1
|
Pellegrino M, Giordano F, De Amicis F, Marra M, Tucci P, Marsico S, Aquaro S. HIV-1 Structural Proteins or Cell-Signaling Factors? That Is the Question! Curr Issues Mol Biol 2024; 46:5100-5116. [PMID: 38920978 PMCID: PMC11202448 DOI: 10.3390/cimb46060306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
The biological activity of structural HIV-1 proteins is not limited to ensuring a productive viral infection but also interferes with cellular homeostasis through intra- and extracellular signaling activation. This interference induces genomic instability, increases the lifespan of the infected cell by inhibiting apoptosis, and subverts cell senescence, resulting in unrestricted cell proliferation. HIV structural proteins are present in a soluble form in the lymphoid tissues and blood of infected individuals, even without active viral replication. The HIV matrix protein p17, the envelope glycoprotein gp120, the transenvelope protein gp41, and the capsid protein p24 interact with immune cells and deregulate the biological activity of the immune system. The biological activity of HIV structural proteins is also demonstrated in endothelial cells and some tumor cell lines, confirming the ability of viral proteins to promote cell proliferation and cancer progression, even in the absence of active viral replication. This review corroborates the hypothesis that HIV structural proteins, by interacting with different cell types, contribute to creating a microenvironment that is favorable to the evolution of cancerous pathologies not classically related to AIDS.
Collapse
Affiliation(s)
| | | | | | | | | | - Stefania Marsico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.P.)
| | | |
Collapse
|
2
|
NK cell spatial dynamics and IgA responses in gut-associated lymphoid tissues during SIV infections. Commun Biol 2022; 5:674. [PMID: 35798936 PMCID: PMC9262959 DOI: 10.1038/s42003-022-03619-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 06/22/2022] [Indexed: 11/18/2022] Open
Abstract
HIV infection induces tissue damage including lymph node (LN) fibrosis and intestinal epithelial barrier disruption leading to bacterial translocation and systemic inflammation. Natural hosts of SIV, such as African Green Monkeys (AGM), do not display tissue damage despite high viral load in blood and intestinal mucosa. AGM mount a NK cell-mediated control of SIVagm replication in peripheral LN. We analyzed if NK cells also control SIVagm in mesenteric (mes) LN and if this has an impact on gut humoral responses and the production of IgA known for their anti-inflammatory role in the gut. We show that CXCR5 + NK cell frequencies increase in mesLN upon SIVagm infection and that NK cells migrate into and control viral replication in B cell follicles (BCF) of mesLN. The proportion of IgA+ memory B cells were increased in mesLN during SIVagm infection in contrast to SIVmac infection. Total IgA levels in gut remained normal during SIVagm infection, while strongly decreased in intestine of chronically SIVmac-infected macaques. Our data suggest an indirect impact of NK cell-mediated viral control in mesLN during SIVagm infection on preserved BCF function and IgA production in intestinal tissues. Differences between pathogenic and non-pathogenic SIV infections are investigated, in terms of NK cell location, function and IgA responses in gut associated lymphoid tissues (mesenteric lymph nodes, jejunum, ileon, colon).
Collapse
|
3
|
Michailidou E, Poulopoulos A, Tzimagiorgis G. Salivary diagnostics of the novel coronavirus SARS-CoV-2 (COVID-19). Oral Dis 2022; 28 Suppl 1:867-877. [PMID: 33211392 PMCID: PMC7753835 DOI: 10.1111/odi.13729] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Laboratory testing for the SARS-CoV-2 virus and the consequent respiratory coronavirus disease 2019 (COVID-19) is categorized into methods that detect the viral presence and methods that detect antibodies produced in the host as a response to infection. Methods that detect viral presence into the host excretions measure current infection by SARS-CoV-2, whereas the detection of human antibodies exploited against SARS-CoV-2 evaluates the past exposure to the virus. OBJECTIVE This review provides a comprehensive overview for the use of saliva as a specimen for the detection of SARS-CoV-2, the methods for the salivary diagnostics utilized till very recently, and the arisen considerations for the diagnosis of COVID-19 disease. CONCLUSION The major advantage of using saliva as a specimen for the detection of SARS-CoV-2 is that saliva collection is a non-invasive method which produces no discomfort to the patient and permits the patients to utilize home self-sampling techniques in order to protect health providers from the exposure to the pathogen. There is an urgent need to increase the active research for the detection of SARS-CoV-2 in the saliva because the non-invasive salivary diagnostics may provide a reliable and cost-effective method suitable for the fast and early detection of COVID-19 infection.
Collapse
Affiliation(s)
- Evangelia Michailidou
- Department of Oral Medicine and Maxillofacial PathologySchool of DentistryAristotle UniversityThessalonikiGreece
| | - Athanasios Poulopoulos
- Department of Oral Medicine and Maxillofacial PathologySchool of DentistryAristotle UniversityThessalonikiGreece
| | - Georgios Tzimagiorgis
- Laboratory of Biological ChemistryMedical SchoolAristotle University of ThessalonikiThessalonikiGreece
| |
Collapse
|
4
|
Shen J, Wu J, Yang Y, Wang P, Luo T, Guo Y, Zhao J, Dai W, Han Y, Zhu P, Wu Q, Li W, Chen A, Xue C, Xia X. The paradoxical problem with COVID-19 ocular infection: Moderate clinical manifestation and potential infection risk. Comput Struct Biotechnol J 2021; 19:1063-1071. [PMID: 33613871 PMCID: PMC7881169 DOI: 10.1016/j.csbj.2021.01.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which induced mainly the respiratory damage also caused ocular surface symptoms. However, the detailed description of ocular manifestations, severity fluctuations in confirmed COVID-19 adult patients still lacked. We analyzed onset clinical symptoms and duration, ocular symptoms, needs for medication, outcomes in 28 conjunctivitis patients who were extracted from 3198 COVID-19 patients hospitalized in Huoshenshan Hospital and Taikangtongji Hospital, Wuhan, China. The expression levels of ACE2, TMPRSS2, ANPEP, DPP4, NRP1 on fetal and adult ocular surface and mouse lacrimal glands were assessed by single cell seq analysis. Our results indicated that conjunctivitis was a rare and self-limited complication in adults with COVID-19 while the existence of coronavirus receptors on human ocular surface and mouse lacrimal glands indicated the risk of SARS-CoV-2 infection. Our research firstly examined SARS-CoV-2 receptors, including the new discovered one, NRP1, on the fetal ocular surface and in the mouse lacrimal glands.
Collapse
Affiliation(s)
- Jiawei Shen
- COVID-19 Research Center, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing Clinical College of Southern Medical University, Nanjing, Jiangsu 210002, China
- Department of Ophthalmology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Jian Wu
- COVID-19 Research Center, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing Clinical College of Southern Medical University, Nanjing, Jiangsu 210002, China
| | - Yang Yang
- COVID-19 Research Center, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing Clinical College of Southern Medical University, Nanjing, Jiangsu 210002, China
| | - Pengcheng Wang
- Department of Clinical Laboratory, The 901th Hospital of the Joint Logistics Support Force of PLA, Hefei, Anhui 230031, China
- Department of Clinical Laboratory, Taikang Tongji Hospital, Wuhan, Hubei 430050, China
| | - Tao Luo
- COVID-19 Research Center, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing Clinical College of Southern Medical University, Nanjing, Jiangsu 210002, China
| | - Yanju Guo
- COVID-19 Research Center, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing Clinical College of Southern Medical University, Nanjing, Jiangsu 210002, China
| | - Jun Zhao
- COVID-19 Research Center, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing Clinical College of Southern Medical University, Nanjing, Jiangsu 210002, China
| | - Wei Dai
- COVID-19 Research Center, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing Clinical College of Southern Medical University, Nanjing, Jiangsu 210002, China
| | - Ying Han
- COVID-19 Research Center, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing Clinical College of Southern Medical University, Nanjing, Jiangsu 210002, China
| | - Peiran Zhu
- COVID-19 Research Center, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing Clinical College of Southern Medical University, Nanjing, Jiangsu 210002, China
| | - Qiuyue Wu
- COVID-19 Research Center, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing Clinical College of Southern Medical University, Nanjing, Jiangsu 210002, China
| | - Weiwei Li
- COVID-19 Research Center, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing Clinical College of Southern Medical University, Nanjing, Jiangsu 210002, China
| | - Andrew Chen
- Jericho High School, 99 Cedar Swamp Rd, Jericho, NY 11753, USA
| | - Chunyan Xue
- Department of Ophthalmology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
- Corresponding authors at: Department of Ophthalmology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China (C. Xue). COVID-19 Research Center, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing Clinical College of Southern Medical University, Nanjing, Jiangsu 210002, China (X. Xia).
| | - Xinyi Xia
- COVID-19 Research Center, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing Clinical College of Southern Medical University, Nanjing, Jiangsu 210002, China
- Joint Expert Group for COVID-19, Department of Laboratory Medicine, Wuhan Huoshenshan Hospital, Wuhan, Hubei 430100, China
- Corresponding authors at: Department of Ophthalmology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China (C. Xue). COVID-19 Research Center, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing Clinical College of Southern Medical University, Nanjing, Jiangsu 210002, China (X. Xia).
| |
Collapse
|
5
|
Russell MW, Moldoveanu Z, Ogra PL, Mestecky J. Mucosal Immunity in COVID-19: A Neglected but Critical Aspect of SARS-CoV-2 Infection. Front Immunol 2020; 11:611337. [PMID: 33329607 PMCID: PMC7733922 DOI: 10.3389/fimmu.2020.611337] [Citation(s) in RCA: 267] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
The mucosal immune system is the largest component of the entire immune system, having evolved to provide protection at the main sites of infectious threat: the mucosae. As SARS-CoV-2 initially infects the upper respiratory tract, its first interactions with the immune system must occur predominantly at the respiratory mucosal surfaces, during both inductive and effector phases of the response. However, almost all studies of the immune response in COVID-19 have focused exclusively on serum antibodies and systemic cell-mediated immunity including innate responses. This article proposes that there is a significant role for mucosal immunity and for secretory as well as circulating IgA antibodies in COVID-19, and that it is important to elucidate this in order to comprehend especially the asymptomatic and mild states of the infection, which appear to account for the majority of cases. Moreover, it is possible that mucosal immunity can be exploited for beneficial diagnostic, therapeutic, or prophylactic purposes.
Collapse
Affiliation(s)
- Michael W Russell
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Zina Moldoveanu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Pearay L Ogra
- Division of Infectious Diseases, Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
6
|
Cavarelli M, Le Grand R. The importance of semen leukocytes in HIV-1 transmission and the development of prevention strategies. Hum Vaccin Immunother 2020; 16:2018-2032. [PMID: 32614649 PMCID: PMC7553688 DOI: 10.1080/21645515.2020.1765622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
HIV-1 sexual transmission occurs mostly through contaminated semen, which is a complex mixture of soluble factors with immunoregulatory functions and cells. It is well established that semen cells from HIV-1-infected men are able to produce the virus and that are harnessed to efficiently interact with mucosal barriers exposed during sexual intercourse. Several cofactors contribute to semen infectivity and may enhance the risk of HIV-1 transmission to a partner by increasing local HIV-1 replication in the male genital tract, thereby increasing the number of HIV-1-infected cells and the local HIV-1 shedding in semen. The introduction of combination antiretroviral therapy has improved the life expectancy of HIV-1 infected individuals; however, there is evidence that systemic viral suppression does not always reflect full viral suppression in the seminal compartment. This review focus on the role semen leukocytes play in HIV-1 transmission and discusses implications of the increased resistance of cell-mediated transmission to immune-based prevention strategies.
Collapse
Affiliation(s)
- Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT) , Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT) , Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| |
Collapse
|
7
|
Gary EN, Kathuria N, Makurumidze G, Curatola A, Ramamurthi A, Bernui ME, Myles D, Yan J, Pankhong P, Muthumani K, Haddad E, Humeau L, Weiner DB, Kutzler MA. CCR10 expression is required for the adjuvant activity of the mucosal chemokine CCL28 when delivered in the context of an HIV-1 Env DNA vaccine. Vaccine 2020; 38:2626-2635. [PMID: 32057572 PMCID: PMC10681704 DOI: 10.1016/j.vaccine.2020.01.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/05/2019] [Accepted: 01/07/2020] [Indexed: 01/07/2023]
Abstract
An effective prophylactic vaccine targeting HIV must induce a robust humoral response and must direct the bulk of this response to the mucosa-the primary site of HIV transmission. The chemokine, CCL28, is secreted by epithelial cells at mucosal surfaces and recruits' cells expressing its receptor CCR10. CCR10 is predominantly expressed by IgA + ASCs. We hypothesized that co-immunization with plasmid DNA encoding consensus envelope antigens with plasmid-encoded CCL28 would enhance anti-HIV IgA responses at mucosal surfaces. Indeed, animals receiving pCCL28 and pEnvA/C had significantly increased HIV-specific IgA in fecal extract. Surprisingly, CCL28 co-immunization induced a significant increase in anti-HIV IgG in the serum in mice compared to those receiving pEnvA/C alone. These robust antibody responses were not associated with changes in the frequency of germinal center B cells but depended upon the expression of CCR10, as these responses we abolished in CCR10-deficient animals. Finally, immunization with CCL28 led to increased frequencies in HIV-specific CCR10 + and CCR10 + IgA + B cells in the small intestine and Peyer's patches of vaccinated animals as compared to those receiving pEnvA/C alone. These data indicate that CCL28 administration can enhance antigen-specific humoral responses systemically and at mucosal surfaces.
