1
|
Gracie CJ, Mitchell R, Johnstone JC, Clarke AJ. The unusual metabolism of germinal center B cells. Trends Immunol 2025; 46:416-428. [PMID: 40221291 DOI: 10.1016/j.it.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 04/14/2025]
Abstract
In the germinal center (GC), B cells undergo rounds of somatic hypermutation (SHM), proliferation, and positive selection to develop into high-affinity, long-lived plasma cells and memory B cells. It is well established that, upon activation, B cells significantly alter their metabolism, but until recently little was understood about their metabolism within the GC. In this review we discuss novel in vivo models in which GC B cell (GCBC) metabolism is disrupted; these have greatly increased our understanding of B cell metabolic phenotype. GCBCs are unusual in that, unlike almost all other rapidly proliferating immune cells, they use little glycolysis but prefer fatty acid oxidation (FAO) to fuel ATP synthesis, whilst preferentially utilizing glucose and amino acids as carbon and nitrogen sources for biosynthetic pathways.
Collapse
Affiliation(s)
- Caitlin J Gracie
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Robert Mitchell
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
2
|
León AN, Rodriguez AJ, Richey ST, Torrents de la Pena A, Wolters RM, Jackson AM, Webb K, Creech CB, Yoder S, Mudd PA, Crowe JE, Han J, Ward AB. Structural mapping of polyclonal IgG responses to HA after influenza virus vaccination or infection. mBio 2025; 16:e0203024. [PMID: 39912630 PMCID: PMC11898601 DOI: 10.1128/mbio.02030-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/13/2025] [Indexed: 02/07/2025] Open
Abstract
Cellular and molecular characterization of immune responses elicited by influenza virus infection and seasonal vaccination have informed efforts to improve vaccine efficacy, breadth, and longevity. Here, we use negative stain electron microscopy polyclonal epitope mapping (nsEMPEM) to structurally characterize the humoral IgG antibody responses to hemagglutinin (HA) from human patients vaccinated with a seasonal quadrivalent flu vaccine or infected with influenza A viruses. Our data show that both vaccinated and infected patients had humoral IgGs targeting highly conserved regions on both H1 and H3 subtype HAs, including the stem and anchor, which are targets for universal influenza vaccine design. Responses against H1 predominantly targeted the central stem epitope in infected patients and vaccinated donors, whereas head epitopes were more prominently targeted on H3. Responses against H3 were less abundant, but a greater diversity of H3 epitopes were targeted relative to H1. While our analysis is limited by sample size, on average, vaccinated donors responded to a greater diversity of epitopes on both H1 and H3 than infected patients. These data establish a baseline for assessing polyclonal antibody responses in vaccination and infection, providing a context for future vaccine trials and emphasizing the need for further characterization of protective responses toward conserved epitopes. (201 words)IMPORTANCESeasonal influenza viruses cause hundreds of thousands of deaths each year and up to a billion infections; under the proper circumstances, influenza A viruses with pandemic potential could threaten the lives of millions more. The variable efficacies of traditional influenza virus vaccines and the desire to prevent pandemic influenzas have motivated work toward finding a universal flu vaccine. Many promising universal flu vaccine candidates currently focus on guiding immune responses to highly conserved epitopes on the central stem of the influenza hemagglutinin viral fusion protein. To support the further development of these stem-targeting vaccine candidates, in this study, we use negative stain electron microscopy to assess the prevalence of central stem-targeting antibodies in individuals who were exposed to influenza antigens through traditional vaccination and/or natural infection during the 2018-2019 flu season.
Collapse
Affiliation(s)
- André Nicolás León
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, California, USA
| | - Alesandra J. Rodriguez
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, California, USA
| | - Sara T. Richey
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, California, USA
| | - Alba Torrents de la Pena
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, California, USA
| | - Rachael M. Wolters
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Oregon Health & Science University, Portland, Oregon, USA
| | - Abigail M. Jackson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, California, USA
| | - Katherine Webb
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - C. Buddy Creech
- Vanderbilt Vaccine Research Program, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Sandra Yoder
- Vanderbilt Vaccine Research Program, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Philip A. Mudd
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Emergency Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - James E. Crowe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, California, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, California, USA
| |
Collapse
|
3
|
Staniek J, Rizzi M. Signaling Activation and Modulation in Extrafollicular B Cell Responses. Immunol Rev 2025; 330:e70004. [PMID: 39917832 PMCID: PMC11803499 DOI: 10.1111/imr.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
The differentiation of naive follicular B cells into either the germinal center (GC) or extrafollicular (EF) pathway plays a critical role in shaping the type, affinity, and longevity of effector B cells. This choice also governs the selection and survival of autoreactive B cells, influencing their potential to enter the memory compartment. During the first 2-3 days following antigen encounter, initially activated B cells integrate activating signals from T cells, Toll-like receptors (TLRs), and cytokines, alongside inhibitory signals mediated by inhibitory receptors. This integration modulates the intensity of signaling, particularly of the PI3K/AKT/mTOR pathway, which plays a central role in guiding developmental decisions. These early signaling events determine whether B cells undergo GC maturation or differentiate rapidly into antibody-secreting cells (ASCs) via the EF pathway. Dysregulation of these signaling pathways-whether through excessive activation or defective regulatory mechanisms-can disrupt the balance between GC and EF fates, predisposing individuals to autoimmunity. Accordingly, aberrant PI3K/AKT/mTOR signaling has been implicated in the defective selection of autoreactive B cells, increasing the risk of autoimmune disease. This review focuses on the signaling events in newly activated B cells, with an emphasis on the induction and regulation of the PI3K/AKT/mTOR pathway. It also highlights gaps in our understanding of how alternative B cell fates are regulated. Both the physiological context and the implications of inborn errors of immunity (IEIs) and complex autoimmune conditions will be discussed in this regard.
Collapse
Affiliation(s)
- Julian Staniek
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
- Faculty of Medicine, Center for Chronic Immunodeficiency, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
- Faculty of Medicine, Center for Chronic Immunodeficiency, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- CIBSS—Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| |
Collapse
|
4
|
Adjah J, D. Musimbi Z, Mugo RM, Midha A, Hartmann S, Rausch S. Liver-draining portal lymph node responds to enteric nematode infection by generating highly parasite-specific follicular T helper and B cell responses. Front Immunol 2025; 16:1483274. [PMID: 40092986 PMCID: PMC11906467 DOI: 10.3389/fimmu.2025.1483274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/27/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction While research on the gut-liver axis in non-communicable liver diseases has expanded exponentially, few studies have investigated the liver-gut relationship in the context of gastrointestinal nematode infections. This study aimed to determine whether liver-draining lymph nodes (LLNs) contribute to the immune response against a strictly enteric nematode infection. Methods We analyzed the cellular and functional immune responses in the portal (PLN) and celiac (CLN) liver-draining lymph nodes following infection with the small intestinal nematode Heligmosomoides (polygyrus) bakeri (H. bakeri). The composition of dendritic cells and CD4+ T cell subsets in LLNs was compared to the mesenteric lymph nodes (MLN), the primary draining site of gut infections. Additionally, we examined Th2 effector cell expansion, plasmablast generation, and B cell activation across these lymphoid sites. Results Both PLN and CLN exhibited increased cellularity at d14 post-infection. The immune profile in CLN closely resembled that of MLN, characterized by a robust expansion of GATA-3+ Th2 effector cells at days 6 and 14 post-infection. This was accompanied by an early plasmablast response, producing low-affinity IgG1 antibodies targeting immune-dominant excretory-secretory (ES) products. In contrast, PLN showed weaker Th2 responses and lower early plasma cell responses compared to MLN and CLN. However, PLN displayed strong follicular T helper (TFH) activity, with a B cell profile biased toward germinal center reactions. This led to high-affinity IgG1 antibodies specifically binding VAL-1 and ACE-1. Discussion These findings demonstrate, for the first time, that liver-draining lymph nodes actively participate in the adaptive immune response to enteric nematode infections. While MLN and CLN function synergistically in generating early Th2 effector cells and rapid extrafollicular IgG1+ plasma cell responses, PLN specializes in TFH-driven germinal center reactions and affinity maturation.
Collapse
Affiliation(s)
| | | | | | | | | | - Sebastian Rausch
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
5
|
Kirchenbaum GA, Pawelec G, Lehmann PV. The Importance of Monitoring Antigen-Specific Memory B Cells, and How ImmunoSpot Assays Are Suitable for This Task. Cells 2025; 14:223. [PMID: 39937014 PMCID: PMC11816810 DOI: 10.3390/cells14030223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/10/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
Determining an individual's humoral immune reactivity to a pathogen, autoantigen, or environmental agent is traditionally accomplished through the assessment of specific antibody levels in blood. However, in many instances, titers of specific antibodies decline over time and thus do not faithfully reveal prior antigen exposure or establishment of immunological memory. To estimate an individual's humoral immune competence, it is therefore necessary to assess functional B cell memory. Here, we describe novel B cell ELISPOT and FluoroSpot assays (collectively referred to as ImmunoSpot) that can be rapidly developed and validated to characterize the memory B cell (Bmem) repertoire specific for any desired antigen ex vivo and at single-cell resolution. Moreover, multiplexed variants of the B cell FluoroSpot assay enable high-throughput testing of antigen-specific B cells secreting distinct antibody classes and/or IgG subclasses, with minimal cell material requirements. B cell ImmunoSpot assays also enable measurement of affinity distributions within the antigen-specific Bmem compartment and permit cross-reactivity measurements that can provide insights into Bmem established against future pathogen variants. Collectively, the ImmunoSpot® system presented here is highly reproducible, and can be readily validated for regulated tests. The newly gained ability to monitor the antigen-specific Bmem compartment should catalyze a more comprehensive understanding of humoral immunity in health and disease.
Collapse
Affiliation(s)
- Greg A. Kirchenbaum
- Research and Development, Cellular Technology Ltd. (CTL), Shaker Heights, OH 44122, USA;
| | - Graham Pawelec
- Department of Immunology, University of Tübingen, D-72076 Tübingen, Germany;
- Health Sciences North Research Institute, Sudbury, ON P3E 2H3, Canada
| | - Paul V. Lehmann
- Research and Development, Cellular Technology Ltd. (CTL), Shaker Heights, OH 44122, USA;
| |
Collapse
|
6
|
Rinne V, Gröndahl-Yli-Hannuksela K, Fair-Mäkelä R, Salmi M, Rantakari P, Lönnberg T, Alinikula J, Pietikäinen A, Hytönen J. Single-cell transcriptome analysis of the early immune response in the lymph nodes of Borrelia burgdorferi-infected mice. Microbes Infect 2025; 27:105424. [PMID: 39306236 DOI: 10.1016/j.micinf.2024.105424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 03/14/2025]
Abstract
Lyme borreliosis is a disease caused by Borrelia burgdorferi sensu lato bacteria. Borrelia burgdorferi is known to induce prolonged extrafollicular immune responses and abnormal germinal centre formation. The infection fails to generate a neutralizing type of immunity, eventually establishing a persistent infection. Here, we performed single-cell RNA sequencing to characterize the immune landscape of lymph node lymphocytes during the early Borrelia burgdorferi infection in a murine model. Our results indicate key features of an extrafollicular immune response four days after Borrelia burgdorferi infection, including notable B cell proliferation, immunoglobulin class switching to IgG3 and IgG2b isotypes, plasmablast differentiation, and the presence of extrafollicular B cells identified through immunohistochemistry. Additionally, we found infection-derived upregulation of suppressor of cytokine signalling genes Socs1 and Socs3, along with downregulation of genes associated with MHC II antigen presentation in B cells. Our results support the central role of B cells in the immune response of a Borrelia burgdorferi infection, and provide cues of mechanisms behind the determination between extrafollicular and germinal centre responses during Borrelia burgdorferi infection.
Collapse
Affiliation(s)
- Varpu Rinne
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland.
| | | | - Ruth Fair-Mäkelä
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland; InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Marko Salmi
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland; InFLAMES Research Flagship, University of Turku, Turku, Finland; MediCity, Faculty of Medicine, University of Turku, Turku, Finland
| | - Pia Rantakari
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Tapio Lönnberg
- InFLAMES Research Flagship, University of Turku, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jukka Alinikula
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Annukka Pietikäinen
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland; TYKS Laboratories, Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Jukka Hytönen
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland; TYKS Laboratories, Clinical Microbiology, Turku University Hospital, Turku, Finland
| |
Collapse
|
7
|
Bucheli OTM, Rodrigues D, Ulbricht C, Hauser AE, Eyer K. Dynamic Activation of NADPH Oxidases in Immune Responses Modulates Differentiation, Function, and Lifespan of Plasma Cells. Eur J Immunol 2025; 55:e202350975. [PMID: 39931760 PMCID: PMC11811814 DOI: 10.1002/eji.202350975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/13/2025]
Abstract
NADPH-oxidase (NOX)-derived reactive oxygen species (ROS) have been described to play essential roles in B-cell activation processes. However, several key questions concerning NOX activity and subsequent ROS production remain unaddressed, including fundamental processes such as differentiation, functional competence, cellular metabolism, and viability. This study investigated these questions in a murine B-cell response after secondary immunization. We combined single-cell transcriptomics and single-cell detection of NOX activity and observed that various subsets of B cells dynamically express NOX1 and NOX2. The NOX+ cellular phenotype correlated with increased activity of metabolic pathways, augmented lactate production, lower IgG secretion rates, and markers for longevity. The NOX+ cellular phenotype was also associated with increased cellular stress and apoptosis, underscoring the intricate relationship between ROS and cellular survival. Consequently, these insights advance our understanding of how long-lived humoral immunity is formed.
