1
|
Vagnozzi RJ, Sargent MA, Lin SCJ, Palpant NJ, Murry CE, Molkentin JD. Genetic Lineage Tracing of Sca-1 + Cells Reveals Endothelial but Not Myogenic Contribution to the Murine Heart. Circulation 2019; 138:2931-2939. [PMID: 29991486 DOI: 10.1161/circulationaha.118.035210] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND The adult mammalian heart displays a cardiomyocyte turnover rate of ≈1%/y throughout postnatal life and after injuries such as myocardial infarction (MI), but the question of which cell types drive this low level of new cardiomyocyte formation remains contentious. Cardiac-resident stem cells marked by stem cell antigen-1 (Sca-1, gene name Ly6a) have been proposed as an important source of cardiomyocyte renewal. However, the in vivo contribution of endogenous Sca-1+ cells to the heart at baseline or after MI has not been investigated. METHODS Here we generated Ly6a gene-targeted mice containing either a constitutive or an inducible Cre recombinase to perform genetic lineage tracing of Sca-1+ cells in vivo. RESULTS We observed that the contribution of endogenous Sca-1+ cells to the cardiomyocyte population in the heart was <0.005% throughout all of cardiac development, with aging, or after MI. In contrast, Sca-1+ cells abundantly contributed to the cardiac vasculature in mice during physiological growth and in the post-MI heart during cardiac remodeling. Specifically, Sca-1 lineage-traced endothelial cells expanded postnatally in the mouse heart after birth and into adulthood. Moreover, pulse labeling of Sca-1+ cells with an inducible Ly6a-MerCreMer allele also revealed a preferential expansion of Sca-1 lineage-traced endothelial cells after MI injury in the mouse. CONCLUSIONS Cardiac-resident Sca-1+ cells are not significant contributors to cardiomyocyte renewal in vivo. However, cardiac Sca-1+ cells represent a subset of vascular endothelial cells that expand postnatally with enhanced responsiveness to pathological stress in vivo.
Collapse
Affiliation(s)
- Ronald J Vagnozzi
- Department of Pediatrics (R.J.V., M.A.S., S.-C.J.L., J.D.M.), Cincinnati Children's Hospital Medical Center, OH
| | - Michelle A Sargent
- Department of Pediatrics (R.J.V., M.A.S., S.-C.J.L., J.D.M.), Cincinnati Children's Hospital Medical Center, OH
| | - Suh-Chin J Lin
- Department of Pediatrics (R.J.V., M.A.S., S.-C.J.L., J.D.M.), Cincinnati Children's Hospital Medical Center, OH
| | - Nathan J Palpant
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia (N.J.P.)
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle (C.E.M.)
| | - Jeffery D Molkentin
- Department of Pediatrics (R.J.V., M.A.S., S.-C.J.L., J.D.M.), Cincinnati Children's Hospital Medical Center, OH.,Howard Hughes Medical Institute (J.D.M.), Cincinnati Children's Hospital Medical Center, OH
| |
Collapse
|
2
|
Kent DG, Dykstra BJ, Eaves CJ. Isolation and Assessment of Single Long-Term Reconstituting Hematopoietic Stem Cells from Adult Mouse Bone Marrow. CURRENT PROTOCOLS IN STEM CELL BIOLOGY 2016; 38:2A.4.1-2A.4.24. [PMID: 27532815 DOI: 10.1002/cpsc.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hematopoietic stem cells with long-term repopulating activity can now be routinely obtained at purities of 40% to 50% from suspensions of adult mouse bone marrow. Here we describe robust protocols for both their isolation as CD45(+) EPCR(+) CD150(+) CD48(-) (ESLAM) cells using multiparameter cell sorting and for tracking their clonal growth and differentiation activity in irradiated mice transplanted with single ESLAM cells. The simplicity of these procedures makes them attractive for characterizing the molecular and biological properties of individual hematopoietic stem cells with unprecedented power and precision. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- David G Kent
- Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, United Kingdom
| | - Brad J Dykstra
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Connie J Eaves
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
3
|
Fleenor CJ, Rozhok AI, Zaberezhnyy V, Mathew D, Kim J, Tan AC, Bernstein ID, DeGregori J. Contrasting roles for C/EBPα and Notch in irradiation-induced multipotent hematopoietic progenitor cell defects. Stem Cells 2016; 33:1345-58. [PMID: 25546133 DOI: 10.1002/stem.1936] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/14/2014] [Accepted: 11/21/2014] [Indexed: 12/17/2022]
Abstract
Ionizing radiation (IR) is associated with reduced hematopoietic function and increased risk of hematopoietic malignancies, although the mechanisms behind these relationships remain poorly understood. Both effects of IR have been commonly attributed to the direct induction of DNA mutations, but evidence supporting these hypotheses is largely lacking. Here we demonstrate that IR causes long-term, somatically heritable, cell-intrinsic reductions in hematopoietic stem cell (HSC) and multipotent hematopoietic progenitor cell (mHPC) self-renewal that are mediated by C/EBPα and reversed by Notch. mHPC from previously irradiated (>9 weeks prior), homeostatically restored mice exhibit gene expression profiles consistent with their precocious differentiation phenotype, including decreased expression of HSC-specific genes and increased expression of myeloid program genes (including C/EBPα). These gene expression changes are reversed by ligand-mediated activation of Notch. Loss of C/EBPα expression is selected for within previously irradiated HSC and mHPC pools and is associated with reversal of IR-dependent precocious differentiation and restoration of self-renewal. Remarkably, restoration of mHPC self-renewal by ligand-mediated activation of Notch prevents selection for C/EBPα loss of function in previously irradiated mHPC pools. We propose that environmental insults prompt HSC to initiate a program limiting their self-renewal, leading to loss of the damaged HSC from the pool while allowing this HSC to temporarily contribute to differentiated cell pools. This "programmed mediocrity" is advantageous for the sporadic genotoxic insults animals have evolved to deal with but becomes tumor promoting when the entire HSC compartment is damaged, such as during total body irradiation, by increasing selective pressure for adaptive oncogenic mutations.
Collapse
|
4
|
Oelkrug C, Hilger N, Schönfelder U, Boltze J, Sack U, Fricke C, Hildebrandt G, Keller T, Emmrich F, Fricke S. Modelling hematological parameters after total body irradiation. Int J Radiat Biol 2014; 90:538-46. [PMID: 24605769 DOI: 10.3109/09553002.2014.899443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The time- and dose-dependent reconstitution of hematopoiesis after radiation exposure is strongly related to the stem cell population and can be used to predict hematological parameters. These parameters allow further insight into the hematopoietic system and might lead to the development of novel stem cell transplantation models. MATERIALS AND METHODS CD4-/- C57Bl/6 mice, transgenic for human CD4 and HLA-DR3, were irradiated in a single (3, 6, 8 and 12 Gy) and fractionated (6 × 1 Gy, 6 × 1.5 Gy, 6 × 2 Gy; twice daily) dose regimen. Blood was analyzed weekly for red blood cells (RBC), hemoglobin concentration (Hb), hematocrit (HCT) and white blood cells (WBC). Organ and tissue damage after irradiation were examined by histopathology. RESULTS The recovery curves for RBC, Hb, HCT and WBC showed the same velocity (< 1 week) for all radiation doses (3-12 Gy) starting at different, dose-dependent times. The only dose-dependent parameter was defined by the beginning of the recovery process (dose-dependent shift) and higher doses were related to a later recovery of the hematopoietic system. The RBC, Hb and HCT recovery was followed by a saturation curve reaching a final concentration independent of the radiation dose. Histological analysis of the bone marrow in the single dose cohort showed a dose-dependent reduction of the cellularity in the bone marrow cavities. The fractioned radiation dose cohort resulted in a regeneration of all bone marrow cavities. CONCLUSION Specific functions were developed to describe the reconstitution of hematological parameters after total body irradiation.
Collapse
Affiliation(s)
- Christopher Oelkrug
- Fraunhofer Institute for Cell Therapy and Immunology (IZI) , Leipzig , Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Frelin C, Herrington R, Janmohamed S, Barbara M, Tran G, Paige CJ, Benveniste P, Zuñiga-Pflücker JC, Souabni A, Busslinger M, Iscove NN. GATA-3 regulates the self-renewal of long-term hematopoietic stem cells. Nat Immunol 2013; 14:1037-44. [PMID: 23974957 PMCID: PMC4972578 DOI: 10.1038/ni.2692] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/22/2013] [Indexed: 01/07/2023]
Abstract
The transcription factor GATA-3 is expressed and required for differentiation and function throughout the T lymphocyte lineage. Despite evidence it may also be expressed in multipotent hematopoietic stem cells (HSCs), any role for GATA-3 in these cells has remained unclear. Here we found GATA-3 was in the cytoplasm in quiescent long-term stem cells from steady-state bone marrow but relocated to the nucleus when HSCs cycled. Relocation depended on signaling via the mitogen-activated protein kinase p38 and was associated with a diminished capacity for long-term reconstitution after transfer into irradiated mice. Deletion of Gata3 enhanced the repopulating capacity and augmented the self-renewal of long-term HSCs in cell-autonomous fashion without affecting the cell cycle. Our observations position GATA-3 as a regulator of the balance between self-renewal and differentiation in HSCs that acts downstream of the p38 signaling pathway.
