
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Fei Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL 33612, USA
| | - Li Zheng
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China.
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
43
|
Hils M, Hoffard N, Iuliano C, Kreft L, Chakrapani N, Swiontek K, Fischer K, Eberlein B, Köberle M, Fischer J, Hilger C, Ohnmacht C, Kaesler S, Wölbing F, Biedermann T. IgE and anaphylaxis specific to the carbohydrate alpha-gal depend on IL-4. J Allergy Clin Immunol 2024; 153:1050-1062.e6. [PMID: 38135009 PMCID: PMC10997276 DOI: 10.1016/j.jaci.2023.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Alpha-gal (Galα1-3Galβ1-4GlcNAc) is a carbohydrate with the potential to elicit fatal allergic reactions to mammalian meat and drugs of mammalian origin. This type of allergy is induced by tick bites, and therapeutic options for this skin-driven food allergy are limited to the avoidance of the allergen and treatment of symptoms. Thus, a better understanding of the immune mechanisms resulting in sensitization through the skin is crucial, especially in the case of a carbohydrate allergen for which underlying immune responses are poorly understood. OBJECTIVE We aimed to establish a mouse model of alpha-gal allergy for in-depth immunologic analyses. METHODS Alpha-galactosyltransferase 1-deficient mice devoid of alpha-gal glycosylations were sensitized with the alpha-gal-carrying self-protein mouse serum albumin by repetitive intracutaneous injections in combination with the adjuvant aluminum hydroxide. The role of basophils and IL-4 in sensitization was investigated by antibody-mediated depletion. RESULTS Alpha-gal-sensitized mice displayed increased levels of alpha-gal-specific IgE and IgG1 and developed systemic anaphylaxis on challenge with both alpha-gal-containing glycoproteins and glycolipids. In accordance with alpha-gal-allergic patients, we detected elevated numbers of basophils at the site of sensitization as well as increased numbers of alpha-gal-specific B cells, germinal center B cells, and B cells of IgE and IgG1 isotypes in skin-draining lymph nodes. By depleting IL-4 during sensitization, we demonstrated for the first time that sensitization and elicitation of allergy to alpha-gal and correspondingly to a carbohydrate allergen is dependent on IL-4. CONCLUSION These findings establish IL-4 as a potential target to interfere with alpha-gal allergy elicited by tick bites.
Collapse
Affiliation(s)
- Miriam Hils
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Nils Hoffard
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Caterina Iuliano
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Luisa Kreft
- Center of Allergy and Environment (ZAUM) and Institute of Allergy Research, Technical University of Munich, School of Medicine, and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Neera Chakrapani
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Kyra Swiontek
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Konrad Fischer
- Department of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Martin Köberle
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jörg Fischer
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany; Department of Dermatology and Allergology, University Hospital Augsburg, Augsburg, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM) and Institute of Allergy Research, Technical University of Munich, School of Medicine, and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Susanne Kaesler
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Florian Wölbing
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
44
|
Vroom MM, Lu H, Lewis M, Thibodeaux BA, Brooks JK, Longo MS, Ramos MM, Sahni J, Wiggins J, Boyd JD, Wang S, Ding S, Hellerstein M, Ryan V, Powchik P, Dodart JC. VXX-401, a novel anti-PCSK9 vaccine, reduces LDL-C in cynomolgus monkeys. J Lipid Res 2024; 65:100497. [PMID: 38216056 PMCID: PMC10875594 DOI: 10.1016/j.jlr.2024.100497] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/20/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of disease burden in the world and is highly correlated with chronic elevations of LDL-C. LDL-C-lowering drugs, such as statins or monoclonal antibodies against proprotein convertase subtilisin/kexin type 9 (PCSK9), are known to reduce the risk of cardiovascular diseases; however, statins are associated with limited efficacy and poor adherence to treatment, whereas PCSK9 inhibitors are only prescribed to a "high-risk" patient population or those who have failed other therapies. Based on the proven efficacy and safety profile of existing monoclonal antibodies, we have developed a peptide-based vaccine against PCSK9, VXX-401, as an alternative option to treat hypercholesterolemia and prevent ASCVD. VXX-401 is designed to trigger a safe humoral immune response against PCSK9, resulting in the production of endogenous antibodies and a subsequent 30-40% reduction in blood LDL-C. In this article, VXX-401 demonstrates robust immunogenicity and sustained serum LDL-C-lowering effects in nonhuman primates. In addition, antibodies induced by VXX-401 bind to human PCSK9 with high affinity and block the inhibitory effect of PCSK9 on LDL-C uptake in a hepatic cell model. A repeat-dose toxicity study conducted in nonhuman primates under good laboratory practices toxicity indicated a suitable safety and tolerability profile, with injection site reactions being the main findings. As a promising safe and effective LDL-C-lowering therapy, VXX-401 may represent a broadly accessible and convenient option to treat hypercholesterolemia and prevent ASCVD.
