1
|
Keay S, Alberts F, O’Connor AM, Friendship R, O’Sullivan T, Poljak Z. The case for development of a core outcome set (COS) and supplemental reporting guidelines for influenza vaccine challenge trial research in swine. Front Vet Sci 2025; 12:1465926. [PMID: 40007748 PMCID: PMC11851948 DOI: 10.3389/fvets.2025.1465926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Previously, we systematically reviewed more than 20 years of influenza vaccine challenge trial research in pigs to answer the question, "does vaccinating sows protect offspring?" Overall, most studies were well designed but clinical heterogeneity made between-study comparisons challenging. Studies varied by samples, outcomes, and assays selected for measurement. Additionally, data essential for inclusion of findings in meta-analyses were often insufficiently reported and as a result, summary effect measures were either not derived or were not meaningful. Clinical heterogeneity and reporting issues complicate and limit what can be learned cumulatively from research and both represent two types of avoidable research waste. Here, we illustrate each concern using data collected tangentially during the systematic review and propose two corrective strategies, both of which have broad applicability across veterinary intervention research; (i) develop a Core Outcome Set (COS) to reduce unnecessary clinical heterogeneity in future research and (ii) encourage funders and journal editors to require submitted research protocols and manuscripts adhere to established reporting guidelines. As a reporting corollary, we developed a supplemental checklist specific to influenza vaccine challenge trial research in swine and propose that it is completed by researchers and included with all study protocol and manuscript submissions. The checklist serves two purposes: as a reminder of details essential to report for inclusion of findings in meta-analyses and sub-group meta-analyses (e.g., antigenic or genomic descriptions of influenza vaccine and challenge viruses), and as an aid to help synthesis researchers fully characterize and comprehensively include studies in reviews.
Collapse
Affiliation(s)
- Sheila Keay
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Famke Alberts
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Annette M. O’Connor
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Robert Friendship
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Terri O’Sullivan
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Zvonimir Poljak
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
2
|
Jacobs B, Leroux-Roels I, Bruhwyler J, Groth N, Waerlop G, Janssens Y, Tourneur J, De Boever F, Alhatemi A, Moris P, Le Vert A, Leroux-Roels G, Nicolas F. Evaluation of Safety, Immunogenicity and Cross-Reactive Immunity of OVX836, a Nucleoprotein-Based Universal Influenza Vaccine, in Older Adults. Vaccines (Basel) 2024; 12:1391. [PMID: 39772052 PMCID: PMC11728545 DOI: 10.3390/vaccines12121391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: In a Phase 2a, double-blind, placebo-controlled study including healthy participants aged 18-55 years, OVX836, a nucleoprotein (NP)-based candidate vaccine, previously showed a good safety profile, a robust immune response (both humoral and cellular) and a preliminary signal of protection (VE = 84%) against PCR-confirmed symptomatic influenza after a single intramuscular dose of 180 µg, 300 µg or 480 µg. Methods: Using the same methodology, we confirmed the good safety and strong immunogenicity of OVX836 at the same doses in older adults (≥65 years), a key target population for influenza vaccination. Results: Significant humoral (anti-NP IgG) and cellular (interferon gamma (IFNγ) spot-forming cells per million peripheral blood mononuclear cells and specific CD4+ IFNγ+ T-cells) immune responses were observed at the three dose levels, without clear dose-response relationship. T-cell responses were shown to be highly cross-reactive against various influenza A strains, both seasonal and highly pathogenic avian strains. We also evaluated the effect of sex (stronger immune response in females) and age (stronger immune response in young adults) on the immune response to OVX836 after adjustment based on the pre-vaccination immune status. Conclusions: The results obtained with OVX836 lay the groundwork for a future placebo-controlled, field proof of concept efficacy Phase 2b trial.
Collapse
Affiliation(s)
- Bart Jacobs
- Center for Vaccinology (CEVAC), 10 Corneel Heymanslaan, 9000 Ghent, Belgium; (B.J.); (I.L.-R.); (G.W.); (Y.J.); (F.D.B.); (A.A.); (G.L.-R.)
| | - Isabel Leroux-Roels
- Center for Vaccinology (CEVAC), 10 Corneel Heymanslaan, 9000 Ghent, Belgium; (B.J.); (I.L.-R.); (G.W.); (Y.J.); (F.D.B.); (A.A.); (G.L.-R.)
| | - Jacques Bruhwyler
- Osivax, 70 Rue Saint-Jean-de-Dieu, 69007 Lyon, France; (N.G.); (J.T.); (P.M.); (A.L.V.); (F.N.)
| | - Nicola Groth
- Osivax, 70 Rue Saint-Jean-de-Dieu, 69007 Lyon, France; (N.G.); (J.T.); (P.M.); (A.L.V.); (F.N.)
| | - Gwenn Waerlop
- Center for Vaccinology (CEVAC), 10 Corneel Heymanslaan, 9000 Ghent, Belgium; (B.J.); (I.L.-R.); (G.W.); (Y.J.); (F.D.B.); (A.A.); (G.L.-R.)
| | - Yorick Janssens
- Center for Vaccinology (CEVAC), 10 Corneel Heymanslaan, 9000 Ghent, Belgium; (B.J.); (I.L.-R.); (G.W.); (Y.J.); (F.D.B.); (A.A.); (G.L.-R.)
| | - Jessika Tourneur
- Osivax, 70 Rue Saint-Jean-de-Dieu, 69007 Lyon, France; (N.G.); (J.T.); (P.M.); (A.L.V.); (F.N.)
| | - Fien De Boever
- Center for Vaccinology (CEVAC), 10 Corneel Heymanslaan, 9000 Ghent, Belgium; (B.J.); (I.L.-R.); (G.W.); (Y.J.); (F.D.B.); (A.A.); (G.L.-R.)
| | - Azhar Alhatemi
- Center for Vaccinology (CEVAC), 10 Corneel Heymanslaan, 9000 Ghent, Belgium; (B.J.); (I.L.-R.); (G.W.); (Y.J.); (F.D.B.); (A.A.); (G.L.-R.)
| | - Philippe Moris
- Osivax, 70 Rue Saint-Jean-de-Dieu, 69007 Lyon, France; (N.G.); (J.T.); (P.M.); (A.L.V.); (F.N.)
| | - Alexandre Le Vert
- Osivax, 70 Rue Saint-Jean-de-Dieu, 69007 Lyon, France; (N.G.); (J.T.); (P.M.); (A.L.V.); (F.N.)
| | - Geert Leroux-Roels
- Center for Vaccinology (CEVAC), 10 Corneel Heymanslaan, 9000 Ghent, Belgium; (B.J.); (I.L.-R.); (G.W.); (Y.J.); (F.D.B.); (A.A.); (G.L.-R.)
| | - Florence Nicolas
- Osivax, 70 Rue Saint-Jean-de-Dieu, 69007 Lyon, France; (N.G.); (J.T.); (P.M.); (A.L.V.); (F.N.)
| |
Collapse
|
3
|
Zhu H, Li X, Li X, Chen H, Qian P. Protection against the H1N1 influenza virus using self-assembled nanoparticles formed by lumazine synthase and bearing the M2e peptide. Virology 2024; 597:110162. [PMID: 38955082 DOI: 10.1016/j.virol.2024.110162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
There is an urgent need for influenza vaccines that offer broad cross-protection. The highly conserved ectodomain of the influenza matrix protein 2 (M2e) is a promising candidate; however, its low immunogenicity can be addressed. In this study, we developed influenza vaccines using the Lumazine synthase (LS) platform. The primary objective of this study was to determine the protective potential of M2e proteins expressed on Lumazine synthase (LS) nanoparticles. M2e-LS proteins, produced through the E. coli system, spontaneously assemble into nanoparticles. The study investigated the efficacy of the M2e-LS nanoparticle vaccine in mice. Mice immunized with M2e-LS nanoparticles exhibited significantly higher levels of intracellular cytokines than those receiving soluble M2e proteins. The M2e-LS protein exhibited robust immunogenicity and provided 100% protection against cross-clade influenza.
