1
|
Barut D, Dörtkardeşler EB, Karakoyun M, Canda E, Onay H, Aydogdu S. A novel SLC44A gene variant in a patient with neonatal cholestasis and liver failure. Mol Genet Metab Rep 2025; 43:101204. [PMID: 40161924 PMCID: PMC11951043 DOI: 10.1016/j.ymgmr.2025.101204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/26/2025] [Accepted: 03/02/2025] [Indexed: 04/02/2025] Open
Abstract
SLC44A1 gene variants (MIM # 618868) are associated with a choline transporter deficiency with a rare autosomal recessive genetic disorder characterized by neurodegeneration, childhood-onset with ataxia, tremor, optic atrophy, and cognitive decline. Variants in the SLC44A1 gene are considered to be responsible for the syndrome. We reported a four-month-old baby with neonatal cholestasis and liver failure, but neurological development and examination were normal. During the patient's initial physical examination, height, weight, and head circumference were < -2 SDS. He was alert, with eye tracking and a smile present, appeared icteric, and exhibited hepatosplenomegaly, with a history of second-degree consanguinity between his parents. The patient showed signs of neonatal jaundice, elevated transaminases, and episodes of hypoglycemia. After excluding biliary atresia, tyrosinemia, and other metabolic diseases, mitochondrial hepatopathy, vascular pathologies, and congenital infectious diseases through all standard examinations for neonatal cholestasis, a genetic analysis test and whole exome analysis were conducted. Molecular analysis of the whole exome revealed a novel inherited mutation, one inherited from each parent. This novel variant in the SLC44A1 gene is c.1632 + 1G > A. A thorough physical examination and laboratory tests should be conducted for patients presenting with neonatal cholestasis. Subsequently, whole exome analysis from the parents identified the same mutation as heterozygous c.1632 + 1G > A in the SLC44A1 gene. Genetic examinations should be considered in patients whose cause remains undetermined, particularly when there is a family history. Conclusion We describe a novel childhood-onset liver failure and metabolic disease caused by choline transporter deficiency with autosomal recessive inheritance.
Collapse
Affiliation(s)
- Dogan Barut
- Medical School of Ege University, Division of Gastroenterology, Hepatology and Nutrition Disease, Department of Pediatrics, Izmir, Turkey
| | - Emine Burçe Dörtkardeşler
- Department of General Pediatrics, Faculty of Medicine, Childrens' Hospital, Ege University, Bornova, Izmir, Turkey
| | - Miray Karakoyun
- Medical School of Ege University, Division of Gastroenterology, Hepatology and Nutrition Disease, Department of Pediatrics, Izmir, Turkey
| | - Ebru Canda
- Medical School of Ege University, Division of Pediatric Metabolism and Nutrition, Department of Pediatrics, Izmir, Turkey
| | - Huseyin Onay
- Medical Genetics, Multigen Genetic Diseases Diagnosis Center, Izmir, Turkey
| | - Sema Aydogdu
- Medical School of Ege University, Division of Gastroenterology, Hepatology and Nutrition Disease, Department of Pediatrics, Izmir, Turkey
| |
Collapse
|
2
|
Wallace TC, Cowan-Pyle AE, Klatt KC, Bailey RL. Relationship of Choline Intake with Biomarkers of Liver Health by Genotype-A Cross-Sectional Analysis. J Nutr 2025:S0022-3166(25)00230-5. [PMID: 40306555 DOI: 10.1016/j.tjnut.2025.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Controlled feeding studies demonstrate that genetic variation in the folate-mediated one-carbon and choline metabolism pathway influence risk of organ dysfunction from consuming choline-deficient (<50 mg/d) diets. Whether genotype influences the relationship between choline intake and biomarkers of liver function in the general population remains unknown. OBJECTIVES This study aims to conduct an exploratory cross-sectional analysis to examine the relationship between dietary choline intake with circulating biomarkers of liver function that are commonly impaired by inadequate choline, stratified by genotype across common single-nucleotide polymorphisms (SNPs) in one-carbon and choline metabolism-related enzymes. METHODS United States adults (≥20 y) in the 1999-2002 National Health and Nutrition Examination Survey (NHANES) who were nonpregnant, nonlactating, had reliable 24-h dietary recall(s), and blood collected for DNA purification (that is, complete genetic data) were included (n = 1438). Mean dietary choline intake was estimated using the USDA's Food and Nutrient Database for Dietary Studies and the Choline