Collapse
Affiliation(s)
- E N Gary
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - N Kathuria
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - G Makurumidze
- The Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States
| | - A Curatola
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - A Ramamurthi
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - M E Bernui
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States; The Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States
| | - D Myles
- The Department of Pathology and Laboratory Medicine, The University of Pennsylvania, Philadelphia, PA, United States
| | - J Yan
- Inovio Pharmaceuticals, Blue Bell, PA, United States
| | - P Pankhong
- The Department of Pathology and Laboratory Medicine, The University of Pennsylvania, Philadelphia, PA, United States
| | - K Muthumani
- The Wistar Institute, Philadelphia, PA, United States
| | - E Haddad
- The Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States
| | - L Humeau
- Inovio Pharmaceuticals, Blue Bell, PA, United States
| | - D B Weiner
- The Wistar Institute, Philadelphia, PA, United States
| | - M A Kutzler
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States; The Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
8
|
Ruprecht RM, Marasini B, Thippeshappa R. Mucosal Antibodies: Defending Epithelial Barriers against HIV-1 Invasion. Vaccines (Basel) 2019; 7:vaccines7040194. [PMID: 31771162 PMCID: PMC6963197 DOI: 10.3390/vaccines7040194] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 01/12/2023] Open
Abstract
The power of mucosal anti-HIV-1 envelope immunoglobulins (Igs) to block virus transmission is underappreciated. We used passive immunization, a classical tool to unequivocally prove whether antibodies are protective. We mucosally instilled recombinant neutralizing monoclonal antibodies (nmAbs) of different Ig classes in rhesus macaques (RMs) followed by mucosal simian–human immunodeficiency virus (SHIV) challenge. We gave anti-HIV-1 IgM, IgG, and dimeric IgA (dIgA) versions of the same human nmAb, HGN194 that targets the conserved V3 loop crown. Surprisingly, dIgA1 with its wide-open, flat hinge protected 83% of the RMs against intrarectal R5-tropic SHIV-1157ipEL-p challenge, whereas dIgA2, with its narrow hinge, only protected 17% of the animals—despite identical epitope specificities and in vitro neutralization curves of the two dIgA isotypes (Watkins et al., AIDS 2013 27(9):F13-20). These data imply that factors in addition to neutralization determine in vivo protection. We propose that this underlying protective mechanism is immune exclusion, which involves large nmAb/virion aggregates that prevent virus penetration of mucosal barriers. Future studies need to find biomarkers that predict effective immune exclusion in vivo. Vaccine development strategies against HIV-1 and/or other mucosally transmissible pathogens should include induction of strong mucosal Abs of different Ig classes to defend epithelial barriers against pathogen invasion.
Collapse
Affiliation(s)
- Ruth M. Ruprecht
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA;
- Correspondence:
| | - Bishal Marasini
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA;
| | | |
Collapse
|
9
|
Simian-Human Immunodeficiency Virus SHIV.CH505 Infection of Rhesus Macaques Results in Persistent Viral Replication and Induces Intestinal Immunopathology. J Virol 2019; 93:JVI.00372-19. [PMID: 31217249 DOI: 10.1128/jvi.00372-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/10/2019] [Indexed: 02/07/2023] Open
Abstract
Simian-human immunodeficiency viruses (SHIVs) have been utilized to test vaccine efficacy and characterize mechanisms of viral transmission and pathogenesis. However, the majority of SHIVs currently available have significant limitations in that they were developed using sequences from chronically HIV-infected individuals or uncommon HIV subtypes or were optimized for the macaque model by serially passaging the engineered virus in vitro or in vivo Recently, a newly developed SHIV, SHIV.C.CH505.375H.dCT (SHIV.CH505), which incorporates vpu-env (gp140) sequences from a transmitted/founder HIV-1 subtype C strain, was shown to retain attributes of primary HIV-1 strains. However, a comprehensive analysis of the immunopathology that results from infection with this virus, especially in critical tissue compartments like the intestinal mucosa, has not been completed. In this study, we evaluated the viral dynamics and immunopathology of SHIV.CH505 in rhesus macaques. In line with previous findings, we found that SHIV.CH505 is capable of infecting and replicating efficiently in rhesus macaques, resulting in peripheral viral kinetics similar to that seen in pathogenic SIV and HIV infection. Furthermore, we observed significant and persistent depletions of CCR5+ and CCR6+ CD4+ T cells in mucosal tissues, decreases in CD4+ T cells producing Th17 cell-associated cytokines, CD8+ T cell dysfunction, and alterations of B cell and innate immune cell function, indicating that SHIV.CH505 elicits intestinal immunopathology typical of SIV/HIV infection. These findings suggest that SHIV.CH505 recapitulates the early viral replication dynamics and immunopathogenesis of HIV-1 infection of humans and thus can serve as a new model for HIV-1 pathogenesis, treatment, and prevention research.IMPORTANCE The development of chimeric SHIVs has been instrumental in advancing our understanding of HIV-host interactions and allowing for in vivo testing of novel treatments. However, many of the currently available SHIVs have distinct drawbacks and are unable to fully reflect the features characteristic of primary SIV and HIV strains. Here, we utilize rhesus macaques to define the immunopathogenesis of the recently developed SHIV.CH505, which was designed without many of the limitations of previous SHIVs. We observed that infection with SHIV.CH505 leads to peripheral viral kinetics and mucosal immunopathogenesis comparable with those caused by pathogenic SIV and HIV. Overall, these data provide evidence of the value of SHIV.CH505 as an effective model of SIV/HIV infection and an important tool that can be used in future studies, including preclinical testing of new therapies or prevention strategies.
Collapse
|
10
|
Tay MZ, Kunz EL, Deal A, Zhang L, Seaton KE, Rountree W, Eudailey JA, Heptinstall J, McRaven MD, Matias E, McGuire E, Yates NL, Perez LG, Montefiori DC, Overman RG, Hope TJ, Shen X, Kalilani L, Fouda GG, Tomaras GD, Permar SR. Rare Detection of Antiviral Functions of Polyclonal IgA Isolated from Plasma and Breast Milk Compartments in Women Chronically Infected with HIV-1. J Virol 2019; 93:e02084-18. [PMID: 30700599 PMCID: PMC6430545 DOI: 10.1128/jvi.02084-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/15/2019] [Indexed: 02/06/2023] Open
Abstract
The humoral response to invading mucosal pathogens comprises multiple antibody isotypes derived from systemic and mucosal compartments. To understand the contribution of each antibody isotype/source to the mucosal humoral response, parallel investigation of the specificities and functions of antibodies within and across isotypes and compartments is required. The role of IgA against HIV-1 is complex, with studies supporting a protective role as well as a role for serum IgA in blocking effector functions. Thus, we explored the fine specificity and function of IgA in both plasma and mucosal secretions important to infant HIV-1 infection, i.e., breast milk. IgA and IgG were isolated from milk and plasma from 20 HIV-1-infected lactating Malawian women. HIV-1 binding specificities, neutralization potency, inhibition of virus-epithelial cell binding, and antibody-mediated phagocytosis were measured. Fine-specificity mapping showed IgA and IgG responses to multiple HIV-1 Env epitopes, including conformational V1/V2 and linear V2, V3, and constant region 5 (C5). Env IgA was heterogeneous between the milk and systemic compartments (Env IgA, τ = 0.00 to 0.63, P = 0.0046 to 1.00). Furthermore, IgA and IgG appeared compartmentalized as there was a lack of correlation between the specificities of Env-specific IgA and IgG (in milk, τ = -0.07 to 0.26, P = 0.35 to 0.83). IgA and IgG also differed in functions: while neutralization and phagocytosis were consistently mediated by milk and plasma IgG, they were rarely detected in IgA from both milk and plasma. Understanding the ontogeny of the divergent IgG and IgA antigen specificity repertoires and their effects on antibody function will inform vaccination approaches targeted toward mucosal pathogens.IMPORTANCE Antibodies within the mucosa are part of the first line of defense against mucosal pathogens. Evaluating mucosal antibody isotypes, specificities, and antiviral functions in relationship to the systemic antibody profile can provide insights into whether the antibody response is coordinated in response to mucosal pathogens. In a natural immunity cohort of HIV-infected lactating women, we mapped the fine specificity and function of IgA in breast milk and plasma and compared these with the autologous IgG responses. Antigen specificities and functions differed between IgG and IgA, with antiviral functions (neutralization and phagocytosis) predominantly mediated by the IgG fraction in both milk and plasma. Furthermore, the specificity of milk IgA differed from that of systemic IgA. Our data suggest that milk IgA and systemic IgA should be separately examined as potential correlates of risk. Preventive vaccines may need to employ different strategies to elicit functional antiviral immunity by both antibody isotypes in the mucosa.
Collapse
Affiliation(s)
- Matthew Zirui Tay
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Erika L Kunz
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Aaron Deal
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Lu Zhang
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Kelly E Seaton
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Wes Rountree
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Joshua A Eudailey
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Jack Heptinstall
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Michael D McRaven
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Edgar Matias
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Erin McGuire
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Nicole L Yates
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Lautaro G Perez
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - R Glenn Overman
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Thomas J Hope
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Linda Kalilani
- College of Medicine, University of Malawi, Blantyre, Malawi
| | - Genevieve G Fouda
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
- Department of Immunology, Duke University, Durham, North Carolina, USA
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| |
Collapse
|
11
|
Sabbaj S, Mestecky J. Evaluation of Mucosal Humoral and Cellular Immune Responses to HIV in External Secretions and Mucosal Tissues. CURRENT IMMUNOLOGY REVIEWS 2019; 15:41-48. [PMID: 33312087 PMCID: PMC7731984 DOI: 10.2174/1573395514666180621152303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/14/2018] [Accepted: 05/24/2018] [Indexed: 11/22/2022]
Abstract
The mucosal immune systems of the genital and intestinal tracts as the most frequent sites of HIV-1 entry, display remarkable immunological differences from the systemic immune compartment which must be considered in the evaluation of humoral and cellular immune responses to HIV-1. Marked differences in the fluids from the genital and intestinal tracts and in plasma with respect to the Ig isotypes, their levels, molecular forms and distinct effector functions must be taken into consideration in the evaluation and interpretation of humoral immune responses. Because of the low levels and highly pronounced variation in Ig content, HIV-1-specific antibody concentrations should be always related to the levels of total Ig of a given isotype. This practice will avoid inevitable differences due to the small volumes of collected fluids and sample dilution during the collection and processing of samples from external secretions. Furthermore, appropriate controls and immunochemical assays should be used to complement and confirm results generated by ELISA, which is prone to false positivity. In the evaluation of antibody-mediated virus neutralization in external secretions, precautions and rigorous controls must be used to exclude the effect of innate humoral factors. The evaluation of cell-mediated immune responses in mucosal tissues is difficult due to the low yields of cells obtained from tissue biopsies or cytobrush scrapings. Furthermore, tissue biopsies of, for example rectal mucosa, provide information pertinent exclusively to this local site, which due to the differences in distribution of cells of different phenotypes, do not provide information generalized to the entire intestinal tract. Importantly, studies concerning the kinetics of cellular responses are difficult to perform due to the limited availability of samples or to the inability of obtaining frequent repeated tissue biopsies. For sampling the female genital tract parallel collection of menstrual and peripheral blood yields high numbers of cells that permit their detailed phenotypic and functional analyses. In contrast to tissue biopsies, this non-traumatic collection procedure, results in high cell yields and repeated monthly sampling permits extensive and parallel functional studies of kinetics and unique characteristics of HIV-1-specific cellular responses in the female genital tract and peripheral blood.
Collapse
Affiliation(s)
- Steffanie Sabbaj
- Departments of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL
| | - Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
12
|
Nelson CS, Fouda GG, Permar SR. Pediatric HIV-1 Acquisition and Lifelong Consequences of Infant Infection. CURRENT IMMUNOLOGY REVIEWS 2019; 15:131-138. [PMID: 33223981 PMCID: PMC7678020 DOI: 10.2174/1573395514666180531074047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/11/2018] [Accepted: 05/24/2018] [Indexed: 11/22/2022]
Abstract
Increased availability of antiretroviral therapy to pregnant and breastfeeding women in resource-limited areas has proven remarkably successful at reducing HIV vertical transmission rates over the past several decades. Yet, still more than 170,000 children are infected annually due to failures in therapy implementation, monitoring, and adherence. Mother-to-child transmission (MTCT) of HIV-1 can occur at one of several distinct stages of infant development - intrauterine, intrapartum, and postpartum. The heterogeneity of the maternal-fetal interface at each of these modes of transmission poses a challenge for the implementation of immune interventions to prevent all modes of HIV MTCT. However, using mother-infant human cohorts and nonhuman primate models of infant simian immunodeficiency virus (SIV) acquisition, investigators have made important observation about the biology of pediatric HIV infection and have identified unique protective immune factors for each mode of transmission. Knowledge of immune factors protective against HIV MTCT will be critical to the development of targeted immune therapies to prevent infant HIV acquisition and to bring an end to the pediatric AIDS epidemic.