Collapse
Affiliation(s)
- Hechao Zhu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Guangxi Yangxiang Co., LTD, Guigang, 537100, China
| | - Xinxin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
4
|
Laszlofy C, Fazekas G, Barath Z, Vajo Z. Evaluation of Vaccine Immunogenicity-Correlates to Real-World Protection: Influenza. Viruses 2024; 16:441. [PMID: 38543806 PMCID: PMC10975834 DOI: 10.3390/v16030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 05/23/2024] Open
Abstract
Recent events highlighted that, despite decades of studying vaccine immunogenicity and efforts toward finding correlates of protection, evaluating real-world vaccine efficacy as well as establishing meaningful licensing criteria still represents a significant challenge. In this paper, we review all aspects of influenza vaccine immunogenicity, including animal and human challenge studies, humoral and cellular immunity parameters, and their potential correlation with real-life protection from disease.
Collapse
Affiliation(s)
- Csaba Laszlofy
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, 6720 Szeged, Hungary; (C.L.); (Z.B.)
| | | | - Zoltan Barath
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, 6720 Szeged, Hungary; (C.L.); (Z.B.)
| | - Zoltan Vajo
- Department of Family Medicine, Semmelweis University Medical School, 1085 Budapest, Hungary
| |
Collapse
|
5
|
Leroux-Roels I, Willems P, Waerlop G, Janssens Y, Tourneur J, De Boever F, Bruhwyler J, Alhatemi A, Jacobs B, Nicolas F, Leroux-Roels G, Le Vert A. Immunogenicity, safety, and preliminary efficacy evaluation of OVX836, a nucleoprotein-based universal influenza A vaccine candidate: a randomised, double-blind, placebo-controlled, phase 2a trial. THE LANCET. INFECTIOUS DISEASES 2023; 23:1360-1369. [PMID: 37517422 DOI: 10.1016/s1473-3099(23)00351-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND OVX836, a recombinant vaccine containing the nucleoprotein of the influenza A virus A/WSN/1933 (H1N1) and the oligomerisation domain OVX313, has displayed a good safety profile and elicited dose-dependent humoral and cellular immune responses at 90 μg or 180 μg (intramuscularly) in previous clinical trials. The aim of this study was to explore higher doses, since no maximum tolerated dose had been reached. METHODS In this phase 2a, randomised, double-blind, placebo-controlled study, we recruited 137 healthy adults aged 18-55 years in a single centre in Belgium. Participants were randomly assigned (interactive web response system; block size=4) using SAS (version 9.4) to receive one single intramuscular administration of OVX836 influenza vaccine at three doses (180 μg [n=33], 300 μg [n=35], and 480 μg [n=36]) or placebo (n=33). The two primary endpoints were the safety and the cell-mediated immune response to OVX836 at the three doses in terms of change of nucleoprotein-specific IFNγ spot forming cell (SFC) frequencies in the peripheral blood mononuclear cell (PBMC) population, measured by IFNγ ELISpot, at day 8 versus pre-injection baseline (day 1). The population used for the safety analysis is the modified intention-to-treat cohort. The population used for the immunogenicity analysis is the per-protocol cohort. This trial is registered with ClinicalTrials.gov, NCT05060887, and EudraCT, 2021-002535-39. FINDINGS Participants were recruited between Nov 15, 2021, and Feb 1, 2022. OVX836 had a favourable safety profile up to 480 μg without reaching the maximum tolerated dose, and showed a good safety profile at all doses with mild local and systemic reactogenicity. 7 days after vaccination, although no significant differences were observed between the doses, OVX836 increased the frequency of nucleoprotein-specific IFNγ SFCs per million PBMCs from days 1 to 8 (primary endpoint): by 124 SFCs per 106 PMBCs (95% CI 67 to 180; p=0·002) at 180 μg; by 202 SFCs per 106 PMBCs (95% CI 138 to 267; p<0·0001) at 300 μg; by 223 SFCs per 106 PMBCs (95% CI 147 to 299; p<0·0001) at 480 μg; and decreased by 1 SFCs per 106 PMBCs (95% CI -24 to 22] in the placebo group (Kruskal-Wallis test p<0·0001 followed by Mann-Whitney's tests; per-protocol cohort). Dose-dependent and polyfunctional nucleoprotein-specific CD4 T-cell responses were observed, and CD8 T-cell responses were elicited at 300 μg and 480 μg (secondary endpoints). INTERPRETATION OVX836 appears to be a safe and well tolerated candidate vaccine that elicits humoral and cellular nucleoprotein-specific immune responses (including CD8 T cells at the highest dose levels) and showed a preliminary signal of protection against influenza. Therefore, OVX836 is a promising vaccine candidate for universal influenza A prevention, that warrants further trials. FUNDING OSIVAX, Bpifrance, Wallonia Region, and the EUs Horizon 2020 Research and Innovation Program.
Collapse
|
6
|
Patil V, Hernandez-Franco JF, Yadagiri G, Bugybayeva D, Dolatyabi S, Feliciano-Ruiz N, Schrock J, Suresh R, Hanson J, Yassine H, HogenEsch H, Renukaradhya GJ. Characterization of the Efficacy of a Split Swine Influenza A Virus Nasal Vaccine Formulated with a Nanoparticle/STING Agonist Combination Adjuvant in Conventional Pigs. Vaccines (Basel) 2023; 11:1707. [PMID: 38006039 PMCID: PMC10675483 DOI: 10.3390/vaccines11111707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Swine influenza A viruses (SwIAVs) are pathogens of both veterinary and medical significance. Intranasal (IN) vaccination has the potential to reduce flu infection. We investigated the efficacy of split SwIAV H1N2 antigens adsorbed with a plant origin nanoparticle adjuvant [Nano11-SwIAV] or in combination with a STING agonist ADU-S100 [NanoS100-SwIAV]. Conventional pigs were vaccinated via IN and challenged with a heterologous SwIAV H1N1-OH7 or 2009 H1N1 pandemic virus. Immunologically, in NanoS100-SwIAV vaccinates, we observed enhanced frequencies of activated monocytes in the blood of the pandemic virus challenged animals and in tracheobronchial lymph nodes (TBLN) of H1N1-OH7 challenged animals. In both groups of the virus challenged pigs, increased frequencies of IL-17A+ and CD49d+IL-17A+ cytotoxic lymphocytes were observed in Nano11-SwIAV vaccinates in the draining TBLN. Enhanced frequency of CD49d+IFNγ+ CTLs in the TBLN and blood of both the Nano11-based SwIAV vaccinates was observed. Animals vaccinated with both Nano11-based vaccines had upregulated cross-reactive secretory IgA in the lungs and serum IgG against heterologous and heterosubtypic viruses. However, in NanoS100-SwIAV vaccinates, a slight early reduction in the H1N1 pandemic virus and a late reduction in the SwIAV H1N1-OH7 load in the nasal passages were detected. Hence, despite vast genetic differences between the vaccine and both the challenge viruses, IN vaccination with NanoS100-SwIAV induced antigen-specific moderate levels of cross-protective immune responses.