Collapse
Affiliation(s)
- Catherine Frelin
- 1] Ontario Cancer Institute, University Health Network, Toronto, Canada. [2] Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
VEGFR-3 is expressed on megakaryocyte precursors in the murine bone marrow and plays a regulatory role in megakaryopoiesis. Blood 2012; 120:1899-907. [PMID: 22797697 DOI: 10.1182/blood-2011-09-376657] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
VEGFR-3 is a transmembrane receptor tyrosine kinase that is activated by its ligands VEGF-C and VEGF-D. Although VEGFR-3 has been linked primarily to the regulation of lymphangiogenesis, in the present study, we demonstrate a role for VEGFR-3 in megakaryopoiesis. Using a human erythroleukemia cell line and primary murine BM cells, we show that VEGFR-3 is expressed on megakaryocytic progenitor cells through to the promegakaryoblast stage. Functionally, specific activation of VEGFR-3 impaired the transition to polyploidy of CD41+ cells in primary BM cultures. Blockade of VEGFR-3 promoted endoreplication consistently. In vivo, long-term activation or blockade of VEGFR-3 did not affect steady-state murine megakaryopoiesis or platelet counts significantly. However, activation of VEGFR-3 in sublethally irradiated mice resulted in significantly elevated numbers of CD41+ cells in the BM and a significant increase in diploid CD41+ cells, whereas the number of polyploid CD41+ cells was reduced significantly. Moreover, activation of VEGFR-3 increased platelet counts in thrombopoietin-treated mice significantly and modulated 5-fluorouracil-induced thrombocytosis strongly, suggesting a regulatory role for VEGFR-3 in megakaryopoiesis.
Collapse
|
7
|
Abstract
This is a chronicle of concepts in the field of epidermal stem cell biology and a historic look at their development over time. The past 25 years have seen the evolution of epidermal stem cell science, from first fundamental studies to a sophisticated science. The study of epithelial stem cell biology was aided by the ability to visualize the distribution of stem cells and their progeny through lineage analysis studies. The excellent progress we have made in understanding epidermal stem cell biology is discussed in this article. The challenges we still face in understanding epidermal stem cells include defining molecular markers for stem and progenitor sub-populations, determining the locations and contributions of the different stem cell niches, and mapping regulatory pathways of epidermal stem cell proliferation and differentiation. However, our rapidly evolving understanding of epidermal stem cells has many potential uses that promise to translate into improved patient therapy.
Collapse
Affiliation(s)
- Ruby Ghadially
- Department of Dermatology and Epithelial Section, UCSF Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California 94121, USA.
| |
Collapse
|
8
|
Abstract
Microarray gene expression profiling has identified gene signatures or "Indicator" genes predictive of outcome in many cancer types including lymphoma, and more recently pancreatic cancer. This has identified novel and powerful diagnostic and prognostic and generically applicable markers, promising more specific diagnosis and treatment, together with improved understanding of pathobiology. There is now an urgent need to translate these signatures to clinical use. However, gene microarrays rely on relatively large amounts of fresh starting tissue obviating measurement of Indicator genes in routine practice, and there is a need for development of another, simple, robust, relatively inexpensive and sensitive method for their translation to clinical use. We have piloted the use of real-time PCR measurement of specific prognostic genes, so called "Indicator" genes, in globally amplified polyA cDNA for this purpose. Poly(A) PCR coordinately amplifies cDNA copies of all polyadenylated mRNAs, thereby generating a PCR product (polyA cDNA) whose composition reflects the relative abundance of all expressed genes in the starting sample. Poly(A) PCR enables global mRNA amplification from picogram amounts of RNA and has been routinely used to analyse expression in small samples including single cells. The poly(A) cDNA pool generated is also indefinitely renewable and as such represents a "molecular block". Real-time PCR measurement, using gene-specific primers and probes, of the expression levels of specific Indicator genes then allows gene signatures to be detected within the poly(A) cDNA, thereby enabling expression profiling of very small amounts of starting material. This chapter details this method as applied to fresh and paraffin embedded tissue and to pancreatic juice. In this chapter, we have concentrated on application of the method to pancreatic cancer, but the generic nature of the method renders it applicable to any cancer type, thereby representing a novel platform for cancer diagnosis across all tumour types.
Collapse
|
9
|
Benveniste P, Frelin C, Janmohamed S, Barbara M, Herrington R, Hyam D, Iscove NN. Intermediate-term hematopoietic stem cells with extended but time-limited reconstitution potential. Cell Stem Cell 2010; 6:48-58. [PMID: 20074534 DOI: 10.1016/j.stem.2009.11.014] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 10/06/2009] [Accepted: 11/19/2009] [Indexed: 10/20/2022]
Abstract
Sustained blood cell production depends on divisions by hematopoietic stem cells (HSCs) that yield both differentiating progeny as well as new HSCs via self-renewal. Differentiating progeny remain capable of self-renewal, but only HSCs sustain self-renewal through successive divisions securely enough to maintain clones that persist life-long. Until recently, the first identified next stage consisted of "short-term" reconstituting cells able to sustain clones of differentiating cells for only 4-6 weeks. Here we expand evidence for a numerically dominant "intermediate-term" multipotent HSC stage in mice whose clones persist for 6-8 months before becoming extinct and that are separable from both short-term as well as permanently reconstituting "long-term" HSCs. The findings suggest that the first step in stem cell differentiation consists not in loss of initial capacity for serial self-renewal divisions, but rather in loss of mechanisms that stabilize self-renewing behavior throughout successive future stem cell divisions.
Collapse
|
10
|
Strachan LR, Ghadially R. Limiting dilution analysis of murine epidermal stem cells using an in vivo regeneration assay. Methods Mol Biol 2010; 585:421-32. [PMID: 19908020 DOI: 10.1007/978-1-60761-380-0_29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epidermal stem cells are of major importance for tissue homeostasis, wound repair, tumor initiation, and gene therapy. Here we describe an in vivo regeneration assay to test for the ability of keratinocyte progenitors to maintain an epidermis over the long-term in vivo. Limiting dilution analysis of epidermal repopulating units in this in vivo regeneration assay at sequential time points allows the frequency of short-term (transit amplifying cell) and long-term (stem cell) repopulating cells to be quantified.
Collapse
Affiliation(s)
- Lauren R Strachan
- San Francisco VA Medical Center, University of California, San Francisco, CA, USA
| | | |
Collapse
|
11
|
Chatterjee S, Basak P, Das P, Das M, Pereira JA, Dutta RK, Chaklader M, Chaudhuri S, Law S. Primitive Sca-1 Positive Bone Marrow HSC in Mouse Model of Aplastic Anemia: A Comparative Study through Flowcytometric Analysis and Scanning Electron Microscopy. Stem Cells Int 2009; 2010:614395. [PMID: 21048851 PMCID: PMC2963143 DOI: 10.4061/2010/614395] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/30/2009] [Accepted: 08/04/2009] [Indexed: 11/27/2022] Open
Abstract
Self-renewing Hematopoietic Stem Cells (HSCs) are responsible for reconstitution of all blood cell lineages. Sca-1 is the “stem cell antigen” marker used to identify the primitive murine HSC population, the expression of which decreases upon differentiation to other mature cell types. Sca-1+ HSCs maintain the bone marrow stem cell pool throughout the life. Aplastic anemia is a disease considered to involve primary stem cell deficiency and is characterized by severe pancytopenia and a decline in healthy blood cell generation system. Studies conducted in our laboratory revealed that the primitive Sca-1+ BM-HSCs (bone marrow hematopoietic stem cell) are significantly affected in experimental Aplastic animals pretreated with chemotherapeutic drugs (Busulfan and Cyclophosphamide) and there is increased Caspase-3 activity with consecutive high Annexin-V positivity leading to premature apoptosis in the bone marrow hematopoietic stem cell population in Aplastic condition. The Sca-1bright, that is, “more primitive” BM-HSC population was more affected than the “less primitive” BM-HSC Sca-1dim population. The decreased cell population and the receptor expression were directly associated with an empty and deranged marrow microenvironment, which is evident from scanning electron microscopy (SEM). The above experimental evidences hint toward the manipulation of receptor expression for the benefit of cytotherapy by primitive stem cell population in Aplastic anemia cases.
Collapse
Affiliation(s)
- Sumanta Chatterjee
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C.R. Avenue, Kolkata-700073, India
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Expression of AA4.1 marks lymphohematopoietic progenitors in early mouse development. Proc Natl Acad Sci U S A 2009; 106:8953-8. [PMID: 19458045 DOI: 10.1073/pnas.0904090106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hematopoietic system of mice is established during the early to midgestational stage of development. However, the earliest lymphohematopoietic progenitors that appear during mouse development have been less well characterized compared with the hematopoietic stem cell compartment of fetal liver and bone marrow. We isolated the earliest lymphohematopoietic progenitors by using embryonic stem (ES) cell culture in vitro. Cells with the c-Kit(+)Lin(-) cell surface phenotype were present abundantly in ES cells cocultured with stromal cell lines. We further separated the cells into two distinct cell subsets based on AA4.1 expression. Although AA4.1(+) and AA4.1(-) cells had equivalent potency to generate myeloid cell lineages, the lymphoid potential in ES-cell-derived cells was largely restricted to the cells expressing AA4.1. The same cell type was present abundantly in the early yolk sac and in fewer numbers (approximately 5% of that in the yolk sac) in the caudal half of the developing embryos. These data suggest that AA4.1 is a cell surface marker that can identify the earliest lymphohematopoietic progenitors in mouse development.
