1
|
Amman BR, Schuh AJ, Sealy TK, Conteh I, Akurut GG, Koroma AH, Kamugisha K, Graziano JC, Saidu E, Bangura DF, Kamanda ES, Bakarr IA, Johnny J, Enyel EM, Musa JA, Osborne A, Foday IK, Bangura C, Sumaila C, Williams SMT, Fefegula GM, Atimnedi P, Lebbie A, Towner JS. Co-Infections with Orthomarburgviruses, Paramyxoviruses, and Orthonairoviruses in Egyptian Rousette Bats, Uganda and Sierra Leone. Emerg Infect Dis 2025; 31:1015-1018. [PMID: 40305387 PMCID: PMC12044226 DOI: 10.3201/eid3105.241669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
We report 1.3% (19/1,511) of Egyptian rousette bats (ERBs) in Uganda and Sierra Leone were co-infected with different combinations of Marburg, Sosuga, Kasokero, or Yogue viruses. To prevent infection by those viruses, we recommend avoiding ERB-populated areas, avoiding ERBs and ERB-contaminated objects, and thoroughly washing harvested fruits before consumption.
Collapse
|
2
|
Niu Y, McKee CD. Bat Viral Shedding: A Review of Seasonal Patterns and Risk Factors. Vector Borne Zoonotic Dis 2025; 25:229-239. [PMID: 39836021 DOI: 10.1089/vbz.2024.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Background: Bats act as reservoirs for a variety of zoonotic viruses, sometimes leading to spillover into humans and potential risks of global transmission. Viral shedding from bats is an essential prerequisite to bat-to-human viral transmission and understanding the timing and intensity of viral shedding from bats is critical to mitigate spillover risks. However, there are limited investigations on bats' seasonal viral shedding patterns and their related risk factors. We conducted a comprehensive review of longitudinal studies on bat viruses with spillover potential to synthesize patterns of seasonal viral shedding and explore associated risk factors. Methods: We extracted data from 60 reviewed articles and obtained 1085 longitudinal sampling events. We analyzed viral shedding events using entropy values to quantitatively assess whether they occur in a consistent, pulsed pattern in a given season. Results: We found that clear seasonal shedding patterns were common in bats. Eight out of seventeen species-level analyses presented clear seasonal patterns. Viral shedding pulses often coincide with bats' life cycles, especially in weaning and parturition seasons. Juvenile bats with waning maternal antibodies, pregnant bats undergoing immunity changes, and hibernation periods with decreased immune responses could be potential risk factors influencing seasonal shedding patterns. Conclusion: Based on our findings, we recommend future longitudinal studies on bat viruses that combine direct viral testing and serological testing, prioritize longitudinal research following young bats throughout their developmental stages, and broaden the geographical range of longitudinal studies on bat viruses based on current surveillance reports. Our review identified critical periods with heightened viral shedding for some viruses in bat species, which would help promote efforts to minimize spillovers and prevent outbreaks.
Collapse
Affiliation(s)
- Yannan Niu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Clifton D McKee
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Schuh AJ, Amman BR, Guito JC, Graziano JC, Sealy TK, Towner JS. Modeling natural coinfection in a bat reservoir shows modulation of Marburg virus shedding and spillover potential. PLoS Pathog 2025; 21:e1012901. [PMID: 40096181 PMCID: PMC11978059 DOI: 10.1371/journal.ppat.1012901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 04/08/2025] [Accepted: 01/12/2025] [Indexed: 03/19/2025] Open
Abstract
The Egyptian rousette bat (ERB) is a natural reservoir for Marburg virus (MARV; family Filoviridae), a putative reservoir for Sosuga virus (SOSV; family Paramyxoviridae), and a vertebrate reservoir for Kasokero virus (KASV; family Orthonairoviridae); however, the effect of naturally occurring coinfection by those viruses on MARV shedding and spillover potential is unknown. To answer this question, we experimentally infected one cohort of captive-bred ERBs with SOSV+MARV (n=12 bats) or MARV only (n=12 bats) and a second cohort with KASV+MARV (n=12 bats) or MARV only (n=12 bats), and then collected blood, oral swab, and rectal swab specimens throughout the course of infection to monitor viral shedding. Compared to the MARV-monoinfected bat group, the SOSV+MARV-coinfected bat group exhibited a significantly shortened duration of MARV oral shedding and a significantly decreased anti-MARV IgG response, which may increase the capacity for MARV reinfection. In contrast, relative to the MARV-monoinfected bat group, the KASV+MARV-coinfected bat group exhibited significantly increased peak magnitudes and durations of MARV viremia and oral shedding, as well as a significantly increased anti-MARV IgG response. Correspondingly, cumulative MARV shedding loads, a measure of infectiousness, were significantly higher in the KASV+MARV-coinfected bat group than the MARV-monoinfected bat group. Four of the KASV+MARV-coinfected bats were classified as MARV supershedders, together accounting for 72.5% of the KASV-MARV experimental cohort's total shedding. Our results demonstrate that SOSV+MARV and KASV+MARV coinfection of ERBs differentially modulates MARV shedding and anti-MARV IgG responses, thereby implicating MARV coinfection as playing a critical role in bat-to-bat MARV transmission dynamics and spillover potential.
Collapse
Affiliation(s)
- Amy J. Schuh
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, United States Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- United States Public Health Service Commissioned Corps, Rockville, Maryland, United States of America
| | - Brian R. Amman
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, United States Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jonathan C. Guito
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, United States Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - James C. Graziano
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, United States Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Tara K. Sealy
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, United States Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jonathan S. Towner
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, United States Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
4
|
Muvengi TS, Mortlock M, Kain MP, Markotter W. Gastrointestinal Shedding of Rubulaviruses from Egyptian Rousette Bats: Temporal Dynamics and Spillover Implications. Microorganisms 2024; 12:2505. [PMID: 39770708 PMCID: PMC11728649 DOI: 10.3390/microorganisms12122505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
Bats are recognized as reservoirs for diverse paramyxoviruses, some of which are closely related to known human pathogens or directly implicated in zoonotic transmission. The emergence of the zoonotic Sosuga virus (SOSV) from Egyptian rousette bats (ERBs), which caused an acute febrile illness in a reported human case in Africa, has increased the focus on the zoonotic potential of the Rubulavirinae subfamily. Previous studies identified human parainfluenza virus 2 (HPIV2)- and mumps (MuV)-related viruses in ERBs from South Africa, with HPIV2-related viruses restricted to gastrointestinal samples, an underexplored target for rubulavirus biosurveillance, suggesting that sample-type bias may have led to their oversight. To address this, we performed a longitudinal analysis of population-level fecal samples from an ERB maternity roost for rubulavirus RNA, employing a broadly reactive hemi-nested RT-PCR assay targeting the polymerase gene. We detected HPIV2- and MuV-related viruses in addition to numerous pararubulaviruses, highlighting significant viral diversity. Temporal analysis of three major clades revealed peaks in rubulavirus shedding that correlated with seasonal environmental changes and host reproductive cycles, although shedding patterns varied between clades. These findings identify specific periods of increased risk for the spillover of bat-associated rubulaviruses to humans, providing critical information for developing targeted mitigation strategies to minimize zoonotic transmission risk within the local community.
Collapse
Affiliation(s)
- Tauya S. Muvengi
- Centre for Viral Zoonoses, Department of Medical Virology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa (M.M.)
| | - Marinda Mortlock
- Centre for Viral Zoonoses, Department of Medical Virology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa (M.M.)
| | | | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa (M.M.)
| |
Collapse
|
5
|
Powell-Romero F, Wells K, Clark NJ. A systematic review and guide for using multi-response statistical models in co-infection research. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231589. [PMID: 39371046 PMCID: PMC11451405 DOI: 10.1098/rsos.231589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/17/2024] [Accepted: 08/05/2024] [Indexed: 10/08/2024]
Abstract
The simultaneous infection of organisms with two or more co-occurring pathogens, otherwise known as co-infections, concomitant infections or multiple infections, plays a significant role in the dynamics and consequences of infectious diseases in both humans and animals. To understand co-infections, ecologists and epidemiologists rely on models capable of accommodating multiple response variables. However, given the diversity of available approaches, choosing a model that is suitable for drawing meaningful conclusions from observational data is not a straightforward task. To provide clearer guidance for statistical model use in co-infection research, we conducted a systematic review to (i) understand the breadth of study goals and host-pathogen systems being pursued with multi-response models and (ii) determine the degree of crossover of knowledge among disciplines. In total, we identified 69 peer-reviewed primary studies that jointly measured infection patterns with two or more pathogens of humans or animals in natural environments. We found stark divisions in research objectives and methods among different disciplines, suggesting that cross-disciplinary insights into co-infection patterns and processes for different human and animal contexts are currently limited. Citation network analysis also revealed limited knowledge exchange between ecology and epidemiology. These findings collectively highlight the need for greater interdisciplinary collaboration for improving disease management.
Collapse
Affiliation(s)
- Francisca Powell-Romero
- School of Veterinary Science, The University of Queensland, 5391 Warrego Hwy, Gatton, Queensland4343, Australia
| | - Konstans Wells
- Department of Biosciences, Swansea University, Singleton Park, SwanseaSA2 8PP, UK
| | - Nicholas J. Clark
- School of Veterinary Science, The University of Queensland, 5391 Warrego Hwy, Gatton, Queensland4343, Australia
| |
Collapse
|
6
|
Espejo C, Ezenwa VO. Extracellular vesicles: an emerging tool for wild immunology. DISCOVERY IMMUNOLOGY 2024; 3:kyae011. [PMID: 39005930 PMCID: PMC11244269 DOI: 10.1093/discim/kyae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/12/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024]
Abstract
The immune system is crucial for defending organisms against pathogens and maintaining health. Traditionally, research in immunology has relied on laboratory animals to understand how the immune system works. However, there is increasing recognition that wild animals, due to their greater genetic diversity, lifespan, and environmental exposures, have much to contribute to basic and translational immunology. Unfortunately, logistical challenges associated with collecting and storing samples from wildlife, and the lack of commercially available species-specific reagents have hindered the advancement of immunological research on wild species. Extracellular vesicles (EVs) are cell-derived nanoparticles present in all body fluids and tissues of organisms spanning from bacteria to mammals. Human and lab animal studies indicate that EVs are involved in a range of immunological processes, and recent work shows that EVs may play similar roles in diverse wildlife species. Thus, EVs can expand the toolbox available for wild immunology research, helping to overcome some of the challenges associated with this work. In this paper, we explore the potential application of EVs to wild immunology. First, we review current understanding of EV biology across diverse organisms. Next, we discuss key insights into the immune system gained from research on EVs in human and laboratory animal models and highlight emerging evidence from wild species. Finally, we identify research themes in wild immunology that can immediately benefit from the study of EVs and describe practical considerations for using EVs in wildlife research.
Collapse
Affiliation(s)
- Camila Espejo
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Vanessa O Ezenwa
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
7
|
Apoorva, Singh SK. A tale of endurance: bats, viruses and immune dynamics. Future Microbiol 2024; 19:841-856. [PMID: 38648093 PMCID: PMC11382704 DOI: 10.2217/fmb-2023-0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/09/2024] [Indexed: 04/25/2024] Open
Abstract
The emergence of highly zoonotic viral infections has propelled bat research forward. The viral outbreaks including Hendra virus, Nipah virus, Marburg virus, Ebola virus, Rabies virus, Middle East respiratory syndrome coronavirus, SARS-CoV and the latest SARS-CoV-2 have been epidemiologically linked to various bat species. Bats possess unique immunological characteristics that allow them to serve as a potential viral reservoir. Bats are also known to protect themselves against viruses and maintain their immunity. Therefore, there is a need for in-depth understanding into bat-virus biology to unravel the major factors contributing to the coexistence and spread of viruses.