Collapse
Affiliation(s)
- Veerupaxagouda Patil
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA; (V.P.); (G.Y.); (D.B.); (S.D.); (N.F.-R.); (J.S.); (R.S.); (J.H.)
| | - Juan F. Hernandez-Franco
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA;
| | - Ganesh Yadagiri
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA; (V.P.); (G.Y.); (D.B.); (S.D.); (N.F.-R.); (J.S.); (R.S.); (J.H.)
| | - Dina Bugybayeva
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA; (V.P.); (G.Y.); (D.B.); (S.D.); (N.F.-R.); (J.S.); (R.S.); (J.H.)
| | - Sara Dolatyabi
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA; (V.P.); (G.Y.); (D.B.); (S.D.); (N.F.-R.); (J.S.); (R.S.); (J.H.)
| | - Ninoshkaly Feliciano-Ruiz
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA; (V.P.); (G.Y.); (D.B.); (S.D.); (N.F.-R.); (J.S.); (R.S.); (J.H.)
| | - Jennifer Schrock
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA; (V.P.); (G.Y.); (D.B.); (S.D.); (N.F.-R.); (J.S.); (R.S.); (J.H.)
| | - Raksha Suresh
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA; (V.P.); (G.Y.); (D.B.); (S.D.); (N.F.-R.); (J.S.); (R.S.); (J.H.)
| | - Juliette Hanson
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA; (V.P.); (G.Y.); (D.B.); (S.D.); (N.F.-R.); (J.S.); (R.S.); (J.H.)
| | - Hadi Yassine
- Biomedical Research Center, Research Institute in Doha, Qatar University, QU-NRC, Building H10, Zone 5, Room D101, Doha P.O. Box 2713, Qatar;
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA;
| | - Gourapura J. Renukaradhya
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA; (V.P.); (G.Y.); (D.B.); (S.D.); (N.F.-R.); (J.S.); (R.S.); (J.H.)
| |
Collapse
|
7
|
He X, Zhang T, Huan S, Yang Y. Novel Influenza Vaccines: From Research and Development (R&D) Challenges to Regulatory Responses. Vaccines (Basel) 2023; 11:1573. [PMID: 37896976 PMCID: PMC10610648 DOI: 10.3390/vaccines11101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Influenza vaccines faced significant challenges in achieving sufficient protective efficacy and production efficiency in the past. In recent decades, novel influenza vaccines, characterized by efficient and scalable production, advanced platforms, and new adjuvant technologies, have overcome some of these weaknesses and have been widely licensed. Furthermore, researchers are actively pursuing the development of next-generation and universal influenza vaccines to provide comprehensive protection against potential pandemic subtypes or strains. However, new challenges have emerged as these novel vaccines undergo evaluation and authorization. In this review, we primarily outline the critical challenges and advancements in research and development (R&D) and highlight the improvements in regulatory responses for influenza vaccines.
Collapse
Affiliation(s)
- Xiangchuan He
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; (X.H.); (T.Z.)
- Key Laboratory of Innovative Drug Research and Evaluation, National Medical Products Administration, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Tianxiang Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; (X.H.); (T.Z.)
- Key Laboratory of Innovative Drug Research and Evaluation, National Medical Products Administration, Beijing 100084, China
| | - Shitong Huan
- China Office, The Bill & Melinda Gates Foundation, Beijing 100084, China
| | - Yue Yang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; (X.H.); (T.Z.)
- Key Laboratory of Innovative Drug Research and Evaluation, National Medical Products Administration, Beijing 100084, China
| |
Collapse
|
8
|
Gianchecchi E, Torelli A, Piu P, Bonifazi C, Ganfini L, Montomoli E. Flow cytometry as an integrative method for the evaluation of vaccine immunogenicity: A validation approach. Biochem Biophys Rep 2023; 34:101472. [PMID: 37153861 PMCID: PMC10160688 DOI: 10.1016/j.bbrep.2023.101472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023] Open
Abstract
The applied bioanalytical assays used for the evaluation of human immune responses from samples collected during clinical trials must be well characterized, fully validated and properly documented to provide reliable results. Even though recommendations for the standardization of flow cytometry instrumentation and assay validation for its clinical application have been published by several organizations, definitive guidelines are not available yet. The aim of the present paper is to provide a validation approach for flow cytometry, examining parameters such as linearity, relative accuracy, repeatability, intermediate precision, range and detection limits and specificity, in order to demonstrate and document its applicability for clinical research purposes and its possible use as one of the methods for the evaluation of vaccine immunogenicity.
Collapse
Affiliation(s)
| | - Alessandro Torelli
- CSL Seqirus, Via Del Pozzo 3/A, S. Martino, 53035, Monteriggioni, SI, Italy
| | | | - Carolina Bonifazi
- VisMederi S.r.l., Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | - Emanuele Montomoli
- VisMederi S.r.l., Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
9
|
A'la R, Wijaya AY, Susilowati H, Kuncorojakti S, Diyantoro, Rahmahani J, Rantam FA. Inactivated SARS-CoV-2 vaccine candidate immunization on non-human primate animal model: B-cell and T-cell responses immune evaluation. Heliyon 2023; 9:e18039. [PMID: 37519714 PMCID: PMC10372371 DOI: 10.1016/j.heliyon.2023.e18039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/21/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND SARS-CoV-2 vaccine was proven to be an effective and efficient measure for mitigating pandemic. COVID-19 infection and mortality subsided along with the increaseing COVID-19 vaccination coverage. Vaccine and health resource equity are predominant factors in COVID-19 pandemic management. Vaccine development for Indonesia, aims to ensure a sustainable pandemic control and steady national stability restoration. A decent vaccine must induce immunity against COVID-19 with minimum adverse reaction. Immunogenicity and ability to induce neutralizing antibody evaluation needs to be performed as part of the SARS-CoV-2 inactivated vaccine development from East Java, Indonesia isolate (Vaksin Merah Putih-INAVAC). OBJECTIVE This research demonstrated INAVAC performance in inducing the production neutralizing antibody along with its effects on CD4+ and CD8+ cells response in Macaca fascicularis (non-human primate). METHODS Two dosages of 3 μg and 5 μg were tested, compared to sham (NaCl 0.9%) in 10 Macaca fascicularis (2 injection intramuscular with 14 days interval). All animals were monitored daily for clinical signs. Nasopharyngeal samples were analyzed using qRT-PCR while the serum were tested using ELISA and neutralization assay, whereas PBMCs were flowcytrometrically analyzed to measure CD4+ and CD8+ population. RESULTS It is observed that both vaccine doses could stimulate relatively similar immune response and neutralizing antibody (end GMT post challenge = 905,1), whereas higher CD8+ cells response were reported in the 5 μg group after the 3rd day post-challenge. The dose of vaccine that produce adequate immune cell stimulation with neutralizing antibody induction can be adopted to clinical study, as favorable result of these parameters could predict minimum adverse reaction from inflammation response with balanced immune response. CONCLUSIONS Therefore, it is concluded that Vaksin Merah Putih-INAVAC with 3 μg dose showed a favorable potential to be developed and tested as human vaccine.