Collapse
|
13
|
Kent D, Dykstra B, Eaves C. Isolation and assessment of long-term reconstituting hematopoietic stem cells from adult mouse bone marrow. ACTA ACUST UNITED AC 2008; Chapter 2:Unit 2A.4. [PMID: 18785176 DOI: 10.1002/9780470151808.sc02a04s3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Suspensions of multipotent hematopoietic stem cells with long-term repopulating activity can now be routinely isolated from adult mouse bone marrow at purities of 30%. A robust method for obtaining these cells in a single step using multiparameter cell sorting to isolate the CD45(mid)lin(-)Rho(-)SP subset is described here, together with a detailed protocol for assessing their regenerative activity in mice transplanted with single cells. These procedures provide unprecedented power and precision for characterizing the molecular and biological properties of cells with hematopoietic stem cell activity at the single cell level.
Collapse
Affiliation(s)
- David Kent
- University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
14
|
Herbert KE, Lévesque JP, Haylock DN, Prince HM. The use of experimental murine models to assess novel agents of hematopoietic stem and progenitor cell mobilization. Biol Blood Marrow Transplant 2008; 14:603-21. [PMID: 18489986 DOI: 10.1016/j.bbmt.2008.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2007] [Accepted: 02/04/2008] [Indexed: 01/13/2023]
Abstract
The recent explosion in the understanding of the cellular and molecular mechanisms underlying hematopoietic stem and progenitor cell (HSPC) mobilization has facilitated development of novel therapeutic agents, targeted at improving mobilization kinetics as well as HSPC yield. With the development of new agents comes the challenge of choosing efficient and relevant preclinical studies for the testing of the HSPC mobilization efficacy of these agents. This article reviews the use of the mouse as a convenient small animal model of HSPC mobilization and transplantation, and outlines the range of murine assays that can be applied to assess novel HSPC mobilizing agents. Techniques to demonstrate murine HSPC mobilization are discussed, as well as the role of murine assays to confirm human HSPC mobilization, and techniques to investigate the biologic phenotype of HSPC mobilized by these novel agents. Technical aspects regarding mobilization regimens and control arms, and choice of experimental animals are also discussed.
Collapse
|
15
|
Dykstra B, Kent D, Bowie M, McCaffrey L, Hamilton M, Lyons K, Lee SJ, Brinkman R, Eaves C. Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 2008; 1:218-29. [PMID: 18371352 DOI: 10.1016/j.stem.2007.05.015] [Citation(s) in RCA: 469] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 01/30/2007] [Accepted: 05/14/2007] [Indexed: 12/17/2022]
Abstract
Heterogeneity in the differentiation behavior of hematopoietic stem cells is well documented but poorly understood. To investigate this question at a clonal level, we isolated a subpopulation of adult mouse bone marrow that is highly enriched for multilineage in vivo repopulating cells and transplanted these as single cells, or their short-term clonal progeny generated in vitro, into 352 recipients. Of the mice, 93 showed a donor-derived contribution to the circulating white blood cells for at least 4 months in one of four distinct patterns. Serial transplantation experiments indicated that two of the patterns were associated with extensive self-renewal of the original cell transplanted. However, within 4 days in vitro, the repopulation patterns subsequently obtained in vivo shifted in a clone-specific fashion to those with less myeloid contribution. Thus, primitive hematopoietic cells can maintain distinct repopulation properties upon serial transplantation in vivo, although these properties can also alter rapidly in vitro.
Collapse
Affiliation(s)
- Brad Dykstra
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Miller CL, Dykstra B, Eaves CJ. Characterization of mouse hematopoietic stem and progenitor cells. CURRENT PROTOCOLS IN IMMUNOLOGY 2008; Chapter 22:22B.2.1-22B.2.31. [PMID: 18432636 DOI: 10.1002/0471142735.im22b02s80] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The unit describes functional assays for the quantification of mouse hematopoietic stem cells and progenitor cells. The competitive repopulating unit (CRU) assay detects transplantable mouse hematopoietic stem cells with the capacity to regenerate all of the blood cell lineages for extended time periods in vivo. The long-term culture-initiating cell (LTC-IC) assay, founded on the bone marrow long-term culture system, measures primitive hematopoietic progenitors based on their capacity to produce myeloid progeny for at least four weeks. Colony-forming cell (CFC) assays, performed in semisolid medium cultures to assess mouse pre-B, megakaryocyte, erythroid, granulocyte-monocyte, and multipotential hematopoietic progenitors are also described. These assays are powerful tools for evaluating human stem cell (HSC) and progenitor content in various hematopoietic tissues, during development as well as in the adult animal, and in cell populations manipulated ex vivo.
Collapse
Affiliation(s)
| | - Brad Dykstra
- University Medical Centre Groningen, Groningen, The Netherlands
| | - Connie J Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia
| |
Collapse
|
17
|
Haylock DN, Williams B, Johnston HM, Liu MCP, Rutherford KE, Whitty GA, Simmons PJ, Bertoncello I, Nilsson SK. Hemopoietic stem cells with higher hemopoietic potential reside at the bone marrow endosteum. Stem Cells 2007; 25:1062-9. [PMID: 17420230 DOI: 10.1634/stemcells.2006-0528] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is now evident that hemopoietic stem cells (HSC) are located in close proximity to bone lining cells within the endosteum. Accordingly, it is unlikely that the traditional method for harvesting bone marrow (BM) from mice by simply flushing long bones would result in optimal recovery of HSC. With this in mind, we have developed improved methodologies based on sequential grinding and enzymatic digestion of murine bone tissue to harvest higher numbers of BM cells and HSC from the endosteal and central marrow regions. This methodology resulted in up to a sixfold greater recovery of primitive hemopoietic cells (lineage(-)Sca(+)Kit(+) [LSK] cells) and HSC as shown by transplant studies. HSC from different anatomical regions of the marrow exhibited important functional differences. Compared with their central marrow counterparts, HSC isolated from the endosteal region (a) had 1.8-fold greater proliferative potential, (b) exhibited almost twofold greater ability to home to the BM following tail vein injection and to lodge in the endosteal region, and (c) demonstrated significantly greater long-term hemopoietic reconstitution potential as shown using limiting dilution competitive transplant assays.
Collapse
|
18
|
Abstract
Cloned 20 years ago, stem cell antigen-1 (Sca-1) is used extensively to enrich for murine hematopoietic stem cells. The realization that many different stem cell types share conserved biochemical pathways has led to a flood of recent research using Sca-1 as a candidate marker in the search for tissue-resident and cancer stem cells. Although surprisingly little is still known about its biochemical function, the generation and analysis of knockout mice has begun to shed light on the functions of Sca-1 in stem and progenitor cells, demonstrating that it is more than a convenient marker for stem cell biologists. This review summarizes the plethora of recent findings utilizing Sca-1 as a parenchymal stem cell marker and detailing its functional role in stem and progenitor cells and also attempts to explain the lingering mysteries surrounding its biochemical function and human ortholog. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Christina Holmes
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, Canada
| | | |
Collapse
|
19
|
Abstract
Purification to homogeneity for a rare stem cell (SC) population by both function and phenotype is a prerequisite to determine if SCs can change their fate (plasticity). Since cell fate determination has been suggested by both external environmental cues and intrinsic gene regulation, plasticity should be studied using both influences. Different frequencies of marrow SC plasticity may be attributed to either different isolation technologies or different developmental stage SCs with more or less multipotentiality. Tissue-specific SCs may reside in marrow, or alternatively, primitive marrow SC may respond directly to regenerative signals by migration to injury sites and repairing the damaged tissue. It is important to dissect the relationship between primitive/tissue-specific SCs and regenerative signals.
Collapse
Affiliation(s)
- Yoon-Young Jang
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | |
Collapse
|
20
|
McKenzie JL, Gan OI, Doedens M, Wang JCY, Dick JE. Individual stem cells with highly variable proliferation and self-renewal properties comprise the human hematopoietic stem cell compartment. Nat Immunol 2006; 7:1225-33. [PMID: 17013390 DOI: 10.1038/ni1393] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 08/17/2006] [Indexed: 12/14/2022]
Abstract
Hematopoiesis requires tight regulation of the hematopoietic stem cell (HSC) population; however, the dynamics of HSC use at steady state are uncertain. Over 3-7 months, we evaluated the repopulation and self-renewal of more than 600 individual human 'severe combined immunodeficiency mouse-repopulating cells' (SRCs), tracked on the basis of lentiviral integration sites, in serially transplanted immune-deficient mice, as well as of SRC daughter cells that migrated to different marrow locations in a single mouse. Our data demonstrate maintenance by self-renewing SRCs after an initial period of clonal instability, a result inconsistent with the clonal succession model. We found wide variation in proliferation kinetics and self-renewal among SRCs, as well as between SRC daughter cells that repopulated equivalently, suggesting that SRC fate is unpredictable before SRCs enter more rigid 'downstream' developmental programs.