Content of Common Foods Database. Associations between choline intake and available biomarkers of liver function, adjusted for age (y), BMI, fasting plasma glucose, and total protein and energy intake, were investigated for each SNP, using multiple linear regression. Statistical significance was set at a Bonferroni-corrected P < 0.0167 to account for multiplicity across tertiles of choline intake, based on the number of examined genotypes. RESULTS The lowest tertile of choline intake was not associated with elevated markers of liver dysfunction relative to higher intakes in the entire population or in analyses stratified by common SNPs in one-carbon and choline metabolism pathway enzymes. Higher choline intake was associated with an increase in circulating triglycerides among individuals with the MTR GG (rs1805087) minor genotype. CONCLUSIONS In this exploratory NHANES analysis, self-reported choline intakes were not associated with worsening circulating liver function biomarkers in the study population as a whole or when stratified by genotype. Our findings did not recapitulate observed relationships in controlled feeding trials, potentially due to higher habitual choline intakes or limitations of using national surveillance samples to assess diet-x-gene interactions. Further exploration of this research question in prospective cohorts or controlled trials with a broader array of nutritional status markers is warranted.
Collapse
Affiliation(s)
- Taylor C Wallace
- Think Healthy Group, LLC, Washington, DC, United States; School of Medicine and Health Sciences, George Washington University, Washington, DC, United States; Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States.
| | - Alexandra E Cowan-Pyle
- Institute for Advancing Health Through Agriculture, Texas A&M AgriLife Research, Texas A&M University System, College Station, TX, United States
| | - Kevin C Klatt
- Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, CA, United States
| | - Regan L Bailey
- Institute for Advancing Health Through Agriculture, Texas A&M AgriLife Research, Texas A&M University System, College Station, TX, United States; Department of Nutrition, Texas A&M University, College Station, TX, United States
| |
Collapse
|
3
|
Korbecki J, Bosiacki M, Kupnicka P, Barczak K, Ziętek P, Chlubek D, Baranowska-Bosiacka I. Choline kinases: Enzymatic activity, involvement in cancer and other diseases, inhibitors. Int J Cancer 2025; 156:1314-1325. [PMID: 39660774 DOI: 10.1002/ijc.35286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/22/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
One of the aspects of tumor metabolism that distinguish it from healthy tissue is the phosphorylation of choline by choline kinases, which initiates the synthesis of phosphatidylcholine. Presently, there is a lack of comprehensive reviews discussing the current understanding of the role of choline kinase in cancer processes, as well as studies on the anti-tumor properties of choline kinase inhibitors. To address these gaps, this review delves into the enzymatic and non-enzymatic properties of CHKα and CHKβ and explores their precise involvement in cancer processes, particularly cancer cell proliferation. Additionally, we discuss clinical aspects of choline kinases in various tumor types, including pancreatic ductal adenocarcinoma, ovarian cancer, lung adenocarcinoma, lymphoma, leukemia, hepatocellular carcinoma, colon adenocarcinoma, and breast cancer. We examine the potential of CHKα inhibitors as anti-tumor drugs, although they are not yet in the clinical trial phase. Finally, the paper also touches upon the significance of choline kinases in non-cancerous diseases.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zielona Góra, Poland
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Szczecin, Poland
| | - Paweł Ziętek
- Department of Orthopaedics, Traumatology and Orthopaedic Oncology, Pomeranian Medical University, Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
4
|