Collapse
Affiliation(s)
- Rofiqul A'la
- Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Helen Susilowati
- Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Suryo Kuncorojakti
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Diyantoro
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Indonesia
| | - Jola Rahmahani
- Virology and Immunology Laboratory, Department of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Fedik Abdul Rantam
- Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Virology and Immunology Laboratory, Department of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
10
|
Bagga S, Krishnan A, Dar L. Revisiting live attenuated influenza vaccine efficacy among children in developing countries. Vaccine 2023; 41:1009-1017. [PMID: 36604216 DOI: 10.1016/j.vaccine.2022.12.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023]
Abstract
Seasonal influenza epidemics cause significant pediatric mortality and morbidity worldwide. Live attenuated influenza vaccines (LAIVs) can be administered intranasally, induce a broad and robust immune response, demonstrate higher yields during manufacturing as compared to inactivated influenza vaccines (IIVs), and thereby represent an attractive possibility for young children in developing countries. We summarize recent pediatric studies evaluating LAIV efficacy in developing countries where a large proportion of the influenza-virus-associated respiratory disease burden occurs. Recently, two randomized controlled trials (RCTs) assessing Russian-backbone trivalent LAIV in children reported contradictory results; vaccine efficacy varied between Bangladesh (41 %) and Senegal (0.0 %) against all influenza viral strains. Prior to 2013, Ann Arbor-based LAIV demonstrated superior efficacy as compared to IIV. However, due to low effectiveness of the Ann Arbor-based LAIV against influenza A(H1N1)pdm09-like viruses, the CDC Advisory Committee on Immunization Practices (ACIP) recommended against the use of LAIV during the 2016-17 and 2017-18 influenza seasons. Reduced replicative fitness of the A(H1N1)pdm09 LAIV strains is thought to have led to the low effectiveness of the Ann-Arbor-based LAIV. Once the A(H1N1)pdm09 component was updated, the ACIP reintroduced the Ann-Arbor-based LAIV as a vaccine choice for the 2018-19 influenza season. In 2021, results from a 2-year RCT evaluating the Russian-backbone trivalent LAIV in rural north India reported that LAIV demonstrated significantly lower efficacy compared to IIV, but in Year 2, the vaccine efficacy for LAIV and IIV was comparable. A profounder understanding of the mechanisms underlying varied efficacy of LAIV in developing countries is warranted. Assessing replicative fitness, in addition to antigenicity, when selecting annual A(H1N1)pdm09 components in the Russian-backbone trivalent LAIVs is essential and may ultimately, enable widespread utility in resource-poor settings.
Collapse
Affiliation(s)
- Sumedha Bagga
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Anand Krishnan
- Centre for Community Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Lalit Dar
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
11
|
Zhu H, Li X, Ren X, Chen H, Qian P. Improving cross-protection against influenza virus in mice using a nanoparticle vaccine of mini-HA. Vaccine 2022; 40:6352-6361. [PMID: 36175214 DOI: 10.1016/j.vaccine.2022.09.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 01/27/2023]
Abstract
This study aimed to investigate the protective effect of mini-hemagglutinin (mini-HA) proteins expressed on lumazine synthase (LS) nanoparticles against influenza. Soluble mini-HA proteins were assembled with LS proteins via SpyTag/SpyCatcher in vitro. The size of mini-HA-LS nanoparticles was characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS), and the effect of mini-HA-LS nano-vaccines was explored in mice. The results indicate that the diameter of mini-HA-LS nanoparticles was approximately 60-80 nm. The nanoparticles could induce stronger humoral and cellular immune responses and produce cross-clade protection against influenza in mice.
Collapse
Affiliation(s)
- Hechao Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Xujiao Ren
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China.
| |
Collapse
|
12
|
Pliasas VC, Menne Z, Aida V, Yin JH, Naskou MC, Neasham PJ, North JF, Wilson D, Horzmann KA, Jacob J, Skountzou I, Kyriakis CS. A Novel Neuraminidase Virus-Like Particle Vaccine Offers Protection Against Heterologous H3N2 Influenza Virus Infection in the Porcine Model. Front Immunol 2022; 13:915364. [PMID: 35874791 PMCID: PMC9300842 DOI: 10.3389/fimmu.2022.915364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Influenza A viruses (IAVs) pose a global health threat, contributing to hundreds of thousands of deaths and millions of hospitalizations annually. The two major surface glycoproteins of IAVs, hemagglutinin (HA) and neuraminidase (NA), are important antigens in eliciting neutralizing antibodies and protection against disease. However, NA is generally ignored in the formulation and development of influenza vaccines. In this study, we evaluate the immunogenicity and efficacy against challenge of a novel NA virus-like particles (VLPs) vaccine in the porcine model. We developed an NA2 VLP vaccine containing the NA protein from A/Perth/16/2009 (H3N2) and the matrix 1 (M1) protein from A/MI/73/2015, formulated with a water-in-oil-in-water adjuvant. Responses to NA2 VLPs were compared to a commercial adjuvanted quadrivalent whole inactivated virus (QWIV) swine IAV vaccine. Animals were prime boost vaccinated 21 days apart and challenged four weeks later with an H3N2 swine IAV field isolate, A/swine/NC/KH1552516/2016. Pigs vaccinated with the commercial QWIV vaccine demonstrated high hemagglutination inhibition (HAI) titers but very weak anti-NA antibody titers and subsequently undetectable NA inhibition (NAI) titers. Conversely, NA2 VLP vaccinated pigs demonstrated undetectable HAI titers but high anti-NA antibody titers and NAI titers. Post-challenge, NA2 VLPs and the commercial QWIV vaccine showed similar reductions in virus replication, pulmonary neutrophilic infiltration, and lung inflammation compared to unvaccinated controls. These data suggest that anti-NA immunity following NA2 VLP vaccination offers comparable protection to QWIV swine IAV vaccines inducing primarily anti-HA responses.
Collapse
Affiliation(s)
- Vasilis C. Pliasas
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - Zach Menne
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Virginia Aida
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - Ji-Hang Yin
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Maria C. Naskou
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Peter J. Neasham
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - J. Fletcher North
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - Dylan Wilson
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Katharine A. Horzmann
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Joshy Jacob
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Ioanna Skountzou
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, United States
- *Correspondence: Constantinos S. Kyriakis, ; Ioanna Skountzou,
| | - Constantinos S. Kyriakis
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
- *Correspondence: Constantinos S. Kyriakis, ; Ioanna Skountzou,
| |
Collapse
|
13
|
Leroux-Roels I, Waerlop G, Tourneur J, De Boever F, Maes C, Bruhwyler J, Guyon-Gellin D, Moris P, Del Campo J, Willems P, Leroux-Roels G, Le Vert A, Nicolas F. Randomized, Double-Blind, Reference-Controlled, Phase 2a Study Evaluating the Immunogenicity and Safety of OVX836, A Nucleoprotein-Based Influenza Vaccine. Front Immunol 2022; 13:852904. [PMID: 35464450 PMCID: PMC9022189 DOI: 10.3389/fimmu.2022.852904] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
OVX836 is a recombinant protein-based vaccine targeting the highly conserved influenza nucleoprotein (NP), which aims to confer a broad-spectrum protection against influenza. In a Phase 1 study, OVX836, administered intramuscularly, has been found safe and immunogenic. The 90µg and 180µg dose levels were selected to be further evaluated in this randomized, monocenter, reference-controlled (Influvac Tetra™: quadrivalent seasonal influenza subunit vaccine), parallel group, double-blind, Phase 2a study in 300 healthy volunteers, aged 18-65 years, during the 2019/2020 flu season. Safety, influenza-like illness episodes (ILI; based on the Flu-PRO® questionnaire) and immunogenicity were assessed up to 180 days post-vaccination. OVX836 was safe and presented a reactogenicity profile similar to Influvac Tetra. It induced a significant increase in terms of NP-specific interferon-gamma (IFNγ) spot forming cells (SFCs), NP-specific CD4+ T-cells (essentially polyfunctional cells) and anti-NP IgG responses. OVX836 was superior to Influvac Tetra for all immunological parameters related to NP, and the 180µg dose was significantly superior to the 90µg dose for SFCs and CD4+ T-cells expressing IFNγ. Both the CD4+ T-cell and the anti-NP IgG responses persisted up to Day 180. An efficacy signal was observed with OVX836 at 180µg through reduction of ILI episodes occurring during the flu season as of 14 days post-vaccination. In conclusion, these results encourage further clinical evaluation of OVX836 in order to confirm the signal of efficacy on ILIs and/or laboratory-confirmed influenza cases. NCT04192500 (https://clinicaltrials.gov/ct2/show/study/NCT04192500).