Collapse
Affiliation(s)
- Joby L McKenzie
- Division of Cell and Molecular Biology, University Health Network, University of Toronto, Ontario M5G 1L7, Canada
| | | | | | | | | |
Collapse
|
21
|
McKenzie JL, Takenaka K, Gan OI, Doedens M, Dick JE. Low rhodamine 123 retention identifies long-term human hematopoietic stem cells within the Lin-CD34+CD38- population. Blood 2006; 109:543-5. [PMID: 16990597 DOI: 10.1182/blood-2006-06-030270] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Progress to uncover the molecular and cellular regulators that govern human hematopoietic stem cell (HSC) fate has been impeded by an inability to obtain highly purified fractions of HSCs. We report that the rhodamine 123 (Rho 123) dye effluxing fraction of the Lin-CD34+CD38- population contains SCID-repopulating cells (SRCs) capable of long-term repopulation in primary nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. Purification based on Rho uptake led to a 4-fold enrichment of SRCs in the Lin-CD34+CD38- fraction, with a frequency of 1 SRC in 30 Lin-CD34+CD38-Rholo cells. The Lin-CD34+CD38-Rholo fraction also possesses long-term self-renewal capacity as measured by serial transplantation totaling more than 20 weeks. We conclude that Rho dye efflux provides an additional means of purifying human HSCs in the quest to achieve homogeneous populations of primitive cells for both experimental and therapeutic applications.
Collapse
Affiliation(s)
- Joby L McKenzie
- Division of Cell and Molecular Biology, University Health Network, Department of Molecular and Medical Genetics, University of Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
22
|
Ghadially R. In search of the elusive epidermal stem cell. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2006:45-62. [PMID: 16080286 DOI: 10.1007/3-540-37644-5_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Recent studies are beginning to reveal that our basic concepts of epidermal stem cell biology may be based on somewhat tenuous ground. For example, it is often assumed that colony-forming cells represent epidermal stem cells, although this has not proved to be the case in hematopoietic cell lineages. In addition, although most stem cells are not cycling, label-retaining cells are used as a primary measure of epidermal stem cells. Moreover, the locations of stem cell niches in epidermis are still being debated. Finally, while putative stem cell markers abound, the most effective isolation procedure for stem cells has not been determined, and the relative efficiency of various methods of stem cell isolation remains unknown. With a functional assay for epidermal stem cells (analogous to the in-vivo competitive assay used for hematopoiesis), we appear to be in a better position to more clearly define the molecular signature of the true long-term repopulating cell/stem cell of the epidermis. Nonetheless, significant progress has been made in regenerative therapy of the epidermis for ulcer and burn treatment, and for corrective gene therapy for inherited skin diseases.
Collapse
Affiliation(s)
- R Ghadially
- Department of Dermatology, University of California, San Francisco, VA Medical Center, 94121, USA.
| |
Collapse
|
23
|
Nifontova IN, Drize NI. Effect of TNF expression by stromal cells on hemopoietic and stromal precursor cells in long-term bone marrow cultures derived from TNF-deficient mice. Bull Exp Biol Med 2006; 140:550-3. [PMID: 16758622 DOI: 10.1007/s10517-006-0021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effect of TNF expression by wild type stromal sublayer on hemopoiesis was studied in cultures after second inoculation of TNF-deficient bone marrow cells. Long-term maintenance of hemopoiesis was determined solely by the absence of autocrine expression of TNF by hemopoietic cells. The production of hemopoietic precursors of all studied types in TNF-deficient cultures on a wild type sublayer was significantly higher than in cultures without TNF production. Presumably, initial expression of TNF in the sublayer promotes the survival of hemopoietic precursors with high proliferative potential in the culture. It is also obvious that TNF is required for normal functioning of stromal precursor cells.
Collapse
Affiliation(s)
- I N Nifontova
- Hematology Research Center, Russian Academy of Medical Sciences, Moscow
| | | |
Collapse
|
24
|
Schlueter AJ, Glasgow JK. Phenotypic comparison of multiple monocyte-related populations in murine peripheral blood and bone marrow. Cytometry A 2006; 69:281-90. [PMID: 16528720 DOI: 10.1002/cyto.a.20262] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Monocyte subsets are not well defined in murine peripheral blood (PB). Monocyte-related populations could also be located in bone marrow (BM), but studies correlating monocyte populations found in these two tissues are lacking. This study simultaneously analyzed PB and BM to phenotypically define multiple monocyte-related subsets in each location. METHODS Murine PB and BM cells were simultaneously stained for monocyte-related populations, using five-color flow cytometry. Relevant subsets were defined on the basis of Ly-6C, CD11b, and wheat germ agglutinin phenotype in addition to light-scatter characteristics. These populations were extensively characterized for the expression of other myeloid and dendritic cell markers, adhesion molecules, chemokine receptors, and growth factor receptors. RESULTS Six monocyte-related populations were defined, three each in BM and PB. No identical populations were found between the two tissues. Two BM populations and one PB population have heterogeneous expression of many markers, suggesting additional complexity among monocyte-related subsets. CONCLUSIONS The murine monocytic series comprises multiple subsets, differing between PB and BM. This study defines and extensively phenotypes six of these populations, providing preliminary information about possible developmental relationships and migratory capacities of these cells.
Collapse
Affiliation(s)
- Annette J Schlueter
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, 52242, USA.
| | | |
Collapse
|
25
|
Ghadially R. Epidermal stem cells. ACTA ACUST UNITED AC 2005; 21:335-55. [PMID: 16350449 DOI: 10.1016/j.yadr.2005.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Ruby Ghadially
- Associate Professor of Dermatology, University of California, San Francisco, California, USA
| |
Collapse
|
26
|
Kamminga LM, Bystrykh LV, de Boer A, Houwer S, Douma J, Weersing E, Dontje B, de Haan G. The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion. Blood 2005; 107:2170-9. [PMID: 16293602 PMCID: PMC1895717 DOI: 10.1182/blood-2005-09-3585] [Citation(s) in RCA: 289] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The molecular mechanism responsible for a decline of stem cell functioning after replicative stress remains unknown. We used mouse embryonic fibroblasts (MEFs) and hematopoietic stem cells (HSCs) to identify genes involved in the process of cellular aging. In proliferating and senescent MEFs one of the most differentially expressed transcripts was Enhancer of zeste homolog 2 (Ezh2), a Polycomb group protein (PcG) involved in histone methylation and deacetylation. Retroviral overexpression of Ezh2 in MEFs resulted in bypassing of the senescence program. More importantly, whereas normal HSCs were rapidly exhausted after serial transplantations, overexpression of Ezh2 completely conserved long-term repopulating potential. Animals that were reconstituted with 3 times serially transplanted control bone marrow cells all died due to hematopoietic failure. In contrast, similarly transplanted Ezh2-overexpressing stem cells restored stem cell quality to normal levels. In a "genetic genomics" screen, we identified novel putative Ezh2 target or partner stem cell genes that are associated with chromatin modification. Our data suggest that stabilization of the chromatin structure preserves HSC potential after replicative stress.
Collapse
Affiliation(s)
- Leonie M Kamminga
- Department of Cell Biology, Section Stem Cell Biology, University Medical Center Groningen, University of Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Date T, Doiguchi Y, Nobuta M, Shindo H. Bone morphogenetic protein-2 induces differentiation of multipotent C3H10T1/2 cells into osteoblasts, chondrocytes, and adipocytes in vivo and in vitro. J Orthop Sci 2005; 9:503-8. [PMID: 15449126 DOI: 10.1007/s00776-004-0815-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2004] [Accepted: 06/14/2004] [Indexed: 12/28/2022]
Abstract
Mesenchymal stem cells capable of differentiating into multiple cell types are potentially useful therapeutically for regeneration of bone and cartilaginous tissues. Multipotent fibroblastic C3H10T1/2 cells are known to differentiate into osteoblasts, chondrocytes, and adipocytes in response to certain growth factors. In this study we compared the effects of bone morphogenetic protein (BMP)-2 on the differentiation of C3H10T1/2 and MC3T3-E1 preosteoblastic cells. Incubation of these cells with BMP-2 resulted in a dose- and time-dependent increase in alkaline phosphatase activity, but the increase in MC3T3-E1 cells was much higher than that in C3H10T1/2 cells. BMP-2 also induced differentiation of C3H10T1/2 cells but not MC3T3-E1 cells into chondrocytes and adipocytes. Reverse transcription-polymerase chain reaction analysis showed that these commitments were accompanied by the specific expression of osteocalcin, aggrecan, and PPARgamma. To investigate the in vivo differential property, these cells were inoculated with BMP-2 in a diffusion chamber and transplanted into the mouse peritoneal cavity for 4 weeks. The transplanted C3H10T1/2 cells formed mineralized bone containing chondrocytes and adipocytes, whereas MC3T3-E1 created only bony tissue. Our results indicate that BMP-2 can induce the differentiation of C3H10T1/2 into osteoblasts, chondrocytes, and adipocytes in both in vivo and in vitro conditions, and that C3H10T1/2 could be used to examine the BMP-2-induced regulatory mechanisms of mesenchymal differentiation.