Collapse
|
45
|
Joshi D, Shah S, Chbib C, Uddin MN. Potential of DPD ((S)-4,5-dihydroxy-2,3-pentanedione) Analogs in Microparticulate Formulation as Vaccine Adjuvants. Pharmaceuticals (Basel) 2024; 17:184. [PMID: 38399399 PMCID: PMC10891675 DOI: 10.3390/ph17020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
The molecule (S)-4,5-dihydroxy-2,3-pentanedione (DPD) is produced by many different species of bacteria and is involved in bacterial communication. DPD is the precursor of signal molecule autoinducer-2 (AI-2) and has high potential to be used as a vaccine adjuvant. Vaccine adjuvants are compounds that enhance the stability and immunogenicity of vaccine antigens, modulate efficacy, and increase the immune response to a particular antigen. Previously, the microparticulate form of (S)-DPD was found to have an adjuvant effect with the gonorrhea vaccine. In this study, we evaluated the immunogenicity and adjuvanticity of several synthetic analogs of the (S)-DPD molecule, including ent-DPD((R)-4,5-dihydroxy-2,3-pentanedione), n-butyl-DPD ((S)-1,2-dihydroxy-3,4-octanedione), isobutyl-DPD ((S)-1,2-dihydroxy-6-methyl-3,4-heptanedione), n-hexyl-DPD ((S)-1,2-dihydroxy-3,4-decanedione), and phenyl-DPD ((S)-3,4-dihydroxy-1-phenyl-1,2-butanedione), in microparticulate formulations. The microparticulate formulations of all analogs of (S)-DPD were found to be noncytotoxic toward dendritic cells. Among these analogs, ent-DPD, n-butyl-DPD, and isobutyl-DPD were found to be immunogenic toward antigens and showed adjuvant efficacy with microparticulate gonorrhea vaccines. It was observed that n-hexyl-DPD and phenyl-DPD did not show any adjuvant effect. This study shows that synthetic analogs of (S)-DPD molecules are capable of eliciting adjuvant effects with vaccines. A future in vivo evaluation will further confirm that these analogs are promising vaccine adjuvants.
Collapse
Affiliation(s)
- Devyani Joshi
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (D.J.); (S.S.)
| | - Sarthak Shah
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (D.J.); (S.S.)
| | - Christiane Chbib
- College of Pharmacy, Larkin University, 18301 N Miami Ave, Miami, FL 33169, USA;
| | - Mohammad N. Uddin
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (D.J.); (S.S.)