Collapse
Affiliation(s)
- Cody S. Nelson
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Genevieve G.A. Fouda
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Sallie R. Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
13
|
Kordy K, Tobin NH, Aldrovandi GM. HIV and SIV in Body Fluids: From Breast Milk to the Genitourinary Tract. ACTA ACUST UNITED AC 2019; 15:139-152. [PMID: 33312088 DOI: 10.2174/1573395514666180605085313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HIV-1 is present in many secretions including oral, intestinal, genital, and breast milk. However, most people exposed to HIV-1 within these mucosal compartments do not become infected despite often frequent and repetitive exposure over prolonged periods of time. In this review, we discuss what is known about the levels of cell-free HIV RNA, cell-associated HIV DNA and cell-associated HIV RNA in external secretions. Levels of virus are usually lower than contemporaneously obtained blood, increased in settings of inflammation and infection, and decreased in response to antiretroviral therapy. Additionally, each mucosal compartment has unique innate and adaptive immune responses that affect the composition and presence of HIV-1 within each external secretion. We discuss the current state of knowledge about the types and amounts of virus present in the various excretions, touch on innate and adaptive immune responses as they affect viral levels, and highlight important areas for further study.
Collapse
Affiliation(s)
- Kattayoun Kordy
- Department of Pediatrics, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Nicole H Tobin
- Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Grace M Aldrovandi
- Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| |
Collapse
|
14
|
Lopez E, Shattock RJ, Kent SJ, Chung AW. The Multifaceted Nature of Immunoglobulin A and Its Complex Role in HIV. AIDS Res Hum Retroviruses 2018; 34:727-738. [PMID: 30056749 DOI: 10.1089/aid.2018.0099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
IgA is the most abundant immunoglobulin in mucosal secretions, and understanding the role of IgA in both protection from HIV acquisition and modulation of HIV disease progression is a field of considerable controversy and renewed research interest. Analysis of the RV144 clinical trial associated plasma HIV envelope-specific monomeric IgA from vaccines with reduced vaccine efficacy. The RV144 trial, however, only assessed for plasma IgA, which was not further subclassed, and the role of mucosal IgA was not addressed as mucosal samples were not collected. On the other hand, several studies have detected envelope-specific IgA in mucosal secretions of highly exposed persistently seronegative cohorts, while recent macaque simian-HIV passive immunization studies have suggested a potentially protective role for mucosal IgA. It is well established that total IgA in serum appears to correlate with HIV disease progression. In contrast, a selective deficit of anti-HIV IgA responses in HIV infection is apparent, with a number of recent studies beginning to elucidate the mechanisms behind these dysfunctional IgA responses. In this review, we highlight the dichotomy that exists in the literature as to whether anti-HIV IgA is protective or harmful to the host. Herein, we emphasize the importance of distinguishing between monomeric, multimeric, and isoforms of IgA and review what is known about the complex and diverse interactions of various molecular forms of IgA with HIV in both the systemic circulation and mucosal compartments.
Collapse
Affiliation(s)
- Ester Lopez
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Robin J. Shattock
- Mucosal Infection and Immunity Group, Department of Medicine, Imperial College London, London, United Kingdom
| | - Stephen J. Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
- Infectious Diseases Department, Melbourne Sexual Health Centre, Alfred Health, Central Clinical School, Monash University, Melbourne, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Melbourne, Australia
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| |
Collapse
|
15
|
Kulkarni V, Ruprecht RM. Mucosal IgA Responses: Damaged in Established HIV Infection-Yet, Effective Weapon against HIV Transmission. Front Immunol 2017; 8:1581. [PMID: 29176985 PMCID: PMC5686557 DOI: 10.3389/fimmu.2017.01581] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022] Open
Abstract
HIV infection not only destroys CD4+ T cells but also inflicts serious damage to the B-cell compartment, such as lymphadenopathy, destruction of normal B-cell follicle architecture, polyclonal hypergammaglobulinemia, increased apoptosis of B cells, and irreversible loss of memory B-cell responses with advanced HIV disease. Subepithelial B cells and plasma cells are also affected, which results in loss of mucosal IgG and IgA antibodies. This leaves the mucosal barrier vulnerable to bacterial translocation. The ensuing immune activation in mucosal tissues adds fuel to the fire of local HIV replication. We postulate that compromised mucosal antibody defenses also facilitate superinfection of HIV-positive individuals with new HIV strains. This in turn sets the stage for the generation of circulating recombinant forms of HIV. What can the mucosal B-cell compartment contribute to protect a healthy, uninfected host against mucosal HIV transmission? Here, we discuss proof-of-principle studies we have performed using passive mucosal immunization, i.e., topical administration of preformed anti-HIV monoclonal antibodies (mAbs) as IgG1, dimeric IgA1 (dIgA1), and dIgA2 isotypes, alone or in combination. Our data indicate that mucosally applied anti-HIV envelope mAbs can provide potent protection against mucosal transmission of simian-human immunodeficiency virus. Our review also discusses the induction of mucosal antibody defenses by active vaccination and potential strategies to interrupt the vicious cycle of bacterial translocation, immune activation, and stimulation of HIV replication in individuals with damaged mucosal barriers.
Collapse
Affiliation(s)
- Viraj Kulkarni
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Ruth M Ruprecht
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, United States.,Southwest National Primate Research Center, San Antonio, TX, United States
| |
Collapse
|
16
|
Nabi R, Moldoveanu Z, Wei Q, Golub ET, Durkin HG, Greenblatt RM, Herold BC, Nowicki MJ, Kassaye S, Cho MW, Pinter A, Landay AL, Mestecky J, Kozlowski PA. Differences in serum IgA responses to HIV-1 gp41 in elite controllers compared to viral suppressors on highly active antiretroviral therapy. PLoS One 2017; 12:e0180245. [PMID: 28671952 PMCID: PMC5495342 DOI: 10.1371/journal.pone.0180245] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/12/2017] [Indexed: 02/05/2023] Open
Abstract
Mechanisms responsible for natural control of human immunodeficiency type 1 (HIV) replication in elite controllers (EC) remain incompletely defined. To determine if EC generate high quality HIV-specific IgA responses, we used Western blotting to compare the specificities and frequencies of IgA to HIV antigens in serum of gender-, age- and race-matched EC and aviremic controllers (HC) and viremic noncontrollers (HN) on highly active antiretroviral therapy (HAART). Concentrations and avidity of IgA to HIV antigens were measured using ELISA or multiplex assays. Measurements for IgG were performed in parallel. EC were found to have stronger p24- and V1V2-specific IgG responses than HN, but there were no IgG differences for EC and HC. In contrast, IgA in EC serum bound more frequently to gp160 and gag proteins than IgA in HC or HN. The avidity of anti-gp41 IgA was also greater in EC, and these subjects had stronger IgA responses to the gp41 heptad repeat region 1 (HR1), a reported target of anti-bacterial RNA polymerase antibodies that cross react with gp41. However, EC did not demonstrate greater IgA responses to E. coli RNA polymerase or to peptides containing the shared LRAI sequence, suggesting that most of their HR1-specific IgA antibodies were not induced by intestinal microbiota. In both EC and HAART recipients, the concentrations of HIV-specific IgG were greater than HIV-specific IgA, but their avidities were comparable, implying that they could compete for antigen. Exceptions were C1 peptides and V1V2 loops. IgG and IgA responses to these antigens were discordant, with IgG reacting to V1V2, and IgA reacting to C1, especially in EC. Interestingly, EC with IgG hypergammaglobulinemia had greater HIV-specific IgA and IgG responses than EC with normal total IgG levels. Heterogeneity in EC antibody responses may therefore be due to a more focused HIV-specific B cell response in some of these individuals. Overall, these data suggest that development of HIV-specific IgA responses and affinity maturation of anti-gp41 IgA antibodies occurs to a greater extent in EC than in subjects on HAART. Future studies will be required to determine if IgA antibodies in EC may contribute in control of viral replication.
Collapse
Affiliation(s)
- Rafiq Nabi
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Zina Moldoveanu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Qing Wei
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Elizabeth T. Golub
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Helen G. Durkin
- Departments of Pathology and Medicine, SUNY Downstate, Brooklyn, NY, United States of America
| | - Ruth M. Greenblatt
- Departments of Medicine and Epidemiology/Biostastistics, University of California, San Francisco, CA, United States of America
| | - Betsy C. Herold
- Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Marek J. Nowicki
- Department of Pediatrics, University of Southern California, Los Angeles, CA, United States of America
| | - Seble Kassaye
- Department of Medicine, Georgetown University, Washington, D.C., United States of America
| | - Michael W. Cho
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States of America
| | - Abraham Pinter
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, NJ, United States of America
| | - Alan L. Landay
- Department of Immunity and Emerging Pathogens, Rush University Medical Center, Chicago, IL, United States of America
| | - Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Institute of immunology and Microbiology 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| |
Collapse
|
17
|
Musich T, Jones JC, Keele BF, Jenkins LMM, Demberg T, Uldrick TS, Yarchoan R, Robert-Guroff M. Flow virometric sorting and analysis of HIV quasispecies from plasma. JCI Insight 2017; 2:e90626. [PMID: 28239654 PMCID: PMC5313071 DOI: 10.1172/jci.insight.90626] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/05/2017] [Indexed: 11/17/2022] Open
Abstract
Flow cytometry is utilized extensively for cellular analysis, but technical limitations have prevented its routine application for characterizing virus. The recent introduction of nanoscale fluorescence-activated cytometric cell sorting now allows analysis of individual virions. Here, we demonstrate staining and sorting of infectious HIV. Fluorescent antibodies specific for cellular molecules found on budding virions were used to label CCR5-tropic Bal HIV and CXCR4-tropic NL4.3 HIV Env-expressing pseudovirions made in THP-1 cells (monocyte/macrophage) and H9 cells (T cells), respectively. Using a flow cytometer, we resolved the stained virus beyond isotype staining and demonstrated purity and infectivity of sorted virus populations on cells with the appropriate coreceptors. We subsequently sorted infectious simian/human immunodeficiency virus from archived plasma. Recovery was approximately 0.5%, but virus present in plasma was already bound to viral-specific IgG generated in vivo, likely contributing to the low yield. Importantly, using two broadly neutralizing HIV antibodies, PG9 and VRC01, we also sorted virus from archived human plasma and analyzed the sorted populations genetically and by proteomics, identifying the quasispecies present. The ability to sort infectious HIV from clinically relevant samples provides material for detailed molecular, genetic, and proteomic analyses applicable to future design of vaccine antigens and potential development of personalized treatment regimens.
Collapse
Affiliation(s)
| | - Jennifer C. Jones
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Lisa M. Miller Jenkins
- Collaborative Protein Technology Resource, Laboratory of Cell Biology, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Thomas S. Uldrick
- Retroviral Diseases Section, HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Robert Yarchoan
- Retroviral Diseases Section, HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | |
Collapse
|
18
|
Bekri S, Bourdely P, Luci C, Dereuddre-Bosquet N, Su B, Martinon F, Braud VM, Luque I, Mateo PL, Crespillo S, Conejero-Lara F, Moog C, Le Grand R, Anjuère F. Sublingual Priming with a HIV gp41-Based Subunit Vaccine Elicits Mucosal Antibodies and Persistent B Memory Responses in Non-Human Primates. Front Immunol 2017; 8:63. [PMID: 28203239 PMCID: PMC5285372 DOI: 10.3389/fimmu.2017.00063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/16/2017] [Indexed: 01/01/2023] Open
Abstract
Persistent B cell responses in mucosal tissues are crucial to control infection against sexually transmitted pathogens like human immunodeficiency virus 1 (HIV-1). The genital tract is a major site of infection by HIV. Sublingual (SL) immunization in mice was previously shown to generate HIV-specific B cell immunity that disseminates to the genital tract. We report here the immunogenicity in female cynomolgus macaques of a SL vaccine based on a modified gp41 polypeptide coupled to the cholera toxin B subunit designed to expose hidden epitopes and to improve mucosal retention. Combined SL/intramuscular (IM) immunization with such mucoadhesive gp41-based vaccine elicited mucosal HIV-specific IgG and IgA antibodies more efficiently than IM immunization alone. This strategy increased the number and duration of gp41-specific IgA secreting cells. Importantly, combined immunization improved the generation of functional antibodies 3 months after vaccination as detected in HIV-neutralizing assays. Therefore, SL immunization represents a promising vaccine strategy to block HIV-1 transmission.