Collapse
Affiliation(s)
- Taketoshi Date
- Division of Orthopaedic Pathomechanism, Department of Developmental and Reconstructive Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, 852-8501, Nagasaki, Japan
| | | | | | | |
Collapse
|
28
|
Pinho MDFB, Hurtado SP, El-Cheikh MC, Borojevic R. Haemopoietic progenitors in the adult mouse omentum: permanent production of B lymphocytes and monocytes. Cell Tissue Res 2004; 319:91-102. [PMID: 15517397 DOI: 10.1007/s00441-004-0998-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Accepted: 09/06/2004] [Indexed: 10/26/2022]
Abstract
The coelome-associated lympho-myeloid tissues, including the omentum, are derived from early embryo haemopoietic tissue of the splanchnopleura, and produce B lymphocytes and macrophages. They are reactive in pathologies involving coelomic cavities, in which they can expand in situ the cells of inflammatory infiltrates. We have addressed the question of the role of the adult omentum in permanent basal production of early lymphopoietic progenitors (pro-B/pre-B cells), through characterisation of omentum cells ex vivo, and study of their in vitro differentiation. We have shown that the murine omentum produces early haemopoietic progenitors throughout life, including B-cell progenitors prior to the Ig gene recombination expressing RAG-1 and lambda5, as well as macrophages. Their production is stroma-dependent. The omentum stroma can supply in vitro the cytokines (SDF-1alpha, Flt3 ligand and IL-7) and the molecular environment required for generation of these two cell lineages. Omentum haemopoietic progenitors are similar to those observed in foetal blood cell production, rather than to progenitors found in the adult haemopoietic tissue in the bone marrow--in terms of phenotype expression and differentiation capacity. We conclude that a primitive pattern of haemopoiesis observed in the early embryo is permanently preserved and functional in the adult omentum, providing production of cells engaged in nonspecific protection of abdominal intestinal tissue and of the coelomic cavity.
Collapse
Affiliation(s)
- Maria de Fátima B Pinho
- Departamento de Histologia e Embriologia, Instituto de Ciências Biomédicas, and Programa Avançado de Biologia Celular Aplicada à Medicina-Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
29
|
Coulombel L. Identification of hematopoietic stem/progenitor cells: strength and drawbacks of functional assays. Oncogene 2004; 23:7210-22. [PMID: 15378081 DOI: 10.1038/sj.onc.1207941] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A major challenge in hematopoiesis is to conceive assays that could bring useful insights into experimental and clinical hematology. This means identifying separately the various classes of hematopoietic progenitors that are produced sequentially during the progression from stem cells to differentiated functional cells. Standardized short-term colony assays easily quantify lineage-committed myeloid precursors, but identification of primitive cells, which have both the ability to repopulate durably myeloid and lymphoid lineages and perhaps to self-renew, still depends on in vivo assays. Whatever the assay, two important requisites have to be solved: one is the definition of appropriate read-outs that will depend solely on the function of these cells, and the second is to evaluate precisely their numbers and proliferative potential in quantitative assays. When evaluating hematopoiesis, three parameters have to be taken into account: (1) the lack of reliable correlation between the phenotype of a given cell and its function. This is especially problematic in post-transplantation situations where cells from transplanted animals are analysed; (2) functionally heterogeneous cells are identified in a single assay; and (3) ontogeny-related changes in hematopoietic cell proliferation and self-renewal that, in human beings, hampers the exploration of adult stem cells. Nevertheless, years of progress in the manipulation of hematopoietic stem cells have recently resulted in the purification of a cell subset that repopulates irradiated recipients with absolute efficiency.
Collapse
Affiliation(s)
- Laure Coulombel
- INSERM U 421, Faculté de Médecine, 8 rue du général Sarrail, Créteil 94010, France.
| |
Collapse
|
30
|
Abstract
Hematopoietic stem cells (HSCs) are defined by their ability to repopulate all of the hematopoietic lineages in vivo and sustain the production of these cells for the life span of the individual. In the absence of reliable direct markers for HSCs, their identification and enumeration depends on functional long-term, multilineage, in vivo repopulation assays. The extremely low frequency of HSCs in any tissue and the absence of a specific HSC phenotype have made their purification and characterization a highly challenging goal. HSCs and primitive hematopoietic cells can be distinguished from mature blood cells by their lack of lineage-specific markers and presence of certain other cell-surface antigens, such as CD133 (for human cells) and c-kit and Sca-1 (for murine cells). Functional analyses of purified subpopulations of primitive hematopoietic cells have led to the development of several procedures for isolating cell populations that are highly enriched in cells with in vivo stem cell activity. Simplified methods for obtaining these cells at high yield have been important to the practical exploitation of such advances. This article reviews recent progress in identifying human and mouse HSCs and current techniques for their purification.
Collapse
|
31
|
Abstract
The foundations of experimental hematology were laid by histologists, and while their contributions were enormous, they were limited in their interpretation of very dynamic processes by the static nature of the methodology. The middle of the twentieth century saw the introduction of techniques for hematopoietic cell marking and development of in vitro and in vivo assays for primitive hematopoietic cells, allowing dynamic studies of hematopoiesis. Paralleling this was an understanding of cellular immunology with the discovery of the role of the thymus and the identification of T and B lymphocyte lineages. In the 1960s a series of ontogenetic studies in birds and subsequently in mice revealed that hematopoietic and lymphoid development involved migration streams of primitive cells that colonized developing primary lymphoid organs as well as spleen, marrow, and liver. The yolk sac was proposed as the ultimate origin of these lympho-hematopoietic precursors. Subsequent studies identified a region associated with the dorsal aorta as the primary site of "definitive" stem cells. These opposing views are currently achieving a compromise that recognizes that both sites contribute stem cells involved in seeding the developing tissues. The clear distinction between the local origin of the inducing microenvironment provided by the endoderm or by stroma derived from mesenchymal stem cells of mesodermal origin, and the immigrant origin of the hematopoietic stem cells and progenitors, raises intriguing questions in the current climate of stem cell plasticity, cell fusion, and discovery of stem cells in adult marrow with the capacity to generate hematopoiesis as well as other mesodermal, ectodermal, and endodermal lineages.
Collapse
Affiliation(s)
- Malcolm A S Moore
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| |
Collapse
|
32
|
Henckaerts E, Langer JC, Snoeck HW. Quantitative genetic variation in the hematopoietic stem cell and progenitor cell compartment and in lifespan are closely linked at multiple loci in BXD recombinant inbred mice. Blood 2004; 104:374-9. [PMID: 14988159 DOI: 10.1182/blood-2003-12-4304] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The number of bone marrow hematopoietic stem and progenitor cells as defined by the lineage(-), Sca1(++), c-kit(+) (LSK) phenotype and their proliferative capacity in vitro are subject to quantitative genetic variation, and several quantitative trait loci (QTL) have been identified in young mice. Because some traits affecting hematopoiesis also change with age in a mouse strain-dependent fashion, we performed quantitative trait analysis in aged BXD recombinant inbred (RI) mice for the number and frequency of LSK cells, and for their proliferative capacity in vitro. Several novel QTL were identified. The number and frequency of LSK cells in old mice correlated inversely with lifespan. Furthermore, 4 of 7 lifespan QTL overlap with QTL contributing to the number, frequency, or proliferative capacity of LSK cells in young or old mice. Taken together, these data establish a close genetic, and perhaps functional, link between genetic variation in lifespan and characteristics of stem and progenitor cells.
Collapse
Affiliation(s)
- Els Henckaerts
- Carl C. Icahn Center for Gene Therapy and Molecular Medicine, Mount Sinai School of Medicine, Box 1496, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | |
Collapse
|
33
|
Yokota T, Kouro T, Hirose J, Igarashi H, Garrett KP, Gregory SC, Sakaguchi N, Owen JJT, Kincade PW. Unique Properties of Fetal Lymphoid Progenitors Identified According to RAG1 Gene Expression. Immunity 2003; 19:365-75. [PMID: 14499112 DOI: 10.1016/s1074-7613(03)00231-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
RAG1/GFP knockin mice were exploited to isolate and characterize fetal lymphoid progenitors. CD11b and IL-7Ralpha are expressed in a developmental stage-dependent fashion, revealing how substantial numbers of early lymphoid progenitors were discarded or neglected in previous studies. The myeloerythroid potential of fetal progenitors in clonal assays declined in synchrony with activation of the RAG1 locus but was not completely extinguished. Lymphoid differentiation corresponded to patterns of gene expression previously found for adult marrow, but no fraction of fetal liver was enriched with respect to B + T progenitors. Also, unlike adults, fetal lymphoid progenitors transiently expressed endothelial cell markers. These findings help to reconcile discrepancies in previous reports and suggest that the fetal immune system arises via unique mechanisms.
Collapse
Affiliation(s)
- Takafumi Yokota
- Immunobiology & Cancer Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Benveniste P, Cantin C, Hyam D, Iscove NN. Hematopoietic stem cells engraft in mice with absolute efficiency. Nat Immunol 2003; 4:708-13. [PMID: 12766767 DOI: 10.1038/ni940] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2003] [Accepted: 04/29/2003] [Indexed: 11/09/2022]
Abstract
The engraftment of murine hematopoietic stem cells (HSCs) into irradiated mice is thought to be an inefficient process, but has yet to be measured directly. We used two independent strategies to test their engraftment efficiency: one measured competition of unpurified donor bone marrow cells with recipient cells in murine hosts and the other tracked the engraftment of one highly purified stem cell injected per recipient. The results showed that stem cells engrafted with near absolute efficiency. Thus, inefficient engraftment cannot explain the low frequency of permanent reconstitutions observed with pure HSC fractions and instead suggests most initially engrafted cells fail to sustain self-renewal.