| |
Collapse
|
46
|
Shabani M, Shobeiri P, Nouri S, Moradi Z, Amenu RA, Mehrabi Nejad MM, Rezaei N. Risk of flare or relapse in patients with immune-mediated diseases following SARS-CoV-2 vaccination: a systematic review and meta-analysis. Eur J Med Res 2024; 29:55. [PMID: 38229141 DOI: 10.1186/s40001-024-01639-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Patients with autoimmune and immune-mediated diseases (AI-IMD) are at greater risk of COVID-19 infection; therefore, they should be prioritized in vaccination programs. However, there are concerns regarding the safety of COVID-19 vaccines in terms of disease relapse, flare, or exacerbation. In this study, we aimed to provide a more precise and reliable vision using systematic review and meta-analysis. METHODS PubMed-MEDLINE, Embase, and Web of Science were searched for original articles reporting the relapse/flare in adult patients with AI-IMD between June 1, 2020 and September 25, 2022. Subgroup analysis and sensitivity analysis were conducted to investigate the sources of heterogeneity. Statistical analysis was performed using R software. RESULTS A total of 134 observations of various AI-IMDs across 74 studies assessed the rate of relapse, flare, or exacerbation in AI-IMD patients. Accordingly, the crude overall prevalence of relapse, flare, or exacerbation was 6.28% (95% CI [4.78%; 7.95%], I2 = 97.6%), changing from 6.28% (I2 = 97.6%) to 6.24% (I2 = 65.1%) after removing the outliers. AI-IMD patients administering mRNA, vector-based, and inactive vaccines showed 8.13% ([5.6%; 11.03%], I2 = 98.1%), 0.32% ([0.0%; 4.03%], I2 = 93.5%), and 3.07% ([1.09%; 5.9%], I2 = 96.2%) relapse, flare, or exacerbation, respectively (p-value = 0.0086). In terms of disease category, nephrologic (26.66%) and hematologic (14.12%) disorders had the highest and dermatologic (4.81%) and neurologic (2.62%) disorders exhibited to have the lowest crude prevalence of relapse, flare, or exacerbation (p-value < 0.0001). CONCLUSION The risk of flare/relapse/exacerbation in AI-IMD patients is found to be minimal, especially with vector-based vaccines. Vaccination against COVID-19 is recommended in this population.
Collapse
Affiliation(s)
- Mahya Shabani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parnian Shobeiri
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Qarib St, Keshavarz Blvd, 14194, Tehran, 1419733141, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shadi Nouri
- Arak University of Medical Sciences, Arak, Iran
| | - Zahra Moradi
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Robel Assefa Amenu
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Mohammad-Mehdi Mehrabi Nejad
- Department of Radiology, School of Medicine, Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Imam Khomeini Hospital, Tehran University of Medical Sciences (TUMS), Qarib St, Keshavarz Blvd, 14194, Tehran, 1419733141, Iran.
| | - Nima Rezaei
- Department of Immunology, Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Qarib St, Keshavarz Blvd, 14194, Tehran, 1419733141, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
47
|
Shen F, Wang H, Liu Z, Sun L. DNA Nanostructures: Self-Adjuvant Carriers for Highly Efficient Subunit Vaccines. Angew Chem Int Ed Engl 2024; 63:e202312624. [PMID: 37737971 DOI: 10.1002/anie.202312624] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/23/2023]
Abstract
Subunit vaccines based on antigen proteins or epitopes of pathogens or tumors show advantages in immunological precision and high safety, but are often limited by their low immunogenicity. Adjuvants can boost immune responses by stimulating immune cells or promoting antigen uptake by antigen presenting cells (APCs), yet existing clinical adjuvants struggle in simultaneously achieving these dual functions. Additionally, the spatial organization of antigens might be crucial to their immunogenicity. Hence, superior adjuvants should potently stimulate the immune system, precisely arrange antigens, and effectively deliver antigens to APCs. Recently, precisely organizing and delivering antigens with the unique editability of DNA nanostructures has been proposed, presenting unique abilities in significantly improving the immunogenicity of antigens. In this minireview, we will discuss the principles behind using DNA nanostructures as self-adjuvant carriers and review the latest advancements in this field. The potential and challenges associated with self-adjuvant DNA nanostructures will also be discussed.