Collapse
Affiliation(s)
- Selma Bekri
- Université Côte d'Azur, Nice, France; CNRS UMR7275, IPMC, Valbonne, France
| | - Pierre Bourdely
- Université Côte d'Azur, Nice, France; CNRS UMR7275, IPMC, Valbonne, France
| | - Carmelo Luci
- Université Côte d'Azur, Nice, France; CNRS UMR7275, IPMC, Valbonne, France; INSERM, Paris, France
| | - Nathalie Dereuddre-Bosquet
- CEA, Université Paris Sud, INSERM U1184 "Immunology of Viral Infections and Autoimmune Diseases" , Fontenay-aux-Roses , France
| | - Bin Su
- INSERM, Unit 1109 INSERM/UNISTRA, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France; Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Frédéric Martinon
- CEA, Université Paris Sud, INSERM U1184 "Immunology of Viral Infections and Autoimmune Diseases" , Fontenay-aux-Roses , France
| | - Véronique M Braud
- Université Côte d'Azur, Nice, France; CNRS UMR7275, IPMC, Valbonne, France
| | - Irene Luque
- Departamento de Química Física e Instituto de Biotecnología, Universidad de Granada , Granada , Spain
| | - Pedro L Mateo
- Departamento de Química Física e Instituto de Biotecnología, Universidad de Granada , Granada , Spain
| | - Sara Crespillo
- Departamento de Química Física e Instituto de Biotecnología, Universidad de Granada , Granada , Spain
| | - Francisco Conejero-Lara
- Departamento de Química Física e Instituto de Biotecnología, Universidad de Granada , Granada , Spain
| | - Christiane Moog
- INSERM, Unit 1109 INSERM/UNISTRA, Fédération de Médecine Translationnelle de Strasbourg , Strasbourg , France
| | - Roger Le Grand
- CEA, Université Paris Sud, INSERM U1184 "Immunology of Viral Infections and Autoimmune Diseases" , Fontenay-aux-Roses , France
| | - Fabienne Anjuère
- Université Côte d'Azur, Nice, France; CNRS UMR7275, IPMC, Valbonne, France; INSERM, Paris, France
| |
Collapse
|
19
|
Hel Z, Xu J, Denning WL, Helton ES, Huijbregts RPH, Heath SL, Overton ET, Christmann BS, Elson CO, Goepfert PA, Mestecky J. Dysregulation of Systemic and Mucosal Humoral Responses to Microbial and Food Antigens as a Factor Contributing to Microbial Translocation and Chronic Inflammation in HIV-1 Infection. PLoS Pathog 2017; 13:e1006087. [PMID: 28125732 PMCID: PMC5268400 DOI: 10.1371/journal.ppat.1006087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/23/2016] [Indexed: 01/25/2023] Open
Abstract
HIV-1 infection is associated with an early and profound depletion of mucosal memory CD4+ T cells, a population that plays an indispensable role in the regulation of isotype switching and transepithelial transport of antibodies. In this study, we addressed whether the depletion of CD4+ T cell in HIV-1-infected individuals results in altered humoral responses specific to antigens encountered at mucosal surfaces. Comprehensive protein microarray of systemic humoral responses to intestinal microbiota demonstrated reduced IgG responses to antigens derived from Proteobacteria and Firmicutes but not Bacteroidetes. Importantly, intestinal secretions of antiretroviral therapy-treated HIV-1-infected individuals exhibited a significant elevation of IgM levels and decreased IgA/IgM and IgG/IgM ratios of antibodies specific to a variety of microbial and food antigens. The presented findings indicate reduced competence of mucosal B cells for class switch recombination from IgM to other isotypes limiting their capacity to react to changing antigenic variety in the gut lumen. Decreased availability of microbiota-specific IgA and IgG may be an important factor contributing to the translocation of microbial antigens across the intestinal mucosal barrier and their systemic dissemination that drives chronic inflammation in HIV-1-infected individuals.
Collapse
Affiliation(s)
- Zdenek Hel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jun Xu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Warren L. Denning
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - E. Scott Helton
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Richard P. H. Huijbregts
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Sonya L. Heath
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - E. Turner Overton
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Benjamin S. Christmann
- Department of Natural Science and Mathematics, Lee University, Cleveland, Tennessee, United States of America
| | - Charles O. Elson
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Paul A. Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Institute of Immunology and Microbiology, 1 School of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
20
|
Wang Y, Yang GB. Alteration of Polymeric Immunoglobulin Receptor and Neonatal Fc Receptor Expression in the Gut Mucosa of Immunodeficiency Virus-Infected Rhesus Macaques. Scand J Immunol 2016; 83:235-43. [PMID: 26860548 DOI: 10.1111/sji.12416] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/27/2016] [Indexed: 12/15/2022]
Abstract
Polymeric immunoglobulin receptors (pIgR) and neonatal Fc receptors (FcRn) are crucial immunoglobulin (Ig) receptors for the transcytosis of immunoglobulins, that is IgA, IgM and IgG, the levels of which in mucosal secretions were altered in both HIV- and SIV-infected individuals. To gain an insight into the changes of pIgR and FcRn expression after immunodeficiency virus (SHIV/SIV) infection, real-time RT-PCR methods were established and the mRNA levels of pIgR and FcRn in normal and SHIV/SIV-infected rhesus macaques were quantitatively examined. It was found that the levels of pIgR mRNA were within a range of 10(7) copies per million copies of GAPDH mRNA in the gut mucosa of rhesus macaques, which were up to 55 times higher than that in the oral mucosa, the highest among the non-gut tissues examined. Levels of FcRn mRNA were generally lower than that of pIgR, and the levels of FcRn mRNA in the gut mucosa were also lower than that in most non-gut tissues examined. Notably, the levels of pIgR mRNA in the duodenal mucosa were positively correlated with that of IL-17A in normal rhesus macaques. Both pIgR and FcRn mRNA levels were significantly reduced in the duodenal mucosa during acute SHIV infection and in the jejunum and caecum during chronic SHIV/SIV infection. These data expanded our knowledge on the expression of pIgR and FcRn in the gastrointestinal tract of rhesus macaques and demonstrated altered expression of pIgR and FcRn in SHIV/SIV, and by extension HIV infections, which might have contributed to HIV/AIDS pathogenesis.
Collapse
Affiliation(s)
- Y Wang
- National Center for AIDS/STD Control and Prevention, Beijing, China.,Dalian Center for Disease Control and Prevention, Dalian, China
| | - G B Yang
- National Center for AIDS/STD Control and Prevention, Beijing, China
| |
Collapse
|
21
|
Combined HIV-1 Envelope Systemic and Mucosal Immunization of Lactating Rhesus Monkeys Induces a Robust Immunoglobulin A Isotype B Cell Response in Breast Milk. J Virol 2016; 90:4951-4965. [PMID: 26937027 DOI: 10.1128/jvi.00335-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Maternal vaccination to induce anti-HIV immune factors in breast milk is a potential intervention to prevent postnatal HIV-1 mother-to-child transmission (MTCT). We previously demonstrated that immunization of lactating rhesus monkeys with a modified vaccinia Ankara (MVA) prime/intramuscular (i.m.) protein boost regimen induced functional IgG responses in milk, while MVA prime/intranasal (i.n.) boost induced robust milk Env-specific IgA responses. Yet, recent studies have suggested that prevention of postnatal MTCT may require both Env-specific IgA and functional IgG responses in milk. Thus, to investigate whether both responses could be elicited by a combined systemic/mucosal immunization strategy, animals previously immunized with the MVA prime/i.n. boost regimen received an i.n./i.m. combined C.1086 gp120 boost. Remarkably, high-magnitude Env-specific IgA responses were observed in milk, surpassing those in plasma. Furthermore, 29% of vaccine-elicited Env-specific B cells isolated from breast milk were IgA isotype, in stark contrast to the overwhelming predominance of IgG isotype Env-specific B cells in breast milk of chronically HIV-infected women. A clonal relationship was identified between Env-specific blood and breast milk B cells, suggesting trafficking of that cell population between the two compartments. Furthermore, IgA and IgG monoclonal antibodies isolated from Env-specific breast milk B cells demonstrated diverse Env epitope specificities and multiple effector functions, including tier 1 neutralization, antibody-dependent cellular cytotoxicity (ADCC), infected cell binding, and inhibition of viral attachment to epithelial cells. Thus, maternal i.n./i.m. combined immunization is a novel strategy to enhance protective Env-specific IgA in milk, which is subsequently transferred to the infant via breastfeeding. IMPORTANCE Efforts to increase the availability of antiretroviral therapy to pregnant and breastfeeding women in resource-limited areas have proven remarkably successful at reducing HIV vertical transmission rates. However, more than 200,000 children are infected annually due to failures in therapy implementation, monitoring, and adherence, nearly half by postnatal HIV exposure via maternal breast milk. Intriguingly, in the absence of antiretroviral therapy, only 10% of breastfed infants born to HIV-infected mothers acquire the virus, suggesting the existence of naturally protective immune factors in milk. Enhancement of these protective immune factors through maternal vaccination will be a critical strategy to reduce the global pediatric AIDS epidemic. We have previously demonstrated that a high magnitude of HIV Env-specific IgA in milk correlates with reduced risk of infant HIV acquisition. In this study, we describe a novel HIV vaccine regimen that induces potent IgA responses in milk and therefore could potentially protect against breast milk HIV MTCT.
Collapse
|
22
|
Mkhize NN, Durgiah R, Ashley V, Archary D, Garrett NJ, Karim QA, Karim SSA, Moore PL, Yates N, Passmore JAS, Tomaras GD, Morris L. Broadly neutralizing antibody specificities detected in the genital tract of HIV-1 infected women. AIDS 2016; 30:1005-14. [PMID: 26836790 PMCID: PMC4816677 DOI: 10.1097/qad.0000000000001038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Broadly neutralizing antibodies (bNAbs) targeting conserved epitopes on the HIV envelope glycoprotein have been identified in blood from HIV-1 infected women. We investigated whether antibodies in the genital tract from these women share similar epitope specificities and functional profiles as those in blood. METHODS Immunoglobulin (Ig)G and IgA antibodies were isolated from cervicovaginal lavages or Softcups from 13 HIV-infected women in the CAPRISA cohort using Protein G and Peptide M, respectively. Binding antibodies to envelope antigens were quantified by ELISA and binding antibody multiplex assay. Neutralizing antibody titers and epitope targets were measured using the TZM-bl assay with Env-pseudotyped wild-type and mutated viruses. RESULTS HIV-specific IgG, but not IgA, was detected in genital secretions and the ratio of total IgG to HIV-specific IgG was similar to plasma. HIV-specific IgG reacted with multiple envelope antigens, including V1V2, gp120, gp140 and gp41. Two women had high plasma titers of HIV-specific IgG3 which was also detected in their genital tract samples. IgG from the genital tract had neutralizing activity against both Tier 1 and Tier 2 primary HIV-isolates. Antibodies targeting well known glycan epitopes and the membrane proximal region of gp41 were detected in genital secretions, and matched specificities in plasma. CONCLUSIONS Women with plasma bNAbs have overlapping specificities in their genital secretions, indicating that these predominantly IgG isotype antibodies may transudate from blood to the genital tract. These data provide evidence that induction of systemic HIV-specific bNAbs can lead to antiviral immunity at the portal of entry.