Collapse
Affiliation(s)
- Patricia Benveniste
- The Ontario Cancer Institute, Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Canada M5G 2M9
| | | | | | | |
Collapse
|
35
|
Bonyadi M, Waldman SD, Liu D, Aubin JE, Grynpas MD, Stanford WL. Mesenchymal progenitor self-renewal deficiency leads to age-dependent osteoporosis in Sca-1/Ly-6A null mice. Proc Natl Acad Sci U S A 2003; 100:5840-5. [PMID: 12732718 PMCID: PMC156288 DOI: 10.1073/pnas.1036475100] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2002] [Indexed: 12/18/2022] Open
Abstract
The cellular and molecular mechanisms that underlie age-dependent osteoporosis, the most common disease in the Western Hemisphere, are poorly understood in part due to the lack of appropriate animal models in which to study disease progression. Here, we present a model that shows many similarities to the human disease. Sca-1, well known for its expression on hematopoietic stem cells, is present on a subset of bone marrow stromal cells, which potentially include mesenchymal stem cells. Longitudinal studies showed that Sca-1(-/-) mice undergo normal bone development but with age exhibit dramatically decreased bone mass resulting in brittle bones. In vivo and in vitro analyses demonstrated that Sca-1 is required directly for the self-renewal of mesenchymal progenitors and indirectly for the regulation of osteoclast differentiation. Thus, defective mesenchymal stem or progenitor cell self-renewal may represent a previously uncharacterized mechanism of age-dependent osteoporosis in humans.
Collapse
Affiliation(s)
- Mortaza Bonyadi
- Program in Development and Fetal Health, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada M5G 1X5
| | | | | | | | | | | |
Collapse
|
36
|
Ito CY, Li CYJ, Bernstein A, Dick JE, Stanford WL. Hematopoietic stem cell and progenitor defects in Sca-1/Ly-6A-null mice. Blood 2003; 101:517-23. [PMID: 12393491 DOI: 10.1182/blood-2002-06-1918] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite its wide use as a marker for hematopoietic stem cells (HSCs), the function of stem cell antigen-1 (Sca-1) (also known as lymphocyte activation protein-6A [Ly-6A]) in hematopoiesis remains poorly defined. We have previously established that Sca-1(-/-) T cells develop normally, although they are hyperresponsive to antigen. Here, we report detailed analysis of hematopoiesis in Sca-1-deficient animals. The differentiation potential of Sca-1-null bone marrow was determined from examination of the most mature precursors (culture colony-forming units [CFU-Cs]) to less committed progenitors (spleen CFUs [CFU-Ss]) to long-term repopulating HSCs. Sca-1-null mice are mildly thrombocytopenic with a concomitant decrease in megakaryocytes and their precursors. Bone marrow cells derived from Sca-1(-/-) mice also have decreased multipotential granulocyte, erythroid, macrophage, and megakaryocyte CFU (GEMM-CFU) and CFU-S progenitor activity. Competitive repopulation assays demonstrated that Sca-1(-/-) HSCs are at a competitive disadvantage compared with wild-type HSCs. To further analyze the potential of Sca-1(-/-) HSCs, serial transplantations were performed. While secondary repopulations using wild-type bone marrow completely repopulated Sca-1(-/-) mice, Sca-1(-/-) bone marrow failed to rescue one third of lethally irradiated wild-type mice receiving secondary bone marrow transplants from irradiation-induced anemia and contributed poorly to the surviving transplant recipients. These data strongly suggest that Sca-1 is required for regulating HSC self-renewal and the development of committed progenitor cells, megakaryocytes, and platelets. Thus, our studies conclusively demonstrate that Sca-1, in addition to being a marker of HSCs, regulates the developmental program of HSCs and specific progenitor populations.
Collapse
Affiliation(s)
- Caryn Y Ito
- Programme in Cancer/Blood, Hospital for Sick Children, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
37
|
Avots A, Harder F, Schmittwolf C, Petrovic S, Müller AM. Plasticity of hematopoietic stem cells and cellular memory. Immunol Rev 2002; 187:9-21. [PMID: 12366679 DOI: 10.1034/j.1600-065x.2002.18702.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Stem cell systems represent an effective and powerful approach for tissue development and regeneration of diverse tissue types. Common and defining features of these exceptional cells are the capacity for self-renewal and the potential for differentiation into multiple mature cell types. Recently, surprising new observations have indicated that stem cells isolated from one adult tissue can also give rise to mature cells of other cell lineages, irrespective of classical germ layer designations. This discovery has resulted in quantum leaps in both scientific knowledge and the potential applications of stem cells. The new findings contradict central dogmas of commitment and differentiation of stem and progenitor cells. However, the true potential of somatic stem cells is just emerging and the new findings have to be defined more fully and integrated into a unifying model of stem cell potential and behavior. Here we analyze the developmental potential of hematopoietic stem cells of mouse and man following their injection into the murine preimplantation blastocyst, an environment that allows the development of all cell lineages. In addition, we discuss the emerging lines of evidence of the developmental plasticity of hematopoietic and other somatic stem cells and consider how cellular memory of transcriptional states is established and may be potentially involved in this phenomenon.
Collapse
Affiliation(s)
- Andris Avots
- Institut für Medizinische Strahlenkunde und Zellforschung, Universität Würzburg, 97078 Würzburg, Germany
| | | | | | | | | |
Collapse
|
38
|
Miller CL, Imren S, Antonchuk J, Kalberer C, Fabry ME, Nagel RL, Humphries RK, Eaves CJ. Feasibility of using autologous transplantation to evaluate hematopoietic stem cell-based gene therapy strategies in transgenic mouse models of human disease. Mol Ther 2002; 6:422-8. [PMID: 12231180 DOI: 10.1006/mthe.2002.0679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Histoincompatibility between murine donors and recipients of bone marrow (BM) transplants reduces engraftment, and this compromises assessment of hematopoietic stem cells (HSCs) in certain transgenic mice. To study HSCs in the S+S-Antilles mouse model of human sickle cell disease (SCD), we developed an autotransplant protocol. Initial experiments showed no differences between S+S-Antilles mice and normal C57BL/6 (+/+) mice in their radiosensitivity or baseline hematopoietic progenitor numbers. The kinetics of red blood cell (RBC) replacement post-transplant in +/+ recipients of mixtures of transgenic and +/+ BM cells also showed no competitive advantage of the +/+ cells. BM cells were then aspirated from mice 4 days after 5-fluorouracil treatment, transduced with a green fluorescent protein (GFP)-encoding retrovirus, and transplanted into the same recipients that, just before transplant, were irradiated with 800 cGy. We subsequently detected high levels of GFP(+) RBCs (21-79%) and white blood cells (WBCs; 35-88%) in the blood for 11 months and showed that transduced HSCs regenerated in the primary mice also repopulated secondary mice. These findings provide a generally applicable protocol for performing autotransplants in mice and forecast the potential utility of this approach in assessing HSC-based gene therapy protocols in transgenic mouse models of many human diseases.
Collapse
Affiliation(s)
- Cindy L Miller
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Henckaerts E, Geiger H, Langer JC, Rebollo P, Van Zant G, Snoeck HW. Genetically determined variation in the number of phenotypically defined hematopoietic progenitor and stem cells and in their response to early-acting cytokines. Blood 2002; 99:3947-54. [PMID: 12010793 DOI: 10.1182/blood.v99.11.3947] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quantitative trait analysis may shed light on mechanisms regulating hematopoiesis in vivo. Strain-dependent variation existed among C57BL/6 (B6), DBA/2, and BXD recombinant inbred mice in the responsiveness of primitive progenitor cells to the early-acting cytokines kit ligand, flt3 ligand, and thrombopoietin. A significant quantitative trait locus was found on chromosome 2 that could not be confirmed in congenic mice, however, probably because of epistasis. Because it has been shown that alleles of unknown X-linked genes confer a selective advantage to hematopoietic stem cells in vivo in humans and in cats, we also analyzed reciprocal male D2B6F1 and B6D2F1 mice, revealing an X-linked locus regulating the responsiveness of progenitor and stem cells to early-acting factors. Among DBA/2, B6, and BXD recombinant inbred mice, correlating genetic variation was found in the absolute number and frequency of Lin(-)Sca1(++)kit(+) cells, which are highly enriched in hematopoietic progenitor and stem cells, and in the number of Lin(-)Sca1(++)kit(-) cells, a population whose biologic significance is unknown, suggesting that both populations are functionally related. Suggestive quantitative trait loci (QTLs) for the number of Lin(-)Sca1(++) cells on chromosomes 2, 4, and 7 were confirmed in successive rounds of mapping. The locus on chromosome 2 was confirmed in congenic mice. We thus demonstrated genetic variation in the response to cytokines critical for hematopoiesis in vivo and in the pool size of cells belonging to a phenotype used to isolate essentially pure primitive progenitor and stem cells, and we identified loci that may be relevant to the regulation of hematopoiesis in steady state.