Collapse
Affiliation(s)
- Fengyun Shen
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 201240, China
| | - Haihan Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Lab Carbon Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Lab Carbon Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Lele Sun
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
48
|
Xu K, Li J, Lu X, Ge X, Wang K, Wang J, Qiao Z, Quan Y, Li C. The Immunogenicity of CpG, MF59-like, and Alum Adjuvant Delta Strain Inactivated SARS-CoV-2 Vaccines in Mice. Vaccines (Basel) 2024; 12:60. [PMID: 38250873 PMCID: PMC10819607 DOI: 10.3390/vaccines12010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
The continuous evolution and mutation of SARS-CoV-2 have highlighted the need for more effective vaccines. In this study, CpG, MF59-like, and Alum adjuvant Delta strain inactivated SARS-CoV-2 vaccines were prepared, and the immunogenicity of these vaccines in mice was evaluated. The Delta + MF59-like vaccine group produced the highest levels of S- and RBD-binding antibodies and live Delta virus neutralization levels after one shot of immunization, while mice in the Delta + Alum vaccine group had the highest levels of these antibodies after two doses, and the Delta + MF59-like and Delta + Alum vaccine groups produced high levels of cross-neutralization antibodies against prototype, Beta, and Gamma strain SARS-CoV-2 viruses. There was no significant decrease in neutralizing antibody levels in any vaccine group during the observation period. CpG, MF59-like, and Alum adjuvant Delta strain inactivated SARS-CoV-2 vaccines excited different antibody subtypes compared with unadjuvanted vaccines; the Delta + CpG vaccine group had a higher proportion of IgG2b antibodies, indicating bias towards Th1 immunity. The proportions of IgG1 and IgG2b in the Delta + MF59-like vaccine group were similar to those of the unadjuvanted vaccine. However, the Delta + Alum vaccine group had a higher proportion of IgG1 antibodies, indicating bias towards Th2 immunity. Antigen-specific cytokine secretion CD4/8+ T cells were analyzed. In conclusion, the results of this study show differences in the immune efficacy of CpG, MF59-like, and Alum adjuvant Delta strain inactivated SARS-CoV-2 vaccines in mice, which have significant implications for the selection strategy for vaccine adjuvants.
Collapse
Affiliation(s)
- Kangwei Xu
- National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China; (K.X.)
| | - Jing Li
- Sinovac Life Sciences Co., Ltd., No. 21, Tianfu St., Daxing Biomedicine Industrial Base of Zhongguancun Science Park, Daxing District, Beijing 100050, China
| | - Xu Lu
- National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China; (K.X.)
| | - Xiaoqin Ge
- Sinovac Life Sciences Co., Ltd., No. 21, Tianfu St., Daxing Biomedicine Industrial Base of Zhongguancun Science Park, Daxing District, Beijing 100050, China
| | - Kaiqin Wang
- National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China; (K.X.)
| | - Jiahao Wang
- Sinovac Life Sciences Co., Ltd., No. 21, Tianfu St., Daxing Biomedicine Industrial Base of Zhongguancun Science Park, Daxing District, Beijing 100050, China
| | - Zhizhong Qiao
- National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China; (K.X.)
| | - Yaru Quan
- National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China; (K.X.)
| | - Changgui Li
- National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China; (K.X.)