Yiannakou I, Long MT, Jacques PF, Beiser A, Pickering RT, Moore LL. Eggs, Dietary Choline, and Nonalcoholic Fatty Liver Disease in the Framingham Heart Study. J Nutr 2025; 155:923-935. [PMID: 39424072 PMCID: PMC11934245 DOI: 10.1016/j.tjnut.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Eggs are rich in bioactive compounds, including choline and carotenoids that may benefit cardiometabolic outcomes. However, little is known about their relationship with nonalcoholic fatty liver disease (NAFLD). OBJECTIVES We investigated the association between intakes of eggs and selected egg-rich nutrients (choline, lutein, and zeaxanthin) and NAFLD risk and changes in liver fat over ∼6 y of follow-up in the Framingham Offspring and Third Generation cohorts. METHODS On 2 separate occasions (2002-2005 and 2008-2011), liver fat was assessed using a computed tomography scan to estimate the average liver fat attenuation relative to a control phantom to create the liver phantom ratio (LPR). In 2008-2011, cases of incident NAFLD were identified as an LPR ≤0.33 in the absence of heavy alcohol use, after excluding prevalent NAFLD (LPR ≤0.33) in 2002-2005. Food frequency questionnaires were used to estimate egg intakes (classified as <1, 1, and ≥2 per week), dietary choline (adjusted for body weight using the residual method), and the combined intakes of lutein and zeaxanthin. Multivariable modified Poisson regression and general linear models were used to compute incident risk ratios (RR) of NAFLD and adjusted mean annualized liver fat change. RESULTS NAFLD cumulative incidence was 19% among a total of 1414 participants. We observed no associations between egg intake or the combined intakes of lutein and zeaxanthin with an incident NAFLD risk or liver fat change. Other diet and cardiometabolic risk factors did not modify the association between egg intake and NAFLD risk. However, dietary choline intakes were inversely associated with NAFLD risk (RR for tertile 3 compared with tertile 1: 0.69, 95% CI: 0.51, 0.94). CONCLUSIONS Although egg intake was not directly associated with NAFLD risk, eggs are a major source of dietary choline, which was strongly inversely associated with NAFLD risk in this community-based cohort.
Collapse
Affiliation(s)
- Ioanna Yiannakou
- Department of Medicine/Preventive Medicine and Epidemiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Michelle T Long
- Department of Medicine/Section of Gastroenterology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States; Novo Nordisk A/S, Vandtårnsvej 108-110 Søborg Denmark
| | - Paul F Jacques
- Nutritional Epidemiology, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Alexa Beiser
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Richard T Pickering
- Department of Medicine/Preventive Medicine and Epidemiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Lynn L Moore
- Department of Medicine/Preventive Medicine and Epidemiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States.
| |
Collapse
|
5
|
Dong J, Shelp GV, Poole EM, Cook WJJ, Michaud J, Cho CE. Prenatal choline supplementation enhances metabolic outcomes with differential impact on DNA methylation in Wistar rat offspring and dams. J Nutr Biochem 2025; 136:109806. [PMID: 39547266 DOI: 10.1016/j.jnutbio.2024.109806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Choline is an essential nutrient required for proper functioning of organs and serves as a methyl donor. In liver where choline metabolism primarily occurs, glucose homeostasis is regulated through insulin receptor substrates (IRS) 1 and 2. The objective of this research was to determine the role of prenatal choline as a modulator of metabolic health and DNA methylation in liver of offspring and dams. Pregnant Wistar rat dams were fed an AIN-93G diet and received drinking water either with supplemented 0.25% choline (w/w) as choline bitartrate or untreated control. All offspring were weaned to a high-fat diet for 12 weeks. Prenatal choline supplementation led to higher insulin sensitivity in female offspring at weaning as well as lower body weight and food intake and higher insulin sensitivity in female and male adult offspring compared to offspring from untreated dams. Higher hepatic betaine concentrations were observed in dams and female offspring of choline-supplemented dams at weaning and higher glycerophosphocholine in female and male offspring at postweaning compared to the untreated control, suggestive of sustaining different choline pathways. Hepatic gene expression of Irs2 was higher in dams at weaning and female offspring at weaning and postweaning, whereas Irs1 was lower in male offspring at postweaning. Gene-specific DNA methylation of Irs2 was lower in female offspring at postweaning and Irs1 methylation was higher in male offspring at postweaning that exhibited an inverse relationship between methylation and gene expression. In conclusion, prenatal choline supplementation contributes to improved parameters of insulin signaling but these effects varied across time and offspring sex.