Collapse
Affiliation(s)
- Olivia T. M. Bucheli
- ETH Laboratory for Functional Immune Repertoire AnalysisInstitute of Pharmaceutical Sciences, D‐CHAB, ETH ZürichZürichSwitzerland
| | - Daniela Rodrigues
- ETH Laboratory for Functional Immune Repertoire AnalysisInstitute of Pharmaceutical Sciences, D‐CHAB, ETH ZürichZürichSwitzerland
| | - Carolin Ulbricht
- Department of Rheumatology and Clinical ImmunologyCharité ‐ Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Immune DynamicsDeutsches Rheuma‐Forschungszentrum (DRFZ)a Leibniz Institute, Charitéplatz 1BerlinGermany
| | - Anja E. Hauser
- Department of Rheumatology and Clinical ImmunologyCharité ‐ Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Immune DynamicsDeutsches Rheuma‐Forschungszentrum (DRFZ)a Leibniz Institute, Charitéplatz 1BerlinGermany
| | - Klaus Eyer
- ETH Laboratory for Functional Immune Repertoire AnalysisInstitute of Pharmaceutical Sciences, D‐CHAB, ETH ZürichZürichSwitzerland
- Department of BiomedicineAarhus UniversityAarhus CDenmark
| |
Collapse
|
8
|
MacLean AJ, Deimel LP, Zhou P, ElTanbouly MA, Merkenschlager J, Ramos V, Santos GS, Hägglöf T, Mayer CT, Hernandez B, Gazumyan A, Nussenzweig MC. Affinity maturation of antibody responses is mediated by differential plasma cell proliferation. Science 2025; 387:413-420. [PMID: 39700316 PMCID: PMC11938350 DOI: 10.1126/science.adr6896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/08/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024]
Abstract
Increased antibody affinity over time after vaccination, known as affinity maturation, is a prototypical feature of immune responses. Recent studies have shown that a diverse collection of B cells, producing antibodies with a wide spectrum of different affinities, is selected into the plasma cell (PC) pathway. How affinity-permissive selection enables PC affinity maturation remains unknown. We found that PC precursors (prePCs) expressing high-affinity antibodies received higher levels of T follicular helper cell (TFH cell)-derived help and divided at higher rates compared with their lower-affinity counterparts once they left the germinal center. Our findings indicate that differential cell division by selected prePCs accounts for how diverse precursors develop into a PC compartment that mediates serological affinity maturation.
Collapse
Affiliation(s)
- Andrew J. MacLean
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Lachlan P. Deimel
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Pengcheng Zhou
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Mohamed A. ElTanbouly
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Julia Merkenschlager
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Gabriela S. Santos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Thomas Hägglöf
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Christian T. Mayer
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brianna Hernandez
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute (HHMI), The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
9
|
Kometani K, Yorimitsu T, Jo N, Yamaguchi E, Kikuchi O, Fukahori M, Sawada T, Tsujimoto Y, Sunami A, Li M, Ito T, Pretemer Y, Gao Y, Hidaka Y, Yamamoto M, Kaku N, Nakagama Y, Kido Y, Grifoni A, Sette A, Nagao M, Morita S, Nakajima TE, Muto M, Hamazaki Y. Booster COVID-19 mRNA vaccination ameliorates impaired B-cell but not T-cell responses in older adults. Front Immunol 2024; 15:1455334. [PMID: 39717779 PMCID: PMC11663736 DOI: 10.3389/fimmu.2024.1455334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/05/2024] [Indexed: 12/25/2024] Open
Abstract
Age-associated differences in the effect of repetitive vaccination, particularly on memory T-cell and B-cell responses, remain unclear. While older adults (aged ≥65 years) exhibited enhanced IgG responses following COVID-19 mRNA booster vaccination, they produced fewer spike-specific circulating follicular helper T cells-1 than younger adults. Similarly, the cytotoxic CD8+ T-cell response remained diminished with reduced PD-1 expression even after booster vaccination compared with that in younger adults, suggesting impaired memory T-cell activation in older adults. In contrast, although B-cell responses in older adults were weaker than those in younger adults in the primary response, the responses were significantly enhanced upon booster vaccination, reaching levels comparable with that observed in younger adults. Therefore, while booster vaccination ameliorates impaired humoral immunity in older adults by efficiently stimulating memory B-cell responses, it may less effectively enhance T-cell-mediated cellular immunity. Our study provides insights for the development of effective therapeutic and vaccine strategies for the most vulnerable older population.
Collapse
Affiliation(s)
- Kohei Kometani
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Takaaki Yorimitsu
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Norihide Jo
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Alliance Laboratory for Advanced Medical Research, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Erina Yamaguchi
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Osamu Kikuchi
- Department of Medical Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Clinical Bio-Resource Center, Kyoto University Hospital, Kyoto, Japan
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University, Kyoto, Japan
| | - Masaru Fukahori
- Department of Early Clinical Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Kyoto Innovation Center for Next Generation Clinical Trials and iPS Cell Therapy (Ki-CONNECT), Kyoto University Hospital, Kyoto, Japan
| | - Takeshi Sawada
- Department of Early Clinical Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Kyoto Innovation Center for Next Generation Clinical Trials and iPS Cell Therapy (Ki-CONNECT), Kyoto University Hospital, Kyoto, Japan
| | - Yoshitaka Tsujimoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ayana Sunami
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Laboratory of Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mengqian Li
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Takeshi Ito
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Yann Pretemer
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Yuxian Gao
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Laboratory of Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yu Hidaka
- Department of Biomedical Statistics and Bioinformatics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaki Yamamoto
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Natsuko Kaku
- Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | - Yu Nakagama
- Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | - Yasutoshi Kido
- Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | - Alba Grifoni
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, United States
| | - Miki Nagao
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takako E. Nakajima
- Department of Early Clinical Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Kyoto Innovation Center for Next Generation Clinical Trials and iPS Cell Therapy (Ki-CONNECT), Kyoto University Hospital, Kyoto, Japan
| | - Manabu Muto
- Department of Medical Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Clinical Bio-Resource Center, Kyoto University Hospital, Kyoto, Japan
- Kyoto Innovation Center for Next Generation Clinical Trials and iPS Cell Therapy (Ki-CONNECT), Kyoto University Hospital, Kyoto, Japan
| | - Yoko Hamazaki
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Laboratory of Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Kyoto University Immunomonitoring Center, Kyoto, Japan
| |
Collapse
|
10
|
Nakagawa R, Llorian M, Varsani-Brown S, Chakravarty P, Camarillo JM, Barry D, George R, Blackledge NP, Duddy G, Kelleher NL, Klose RJ, Turner M, Calado DP. Epi-microRNA mediated metabolic reprogramming counteracts hypoxia to preserve affinity maturation. Nat Commun 2024; 15:10516. [PMID: 39627218 PMCID: PMC11615350 DOI: 10.1038/s41467-024-54937-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 11/24/2024] [Indexed: 12/06/2024] Open
Abstract
To increase antibody affinity against pathogens, positively selected GC-B cells initiate cell division in the light zone (LZ) of germinal centers (GCs). Among these, higher-affinity clones migrate to the dark zone (DZ) and vigorously proliferate by utilizing energy provided by oxidative phosphorylation (OXPHOS). However, it remains unknown how positively selected GC-B cells adapt their metabolism for cell division in the glycolysis-dominant, cell cycle arrest-inducing, hypoxic LZ microenvironment. Here, we show that microRNA (miR)-155 mediates metabolic reprogramming during positive selection to protect high-affinity clones. Mechanistically, miR-155 regulates H3K36me2 levels in hypoxic conditions by directly repressing the histone lysine demethylase, Kdm2a, whose expression increases in response to hypoxia. The miR-155-Kdm2a interaction is crucial for enhancing OXPHOS through optimizing the expression of vital nuclear mitochondrial genes under hypoxia, thereby preventing excessive production of reactive oxygen species and subsequent apoptosis. Thus, miR-155-mediated epigenetic regulation promotes mitochondrial fitness in high-affinity GC-B cells, ensuring their expansion and consequently affinity maturation.
Collapse
Affiliation(s)
- Rinako Nakagawa
- Immunity and Cancer Laboratory, Francis Crick Institute, London, UK.
| | - Miriam Llorian
- Bioinformatics and Biostatistics Laboratory, Francis Crick Institute, London, UK
| | | | - Probir Chakravarty
- Bioinformatics and Biostatistics Laboratory, Francis Crick Institute, London, UK
| | - Jeannie M Camarillo
- Department of Chemistry, Molecular Biosciences and the National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, IL, USA
| | - David Barry
- Advanced Light Microscopy Laboratory, Francis Crick Institute, London, UK
| | - Roger George
- Structural Biology Laboratory, Francis Crick Institute, London, UK
| | | | - Graham Duddy
- Genetic Modification Service Laboratory, Francis Crick Institute, London, UK
| | - Neil L Kelleher
- Department of Chemistry, Molecular Biosciences and the National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, IL, USA
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Martin Turner
- Immunology Programme, The Babraham Institute, Cambridge, UK
| | - Dinis P Calado
- Immunity and Cancer Laboratory, Francis Crick Institute, London, UK.
| |
Collapse
|
11
|
MacLean AJ, Deimel LP, Zhou P, ElTanbouly MA, Merkenschlager J, Ramos V, Santos GS, Hagglof T, Mayer CT, Hernandez B, Gazumyan A, Nussenzweig MC. Affinity maturation of antibody responses is mediated by differential plasma cell proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625430. [PMID: 39651284 PMCID: PMC11623657 DOI: 10.1101/2024.11.26.625430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Increased antibody affinity over time after vaccination, known as affinity maturation, is a prototypical feature of immune responses. Recent studies have shown that a diverse collection of B cells, producing antibodies with a wide spectrum of different affinities, are selected into the plasma cell (PC) pathway. How affinity-permissive selection enables PC affinity maturation remains unknown. Here we report that PC precursors (prePC) expressing high affinity antibodies receive higher levels of T follicular helper (Tfh)-derived help and divide at higher rates than their lower affinity counterparts once they leave the GC. Thus, differential cell division by selected prePCs accounts for how diverse precursors develop into a PC compartment that mediates serological affinity maturation.
Collapse
|
12
|
Lam N, Lee Y, Farber DL. A guide to adaptive immune memory. Nat Rev Immunol 2024; 24:810-829. [PMID: 38831162 DOI: 10.1038/s41577-024-01040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
Immune memory - comprising T cells, B cells and plasma cells and their secreted antibodies - is crucial for human survival. It enables the rapid and effective clearance of a pathogen after re-exposure, to minimize damage to the host. When antigen-experienced, memory T cells become activated, they proliferate and produce effector molecules at faster rates and in greater magnitudes than antigen-inexperienced, naive cells. Similarly, memory B cells become activated and differentiate into antibody-secreting cells more rapidly than naive B cells, and they undergo processes that increase their affinity for antigen. The ability of T cells and B cells to form memory cells after antigen exposure is the rationale behind vaccination. Understanding immune memory not only is crucial for the design of more-efficacious vaccines but also has important implications for immunotherapies in infectious disease and cancer. This 'guide to' article provides an overview of the current understanding of the phenotype, function, location, and pathways for the generation, maintenance and protective capacity of memory T cells and memory B cells.