Collapse
Affiliation(s)
- Apoorva
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sunit Kumar Singh
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
- Dr. B R Ambedkar Center for Biomedical Research, University of Delhi (North Campus), New Delhi, 110007, India
| |
Collapse
|
8
|
Sharpe SR, Morrow JL, Cook JM, Papanicolaou A, Riegler M. Transmission mode predicts coinfection patterns of insect-specific viruses in field populations of the Queensland fruit fly. Mol Ecol 2024; 33:e17226. [PMID: 38018898 DOI: 10.1111/mec.17226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/05/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
Insect-specific viruses (ISVs) can affect insect health and fitness, but can also interact with other insect-associated microorganisms. Despite this, ISVs are often studied in isolation from each other, in laboratory populations. Consequently, their diversity, prevalence and associations with other viruses in field populations are less known, yet these parameters are important to understanding virus epidemiology. To help address this knowledge gap, we assessed the diversity, prevalence and coinfections of three ISVs (horizontally transmitted cripavirus, biparentally transmitted sigmavirus and maternally transmitted iflavirus) in 29 field populations of Queensland fruit fly, Australia's most significant horticultural pest, in the context of their different transmission modes. We detected new virus variant diversity. In contrast to the very high virus prevalence in laboratory populations, 46.8% of 293 field flies carried one virus and 4.8% had two viruses. Cripavirus and sigmavirus occurred in all regions, while iflavirus was restricted to subtropical and tropical regions. Cripavirus was most prevalent (37.5%), followed by sigmavirus (13.7%) and iflavirus (4.4%). Cripavirus coinfected some flies with either one of the two vertically transmitted viruses. However, sigmavirus did not coinfect individuals with iflavirus. Three different modelling approaches detected negative association patterns between sigmavirus and iflavirus, consistent with the absence of such coinfections in laboratory populations. This may be linked with their maternal transmission and the ineffective paternal transmission of sigmavirus. Furthermore, we found that, unlike sigmavirus and iflavirus, cripavirus load was higher in laboratory than field flies. Laboratory and mass-rearing conditions may increase ISV prevalence and load due to increased transmission opportunities. We conclude that a combination of field and laboratory studies is needed to uncover ISV interactions and further our understanding of ISV epidemiology.
Collapse
Affiliation(s)
- Stephen R Sharpe
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Jennifer L Morrow
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - James M Cook
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
9
|
Riesle-Sbarbaro SA, Wibbelt G, Düx A, Kouakou V, Bokelmann M, Hansen-Kant K, Kirchoff N, Laue M, Kromarek N, Lander A, Vogel U, Wahlbrink A, Wozniak DM, Scott DP, Prescott JB, Schaade L, Couacy-Hymann E, Kurth A. Selective replication and vertical transmission of Ebola virus in experimentally infected Angolan free-tailed bats. Nat Commun 2024; 15:925. [PMID: 38297087 PMCID: PMC10830451 DOI: 10.1038/s41467-024-45231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
The natural reservoir of Ebola virus (EBOV), agent of a zoonosis burdening several African countries, remains unidentified, albeit evidence points towards bats. In contrast, the ecology of the related Marburg virus is much better understood; with experimental infections of bats being instrumental for understanding reservoir-pathogen interactions. Experiments have focused on elucidating reservoir competence, infection kinetics and specifically horizontal transmission, although, vertical transmission plays a key role in many viral enzootic cycles. Herein, we investigate the permissiveness of Angolan free-tailed bats (AFBs), known to harbour Bombali virus, to other filoviruses: Ebola, Marburg, Taï Forest and Reston viruses. We demonstrate that only the bats inoculated with EBOV show high and disseminated viral replication and infectious virus shedding, without clinical disease, while the other filoviruses fail to establish productive infections. Notably, we evidence placental-specific tissue tropism and a unique ability of EBOV to traverse the placenta, infect and persist in foetal tissues of AFBs, which results in distinct genetic signatures of adaptive evolution. These findings not only demonstrate plausible routes of horizontal and vertical transmission in these bats, which are expectant of reservoir hosts, but may also reveal an ancillary transmission mechanism, potentially required for the maintenance of EBOV in small reservoir populations.
Collapse
Affiliation(s)
- S A Riesle-Sbarbaro
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - G Wibbelt
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - A Düx
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
- Helmholtz Institute for One Health, Greifswald, Germany
| | - V Kouakou
- LANADA, Laboratoire National d'Appui au Développement Agricole, Bingerville, Côte d'Ivoire
| | - M Bokelmann
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - K Hansen-Kant
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - N Kirchoff
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - M Laue
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - N Kromarek
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - A Lander
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - U Vogel
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - A Wahlbrink
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - D M Wozniak
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - D P Scott
- Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - J B Prescott
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - L Schaade
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - E Couacy-Hymann
- LANADA, Laboratoire National d'Appui au Développement Agricole, Bingerville, Côte d'Ivoire
- Centre National de Recherches Agronomiques, LIRED, Abidjan, Côte d'Ivoire
| | - A Kurth
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany.
| |
Collapse
|
10
|
Muzeniek T, Perera T, Siriwardana S, Bas D, Bayram F, Öruc M, Becker-Ziaja B, Perera I, Weerasena J, Handunnetti S, Schwarz F, Premawansa G, Premawansa S, Yapa W, Nitsche A, Kohl C. Comparative virome analysis of individual shedding routes of Miniopterus phillipsi bats inhabiting the Wavul Galge cave, Sri Lanka. Sci Rep 2023; 13:12859. [PMID: 37553373 PMCID: PMC10409741 DOI: 10.1038/s41598-023-39534-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
Bats are described as the natural reservoir host for a wide range of viruses. Although an increasing number of bat-associated, potentially human pathogenic viruses were discovered in the past, the full picture of the bat viromes is not explored yet. In this study, the virome composition of Miniopterus phillipsi bats (formerly known as Miniopterus fuliginosus bats in Sri Lanka) inhabiting the Wavul Galge cave, Sri Lanka, was analyzed. To assess different possible excretion routes, oral swabs, feces and urine were collected and analyzed individually by using metagenomic NGS. The data obtained was further evaluated by using phylogenetic reconstructions, whereby a special focus was set on RNA viruses that are typically associated with bats. Two different alphacoronavirus strains were detected in feces and urine samples. Furthermore, a paramyxovirus was detected in urine samples. Sequences related to Picornaviridae, Iflaviridae, unclassified Riboviria and Astroviridae were identified in feces samples and further sequences related to Astroviridae in urine samples. No viruses were detected in oral swab samples. The comparative virome analysis in this study revealed a diversity in the virome composition between the collected sample types which also represent different potential shedding routes for the detected viruses. At the same time, several novel viruses represent first reports of these pathogens from bats in Sri Lanka. The detection of two different coronaviruses in the samples indicates the potential general persistence of this virus species in M. phillipsi bats. Based on phylogenetics, the identified viruses are closely related to bat-associated viruses with comparably low estimation of human pathogenic potential. In further studies, the seasonal variation of the virome will be analyzed to identify possible shedding patterns for particular viruses.
Collapse
Affiliation(s)
- Therese Muzeniek
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353, Berlin, Germany
| | - Thejanee Perera
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, 00300, Sri Lanka
| | - Sahan Siriwardana
- IDEA (Identification of Emerging Agents) Laboratory, Department of Zoology and Environment Sciences, University of Colombo, Colombo, 00300, Sri Lanka
| | - Dilara Bas
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353, Berlin, Germany
| | - Fatimanur Bayram
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353, Berlin, Germany
| | - Mizgin Öruc
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353, Berlin, Germany
| | - Beate Becker-Ziaja
- Centre for International Health Protection, Public Health Laboratory Support (ZIG 4), Robert Koch Institute, 13353, Berlin, Germany
| | - Inoka Perera
- IDEA (Identification of Emerging Agents) Laboratory, Department of Zoology and Environment Sciences, University of Colombo, Colombo, 00300, Sri Lanka
| | - Jagathpriya Weerasena
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, 00300, Sri Lanka
| | - Shiroma Handunnetti
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, 00300, Sri Lanka
| | - Franziska Schwarz
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353, Berlin, Germany
| | | | - Sunil Premawansa
- IDEA (Identification of Emerging Agents) Laboratory, Department of Zoology and Environment Sciences, University of Colombo, Colombo, 00300, Sri Lanka
| | - Wipula Yapa
- IDEA (Identification of Emerging Agents) Laboratory, Department of Zoology and Environment Sciences, University of Colombo, Colombo, 00300, Sri Lanka
| | - Andreas Nitsche
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353, Berlin, Germany
| | - Claudia Kohl
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353, Berlin, Germany.
| |
Collapse
|
11
|
Wang J, Pan YF, Yang LF, Yang WH, Lv K, Luo CM, Wang J, Kuang GP, Wu WC, Gou QY, Xin GY, Li B, Luo HL, Chen S, Shu YL, Guo D, Gao ZH, Liang G, Li J, Chen YQ, Holmes EC, Feng Y, Shi M. Individual bat virome analysis reveals co-infection and spillover among bats and virus zoonotic potential. Nat Commun 2023; 14:4079. [PMID: 37429936 DOI: 10.1038/s41467-023-39835-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
Bats are reservoir hosts for many zoonotic viruses. Despite this, relatively little is known about the diversity and abundance of viruses within individual bats, and hence the frequency of virus co-infection and spillover among them. We characterize the mammal-associated viruses in 149 individual bats sampled from Yunnan province, China, using an unbiased meta-transcriptomics approach. This reveals a high frequency of virus co-infection (simultaneous infection of bat individuals by multiple viral species) and spillover among the animals studied, which may in turn facilitate virus recombination and reassortment. Of note, we identify five viral species that are likely to be pathogenic to humans or livestock, based on phylogenetic relatedness to known pathogens or in vitro receptor binding assays. This includes a novel recombinant SARS-like coronavirus that is closely related to both SARS-CoV and SARS-CoV-2. In vitro assays indicate that this recombinant virus can utilize the human ACE2 receptor such that it is likely to be of increased emergence risk. Our study highlights the common occurrence of co-infection and spillover of bat viruses and their implications for virus emergence.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yuan-Fei Pan
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Li-Fen Yang
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, China
| | - Wei-Hong Yang
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, China
| | - Kexin Lv
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Chu-Ming Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Juan Wang
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, China
| | - Guo-Peng Kuang
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, China
| | - Wei-Chen Wu
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Qin-Yu Gou
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Gen-Yang Xin
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Bo Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Huan-le Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shoudeng Chen
- Molecular Imaging Center, Central Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Yue-Long Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Deyin Guo
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong Province, China
| | - Zi-Hou Gao
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, China
| | - Guodong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Yun Feng
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, China.
| | - Mang Shi
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
12
|
Kim Y, Leopardi S, Scaravelli D, Zecchin B, Priori P, Festa F, Drzewnioková P, De Benedictis P, Nouvellet P. Transmission dynamics of lyssavirus in Myotis myotis: mechanistic modelling study based on longitudinal seroprevalence data. Proc Biol Sci 2023; 290:20230183. [PMID: 37072038 PMCID: PMC10113028 DOI: 10.1098/rspb.2023.0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/13/2023] [Indexed: 04/20/2023] Open
Abstract
We investigated the transmission dynamics of lyssavirus in Myotis myotis and Myotis blythii, using serological, virological, demographic and ecological data collected between 2015 and 2022 from two maternity colonies in northern Italian churches. Despite no lyssavirus detection in 556 bats sampled over 11 events by reverse transcription-polymerase chain reaction (RT-PCR), 36.3% of 837 bats sampled over 27 events showed neutralizing antibodies to European bat lyssavirus 1, with a significant increase in summers. By fitting sets of mechanistic models to seroprevalence data, we investigated factors that influenced lyssavirus transmission within and between years. Five models were selected as a group of final models: in one model, a proportion of exposed bats (median model estimate: 5.8%) became infectious and died while the other exposed bats recovered with immunity without becoming infectious; in the other four models, all exposed bats became infectious and recovered with immunity. The final models supported that the two colonies experienced seasonal outbreaks driven by: (i) immunity loss particularly during hibernation, (ii) density-dependent transmission, and (iii) a high transmission rate after synchronous birthing. These findings highlight the importance of understanding ecological factors, including colony size and synchronous birthing timing, and potential infection heterogeneities to enable more robust assessments of lyssavirus spillover risk.