Collapse
Affiliation(s)
- Nonhlanhla N. Mkhize
- National Institute for Communicable Diseases, Johannesburg, South Africa
- University of the Witwatersrand, Johannesburg, South Africa
| | - Raveshni Durgiah
- National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Vicki Ashley
- Duke Human Vaccine Institute and Departments of Surgery, Immunology and Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Nigel J. Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Quarraisha Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Salim S. Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Penny L. Moore
- National Institute for Communicable Diseases, Johannesburg, South Africa
- University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Nicole Yates
- Duke Human Vaccine Institute and Departments of Surgery, Immunology and Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Jo-Ann S. Passmore
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- University of Cape Town, Cape Town, South Africa
- National Health Laboratory Services, South Africa
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute and Departments of Surgery, Immunology and Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Lynn Morris
- National Institute for Communicable Diseases, Johannesburg, South Africa
- University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
23
|
Sholukh AM, Watkins JD, Vyas HK, Gupta S, Lakhashe SK, Thorat S, Zhou M, Hemashettar G, Bachler BC, Forthal DN, Villinger F, Sattentau QJ, Weiss RA, Agatic G, Corti D, Lanzavecchia A, Heeney JL, Ruprecht RM. Defense-in-depth by mucosally administered anti-HIV dimeric IgA2 and systemic IgG1 mAbs: complete protection of rhesus monkeys from mucosal SHIV challenge. Vaccine 2015; 33:2086-95. [PMID: 25769884 DOI: 10.1016/j.vaccine.2015.02.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 12/19/2022]
Abstract
Although IgA is the most abundantly produced immunoglobulin in humans, its role in preventing HIV-1 acquisition, which occurs mostly via mucosal routes, remains unclear. In our passive mucosal immunizations of rhesus macaques (RMs), the anti-HIV-1 neutralizing monoclonal antibody (nmAb) HGN194, given either as dimeric IgA1 (dIgA1) or dIgA2 intrarectally (i.r.), protected 83% or 17% of the RMs against i.r. simian-human immunodeficiency virus (SHIV) challenge, respectively. Data from the RV144 trial implied that vaccine-induced plasma IgA counteracted the protective effector mechanisms of IgG1 with the same epitope specificity. We thus hypothesized that mucosal dIgA2 might diminish the protection provided by IgG1 mAbs targeting the same epitope. To test our hypothesis, we administered HGN194 IgG1 intravenously (i.v.) either alone or combined with i.r. HGN194 dIgA2. We enrolled SHIV-exposed, persistently aviremic RMs protected by previously administered nmAbs; RM anti-human IgG responses were undetectable. However, low-level SIV Gag-specific proliferative T-cell responses were found. These animals resemble HIV-exposed, uninfected humans, in which local and systemic cellular immune responses have been observed. HGN194 IgG1 and dIgA2 used alone and the combination of the two neutralized the challenge virus equally well in vitro. All RMs given only i.v. HGN194 IgG1 became infected. In contrast, all RMs given HGN194 IgG1+dIgA2 were completely protected against high-dose i.r. SHIV-1157ipEL-p challenge. These data imply that combining suboptimal defenses at the mucosal and systemic levels can completely prevent virus acquisition. Consequently, active vaccination should focus on defense-in-depth, a strategy that seeks to build up defensive fall-back positions well behind the fortified frontline.
Collapse
Affiliation(s)
- Anton M Sholukh
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA; Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Jennifer D Watkins
- Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Hemant K Vyas
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA; Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Sandeep Gupta
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Samir K Lakhashe
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA; Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Swati Thorat
- Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Mingkui Zhou
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | | | - Donald N Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Francois Villinger
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA; Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Quentin J Sattentau
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Robin A Weiss
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | | | - Davide Corti
- Humabs BioMed SA, Bellinzona 6500, Switzerland; Institute for Research in Biomedicine, Bellinzona 6500, Switzerland
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Bellinzona 6500, Switzerland; Eidgenoessische Technische Hochschule, Zurich CH-8093, Switzerland
| | - Jonathan L Heeney
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Ruth M Ruprecht
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA; Southwest National Primate Research Center, San Antonio, TX, USA; Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Abstract
Mucosal immunity defends the ocular surface against antigenic challenge and microbial invasion. The principal effector site is the lacrimal gland, where immunoglobulin A (IgA) antibodies are produced. Nasal-associated lymphoid tissue and posterior cervical lymph nodes function as major inductive sites for tear IgA responses. Neural connections and systemic hormones maintain the integrity and function of the ocular surface. Neuroenzyme activities in the lacrimal gland are influenced by ocular infections, leading to reduced expression of acetylcholine and modulation of receptors on acinar cells and on plasma cells, thereby decreasing fluid and immunoglobulin secretion. T lymphocyte-dependent responses result in production of interleukin-4 in lacrimal glands, thereby influencing cholinergic enzyme activity affecting immune processes and lacrimal physiology. Furthermore, neuropeptides released into lymphoid structures or inflamed tissues are chemotactic for antigen-presenting cells and affect their interactions with T cells. Thus, in developing therapeutic approaches for treating dry-eye conditions and vaccination strategies to elicit protective ocular mucosal immune responses, the entire lacrimal functional unit should be considered.
Collapse
|
25
|
Protein-coated nanoparticles are internalized by the epithelial cells of the female reproductive tract and induce systemic and mucosal immune responses. PLoS One 2014; 9:e114601. [PMID: 25490456 PMCID: PMC4260873 DOI: 10.1371/journal.pone.0114601] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 11/11/2014] [Indexed: 01/21/2023] Open
Abstract
The female reproductive tract (FRT) includes the oviducts (fallopian tubes), uterus, cervix and vagina. A layer of columnar epithelium separates the endocervix and uterus from the outside environment, while the vagina is lined with stratified squamous epithelium. The mucosa of the FRT is exposed to antigens originating from microflora, and occasionally from infectious microorganisms. Whether epithelial cells (ECs) of the FRT take up (sample) the lumen antigens is not known. To address this question, we examined the uptake of 20-40 nm nanoparticles (NPs) applied vaginally to mice which were not treated with hormones, epithelial disruptors, or adjuvants. We found that 20 and 40 nm NPs are quickly internalized by ECs of the upper FRT and within one hour could be observed in the lymphatic ducts that drain the FRT, as well as in the ileac lymph nodes (ILNs) and the mesenteric lymph nodes (MLNs). Chicken ovalbumin (Ova) conjugated to 20 nm NPs (NP-Ova) when administered vaginally reaches the internal milieu in an immunologically relevant form; thus vaginal immunization of mice with NP-Ova induces systemic IgG to Ova antigen. Most importantly, vaginal immunization primes the intestinal mucosa for secretion of sIgA. Sub-cutaneous (s.c) boosting immunization with Ova in complete Freund's adjuvant (CFA) further elevates the systemic (IgG1 and IgG2c) as well as mucosal (IgG1 and sIgA) antibody titers. These findings suggest that the modes of antigen uptake at mucosal surfaces and pathways of antigen transport are more complex than previously appreciated.
Collapse
|
26
|
Intranasal administration of a therapeutic HIV vaccine (Vacc-4x) induces dose-dependent systemic and mucosal immune responses in a randomized controlled trial. PLoS One 2014; 9:e112556. [PMID: 25398137 PMCID: PMC4232368 DOI: 10.1371/journal.pone.0112556] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/07/2014] [Indexed: 11/19/2022] Open
Abstract
Background Vacc-4x, a Gag p24-based therapeutic HIV vaccine, has been shown to reduce viral load set-points after intradermal administration. In this randomized controlled pilot study we investigate intranasal administration of Vacc-4x with Endocine as adjuvant. Methods Safety and immunogenicity were tested in patients on effective ART. They were randomized to low, medium or high dose Vacc-4x or adjuvant alone, administered four times at weekly intervals with no booster. Vacc-4x-specific T cell responses were measured in vitro by proliferation and in vivo by a single DTH skin test at the end of study. Nasal and rectal mucosal secretions were analyzed for Vacc-4x-specific antibodies by ELISA. Immune regulation induced by Vacc-4x was assessed by functional blockade of the regulatory cytokines IL-10 and TGF-β. Results Vacc-4x proliferative T cell responses increased only among the vaccinated (p≤0.031). The low dose group showed the greatest increase in Vacc-4x CD8+T cell responses (p = 0.037) and developed larger DTH (p = 0.005) than the adjuvant group. Rectal (distal) Vacc-4x IgA and IgG antibodies also increased (p = 0.043) in this group. In contrast, the high dose generated higher nasal (local) Vacc-4x IgA (p = 0.028) and serum IgG (p = 0.030) antibodies than the adjuvant. Irrespective of dose, increased Vacc-4x CD4+T cell responses were associated with low proliferation (r = −0.82, p<0.001) and high regulation (r = 0.61, p = 0.010) at baseline. Conclusion Intranasal administration of Vacc-4x with Endocine was safe and induced dose-dependent vaccine-specific T cell responses and both mucosal and systemic humoral responses. The clinical significance of dose, immune regulation and mucosal immunity warrants further investigation. Trial Registration ClinicalTrials.gov NCT01473810
Collapse
|
27
|
Seaton KE, Ballweber L, Lan A, Donathan M, Hughes S, Vojtech L, Moody MA, Liao HX, Haynes BF, Galloway CG, Richardson BA, Karim SA, Dezzutti CS, McElrath MJ, Tomaras GD, Hladik F. HIV-1 specific IgA detected in vaginal secretions of HIV uninfected women participating in a microbicide trial in Southern Africa are primarily directed toward gp120 and gp140 specificities. PLoS One 2014; 9:e101863. [PMID: 25054205 PMCID: PMC4108330 DOI: 10.1371/journal.pone.0101863] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 06/12/2014] [Indexed: 11/18/2022] Open
Abstract
Background Many participants in microbicide trials remain uninfected despite ongoing exposure to HIV-1. Determining the emergence and nature of mucosal HIV-specific immune responses in such women is important, since these responses may contribute to protection and could provide insight for the rational design of HIV-1 vaccines. Methods and Findings We first conducted a pilot study to compare three sampling devices (Dacron swabs, flocked nylon swabs and Merocel sponges) for detection of HIV-1-specific IgG and IgA antibodies in vaginal secretions. IgG antibodies from HIV-1-positive women reacted broadly across the full panel of eight HIV-1 envelope (Env) antigens tested, whereas IgA antibodies only reacted to the gp41 subunit. No Env-reactive antibodies were detected in the HIV-negative women. The three sampling devices yielded equal HIV-1-specific antibody titers, as well as total IgG and IgA concentrations. We then tested vaginal Dacron swabs archived from 57 HIV seronegative women who participated in a microbicide efficacy trial in Southern Africa (HPTN 035). We detected vaginal IgA antibodies directed at HIV-1 Env gp120/gp140 in six of these women, and at gp41 in another three women, but did not detect Env-specific IgG antibodies in any women. Conclusion Vaginal secretions of HIV-1 infected women contained IgG reactivity to a broad range of Env antigens and IgA reactivity to gp41. In contrast, Env-binding antibodies in the vaginal secretions of HIV-1 uninfected women participating in the microbicide trial were restricted to the IgA subtype and were mostly directed at HIV-1 gp120/gp140.
Collapse
Affiliation(s)
- Kelly E. Seaton
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Lamar Ballweber
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Audrey Lan
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Michele Donathan
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Sean Hughes
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Lucia Vojtech
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - M. Anthony Moody
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Christine G. Galloway
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Barbra A. Richardson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Salim Abdool Karim
- CAPRISA - Centre for the AIDS Programme of Research in South Africa, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Epidemiology, Columbia University, New York, New York, United States of America
| | - Charlene S. Dezzutti
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
- * E-mail: (GDT); (FH)
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail: (GDT); (FH)
| |
Collapse
|
28
|
An optimized, synthetic DNA vaccine encoding the toxin A and toxin B receptor binding domains of Clostridium difficile induces protective antibody responses in vivo. Infect Immun 2014; 82:4080-91. [PMID: 25024365 DOI: 10.1128/iai.01950-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile-associated disease (CDAD) constitutes a large majority of nosocomial diarrhea cases in industrialized nations and is mediated by the effects of two secreted toxins, toxin A (TcdA) and toxin B (TcdB). Patients who develop strong antitoxin antibody responses can clear C. difficile infection and remain disease free. Key toxin-neutralizing epitopes have been found within the carboxy-terminal receptor binding domains (RBDs) of TcdA and TcdB, which has generated interest in developing the RBD as a viable vaccine target. While numerous platforms have been studied, very little data describes the potential of DNA vaccination against CDAD. Therefore, we created highly optimized plasmids encoding the RBDs from TcdA and TcdB in which any putative N-linked glycosylation sites were altered. Mice and nonhuman primates were immunized intramuscularly, followed by in vivo electroporation, and in these animal models, vaccination induced significant levels of both anti-RBD antibodies (blood and stool) and RBD-specific antibody-secreting cells. Further characterization revealed that sera from immunized mice and nonhuman primates could detect RBD protein from transfected cells, as well as neutralize purified toxins in an in vitro cytotoxicity assay. Mice that were immunized with plasmids or given nonhuman-primate sera were protected from a lethal challenge with purified TcdA and/or TcdB. Moreover, immunized mice were significantly protected when challenged with C. difficile spores from homologous (VPI 10463) and heterologous, epidemic (UK1) strains. These data demonstrate the robust immunogenicity and efficacy of a TcdA/B RBD-based DNA vaccine in preclinical models of acute toxin-associated and intragastric, spore-induced colonic disease.
Collapse
|
29
|
Su B, Moog C. Which Antibody Functions are Important for an HIV Vaccine? Front Immunol 2014; 5:289. [PMID: 24995008 PMCID: PMC4062070 DOI: 10.3389/fimmu.2014.00289] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/03/2014] [Indexed: 01/18/2023] Open
Abstract
HIV antibody (Ab) functions capable of preventing mucosal cell-free or cell-to-cell HIV transmission are critical for the development of effective prophylactic and therapeutic vaccines. In addition to CD4(+) T cells, other potential HIV-target cell types including antigen-presenting cells (APCs) (dendritic cells, macrophages) residing at mucosal sites are infected. Moreover, the interactions between APCs and HIV lead to HIV cell-to-cell transmission. Recently discovered broadly neutralizing antibodies (NAbs) are able to neutralize a broad spectrum of HIV strains, inhibit cell-to-cell transfer, and efficiently protect from infection in the experimentally challenged macaque model. However, the 31% protection observed in the RV144 vaccine trial in the absence of detectable NAbs in blood samples pointed to the possible role of additional Ab inhibitory functions. Increasing evidence suggests that IgG Fcγ receptor (FcγR)-mediated inhibition of Abs present at the mucosal site may play a role in protection against HIV mucosal transmission. Moreover, mucosal IgA Abs may be determinant in protection against HIV sexual transmission. Therefore, defining Ab inhibitory functions that could lead to protection is critical for further HIV vaccine design. Here, we review different inhibitory properties of HIV-specific Abs and discuss their potential role in protection against HIV sexual transmission.