Collapse
Affiliation(s)
- Nora Lam
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - YoonSeung Lee
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
13
|
Scharffenberger SC, Wan YH, Homad LJ, Kher G, Haynes AM, Poudel B, Sinha IR, Aldridge N, Pai A, Bibby M, Chhan CB, Davis AR, Moodie Z, Palacio MB, Escolano A, McElrath MJ, Boonyaratanakornkit J, Pancera M, McGuire AT. Targeting RSV-neutralizing B cell receptors with anti-idiotypic antibodies. Cell Rep 2024; 43:114811. [PMID: 39383036 PMCID: PMC11496930 DOI: 10.1016/j.celrep.2024.114811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/23/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024] Open
Abstract
Respiratory syncytial virus (RSV) causes lower respiratory tract infections with significant morbidity and mortality at the extremes of age. Vaccines based on the viral fusion protein are approved for adults over 60, but infant protection relies on passive immunity via antibody transfer or maternal vaccination. An infant vaccine that rapidly elicits protective antibodies would fulfill a critical unmet need. Antibodies arising from the VH3-21/VL1-40 gene pairing can neutralize RSV without the need for affinity maturation, making them attractive to target through vaccination. Here, we develop an anti-idiotypic monoclonal antibody (ai-mAb) immunogen that is specific for unmutated VH3-21/VL1-40 B cell receptors (BCRs). The ai-mAb efficiently engages B cells with bona fide target BCRs and does not activate off-target non-neutralizing B cells, unlike recombinant pre-fusion (preF) protein used in current RSV vaccines. These results establish proof of concept for using an ai-mAb-derived vaccine to target B cells hardwired to produce RSV-neutralizing antibodies.
Collapse
MESH Headings
- Antibodies, Neutralizing/immunology
- Animals
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Humans
- Antibodies, Anti-Idiotypic/immunology
- Antibodies, Anti-Idiotypic/pharmacology
- Mice
- B-Lymphocytes/immunology
- Respiratory Syncytial Virus Infections/immunology
- Respiratory Syncytial Viruses/immunology
- Antibodies, Monoclonal/immunology
- Antibodies, Viral/immunology
- Female
- Respiratory Syncytial Virus, Human/immunology
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Samuel C Scharffenberger
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Yu-Hsin Wan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Leah J Homad
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Gargi Kher
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Austin M Haynes
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - Bibhav Poudel
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Irika R Sinha
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Nicholas Aldridge
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ayana Pai
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Madeleine Bibby
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Crystal B Chhan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - Amelia R Davis
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Zoe Moodie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Maria Belen Palacio
- Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104, USA
| | - Amelia Escolano
- Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jim Boonyaratanakornkit
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
14
|
Dvorscek AR, McKenzie CI, Stäheli VC, Ding Z, White J, Fabb SA, Lim L, O'Donnell K, Pitt C, Christ D, Hill DL, Pouton CW, Burnett DL, Brink R, Robinson MJ, Tarlinton DM, Quast I. Conversion of vaccines from low to high immunogenicity by antibodies with epitope complementarity. Immunity 2024; 57:2433-2452.e7. [PMID: 39305904 DOI: 10.1016/j.immuni.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/06/2024] [Accepted: 08/27/2024] [Indexed: 10/11/2024]
Abstract
Existing antibodies (Abs) have varied effects on humoral immunity during subsequent infections. Here, we leveraged in vivo systems that allow precise control of antigen-specific Abs and B cells to examine the impact of Ab dose, affinity, and specificity in directing B cell activation and differentiation. Abs competing with the B cell receptor (BCR) epitope showed affinity-dependent suppression. By contrast, Abs targeting a complementary epitope, not overlapping with the BCR, shifted B cell differentiation toward Ab-secreting cells. Such Abs allowed for potent germinal center (GC) responses to otherwise poorly immunogenic sites by promoting antigen capture and presentation by low-affinity B cells. These mechanisms jointly diversified the B cell repertoire by facilitating the recruitment of high- and low-affinity B cells into Ab-secreting cell, GC, and memory B cell fates. Incorporation of small amounts of monoclonal Abs into protein- or mRNA-based vaccines enhanced immunogenicity and facilitated sustained immune responses, with implications for vaccine design and our understanding of protective immunity.
Collapse
Affiliation(s)
- Alexandra R Dvorscek
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Craig I McKenzie
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Vera C Stäheli
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Zhoujie Ding
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Jacqueline White
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Stewart A Fabb
- Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
| | - Leonard Lim
- Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
| | - Kristy O'Donnell
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Catherine Pitt
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Danika L Hill
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
| | - Deborah L Burnett
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2010, Australia
| | - Robert Brink
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Marcus J Robinson
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - David M Tarlinton
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Isaak Quast
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia.
| |
Collapse
|
15
|
Wade-Vallance AK, Yang Z, Libang JB, Krishnapura AR, Jung JB, Matcham EW, Robinson MJ, Allen CDC. BCR ligation selectively inhibits IgE class switch recombination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613749. [PMID: 39345367 PMCID: PMC11429801 DOI: 10.1101/2024.09.18.613749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Mechanisms that restrict class switch recombination (CSR) to IgE limit the subsequent production of IgE antibodies and therefore the development of allergic disease. Mice with impaired B cell receptor (BCR) signaling have significantly increased IgE responses, consistent with a role for BCR signaling in IgE regulation. While prior work focused on BCR signaling in IgE-expressing cells to explain these findings, it has been reported that BCR signaling can reduce CSR. Therefore, we investigated the possibility that IgE CSR might be particularly sensitive to inhibition by BCR signaling in unswitched B cells. We found that immunization of mice with high-affinity antigen resulted in reduced representation of IgE-expressing cells among germinal center B cells and plasma cells relative to a low-affinity antigen. Mechanistic experiments with cultured mouse B cells demonstrated that BCR ligands selectively inhibited IgE CSR in a dose-, affinity-, and avidity-dependent manner. Signaling via Syk was required for the inhibition of IgE CSR following BCR stimulation, whereas inhibition of the PI3K subunit p110δ increased IgE CSR independently of BCR ligation. The inhibition of IgE CSR by BCR ligands synergized with IL-21 or TGFβ1. BCR ligation also inhibited CSR to IgE in human tonsillar B cells, and this inhibition was also synergistic with IL-21. These findings establish that IgE CSR is uniquely susceptible to inhibition by BCR signaling in mouse and human B cells, with important implications for the regulation and pathogenesis of allergic disease.
Collapse
Affiliation(s)
- Adam K. Wade-Vallance
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, CA 94143, USA
| | - Zhiyong Yang
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, CA 94143, USA
| | - Jeremy B. Libang
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, CA 94143, USA
| | - Ananya R. Krishnapura
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, CA 94143, USA
| | - James B. Jung
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, CA 94143, USA
| | - Emily W. Matcham
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, CA 94143, USA
| | - Marcus J. Robinson
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, CA 94143, USA
| | - Christopher D. C. Allen
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, CA 94143, USA
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
16
|
Zhao L, Jin S, Wang S, Zhang Z, Wang X, Chen Z, Wang X, Huang S, Zhang D, Wu H. Tertiary lymphoid structures in diseases: immune mechanisms and therapeutic advances. Signal Transduct Target Ther 2024; 9:225. [PMID: 39198425 PMCID: PMC11358547 DOI: 10.1038/s41392-024-01947-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are defined as lymphoid aggregates formed in non-hematopoietic organs under pathological conditions. Similar to secondary lymphoid organs (SLOs), the formation of TLSs relies on the interaction between lymphoid tissue inducer (LTi) cells and lymphoid tissue organizer (LTo) cells, involving multiple cytokines. Heterogeneity is a distinguishing feature of TLSs, which may lead to differences in their functions. Growing evidence suggests that TLSs are associated with various diseases, such as cancers, autoimmune diseases, transplant rejection, chronic inflammation, infection, and even ageing. However, the detailed mechanisms behind these clinical associations are not yet fully understood. The mechanisms by which TLS maturation and localization affect immune function are also unclear. Therefore, it is necessary to enhance the understanding of TLS development and function at the cellular and molecular level, which may allow us to utilize them to improve the immune microenvironment. In this review, we delve into the composition, formation mechanism, associations with diseases, and potential therapeutic applications of TLSs. Furthermore, we discuss the therapeutic implications of TLSs, such as their role as markers of therapeutic response and prognosis. Finally, we summarize various methods for detecting and targeting TLSs. Overall, we provide a comprehensive understanding of TLSs and aim to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Lianyu Zhao
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Song Jin
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyao Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zhe Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Zhanwei Chen
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Xiaohui Wang
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
17
|
Cinti I, Vezyrgianni K, Denton AE. Unravelling the contribution of lymph node fibroblasts to vaccine responses. Adv Immunol 2024; 164:1-37. [PMID: 39523027 DOI: 10.1016/bs.ai.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Vaccination is one of the most effective medical interventions, saving millions of lives and reducing the morbidity of infections across the lifespan, from infancy to older age. The generation of plasma cells and memory B cells that produce high affinity class switched antibodies is central to this protection, and these cells are the ultimate output of the germinal centre response. Optimal germinal centre responses require different immune cells to interact with one another in the right place and at the right time and this delicate cellular ballet is coordinated by a network of interconnected stromal cells. In this review we will discuss the various types of lymphoid stromal cells and how they coordinate immune cell homeostasis, the induction and maintenance of the germinal centre response, and how this is disorganised in older bodies.
Collapse
Affiliation(s)
- Isabella Cinti
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Kassandra Vezyrgianni
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Alice E Denton
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom.
| |
Collapse
|
18
|
Pursell T, Reers A, Mikelov A, Kotagiri P, Ellison JA, Hutson CL, Boyd SD, Frank HK. Genetically and Functionally Distinct Immunoglobulin Heavy Chain Locus Duplication in Bats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.606892. [PMID: 39211187 PMCID: PMC11360916 DOI: 10.1101/2024.08.09.606892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The genetic locus encoding immunoglobulin heavy chains (IgH) is critical for vertebrate humoral immune responses and diverse antibody repertoires. Immunoglobulin and T cell receptor loci of most bat species have not been annotated, despite the recurrent role of bats as viral reservoirs and sources of zoonotic pathogens. We investigated the genetic structure and function of IgH loci across the largest bat family, Vespertilionidae, focusing on big brown bats (Eptesicus fuscus ). We discovered that E. fuscus and ten other species within Vespertilionidae have two complete, functional, and distinct immunoglobulin heavy chain loci on separate chromosomes. This locus organization is previously unknown in mammals, but is reminiscent of more limited duplicated loci in teleost fish. Single cell transcriptomic data validate functional rearrangement and expression of immunoglobulin heavy chains of both loci in the expressed repertoire of Eptesicus fuscus , with maintenance of allelic exclusion, bias of usage toward the smaller and more compact IgH locus, and evidence of differential selection of antigen-experienced B cells and plasma cells varying by IgH locus use. This represents a unique mechanism for mammalian humoral immunity and may contribute to bat resistance to viral pathogenesis.
Collapse
|
19
|
McDougal CE, Pepper M. Affinity alone does not drive long-lived plasma cell differentiation. Immunol Cell Biol 2024; 102:532-534. [PMID: 38715314 DOI: 10.1111/imcb.12770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Long-lived plasma cells are important for preventing infection by maintaining baseline antibody titers. However, the cues leading to plasma cell differentiation remain unclear. In this article, we discuss recent work assessing the role of affinity on plasma cell differentiation.
Collapse
Affiliation(s)
| | - Marion Pepper
- Department of Immunology, University of Washington, Seattle, WA, USA
| |
Collapse
|
20
|
Shao W, Wang Y, Fang Q, Shi W, Qi H. Epigenetic recording of stimulation history reveals BLIMP1-BACH2 balance in determining memory B cell fate upon recall challenge. Nat Immunol 2024; 25:1432-1444. [PMID: 38969872 DOI: 10.1038/s41590-024-01900-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/17/2024] [Indexed: 07/07/2024]
Abstract
Memory B cells (MBCs) differentiate into plasma cells (PCs) or germinal centers (GCs) upon antigen recall. How this decision is programmed is not understood. We found that the relative strength between two antagonistic transcription factors, B lymphocyte-induced maturation protein 1 (BLIMP1) and BTB domain and CNC homolog 2 (BACH2), progressively increases in favor of BLIMP1 in antigen-responding B cells through the course of primary responses. MBC subsets that preferentially produce secondary GCs expressed comparatively higher BACH2 but lower BLIMP1 than those predisposed for PC development. Skewing the BLIMP1-BACH2 balance in otherwise fate-predisposed MBC subsets could switch their fate preferences. Underlying the changing BLIMP1-over-BACH2 balance, we observed progressively increased accessibilities at chromatin loci that are specifically opened in PCs, particularly those that contain interferon-sensitive response elements (ISREs) and are controlled by interferon regulatory factor 4 (IRF4). IRF4 is upregulated by B cell receptor, CD40 or innate receptor signaling and it induces graded levels of PC-specifying epigenetic imprints according to the strength of stimulation. By analyzing history-stamped GC B cells, we found progressively increased chromatin accessibilities at PC-specific, IRF4-controlled gene loci over time. Therefore, the cumulative stimulation history of B cells is epigenetically recorded in an IRF4-dependent manner, determines the relative strength between BLIMP1 and BACH2 in individual MBCs and dictates their probabilities to develop into GCs or PCs upon restimulation.
Collapse
Affiliation(s)
- Wen Shao
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Beijing, China
- New Cornerstone Science Laboratory, School of Medicine, Tsinghua University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Yifeng Wang
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Beijing, China
- Changping Laboratory, Beijing, China
| | - Qian Fang
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Beijing, China
| | - Wenjuan Shi
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China
| | - Hai Qi
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Beijing, China.