Collapse
Affiliation(s)
- Jianzhang Dong
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Gia V Shelp
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Elizabeth M Poole
- Department of Family Relations and Applied Nutrition, University of Guelph, Guelph, Ontario, Canada
| | - William J J Cook
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jana Michaud
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Clara E Cho
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
6
|
Gousias F, Stylianaki I, Giannenas I, Kallitsis T, Papaioannou N, Chaitidis E, Squires C, Arsenos G, Tsiouris V, Papadopoulos GA. Effects of Milk Thistle Extract Supplementation on Performance, Egg Quality, and Liver Pathology of Laying Hens' Fed Diets Lacking Supplemental Choline Chloride. Vet Sci 2025; 12:77. [PMID: 40005837 PMCID: PMC11860362 DOI: 10.3390/vetsci12020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/08/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
The current study evaluated the effects of milk thistle extract supplementation in laying hens' fed diets lacking choline chloride addition. A total of 60 Isa-brown laying hens were randomly allocated into T1: control diet, 0% extract supplementation; T2: control diet with 1% extract; T3: control diet with 2.5% extract; and T4: control diet with 4% extract. Egg quality parameters, yolk lipid oxidation, malondialdehyde (MDA) content, and fatty acid profile were assessed. Livers were examined grossly and histologically to evaluate hepatocellular lesions such as vacuolization (lipidosis), reticular stromal architecture, the amount of collagenous connective tissue, and vascular wall changes. Groups T3 and T4 showed darker yolks compared to both control group and T2 (p = 0.001) and redness of the egg yolk (p < 0.001). The MDA was lowest in T2 group which had improved gross appearance with lower degrees of hepatic vacuolization than other groups. Liver discoloration was milder in T3 (43.8%) compared to the T1 and T4 groups (18.8% and 12.5%, respectively, p = 0.013). Reticulin loss was correlated with the degree of hepatic vacuolization (r = 0.751, p < 0.001). Supplementation with MT extract in diets lacking choline chloride may influence certain egg quality indices and liver gross macroscopic lesions in laying hens.
Collapse
Affiliation(s)
- Fotis Gousias
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (T.K.); (C.S.); (G.A.); (G.A.P.)
| | - Ioanna Stylianaki
- Laboratory of Pathology, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (I.S.); (N.P.); (E.C.)
| | - Ilias Giannenas
- Laboratory of Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Theodoros Kallitsis
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (T.K.); (C.S.); (G.A.); (G.A.P.)
| | - Nikolaos Papaioannou
- Laboratory of Pathology, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (I.S.); (N.P.); (E.C.)
| | - Efstratios Chaitidis
- Laboratory of Pathology, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (I.S.); (N.P.); (E.C.)
| | - Clare Squires
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (T.K.); (C.S.); (G.A.); (G.A.P.)
| | - Georgios Arsenos
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (T.K.); (C.S.); (G.A.); (G.A.P.)
| | - Vasilios Tsiouris
- Unit of Avian Medicine, Clinic of Farm Animals, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 546 27 Thessaloniki, Greece;
| | - Georgios A. Papadopoulos
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (T.K.); (C.S.); (G.A.); (G.A.P.)