Collapse
Affiliation(s)
- Younjung Kim
- Department of Evolution, Behaviour, and Environment, School of Life Sciences, University of Sussex, BN1 9RH Brighton, UK
| | - Stefania Leopardi
- FAO and National Reference Centre for Rabies, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, 35020 Padua, Italy
| | - Dino Scaravelli
- S.T.E.R.N.A. and Museo Ornitologico ‘F. Foschi’, via Pedrali 12, 47121 Forlì, Italy
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy
| | - Barbara Zecchin
- FAO and National Reference Centre for Rabies, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, 35020 Padua, Italy
| | - Pamela Priori
- S.T.E.R.N.A. and Museo Ornitologico ‘F. Foschi’, via Pedrali 12, 47121 Forlì, Italy
| | - Francesca Festa
- FAO and National Reference Centre for Rabies, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, 35020 Padua, Italy
| | - Petra Drzewnioková
- FAO and National Reference Centre for Rabies, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, 35020 Padua, Italy
| | - Paola De Benedictis
- FAO and National Reference Centre for Rabies, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, 35020 Padua, Italy
| | - Pierre Nouvellet
- Department of Evolution, Behaviour, and Environment, School of Life Sciences, University of Sussex, BN1 9RH Brighton, UK
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, SW7 2AZ London, UK
| |
Collapse
|
13
|
Brnić D, Lojkić I, Krešić N, Zrnčić V, Ružanović L, Mikuletič T, Bosilj M, Steyer A, Keros T, Habrun B, Jemeršić L. Circulation of SARS-CoV-Related Coronaviruses and Alphacoronaviruses in Bats from Croatia. Microorganisms 2023; 11:microorganisms11040959. [PMID: 37110383 PMCID: PMC10143505 DOI: 10.3390/microorganisms11040959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Bats are natural hosts of various coronaviruses (CoVs), including human CoVs, via an assumed direct zoonotic spillover or intermediate animal host. The present study aimed to investigate the circulation of CoVs in a bat colony in the Mediterranean region of Croatia. Guano and individual droppings from four bat species were sampled and tested with the E-gene sarbecovirus RT-qPCR, the pan-CoV semi-nested RT-PCR targeting the RdRp gene and NGS. Furthermore, bat blood samples were investigated for the presence of sarbecovirus-specific antibodies with the surrogate virus neutralization test (sVNT). The initial testing showed E-gene Sarebeco RT-qPCR reactivity in 26% of guano samples while the bat droppings tested negative. The application of RdRp semi-nested RT-PCR and NGS revealed the circulation of bat alpha- and betaCoVs. Phylogenetic analysis confirmed the clustering of betaCoV sequence with SARS-CoV-related bat sarbecoviruses and alpha-CoV sequences with representatives of the Minunacovirus subgenus. The results of sVNT show that 29% of bat sera originated from all four species that tested positive. Our results are the first evidence of the circulation of SARS-CoV-related coronaviruses in bats from Croatia.
Collapse
Affiliation(s)
- Dragan Brnić
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| | - Ivana Lojkić
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| | - Nina Krešić
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| | - Vida Zrnčić
- Croatian Biospeleological Society, Demetrova 1, 10000 Zagreb, Croatia
| | - Lea Ružanović
- Croatian Biospeleological Society, Demetrova 1, 10000 Zagreb, Croatia
| | - Tina Mikuletič
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Martin Bosilj
- National Laboratory of Health, Environment and Food, Grablovičeva 44, 1000 Ljubljana, Slovenia
| | - Andrej Steyer
- National Laboratory of Health, Environment and Food, Grablovičeva 44, 1000 Ljubljana, Slovenia
| | - Tomislav Keros
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| | - Boris Habrun
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| | - Lorena Jemeršić
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| |
Collapse
|
14
|
Eby P, Peel AJ, Hoegh A, Madden W, Giles JR, Hudson PJ, Plowright RK. Pathogen spillover driven by rapid changes in bat ecology. Nature 2023; 613:340-344. [PMID: 36384167 PMCID: PMC9768785 DOI: 10.1038/s41586-022-05506-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022]
Abstract
During recent decades, pathogens that originated in bats have become an increasing public health concern. A major challenge is to identify how those pathogens spill over into human populations to generate a pandemic threat1. Many correlational studies associate spillover with changes in land use or other anthropogenic stressors2,3, although the mechanisms underlying the observed correlations have not been identified4. One limitation is the lack of spatially and temporally explicit data on multiple spillovers, and on the connections among spillovers, reservoir host ecology and behaviour and viral dynamics. We present 25 years of data on land-use change, bat behaviour and spillover of Hendra virus from Pteropodid bats to horses in subtropical Australia. These data show that bats are responding to environmental change by persistently adopting behaviours that were previously transient responses to nutritional stress. Interactions between land-use change and climate now lead to persistent bat residency in agricultural areas, where periodic food shortages drive clusters of spillovers. Pulses of winter flowering of trees in remnant forests appeared to prevent spillover. We developed integrative Bayesian network models based on these phenomena that accurately predicted the presence or absence of clusters of spillovers in each of the 25 years. Our long-term study identifies the mechanistic connections between habitat loss, climate and increased spillover risk. It provides a framework for examining causes of bat virus spillover and for developing ecological countermeasures to prevent pandemics.
Collapse
Affiliation(s)
- Peggy Eby
- School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Centre for Planetary Health and Food Security, Griffith University, Nathan, Queensland, Australia
- Center for Large Landscape Conservation, Bozeman, MT, USA
| | - Alison J Peel
- Centre for Planetary Health and Food Security, Griffith University, Nathan, Queensland, Australia
| | - Andrew Hoegh
- Department of Mathematical Sciences, Montana State University, Bozeman, MT, USA
| | - Wyatt Madden
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - John R Giles
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Peter J Hudson
- Center for Infectious Disease Dynamics, Pennsylvania State University, State College, PA, USA
| | - Raina K Plowright
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
15
|
Becker DJ, Eby P, Madden W, Peel AJ, Plowright RK. Ecological conditions predict the intensity of Hendra virus excretion over space and time from bat reservoir hosts. Ecol Lett 2023; 26:23-36. [PMID: 36310377 DOI: 10.1111/ele.14007] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/27/2022]
Abstract
The ecological conditions experienced by wildlife reservoirs affect infection dynamics and thus the distribution of pathogen excreted into the environment. This spatial and temporal distribution of shed pathogen has been hypothesised to shape risks of zoonotic spillover. However, few systems have data on both long-term ecological conditions and pathogen excretion to advance mechanistic understanding and test environmental drivers of spillover risk. We here analyse three years of Hendra virus data from nine Australian flying fox roosts with covariates derived from long-term studies of bat ecology. We show that the magnitude of winter pulses of viral excretion, previously considered idiosyncratic, are most pronounced after recent food shortages and in bat populations displaced to novel habitats. We further show that cumulative pathogen excretion over time is shaped by bat ecology and positively predicts spillover frequency. Our work emphasises the role of reservoir host ecology in shaping pathogen excretion and provides a new approach to estimate spillover risk.
Collapse
Affiliation(s)
- Daniel J Becker
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA.,Department of Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Peggy Eby
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia.,Centre for Planetary Health and Food Security, Griffith University, Queensland, Australia
| | - Wyatt Madden
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| | - Alison J Peel
- Centre for Planetary Health and Food Security, Griffith University, Queensland, Australia
| | - Raina K Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
16
|
Wang J, Pan YF, Yang LF, Yang WH, Luo CM, Wang J, Kuang GP, Wu WC, Gou QY, Xin GY, Li B, Luo HL, Chen YQ, Shu YL, Guo D, Gao ZH, Liang G, Li J, Holmes EC, Feng Y, Shi M. Individual bat viromes reveal the co-infection, spillover and emergence risk of potential zoonotic viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.11.23.517609. [PMID: 36451889 PMCID: PMC9709790 DOI: 10.1101/2022.11.23.517609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bats are reservoir hosts for many zoonotic viruses. Despite this, relatively little is known about the diversity and abundance of viruses within bats at the level of individual animals, and hence the frequency of virus co-infection and inter-species transmission. Using an unbiased meta-transcriptomics approach we characterised the mammalian associated viruses present in 149 individual bats sampled from Yunnan province, China. This revealed a high frequency of virus co-infection and species spillover among the animals studied, with 12 viruses shared among different bat species, which in turn facilitates virus recombination and reassortment. Of note, we identified five viral species that are likely to be pathogenic to humans or livestock, including a novel recombinant SARS-like coronavirus that is closely related to both SARS-CoV-2 and SARS-CoV, with only five amino acid differences between its receptor-binding domain sequence and that of the earliest sequences of SARS-CoV-2. Functional analysis predicts that this recombinant coronavirus can utilize the human ACE2 receptor such that it is likely to be of high zoonotic risk. Our study highlights the common occurrence of inter-species transmission and co-infection of bat viruses, as well as their implications for virus emergence.
Collapse
|
17
|
Abstract
Bats perform important ecological roles in our ecosystem. However, recent studies have demonstrated that bats are reservoirs of emerging viruses that have spilled over into humans and agricultural animals to cause severe diseases. These viruses include Hendra and Nipah paramyxoviruses, Ebola and Marburg filoviruses, and coronaviruses that are closely related to severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and the recently emerged SARS-CoV-2. Intriguingly, bats that are naturally or experimentally infected with these viruses do not show clinical signs of disease. Here we have reviewed ecological, behavioral, and molecular factors that may influence the ability of bats to harbor viruses. We have summarized known zoonotic potential of bat-borne viruses and stress on the need for further studies to better understand the evolutionary relationship between bats and their viruses, along with discovering the intrinsic and external factors that facilitate the successful spillover of viruses from bats.
Collapse
Affiliation(s)
- Victoria Gonzalez
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
18
|
Mougari S, Gonzalez C, Reynard O, Horvat B. Fruit bats as natural reservoir of highly pathogenic henipaviruses: balance between antiviral defense and viral toleranceInteractions between Henipaviruses and their natural host, fruit bats. Curr Opin Virol 2022; 54:101228. [DOI: 10.1016/j.coviro.2022.101228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/28/2022]
|
19
|
Ruiz-Aravena M, McKee C, Gamble A, Lunn T, Morris A, Snedden CE, Yinda CK, Port JR, Buchholz DW, Yeo YY, Faust C, Jax E, Dee L, Jones DN, Kessler MK, Falvo C, Crowley D, Bharti N, Brook CE, Aguilar HC, Peel AJ, Restif O, Schountz T, Parrish CR, Gurley ES, Lloyd-Smith JO, Hudson PJ, Munster VJ, Plowright RK. Ecology, evolution and spillover of coronaviruses from bats. Nat Rev Microbiol 2022; 20:299-314. [PMID: 34799704 PMCID: PMC8603903 DOI: 10.1038/s41579-021-00652-2] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 12/24/2022]
Abstract
In the past two decades, three coronaviruses with ancestral origins in bats have emerged and caused widespread outbreaks in humans, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the first SARS epidemic in 2002-2003, the appreciation of bats as key hosts of zoonotic coronaviruses has advanced rapidly. More than 4,000 coronavirus sequences from 14 bat families have been identified, yet the true diversity of bat coronaviruses is probably much greater. Given that bats are the likely evolutionary source for several human coronaviruses, including strains that cause mild upper respiratory tract disease, their role in historic and future pandemics requires ongoing investigation. We review and integrate information on bat-coronavirus interactions at the molecular, tissue, host and population levels. We identify critical gaps in knowledge of bat coronaviruses, which relate to spillover and pandemic risk, including the pathways to zoonotic spillover, the infection dynamics within bat reservoir hosts, the role of prior adaptation in intermediate hosts for zoonotic transmission and the viral genotypes or traits that predict zoonotic capacity and pandemic potential. Filling these knowledge gaps may help prevent the next pandemic.