- Department of Basic Medical Sciences, School of Medicine, Beijing, China.
- New Cornerstone Science Laboratory, School of Medicine, Tsinghua University, Beijing, China.
- Changping Laboratory, Beijing, China.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China.
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
| |
Collapse
|
21
|
León AN, Rodriguez AJ, Richey ST, de la Peña AT, Wolters RM, Jackson AM, Webb K, Creech CB, Yoder S, Mudd PA, Crowe JE, Han J, Ward AB. Structural Mapping of Polyclonal IgG Responses to HA After Influenza Virus Vaccination or Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.601940. [PMID: 39026813 PMCID: PMC11257458 DOI: 10.1101/2024.07.08.601940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Cellular and molecular characterization of immune responses elicited by influenza virus infection and seasonal vaccination have informed efforts to improve vaccine efficacy, breadth, and longevity. Here, we use negative stain electron microscopy polyclonal epitope mapping (nsEMPEM) to structurally characterize the humoral IgG antibody responses to hemagglutinin (HA) from human patients vaccinated with a seasonal quadrivalent flu vaccine or infected with influenza A viruses. Our data show that both vaccinated and infected patients had humoral IgGs targeting highly conserved regions on both H1 and H3 subtype HAs, including the stem and anchor, which are targets for universal influenza vaccine design. Responses against H1 predominantly targeted the central stem epitope in infected patients and vaccinated donors, whereas head epitopes were more prominently targeted on H3. Responses against H3 were less abundant, but a greater diversity of H3 epitopes were targeted relative to H1. While our analysis is limited by sample size, on average, vaccinated donors responded to a greater diversity of epitopes on both H1 and H3 than infected patients. These data establish a baseline for assessing polyclonal antibody responses in vaccination and infection, providing context for future vaccine trials and emphasizing the importance of carefully designing vaccines to boost protective responses towards conserved epitopes.
Collapse
Affiliation(s)
- André Nicolás León
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, CA
| | - Alesandra J. Rodriguez
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, CA
| | - Sara T. Richey
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, CA
| | - Alba Torrents de la Peña
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, CA
| | - Rachael M. Wolters
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN
- Oregon Health & Science University, Portland, OR
| | - Abigail M. Jackson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, CA
| | - Katherine Webb
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN
| | - C. Buddy Creech
- Vanderbilt Vaccine Research Program, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN
| | - Sandra Yoder
- Vanderbilt Vaccine Research Program, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN
| | - Philip A. Mudd
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine in St. Louis, St. Louis, MO
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine in St. Louis, St. Louis, MO
- Department of Emergency Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - James E. Crowe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, CA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, CA
| |
Collapse
|
22
|
Liossis SNC. The abnormal signaling of the B cell receptor and co-receptors of lupus B cells. Clin Immunol 2024; 263:110222. [PMID: 38636889 DOI: 10.1016/j.clim.2024.110222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/10/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
It is easily understood that studying the physiology and pathophysiology of the BCRtriggered cascade is of importance, particularly in such diseases as systemic lupus erythematosus (SLE) that are considered by many as a "B cell disease". Even though B cells are not considered as the only players in lupus pathogenesis, and other immune and non-immune cells are certainly involved, it is the success of recent B cell-targeting treatment strategies that ascribe a critical role to the lupus B cell.
Collapse
Affiliation(s)
- Stamatis-Nick C Liossis
- Division of Rheumatology, University of Patras Medical School, and Chief, Division of Rheumatology, Patras University Hospital, Patras GR26500, Greece.
| |
Collapse
|
23
|
Bucheli OTM, Rodrigues D, Portmann K, Linder A, Thoma M, Halin C, Eyer K. Single-B cell analysis correlates high-lactate secretion with stress and increased apoptosis. Sci Rep 2024; 14:8507. [PMID: 38605071 PMCID: PMC11009249 DOI: 10.1038/s41598-024-58868-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
While cellular metabolism was proposed to be a driving factor of the activation and differentiation of B cells and the function of the resulting antibody-secreting cells (ASCs), the study of correlations between cellular metabolism and functionalities has been difficult due to the absence of technologies enabling the parallel measurement. Herein, we performed single-cell transcriptomics and introduced a direct concurrent functional and metabolic flux quantitation of individual murine B cells. Our transcriptomic data identified lactate metabolism as dynamic in ASCs, but antibody secretion did not correlate with lactate secretion rates (LSRs). Instead, our study of all splenic B cells during an immune response linked increased lactate metabolism with acidic intracellular pH and the upregulation of apoptosis. T cell-dependent responses increased LSRs, and added TLR4 agonists affected the magnitude and boosted LSRhigh B cells in vivo, while resulting in only a few immunoglobulin-G secreting cells (IgG-SCs). Therefore, our observations indicated that LSRhigh cells were not differentiating into IgG-SCs, and were rather removed due to apoptosis.
Collapse
Affiliation(s)
- Olivia T M Bucheli
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093, Zürich, Switzerland
| | - Daniela Rodrigues
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093, Zürich, Switzerland
| | - Kevin Portmann
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093, Zürich, Switzerland
| | - Aline Linder
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093, Zürich, Switzerland
| | - Marina Thoma
- ETH Laboratory for Pharmaceutical Immunology, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093, Zürich, Switzerland
| | - Cornelia Halin
- ETH Laboratory for Pharmaceutical Immunology, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093, Zürich, Switzerland
| | - Klaus Eyer
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093, Zürich, Switzerland.
- Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark.
| |
Collapse
|
24
|
Shehata L, Thouvenel CD, Hondowicz BD, Pew LA, Pritchard GH, Rawlings DJ, Choi J, Pepper M. Interleukin-4 downregulates transcription factor BCL6 to promote memory B cell selection in germinal centers. Immunity 2024; 57:843-858.e5. [PMID: 38513666 PMCID: PMC11104266 DOI: 10.1016/j.immuni.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/04/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
Germinal center (GC)-derived memory B cells (MBCs) are critical for humoral immunity as they differentiate into protective antibody-secreting cells during re-infection. GC formation and cellular interactions within the GC have been studied in detail, yet the exact signals that allow for the selection and exit of MBCs are not understood. Here, we showed that IL-4 cytokine signaling in GC B cells directly downregulated the transcription factor BCL6 via negative autoregulation to release cells from the GC program and to promote MBC formation. This selection event required additional survival cues and could therefore result in either GC exit or death. We demonstrate that both increasing IL-4 bioavailability or limiting IL-4 signaling disrupted MBC selection stringency. In this way, IL-4 control of BCL6 expression serves as a tunable switch within the GC to tightly regulate MBC selection and affinity maturation.
Collapse
Affiliation(s)
- Laila Shehata
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Christopher D Thouvenel
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Brian D Hondowicz
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Lucia A Pew
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | | | - David J Rawlings
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Jinyong Choi
- Department of Microbiology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
25
|
Zhang L, Toboso-Navasa A, Gunawan A, Camara A, Nakagawa R, Katja F, Chakravarty P, Newman R, Zhang Y, Eilers M, Wack A, Tolar P, Toellner KM, Calado DP. Regulation of BCR-mediated Ca 2+ mobilization by MIZ1-TMBIM4 safeguards IgG1 + GC B cell-positive selection. Sci Immunol 2024; 9:eadk0092. [PMID: 38579014 PMCID: PMC7615907 DOI: 10.1126/sciimmunol.adk0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/26/2024] [Indexed: 04/07/2024]
Abstract
The transition from immunoglobulin M (IgM) to affinity-matured IgG antibodies is vital for effective humoral immunity. This is facilitated by germinal centers (GCs) through affinity maturation and preferential maintenance of IgG+ B cells over IgM+ B cells. However, it is not known whether the positive selection of the different Ig isotypes within GCs is dependent on specific transcriptional mechanisms. Here, we explored IgG1+ GC B cell transcription factor dependency using a CRISPR-Cas9 screen and conditional mouse genetics. We found that MIZ1 was specifically required for IgG1+ GC B cell survival during positive selection, whereas IgM+ GC B cells were largely independent. Mechanistically, MIZ1 induced TMBIM4, an ancestral anti-apoptotic protein that regulated inositol trisphosphate receptor (IP3R)-mediated calcium (Ca2+) mobilization downstream of B cell receptor (BCR) signaling in IgG1+ B cells. The MIZ1-TMBIM4 axis prevented mitochondrial dysfunction-induced IgG1+ GC cell death caused by excessive Ca2+ accumulation. This study uncovers a unique Ig isotype-specific dependency on a hitherto unidentified mechanism in GC-positive selection.
Collapse
Affiliation(s)
- Lingling Zhang
- Immunity and Cancer, Francis Crick Institute, London, UK
| | | | - Arief Gunawan
- Immunity and Cancer, Francis Crick Institute, London, UK
| | | | | | | | | | - Rebecca Newman
- Immune Receptor Activation Laboratory, Francis Crick Institute, London, UK
| | - Yang Zhang
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Martin Eilers
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Pavel Tolar
- Immune Receptor Activation Laboratory, Francis Crick Institute, London, UK
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
26
|
Erdmann NB, Williams WB, Walsh SR, Grunenberg N, Edlefsen PT, Goepfert PA, Cain DW, Cohen KW, Maenza J, Mayer KH, Tieu HV, Sobieszczyk ME, Swann E, Lu H, De Rosa SC, Sagawa Z, Moody MA, Fox CB, Ferrari G, Edwards R, Acharya P, Alam S, Parks R, Barr M, Tomaras GD, Montefiori DC, Gilbert PB, McElrath MJ, Corey L, Haynes BF, Baden LR. A HIV-1 Gp41 Peptide-Liposome Vaccine Elicits Neutralizing Epitope-Targeted Antibody Responses in Healthy Individuals. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.15.24304305. [PMID: 38562833 PMCID: PMC10984077 DOI: 10.1101/2024.03.15.24304305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background HIV-1 vaccine development is a global health priority. Broadly neutralizing antibodies (bnAbs) which target the HIV-1 gp41 membrane-proximal external region (MPER) have some of the highest neutralization breadth. An MPER peptide-liposome vaccine has been found to expand bnAb precursors in monkeys. Methods The HVTN133 phase 1 clinical trial (NCT03934541) studied the MPER-peptide liposome immunogen in 24 HIV-1 seronegative individuals. Participants were recruited between 15 July 2019 and 18 October 2019 and were randomized in a dose-escalation design to either 500 mcg or 2000 mcg of the MPER-peptide liposome or placebo. Four intramuscular injections were planned at months 0, 2, 6, and 12. Results The trial was stopped prematurely due to an anaphylaxis reaction in one participant ultimately attributed to vaccine-associated polyethylene glycol. The immunogen induced robust immune responses, including MPER+ serum and blood CD4+ T-cell responses in 95% and 100% of vaccinees, respectively, and 35% (7/20) of vaccine recipients had blood IgG memory B cells with MPER-bnAb binding phenotype. Affinity purification of plasma MPER+ IgG demonstrated tier 2 HIV-1 neutralizing activity in two of five participants after 3 immunizations. Conclusions MPER-peptide liposomes induced gp41 serum neutralizing epitope-targeted antibodies and memory B-cell responses in humans despite the early termination of the study. These results suggest that the MPER region is a promising target for a candidate HIV vaccine.