| |
Collapse
|
7
|
Taesuwan S, Kouvari M, McKune AJ, Panagiotakos DB, Khemacheewakul J, Leksawasdi N, Rachtanapun P, Naumovski N. Total choline intake, liver fibrosis and the progression of metabolic dysfunction-associated steatotic liver disease: Results from 2017 to 2020 NHANES. Maturitas 2025; 191:108150. [PMID: 39536658 DOI: 10.1016/j.maturitas.2024.108150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/07/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES This study investigated the cross-sectional relationships of total choline intake with the prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) and its progression to liver fibrosis. STUDY DESIGN The study used data on total choline intake, hepatic steatosis, and liver fibrosis from the cross-sectional 2017-2020 National Health and Nutrition Examination Survey, including 24-h dietary recalls and liver ultrasound elastography (FibroScan®). MAIN OUTCOME MEASURES Steatosis was defined as a controlled attenuation parameter score ≥ 285dB/m. Fibrosis was defined as median liver stiffness ≥8 kPa. Complex survey-adjusted regression models were used in all analyses. Effect modification by sex, race, and cardiometabolic risk factors was investigated. RESULT Total choline intake was not associated with MASLD status (n = 5687; odds ratio per 100 mg/d [95 % confidence interval]: 0.96 [0.85,1.09]; P = 0.55). However, among people with MASLD, a higher total choline intake was associated with higher odds of fibrosis (n = 2019; 1.15 [1.01,1.30]; P = 0.03). This association was observed in men (P-interaction = 0.1; 1.23 [1.02,1.48]; P = 0.03), but not in women (1.05 [0.88,1.24]; P = 1.0). Choline intake also tended to be positively associated with fibrosis in people with MASLD who were overweight or had central obesity (P-interaction = 0.02; 1.15 [1.00,1.34]; P = 0.06). CONCLUSIONS Overall, no significant association was observed between total choline intake and the prevalence of MASLD. However, in people with MASLD, a higher choline intake was associated with higher odds of developing liver fibrosis. This association appeared to differ by sex and cardiometabolic risk factors.
Collapse
Affiliation(s)
- Siraphat Taesuwan
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, Ngunnawal Country, ACT 2617, Australia; Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia.
| | - Matina Kouvari
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, Ngunnawal Country, ACT 2617, Australia; Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia; Department of Medicine, Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Nutrition-Dietetics, Harokopio University, Athens, Greece
| | - Andrew J McKune
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, Ngunnawal Country, ACT 2617, Australia; Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT 2601, Australia; School of Health Sciences, University of Kwazulu-Natal, Durban 4000, South Africa
| | - Demosthenes B Panagiotakos
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, Ngunnawal Country, ACT 2617, Australia; Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia; Department of Nutrition-Dietetics, Harokopio University, Athens, Greece
| | - Julaluk Khemacheewakul
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Noppol Leksawasdi
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pornchai Rachtanapun
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Nenad Naumovski
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, Ngunnawal Country, ACT 2617, Australia; Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia; Department of Nutrition-Dietetics, Harokopio University, Athens, Greece; Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT 2601, Australia.
| |
Collapse
|
8
|
Kenny TC, Scharenberg S, Abu-Remaileh M, Birsoy K. Cellular and organismal function of choline metabolism. Nat Metab 2025; 7:35-52. [PMID: 39779890 PMCID: PMC11990872 DOI: 10.1038/s42255-024-01203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Choline is an essential micronutrient critical for cellular and organismal homeostasis. As a core component of phospholipids and sphingolipids, it is indispensable for membrane architecture and function. Additionally, choline is a precursor for acetylcholine, a key neurotransmitter, and betaine, a methyl donor important for epigenetic regulation. Consistent with its pleiotropic role in cellular physiology, choline metabolism contributes to numerous developmental and physiological processes in the brain, liver, kidney, lung and immune system, and both choline deficiency and excess are implicated in human disease. Mutations in the genes encoding choline metabolism proteins lead to inborn errors of metabolism, which manifest in diverse clinical pathologies. While the identities of many enzymes involved in choline metabolism were identified decades ago, only recently has the field begun to understand the diverse mechanisms by which choline availability is regulated and fuelled via metabolite transport/recycling and nutrient acquisition. This review provides a comprehensive overview of choline metabolism, emphasizing emerging concepts and their implications for human health and disease.