Collapse
Affiliation(s)
- Bin Su
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg , Strasbourg , France
| | - Christiane Moog
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg , Strasbourg , France
| |
Collapse
|
30
|
Mestecky J, Wei Q, Alexander R, Raska M, Novak J, Moldoveanu Z. Humoral immune responses to HIV in the mucosal secretions and sera of HIV-infected women. Am J Reprod Immunol 2014; 71:600-7. [PMID: 24494997 PMCID: PMC4024328 DOI: 10.1111/aji.12203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 12/17/2013] [Indexed: 12/16/2022] Open
Abstract
Although sera and all external secretions contain antibodies to human immunodeficiency virus (HIV), their levels, specificity, isotypes, and relevant effector functions display a great degree of variability. Antibodies that bind HIV antigens and neutralize the virus are predominantly associated with the IgG isotype in sera and in all external secretions, even where total levels of IgG are much lower than those of IgA. Rectal fluid that contains high IgA, but low IgG levels, displayed low neutralizing activity independent of antibodies. Therefore, external secretions should be evaluated before and after selective depletion of Ig. At the systemic level, HIV-specific IgA may interfere with the effector functions of IgG, as suggested by recent studies of individuals systemically immunized with an experimental HIV vaccine. Although HIV-specific IgG and IgA antibodies may exhibit their protective activities at mucosal surfaces through interference with viral entry and local neutralization at the systemic level, such antibodies may display discordant effector functions.
Collapse
Affiliation(s)
- Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Institute of Immunology and Microbiology, Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Qing Wei
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rashada Alexander
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Office of the Director, National Institutes of Health, Bethesda, MD
| | - Milan Raska
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Immunology, Faculty of Medicine, Palacky University, Olomouc, Czech Republic
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zina Moldoveanu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
31
|
Gupta S, Pegu P, Venzon DJ, Gach JS, Ma ZM, Landucci G, Miller CJ, Franchini G, Forthal DN. Enhanced in vitro transcytosis of simian immunodeficiency virus mediated by vaccine-induced antibody predicts transmitted/founder strain number after rectal challenge. J Infect Dis 2014; 211:45-52. [PMID: 24850790 DOI: 10.1093/infdis/jiu300] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The time to acquisition of simian immunodeficiency virus (SIV) infection following low-dose repeated rectal challenge correlated inversely with the number of transmitted/founder strains among macaques vaccinated with ALVAC-SIV/gp120 or gp120 alone. We determined if the ability of postvaccination, prechallenge sera to enhance SIVmac251 transcytosis across epithelial cells was associated with transmitted/founder strain number. METHODS Transcytosis was carried out by exposing sera and SIVmac251 to the apical surface of human endometrial carcinoma (HEC-1A) cells at pH 6.0 and 12 hours later quantifying virus in fluid bathing the basolateral cell surface (maintained at pH 7.4). These conditions allow Fc neonatal receptor (FcRn)-dependent shuttling of virus across cells. RESULTS There was a strong correlation between the amount of virus transcytosed and number of transmitted variants (R = 0.86, P < .0001). We also found that 4 animals who remained uninfected after repeated rectal challenges had lower serum transcytosis activity than did 19 animals who subsequently became infected (P = .003). Using immunohistochemistry, we demonstrated FcRn on columnar epithelial cells facing the lumen of the macaque rectum. CONCLUSIONS Vaccine-induced antibody capable of enhancing transcytosis in vitro via FcRn may play a role in determining transmitted/founder strain number and infection outcomes following in vivo challenge.
Collapse
Affiliation(s)
- Sandeep Gupta
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine
| | - Poonam Pegu
- Animal Models and Retroviral Vaccine Section
| | - David J Venzon
- Biostatistics and Data Management Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Johannes S Gach
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine
| | | | - Gary Landucci
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine
| | - Christopher J Miller
- Center for Comparative Medicine Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis
| | | | - Donald N Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine
| |
Collapse
|
32
|
Moir S, Fauci AS. Insights into B cells and HIV-specific B-cell responses in HIV-infected individuals. Immunol Rev 2014; 254:207-24. [PMID: 23772622 DOI: 10.1111/imr.12067] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human immunodeficiency virus (HIV) disease is associated with dysregulation and dysfunction involving all major lymphocyte populations, including B cells. Such perturbations occur early in the course of infection and are driven in large part by immune activation resulting from ongoing HIV replication leading to bystander effects on B cells. While most of the knowledge regarding immune cell abnormalities in HIV-infected individuals has been gained from studies conducted on the peripheral blood, it is clear that the virus is most active and most damaging in lymphoid tissues. Here, we discuss B-cell perturbations in HIV-infected individuals, focusing on the skewing of B-cell subsets that circulate in the peripheral blood and their counterparts that reside in lymphoid tissues. This review also highlights recent advances in evaluating HIV-specific B-cell responses both in the memory B-cell compartment, as well as in circulating antibody-secreting plasmablasts and the more differentiated plasma cells residing in tissues. Finally, we consider how knowledge gained by investigating B cells in HIV-infected individuals may help inform the development of an effective antibody-based HIV vaccine.
Collapse
Affiliation(s)
- Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
33
|
|
34
|
Shen R, Smith PD. Mucosal correlates of protection in HIV-1-exposed sero-negative persons. Am J Reprod Immunol 2014; 72:219-27. [PMID: 24428610 DOI: 10.1111/aji.12202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/17/2013] [Indexed: 01/31/2023] Open
Abstract
Resistance to HIV-1 infection in HIV-1-exposed sero-negative (HESN) persons offers a promising opportunity to identify mechanisms of 'natural' protection. Unique features of the mucosa in particular may contribute to this protection. Here, we highlight several key issues pertaining to the mucosal correlates of protection in HESN persons, including humoral immune responses, mechanisms of mucosal HIV-1 neutralization, immune cell activation, and role of the microbiota in mucosal responses. We also discuss mucosal model systems that can be used to investigate the mechanisms of resistance in HESN subjects. A clear understanding of the mucosal correlates of protection against HIV-1 in HESN persons will provide critical new insights for the development of effective vaccine and microbicide strategies for the prevention of HIV-1 transmission.
Collapse
Affiliation(s)
- Ruizhong Shen
- Department of Medicine (Gastroenterology), University of Alabama at Birmingham, Birmingham, AL, USA
| | | |
Collapse
|
35
|
Jespers V, Harandi AM, Hinkula J, Medaglini D, Grand RL, Stahl-Hennig C, Bogers W, Habib RE, Wegmann F, Fraser C, Cranage M, Shattock RJ, Spetz AL. Assessment of mucosal immunity to HIV-1. Expert Rev Vaccines 2014; 9:381-94. [DOI: 10.1586/erv.10.21] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
36
|
Gupta S, Gach JS, Becerra JC, Phan TB, Pudney J, Moldoveanu Z, Joseph SB, Landucci G, Supnet MJ, Ping LH, Corti D, Moldt B, Hel Z, Lanzavecchia A, Ruprecht RM, Burton DR, Mestecky J, Anderson DJ, Forthal DN. The Neonatal Fc receptor (FcRn) enhances human immunodeficiency virus type 1 (HIV-1) transcytosis across epithelial cells. PLoS Pathog 2013; 9:e1003776. [PMID: 24278022 PMCID: PMC3836734 DOI: 10.1371/journal.ppat.1003776] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/04/2013] [Indexed: 11/30/2022] Open
Abstract
The mechanisms by which human immunodeficiency virus type 1 (HIV-1) crosses mucosal surfaces to establish infection are unknown. Acidic genital secretions of HIV-1-infected women contain HIV-1 likely coated by antibody. We found that the combination of acidic pH and Env-specific IgG, including that from cervicovaginal and seminal fluids of HIV-1-infected individuals, augmented transcytosis across epithelial cells as much as 20-fold compared with Env-specific IgG at neutral pH or non-specific IgG at either pH. Enhanced transcytosis was observed with clinical HIV-1 isolates, including transmitted/founder strains, and was eliminated in Fc neonatal receptor (FcRn)-knockdown epithelial cells. Non-neutralizing antibodies allowed similar or less transcytosis than neutralizing antibodies. However, the ratio of total:infectious virus was higher for neutralizing antibodies, indicating that they allowed transcytosis while blocking infectivity of transcytosed virus. Immunocytochemistry revealed abundant FcRn expression in columnar epithelia lining the human endocervix and penile urethra. Acidity and Env-specific IgG enhance transcytosis of virus across epithelial cells via FcRn and could facilitate translocation of virus to susceptible target cells following sexual exposure. HIV-1 causes a sexually transmitted disease. However, the mechanisms employed by the virus to cross genital tract tissue and establish infection are uncertain. Since cervicovaginal fluid is acidic and HIV-1 in cervicovaginal fluid is likely coated with antibodies, we explored the effect of low pH and HIV-1-specific antibodies on transcytosis, the movement of HIV-1 across tight-junctioned epithelial cells. We found that the combination of HIV-1-specific antibodies and low pH enhanced transcytosis as much as 20-fold. Virus that underwent transcytosis under these conditions was infectious, and infectivity was highly influenced by whether or not the antibody neutralized the virus. We observed enhanced transcytosis using antibody from cervicovaginal and seminal fluids and using transmitted/founder strains of HIV-1. We also found that the enhanced transcytosis was due to the Fc neonatal receptor (FcRn), which binds immune complexes at acidic pH and releases them at neutral pH. Finally, staining of human tissue revealed abundant FcRn expression on columnar epithelial cells of penile urethra and endocervix. Our findings reveal a novel mechanism wherein HIV-1 may facilitate its own transmission by usurping the antibody response directed against itself. These results have important implications for HIV vaccine development and for understanding the earliest events in HIV transmission.
Collapse
Affiliation(s)
- Sandeep Gupta
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, California, United States of America
| | - Johannes S. Gach
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, California, United States of America
| | - Juan C. Becerra
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, California, United States of America
| | - Tran B. Phan
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, California, United States of America
| | - Jeffrey Pudney
- Department of Obstetrics and Gynecology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Zina Moldoveanu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Sarah B. Joseph
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Gary Landucci
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, California, United States of America
| | - Medalyn Jude Supnet
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, California, United States of America
| | - Li-Hua Ping
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Davide Corti
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- Humabs BioMed SA, Bellinzona, Switzerland
| | - Brian Moldt
- Department of Immunology and Microbial Science, International AIDS Vaccine Initiative Neutralizing Antibody Center and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
| | - Zdenek Hel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Ruth M. Ruprecht
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Dennis R. Burton
- Department of Immunology and Microbial Science, International AIDS Vaccine Initiative Neutralizing Antibody Center and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, Massachusetts, United States of America
| | - Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Institute of Immunology and Microbiology, First School of Medicine, Charles University, Prague, Czech Republic
| | - Deborah J. Anderson
- Department of Obstetrics and Gynecology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Donald N. Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
37
|
Palaia JM, McConnell M, Achenbach JE, Gustafson CE, Stoermer KA, Nolan M, Guay LA, Leitner TK, Matovu F, Taylor AW, Fowler MG, Janoff EN. Neutralization of HIV subtypes A and D by breast milk IgG from women with HIV infection in Uganda. J Infect 2013; 68:264-72. [PMID: 24239588 DOI: 10.1016/j.jinf.2013.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 11/01/2013] [Accepted: 11/07/2013] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Among HIV-exposed infants in resource-limited countries, 8-12% are infected postnatally by breastfeeding. However, most of those uninfected at birth remain uninfected over time despite daily exposure to HIV in breast milk. Thus, we assessed the HIV-inhibitory activity of breast milk. METHODS We measured cross-clade neutralization in activated PBMC of Ugandan subtype A (92UG031) and D (92UG005) primary HIV by breast milk or purified milk IgG and IgA from 25 HIV-infected Ugandan women. Isotype-specific antigen recognition was resolved by immunoblot. We determined HIV subtype from envelope population sequences in cells from 13 milk samples by PCR. RESULTS Milk inhibited p24 production by ≥50% (dose-dependent) by subtype A (21/25; 84%) and subtype D (11/25; 44%). IgG consistently reacted with multiple HIV antigens, including gp120/gp41, but IgA primarily recognized p24 alone. Depletion of IgG (n = 5), not IgA, diminished neutralization (mean 78 ± 33%) that was largely restored by IgG repletion. Mothers infected with subtype A more effectively neutralized subtype A than D. CONCLUSIONS Breast milk from HIV-infected women showed homotypic and cross-subtype neutralization of HIV by IgG-dependent and -independent mechanisms. These data direct further investigations into mechanisms of resistance against postnatal transmission of HIV to infants from their mothers.