Collapse
Affiliation(s)
| | - Wilton B. Williams
- Duke Human Vaccine Institute, Duke University, Durham, NC
- Department of Surgery, Duke University School of Medicine, Durham, NC
| | - Stephen R. Walsh
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Nicole Grunenberg
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Paul T. Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | - Derek W. Cain
- Duke Human Vaccine Institute, Duke University, Durham, NC
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Kristen W. Cohen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Janine Maenza
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | - Hong Van Tieu
- New York Blood Center, New York, NY
- Columbia University, New York, NY
| | | | - Edith Swann
- Division of AIDS, National Institute of Allergy and Immunology, Bethesda, MD
| | - Huiyin Lu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | - M. Anthony Moody
- Duke Human Vaccine Institute, Duke University, Durham, NC
- Department of Pediatrics, Duke University School of Medicine, Durham, NC
| | | | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University, Durham, NC
- Department of Surgery, Duke University School of Medicine, Durham, NC
| | - R.J. Edwards
- Duke Human Vaccine Institute, Duke University, Durham, NC
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University, Durham, NC
- Department of Surgery, Duke University School of Medicine, Durham, NC
| | - S.Munir Alam
- Duke Human Vaccine Institute, Duke University, Durham, NC
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University, Durham, NC
| | - Margaret Barr
- Duke Human Vaccine Institute, Duke University, Durham, NC
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University, Durham, NC
- Department of Surgery, Duke University School of Medicine, Durham, NC
| | - David C. Montefiori
- Duke Human Vaccine Institute, Duke University, Durham, NC
- Department of Surgery, Duke University School of Medicine, Durham, NC
| | - Peter B. Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University, Durham, NC
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Lindsey R. Baden
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | | |
Collapse
|
27
|
Sutton HJ, Gao X, Kelly HG, Parker BJ, Lofgren M, Dacon C, Chatterjee D, Seder RA, Tan J, Idris AH, Neeman T, Cockburn IA. Lack of affinity signature for germinal center cells that have initiated plasma cell differentiation. Immunity 2024; 57:245-255.e5. [PMID: 38228150 PMCID: PMC10922795 DOI: 10.1016/j.immuni.2023.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/08/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024]
Abstract
Long-lived plasma cells (PCs) secrete antibodies that can provide sustained immunity against infection. High-affinity cells are proposed to preferentially select into this compartment, potentiating the immune response. We used single-cell RNA-seq to track the germinal center (GC) development of Ighg2A10 B cells, specific for the Plasmodium falciparum circumsporozoite protein (PfCSP). Following immunization with Plasmodium sporozoites, we identified 3 populations of cells in the GC light zone (LZ). One LZ population expressed a gene signature associated with the initiation of PC differentiation and readily formed PCs in vitro. The estimated affinity of these pre-PC B cells was indistinguishable from that of LZ cells that remained in the GC. This remained true when high- or low-avidity recombinant PfCSP proteins were used as immunogens. These findings suggest that the initiation of PC development occurs via an affinity-independent process.
Collapse
Affiliation(s)
- Henry J Sutton
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Xin Gao
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Hannah G Kelly
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Brian J Parker
- Biological Data Science Institute, The Australian National University, Canberra, ACT 2601, Australia; School of Computing, ANU College of Engineering, Computing & Cybernetics, The Australian National University, Canberra, ACT 2601, Australia
| | - Mariah Lofgren
- Malaria Unit, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cherrelle Dacon
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Deepyan Chatterjee
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Robert A Seder
- Malaria Unit, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua Tan
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Azza H Idris
- Malaria Unit, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Teresa Neeman
- Biological Data Science Institute, The Australian National University, Canberra, ACT 2601, Australia
| | - Ian A Cockburn
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
28
|
DiToro D, Murakami N, Pillai S. T-B Collaboration in Autoimmunity, Infection, and Transplantation. Transplantation 2024; 108:386-398. [PMID: 37314442 PMCID: PMC11345790 DOI: 10.1097/tp.0000000000004671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We have attempted here to provide an up-to-date review of the collaboration between helper T cells and B cells in response to protein and glycoprotein antigens. This collaboration is essential as it not only protects from many pathogens but also contributes to a litany of autoimmune and immune-mediated diseases.
Collapse
Affiliation(s)
- Daniel DiToro
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Naoka Murakami
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Shiv Pillai
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA
| |
Collapse
|
29
|
Staniek J, Kalina T, Andrieux G, Boerries M, Janowska I, Fuentes M, Díez P, Bakardjieva M, Stancikova J, Raabe J, Neumann J, Schwenk S, Arpesella L, Stuchly J, Benes V, García Valiente R, Fernández García J, Carsetti R, Piano Mortari E, Catala A, de la Calle O, Sogkas G, Neven B, Rieux-Laucat F, Magerus A, Neth O, Olbrich P, Voll RE, Alsina L, Allende LM, Gonzalez-Granado LI, Böhler C, Thiel J, Venhoff N, Lorenzetti R, Warnatz K, Unger S, Seidl M, Mielenz D, Schneider P, Ehl S, Rensing-Ehl A, Smulski CR, Rizzi M. Non-apoptotic FAS signaling controls mTOR activation and extrafollicular maturation in human B cells. Sci Immunol 2024; 9:eadj5948. [PMID: 38215192 DOI: 10.1126/sciimmunol.adj5948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/08/2023] [Indexed: 01/14/2024]
Abstract
Defective FAS (CD95/Apo-1/TNFRSF6) signaling causes autoimmune lymphoproliferative syndrome (ALPS). Hypergammaglobulinemia is a common feature in ALPS with FAS mutations (ALPS-FAS), but paradoxically, fewer conventional memory cells differentiate from FAS-expressing germinal center (GC) B cells. Resistance to FAS-induced apoptosis does not explain this phenotype. We tested the hypothesis that defective non-apoptotic FAS signaling may contribute to impaired B cell differentiation in ALPS. We analyzed secondary lymphoid organs of patients with ALPS-FAS and found low numbers of memory B cells, fewer GC B cells, and an expanded extrafollicular (EF) B cell response. Enhanced mTOR activity has been shown to favor EF versus GC fate decision, and we found enhanced PI3K/mTOR and BCR signaling in ALPS-FAS splenic B cells. Modeling initial T-dependent B cell activation with CD40L in vitro, we showed that FAS competent cells with transient FAS ligation showed specifically decreased mTOR axis activation without apoptosis. Mechanistically, transient FAS engagement with involvement of caspase-8 induced nuclear exclusion of PTEN, leading to mTOR inhibition. In addition, FASL-dependent PTEN nuclear exclusion and mTOR modulation were defective in patients with ALPS-FAS. In the early phase of activation, FAS stimulation promoted expression of genes related to GC initiation at the expense of processes related to the EF response. Hence, our data suggest that non-apoptotic FAS signaling acts as molecular switch between EF versus GC fate decisions via regulation of the mTOR axis and transcription. The defect of this modulatory circuit may explain the observed hypergammaglobulinemia and low memory B cell numbers in ALPS.
Collapse
Affiliation(s)
- Julian Staniek
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Tomas Kalina
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Iga Janowska
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, Proteomics Unit, CIBERONC CB16/12/00400, Cancer Research Center (IBMCC/CSIC/USAL/IBSAL), Universidad de Salamanca, Salamanca, Spain
| | - Paula Díez
- Department of Medicine and General Cytometry Service-Nucleus, Proteomics Unit, CIBERONC CB16/12/00400, Cancer Research Center (IBMCC/CSIC/USAL/IBSAL), Universidad de Salamanca, Salamanca, Spain
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Marina Bakardjieva
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jitka Stancikova
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Raabe
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julika Neumann
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabine Schwenk
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Leonardo Arpesella
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan Stuchly
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Rodrigo García Valiente
- Department of Medicine and General Cytometry Service-Nucleus, Proteomics Unit, CIBERONC CB16/12/00400, Cancer Research Center (IBMCC/CSIC/USAL/IBSAL), Universidad de Salamanca, Salamanca, Spain
| | - Jonatan Fernández García
- Department of Medicine and General Cytometry Service-Nucleus, Proteomics Unit, CIBERONC CB16/12/00400, Cancer Research Center (IBMCC/CSIC/USAL/IBSAL), Universidad de Salamanca, Salamanca, Spain
| | - Rita Carsetti
- B Cell Unit, Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Eva Piano Mortari
- B Cell Unit, Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Albert Catala
- Department of Hematology, Institut de Recerca Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Oscar de la Calle
- Immunology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Georgios Sogkas
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Bénédicte Neven
- Pediatric Hematology-Immunology and Rheumatology Department, University Hospital Necker-Enfants Malades, Paris, France
| | - Frédéric Rieux-Laucat
- Université de Paris, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Aude Magerus
- Université de Paris, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Olaf Neth
- Department of Paediatric Infectious Diseases, Rheumatology and Immunology, Hospital Universitario Virgen del Rocio (HUVR), Instituto de Biomedicina de Sevilla (IBIS), Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Sevilla, Spain
| | - Peter Olbrich
- Department of Paediatric Infectious Diseases, Rheumatology and Immunology, Hospital Universitario Virgen del Rocio (HUVR), Instituto de Biomedicina de Sevilla (IBIS), Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Sevilla, Spain
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laia Alsina
- Department of Hematology, Institut de Recerca Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
- Clinical Immunology and Primary Immunodeficiencies Unit, Department of Pediatric Allergy and Clinical Immunology, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Luis M Allende
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Luis I Gonzalez-Granado
- Primary Immunodeficiencies Unit, Department of Pediatrics, Research Institute Hospital 12 Octubre (i+12), Madrid, Spain
- School of Medicine, Complutense University, Madrid, Spain
| | - Chiara Böhler
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jens Thiel
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Rheumatology and Clinical Immunology, Medical University Graz, Graz, Austria
| | - Nils Venhoff
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Raquel Lorenzetti
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Rheumatology and Clinical Immunology, Medical University Graz, Graz, Austria
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Susanne Unger
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Seidl
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany
- Institute of Pathology, Heinrich-Heine University and University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus Fiebiger Zentrum, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Pascal Schneider
- Department of Immunobiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Stephan Ehl
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Anne Rensing-Ehl
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cristian Roberto Smulski
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Medical Physics Department, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
30
|
Palm AKE, Westin A, Ayranci D, Heyman B. Endogenous complement-activating IgM is not required for primary antibody responses but promotes plasma cell differentiation and secondary antibody responses to a large particulate antigen in mice. Front Immunol 2024; 14:1323969. [PMID: 38259486 PMCID: PMC10800517 DOI: 10.3389/fimmu.2023.1323969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Lack of complement factor C1q of the classical pathway results in severely impaired primary antibody responses. This is a paradox because antibodies, especially IgM, are the most efficient activators of the classical pathway and very little specific IgM will be present at priming. A possible explanation would be that natural IgM, binding with low affinity to the antigen, may suffice to activate complement. In support of this, mice lacking secretory IgM have an impaired antibody response, which can be rescued by transfer of non-immune IgM. Moreover, passive administration of specific IgM together with antigen enhances the antibody response in a complement-dependent fashion. To test the idea, we have used a knock-in mouse strain (Cμ13) carrying a point mutation in the IgM heavy chain, rendering the IgM unable to activate complement. Mutant mice backcrossed to BALB/c or C57BL/6 background were primed and boosted with a low dose of sheep red blood cells. Confirming earlier data, no impairment in early, primary IgM- or IgG-responses were seen in either of the Cμ13 strains. However, in one of the mutant strains, late primary IgG responses were impaired. A more pronounced effect was observed after boost, when the IgG response, the number of germinal center B cells and antibody secreting cells as well as the opsonization of antigen were impaired in mutant mice. We conclude that complement activation by natural IgM cannot explain the role of C1q in primary antibody responses, but that endogenous, specific, wildtype IgM generated after immunization feedback-enhances the response to a booster dose of antigen. Importantly, this mechanism can only partially explain the role of complement in the generation of antibody responses because the IgG response was much lower in C3- or complement receptor 1 and 2-deficient mice than in Cμ13 mice.
Collapse
|
31
|
Abstract
Recent advances in studies of immune memory in mice and humans have reinforced the concept that memory B cells play a critical role in protection against repeated infections, particularly from variant viruses. Hence, insights into the development of high-quality memory B cells that can generate broadly neutralizing antibodies that bind such variants are key for successful vaccine development. Here, we review the cellular and molecular mechanisms by which memory B cells are generated and how these processes shape the antibody diversity and breadth of memory B cells. Then, we discuss the mechanisms of memory B cell reactivation in the context of established immune memory; the contribution of antibody feedback to this process has now begun to be reappreciated.
Collapse
Affiliation(s)
- Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan.
| |
Collapse
|
32
|
Brookens SK, Cho SH, Paik Y, Meyer K, Raybuck AL, Park C, Greenwood DL, Rathmell JC, Boothby MR. Plasma Cell Differentiation, Antibody Quality, and Initial Germinal Center B Cell Population Depend on Glucose Influx Rate. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:43-56. [PMID: 37955416 PMCID: PMC10841396 DOI: 10.4049/jimmunol.2200756] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/19/2023] [Indexed: 11/14/2023]
Abstract
Serum Ab concentrations, selection for higher affinity BCRs, and generation of higher Ab affinities are important elements of immune response optimization and functions of germinal center (GC) reactions. B cell proliferation requires nutrients to support the anabolism inherent in clonal expansion. Glucose usage by mouse GC B cells has been reported to contribute little to their energy needs, with questions raised as to whether glucose uptake or glycolysis increases in GC B cells compared with their naive precursors. Indeed, metabolism can be highly flexible, such that supply shortage along one pathway may be compensated by increased flux on others. We now show that reduction of the glucose transporter GLUT1 in mice after establishment of a preimmune B cell repertoire, even after initiation of the GC B cell gene expression program, decreased initial GC B cell population numbers, affinity maturation, and plasma cell outputs. Glucose oxidation was heightened in GC B cells, but this hexose flowed more into the pentose phosphate pathway, whose activity was important in controlling reactive oxygen species (ROS) and Ab-secreting cell production. In modeling how glucose usage by B cells promotes the Ab response, the control of ROS appeared insufficient. Surprisingly, the combination of galactose, which mitigated ROS, with provision of mannose, an efficient precursor to glycosylation, supported robust production of and normal Ab secretion by Ab-secreting cells under glucose-free conditions. Collectively, the findings indicate that GCs depend on normal glucose influx, especially in plasma cell production, but reveal an unexpected metabolic flexibility in hexose requirements.