| |
Collapse
|
49
|
Yan W, Yu W, Shen L, Xiao L, Qi J, Hu T. A SARS-CoV-2 nanoparticle vaccine based on chemical conjugation of loxoribine and SpyCatcher/SpyTag. Int J Biol Macromol 2023; 253:127159. [PMID: 37778577 DOI: 10.1016/j.ijbiomac.2023.127159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
SARS-CoV-2 is a particularly transmissible virus that renders the worldwide COVID-19 pandemic and global severe respiratory distress syndrome. Protein-based vaccines hold great advantages to build the herd immunity for their specificity, effectiveness, and safety. Receptor-binding domain (RBD) of SARS-CoV-2 is an appealing antigen for vaccine development. However, adjuvants and delivery system are necessitated to enhance the immunogenicity of RBD. In the present study, RBD was chemically conjugated with loxoribine and SpyCatcher/SpyTag, followed by assembly to form a nanoparticle vaccine. Loxoribine (a TLR7/8 agonist) acted as an adjuvant, and nanoparticles functioned as delivery system for the antigen and the adjuvant. The nanoparticle vaccine elicited high RBD-specific antibody titers, high neutralizing antibody titer, and strong ACE2-blocking activity. It stimulated high splenic levels of Th1-type cytokines (IFN-γ and IL-2) and Th2-type cytokines (IL-4 and IL-5) in BALB/c mice. It promoted the splenocyte proliferation, enhanced the CD4+ and CD8+ T cell percentage and stimulated the maturation of dendritic cells. The vaccine did not render apparent toxicity to the organs of mice. Thus, the nanoparticle vaccine was of potential to act as a preliminarily safe and effective candidate against SARS-CoV-2.
Collapse
Affiliation(s)
- Wenying Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Weili Yu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Lijuan Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Lucheng Xiao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jinming Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Tao Hu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
50
|
Calderon-Rico F, Bravo-Patiño A, Mendieta I, Perez-Duran F, Zamora-Aviles AG, Franco-Correa LE, Ortega-Flores R, Hernandez-Morales I, Nuñez-Anita RE. Glycoprotein 5-Derived Peptides Induce a Protective T-Cell Response in Swine against the Porcine Reproductive and Respiratory Syndrome Virus. Viruses 2023; 16:14. [PMID: 38275949 PMCID: PMC10819526 DOI: 10.3390/v16010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
We analyzed the T-cell responses induced by lineal epitopes of glycoprotein 5 (GP5) from PRRSV to explore the role of this protein in the immunological protection mediated by T-cells. The GP5 peptides were conjugated with a carrier protein for primary immunization and booster doses. Twenty-one-day-old pigs were allocated into four groups (seven pigs per group): control (PBS), vehicle (carrier), PTC1, and PTC2. Cytokine levels were measured at 2 days post-immunization (DPI) from serum samples. Cytotoxic T-lymphocytes (CTLs, CD8+) from peripheral blood were quantified via flow cytometry at 42 DPI. The cytotoxicity was evaluated by co-culturing primed lymphocytes with PRRSV derived from an infectious clone. The PTC2 peptide increased the serum concentrations of pro-inflammatory cytokines (i.e., TNF-α, IL-1β, IL-8) and cytokines that activate the adaptive cellular immunity associated with T-lymphocytes (i.e., IL-4, IL-6, IL-10, and IL-12). The concentration of CTLs (CD8+) was significantly higher in groups immunized with the peptides, which suggests a proliferative response in this cell population. Primed CTLs from immunized pigs showed cytolytic activity in PRRSV-infected cells in vitro. PTC1 and PTC2 peptides induced a protective T-cell-mediated response in pigs immunized against PRRSV, due to the presence of T epitopes in their sequences.
Collapse
Affiliation(s)
- Fernando Calderon-Rico
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| | - Alejandro Bravo-Patiño
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| | - Irasema Mendieta
- Posgrado en Ciencias Quimico-Biológicas, Facultad de Quimica, Universidad Autonoma de Queretaro, Cerro de las Campanas S/N, Querétaro PC 76010, Mexico;
| | - Francisco Perez-Duran
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| | - Alicia Gabriela Zamora-Aviles
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| | - Luis Enrique Franco-Correa
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| | - Roberto Ortega-Flores
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| | - Ilane Hernandez-Morales
- Escuela Nacional de Estudios Superiores Unidad Leon, Universidad Nacional Autonoma de Mexico, Blv. UNAM No. 2011, Leon PC 37684, Guanajuato, Mexico;
| | - Rosa Elvira Nuñez-Anita
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| |
Collapse
|