Collapse
Affiliation(s)
- Timothy C Kenny
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Samantha Scharenberg
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford University, Stanford, CA, USA
- Stanford Biophysics Program, Stanford University, Stanford, CA, USA
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, USA.
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
9
|
Gautam J, Aggarwal H, Kumari D, Gupta SK, Kumar Y, Dikshit M. A methionine-choline-deficient diet induces nonalcoholic steatohepatitis and alters the lipidome, metabolome, and gut microbiome profile in the C57BL/6J mouse. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159545. [PMID: 39089643 DOI: 10.1016/j.bbalip.2024.159545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The methionine-choline-deficient (MCD) diet-induced non-alcoholic steatohepatitis (NASH) in mice is a well-established model. Our study aims to elucidate the factors influencing liver pathology in the MCD mouse model by examining physiological, biochemical, and molecular changes using histology, molecular techniques, and OMICS approaches (lipidomics, metabolomics, and metagenomics). Male C57BL/6J mice were fed a standard chow diet, a methionine-choline-sufficient (MCS) diet, or an MCD diet for 10 weeks. The MCD diet resulted in reduced body weight and fat mass, along with decreased plasma triglyceride, cholesterol, glucose, and insulin levels. However, it notably induced steatosis, inflammation, and alterations in gene expression associated with lipogenesis, inflammation, fibrosis, and the synthesis of apolipoproteins, sphingolipids, ceramides, and carboxylesterases. Lipid analysis revealed significant changes in plasma and tissues: most ceramide non-hydroxy-sphingosine lipids significantly decreased in the liver and plasma but increased in the adipose tissue of MCD diet-fed animals. Oxidized glycerophospholipids mostly increased in the liver but decreased in the adipose tissue of the MCD diet-fed group. The gut microbiome of the MCD diet-fed group showed an increase in Firmicutes and a decrease in Bacteroidetes and Actinobacteria. Metabolomic profiling demonstrated that the MCD diet significantly altered amino acid biosynthesis, metabolism, and nucleic acid metabolism pathways in plasma, liver, fecal, and cecal samples. LC-MS data indicated higher total plasma bile acid intensity and reduced fecal glycohyodeoxycholic acid intensity in the MCD diet group. This study demonstrates that although the MCD diet induces hepatic steatosis, the mechanisms underlying NASH in this model differ from those in human NASH pathology.
Collapse
Affiliation(s)
- Jyoti Gautam
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Hobby Aggarwal
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Deepika Kumari
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Sonu Kumar Gupta
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Yashwant Kumar
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| | - Madhu Dikshit
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| |
Collapse
|
10
|
Gong H, Jiang J, Choi S, Huang S. Sex differences in the association between dietary choline intake and total bone mineral density among adolescents aged 12-19 in the United States. Front Nutr 2024; 11:1459117. [PMID: 39634554 PMCID: PMC11614608 DOI: 10.3389/fnut.2024.1459117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Background While prior research has established a correlation between dietary choline intake and bone density in the elderly, the relationship in adolescents remains ambiguous. This study seeks to examine the association between dietary choline intake and bone density in American adolescents. Methods Data from the National Health and Nutrition Examination Survey (NHANES) for 2005 to 2018 were used in this study, encompassing participants aged 12-19 years. The relationship between dietary choline intake and bone density was assessed using multivariate linear regression models and restricted cubic spline (RCS) models. Subgroup analyses were also performed to investigate differences across various subgroups. Results 3,800 participants with an average age of 15 years were included in this study. After adjusting for relevant confounding factors, a positive correlation was observed between dietary choline intake and total bone density in adolescents (95% CI: 0.03-0.17, p = 0.010). Gender-specific analysis indicated a significant positive correlation between dietary choline intake and total bone density in males (95% CI: 0.07-0.23, p < 0.001), while no significant correlation was found in females (95% CI: -0.19 to 0.09, p = 0.500). The stratified analysis revealed that the positive association was more pronounced in males and non-Hispanic whites (interaction p < 0.05). The restricted cubic spline model demonstrated a linear positive correlation between dietary choline intake and total bone density. Conclusion This study demonstrates that dietary choline intake levels are positively correlated with bone density in adolescents, with this association being specific to males.