Collapse
Affiliation(s)
- Manuel Ruiz-Aravena
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Clifton McKee
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Amandine Gamble
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tamika Lunn
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
| | - Aaron Morris
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Celine E Snedden
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Claude Kwe Yinda
- National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Julia R Port
- National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - David W Buchholz
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Yao Yu Yeo
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Christina Faust
- Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Elinor Jax
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Lauren Dee
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Devin N Jones
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Maureen K Kessler
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
- Department of Ecology, Montana State University, Bozeman, MT, USA
| | - Caylee Falvo
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Daniel Crowley
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Nita Bharti
- Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Cara E Brook
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Hector C Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Alison J Peel
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
| | - Olivier Restif
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Colin R Parrish
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Emily S Gurley
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - James O Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peter J Hudson
- Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Vincent J Munster
- National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Raina K Plowright
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
20
|
Paramyxovirus Diversity within One Population of Miniopterus fuliginosus Bats in Sri Lanka. Pathogens 2022; 11:pathogens11040434. [PMID: 35456109 PMCID: PMC9030695 DOI: 10.3390/pathogens11040434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 01/06/2023] Open
Abstract
Bats are known as typical reservoirs for a number of viruses, including viruses of the family Paramyxoviridae. Representatives of the subfamily Orthoparamyxovirinae are distributed worldwide and can cause mild to fatal diseases when infecting humans. The research on Paramyxoviruses (PMVs) from different bat hosts all over the world aims to understand the diversity, evolution and distribution of these viruses and to assess their zoonotic potential. A high number of yet unclassified PMVs from bats are recorded. In our study, we investigated bat species from the families Rhinolophidae, Hipposiderae, Pteropodidae and Miniopteridae that are roosting sympatrically in the Wavul Galge cave (Koslanda, Sri Lanka). The sampling at three time points (March and July 2018; January 2019) and screening for PMVs with a generic PCR show the presence of different novel PMVs in 10 urine samples collected from Miniopterus fuliginosus. Sequence analysis revealed a high similarity of the novel strains among each other and to other unclassified PMVs collected from Miniopterus bats. In this study, we present the first detection of PMVs in Sri Lanka and the presence of PMVs in the bat species M. fuliginosus for the first time.
Collapse
|
21
|
Sanyal A, Agarwal S, Ramakrishnan U, Garg KM, Chattopadhyay B. Using Environmental Sampling to Enable Zoonotic Pandemic Preparedness. J Indian Inst Sci 2022; 102:711-730. [PMID: 36093274 PMCID: PMC9449264 DOI: 10.1007/s41745-022-00322-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022]
Abstract
The current pandemic caused by the SARS CoV-2, tracing back its origin possibly to a coronavirus associated with bats, has ignited renewed interest in understanding zoonotic spillovers across the globe. While research is more directed towards solving the problem at hand by finding therapeutic strategies and novel vaccine techniques, it is important to address the environmental drivers of pathogen spillover and the complex biotic and abiotic drivers of zoonoses. The availability of cutting-edge genomic technologies has contributed enormously to preempt viral emergence from wildlife. However, there is still a dearth of studies from species-rich South Asian countries, especially from India. In this review, we outline the importance of studying disease dynamics through environmental sampling from wildlife in India and how ecological parameters of both the virus and the host community may play a role in mediating cross-species spillovers. Non-invasive sampling using feces, urine, shed hair, saliva, shed skin, and feathers has been instrumental in providing genetic information for both the host and their associated pathogens. Here, we discuss the advances made in environmental sampling protocols and strategies to generate genetic data from such samples towards the surveillance and characterization of potentially zoonotic pathogens. We primarily focus on bat-borne or small mammal-borne zoonoses and propose a conceptual framework for non-invasive strategies to tackle the threat of emerging zoonotic infections.
Collapse
|
22
|
Kettenburg G, Kistler A, Ranaivoson HC, Ahyong V, Andrianiaina A, Andry S, DeRisi JL, Gentles A, Raharinosy V, Randriambolamanantsoa TH, Ravelomanantsoa NAF, Tato CM, Dussart P, Heraud JM, Brook CE. Full Genome Nobecovirus Sequences From Malagasy Fruit Bats Define a Unique Evolutionary History for This Coronavirus Clade. Front Public Health 2022; 10:786060. [PMID: 35223729 PMCID: PMC8873168 DOI: 10.3389/fpubh.2022.786060] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/17/2022] [Indexed: 12/02/2022] Open
Abstract
Bats are natural reservoirs for both Alpha- and Betacoronaviruses and the hypothesized original hosts of five of seven known zoonotic coronaviruses. To date, the vast majority of bat coronavirus research has been concentrated in Asia, though coronaviruses are globally distributed; indeed, SARS-CoV and SARS-CoV-2-related Betacoronaviruses in the subgenus Sarbecovirus have been identified circulating in Rhinolophid bats in both Africa and Europe, despite the relative dearth of surveillance in these regions. As part of a long-term study examining the dynamics of potentially zoonotic viruses in three species of endemic Madagascar fruit bat (Pteropus rufus, Eidolon dupreanum, Rousettus madagascariensis), we carried out metagenomic Next Generation Sequencing (mNGS) on urine, throat, and fecal samples obtained from wild-caught individuals. We report detection of RNA derived from Betacoronavirus subgenus Nobecovirus in fecal samples from all three species and describe full genome sequences of novel Nobecoviruses in P. rufus and R. madagascariensis. Phylogenetic analysis indicates the existence of five distinct Nobecovirus clades, one of which is defined by the highly divergent ancestral sequence reported here from P. rufus bats. Madagascar Nobecoviruses derived from P. rufus and R. madagascariensis demonstrate, respectively, Asian and African phylogeographic origins, mirroring those of their fruit bat hosts. Bootscan recombination analysis indicates significant selection has taken place in the spike, nucleocapsid, and NS7 accessory protein regions of the genome for viruses derived from both bat hosts. Madagascar offers a unique phylogeographic nexus of bats and viruses with both Asian and African phylogeographic origins, providing opportunities for unprecedented mixing of viral groups and, potentially, recombination. As fruit bats are handled and consumed widely across Madagascar for subsistence, understanding the landscape of potentially zoonotic coronavirus circulation is essential for mitigation of future zoonotic threats.
Collapse
Affiliation(s)
- Gwenddolen Kettenburg
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, United States
| | - Amy Kistler
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Hafaliana Christian Ranaivoson
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo, Madagascar
- Virology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Vida Ahyong
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Angelo Andrianiaina
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo, Madagascar
| | - Santino Andry
- Department of Entomology, University of Antananarivo, Antananarivo, Madagascar
| | | | - Anecia Gentles
- Odum School of Ecology, University of Georgia, Athens, GA, United States
| | | | | | | | | | - Philippe Dussart
- Virology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Jean-Michel Heraud
- Virology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Cara E. Brook
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, United States
| |
Collapse
|
23
|
Mortlock M, Geldenhuys M, Dietrich M, Epstein JH, Weyer J, Pawęska JT, Markotter W. Seasonal shedding patterns of diverse henipavirus-related paramyxoviruses in Egyptian rousette bats. Sci Rep 2021; 11:24262. [PMID: 34930962 PMCID: PMC8688450 DOI: 10.1038/s41598-021-03641-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/06/2021] [Indexed: 12/02/2022] Open
Abstract
Bat-borne viruses in the Henipavirus genus have been associated with zoonotic diseases of high morbidity and mortality in Asia and Australia. In Africa, the Egyptian rousette bat species (Rousettus aegyptiacus) is an important viral host in which Henipavirus-related viral sequences have previously been identified. We expanded these findings by assessing the viral dynamics in a southern African bat population. A longitudinal study of henipavirus diversity and excretion dynamics identified 18 putative viral species circulating in a local population, three with differing seasonal dynamics, and the winter and spring periods posing a higher risk of virus spillover and transmission. The annual peaks in virus excretion are most likely driven by subadults and may be linked to the waning of maternal immunity and recolonization of the roost in early spring. These results provide insightful information into the bat-host relationship that can be extrapolated to other populations across Africa and be communicated to at-risk communities as a part of evidence-based public health education and prevention measures against pathogen spillover threats.
Collapse
Affiliation(s)
- Marinda Mortlock
- grid.49697.350000 0001 2107 2298Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, 0001 South Africa
| | - Marike Geldenhuys
- grid.49697.350000 0001 2107 2298Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, 0001 South Africa
| | - Muriel Dietrich
- grid.503393.fUMR Processus Infectieux en Milieu Insulaire Tropical, 97490 Sainte-Clotilde, Reunion Island France
| | - Jonathan H. Epstein
- grid.49697.350000 0001 2107 2298Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, 0001 South Africa ,grid.420826.a0000 0004 0409 4702EcoHealth Alliance, New York, NY 10001 USA
| | - Jacqueline Weyer
- grid.49697.350000 0001 2107 2298Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, 0001 South Africa ,grid.416657.70000 0004 0630 4574Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, 2131 South Africa ,grid.11951.3d0000 0004 1937 1135Department of Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg, 2131 South Africa
| | - Janusz T. Pawęska
- grid.49697.350000 0001 2107 2298Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, 0001 South Africa ,grid.416657.70000 0004 0630 4574Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, 2131 South Africa ,grid.11951.3d0000 0004 1937 1135Department of Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg, 2131 South Africa
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, 0001, South Africa.
| |
Collapse
|
24
|
Cappelle J, Furey N, Hoem T, Ou TP, Lim T, Hul V, Heng O, Chevalier V, Dussart P, Duong V. Longitudinal monitoring in Cambodia suggests higher circulation of alpha and betacoronaviruses in juvenile and immature bats of three species. Sci Rep 2021; 11:24145. [PMID: 34921180 PMCID: PMC8683416 DOI: 10.1038/s41598-021-03169-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/25/2021] [Indexed: 12/28/2022] Open
Abstract
Recent studies suggest that coronaviruses circulate widely in Southeast Asian bat species and that the progenitors of the SARS-Cov-2 virus could have originated in rhinolophid bats in the region. Our objective was to assess the diversity and circulation patterns of coronavirus in several bat species in Southeast Asia. We undertook monthly live-capture sessions and sampling in Cambodia over 17 months to cover all phases of the annual reproduction cycle of bats and test specifically the association between their age and CoV infection status. We additionally examined current information on the reproductive phenology of Rhinolophus and other bat species presently known to occur in mainland southeast China, Vietnam, Laos and Cambodia. Results from our longitudinal monitoring (573 bats belonging to 8 species) showed an overall proportion of positive PCR tests for CoV of 4.2% (24/573) in cave-dwelling bats from Kampot and 4.75% (22/463) in flying-foxes from Kandal. Phylogenetic analysis showed that the PCR amplicon sequences of CoVs (n = 46) obtained clustered in Alphacoronavirus and Betacoronavirus. Interestingly, Hipposideros larvatus sensu lato harbored viruses from both genera. Our results suggest an association between positive detections of coronaviruses and juvenile and immature bats in Cambodia (OR = 3.24 [1.46-7.76], p = 0.005). Since the limited data presently available from literature review indicates that reproduction is largely synchronized among rhinolophid and hipposiderid bats in our study region, particularly in its more seasonal portions (above 16° N), this may lead to seasonal patterns in CoV circulation. Overall, our study suggests that surveillance of CoV in insectivorous bat species in Southeast Asia, including SARS-CoV-related coronaviruses in rhinolophid bats, could be targeted from June to October for species exhibiting high proportions of juveniles and immatures during these months. It also highlights the need to develop long-term longitudinal surveys of bats and improve our understanding of their ecology in the region, for both biodiversity conservation and public health reasons.
Collapse
Affiliation(s)
- Julien Cappelle
- CIRAD, UMR ASTRE (Animal, Santé, Territoires, Risques, Ecosystèmes), TA A 117/E, Campus International de Baillarguet, 34398, Montpellier CEDEX 5, France.
- ASTRE, CIRAD, INRAE, Univ Montpellier, Montpellier, France.
| | - Neil Furey
- Harrison Institute, Sevenoaks, Kent, England
- Fauna and Flora International, Phnom Penh, Cambodia
| | - Thavry Hoem
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Tey Putita Ou
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Thona Lim
- Free the Bears, Phnom Penh, Cambodia
| | - Vibol Hul
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| | - Oudam Heng
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Véronique Chevalier
- CIRAD, UMR ASTRE (Animal, Santé, Territoires, Risques, Ecosystèmes), TA A 117/E, Campus International de Baillarguet, 34398, Montpellier CEDEX 5, France
- ASTRE, CIRAD, INRAE, Univ Montpellier, Montpellier, France
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
- Virology Unit, Institut Pasteur de Madagascar, Institut Pasteur International Network, Antananarivo, Madagascar
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| |
Collapse
|
25
|
Fischhoff IR, Castellanos AA, Rodrigues JPGLM, Varsani A, Han BA. Predicting the zoonotic capacity of mammals to transmit SARS-CoV-2. Proc Biol Sci 2021; 288:20211651. [PMID: 34784766 PMCID: PMC8596006 DOI: 10.1098/rspb.2021.1651] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Back and forth transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) between humans and animals will establish wild reservoirs of virus that endanger long-term efforts to control COVID-19 in people and to protect vulnerable animal populations. Better targeting surveillance and laboratory experiments to validate zoonotic potential requires predicting high-risk host species. A major bottleneck to this effort is the few species with available sequences for angiotensin-converting enzyme 2 receptor, a key receptor required for viral cell entry. We overcome this bottleneck by combining species' ecological and biological traits with three-dimensional modelling of host-virus protein-protein interactions using machine learning. This approach enables predictions about the zoonotic capacity of SARS-CoV-2 for greater than 5000 mammals-an order of magnitude more species than previously possible. Our predictions are strongly corroborated by in vivo studies. The predicted zoonotic capacity and proximity to humans suggest enhanced transmission risk from several common mammals, and priority areas of geographic overlap between these species and global COVID-19 hotspots. With molecular data available for only a small fraction of potential animal hosts, linking data across biological scales offers a conceptual advance that may expand our predictive modelling capacity for zoonotic viruses with similarly unknown host ranges.