Collapse
Affiliation(s)
- Els Henckaerts
- Carl C. Icahn Institute for Gene Therapy and Molecular Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
40
|
Mitjavila-Garcia MT, Cailleret M, Godin I, Nogueira MM, Cohen-Solal K, Schiavon V, Lecluse Y, Le Pesteur F, Lagrue AH, Vainchenker W. Expression of CD41 on hematopoietic progenitors derived from embryonic hematopoietic cells. Development 2002; 129:2003-13. [PMID: 11934866 DOI: 10.1242/dev.129.8.2003] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, we have characterized the early steps of hematopoiesis during embryonic stem cell differentiation. The immunophenotype of hematopoietic progenitor cells derived from murine embryonic stem cells was determined using a panel of monoclonal antibodies specific for hematopoietic differentiation antigens. Surprisingly, the CD41 antigen (αIIb integrin, platelet GPIIb), essentially considered to be restricted to megakaryocytes, was found on a large proportion of cells within embryoid bodies although very few megakaryocytes were detected. In clonogenic assays, more than 80% of all progenitors (megakaryocytic, granulo-macrophagic, erythroid and pluripotent) derived from embryoid bodies expressed the CD41 antigen. CD41 was the most reliable marker of early steps of hematopoiesis. However, CD41 remained a differentiation marker because some CD41– cells from embryoid bodies converted to CD41+ hematopoietic progenitors, whereas the inverse switch was not observed. Immunoprecipitation and western blot analysis confirmed that CD41 was present in cells from embryoid bodies associated with CD61 (β3 integrin, platelet GPIIIa) in a complex. Analysis of CD41 expression during ontogeny revealed that most yolk sac and aorta-gonad-mesonephros hematopoietic progenitor cells were also CD41+, whereas only a minority of bone marrow and fetal liver hematopoietic progenitors expressed this antigen. Differences in CD34 expression were also observed: hematopoietic progenitor cells from embryoid bodies, yolk sac and aorta-gonad-mesonephros displayed variable levels of CD34, whereas more than 90% of fetal liver and bone marrow progenitor cells were CD34+.
Thus, these results demonstrate that expression of CD41 is associated with early stages of hematopoiesis and is highly regulated during hematopoietic development. Further studies concerning the adhesive properties of hematopoietic cells are required to assess the biological significance of these developmental changes.
Collapse
|
41
|
Hogan CJ, Shpall EJ, Keller G. Differential long-term and multilineage engraftment potential from subfractions of human CD34+ cord blood cells transplanted into NOD/SCID mice. Proc Natl Acad Sci U S A 2002; 99:413-8. [PMID: 11782553 PMCID: PMC117574 DOI: 10.1073/pnas.012336799] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Over the past decade xenotransplantation systems have been used with increasing success to gain a better understanding of human cells that are able to initiate and maintain the hematopoietic system in vivo. The nonobese diabetic/severe combined immunodeficiency (SCID) mouse has been a particularly useful model. Human cells capable of hematopoietic repopulation in this mouse, termed SCID-repopulating cells, have been assumed to represent the most primitive elements of the hematopoietic system, responsible for long-term maintenance of hematopoiesis. However, we demonstrate that SCID-repopulating cells present in the CD34(+) cell fraction of cord blood can be segregated into subpopulations with distinct repopulation characteristics. CD34(+)/CD38(+) progenitors can repopulate recipients rapidly, but can only maintain the graft for 12 weeks or less and have no secondary repopulation potential. Conversely, the more primitive CD34(+)/CD38(-) subpopulation repopulates recipients more gradually, can maintain the graft for at least 20 weeks, and contains cells with serial repopulation potential throughout the engraftment period. Additionally, a much higher frequency of T cell precursors are found among SCID-repopulating cells in the CD34(+)/CD38(-) subpopulation. These findings demonstrate that cells with variable repopulation potential comprise the human CD34(+) population and that short- and long-term potential of human precursors can be evaluated in the mouse model.
Collapse
Affiliation(s)
- Christopher J Hogan
- Bone Marrow Transplant Program, Division of Medical Oncology, University of Colorado Health Sciences Center, 4200 East 9th Avenue, Denver, CO 80262, USA.
| | | | | |
Collapse
|
42
|
Sánchez MJ, Bockamp EO, Miller J, Gambardella L, Green AR. Selective rescue of early haematopoietic progenitors in Scl–/– mice by expressing Scl under the control of a stem cell enhancer. Development 2001; 128:4815-27. [PMID: 11731461 DOI: 10.1242/dev.128.23.4815] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The stem cell leukaemia gene (Scl) encodes a basic helix-loop-helix transcription factor with a pivotal role in both haematopoiesis and endothelial development. During mouse development, Scl is first expressed in extra-embryonic mesoderm, and is required for the generation of all haematopoietic lineages and normal yolk sac angiogenesis. Ectopic expression of Scl during zebrafish development specifies haemangioblast formation from early mesoderm. These results suggest that SCL is essential for establishing the transcriptional programme responsible for the formation of haematopoietic stem cells and have focused attention on the transcriptional regulation of Scl itself. Previous studies have identified a panel of Scl enhancers each of which directed expression to a subdomain of the normal Scl expression pattern. Among them, a 3′ enhancer directed expression during development to vascular endothelium and haematopoietic progenitors but not to Ter119+ erythroid cells. The expression in haematopoietic stem cells, however, remained undetermined. We demonstrate that this 3′ enhancer directs lacZ expression in transgenic mice to most foetal and adult long-term repopulating haematopoietic stem cells, and therefore functions as a stem cell enhancer. Consistent with these results, expression in Scl–/– embryos of exogenous Scl driven by the stem cell enhancer rescued the formation of early haematopoietic progenitors and also resulted in normal yolk sac angiogenesis. By contrast, erythropoiesis remained markedly deficient in rescued embryos. This observation is consistent with the inactivity of the stem cell enhancer in erythroid cells and reveals an essential role for SCL during erythroid differentiation in vivo.
Collapse
Affiliation(s)
- M J Sánchez
- University of Cambridge, Department of Haematology, CIMR Centre, Hills Road, Cambridge CB2 2XY, UK.
| | | | | | | | | |
Collapse
|
43
|
Gronda M, Arab S, Iafrate B, Suzuki H, Zanke BW. Hematopoietic protein tyrosine phosphatase suppresses extracellular stimulus-regulated kinase activation. Mol Cell Biol 2001; 21:6851-8. [PMID: 11564869 PMCID: PMC99862 DOI: 10.1128/mcb.21.20.6851-6858.2001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mitogen-activated protein kinases (MAPKs) are signaling molecules that become enzymatically activated through phosphorylation by diverse stimuli. Hematopoietic cytokines, growth factors, and stimulated lymphocyte antigen receptors may activate specific MAPKs by altering the balance of MAPK-activating protein kinases and the protein phosphatases that target their activation sites. Hematopoietic protein tyrosine phosphatase (HePTP) is a hematopoiesis-specific cytoplasmic protein tyrosine phosphatase whose expression is induced by mitogenic stimuli. To investigate the role of HePTP in hematopoietic development, we constructed mice deficient in this phosphatase using the technique of homologous recombination. Primary lymphocytes from HePTP(-/-) mice show enhanced activation of extracellular stimulus-regulated kinase (ERK) after both phorbol myristate acetate (PMA) and anti-CD3-mediated T-cell receptor (TCR) stimulation, suggesting a true physiological relationship between these two molecules. Activation of MEK, the physiological activator of ERK, by anti-CD3 or PMA is not affected by HePTP deletion. The distribution of hematopoietic lineages in bone marrow and peripheral blood samples and the in vitro proliferative capacity of bone marrow progenitors from HePTP deletion mice do not deviate from those of matched littermate controls. Similarly, lymphocyte activation and development are indistinguishable in HePTP(-/-) mice and controls. We conclude that HePTP is a physiological regulator of ERK on the basis of these studies and hypothesize that its deletion is well compensated for in the developing mouse through reduction of ERK targets or enhancement of physiologically opposed signaling pathways.
Collapse
Affiliation(s)
- M Gronda
- Department of Medical Biophysics, University of Toronto, Princess Margaret Hospital and Ontario Cancer Institute, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | |
Collapse
|
44
|
Billia F, Barbara M, McEwen J, Trevisan M, Iscove NN. Resolution of pluripotential intermediates in murine hematopoietic differentiation by global complementary DNA amplification from single cells: confirmation of assignments by expression profiling of cytokine receptor transcripts. Blood 2001; 97:2257-68. [PMID: 11290586 DOI: 10.1182/blood.v97.8.2257] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although hematopoiesis is known to proceed from stem cells through a graded series of multipotent, oligopotent, and unipotent precursor cells, it has been difficult to resolve these cells physically one from another. There is, therefore, corresponding uncertainty about the exact distribution and timing of the expression of genes known to be important in hematopoietic differentiation. In earlier work, the generation of a set of amplified complementary DNAs (cDNAs) from single precursor cells was described, whose biologic potential was determined by the outcome of cultured sibling cells. In this study, the new acquisition of cDNA from multipotent myeloid precursor cells is described, as is the mapping of RNA-level expression of 17 distinct cytokine receptors (c-kit, Flk-1, Flk-2/Flt-3, c-fms, gp130, erythropoietin receptor, GM-CSFRalpha, G-CSFR, TNFR1, IL-1RI, IL-1RII, IL-2Rbeta, IL-3-specific beta receptor, IL-4R, IL-6Ralpha, IL-7Ralpha, and IL-11Ralpha) to the enlarged sample set, spanning stages from pentapotent precursors through oligopotent intermediates to committed and maturing cells in the myeloid and lymphoid lineages. Although the enhanced scope and resolving power of the analysis yielded previously unreported observations, there was overall agreement with known biologic responsiveness at individual stages, and major contradictions did not arise. Moreover, each precursor category displayed a unique overall pattern of hybridization to the matrix of 17 receptor probes, supporting the notion that each sample pool indeed reflected a unique precursor stage. Collectively, the results provide supportive evidence for the validity of the cDNA assignments to particular stages, the depth of the information captured, and the unique capacity of the sample matrix to resolve individual stages in the hematopoietic hierarchy.