Collapse
Affiliation(s)
- Isabel Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium
| | - Gwenn Waerlop
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium
| | | | - Fien De Boever
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium
| | - Catherine Maes
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium
| | | | | | | | | | | | - Geert Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium
| | | | | |
Collapse
|
14
|
McIlwain DR, Chen H, Rahil Z, Bidoki NH, Jiang S, Bjornson Z, Kolhatkar NS, Martinez CJ, Gaudillière B, Hedou J, Mukherjee N, Schürch CM, Trejo A, Affrime M, Bock B, Kim K, Liebowitz D, Aghaeepour N, Tucker SN, Nolan GP. Human influenza virus challenge identifies cellular correlates of protection for oral vaccination. Cell Host Microbe 2021; 29:1828-1837.e5. [PMID: 34784508 PMCID: PMC8665113 DOI: 10.1016/j.chom.2021.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/16/2021] [Accepted: 10/21/2021] [Indexed: 01/23/2023]
Abstract
Developing new influenza vaccines with improved performance and easier administration routes hinges on defining correlates of protection. Vaccine-elicited cellular correlates of protection for influenza in humans have not yet been demonstrated. A phase-2 double-blind randomized placebo and active (inactivated influenza vaccine) controlled study provides evidence that a human-adenovirus-5-based oral influenza vaccine tablet (VXA-A1.1) can protect from H1N1 virus challenge in humans. Mass cytometry characterization of vaccine-elicited cellular immune responses identified shared and vaccine-type-specific responses across B and T cells. For VXA-A1.1, the abundance of hemagglutinin-specific plasmablasts and plasmablasts positive for integrin α4β7, phosphorylated STAT5, or lacking expression of CD62L at day 8 were significantly correlated with protection from developing viral shedding following virus challenge at day 90 and contributed to an effective machine learning model of protection. These findings reveal the characteristics of vaccine-elicited cellular correlates of protection for an oral influenza vaccine.
Collapse
Affiliation(s)
- David R McIlwain
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA; WCCT Global, Cypress, CA, USA.
| | - Han Chen
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Zainab Rahil
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Neda Hajiakhoond Bidoki
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Biomedical Informatics, Stanford University School of Medicine, Stanford, CA, USA
| | - Sizun Jiang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA; Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Zach Bjornson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Brice Gaudillière
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Julien Hedou
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nilanjan Mukherjee
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christian M Schürch
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA; Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Angelica Trejo
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Kenneth Kim
- Ark Clinical Research, LLC, Long Beach, CA, USA
| | | | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Biomedical Informatics, Stanford University School of Medicine, Stanford, CA, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Garry P Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
15
|
Rivas AL, van Regenmortel MHV. COVID-19 related interdisciplinary methods: Preventing errors and detecting research opportunities. Methods 2021; 195:3-14. [PMID: 34029715 PMCID: PMC8545872 DOI: 10.1016/j.ymeth.2021.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
More than 130,000 peer-reviewed studies have been published within one year after COVID-19 emerged in many countries. This large and rapidly growing field may overwhelm the synthesizing abilities of both researchers and policy-makers. To provide a sinopsis, prevent errors, and detect cognitive gaps that may require interdisciplinary research methods, the literature on COVID-19 is summarized, twice. The overall purpose of this study is to generate a dialogue meant to explain the genesis of and/or find remedies for omissions and contradictions. The first review starts in Biology and ends in Policy. Policy is chosen as a destination because it is the setting where cognitive integration must occur. The second review follows the opposite path: it begins with stated policies on COVID-19 and then their assumptions and disciplinary relationships are identified. The purpose of this interdisciplinary method on methods is to yield a relational and explanatory view of the field -one strategy likely to be incomplete but usable when large bodies of literature need to be rapidly summarized. These reviews identify nine inter-related problems, research needs, or omissions, namely: (1) nation-wide, geo-referenced, epidemiological data collection systems (open to and monitored by the public); (2) metrics meant to detect non-symptomatic cases -e.g., test positivity-; (3) cost-benefit oriented methods, which should demonstrate they detect silent viral spreaders even with limited testing; (4) new personalized tests that inform on biological functions and disease correlates, such as cell-mediated immunity, co-morbidities, and immuno-suppression; (5) factors that influence vaccine effectiveness; (6) economic predictions that consider the long-term consequences likely to follow epidemics that growth exponentially; (7) the errors induced by self-limiting and/or implausible paradigms, such as binary and reductionist approaches; (8) new governance models that emphasize problem-solving skills, social participation, and the use of scientific knowledge; and (9) new educational programs that utilize visual aids and audience-specific communication strategies. The analysis indicates that, to optimally address these problems, disciplinary and social integration is needed. By asking what is/are the potential cause(s) and consequence(s) of each issue, this methodology generates visualizations that reveal possible relationships as well as omissions and contradictions. While inherently limited in scope and likely to become obsolete, these shortcomings are avoided when this 'method on methods' is frequently practiced. Open-ended, inter-/trans-disciplinary perspectives and broad social participation may help researchers and citizens to construct, de-construct, and re-construct COVID-19 related research.
Collapse
Affiliation(s)
- Ariel L Rivas
- Center for Global Health, School of Medicine, University of New Mexico, Albuquerque, NM, United States.
| | - Marc H V van Regenmortel
- University of Vienna, Austria; and Higher School of Biotechnology, University of Strasbourg, and French National Research Center, France
| |
Collapse
|
16
|
Bansal A, Trieu MC, Mohn KGI, Cox RJ. Safety, Immunogenicity, Efficacy and Effectiveness of Inactivated Influenza Vaccines in Healthy Pregnant Women and Children Under 5 Years: An Evidence-Based Clinical Review. Front Immunol 2021; 12:744774. [PMID: 34691051 PMCID: PMC8526930 DOI: 10.3389/fimmu.2021.744774] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/08/2021] [Indexed: 02/03/2023] Open
Abstract
Annual influenza vaccination is often recommended for pregnant women and young children to reduce the risk of severe influenza. However, most studies investigating the safety, immunogenicity, and efficacy or effectiveness of influenza vaccines are conducted in healthy adults. In this evidence-based clinical review, we provide an update on the safety profile, immunogenicity, and efficacy/effectiveness of inactivated influenza vaccines (IIVs) in healthy pregnant women and children <5 years old. Six electronic databases were searched until May 27, 2021. We identified 3,731 articles, of which 93 met the eligibility criteria and were included. The IIVs were generally well tolerated in pregnant women and young children, with low frequencies of adverse events following IIV administration; however, continuous vaccine safety monitoring systems are necessary to detect rare adverse events. IIVs generated good antibody responses, and the seroprotection rates after IIVs were moderate to high in pregnant women (range = 65%-96%) and young children (range = 50%-100%), varying between the different influenza types/subtypes and seasons. Studies show vaccine efficacy/effectiveness values of 50%-70% in pregnant women and 20%-90% in young children against lab-confirmed influenza, although the efficacy/effectiveness depended on the study design, host factors, vaccine type, manufacturing practices, and the antigenic match/mismatch between the influenza vaccine strains and the circulating strains. Current evidence suggests that the benefits of IIVs far outweigh the potential risks and that IIVs should be recommended for pregnant women and young children.