Collapse
Affiliation(s)
- Ilya R. Fischhoff
- Cary Institute of Ecosystem Studies, Box AB Millbrook, NY 12545, USA
| | | | | | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, 7700 Cape Town, Rondebosch, South Africa
| | - Barbara A. Han
- Cary Institute of Ecosystem Studies, Box AB Millbrook, NY 12545, USA
| |
Collapse
|
26
|
Wang J, Anderson DE, Halpin K, Hong X, Chen H, Walker S, Valdeter S, van der Heide B, Neave MJ, Bingham J, O'Brien D, Eagles D, Wang LF, Williams DT. A new Hendra virus genotype found in Australian flying foxes. Virol J 2021; 18:197. [PMID: 34641882 PMCID: PMC8510678 DOI: 10.1186/s12985-021-01652-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hendra virus (HeV) has caused lethal disease outbreaks in humans and horses in Australia. Flying foxes are the wildlife reservoir from which the virus was first isolated in 1996. Following a heat stress mortality event in Australian flying foxes in 2013, a novel HeV variant was discovered. This study describes the subsequent surveillance of Australian flying foxes for this novel virus over a nine year period using qRT-PCR testing of tissues from flying foxes submitted primarily for Australian bat lyssavirus diagnosis. Genome sequencing and characterisation of the novel HeV variant was also undertaken. METHODS Spleen and kidney samples harvested from flying fox carcasses were initially screened with two real-time qRT-PCR assays specific for the prototype HeV. Two additional qRT-PCR assays were developed specific for the HeV variant first detected in samples from a flying fox in 2013. Next-generation sequencing and virus isolation was attempted from selected samples to further characterise the new virus. RESULTS Since 2013, 98 flying foxes were tested and 11 were positive for the new HeV variant. No samples were positive for the original HeV. Ten of the positive samples were from grey-headed flying foxes (GHFF, Pteropus poliocephalus), however this species was over-represented in the opportunistic sampling (83% of bats tested were GHFF). The positive GHFF samples were collected from Victoria and South Australia and one positive Little red flying fox (LRFF, Pteropus scapulatus) was collected from Western Australia. Immunohistochemistry confirmed the presence of henipavirus antigen, associated with an inflammatory lesion in cardiac blood vessels of one GHFF. Positive samples were sequenced and the complete genome was obtained from three samples. When compared to published HeV genomes, there was 84% sequence identity at the nucleotide level. Based on phylogenetic analyses, the newly detected HeV belongs to the HeV species but occupies a distinct lineage. We have therefore designated this virus HeV genotype 2 (HeV-g2). Attempts to isolate virus from PCR positive samples have not been successful. CONCLUSIONS A novel HeV genotype (HeV-g2) has been identified in two flying fox species submitted from three states in Australia, indicating that the level of genetic diversity for HeV is broader than first recognised. Given its high genetic relatedness to HeV, HeV-g2 is a zoonotic pathogen.
Collapse
Affiliation(s)
- Jianning Wang
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Australia.
| | - Danielle E Anderson
- Programme in Emerging, Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Kim Halpin
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Australia
| | - Xiao Hong
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Australia
| | - Honglei Chen
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Australia
| | - Som Walker
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Australia
| | - Stacey Valdeter
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Australia
| | - Brenda van der Heide
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Australia
| | - Matthew J Neave
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Australia
| | - John Bingham
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Australia
| | - Dwane O'Brien
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Australia
| | - Debbie Eagles
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Australia
| | - Lin-Fa Wang
- Programme in Emerging, Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore, Singapore
| | - David T Williams
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Australia
| |
Collapse
|
27
|
Hoarau AOG, Goodman SM, Al Halabi D, Ramasindrazana B, Lagadec E, Le Minter G, Köster M, Dos Santos A, Schoeman MC, Gudo ES, Mavingui P, Lebarbenchon C. Investigation of astrovirus, coronavirus and paramyxovirus co-infections in bats in the western Indian Ocean. Virol J 2021; 18:205. [PMID: 34641936 PMCID: PMC8506490 DOI: 10.1186/s12985-021-01673-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/28/2021] [Indexed: 11/10/2022] Open
Abstract
Co-infections have a key role in virus transmission in wild reservoir hosts. We investigated the simultaneous presence of astroviruses, coronaviruses, and paramyxoviruses in bats from Madagascar, Mayotte, Mozambique, and Reunion Island. A total of 871 samples from 28 bat species representing 8 families were tested by polymerase chain reactions (PCRs) targeting the RNA-dependent RNA-polymerase genes. Overall, 2.4% of bats tested positive for the presence of at least two viruses, only on Madagascar and in Mozambique. Significant variation in the proportion of co-infections was detected among bat species, and some combinations of co-infection were more common than others. Our findings support that co-infections of the three targeted viruses occur in bats in the western Indian Ocean region, although further studies are needed to assess their epidemiological consequences.
Collapse
Affiliation(s)
- Axel O G Hoarau
- Processus Infectieux en Milieu Insulaire Tropical, INSERM 1187, CNRS 9192, IRD 249, Université de La Réunion, Sainte-Clotilde, La Réunion, France.
| | - Steven M Goodman
- Association Vahatra, Antananarivo, Madagascar.,Field Museum of Natural History, Chicago, USA
| | - Dana Al Halabi
- Processus Infectieux en Milieu Insulaire Tropical, INSERM 1187, CNRS 9192, IRD 249, Université de La Réunion, Sainte-Clotilde, La Réunion, France
| | - Beza Ramasindrazana
- Processus Infectieux en Milieu Insulaire Tropical, INSERM 1187, CNRS 9192, IRD 249, Université de La Réunion, Sainte-Clotilde, La Réunion, France.,Association Vahatra, Antananarivo, Madagascar.,Institut Pasteur de Madagascar, Antananarivo 101, BP 1274, Ambatofotsikely, Madagascar
| | - Erwan Lagadec
- Processus Infectieux en Milieu Insulaire Tropical, INSERM 1187, CNRS 9192, IRD 249, Université de La Réunion, Sainte-Clotilde, La Réunion, France
| | - Gildas Le Minter
- Processus Infectieux en Milieu Insulaire Tropical, INSERM 1187, CNRS 9192, IRD 249, Université de La Réunion, Sainte-Clotilde, La Réunion, France
| | - Marie Köster
- Processus Infectieux en Milieu Insulaire Tropical, INSERM 1187, CNRS 9192, IRD 249, Université de La Réunion, Sainte-Clotilde, La Réunion, France
| | | | - M Corrie Schoeman
- School of Life Sciences, University of Kwa-Zulu Natal, Kwa-Zulu Natal, South Africa
| | | | - Patrick Mavingui
- Processus Infectieux en Milieu Insulaire Tropical, INSERM 1187, CNRS 9192, IRD 249, Université de La Réunion, Sainte-Clotilde, La Réunion, France
| | - Camille Lebarbenchon
- Processus Infectieux en Milieu Insulaire Tropical, INSERM 1187, CNRS 9192, IRD 249, Université de La Réunion, Sainte-Clotilde, La Réunion, France
| |
Collapse
|
28
|
Giles JR, Peel AJ, Wells K, Plowright RK, McCallum H, Restif O. Optimizing noninvasive sampling of a zoonotic bat virus. Ecol Evol 2021; 11:12307-12321. [PMID: 34594501 PMCID: PMC8462156 DOI: 10.1002/ece3.7830] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022] Open
Abstract
Outbreaks of infectious viruses resulting from spillover events from bats have brought much attention to bat-borne zoonoses, which has motivated increased ecological and epidemiological studies on bat populations. Field sampling methods often collect pooled samples of bat excreta from plastic sheets placed under-roosts. However, positive bias is introduced because multiple individuals may contribute to pooled samples, making studies of viral dynamics difficult. Here, we explore the general issue of bias in spatial sample pooling using Hendra virus in Australian bats as a case study. We assessed the accuracy of different under-roost sampling designs using generalized additive models and field data from individually captured bats and pooled urine samples. We then used theoretical simulation models of bat density and under-roost sampling to understand the mechanistic drivers of bias. The most commonly used sampling design estimated viral prevalence 3.2 times higher than individual-level data, with positive bias 5-7 times higher than other designs due to spatial autocorrelation among sampling sheets and clustering of bats in roosts. Simulation results indicate using a stratified random design to collect 30-40 pooled urine samples from 80 to 100 sheets, each with an area of 0.75-1 m2, and would allow estimation of true prevalence with minimum sampling bias and false negatives. These results show that widely used under-roost sampling techniques are highly sensitive to viral presence, but lack specificity, providing limited information regarding viral dynamics. Improved estimation of true prevalence can be attained with minor changes to existing designs such as reducing sheet size, increasing sheet number, and spreading sheets out within the roost area. Our findings provide insight into how spatial sample pooling is vulnerable to bias for a wide range of systems in disease ecology, where optimal sampling design is influenced by pathogen prevalence, host population density, and patterns of aggregation.
Collapse
Affiliation(s)
- John R. Giles
- Department of EpidemiologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMDUSA
- Environmental Futures Research InstituteGriffith UniversityBrisbaneQldAustralia
| | - Alison J. Peel
- Environmental Futures Research InstituteGriffith UniversityBrisbaneQldAustralia
| | | | - Raina K. Plowright
- Department of Microbiology and ImmunologyMontana State UniversityBozemanMTUSA
| | - Hamish McCallum
- Environmental Futures Research InstituteGriffith UniversityBrisbaneQldAustralia
| | - Olivier Restif
- Disease Dynamics UnitDepartment of Veterinary MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
29
|
Doyle MP, Kose N, Borisevich V, Binshtein E, Amaya M, Nagel M, Annand EJ, Armstrong E, Bombardi R, Dong J, Schey KL, Broder CC, Zeitlin L, Kuang EA, Bornholdt ZA, West BR, Geisbert TW, Cross RW, Crowe JE. Cooperativity mediated by rationally selected combinations of human monoclonal antibodies targeting the henipavirus receptor binding protein. Cell Rep 2021; 36:109628. [PMID: 34469726 PMCID: PMC8527959 DOI: 10.1016/j.celrep.2021.109628] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/25/2021] [Accepted: 08/05/2021] [Indexed: 11/25/2022] Open
Abstract
Hendra virus and Nipah virus (NiV), members of the Henipavirus (HNV) genus, are zoonotic paramyxoviruses known to cause severe disease across six mammalian orders, including humans. We isolated a panel of human monoclonal antibodies (mAbs) from the B cells of an individual with prior exposure to equine Hendra virus (HeV) vaccine, targeting distinct antigenic sites. The most potent class of cross-reactive antibodies achieves neutralization by blocking viral attachment to the host cell receptors ephrin-B2 and ephrin-B3, with a second class being enhanced by receptor binding. mAbs from both classes display synergistic activity in vitro. In a stringent hamster model of NiV Bangladesh (NiVB) infection, antibodies from both classes reduce morbidity and mortality and achieve synergistic protection in combination. These candidate mAbs might be suitable for use in a cocktail therapeutic approach to achieve synergistic potency and reduce the risk of virus escape. Doyle et al. describe two human monoclonal antibodies that target the henipavirus receptor-binding protein, HENV-103 and HENV-117, that display highly potent activity in vitro and enhanced therapeutic efficacy in vivo when delivered as a cocktail.