Collapse
Affiliation(s)
- Shawna K. Brookens
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Cancer Biology Program, Vanderbilt University
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104
| | - Sung Hoon Cho
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Inflammation, & Immunology
| | - Yeeun Paik
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Kaylor Meyer
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Ariel L. Raybuck
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Chloe Park
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Dalton L. Greenwood
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jeffrey C. Rathmell
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Cancer Biology Program, Vanderbilt University
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Inflammation, & Immunology
| | - Mark R. Boothby
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Cancer Biology Program, Vanderbilt University
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Inflammation, & Immunology
| |
Collapse
|
33
|
Sprumont A, Rodrigues A, McGowan SJ, Bannard C, Bannard O. Germinal centers output clonally diverse plasma cell populations expressing high- and low-affinity antibodies. Cell 2023; 186:5486-5499.e13. [PMID: 37951212 PMCID: PMC7617393 DOI: 10.1016/j.cell.2023.10.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/05/2023] [Accepted: 10/24/2023] [Indexed: 11/13/2023]
Abstract
Germinal centers (GCs) form in lymph nodes after immunization or infection to facilitate antibody affinity maturation and memory and plasma cell (PC) development. PC differentiation is thought to involve stringent selection for GC B cells expressing the highest-affinity antigen receptors, but how this plays out during complex polyclonal responses is unclear. We combine temporal lineage tracing with antibody characterization to gain a snapshot of PCs developing during influenza infection. GCs co-mature B cell clones with antibody affinities spanning multiple orders of magnitude; however, each generates PCs with similar efficiencies, including weak binders. Within lineages, PC selection is not restricted to variants with the highest-affinity antibodies. Differentiation is commonly associated with proliferative expansion to produce "nodes" of identical PCs. Immunization-induced GCs generate fewer PCs but still of low- and high-antibody affinities. We propose that generating low-affinity antibody PCs reflects an evolutionary compromise to facilitate diverse serum antibody responses.
Collapse
Affiliation(s)
- Adrien Sprumont
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Ana Rodrigues
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Simon J McGowan
- Computational Biology Research Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Colin Bannard
- Department of Linguistics and English Language, University of Manchester, Manchester M13 9PL, UK
| | - Oliver Bannard
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
34
|
Wibrand C, Wittenborn TR, Voss LF, Winther G, Jensen L, Ferapontov A, Fonager SV, Fahlquist-Hagert C, Degn SE. B cell MHC haplotype affects follicular inclusion, germinal center participation and plasma cell differentiation in a mouse model of lupus. Front Immunol 2023; 14:1258046. [PMID: 38090594 PMCID: PMC10715410 DOI: 10.3389/fimmu.2023.1258046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction MHC class II molecules are essential for appropriate immune responses against pathogens but are also implicated in pathological responses in autoimmune diseases and transplant rejection. Previous studies have shed light on the systemic contributions of MHC haplotypes to the development and severity of autoimmune diseases. In this study, we addressed the B cell intrinsic MHC haplotype impact on follicular inclusion, germinal center (GC) participation and plasma cell (PC) differentiation in the context of systemic lupus erythematosus (SLE). Methods We leveraged the 564Igi mouse model which harbors a B cell receptor knock-in from an autoreactive B cell clone recognizing ribonuclear components, including double-stranded DNA (dsDNA). This model recapitulates the central hallmarks of the early stages of SLE. We compared 564Igi heterozygous offspring on either H2b/b, H2b/d, or H2d/d background. Results This revealed significantly higher germinal center (GC) B cell levels in the spleens of H2b/b and H2b/d as compared to H2d/d (p<0.0001) mice. In agreement with this, anti-dsDNA-antibody levels were higher in H2b/b and H2b/d than in H2d/d (p<0.0001), with H2b/b also being higher compared to H2b/d (p<0.01). Specifically, these differences held true both for autoantibodies derived from the knock-in clone and from wild-type (WT) derived clones. In mixed chimeras where 564Igi H2b/b, H2b/d and H2d/d cells competed head-to-head in the same environment, we observed a significantly higher inclusion of H2b/b cells in GC and PC compartments relative to their representation in the B cell repertoire, compared to H2b/d and H2d/d cells. Furthermore, in mixed chimeras in which WT H2b/b and WT H2d/d cells competed for inclusion in GCs associated with an epitope spreading process, H2b/b cells participated to a greater extent and contributed more robustly to the PC compartment. Finally, immature WT H2b/b cells had a higher baseline of BCRs with an autoreactive idiotype and were subject to more stringent negative selection at the transitional stage. Discussion Taken together, our findings demonstrate that B cell intrinsic MHC haplotype governs their capacity for participation in the autoreactive response at multiple levels: follicular inclusion, GC participation, and PC output. These findings pinpoint B cells as central contributors to precipitation of autoimmunity.
Collapse
Affiliation(s)
- Camilla Wibrand
- Laboratory for Lymphocyte Biology, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Thomas R. Wittenborn
- Laboratory for Lymphocyte Biology, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lasse Frank Voss
- Laboratory for Lymphocyte Biology, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Gudrun Winther
- Laboratory for Lymphocyte Biology, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lisbeth Jensen
- Laboratory for Lymphocyte Biology, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Alexey Ferapontov
- Laboratory for Lymphocyte Biology, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Sofie V. Fonager
- Laboratory for Lymphocyte Biology, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Cecilia Fahlquist-Hagert
- Laboratory for Lymphocyte Biology, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Søren E. Degn
- Laboratory for Lymphocyte Biology, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark
| |
Collapse
|
35
|
Nakagawa R, Llorian M, Varsani-Brown S, Chakravarty P, Camarillo JM, Barry D, George R, Blackledge NP, Duddy G, Kelleher NL, Klose RJ, Turner M, Calado DP. Epi-microRNA mediated metabolic reprogramming ensures affinity maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551250. [PMID: 37609190 PMCID: PMC10441342 DOI: 10.1101/2023.07.31.551250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
To increase antibody affinity against pathogens, positively selected GC-B cells initiate cell division in the light zone (LZ) of germinal centres (GCs). Among those, higher-affinity clones migrate to the dark zone (DZ) and vigorously proliferate by relying on oxidative phosphorylation (OXPHOS). However, it remains unknown how positively selected GC-B cells adapt their metabolism for cell division in the glycolysis-dominant, cell cycle arrest-inducing, hypoxic LZ microenvironment. Here, we show that microRNA (miR)-155 mediates metabolic reprogramming during positive selection to protect high-affinity clones. Transcriptome examination and mass spectrometry analysis revealed that miR-155 regulates H3K36me2 levels by directly repressing hypoxia-induced histone lysine demethylase, Kdm2a. This is indispensable for enhancing OXPHOS through optimizing the expression of vital nuclear mitochondrial genes under hypoxia. The miR-155-Kdm2a interaction is crucial to prevent excessive production of reactive oxygen species and apoptosis. Thus, miR-155-mediated epigenetic regulation promotes mitochondrial fitness in high-affinity clones, ensuring their expansion and consequently affinity maturation.
Collapse
|
36
|
Raso F, Liu S, Simpson MJ, Barton GM, Mayer CT, Acharya M, Muppidi JR, Marshak-Rothstein A, Reboldi A. Antigen receptor signaling and cell death resistance controls intestinal humoral response zonation. Immunity 2023; 56:2373-2387.e8. [PMID: 37714151 PMCID: PMC10591993 DOI: 10.1016/j.immuni.2023.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/24/2023] [Accepted: 08/21/2023] [Indexed: 09/17/2023]
Abstract
Immunoglobulin A (IgA) maintains commensal communities in the intestine while preventing dysbiosis. IgA generated against intestinal microbes assures the simultaneous binding to multiple, diverse commensal-derived antigens. However, the exact mechanisms by which B cells mount broadly reactive IgA to the gut microbiome remains elusive. Here, we have shown that IgA B cell receptor (BCR) is required for B cell fitness during the germinal center (GC) reaction in Peyer's patches (PPs) and for generation of gut-homing plasma cells (PCs). We demonstrate that IgA BCR drove heightened intracellular signaling in mouse and human B cells, and as a consequence, IgA+ B cells received stronger positive selection cues. Mechanistically, IgA BCR signaling offset Fas-mediated death, possibly rescuing low-affinity B cells to promote a broad humoral response to commensals. Our findings reveal an additional mechanism linking BCR signaling, B cell fate, and antibody production location, which have implications for how intestinal antigen recognition shapes humoral immunity.
Collapse
Affiliation(s)
- Fiona Raso
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Shuozhi Liu
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Mikala J Simpson
- Experimental Immunology Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Gregory M Barton
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Christian T Mayer
- Experimental Immunology Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Mridu Acharya
- Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Jagan R Muppidi
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Ann Marshak-Rothstein
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Andrea Reboldi
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
37
|
Brooks JF, Riggs J, Mueller JL, Mathenge R, Wholey WY, Meyer AR, Yoda ST, Vykunta VS, Nielsen HV, Cheng W, Zikherman J. Molecular basis for potent B cell responses to antigen displayed on particles of viral size. Nat Immunol 2023; 24:1762-1777. [PMID: 37653247 PMCID: PMC10950062 DOI: 10.1038/s41590-023-01597-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 07/18/2023] [Indexed: 09/02/2023]
Abstract
Multivalent viral epitopes induce rapid, robust and T cell-independent humoral immune responses, but the biochemical basis for such potency remains incompletely understood. We take advantage of a set of liposomes of viral size engineered to display affinity mutants of the model antigen (Ag) hen egg lysozyme. Particulate Ag induces potent 'all-or-none' B cell responses that are density dependent but affinity independent. Unlike soluble Ag, particulate Ag induces signal amplification downstream of the B cell receptor by selectively evading LYN-dependent inhibitory pathways and maximally activates NF-κB in a manner that mimics T cell help. Such signaling induces MYC expression and enables even low doses of particulate Ag to trigger robust B cell proliferation in vivo in the absence of adjuvant. We uncover a molecular basis for highly sensitive B cell responses to viral Ag display that is independent of encapsulated nucleic acids and is not merely accounted for by avidity and B cell receptor cross-linking.
Collapse
Affiliation(s)
- Jeremy F Brooks
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, CA, USA
| | - Julianne Riggs
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | - James L Mueller
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, CA, USA
| | - Raisa Mathenge
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, CA, USA
| | - Wei-Yun Wholey
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Alexander R Meyer
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Sekou-Tidiane Yoda
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Vivasvan S Vykunta
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, CA, USA
| | - Hailyn V Nielsen
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, CA, USA
| | - Wei Cheng
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Julie Zikherman
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
38
|
Brookens SK, Cho SH, Paik Y, Meyer K, Raybuck AL, Park C, Greenwood DL, Rathmell JC, Boothby MR. Plasma cell differentiation, antibody quality, and initial germinal center B cell population depend on glucose influx rate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557599. [PMID: 37745429 PMCID: PMC10515901 DOI: 10.1101/2023.09.13.557599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Antibody secretion into sera, selection for higher affinity BCR, and the generation of higher Ab affinities are important elements of immune response optimization, and a core function of germinal center reactions. B cell proliferation requires nutrients to support the anabolism inherent in clonal expansion. Glucose usage by GC B cells has been reported to contribute little to their energy needs, with questions raised as to whether or not glucose uptake or glycolysis increases in GC B cells compared to their naïve precursors. Indeed, metabolism can be highly flexible, such that supply shortage along one pathway may be compensated by increased flux on others. We now show that elimination of the glucose transporter GLUT1 after establishment of a pre-immune B cell repertoire, even after initiation of the GC B cell gene expression program, decreased initial GC B cell population numbers, affinity maturation, and PC outputs. Glucose oxidation was heightened in GC B cells, but this hexose flowed more into the pentose phosphate pathway (PPP), whose activity was important in controlling reactive oxygen (ROS) and ASC production. In modeling how glucose usage by B cells promotes the Ab response, the control of ROS appeared insufficient. Surprisingly, the combination of galactose, which mitigated ROS, with provision of mannose - an efficient precursor to glycosylation - supported robust production of and normal Ab secretion by ASC under glucose-free conditions. Collectively, the findings indicate that GC depend on normal glucose influx, especially in PC production, but reveal an unexpected metabolic flexibility in hexose requirements. KEY POINTS Glucose influx is critical for GC homeostasis, affinity maturation and the generation of Ab-secreting cells.Plasma cell development uses the Pentose Phosphate Pathway, and hexose sugars maintain redox homeostasis.PCs can develop and achieve robust Ab secretion in the absence of glucose using a combination of hexose alternatives.