Collapse
Affiliation(s)
- Amit Bansal
- The Influenza Centre, Department of Clinical Sciences, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Mai-Chi Trieu
- The Influenza Centre, Department of Clinical Sciences, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Kristin G I Mohn
- The Influenza Centre, Department of Clinical Sciences, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Rebecca Jane Cox
- The Influenza Centre, Department of Clinical Sciences, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Helse Bergen, Bergen, Norway
| |
Collapse
|
17
|
Jang H, Ross TM. Hemagglutination Inhibition (HAI) antibody landscapes after vaccination with H7Nx virus like particles. PLoS One 2021; 16:e0246613. [PMID: 33735274 PMCID: PMC7971484 DOI: 10.1371/journal.pone.0246613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/01/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND A systemic evaluation of the antigenic differences of the H7 influenza hemagglutinin (HA) proteins, especially for the viruses isolated after 2016, are limited. The purpose of this study was to investigate the antigenic differences of major H7 strains with an ultimate aim to discover H7 HA proteins that can elicit protective receptor-binding antibodies against co-circulating H7 influenza strains. METHOD A panel of eight H7 influenza strains were selected from 3,633 H7 HA amino acid sequences identified over the past two decades (2000-2018). The sequences were expressed on the surface of virus like particles (VLPs) and used to vaccinate C57BL/6 mice. Serum samples were collected and tested for hemagglutination-inhibition (HAI) activity. The vaccinated mice were challenged with lethal dose of H7N9 virus, A/Anhui/1/2013. RESULTS VLPs expressing the H7 HA antigens elicited broadly reactive antibodies each of the selected H7 HAs, except the A/Turkey/Italy/589/2000 (Italy/00) H7 HA. A putative glycosylation due to an A169T substitution in antigenic site B was identified as a unique antigenic profile of Italy/00. Introduction of the putative glycosylation site (H7 HA-A169T) significantly altered the antigenic profile of HA of the A/Anhui/1/2013 (H7N9) strain. CONCLUSION This study identified key amino acid mutations that result in severe vaccine mismatches for future H7 epidemics. Future universal influenza vaccine candidates will need to focus on viral variants with these key mutations.
Collapse
Affiliation(s)
- Hyesun Jang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States of America
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States of America
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
18
|
Comparison of Immunogenicity and Safety between a Single Dose and One Booster Trivalent Inactivated Influenza Vaccination in Patients with Chronic Kidney Disease: A 20-Week, Open-Label Trial. Vaccines (Basel) 2021; 9:vaccines9030192. [PMID: 33669067 PMCID: PMC7996510 DOI: 10.3390/vaccines9030192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Non-dialysis-dependent chronic kidney disease (CKD-ND) patients are recommended to receive a one-dose influenza vaccination annually. However, studies investigating vaccine efficacy in the CKD-ND population are still lacking. In this study, we aimed to evaluate vaccine efficacy between the one-dose and two-dose regimen and among patients with different stages of CKD throughout a 20-week follow-up period. METHODS We conducted a single-center, non-randomized, open-label, controlled trial among patients with all stages of CKD-ND. Subjects were classified as unvaccinated, one-dose, and two-dose groups (4 weeks apart) after enrollment. Serial changes in immunological parameters (0, 4, 8, and 20 weeks after enrollment), including seroprotection, geometric mean titer (GMT), GMT fold-increase, seroconversion, and seroresponse, were applied to evaluate vaccine efficacy. RESULTS There were 43, 84, and 71 patients in the unvaccinated, one-dose, and two-dose vaccination groups, respectively. At 4-8 weeks after vaccination, seroprotection rates in the one- and two-dose group for H1N1, H3N2, and B ranged from 82.6-95.8%, 97.4-100%, and 73.9-100%, respectively. The concomitant seroconversion and GMT fold-increases nearly met the suggested criteria for vaccine efficacy for the elderly population. Although the seroprotection rates for all of the groups were adequate, the seroconversion and GMT fold-increase at 20 weeks after vaccination did not meet the criteria for vaccine efficacy. The two-dose regimen had a higher probability of achieving seroprotection for B strains (Odds ratio: 3.5, 95% confidence interval (1.30-9.40)). No significant differences in vaccine efficacy were found between early (stage 1-3) and late (stage 4-5) stage CKD. CONCLUSIONS The standard one-dose vaccination can elicit sufficient protective antibodies. The two-dose regimen induced a better immune response when the baseline serum antibody titer was low. Monitoring change in antibody titers for a longer duration is warranted to further determine the current vaccine strategy in CKD-ND population.
Collapse
|
19
|
Burlacu A, Crisan-Dabija R, Popa IV, Covic A. The Second Wave of COVID-19 Pandemic Strikes during the Flu Season: An Awareness Perspective. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E707. [PMID: 33352889 PMCID: PMC7766640 DOI: 10.3390/medicina56120707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/02/2020] [Accepted: 12/16/2020] [Indexed: 11/16/2022]
Abstract
Coinfection with both SARS-CoV-2 and influenza viruses seems to be a real and severe problem. However, coinfection is far from a simple matter, and cannot be considered having more unfavorable outcomes as a direct consequence. In reality, the aftermath is powerfully nuanced by the presence of risk factors and specific molecular mechanisms. Our objective was to raise awareness around the unpredictable association between COVID-19 pandemics and the upcoming flu season, and make arguments about the need to develop new routine testing protocols for both viruses, at least during the period with an expected high incidence. Our reasoning is built around the various impacts that the whole range of risk groups, common immunological mechanisms, and complex interactions, such as influenza vaccination, will have on patients' prognosis. We show that the more flawed clinical course is due to managing only one of the infections (and, subsequently, neglecting the other condition).
Collapse
Affiliation(s)
- Alexandru Burlacu
- Department of Interventional Cardiology—Cardiovascular Diseases Institute, 700503 Iasi, Romania;
- Department of Internal Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.C.-D.); (A.C.)
| | - Radu Crisan-Dabija
- Department of Internal Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.C.-D.); (A.C.)
- Pulmonology Department, Clinic of Pulmonary Diseases, 700115 Iasi, Romania
| | - Iolanda Valentina Popa
- Department of Internal Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.C.-D.); (A.C.)
| | - Adrian Covic
- Department of Internal Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.C.-D.); (A.C.)
- Nephrology Clinic, Dialysis, and Renal Transplant Center—‘C.I. Parhon’ University Hospital, 700503 Iasi, Romania
| |
Collapse
|
20
|
Hao X, Li S, Chen L, Dong M, Wang J, Hu J, Gu M, Wang X, Hu S, Peng D, Liu X, Shang S. Establishing a Multicolor Flow Cytometry to Characterize Cellular Immune Response in Chickens Following H7N9 Avian Influenza Virus Infection. Viruses 2020; 12:v12121396. [PMID: 33291218 PMCID: PMC7762099 DOI: 10.3390/v12121396] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
Avian influenza virus (AIV) emerged and has continued to re-emerge, continuously posing great threats to animal and human health. The detection of hemagglutination inhibition (HI) or virus neutralization antibodies (NA) is essential for assessing immune protection against AIV. However, the HI/NA-independent immune protection is constantly observed in vaccines’ development against H7N9 subtype AIV and other subtypes in chickens and mammals, necessitating the analysis of the cellular immune response. Here, we established a multi-parameter flow cytometry to examine the innate and adaptive cellular immune responses in chickens after intranasal infection with low pathogenicity H7N9 AIV. This assay allowed us to comprehensively define chicken macrophages, dendritic cells, and their MHC-II expression, NK cells, γδ T cells, B cells, and distinct T cell subsets in steady state and during infection. We found that NK cells and KUL01+ cells significantly increased after H7N9 infection, especially in the lung, and the KUL01+ cells upregulated MHC-II and CD11c expression. Additionally, the percentages and numbers of γδ T cells and CD8 T cells significantly increased and exhibited an activated phenotype with significant upregulation of CD25 expression in the lung but not in the spleen and blood. Furthermore, B cells showed increased in the lung but decreased in the blood and spleen in terms of the percentages or/and numbers, suggesting these cells may be recruited from the periphery after H7N9 infection. Our study firstly disclosed that H7N9 infection induced local and systemic cellular immune responses in chickens, the natural host of AIV, and that the flow cytometric assay developed in this study is useful for analyzing the cellular immune responses to AIVs and other avian infectious diseases and defining the correlates of immune protection.