Collapse
Affiliation(s)
- Michael P Doyle
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nurgun Kose
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Viktoriya Borisevich
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Elad Binshtein
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Moushimi Amaya
- Department of Microbiology & Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Marcus Nagel
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Edward J Annand
- Sydney School of Veterinary Science and Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia; Black Mountain Laboratories & Australian Centre for Disease Preparedness, Health and Biosecurity, CSIRO, Canberra & Geelong, Australia
| | - Erica Armstrong
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robin Bombardi
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jinhui Dong
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Christopher C Broder
- Department of Microbiology & Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Larry Zeitlin
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, USA
| | - Erin A Kuang
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, USA
| | | | | | - Thomas W Geisbert
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Robert W Cross
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
30
|
Jolma ER, Gibson L, Suu-Ire RD, Fleischer G, Asumah S, Languon S, Restif O, Wood JLN, Cunningham AA. Longitudinal Secretion of Paramyxovirus RNA in the Urine of Straw-Coloured Fruit Bats ( Eidolon helvum). Viruses 2021; 13:v13081654. [PMID: 34452518 PMCID: PMC8402643 DOI: 10.3390/v13081654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
The straw-coloured fruit bat (Eidolon helvum) is widespread in sub-Saharan Africa and is widely hunted for bushmeat. It is known to harbour a range of paramyxoviruses, including rubuloviruses and henipaviruses, but the zoonotic potential of these is unknown. We previously found a diversity of paramyxoviruses within a small, captive colony of E. helvum after it had been closed to contact with other bats for 5 years. In this study, we used under-roost urine collection to further investigate the paramyxovirus diversity and ecology in this colony, which had been closed to the outside for 10 years at the time of sampling. By sampling urine weekly throughout an entire year, we investigated possible seasonal patterns of shedding of virus or viral RNA. Using a generic paramyxovirus L-gene PCR, we detected eight distinct paramyxovirus RNA sequences. Six distinct sequences were detected using a Henipavirus-specific PCR that targeted a different region of the L-gene. Sequence detection had a bi-annual pattern, with the greatest peak in July, although different RNA sequences appeared to have different shedding patterns. No significant associations were detected between sequence detection and birthing season, environmental temperature or humidity, and no signs of illness were detected in any of the bats in the colony during the period of sample collection.
Collapse
Affiliation(s)
- Elli Rosa Jolma
- Institute of Zoology, Zoological Society of London, London NW1 4RY, UK;
- Royal Veterinary College, Hatfield, Hertfordshire AL9 7TA, UK
- Correspondence: (E.R.J.); (A.A.C.)
| | - Louise Gibson
- Institute of Zoology, Zoological Society of London, London NW1 4RY, UK;
| | - Richard D. Suu-Ire
- School of Veterinary Medicine, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 25, Legon, Accra, Ghana; (R.D.S.-I.); (G.F.)
| | - Grace Fleischer
- School of Veterinary Medicine, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 25, Legon, Accra, Ghana; (R.D.S.-I.); (G.F.)
| | - Samuel Asumah
- Wildlife Division of Forestry Commission, P.O. Box M 239, Accra, Ghana;
| | - Sylvester Languon
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra 00233, Ghana;
| | - Olivier Restif
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; (O.R.); (J.L.N.W.)
| | - James L. N. Wood
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; (O.R.); (J.L.N.W.)
| | - Andrew A. Cunningham
- Institute of Zoology, Zoological Society of London, London NW1 4RY, UK;
- Correspondence: (E.R.J.); (A.A.C.)
| |
Collapse
|
31
|
Anstey SI, Kasimov V, Jenkins C, Legione A, Devlin J, Amery-Gale J, Gilkerson J, Hair S, Perkins N, Peel AJ, Borel N, Pannekoek Y, Chaber AL, Woolford L, Timms P, Jelocnik M. Chlamydia Psittaci ST24: Clonal Strains of One Health Importance Dominate in Australian Horse, Bird and Human Infections. Pathogens 2021; 10:pathogens10081015. [PMID: 34451478 PMCID: PMC8401489 DOI: 10.3390/pathogens10081015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
Chlamydia psittaci is traditionally regarded as a globally distributed avian pathogen that can cause zoonotic spill-over. Molecular research has identified an extended global host range and significant genetic diversity. However, Australia has reported a reduced host range (avian, horse, and human) with a dominance of clonal strains, denoted ST24. To better understand the widespread of this strain type in Australia, multilocus sequence typing (MLST) and ompA genotyping were applied on samples from a range of hosts (avian, equine, marsupial, and bovine) from Australia. MLST confirms that clonal ST24 strains dominate infections of Australian psittacine and equine hosts (82/88; 93.18%). However, this study also found novel hosts (Australian white ibis, King parrots, racing pigeon, bovine, and a wallaby) and demonstrated that strain diversity does exist in Australia. The discovery of a C. psittaci novel strain (ST306) in a novel host, the Western brush wallaby, is the first detection in a marsupial. Analysis of the results of this study applied a multidisciplinary approach regarding Chlamydia infections, equine infectious disease, ecology, and One Health. Recommendations include an update for the descriptive framework of C. psittaci disease and cell biology work to inform pathogenicity and complement molecular epidemiology.
Collapse
Affiliation(s)
- Susan I. Anstey
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia; (S.I.A.); (V.K.); (P.T.)
| | - Vasilli Kasimov
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia; (S.I.A.); (V.K.); (P.T.)
| | - Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia;
| | - Alistair Legione
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia; (A.L.); (J.D.); (J.A.-G.); (J.G.)
| | - Joanne Devlin
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia; (A.L.); (J.D.); (J.A.-G.); (J.G.)
| | - Jemima Amery-Gale
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia; (A.L.); (J.D.); (J.A.-G.); (J.G.)
| | - James Gilkerson
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia; (A.L.); (J.D.); (J.A.-G.); (J.G.)
| | - Sam Hair
- WA Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia;
| | - Nigel Perkins
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia;
| | - Alison J. Peel
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD 4111, Australia;
| | - Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8066 Zurich, Switzerland;
| | - Yvonne Pannekoek
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 3508 Amsterdam, The Netherlands;
| | - Anne-Lise Chaber
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia; (A.-L.C.); (L.W.)
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia; (A.-L.C.); (L.W.)
| | - Peter Timms
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia; (S.I.A.); (V.K.); (P.T.)
| | - Martina Jelocnik
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia; (S.I.A.); (V.K.); (P.T.)
- Correspondence:
| |
Collapse
|
32
|
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are bat-borne zoonotic para-myxoviruses identified in the mid- to late 1990s in outbreaks of severe disease in livestock and people in Australia and Malaysia, respectively. HeV repeatedly re-emerges in Australia while NiV continues to cause outbreaks in South Asia (Bangladesh and India), and these viruses have remained transboundary threats. In people and several mammalian species, HeV and NiV infections present as a severe systemic and often fatal neurologic and/or respiratory disease. NiV stands out as a potential pandemic threat because of its associated high case-fatality rates and capacity for human-to-human transmission. The development of effective vaccines, suitable for people and livestock, against HeV and NiV has been a research focus. Here, we review the progress made in NiV and HeV vaccine development, with an emphasis on those approaches that have been tested in established animal challenge models of NiV and HeV infection and disease.
Collapse
Affiliation(s)
- Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA;
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA;
| |
Collapse
|
33
|
Plowright RK, Hudson PJ. From Protein to Pandemic: The Transdisciplinary Approach Needed to Prevent Spillover and the Next Pandemic. Viruses 2021; 13:1298. [PMID: 34372504 PMCID: PMC8310336 DOI: 10.3390/v13071298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 01/10/2023] Open
Abstract
Pandemics are a consequence of a series of processes that span scales from viral biology at 10-9 m to global transmission at 106 m. The pathogen passes from one host species to another through a sequence of events that starts with an infected reservoir host and entails interspecific contact, innate immune responses, receptor protein structure within the potential host, and the global spread of the novel pathogen through the naive host population. Each event presents a potential barrier to the onward passage of the virus and should be characterized with an integrated transdisciplinary approach. Epidemic control is based on the prevention of exposure, infection, and disease. However, the ultimate pandemic prevention is prevention of the spillover event itself. Here, we focus on the potential for preventing the spillover of henipaviruses, a group of viruses derived from bats that frequently cross species barriers, incur high human mortality, and are transmitted among humans via stuttering chains. We outline the transdisciplinary approach needed to prevent the spillover process and, therefore, future pandemics.
Collapse
Affiliation(s)
- Raina K. Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Peter J. Hudson
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, State College, PA 16802, USA;
| |
Collapse
|
34
|
Fischhoff IR, Castellanos AA, Rodrigues JP, Varsani A, Han BA. Predicting the zoonotic capacity of mammals to transmit SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.02.18.431844. [PMID: 33619481 PMCID: PMC7899445 DOI: 10.1101/2021.02.18.431844] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Back and forth transmission of SARS-CoV-2 between humans and animals may lead to wild reservoirs of virus that can endanger efforts toward long-term control of COVID-19 in people, and protecting vulnerable animal populations that are particularly susceptible to lethal disease. Predicting high risk host species is key to targeting field surveillance and lab experiments that validate host zoonotic potential. A major bottleneck to predicting animal hosts is the small number of species with available molecular information about the structure of ACE2, a key cellular receptor required for viral cell entry. We overcome this bottleneck by combining species' ecological and biological traits with 3D modeling of virus and host cell protein interactions using machine learning methods. This approach enables predictions about the zoonotic capacity of SARS-CoV-2 for over 5,000 mammals - an order of magnitude more species than previously possible. The high accuracy predictions achieved by this approach are strongly corroborated by in vivo empirical studies. We identify numerous common mammal species whose predicted zoonotic capacity and close proximity to humans may further enhance the risk of spillover and spillback transmission of SARS-CoV-2. Our results reveal high priority areas of geographic overlap between global COVID-19 hotspots and potential new mammal hosts of SARS-CoV-2. With molecular sequence data available for only a small fraction of potential host species, predictive modeling integrating data across multiple biological scales offers a conceptual advance that may expand our predictive capacity for zoonotic viruses with similarly unknown and potentially broad host ranges.
Collapse
Affiliation(s)
- Ilya R. Fischhoff
- Cary Institute of Ecosystem Studies. Box AB Millbrook, NY 12545, USA
| | | | - João P.G.L.M. Rodrigues
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Rondebosch, 7700, Cape Town, South Africa
| | - Barbara A. Han
- Cary Institute of Ecosystem Studies. Box AB Millbrook, NY 12545, USA
| |
Collapse
|
35
|
Plowright RK, Reaser JK, Locke H, Woodley SJ, Patz JA, Becker DJ, Oppler G, Hudson PJ, Tabor GM. Land use-induced spillover: a call to action to safeguard environmental, animal, and human health. Lancet Planet Health 2021; 5:e237-e245. [PMID: 33684341 PMCID: PMC7935684 DOI: 10.1016/s2542-5196(21)00031-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/23/2020] [Accepted: 02/08/2021] [Indexed: 05/04/2023]
Abstract
The rapid global spread and human health impacts of SARS-CoV-2, the virus that causes COVID-19, show humanity's vulnerability to zoonotic disease pandemics. Although anthropogenic land use change is known to be the major driver of zoonotic pathogen spillover from wildlife to human populations, the scientific underpinnings of land use-induced zoonotic spillover have rarely been investigated from the landscape perspective. We call for interdisciplinary collaborations to advance knowledge on land use implications for zoonotic disease emergence with a view toward informing the decisions needed to protect human health. In particular, we urge a mechanistic focus on the zoonotic pathogen infect-shed-spill-spread cascade to enable protection of landscape immunity-the ecological conditions that reduce the risk of pathogen spillover from reservoir hosts-as a conservation and biosecurity priority. Results are urgently needed to formulate an integrated, holistic set of science-based policy and management measures that effectively and cost-efficiently minimise zoonotic disease risk. We consider opportunities to better institute the necessary scientific collaboration, address primary technical challenges, and advance policy and management issues that warrant particular attention to effectively address health security from local to global scales.