Collapse
|
39
|
Bucheli OTM, Eyer K. Insights into the relationship between persistent antibody secretion and metabolic programming - A question for single-cell analysis. Immunol Lett 2023; 260:35-43. [PMID: 37315849 DOI: 10.1016/j.imlet.2023.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/28/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Vaccination aims to generate a protective and persisting antibody response. Indeed, humoral vaccine-mediated protection depends on the quality and quantity of the produced antigen-specific antibodies for its initial magnitude and the persistence of the plasma cells for its duration. Therefore, understanding the mechanisms behind the generation, selection and maintenance of long-lived plasma cells secreting protective antibodies is of fundamental importance for understanding long-term immunity, vaccine responses, therapeutical approaches for autoimmune disease and multiple myeloma. Recent studies have observed correlations between the generation, function and lifespan of plasma cells and their metabolism, with metabolism being both a main driver and primary consequence of changes in cellular behavior. This review introduces how metabolic programs influence and drive immune cell functions in general and plasma cell differentiation and longevity more specifically, summarizing the current knowledge on metabolic pathways and their influences on cellular fate. In addition, available technologies to profile metabolism and their limitations are discussed, leading to the unique and open technological challenges for further advancement of this research field.
Collapse
Affiliation(s)
- Olivia T M Bucheli
- Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093 Zürich, Switzerland
| | - Klaus Eyer
- Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
40
|
Steinmetz TD, Verstappen GM, Suurmond J, Kroese FGM. Targeting plasma cells in systemic autoimmune rheumatic diseases - Promises and pitfalls. Immunol Lett 2023; 260:44-57. [PMID: 37315847 DOI: 10.1016/j.imlet.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/12/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Plasma cells are the antibody secretors of the immune system. Continuous antibody secretion over years can provide long-term immune protection but could also be held responsible for long-lasting autoimmunity in case of self-reactive plasma cells. Systemic autoimmune rheumatic diseases (ARD) affect multiple organ systems and are associated with a plethora of different autoantibodies. Two prototypic systemic ARDs are systemic lupus erythematosus (SLE) and Sjögren's disease (SjD). Both diseases are characterized by B-cell hyperactivity and the production of autoantibodies against nuclear antigens. Analogues to other immune cells, different subsets of plasma cells have been described. Plasma cell subsets are often defined dependent on their current state of maturation, that also depend on the precursor B-cell subset from which they derived. But, a universal definition of plasma cell subsets is not available so far. Furthermore, the ability for long-term survival and effector functions may differ, potentially in a disease-specific manner. Characterization of plasma cell subsets and their specificity in individual patients can help to choose a suitable targeting approach for either a broad or more selective plasma cell depletion. Targeting plasma cells in systemic ARDs is currently challenging because of side effects or varying depletion efficacies in the tissue. Recent developments, however, like antigen-specific targeting and CAR-T-cell therapy might open up major benefits for patients beyond current treatment options.
Collapse
Affiliation(s)
- Tobit D Steinmetz
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Gwenny M Verstappen
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jolien Suurmond
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans G M Kroese
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
41
|
Duan M, Nguyen DC, Joyner CJ, Saney CL, Tipton CM, Andrews J, Lonial S, Kim C, Hentenaar I, Kosters A, Ghosn E, Jackson A, Knechtle S, Maruthamuthu S, Chandran S, Martin T, Rajalingam R, Vincenti F, Breeden C, Sanz I, Gibson G, Lee FEH. Understanding heterogeneity of human bone marrow plasma cell maturation and survival pathways by single-cell analyses. Cell Rep 2023; 42:112682. [PMID: 37355988 PMCID: PMC10391632 DOI: 10.1016/j.celrep.2023.112682] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/28/2022] [Accepted: 06/06/2023] [Indexed: 06/27/2023] Open
Abstract
Human bone marrow (BM) plasma cells are heterogeneous, ranging from newly arrived antibody-secreting cells (ASCs) to long-lived plasma cells (LLPCs). We provide single-cell transcriptional resolution of 17,347 BM ASCs from five healthy adults. Fifteen clusters are identified ranging from newly minted ASCs (cluster 1) expressing MKI67 and high major histocompatibility complex (MHC) class II that progress to late clusters 5-8 through intermediate clusters 2-4. Additional ASC clusters include the following: immunoglobulin (Ig) M predominant (likely of extra-follicular origin), interferon responsive, and high mitochondrial activity. Late ASCs are distinguished by G2M checkpoints, mammalian target of rapamycin (mTOR) signaling, distinct metabolic pathways, CD38 expression, utilization of tumor necrosis factor (TNF)-receptor superfamily members, and two distinct maturation pathways involving TNF signaling through nuclear factor κB (NF-κB). This study provides a single-cell atlas and molecular roadmap of LLPC maturation trajectories essential in the BM microniche. Altogether, understanding BM ASC heterogeneity in health and disease enables development of new strategies to enhance protective ASCs and to deplete pathogenic ones.
Collapse
Affiliation(s)
- Meixue Duan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Doan C Nguyen
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Chester J Joyner
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Celia L Saney
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Christopher M Tipton
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, USA; Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Joel Andrews
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Caroline Kim
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Ian Hentenaar
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Astrid Kosters
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Eliver Ghosn
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Annette Jackson
- Departments of Immunology, Duke University, Durham, NC, USA; Department of Surgery, Duke University, Durham, NC, USA
| | | | - Stalinraja Maruthamuthu
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Sindhu Chandran
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Tom Martin
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Flavio Vincenti
- Division of Nephrology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Cynthia Breeden
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, GA, USA
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Greg Gibson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - F Eun-Hyung Lee
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, USA; Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
42
|
Lam JH, Baumgarth N. Toll-like receptor mediated inflammation directs B cells towards protective antiviral extrafollicular responses. Nat Commun 2023; 14:3979. [PMID: 37407556 DOI: 10.1038/s41467-023-39734-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
Extrafollicular plasmablast responses (EFRs) are considered to generate antibodies of low affinity that offer little protection from infections. Paradoxically, high avidity antigen-B cell receptor engagement is thought to be the main driver of B cell differentiation, whether in EFRs or slower-developing germinal centers (GCs). Here we show that influenza infection rapidly induces EFRs, generating protective antibodies via Toll-like receptor (TLR)-mediated mechanisms that are both B cell intrinsic and extrinsic. B cell-intrinsic TLR signals support antigen-stimulated B cell survival, clonal expansion, and the differentiation of B cells via induction of IRF4, the master regulator of B cell differentiation, through activation of NF-kB c-Rel. Provision of sustained TLR4 stimulation after immunization shifts the fate of virus-specific B cells towards EFRs instead of GCs, prompting rapid antibody production and improving their protective capacity over antigen/alum administration alone. Thus, inflammatory signals act as B cell fate-determinants for the rapid generation of protective antiviral extrafollicular responses.
Collapse
Affiliation(s)
- Jonathan H Lam
- Graduate Group in Immunology, University of California Davis, Davis, USA
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, USA
- Dept. Pathology, Microbiology and Immunology, University of California Davis, Davis, USA
| | - Nicole Baumgarth
- Graduate Group in Immunology, University of California Davis, Davis, USA.
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, USA.
- Dept. Pathology, Microbiology and Immunology, University of California Davis, Davis, USA.
- W. Harry Feinstone Dept Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, E4135, Baltimore, MD, 21205, USA.
| |
Collapse
|
43
|
Nguyen T, Lau A, Bier J, Cooke KC, Lenthall H, Ruiz-Diaz S, Avery DT, Brigden H, Zahra D, Sewell WA, Droney L, Okada S, Asano T, Abolhassani H, Chavoshzadeh Z, Abraham RS, Rajapakse N, Klee EW, Church JA, Williams A, Wong M, Burkhart C, Uzel G, Croucher DR, James DE, Ma CS, Brink R, Tangye SG, Deenick EK. Human PIK3R1 mutations disrupt lymphocyte differentiation to cause activated PI3Kδ syndrome 2. J Exp Med 2023; 220:e20221020. [PMID: 36943234 PMCID: PMC10037341 DOI: 10.1084/jem.20221020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/22/2022] [Accepted: 02/27/2023] [Indexed: 03/23/2023] Open
Abstract
Heterozygous loss-of-function (LOF) mutations in PIK3R1 (encoding phosphatidylinositol 3-kinase [PI3K] regulatory subunits) cause activated PI3Kδ syndrome 2 (APDS2), which has a similar clinical profile to APDS1, caused by heterozygous gain-of-function (GOF) mutations in PIK3CD (encoding the PI3K p110δ catalytic subunit). While several studies have established how PIK3CD GOF leads to immune dysregulation, less is known about how PIK3R1 LOF mutations alter cellular function. By studying a novel CRISPR/Cas9 mouse model and patients' immune cells, we determined how PIK3R1 LOF alters cellular function. We observed some overlap in cellular defects in APDS1 and APDS2, including decreased intrinsic B cell class switching and defective Tfh cell function. However, we also identified unique APDS2 phenotypes including defective expansion and affinity maturation of Pik3r1 LOF B cells following immunization, and decreased survival of Pik3r1 LOF pups. Further, we observed clear differences in the way Pik3r1 LOF and Pik3cd GOF altered signaling. Together these results demonstrate crucial differences between these two genetic etiologies.
Collapse
Affiliation(s)
- Tina Nguyen
- Garvan Institute of Medical Research, Darlinghurst, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Kensington, Australia
| | - Anthony Lau
- Garvan Institute of Medical Research, Darlinghurst, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Kensington, Australia
| | - Julia Bier
- Garvan Institute of Medical Research, Darlinghurst, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Kensington, Australia
| | - Kristen C. Cooke
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Helen Lenthall
- Garvan Institute of Medical Research, Darlinghurst, Australia
| | | | | | - Henry Brigden
- Garvan Institute of Medical Research, Darlinghurst, Australia
| | - David Zahra
- Garvan Institute of Medical Research, Darlinghurst, Australia
| | - William A Sewell
- Garvan Institute of Medical Research, Darlinghurst, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Kensington, Australia
| | - Luke Droney
- Department of Clinical Immunology, Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takaki Asano
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, Division of Clinical Immunology, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Chavoshzadeh
- Pediatric Infections Research Center, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roshini S. Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Nipunie Rajapakse
- Department of Pediatric and Adolescent Medicine, Division of Pediatric Infectious Diseases, Mayo Clinic, Rochester, MN, USA
| | - Eric W. Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Joseph A. Church
- Division of Clinical Immunology and Allergy, Children’s Hospital of Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andrew Williams
- Clinical Immunogenomics Research Consortium Australasia, Sydney, Australia
- Children’s Hospital at Westmead, Westmead, Australia
- Central Clinical School, University of Sydney, Sydney, Australia
| | - Melanie Wong
- Clinical Immunogenomics Research Consortium Australasia, Sydney, Australia
- Children’s Hospital at Westmead, Westmead, Australia
- Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Christoph Burkhart
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David R. Croucher
- Garvan Institute of Medical Research, Darlinghurst, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Kensington, Australia
| | - David E. James
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
- School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Cindy S. Ma
- Garvan Institute of Medical Research, Darlinghurst, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Kensington, Australia
- Clinical Immunogenomics Research Consortium Australasia, Sydney, Australia
| | - Robert Brink
- Garvan Institute of Medical Research, Darlinghurst, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Kensington, Australia
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, Darlinghurst, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Kensington, Australia
- Clinical Immunogenomics Research Consortium Australasia, Sydney, Australia
| | - Elissa K. Deenick
- Garvan Institute of Medical Research, Darlinghurst, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Kensington, Australia
- Clinical Immunogenomics Research Consortium Australasia, Sydney, Australia
| |
Collapse
|
44
|
Chou MY, Liu D, An J, Xu Y, Cyster JG. B cell peripheral tolerance is promoted by cathepsin B protease. Proc Natl Acad Sci U S A 2023; 120:e2300099120. [PMID: 37040412 PMCID: PMC10120085 DOI: 10.1073/pnas.2300099120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/14/2023] [Indexed: 04/12/2023] Open
Abstract
B cells that bind soluble autoantigens receive chronic signaling via the B cell receptor (signal-1) in the absence of strong costimulatory signals (signal-2), and this leads to their elimination in peripheral tissues. The factors determining the extent of soluble autoantigen-binding B cell elimination are not fully understood. Here we demonstrate that the elimination of B cells chronically exposed to signal-1 is promoted by cathepsin B (Ctsb). Using hen egg lysozyme-specific (HEL-specific) immunoglobulin transgenic (MD4) B cells and mice harboring circulating HEL, we found improved survival and increased proliferation of HEL-binding B cells in Ctsb-deficient mice. Bone marrow chimera experiments established that both hematopoietic and nonhematopoietic sources of Ctsb were sufficient to promote peripheral B cell deletion. The depletion of CD4+ T cells overcame the survival and growth advantage provided by Ctsb deficiency, as did blocking CD40L or removing CD40 from the chronically antigen-engaged B cells. Thus, we suggest that Ctsb acts extracellularly to reduce soluble autoantigen-binding B cell survival and that its actions restrain CD40L-dependent pro-survival effects. These findings identify a role for cell-extrinsic protease activity in establishing a peripheral self-tolerance checkpoint.