Collapse
Affiliation(s)
- Jana M Palaia
- Mucosal and Vaccine Research Colorado (MAVRC), University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Denver Veterans Affairs Medical Center, Denver, CO 80220, USA
| | | | - Jenna E Achenbach
- Mucosal and Vaccine Research Colorado (MAVRC), University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Claire E Gustafson
- Mucosal and Vaccine Research Colorado (MAVRC), University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Denver Veterans Affairs Medical Center, Denver, CO 80220, USA
| | - Kristina A Stoermer
- Mucosal and Vaccine Research Colorado (MAVRC), University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Monica Nolan
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Laura A Guay
- Makerere University - Johns Hopkins University, Kampala, Uganda
| | | | - Flavia Matovu
- Makerere University - Johns Hopkins University, Kampala, Uganda
| | - Allan W Taylor
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | | - Edward N Janoff
- Mucosal and Vaccine Research Colorado (MAVRC), University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Denver Veterans Affairs Medical Center, Denver, CO 80220, USA.
| |
Collapse
|
38
|
Jelicic K, Cimbro R, Nawaz F, Huang DW, Zheng X, Yang J, Lempicki RA, Pascuccio M, Van Ryk D, Schwing C, Hiatt J, Okwara N, Wei D, Roby G, David A, Hwang IY, Kehrl JH, Arthos J, Cicala C, Fauci AS. The HIV-1 envelope protein gp120 impairs B cell proliferation by inducing TGF-β1 production and FcRL4 expression. Nat Immunol 2013; 14:1256-65. [PMID: 24162774 PMCID: PMC3870659 DOI: 10.1038/ni.2746] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 09/25/2013] [Indexed: 01/08/2023]
Abstract
The humoral immune response after acute infection with HIV-1 is delayed and ineffective. The HIV-1 envelope protein gp120 binds to and signals through integrin α4β7 on T cells. We found that gp120 also bound to and signaled through α4β7 on naive B cells, which resulted in an abortive proliferative response. In primary B cells, signaling by gp120 through α4β7 resulted in increased expression of the immunosuppressive cytokine TGF-β1 and FcRL4, an inhibitory receptor expressed on B cells. Coculture of B cells with HIV-1-infected autologous CD4(+) T cells also increased the expression of FcRL4 by B cells. Our findings indicated that in addition to mediating chronic activation of the immune system, viral proteins contributed directly to HIV-1-associated B cell dysfunction. Our studies identify a mechanism whereby the virus may subvert the early HIV-1-specific humoral immune response.
Collapse
Affiliation(s)
- Katija Jelicic
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Braibant M, Barin F. The role of neutralizing antibodies in prevention of HIV-1 infection: what can we learn from the mother-to-child transmission context? Retrovirology 2013; 10:103. [PMID: 24099103 PMCID: PMC3851888 DOI: 10.1186/1742-4690-10-103] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/10/2013] [Indexed: 01/12/2023] Open
Abstract
In most viral infections, protection through existing vaccines is linked to the presence of vaccine-induced neutralizing antibodies (NAbs). However, more than 30 years after the identification of AIDS, the design of an immunogen able to induce antibodies that would neutralize the highly diverse HIV-1 variants remains one of the most puzzling challenges of the human microbiology. The role of antibodies in protection against HIV-1 can be studied in a natural situation that is the mother-to-child transmission (MTCT) context. Indeed, at least at the end of pregnancy, maternal antibodies of the IgG class are passively transferred to the fetus protecting the neonate from new infections during the first weeks or months of life. During the last few years, strong data, presented in this review, have suggested that some NAbs might confer protection toward neonatal HIV-1 infection. In cases of transmission, it has been shown that the viral population that is transmitted from the mother to the infant is usually homogeneous, genetically restricted and resistant to the maternal HIV-1-specific antibodies. Although the breath of neutralization was not associated with protection, it has not been excluded that NAbs toward specific HIV-1 strains might be associated with a lower rate of MTCT. A better identification of the antibody specificities that could mediate protection toward MTCT of HIV-1 would provide important insights into the antibody responses that would be useful for vaccine development. The most convincing data suggesting that NAbs migh confer protection against HIV-1 infection have been obtained by experiments of passive immunization of newborn macaques with the first generation of human monoclonal broadly neutralizing antibodies (HuMoNAbs). However, these studies, which included only a few selected subtype B challenge viruses, provide data limited to protection against a very restricted number of isolates and therefore have limitations in addressing the hypervariability of HIV-1. The recent identification of highly potent second-generation cross-clade HuMoNAbs provides a new opportunity to evaluate the efficacy of passive immunization to prevent MTCT of HIV-1.
Collapse
Affiliation(s)
- Martine Braibant
- Université François-Rabelais, UFR Médecine, Inserm U966 10 bld Tonnellé, cedex, 37032 Tours, France.
| | | |
Collapse
|
40
|
Yates NL, Stacey AR, Nolen TL, Vandergrift NA, Moody MA, Montefiori DC, Weinhold KJ, Blattner WA, Borrow P, Shattock R, Cohen MS, Haynes BF, Tomaras GD. HIV-1 gp41 envelope IgA is frequently elicited after transmission but has an initial short response half-life. Mucosal Immunol 2013; 6:692-703. [PMID: 23299618 PMCID: PMC3663876 DOI: 10.1038/mi.2012.107] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Prevention of HIV-1 transmission at mucosal surfaces will likely require durable pre-existing mucosal anti-HIV-1 antibodies (Abs). Defining the ontogeny, specificities and potentially protective nature of the initial mucosal virus-specific B-cell response will be critical for understanding how to induce protective Ab responses by vaccination. Genital fluids from patients within the earliest stages of acute HIV-1 infection (Fiebig I-VI) were examined for multiple anti-HIV specificities. Gp41 (but not gp120) Env immunoglobulin (Ig)A Abs were frequently elicited in both plasma and mucosal fluids within the first weeks of transmission. However, shortly after induction, these initial mucosal gp41 Env IgA Abs rapidly declined with a t(½) of ∼2.7 days. B-cell-activating factor belonging to the TNF family (BAFF) was elevated immediately preceding the appearance of gp41 Abs, likely contributing to an initial T-independent Ab response. HIV-1 transmission frequently elicits mucosal HIV-1 envelope-specific IgA responses targeted to gp41 that have a short half-life.
Collapse
Affiliation(s)
- N L Yates
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA,Department of Medicine, Duke University, Durham, North Carolina, USA
| | - A R Stacey
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - T L Nolen
- Research Triangle Institute, Research Triangle Park, North Carolina, USA
| | - N A Vandergrift
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA,Department of Medicine, Duke University, Durham, North Carolina, USA
| | - M A Moody
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA,Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - D C Montefiori
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA,Department of Surgery, Duke University, Durham, North Carolina, USA
| | - K J Weinhold
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA,Department of Surgery, Duke University, Durham, North Carolina, USA,Department of Immunology, Duke University, Durham, North Carolina, USA
| | - W A Blattner
- Department of Medicine, Institute of Human Virology Epidemiology Division, University of Maryland, Baltimore, Maryland, USA
| | - P Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - R Shattock
- Department of Medicine, Imperial College, London, UK
| | - M S Cohen
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - B F Haynes
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA,Department of Medicine, Duke University, Durham, North Carolina, USA,Department of Immunology, Duke University, Durham, North Carolina, USA
| | - G D Tomaras
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA,Department of Surgery, Duke University, Durham, North Carolina, USA,Department of Immunology, Duke University, Durham, North Carolina, USA,Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA,()
| |
Collapse
|
41
|
Brenchley JM. Mucosal immunity in human and simian immunodeficiency lentivirus infections. Mucosal Immunol 2013; 6:657-65. [PMID: 23549448 PMCID: PMC4154146 DOI: 10.1038/mi.2013.15] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Overwhelming evidence indicates that distinct pathological phenomenon occurs within the gastrointestinal (GI) tract of progressively simian immunodeficiency virus (SIV)-infected Asian macaques and HIV-infected humans compared with other anatomical sites. Massive loss of GI tract lamina propria CD4 T cells, alteration in the profile of lymphocytic cytokine production, changes in the landscape of GI tract antigen-presenting cells, and variations to the structural barrier of the GI tract are hallmarks of progressive HIV/SIV infections. The pathology within the GI tract results in translocation of microbial products from the lumen of the intestine into peripheral circulation. These translocated microbial products directly stimulate the immune system and exacerbate immune activation and, thus, disease progression. Initiation of combination antiretroviral therapy (cART) does not restore completely the immunological abnormalities within the GI tract. This incomplete restoration within the GI tract may contribute to the increased mortality observed within HIV-infected individuals treated for decades with cART. Novel therapeutic interventions aimed at enhancing GI tract anatomy and physiology may improve the prognosis of HIV-infected individuals.
Collapse
Affiliation(s)
- JM Brenchley
- Program in Tissue Immunity and Repair and Lab of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
42
|
Moussa S, Jenabian MA, Gody JC, Léal J, Grésenguet G, Le Faou A, Bélec L. Adaptive HIV-specific B cell-derived humoral immune defenses of the intestinal mucosa in children exposed to HIV via breast-feeding. PLoS One 2013; 8:e63408. [PMID: 23704905 PMCID: PMC3660449 DOI: 10.1371/journal.pone.0063408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/01/2013] [Indexed: 11/30/2022] Open
Abstract
Background We evaluated whether B cell-derived immune defenses of the gastro-intestinal tract are activated to produce HIV-specific antibodies in children continuously exposed to HIV via breast-feeding. Methods Couples of HIV-1-infected mothers (n = 14) and their breastfed non HIV-infected (n = 8) and HIV-infected (n = 6) babies, and healthy HIV-negative mothers and breastfed babies (n = 10) as controls, were prospectively included at the Complexe Pédiatrique of Bangui, Central African Republic. Immunoglobulins (IgA, IgG and IgM) and anti-gp160 antibodies from mother’s milk and stools of breastfed children were quantified by ELISA. Immunoaffinity purified anti-gp160 antibodies were characterized functionally regarding their capacity to reduce attachment and/or infection of R5- and X4- tropic HIV-1 strains on human colorectal epithelial HT29 cells line or monocyte-derived-macrophages (MDM). Results The levels of total IgA and IgG were increased in milk of HIV-infected mothers and stools of HIV-exposed children, indicating the activation of B cell-derived mucosal immunity. Breast milk samples as well as stool samples from HIV-negative and HIV-infected babies exposed to HIV by breast-feeding, contained high levels of HIV-specific antibodies, mainly IgG antibodies, less frequently IgA antibodies, and rarely IgM antibodies. Relative ratios of excretion by reference to lactoferrin calculated for HIV-specific IgA, IgG and IgM in stools of HIV-exposed children were largely superior to 1, indicating active production of HIV-specific antibodies by the intestinal mucosa. Antibodies to gp160 purified from pooled stools of HIV-exposed breastfed children inhibited the attachment of HIV-1NDK on HT29 cells by 63% and on MDM by 77%, and the attachment of HIV-1JRCSF on MDM by 40%; and the infection of MDM by HIV-1JRCSF by 93%. Conclusions The intestinal mucosa of children exposed to HIV by breast-feeding produces HIV-specific antibodies harbouring in vitro major functional properties against HIV. These observations lay the conceptual basis for the design of a prophylactic vaccine against HIV in exposed children.
Collapse
Affiliation(s)
- Sandrine Moussa
- Institut Pasteur de Bangui, Laboratoire des Rétrovirus-VIH, Bangui, Central African Republic.
| | | | | | | | | | | | | |
Collapse
|
43
|
Özkaya Şahin G, Månsson F, Palm AA, Vincic E, da Silva Z, Medstrand P, Norrgren H, Fenyö EM, Jansson M. Frequent intratype neutralization by plasma immunoglobulin a identified in HIV type 2 infection. AIDS Res Hum Retroviruses 2013; 29:470-8. [PMID: 23088167 DOI: 10.1089/aid.2012.0219] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2) is less transmissible and less pathogenic compared to HIV-1 and, when matched for CD4(+) T cell count, the plasma viral load in HIV-2-infected individuals is approximately one log lower than in HIV-1-infected individuals. The explanation for these observations is elusive, but differences in virus controlling immunity generated in the two infections may be contributing factors. In the present study, we investigated neutralization by immunoglobulin A (IgA), in parallel with IgG, purified from plasma of HIV-1, HIV-2, and HIV-1/HIV-2 dually (HIV-D) infected individuals. Neutralization was analyzed against HIV-1 and HIV-2 isolates using a plaque reduction assay. In HIV-2 infection, intratype-specific neutralization by IgA was frequently detected, although at a lesser magnitude then the corresponding IgG neutralizing titers. In contrast, neutralization by IgA could rarely be demonstrated in HIV-1 infection despite similar plasma IgA levels in both infections. In addition, IgA and IgG of HIV-D plasma neutralized the HIV-2 isolate more potently than the HIV-1 isolate, suggesting that the difference between neutralizing activity of plasma IgA and IgG depends on the virus itself. Taken together, these findings suggest that both IgA and IgG add to the potent intratype neutralizing activity detected in HIV-2 plasma, which may contribute to virus control in HIV-2 infection.