Collapse
Affiliation(s)
- Raina K Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.
| | - Jamie K Reaser
- Center for Large Landscape Conservation, Bozeman, MT, USA; Department of Environmental Science and Policy, George Mason University, Fairfax, VA, USA; University of Rhode Island, Providence, RI, USA
| | - Harvey Locke
- Yellowstone to Yukon Conservation Initiative, Canmore, AB, Canada
| | | | - Jonathan A Patz
- Department of Population Health Sciences, Global Health Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Gabriel Oppler
- Center for Large Landscape Conservation, Bozeman, MT, USA
| | - Peter J Hudson
- Huck Institutes of the Life Sciences, Pennsylvania State University, State College, PA, USA
| | - Gary M Tabor
- Center for Large Landscape Conservation, Bozeman, MT, USA
| |
Collapse
|
36
|
Abstract
The risk of emergence and spread of novel human pathogens originating from an animal reservoir has increased in the past decades. However, the unpredictable nature of disease emergence makes surveillance and preparedness challenging. Knowledge of general risk factors for emergence and spread, combined with local level data is needed to develop a risk-based methodology for early detection. This involves the implementation of the One Health approach, integrating human, animal and environmental health sectors, as well as social sciences, bioinformatics and more. Recent technical advances, such as metagenomic sequencing, will aid the rapid detection of novel pathogens on the human-animal interface.
Collapse
|
37
|
Prevalence of Gastrointestinal Parasites in the Frugivorous and the Insectivorous Bats in Southcentral Nepal. J Parasitol Res 2020; 2020:8880033. [PMID: 33414955 PMCID: PMC7752302 DOI: 10.1155/2020/8880033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/14/2020] [Accepted: 10/28/2020] [Indexed: 12/31/2022] Open
Abstract
Bats are the only active flying placental mammals and are traditionally classified into mega- and microbats, which are, respectively, herbivorous and insectivorous in feeding habit. Though deforestation, habitat destruction, natural calamities, illegal hunting, and climate changes are the challenging threats for bats, the role of existing gastrointestinal (GI) parasites have not been evaluated yet in Nepal. Thus, the current study aims to determine the prevalence of GI parasites in bats from the Shaktikhor area at the Chitwan district of Southcentral Nepal. From July 2018 to February 2019, a total of 60 fecal samples of bats (30 from frugivorous bats and 30 from the insectivorous bats) were collected. These samples were preserved at 2.5% potassium dichromate solution. The fecal examination was carried out by the direct wet mount, concentrations, acid-fast staining, and sporulation techniques. Overall results showed the prevalence rate of 80% GI parasites. The parasites detected in the insectivorous bats were Ascarid spp., Capillarid sp., Cryptosporidium sp., Eimeria spp., Entamoeba sp., Giardia sp., Hymenolepis spp., Isospora sp., Oxyurid sp., Strongyle, and Strongyloides sp. In contrast, Eimeria sp., Entamoeba sp., and Hymenolepis sp. were detected in the frugivorous bats. Based on a wide diversity of parasite richness and parasitic concurrency measured by the prevalence rates, we suggest that GI parasitism might be a threatening factor in the insectivorous bats in the current study area.
Collapse
|
38
|
AL-Eitan LN, Tarkhan AH, Alghamdi MA, Marston DA, Wu G, McElhinney LM, Brown IH, Fooks AR. Bat-Borne Coronaviruses in Jordan and Saudi Arabia: A Threat to Public Health? Viruses 2020; 12:E1413. [PMID: 33316899 PMCID: PMC7764733 DOI: 10.3390/v12121413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022] Open
Abstract
Emerging infectious diseases are of great concern to public health, as highlighted by the ongoing coronavirus disease 2019 (COVID-19) pandemic. Such diseases are of particular danger during mass gathering and mass influx events, as large crowds of people in close proximity to each other creates optimal opportunities for disease transmission. The Hashemite Kingdom of Jordan and the Kingdom of Saudi Arabia are two countries that have witnessed mass gatherings due to the arrival of Syrian refugees and the annual Hajj season. The mass migration of people not only brings exotic diseases to these regions but also brings new diseases back to their own countries, e.g., the outbreak of MERS in South Korea. Many emerging pathogens originate in bats, and more than 30 bat species have been identified in these two countries. Some of those bat species are known to carry viruses that cause deadly diseases in other parts of the world, such as the rabies virus and coronaviruses. However, little is known about bats and the pathogens they carry in Jordan and Saudi Arabia. Here, the importance of enhanced surveillance of bat-borne infections in Jordan and Saudi Arabia is emphasized, promoting the awareness of bat-borne diseases among the general public and building up infrastructure and capability to fill the gaps in public health preparedness to prevent future pandemics.
Collapse
Affiliation(s)
- Laith N. AL-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Amneh H. Tarkhan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Mansour A. Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia;
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Denise A. Marston
- Department of Virology, Animal and Plant Health Agency (APHA, Weybridge), Surrey KT15 3NB, UK; (D.A.M.); (G.W.); (L.M.M.); (I.H.B.); (A.R.F.)
| | - Guanghui Wu
- Department of Virology, Animal and Plant Health Agency (APHA, Weybridge), Surrey KT15 3NB, UK; (D.A.M.); (G.W.); (L.M.M.); (I.H.B.); (A.R.F.)
| | - Lorraine M. McElhinney
- Department of Virology, Animal and Plant Health Agency (APHA, Weybridge), Surrey KT15 3NB, UK; (D.A.M.); (G.W.); (L.M.M.); (I.H.B.); (A.R.F.)
| | - Ian H. Brown
- Department of Virology, Animal and Plant Health Agency (APHA, Weybridge), Surrey KT15 3NB, UK; (D.A.M.); (G.W.); (L.M.M.); (I.H.B.); (A.R.F.)
| | - Anthony R. Fooks
- Department of Virology, Animal and Plant Health Agency (APHA, Weybridge), Surrey KT15 3NB, UK; (D.A.M.); (G.W.); (L.M.M.); (I.H.B.); (A.R.F.)
| |
Collapse
|
39
|
Gentles AD, Guth S, Rozins C, Brook CE. A review of mechanistic models of viral dynamics in bat reservoirs for zoonotic disease. Pathog Glob Health 2020; 114:407-425. [PMID: 33185145 PMCID: PMC7759253 DOI: 10.1080/20477724.2020.1833161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The emergence of SARS-CoV-2, a coronavirus with suspected bat origins, highlights a critical need for heightened understanding of the mechanisms by which bats maintain potentially zoonotic viruses at the population level and transmit these pathogens across species. We review mechanistic models, which test hypotheses of the transmission dynamics that underpin viral maintenance in bat systems. A search of the literature identified only twenty-five mechanistic models of bat-virus systems published to date, derived from twenty-three original studies. Most models focused on rabies and related lyssaviruses (eleven), followed by Ebola-like filoviruses (seven), Hendra and Nipah-like henipaviruses (five), and coronaviruses (two). The vast majority of studies has modelled bat virus transmission dynamics at the population level, though a few nested within-host models of viral pathogenesis in population-level frameworks, and one study focused on purely within-host dynamics. Population-level studies described bat virus systems from every continent but Antarctica, though most were concentrated in North America and Africa; indeed, only one simulation model with no associated data was derived from an Asian bat-virus system. In fact, of the twenty-five models identified, only ten population-level models were fitted to data - emphasizing an overall dearth of empirically derived epidemiological inference in bat virus systems. Within the data fitted subset, the vast majority of models were fitted to serological data only, highlighting extensive uncertainty in our understanding of the transmission status of a wild bat. Here, we discuss similarities and differences in the approach and findings of previously published bat virus models and make recommendations for improvement in future work.
Collapse
Affiliation(s)
| | - Sarah Guth
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Carly Rozins
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Cara E. Brook
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
40
|
Affiliation(s)
- Daniel G Streicker
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK. .,Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Amy T Gilbert
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, National Wildlife Research Center, Fort Collins, CO, USA.
| |
Collapse
|
41
|
Hancke D, Suárez OV. Co-occurrence of and risk factors for Cryptosporidium and Giardia in brown rats from Buenos Aires, Argentina. Zoonoses Public Health 2020; 67:903-912. [PMID: 33113252 DOI: 10.1111/zph.12777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022]
Abstract
A rodent survey was conducted in different landscape units of the city of Buenos Aires (Argentina) to determine the prevalence of Cryptosporidium and Giardia in Rattus norvegicus and to, ultimately, assess the biotic, environmental and meteorological factors that explain the variations of the likelihood of infection for both parasites in an urban environment. The results of this study revealed a ubiquitous presence of Cryptosporidium and Giardia in R. norvegicus within an urban environment with the likelihood of infection depending on environmental and meteorological conditions for both parasites. The overall prevalence was greater for Cryptosporidium (p = 50.4%) than for Giardia (20.3%). The prevalence for both parasites separately was higher in parks compared to shantytowns and scrap metal yards. Generalized Linear Mixed Models revealed that the occurrence of these parasites separately, at an individual level, was positively related with rainfall variables and that the effect of temperature depended on the landscape unit. The similarities in the transmission modes, which are affected by common extrinsic factors, may facilitate the co-occurrence of Cryptosporidium and Giardia in urban rats. Rattus norvegicus is recognized as a good model for epidemiological studies and the results of this work suggest that, from an epidemiological point of view, the probability of contact with infectious oocysts and cysts of these parasites can be modulated through environmental management and healthy behaviour towards risk factors. The information presented here will be useful to improve the understanding of the dynamics of zoonotic diseases within urban environments and to contribute to the decision-making of new and effective prophylactic measures.
Collapse
Affiliation(s)
- Diego Hancke
- Dto. de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Olga Virginia Suárez
- Dto. de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
42
|
Genetic diversity of Nipah virus in Bangladesh. Int J Infect Dis 2020; 102:144-151. [PMID: 33129964 DOI: 10.1016/j.ijid.2020.10.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Nipah virus (NiV) infection, often fatal in humans, is primarily transmitted in Bangladesh through the consumption of date palm sap contaminated by Pteropus bats. Person-to-person transmission is also common and increases the concern of large outbreaks. This study aimed to characterize the molecular epidemiology, phylogenetic relationship, and the evolution of the nucleocapsid gene (N gene) of NiV. METHODS We conducted molecular detection, genetic characterization, and Bayesian time-scale evolution analyses of NiV using pooled Pteropid bat roost urine samples from an outbreak area in 2012 and archived RNA samples from NiV case patients identified during 2012-2018 in Bangladesh. RESULTS NiV-RNA was detected in 19% (38/456) of bat roost urine samples and among them; nine N gene sequences were recovered. We also retrieved sequences from 53% (21 out of 39) of archived RNA samples from patients. Phylogenetic analysis revealed that all Bangladeshi strains belonged to NiV-BD genotype and had an evolutionary rate of 4.64 × 10-4 substitutions/site/year. The analyses suggested that the strains of NiV-BD genotype diverged during 1995 and formed two sublineages. CONCLUSION This analysis provides further evidence that the NiV strains of the Malaysian and Bangladesh genotypes diverged recently and continue to evolve. More extensive surveillance of NiV in bats and human will be helpful to explore strain diversity and virulence potential to infect humans through direct or person-to-person virus transmission.