Collapse
Affiliation(s)
- Marissa Y. Chou
- Department of Microbiology and Immunology, University of California, San Francisco, CA94143
- HHMI, University of California, San Francisco, CA94143
| | - Dan Liu
- Department of Microbiology and Immunology, University of California, San Francisco, CA94143
- HHMI, University of California, San Francisco, CA94143
| | - Jinping An
- Department of Microbiology and Immunology, University of California, San Francisco, CA94143
- HHMI, University of California, San Francisco, CA94143
| | - Ying Xu
- Department of Microbiology and Immunology, University of California, San Francisco, CA94143
- HHMI, University of California, San Francisco, CA94143
| | - Jason G. Cyster
- Department of Microbiology and Immunology, University of California, San Francisco, CA94143
- HHMI, University of California, San Francisco, CA94143
| |
Collapse
|
45
|
Reusch L, Angeletti D. Memory B-cell diversity: From early generation to tissue residency and reactivation. Eur J Immunol 2023; 53:e2250085. [PMID: 36811174 DOI: 10.1002/eji.202250085] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
Memory B cells (MBCs) have a crucial function in providing an enhanced response to repeated infections. Upon antigen encounter, MBC can either rapidly differentiate to antibody secreting cells or enter germinal centers (GC) to further diversify and affinity mature. Understanding how and when MBC are formed, where they reside and how they select their fate upon reactivation has profound implications for designing strategies to improve targeted, next-generation vaccines. Recent studies have crystallized much of our knowledge on MBC but also reported several surprising discoveries and gaps in our current understanding. Here, we review the latest advancements in the field and highlight current unknowns. In particular, we focus on timing and cues leading to MBC generation before and during the GC reaction, discuss how MBC become resident in mucosal tissues, and finally, provide an overview of factors shaping MBC fate-decision upon reactivation in mucosal and lymphoid tissues.
Collapse
Affiliation(s)
- Laura Reusch
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
46
|
Brooks JF, Riggs J, Mueller JL, Mathenge R, Wholey WY, Yoda ST, Vykunta VS, Cheng W, Zikherman J. Molecular basis for potent B cell responses to antigen displayed on particles of viral size. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528761. [PMID: 36824873 PMCID: PMC9949087 DOI: 10.1101/2023.02.15.528761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Although it has long been appreciated that multivalent antigens - and particularly viral epitope display - produce extremely rapid, robust, and T-independent humoral immune responses, the biochemical basis for such potency has been incompletely understood. Here we take advantage of a set of neutral liposomes of viral size that are engineered to display affinity mutants of the model antigen (Ag) hen egg lysozyme at precisely varied density. We show that particulate Ag display by liposomes induces highly potent B cell responses that are dose-and density-dependent but affinity-independent. Titrating dose of particulate, but not soluble, Ag reveals bimodal Erk phosphorylation and cytosolic calcium increases. Particulate Ag induces signal amplification downstream of the B cell receptor (BCR) by selectively evading LYN-dependent inhibitory pathways, but in vitro potency is independent of CD19. Importantly, Ag display on viral-sized particles signals independently of MYD88 and IRAK1/4, but activates NF- κ B robustly in a manner that mimics T cell help. Together, such biased signaling by particulate Ag promotes MYC expression and reduces the threshold required for B cell proliferation relative to soluble Ag. These findings uncover a molecular basis for highly sensitive B cell response to viral Ag display and remarkable potency of virus-like particle vaccines that is not merely accounted for by avidity and BCR cross-linking, and is independent of the contribution of B cell nucleic acid-sensing machinery.
Collapse
|
47
|
Wabnitz H, Cruz-Leal Y, Lazarus AH. Antigen-specific IgG subclass composition in recipient mice can indicate the degree of red blood cell alloimmunization as well as discern between primary and secondary immunization. Transfusion 2023; 63:619-628. [PMID: 36591986 DOI: 10.1111/trf.17232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Despite the vast antigen disparity between donor and recipient red blood cells (RBCs), only 2%-6% of transfusion patients mount an alloantibody response. Recently, RBC antigen density has been proposed as one of the factors that can influence alloimmunization, however, there has been no characterization of the role of antigen density along with RBC dose in primary and secondary immunization. STUDY DESIGN AND METHODS To generate RBCs that express distinct antigen copy numbers, different quantities of hen egg lysozyme (HEL) were coupled to murine RBCs. The HEL-RBCs were subsequently transfused into recipient mice at different RBC doses and their HEL-specific IgM, IgG, and IgG subclass response was evaluated. RESULTS Productive immune responses could be generated through a high copy number antigen transfused at low RBC doses or a low copy number transfused at high RBC doses. Further, primary but submaximal humoral immunization predominantly induced the IgG2b and IgG3 subclasses. In contrast, a maximal primary immunization or a secondary immunization induced all four IgG subclasses. DISCUSSION Our results confirm the existence of an antigen threshold for productive immune responses but indicate that a high antigen copy number alone might not be enough to induce a response, but rather a combination of both antigen copy number and cell dosage may determine the outcome of immunization. Further, this study provides a proof of concept that the IgG subclass composition can be an indicator of the level of RBC alloimmunization as well as discern between primary and secondary immunization at least in this murine model.
Collapse
Affiliation(s)
- Hanna Wabnitz
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Yoelys Cruz-Leal
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Alan H Lazarus
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
48
|
Chen Z, Cui Y, Yao Y, Liu B, Yunis J, Gao X, Wang N, Cañete PF, Tuong ZK, Sun H, Wang H, Yang S, Wang R, Leong YA, Simon Davis D, Qin J, Liang K, Deng J, Wang CK, Huang YH, Roco JA, Nettelfield S, Zhu H, Xu H, Yu Z, Craik D, Liu Z, Qi H, Parish C, Yu D. Heparan sulfate regulates IL-21 bioavailability and signal strength that control germinal center B cell selection and differentiation. Sci Immunol 2023; 8:eadd1728. [PMID: 36800411 DOI: 10.1126/sciimmunol.add1728] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
In antibody responses, mutated germinal center B (BGC) cells are positively selected for reentry or differentiation. As the products from GCs, memory B cells and antibody-secreting cells (ASCs) support high-affinity and long-lasting immunity. Positive selection of BGC cells is controlled by signals received through the B cell receptor (BCR) and follicular helper T (TFH) cell-derived signals, in particular costimulation through CD40. Here, we demonstrate that the TFH cell effector cytokine interleukin-21 (IL-21) joins BCR and CD40 in supporting BGC selection and reveal that strong IL-21 signaling prioritizes ASC differentiation in vivo. BGC cells, compared with non-BGC cells, show significantly reduced IL-21 binding and attenuated signaling, which is mediated by low cellular heparan sulfate (HS) sulfation. Mechanistically, N-deacetylase and N-sulfotransferase 1 (Ndst1)-mediated N-sulfation of HS in B cells promotes IL-21 binding and signal strength. Ndst1 is down-regulated in BGC cells and up-regulated in ASC precursors, suggesting selective desensitization to IL-21 in BGC cells. Thus, specialized biochemical regulation of IL-21 bioavailability and signal strength sets a balance between the stringency and efficiency of GC selection.
Collapse
Affiliation(s)
- Zhian Chen
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Yanfang Cui
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Central China Normal University, Wuhan, China
| | - Yin Yao
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Department of Otolaryngology-Head and Neck Surgery, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Liu
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, Beijing, China
| | - Joseph Yunis
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Xin Gao
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Naiqi Wang
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Pablo F Cañete
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Zewen Kelvin Tuong
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK.,Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Hongjian Sun
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Hao Wang
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Siling Yang
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Runli Wang
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Yew Ann Leong
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - David Simon Davis
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Jiahuan Qin
- China-Australia Centre for Personalised Immunology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaili Liang
- China-Australia Centre for Personalised Immunology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Deng
- China-Australia Centre for Personalised Immunology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Conan K Wang
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Queensland, Brisbane, QLD, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Jonathan A Roco
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Sam Nettelfield
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Huaming Zhu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Huajun Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Zhijia Yu
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - David Craik
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Queensland, Brisbane, QLD, Australia
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hai Qi
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, Beijing, China
| | - Christopher Parish
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Di Yu
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
49
|
Raghavan M, Kalantar KL, Duarte E, Teyssier N, Takahashi S, Kung AF, Rajan JV, Rek J, Tetteh KKA, Drakeley C, Ssewanyana I, Rodriguez-Barraquer I, Greenhouse B, DeRisi JL. Antibodies to repeat-containing antigens in Plasmodium falciparum are exposure-dependent and short-lived in children in natural malaria infections. eLife 2023; 12:e81401. [PMID: 36790168 PMCID: PMC10005774 DOI: 10.7554/elife.81401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 02/14/2023] [Indexed: 02/16/2023] Open
Abstract
Protection against Plasmodium falciparum, which is primarily antibody-mediated, requires recurrent exposure to develop. The study of both naturally acquired limited immunity and vaccine induced protection against malaria remains critical for ongoing eradication efforts. Towards this goal, we deployed a customized P. falciparum PhIP-seq T7 phage display library containing 238,068 tiled 62-amino acid peptides, covering all known coding regions, including antigenic variants, to systematically profile antibody targets in 198 Ugandan children and adults from high and moderate transmission settings. Repeat elements - short amino acid sequences repeated within a protein - were significantly enriched in antibody targets. While breadth of responses to repeat-containing peptides was twofold higher in children living in the high versus moderate exposure setting, no such differences were observed for peptides without repeats, suggesting that antibody responses to repeat-containing regions may be more exposure dependent and/or less durable in children than responses to regions without repeats. Additionally, short motifs associated with seroreactivity were extensively shared among hundreds of antigens, potentially representing cross-reactive epitopes. PfEMP1 shared motifs with the greatest number of other antigens, partly driven by the diversity of PfEMP1 sequences. These data suggest that the large number of repeat elements and potential cross-reactive epitopes found within antigenic regions of P. falciparum could contribute to the inefficient nature of malaria immunity.
Collapse
Affiliation(s)
- Madhura Raghavan
- University of California, San FranciscoSan FranciscoUnited States
| | | | - Elias Duarte
- University of California, BerkeleyBerkeleyUnited States
| | - Noam Teyssier
- University of California, San FranciscoSan FranciscoUnited States
| | - Saki Takahashi
- University of California, San FranciscoSan FranciscoUnited States
| | - Andrew F Kung
- University of California, San FranciscoSan FranciscoUnited States
| | - Jayant V Rajan
- University of California, San FranciscoSan FranciscoUnited States
| | - John Rek
- Infectious Diseases Research CollaborationKampalaUganda
| | - Kevin KA Tetteh
- London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Chris Drakeley
- London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Isaac Ssewanyana
- Infectious Diseases Research CollaborationKampalaUganda
- London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Isabel Rodriguez-Barraquer
- University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Bryan Greenhouse
- University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Joseph L DeRisi
- University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| |
Collapse
|
50
|
Sollid LM, Iversen R. Tango of B cells with T cells in the making of secretory antibodies to gut bacteria. Nat Rev Gastroenterol Hepatol 2023; 20:120-128. [PMID: 36056203 DOI: 10.1038/s41575-022-00674-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 02/03/2023]
Abstract
Polymeric IgA and IgM are transported across the epithelial barrier from plasma cells in the lamina propria to exert a function in the gut lumen as secretory antibodies. Many secretory antibodies are reactive with the gut bacteria, and mounting evidence suggests that these antibodies are important for the host to control gut bacterial communities. However, we have incomplete knowledge of how bacteria-reactive secretory antibodies are formed. Antibodies from gut plasma cells often show bacterial cross-species reactivity, putting the degree of specificity behind anti-bacterial antibody responses into question. Such cross-species reactive antibodies frequently recognize non-genome-encoded membrane glycan structures. On the other hand, the T cell epitopes are peptides encoded in the bacterial genomes, thereby allowing a higher degree of predictable specificity on the T cell side of anti-bacterial immune responses. In this Perspective, we argue that the production of bacteria-reactive secretory antibodies is mainly controlled by the antigen specificity of T cells, which provide help to B cells. To be able to harness this system (for instance, for manipulation with vaccines), we need to obtain insight into the bacterial epitopes recognized by T cells in addition to characterizing the reactivity of the antibodies.
Collapse
Affiliation(s)
- Ludvig M Sollid
- K.G. Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway. .,Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway.
| | - Rasmus Iversen
- K.G. Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway. .,Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway.
| |
Collapse
|