Collapse
Affiliation(s)
- Xiaoli Hao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Shuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
| | - Lina Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
| | - Maoli Dong
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
| | - Jiongjiong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
| | - Jiao Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Min Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiaoquan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Shunlin Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou 225009, China
- Correspondence: (X.L.); (S.S.); Tel.: +86-514-879-914-16 (X.L.); +86-514-879-770-81 (S.S.)
| | - Shaobin Shang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou 225009, China
- Correspondence: (X.L.); (S.S.); Tel.: +86-514-879-914-16 (X.L.); +86-514-879-770-81 (S.S.)
| |
Collapse
|
21
|
Recombinant HA-based vaccine outperforms split and subunit vaccines in elicitation of influenza-specific CD4 T cells and CD4 T cell-dependent antibody responses in humans. NPJ Vaccines 2020; 5:77. [PMID: 32884842 PMCID: PMC7450042 DOI: 10.1038/s41541-020-00227-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Although traditional egg-based inactivated influenza vaccines can protect against infection, there have been significant efforts to develop improved formats to overcome disadvantages of this platform. Here, we have assessed human CD4 T cell responses to a traditional egg-based influenza vaccine with recently available cell-derived vaccines and recombinant baculovirus-derived vaccines. Adults were administered either egg-derived Fluzone®, mammalian cell-derived Flucelvax® or recombinant HA (Flublok®). CD4 T cell responses to each HA protein were assessed by cytokine EliSpot and intracellular staining assays. The specificity and magnitude of antibody responses were quantified by ELISA and HAI assays. By all criteria, Flublok vaccine exhibited superior performance in eliciting both CD4 T cell responses and HA-specific antibody responses, whether measured by mean response magnitude or percent of responders. Although the mechanism(s) underlying this advantage is not yet clear, it is likely that both qualitative and quantitative features of the vaccines impact the response.
Collapse
|
22
|
Liu YM, Shahed-Al-Mahmud M, Chen X, Chen TH, Liao KS, Lo JM, Wu YM, Ho MC, Wu CY, Wong CH, Jan JT, Ma C. A Carbohydrate-Binding Protein from the Edible Lablab Beans Effectively Blocks the Infections of Influenza Viruses and SARS-CoV-2. Cell Rep 2020; 32:108016. [PMID: 32755598 PMCID: PMC7380208 DOI: 10.1016/j.celrep.2020.108016] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/09/2020] [Accepted: 07/17/2020] [Indexed: 01/08/2023] Open
Abstract
The influenza virus hemagglutinin (HA) and coronavirus spike (S) protein mediate virus entry. HA and S proteins are heavily glycosylated, making them potential targets for carbohydrate binding agents such as lectins. Here, we show that the lectin FRIL, isolated from hyacinth beans (Lablab purpureus), has anti-influenza and anti-SARS-CoV-2 activity. FRIL can neutralize 11 representative human and avian influenza strains at low nanomolar concentrations, and intranasal administration of FRIL is protective against lethal H1N1 infection in mice. FRIL binds preferentially to complex-type N-glycans and neutralizes viruses that possess complex-type N-glycans on their envelopes. As a homotetramer, FRIL is capable of aggregating influenza particles through multivalent binding and trapping influenza virions in cytoplasmic late endosomes, preventing their nuclear entry. Remarkably, FRIL also effectively neutralizes SARS-CoV-2, preventing viral protein production and cytopathic effect in host cells. These findings suggest a potential application of FRIL for the prevention and/or treatment of influenza and COVID-19. FRIL is a plant lectin with potent anti-influenza and anti-SARS-CoV-2 activity FRIL preferentially binds to complex-type N-glycans on viral glycoproteins FRIL inhibits influenza virus entry by sequestering virions in late endosomes Intranasal administration of FRIL protects against lethal H1N1 challenge in mice
Collapse
Affiliation(s)
- Yo-Min Liu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; Institute of Microbiology and Immunology, National Yang Ming University, Taipei 112, Taiwan
| | | | - Xiaorui Chen
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ting-Hua Chen
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Kuo-Shiang Liao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Jennifer M Lo
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yi-Min Wu
- Institute of Biological Chemistry and Cryo-EM Center, Academia Sinica, Taipei 115, Taiwan
| | - Meng-Chiao Ho
- Institute of Biological Chemistry and Cryo-EM Center, Academia Sinica, Taipei 115, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Che Ma
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
23
|
Keay S, Poljak Z, Klapwyk M, O’Connor A, Friendship RM, O’Sullivan TL, Sargeant JM. Influenza A virus vaccine research conducted in swine from 1990 to May 2018: A scoping review. PLoS One 2020; 15:e0236062. [PMID: 32673368 PMCID: PMC7365442 DOI: 10.1371/journal.pone.0236062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/27/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Influenza A viruses of swine (IAV-S) are a global zoonotic and economic concern. Primary control is through vaccination yet a formal evidence map summarizing vaccine research conducted in pigs is not available. OBJECTIVE Ten characteristics of English language primary IAV-S vaccine research, conducted at the level of the pig or higher, were charted to identify research gaps, topics for systematic review, and coverage across different publication types. DESIGN Six online databases and grey literature were searched, without geographic, population, or study type restrictions, and abstracts screened independently and in duplicate for relevant research published between 1990 and May 2018. Full text data was charted by a single reviewer. RESULTS Over 11,000 unique citations were screened, identifying 376 for charting, including 175 proceedings from 60 conferences, and 170 journal articles from 51 journals. Reported outcomes were heterogeneous with measures of immunity (86%, n = 323) and virus detection (65%, n = 246) reported far more than production metrics (9%, n = 32). Study of transmissibility under conditions of natural exposure (n = 7), use of mathematical modelling (n = 11), and autogenous vaccine research reported in journals (n = 7), was limited. CONCLUSIONS Most research used challenge trials (n = 219) and may have poor field relevance or suitability for systematic review if the purpose is to inform clinical decisions. Literature on vaccinated breeding herds (n = 89) and weaned pigs (n = 136) is potentially sufficient for systematic review. Research under field conditions is limited, disproportionately reported in conference proceedings versus journal articles, and may be insufficient to support systematic review.