Collapse
Affiliation(s)
| | - Fredrik Månsson
- Department of Clinical Sciences, Malmö, Infectious Diseases Research Unit, Lund University, Malmö, Sweden
| | - Angelica A. Palm
- Department of Experimental Medical Science, Division of Molecular Virology, Lund University, Lund, Sweden
| | - Elzbieta Vincic
- Department of Laboratory Medicine Lund, Lund University, Lund, Sweden
| | - Zacarias da Silva
- Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau, West Africa
| | - Patrik Medstrand
- Department of Laboratory Medicine, Malmö, Lund University, Malmö, Sweden
| | - Hans Norrgren
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Eva Maria Fenyö
- Department of Laboratory Medicine Lund, Lund University, Lund, Sweden
| | - Marianne Jansson
- Department of Laboratory Medicine Lund, Lund University, Lund, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
44
|
Yu X, Li Z, Zhou Z, Kilby JM, Jiang W. Microbial TLR Agonists and Humoral Immunopathogenesis in HIV Disease. EPIDEMIOLOGY (SUNNYVALE, CALIF.) 2013; 3:120. [PMID: 24795844 PMCID: PMC4005894 DOI: 10.4172/2161-1165.1000120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Although T cells are the primary and most-studied targets of the Human Immunodeficiency Virus (HIV), B cells, especially memory B lymphocytes, are also chronically depleted in the course of HIV disease. Although the lack of CD4+ T cell help may explain these deficiencies, intrinsic defects in B lymphocytes appear to contribute to B cell depletion and reduced antibody (Ab) production in the setting of HIV, especially of some antigens eliciting T cell-independent responses. The gut mucosal barrier is disrupted in HIV disease, resulting in increased systemic exposure to microbial products such as Toll-Like Receptor (TLR) agonists. The association of enhanced systemic levels of TLR agonists and B cell dysfunction in HIV disease is not understood. This review discusses the potential role of microbial TLR agonists in the B cell depletion, enhanced autoantibody production and impaired responses to vaccination observed in HIV-infected hosts. Increased microbial translocation in HIV infection may drive B cells to produce autoantibodies and increase susceptibilities of B cells to apoptosis through activation-induced cell death. Determining the mechanisms of B cell perturbations in HIV disease will inform the design of novel strategies of improve immune responses to vaccines, reduce opportunistic infections and slow disease progression.
Collapse
Affiliation(s)
- Xiaocong Yu
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Zihai Li
- Department of Microbiology and Immunology, Department of Medicine, Division of Infectious Diseases, Medical University of South Carolina, BSB214E, Charleston, SC, 29425, USA
| | - Zhenxian Zhou
- NanJing Second Hospital, Infectious Diseases, NanJing, China
| | - J Michael Kilby
- Department of Microbiology and Immunology, Department of Medicine, Division of Infectious Diseases, Medical University of South Carolina, BSB214E, Charleston, SC, 29425, USA
| | - Wei Jiang
- Department of Microbiology and Immunology, Department of Medicine, Division of Infectious Diseases, Medical University of South Carolina, BSB214E, Charleston, SC, 29425, USA
| |
Collapse
|
45
|
Wei Q, Moldoveanu Z, Huang WQ, Alexander RC, Goepfert PA, Mestecky J. Comparative Evaluation of HIV-1 Neutralization in External Secretions and Sera of HIV-1-Infected Women. Open AIDS J 2012; 6:293-302. [PMID: 23346267 PMCID: PMC3549546 DOI: 10.2174/1874613601206010293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/31/2012] [Accepted: 11/06/2012] [Indexed: 01/11/2023] Open
Abstract
Objectives: Although human immunodeficiency virus type 1 (HIV-1)-specific antibodies are detectable in external secretions by ELISA and western blot (WB), the presence of HIV-1 neutralizing antibodies is difficult to evaluate due to the low levels of immunoglobulins (Ig) and the presence of humoral factors of innate immunity. The objective of this study was to determine virus neutralization activity and the relative contribution of HIV-1-specific antibodies of various isotypes to virus neutralization in serum/plasma samples, cervicovaginal lavages (CVL), and rectal lavages (RL). Design: Serum/plasma, CVL, and RL samples were examined by ELISA, WB and HIV-1 neutralization assays. Selected samples were Ig depleted and analyzed for virus neutralization. Results: IgG specific for three HIV-1 ENV antigens was detected in all serum/plasma samples, while IgA to at least one ENV glycoprotein was found at the low levels in 95% samples. Serum/plasma samples had the ability to neutralize at least one of three clade B and two clade C viruses. The neutralizing titers were reduced significantly or became undetectable after IgG removal. In corresponding CVL and RL, HIV-1 ENV-specific IgG antibodies were readily detected compared to IgA. Furthermore, IgG in CVL had greater ability than IgA to reduce virus infectivity. The difference in HIV-1 neutralization before and after Ig depletion was not observed in RL, implying that innate humoral factors were involved in anti-HIV-1 activity. Conclusions: Results demonstrate that HIV-1-specific neutralizing antibodies are almost exclusively of the IgG isotype in serum/plasma and CVL samples. HIV-1-specific binding antibodies detected in RL are not responsible for neutralization activity, suggesting that the antibody-mediated virus neutralization in external secretions should be verified by means of a selective depletion of Ig.
Collapse
Affiliation(s)
- Qing Wei
- University of Alabama at Birmingham, Department of Microbiology, Birmingham, AL, USA
| | | | | | | | | | | |
Collapse
|
46
|
Yu X, Duval M, Lewis C, Gawron MA, Wang R, Posner MR, Cavacini LA. Impact of IgA constant domain on HIV-1 neutralizing function of monoclonal antibody F425A1g8. THE JOURNAL OF IMMUNOLOGY 2012. [PMID: 23183895 DOI: 10.4049/jimmunol.1201469] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
With the majority of HIV infections resulting from mucosal transmission, induction of an effective mucosal immune response is thought to be pivotal in preventing transmission. HIV-specific IgA, but not IgG, has been detected in the genital tract, seminal fluid, urethral swabs, urine, and vaginal wash samples of HIV-negative sex workers and HIV-status discordant couples. Purified mucosal and plasma IgA from some individuals with highly exposed, persistently seronegative status can neutralize infection and present cross-clade neutralization activity, though present at low levels. We generated a CD4-induced human mAb, F425A1g8, and characterized the impact of its isotype variants on HIV neutralizing activity. The result showed that, in contrast to little neutralization by the F425A1g8 IgG1 in the absence of sCD4, the IgA1 variant of the Ab displayed significant independent neutralization activity against a range of HIV clade B isolates in the absence of sCD4. Studies of the neutralizing function of IgA isotypes, and the functional relationship between different antigenic epitopes and IgA Abs, may also suggest strategies for the intervention of virus transmission and spread within the mucosa of the host, as well as serve to inform the design of vaccine strategies that may be more effective at preventing mucosal transmission. This research clearly suggests that IgA isotype, because of its unique molecular structure, may play an important role in HIV neutralization.
Collapse
Affiliation(s)
- Xiaocong Yu
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Kathuria N, Kraynyak KA, Carnathan D, Betts M, Weiner DB, Kutzler MA. Generation of antigen-specific immunity following systemic immunization with DNA vaccine encoding CCL25 chemokine immunoadjuvant. Hum Vaccin Immunother 2012; 8:1607-19. [PMID: 23151454 DOI: 10.4161/hv.22574] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A significant hurdle in vaccine development for many infectious pathogens is the ability to generate appropriate immune responses at the portal of entry, namely mucosal sites. The development of vaccine approaches resulting in secretory IgA and mucosal cellular immune responses against target pathogens is of great interest and in general, requires live viral infection at mucosal sites. Using HIV-1 and influenza A antigens as models, we report here that a novel systemically administered DNA vaccination strategy utilizing co-delivery of the specific chemokine molecular adjuvant CCL25 (TECK) can produce antigen-specific immune responses at distal sites including the lung and mesenteric lymph nodes in mice. The targeted vaccines induced infiltration of cognate chemokine receptor, CCR9+/CD11c+ immune cells to the site of immunization. Furthermore, data shows enhanced IFN-λ secretion by antigen-specific CD3+/CD8+ and CD3+/CD4+ T cells, as well as elevated HIV-1-specific IgG and IgA responses in secondary lymphoid organs, peripheral blood, and importantly, at mucosal sites. These studies have significance for the development of vaccines and therapeutic strategies requiring mucosal immune responses and represent the first report of the use of plasmid co-delivery of CCL25 as part of the DNA vaccine strategy to boost systemic and mucosal immune responses following intramuscular injection.
Collapse
Affiliation(s)
- Noshin Kathuria
- Department of Microbiology and Immunology; Drexel University College of Medicine; Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
48
|
Antiviral antibodies and T cells are present in the foreskin of simian immunodeficiency virus-infected rhesus macaques. J Virol 2012; 86:7098-106. [PMID: 22532691 DOI: 10.1128/jvi.00410-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
No information exists regarding immune responses to human immunodeficiency virus (HIV) infection in the foreskin or glans of the human penis, although this is a key tissue for HIV transmission. To address this gap, we characterized antiviral immune responses in foreskin of male rhesus macaques (RMs) inoculated with simian immunodeficiency virus (SIV) strain SIVmac251 by penile foreskin exposure. We found a complete population of immune cells in the foreskin and glans of normal RMs, although B cells were less common than CD4(+) and CD8(+) T cells. IgG-secreting cells were detected by enzyme-linked immunospot (ELISPOT) assay in cell suspensions made from the foreskin. In the foreskin and glans of SIV-infected RMs, although B cells were less common than CD4(+) and CD8(+) T cells, SIV-specific IgG antibody was present in foreskin secretions. In addition, cytokine-secreting SIV-specific CD8(+) T cells were readily found in cell suspensions made from the foreskin. Although potential HIV target cells were found in and under the epithelium covering all penile surfaces, the presence of antiviral effector B and T cells in the foreskin suggests that vaccines may be able to elicit immunity in this critical site to protect men from acquiring HIV.
Collapse
|
49
|
Bélec L, Kourtis AP. B lymphocyte-derived humoral immune defenses in breast milk transmission of the HIV-1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 743:139-60. [PMID: 22454347 DOI: 10.1007/978-1-4614-2251-8_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Laurent Bélec
- Sorbonne Paris Cité (Paris V), and Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Université Paris Descartes, 15-20 rue Leblanc, 75 908, Paris Cedex 15, France.
| | | |
Collapse
|
50
|
Klasse PJ, Sanders RW, Cerutti A, Moore JP. How can HIV-type-1-Env immunogenicity be improved to facilitate antibody-based vaccine development? AIDS Res Hum Retroviruses 2012; 28:1-15. [PMID: 21495876 DOI: 10.1089/aid.2011.0053] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
No vaccine candidate has induced antibodies (Abs) that efficiently neutralize multiple primary isolates of HIV-1. Preexisting high titers of neutralizing antibodies (NAbs) are essential, because the virus establishes infection before anamnestic responses could take effect. HIV-1 infection elicits Abs against Env, Gag, and other viral proteins, but of these only a subset of the anti-Env Abs can neutralize the virus. Whereas the corresponding proteins from other viruses form the basis of successful vaccines, multiple large doses of HIV-1 Env elicit low, transient titers of Abs that are not protective in humans. The inaccessibility of neutralization epitopes hinders NAb induction, but Env may also subvert the immune response by interacting with receptors on T cells, B cells, monocytes, macrophages, and dendritic cells. Here, we discuss evidence from immunizations of different species with various modified Env constructs. We also suggest how the divergent Ab responses to Gag and Env during infection may reflect differences in B cell regulation. Drawing on these analyses, we outline strategies for improving Env as a component of a vaccine aimed at inducing strong and sustained NAb responses.
Collapse
Affiliation(s)
- Per Johan Klasse
- Department of Microbiology and Immunology, Cornell University, Weill Cornell Medical College, New York, New York
| | - Rogier W. Sanders
- Department of Microbiology and Immunology, Cornell University, Weill Cornell Medical College, New York, New York
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Andrea Cerutti
- Immunology Institute, Department of Medicine, Mount Sinai School of Medicine, New York, New York
- Catalan Institute for Research and Advanced Studies, Barcelona Biomedical Research Park, IMIM-Hospital del Mar, Barcelona, Spain
| | - John P. Moore
- Department of Microbiology and Immunology, Cornell University, Weill Cornell Medical College, New York, New York
| |
Collapse
|