Collapse
MESH Headings
- Animals
- Bone Marrow/chemistry
- Cell Differentiation
- Cell Lineage
- DNA, Complementary/genetics
- Gene Amplification
- Gene Expression Profiling
- Hematopoiesis/genetics
- Hematopoietic Stem Cells/cytology
- Mice
- Mice, Inbred CBA
- Nucleic Acid Hybridization
- Proto-Oncogene Proteins c-kit/genetics
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Receptor, Macrophage Colony-Stimulating Factor/genetics
- Receptors, Cytokine/genetics
- Receptors, Erythropoietin/genetics
- Receptors, Granulocyte Colony-Stimulating Factor/genetics
- Receptors, Interleukin/genetics
- Receptors, Interleukin-4/genetics
Collapse
Affiliation(s)
- F Billia
- Ontario Cancer Institute and the Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
45
|
Jacobsen SE, Borge OJ, Ramsfjell V, Cui L, Cardier JE, Veiby OP, Murphy MJ, Lok S. Thrombopoietin, a direct stimulator of viability and multilineage growth of primitive bone marrow progenitor cells. Stem Cells 2001; 14 Suppl 1:173-80. [PMID: 11012218 DOI: 10.1002/stem.5530140722] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Thrombopoietin (TPO), the ligand for c-mpl, has recently been demonstrated to be the primary regulator of megakaryocytopoiesis and platelet production. In addition, several studies have demonstrated that c-mpl is expressed on hematopoietic cell populations highly enriched in primitive progenitor cells. Here we summarize and discuss recent studies from our laboratory, as well as others, demonstrating that TPO has effects on primitive hematopoietic progenitor cells. When acting alone, TPO stimulates little or no growth, but promotes viability and suppresses apoptosis of murine multipotent (Lin- Sca-1+) bone marrow progenitor cells in vitro. In addition, TPO directly and potently synergizes with other early acting cytokines (kit ligand, flt3 ligand and interleukin 3) to promote multilineage growth of the same progenitor cell population. Although it remains to be established whether TPO also acts on the long-term reconstituting pluripotent stem cells, these studies combined with progenitor cell studies in c-mpl-deficient mice, suggest that TPO, in addition to its key role in platelet production, might also have an important impact on early hematopoiesis.
Collapse
Affiliation(s)
- S E Jacobsen
- Blood Cell Growth Factors Laboratory, Hipple Cancer Research Center, Dayton, Ohio 45439-2092, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
It has long been controversial whether hematopoiesis progresses through ordered stages of determination as in embryonic development. This is due to the absence of a methodology capable of exactly determining the developmental potential of hematopoietic stem/progenitor cells. The multilineage progenitor (MLP) assay enabled us to discriminate among seven types of hematopoietic progenitors, which are multipotent progenitor p-MTB (capable of generating myeloid, T and B cells), bipotent progenitors p-MT, p-MB and p-TB, and unipotent progenitors p-M, p-T and p-B. Among these seven types, the p-TB type progenitor was found to be absent. These findings indicate that the process of lineage commitment proceeds through an ordered but not random process. By extending the area of investigation to include the erythroid lineage, more convincing evidence for the ordered process was obtained. Detailed and exact illustration of the process of hematopoiesis will provide an opportunity to revive hematopoiesis as one of the most fascinating targets of research in developmental biology.
Collapse
Affiliation(s)
- Y Katsura
- Department of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.
| | | |
Collapse
|
47
|
Byers RJ, Hoyland JA, Dixon J, Freemont AJ. Subtractive hybridization--genetic takeaways and the search for meaning. Int J Exp Pathol 2000; 81:391-404. [PMID: 11298187 PMCID: PMC2517747 DOI: 10.1046/j.1365-2613.2000.00174.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene expression profiling relies on mRNA extraction from defined cell systems, which in the case of pathological processes necessarily results in the use of small quantities of tissues, sometimes as little as a few cells. This obviates the use of many systems of gene expression profiling and is best carried out using cDNA amplified by poly(A) reverse transcription polymerase chain reaction, which is capable of generating material representative of all the expressed genes in samples as small as one cell. Analysis of this material using subtractive hybridization compares the genes expressed at different stages of a biological/pathological process allowing identification of the all the genes upregulated during the process. The identification of the genes present is not dependent on their prior description or on the choice of genes used in a screen and as such the method is ideal for identifying novel genes or unsuspected genes. We have used the method to identify genes involved in normal osteoblastic differentiation and in Paget's disease of bone and it has been widely used to study normal differentiation and pathological processes in a number of systems. The method, its applications and its relationship with the other methods of gene expression profiling are reviewed.
Collapse
Affiliation(s)
- R J Byers
- Laboratory Medicine Academic Group, University of Manchester, Manchester, UK.
| | | | | | | |
Collapse
|
48
|
Boehmelt G, Fialka I, Brothers G, McGinley MD, Patterson SD, Mo R, Hui CC, Chung S, Huber LA, Mak TW, Iscove NN. Cloning and characterization of the murine glucosamine-6-phosphate acetyltransferase EMeg32. Differential expression and intracellular membrane association. J Biol Chem 2000; 275:12821-32. [PMID: 10777580 DOI: 10.1074/jbc.275.17.12821] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-Linked glycosylation is a post-translational modification occurring in many eukaryotic secreted and surface-bound proteins and has impact on diverse physiological and pathological processes. Similarly important is the generation of glycosylphosphatidylinositol linkers, which anchor membrane proteins to the cell. Both protein modifications depend on the central nucleotide sugar UDP-N-acetylglucosamine (UDP-GlcNAc). The enzymatic reactions leading to generation of nucleotide sugars are established, yet most of the respective genes still await cloning. We describe the characterization of such a gene, EMeg32, which we identified based on its differential expression in murine hematopoietic precursor cells. We further demonstrate regulated expression during embryogenesis. EMeg32 codes for a 184-amino acid protein exhibiting glucosamine-6-phosphate acetyltransferase activity. It thereby holds a key position in the pathway toward de novo UDP-GlcNAc synthesis. Surprisingly, the protein associates with the cytoplasmic side of various intracellular membranes, accumulates prior to mitosis, and copurifies with the cdc48 homolog p97/valosin-containing protein.
Collapse
Affiliation(s)
- G Boehmelt
- Ontario Cancer Institute, Toronto, Ontario M5G 2M9, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Yoder MC, Hiatt K. Murine yolk sac and bone marrow hematopoietic cells with high proliferative potential display different capacities for producing colony-forming cells ex vivo. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 1999; 8:421-30. [PMID: 10634180 DOI: 10.1089/152581699320180] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Increasing evidence suggests that hematopoietic stem and progenitor cells from embryonic and fetal tissues demonstrate proliferative capacities greater than cells isolated from adult hematopoietic tissues. Few studies have explored the organization of the high proliferative potential hematopoietic progenitor hierarchy in the murine yolk sac. We have demonstrated the appearance of high proliferative potential colony-forming cells (HPP-CFC) in the yolk sac as early as embryonic day 8 (E8). Yolk sac HPP-CFC colony size and differentiated cellular composition were similar to adult marrow HPP-CFC. The frequency of yolk sac HPP-CFC at E11 was greater than HPP-CFC frequency in the adult marrow. Replating of primary yolk sac HPP-CFC resulted in significantly greater HPP-CFC and multipotent progenitors than replated adult marrow primary HPP-CFC. Similar results were obtained when AA4.1-expressing yolk sac and adult marrow cells that bind wheat germ agglutinin (WGA) were isolated via flow cytometry. These results support growing evidence that fetal, and perhaps embryonic, hematopoietic tissues may be excellent alternative sources of highly proliferative hematopoietic cells as targets for somatic gene therapy.
Collapse
Affiliation(s)
- M C Yoder
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202-5210, USA
| | | |
Collapse
|
50
|
Lemischka I. Searching for stem cell regulatory molecules. Some general thoughts and possible approaches. Ann N Y Acad Sci 1999; 872:274-87; discussion 287-8. [PMID: 10372130 DOI: 10.1111/j.1749-6632.1999.tb08472.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hematopoietic development in the mammal can be represented as a numerically expanding hierarchy of cell populations that are progressively restricted in their self-renewal and differentiation abilities. Classical functional studies have now been extended to provide exact physical descriptions of various stages in the hematopoietic hierarchy. In particular, much information is available that defines the properties of the most primitive stem cell compartment. In addition, a number of in vitro culture systems suggest the possibility of maintaining and expanding these cells in a defined context. In all developmental systems, unique profiles of expressed genes define distinct differentiation stages. Within these profiles are gene products that play crucial roles in the regulation of cell-fate decisions. Recent progress in hematopoietic biology provides the framework within which to define molecular phenotypes for hematopoietic stem cells and their immediate clonal progeny. Identifying novel gene products expressed predominantly in uncommitted stem cells together with functional loss and gain-of-function approaches should begin to unravel the molecular mechanisms that govern biological phenomena such as self-renewal, commitment, and proliferation in the hematopoietic system.
Collapse
Affiliation(s)
- I Lemischka
- Department of Molecular Biology, Princeton University, New Jersey 08544, USA.
| |
Collapse
|