Collapse
Affiliation(s)
- Sheila Keay
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Zvonimir Poljak
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Mackenzie Klapwyk
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Annette O’Connor
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Robert M. Friendship
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Terri L. O’Sullivan
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jan M. Sargeant
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
24
|
Immunogenicity Measures of Influenza Vaccines: A Study of 1164 Registered Clinical Trials. Vaccines (Basel) 2020; 8:vaccines8020325. [PMID: 32575440 PMCID: PMC7350243 DOI: 10.3390/vaccines8020325] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 12/31/2022] Open
Abstract
Influenza carries an enormous burden each year. Annual influenza vaccination is the best means of reducing this burden. To be clinically effective, influenza vaccines must be immunogenic, and several immunological assays to test their immunogenicity have been developed. This study aimed to describe the patterns of use of the various immunological assays available to measure the influenza vaccine-induced adaptive immune response and to determine its correlates of protection. A total of 76.5% of the studies included in our analysis measured only the humoral immune response. Among these, the hemagglutination-inhibition assay was by far the most widely used. Other, less common, humoral immune response assays were: virus neutralization (21.7%), enzyme-linked immunosorbent (10.1%), single radial hemolysis (4.6%), and assays able to quantify anti-neuraminidase antibodies (1.7%). By contrast, cell-mediated immunity was quantified in only 23.5% of studies. Several variables were significantly associated with the use of single assays. Specifically, some influenza vaccine types (e.g., adjuvanted, live attenuated and cell culture-derived or recombinant), study phase and study sponsorship pattern were usually found to be statistically significant predictors. We discuss the principal findings and make some suggestions from the point of view of the various stakeholders.
Collapse
|
25
|
Romeli S, Hassan SS, Yap WB. Multi-Epitope Peptide-Based and Vaccinia-Based Universal Influenza Vaccine Candidates Subjected to Clinical Trials. Malays J Med Sci 2020; 27:10-20. [PMID: 32788837 PMCID: PMC7409566 DOI: 10.21315/mjms2020.27.2.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/29/2019] [Indexed: 12/18/2022] Open
Abstract
In light of the limited protection conferred by current influenza vaccines, immunisation using universal influenza vaccines has been proposed for protection against all or most influenza sub-types. The fundamental principle of universal influenza vaccines is based on conserved antigens found in most influenza strains, such as matrix 2, nucleocapsid, matrix 1 and stem of hemagglutinin proteins. These antigens trigger cross-protective immunity against different influenza strains. Many researchers have attempted to produce the conserved epitopes of these antigens in the form of peptides in the hope of generating universal influenza vaccine candidates that can broadly induce cross-reactive protection against influenza viral infections. However, peptide vaccines are poorly immunogenic when applied individually owing to their small molecular sizes. Hence, strategies, such as combining peptides as multi-epitope vaccines or presenting peptides on vaccinia virus particles, are employed. This review discusses the clinical and laboratory findings of several multi-epitope peptide vaccine candidates and vaccinia-based peptide vaccines. The majority of these vaccine candidates have reached the clinical trial phase. The findings in this study will indeed shed light on the applicability of universal influenza vaccines to prevent seasonal and pandemic influenza outbreaks in the near future.
Collapse
Affiliation(s)
- Syazwani Romeli
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,Center of Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Wei Boon Yap
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,Center of Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Lim WW, Leung NHL, Sullivan SG, Tchetgen Tchetgen EJ, Cowling BJ. Distinguishing Causation From Correlation in the Use of Correlates of Protection to Evaluate and Develop Influenza Vaccines. Am J Epidemiol 2020; 189:185-192. [PMID: 31598648 PMCID: PMC7217279 DOI: 10.1093/aje/kwz227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 11/13/2022] Open
Abstract
There is increasing attention to the need to identify new immune markers for the evaluation of existing and new influenza vaccines. Immune markers that could predict individual protection against infection and disease, commonly called correlates of protection (CoPs), play an important role in vaccine development and licensing. Here, we discuss the epidemiologic considerations when evaluating immune markers as potential CoPs for influenza vaccines and emphasize the distinction between correlation and causation. While an immune marker that correlates well with protection from infection can be used as a predictor of vaccine efficacy, it should be distinguished from an immune marker that plays a mechanistic role in conferring protection against a clinical endpoint-the latter might be a more reliable predictor of vaccine efficacy and a more appropriate target for rational vaccine design. To clearly distinguish mechanistic and nonmechanistic CoPs, we suggest using the term "correlates of protection" for nonmechanistic CoPs, and ''mediators of protection'' for mechanistic CoPs. Furthermore, because the interactions among and relative importance of correlates or mediators of protection can vary according to age or prior vaccine experience, the effect sizes and thresholds for protective effects for CoPs could also vary in different segments of the population.
Collapse
Affiliation(s)
- Wey Wen Lim
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, the University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Nancy H L Leung
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, the University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Sheena G Sullivan
- World Health Organization Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Eric J Tchetgen Tchetgen
- Statistics Department, the Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Benjamin J Cowling
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, the University of Hong Kong, Hong Kong SAR, People’s Republic of China
| |
Collapse
|
27
|
Chen JR, Liu YM, Tseng YC, Ma C. Better influenza vaccines: an industry perspective. J Biomed Sci 2020; 27:33. [PMID: 32059697 PMCID: PMC7023813 DOI: 10.1186/s12929-020-0626-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/23/2020] [Indexed: 01/10/2023] Open
Abstract
Vaccination is the most effective measure at preventing influenza virus infections. However, current seasonal influenza vaccines are only protective against closely matched circulating strains. Even with extensive monitoring and annual reformulation our efforts remain one step behind the rapidly evolving virus, often resulting in mismatches and low vaccine effectiveness. Fortunately, many next-generation influenza vaccines are currently in development, utilizing an array of innovative techniques to shorten production time and increase the breadth of protection. This review summarizes the production methods of current vaccines, recent advances that have been made in influenza vaccine research, and highlights potential challenges that are yet to be overcome. Special emphasis is put on the potential role of glycoengineering in influenza vaccine development, and the advantages of removing the glycan shield on influenza surface antigens to increase vaccine immunogenicity. The potential for future development of these novel influenza vaccine candidates is discussed from an industry perspective.
Collapse
Affiliation(s)
| | - Yo-Min Liu
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.,Institute of Microbiology and Immunology, National Yang Ming University, Taipei, 112, Taiwan
| | | | - Che Ma
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
28
|
Mapping Host-Related Correlates of Influenza Vaccine-Induced Immune Response: An Umbrella Review of the Available Systematic Reviews and Meta-Analyses. Vaccines (Basel) 2019; 7:vaccines7040215. [PMID: 31847273 PMCID: PMC6963823 DOI: 10.3390/vaccines7040215] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/05/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022] Open
Abstract
Seasonal influenza is the leading infectious disease in terms of its health and socioeconomic impact. Annual immunization is the most efficient way to reduce this burden. Several correlates of influenza vaccine-induced protection are commonly used, owing to their ready availability and cheapness. Influenza vaccine-induced immunogenicity is a function of host-, virus- and vaccine-related factors. Host-related factors constitute the most heterogeneous group. The objective of this study was to analyze the available systematic evidence on the host factors able to modify influenza vaccine-induced immunogenicity. An umbrella review approach was undertaken. A total of 28 systematic reviews/meta-analyses were analyzed—these covered the following domains: intravenous drug use, psychological stress, acute and chronic physical exercise, genetic polymorphisms, use of pre-/pro-/symbiotics, previous Bacillus Calmette–Guérin vaccination, diabetes mellitus, vitamin D supplementation/deficiency, latent cytomegalovirus infection and various forms of immunosuppression. In order to present effect sizes on the same scale, all possible meta-analyses were re-performed and cumulative evidence synthesis ranking was carried out. The meta-analysis was conducted separately on each health condition category and virus (sub)type. A total of 97 pooled estimates were used in order to construct an evidence-based stakeholder-friendly map. The principal public health implications are discussed.
Collapse
|