Collapse
|
43
|
Hoarau AOG, Mavingui P, Lebarbenchon C. Coinfections in wildlife: Focus on a neglected aspect of infectious disease epidemiology. PLoS Pathog 2020; 16:e1008790. [PMID: 32881983 PMCID: PMC7470396 DOI: 10.1371/journal.ppat.1008790] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Axel O. G. Hoarau
- Université de La Réunion, Processus Infectieux en Milieu Insulaire Tropical, INSERM 1187, CNRS 9192, IRD 249, Saint Denis, Réunion Island, France
- * E-mail:
| | - Patrick Mavingui
- Université de La Réunion, Processus Infectieux en Milieu Insulaire Tropical, INSERM 1187, CNRS 9192, IRD 249, Saint Denis, Réunion Island, France
| | - Camille Lebarbenchon
- Université de La Réunion, Processus Infectieux en Milieu Insulaire Tropical, INSERM 1187, CNRS 9192, IRD 249, Saint Denis, Réunion Island, France
| |
Collapse
|
44
|
Han BA, O'Regan SM, Paul Schmidt J, Drake JM. Integrating data mining and transmission theory in the ecology of infectious diseases. Ecol Lett 2020; 23:1178-1188. [PMID: 32441459 PMCID: PMC7384120 DOI: 10.1111/ele.13520] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/21/2020] [Accepted: 03/27/2020] [Indexed: 01/07/2023]
Abstract
Our understanding of ecological processes is built on patterns inferred from data. Applying modern analytical tools such as machine learning to increasingly high dimensional data offers the potential to expand our perspectives on these processes, shedding new light on complex ecological phenomena such as pathogen transmission in wild populations. Here, we propose a novel approach that combines data mining with theoretical models of disease dynamics. Using rodents as an example, we incorporate statistical differences in the life history features of zoonotic reservoir hosts into pathogen transmission models, enabling us to bound the range of dynamical phenomena associated with hosts, based on their traits. We then test for associations between equilibrium prevalence, a key epidemiological metric and data on human outbreaks of rodent-borne zoonoses, identifying matches between empirical evidence and theoretical predictions of transmission dynamics. We show how this framework can be generalized to other systems through a rubric of disease models and parameters that can be derived from empirical data. By linking life history components directly to their effects on disease dynamics, our mining-modelling approach integrates machine learning and theoretical models to explore mechanisms in the macroecology of pathogen transmission and their consequences for spillover infection to humans.
Collapse
Affiliation(s)
- Barbara A Han
- Cary Institute of Ecosystem Studies, Box AB Millbrook, NY, 12571, USA
| | - Suzanne M O'Regan
- Department of Mathematics and Statistics, North Carolina A&T State University, 1601 E. Market St., Greensboro, NC, 27411, USA
| | - John Paul Schmidt
- Odum School of Ecology, University of Georgia, 140 E. Green St., Athens, GA, 30602, USA.,Center for the Ecology of Infectious Diseases, University of Georgia, 203 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - John M Drake
- Odum School of Ecology, University of Georgia, 140 E. Green St., Athens, GA, 30602, USA.,Center for the Ecology of Infectious Diseases, University of Georgia, 203 D.W. Brooks Drive, Athens, GA, 30602, USA
| |
Collapse
|
45
|
Seroprevalence of three paramyxoviruses; Hendra virus, Tioman virus, Cedar virus and a rhabdovirus, Australian bat lyssavirus, in a range expanding fruit bat, the Grey-headed flying fox (Pteropus poliocephalus). PLoS One 2020; 15:e0232339. [PMID: 32374743 PMCID: PMC7202650 DOI: 10.1371/journal.pone.0232339] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/13/2020] [Indexed: 12/23/2022] Open
Abstract
Habitat-mediated global change is driving shifts in species’ distributions which can alter the spatial risks associated with emerging zoonotic pathogens. Many emerging infectious pathogens are transmitted by highly mobile species, including bats, which can act as spill-over hosts for pathogenic viruses. Over three years, we investigated the seroepidemiology of paramyxoviruses and Australian bat lyssavirus in a range-expanding fruit bat, the Grey-headed flying fox (Pteropus poliocephalus), in a new camp in Adelaide, South Australia. Over six, biannual, sampling sessions, we quantified median florescent intensity (MFI) antibody levels for four viruses for a total of 297 individual bats using a multiplex Luminex binding assay. Where appropriate, florescence thresholds were determined using finite mixture modelling to classify bats’ serological status. Overall, apparent seroprevalence of antibodies directed at Hendra, Cedar and Tioman virus antigens was 43.2%, 26.6% and 95.7%, respectively. We used hurdle models to explore correlates of seropositivity and antibody levels when seropositive. Increased body condition was significantly associated with Hendra seropositivity (Odds ratio = 3.67; p = 0.002) and Hendra virus levels were significantly higher in pregnant females (p = 0.002). While most bats were seropositive for Tioman virus, antibody levels for this virus were significantly higher in adults (p < 0.001). Unexpectedly, all sera were negative for Australian bat lyssavirus. Temporal variation in antibody levels suggests that antibodies to Hendra virus and Tioman virus may wax and wane on a seasonal basis. These findings suggest a common exposure to Hendra virus and other paramyxoviruses in this flying fox camp in South Australia.
Collapse
|
46
|
Clark NJ, Owada K, Ruberanziza E, Ortu G, Umulisa I, Bayisenge U, Mbonigaba JB, Mucaca JB, Lancaster W, Fenwick A, Soares Magalhães RJ, Mbituyumuremyi A. Parasite associations predict infection risk: incorporating co-infections in predictive models for neglected tropical diseases. Parasit Vectors 2020; 13:138. [PMID: 32178706 PMCID: PMC7077138 DOI: 10.1186/s13071-020-04016-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 03/10/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Schistosomiasis and infection by soil-transmitted helminths are some of the world's most prevalent neglected tropical diseases. Infection by more than one parasite (co-infection) is common and can contribute to clinical morbidity in children. Geostatistical analyses of parasite infection data are key for developing mass drug administration strategies, yet most methods ignore co-infections when estimating risk. Infection status for multiple parasites can act as a useful proxy for data-poor individual-level or environmental risk factors while avoiding regression dilution bias. Conditional random fields (CRF) is a multivariate graphical network method that opens new doors in parasite risk mapping by (i) predicting co-infections with high accuracy; (ii) isolating associations among parasites; and (iii) quantifying how these associations change across landscapes. METHODS We built a spatial CRF to estimate infection risks for Ascaris lumbricoides, Trichuris trichiura, hookworms (Ancylostoma duodenale and Necator americanus) and Schistosoma mansoni using data from a national survey of Rwandan schoolchildren. We used an ensemble learning approach to generate spatial predictions by simulating from the CRF's posterior distribution with a multivariate boosted regression tree that captured non-linear relationships between predictors and covariance in infection risks. This CRF ensemble was compared against single parasite gradient boosted machines to assess each model's performance and prediction uncertainty. RESULTS Parasite co-infections were common, with 19.57% of children infected with at least two parasites. The CRF ensemble achieved higher predictive power than single-parasite models by improving estimates of co-infection prevalence at the individual level and classifying schools into World Health Organization treatment categories with greater accuracy. The CRF uncovered important environmental and demographic predictors of parasite infection probabilities. Yet even after capturing demographic and environmental risk factors, the presences or absences of other parasites were strong predictors of individual-level infection risk. Spatial predictions delineated high-risk regions in need of anthelminthic treatment interventions, including areas with higher than expected co-infection prevalence. CONCLUSIONS Monitoring studies routinely screen for multiple parasites, yet statistical models generally ignore this multivariate data when assessing risk factors and designing treatment guidelines. Multivariate approaches can be instrumental in the global effort to reduce and eventually eliminate neglected helminth infections in developing countries.
Collapse
Affiliation(s)
- Nicholas J. Clark
- UQ Spatial Epidemiology Laboratory, School of Veterinary Science, The University of Queensland, Gatton, QLD 4343 Australia
| | - Kei Owada
- UQ Spatial Epidemiology Laboratory, School of Veterinary Science, The University of Queensland, Gatton, QLD 4343 Australia
- Children Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD 4101 Australia
| | - Eugene Ruberanziza
- Neglected Tropical Diseases and Other Parasitic Diseases Unit, Malaria and Other Parasitic Diseases Division, Rwanda Biomedical Center, Kigali, Rwanda
| | - Giuseppina Ortu
- Schistosomiasis Control Initiative (SCI), Department of Infectious Diseases Epidemiology, Imperial College, London, UK
| | - Irenee Umulisa
- Neglected Tropical Diseases and Other Parasitic Diseases Unit, Malaria and Other Parasitic Diseases Division, Rwanda Biomedical Center, Kigali, Rwanda
| | - Ursin Bayisenge
- Neglected Tropical Diseases and Other Parasitic Diseases Unit, Malaria and Other Parasitic Diseases Division, Rwanda Biomedical Center, Kigali, Rwanda
| | - Jean Bosco Mbonigaba
- Neglected Tropical Diseases and Other Parasitic Diseases Unit, Malaria and Other Parasitic Diseases Division, Rwanda Biomedical Center, Kigali, Rwanda
| | - Jean Bosco Mucaca
- Microbiology Unit, National Reference Laboratory (NRL) Division, Rwanda Biomedical Center, Ministry of Health, Kigali, Rwanda
| | | | - Alan Fenwick
- Schistosomiasis Control Initiative (SCI), Department of Infectious Diseases Epidemiology, Imperial College, London, UK
| | - Ricardo J. Soares Magalhães
- UQ Spatial Epidemiology Laboratory, School of Veterinary Science, The University of Queensland, Gatton, QLD 4343 Australia
- Children Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD 4101 Australia
| | - Aimable Mbituyumuremyi
- Malaria and Other Parasitic Diseases Division, Rwanda Biomedical Center, Ministry of Health, Kigali, Rwanda
| |
Collapse
|
47
|
Prada D, Boyd V, Baker ML, O’Dea M, Jackson B. Viral Diversity of Microbats within the South West Botanical Province of Western Australia. Viruses 2019; 11:E1157. [PMID: 31847282 PMCID: PMC6950384 DOI: 10.3390/v11121157] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 12/30/2022] Open
Abstract
Bats are known reservoirs of a wide variety of viruses that rarely result in overt clinical disease in the bat host. However, anthropogenic influences on the landscape and climate can change species assemblages and interactions, as well as undermine host-resilience. The cumulative result is a disturbance of bat-pathogen dynamics, which facilitate spillover events to sympatric species, and may threaten bat communities already facing synergistic stressors through ecological change. Therefore, characterisation of viral pathogens in bat communities provides important basal information to monitor and predict the emergence of diseases relevant to conservation and public health. This study used targeted molecular techniques, serological assays and next generation sequencing to characterise adenoviruses, coronaviruses and paramyxoviruses from 11 species of insectivorous bats within the South West Botanical Province of Western Australia. Phylogenetic analysis indicated complex ecological interactions including virus-host associations, cross-species infections, and multiple viral strains circulating concurrently within selected bat populations. Additionally, we describe the entire coding sequences for five alphacoronaviruses (representing four putative new species), and one novel adenovirus. Results indicate that viral burden (both prevalence and richness) is not homogeneous among species, with Chalinolobus gouldii identified as a key epidemiological element within the studied communities.
Collapse
Affiliation(s)
- Diana Prada
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia; (M.O.); (B.J.)
| | - Victoria Boyd
- Health and Biosecurity Business Unit, Australian Animal Health Laboratories, CSIRO, Geelong, VIC 3220, Australia; (V.B.); (M.L.B.)
| | - Michelle L. Baker
- Health and Biosecurity Business Unit, Australian Animal Health Laboratories, CSIRO, Geelong, VIC 3220, Australia; (V.B.); (M.L.B.)
| | - Mark O’Dea
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia; (M.O.); (B.J.)
| | - Bethany Jackson
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia; (M.O.); (B.J.)
| |
Collapse
|
48
|
Peel AJ, Field HE, Aravena MR, Edson D, McCallum H, Plowright RK, Prada D. Coronaviruses and Australian bats: a review in the midst of a pandemic. AUST J ZOOL 2019. [DOI: 10.1071/zo20046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Australia’s 81 bat species play vital ecological and economic roles via suppression of insect pests and maintenance of native forests through pollination and seed dispersal. Bats also host a wide diversity of coronaviruses globally, including several viral species that are closely related to SARS-CoV-2 and other emergent human respiratory coronaviruses. Although there are hundreds of studies of bat coronaviruses globally, there are only three studies of bat coronaviruses in Australian bat species, and no systematic studies of drivers of shedding. These limited studies have identified two betacoronaviruses and seven alphacoronaviruses, but less than half of Australian species are included in these studies and further research is therefore needed. There is no current evidence of spillover of coronaviruses from bats to humans in Australia, either directly or indirectly via intermediate hosts. The limited available data are inadequate to determine whether this lack of evidence indicates that spillover does not occur or occurs but is undetected. Conversely, multiple international agencies have flagged the potential transmission of human coronaviruses (including SARS CoV-2) from humans to bats, and the consequent threat to bat conservation and human health. Australia has a long history of bat research across a broad range of ecological and associated disciplines, as well as expertise in viral spillover from bats. This strong foundation is an ideal platform for developing integrative approaches to understanding bat health and sustainable protection of human health.
Collapse
|