Collapse
Affiliation(s)
- Hongyang Gong
- Department of Oncology Surgery, Fuzhou Hospital of Traditional Chinese Medicine Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Jiecheng Jiang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Seok Choi
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Shaoqun Huang
- Department of Oncology Surgery, Fuzhou Hospital of Traditional Chinese Medicine Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
11
|
Chungchunlam SMS, Moughan PJ. Comparative bioavailability of vitamins in human foods sourced from animals and plants. Crit Rev Food Sci Nutr 2024; 64:11590-11625. [PMID: 37522617 DOI: 10.1080/10408398.2023.2241541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Vitamins are essential components of enzyme systems involved in normal growth and function. The quantitative estimation of the proportion of dietary vitamins, that is in a form available for utilization by the human body, is limited and fragmentary. This review provides the current state of knowledge on the bioavailability of thirteen vitamins and choline, to evaluate whether there are differences in vitamin bioavailability when human foods are sourced from animals or plants. The bioavailability of naturally occurring choline, vitamin D, vitamin E, and vitamin K in food awaits further studies. Animal-sourced foods are the almost exclusive natural sources of dietary vitamin B-12 (65% bioavailable) and preformed vitamin A retinol (74% bioavailable), and contain highly bioavailable biotin (89%), folate (67%), niacin (67%), pantothenic acid (80%), riboflavin (61%), thiamin (82%), and vitamin B-6 (83%). Plant-based foods are the main natural sources of vitamin C (76% bioavailable), provitamin A carotenoid β-carotene (15.6% bioavailable), riboflavin (65% bioavailable), thiamin (81% bioavailable), and vitamin K (16.5% bioavailable). The overview of studies showed that in general, vitamins in foods originating from animals are more bioavailable than vitamins in foods sourced from plants.
Collapse
Affiliation(s)
| | - Paul J Moughan
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
12
|
Eslami M, Alibabaei F, Babaeizad A, Banihashemian SZ, Mazandarani M, Hoseini A, Ramezankhah M, Oksenych V, Yousefi B. The Importance of Gut Microbiota on Choline Metabolism in Neurodegenerative Diseases. Biomolecules 2024; 14:1345. [PMID: 39595522 PMCID: PMC11591558 DOI: 10.3390/biom14111345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
The gut microbiota is a complex ecosystem that influences digestion, immune response, metabolism, and has been linked to health and well-being. Choline is essential for neurotransmitters, lipid transport, cell-membrane signaling, methyl-group metabolism and is believed to have neuroprotective properties. It is found in two forms, water-soluble and lipid-soluble, and its metabolism is different. Long-term choline deficiency is associated with many diseases, and supplements are prescribed for improved health. Choline supplements can improve cognitive function in adults but not significantly. Choline is a precursor of phospholipids and an acetylcholine neurotransmitter precursor and can be generated de novo from phosphatidylcholine via phosphatidylethanolamine-N-methyltransferase and choline oxidase. Choline supplementation has been found to have a beneficial effect on patients with neurodegenerative diseases, such as Alzheimer's disease (AD), by increasing amyloid-β, thioflavin S, and tau hyper-phosphorylation. Choline supplementation has been shown to reduce amyloid-plaque load and develop spatial memory in an APP/PS1 mice model of AD. Choline is necessary for normative and improved function of brain pathways and can reduce amyloid-β deposition and microgliosis. Clinical research suggests that early neurodegenerative diseases (NDs) can benefit from a combination of choline supplements and the drugs currently used to treat NDs in order to improve memory performance and synaptic functioning.
Collapse
Affiliation(s)
- Majid Eslami
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan 35134, Iran;
| | - Farnaz Alibabaei
- Student Research Committee, School of Medicine, Semnan University of Medical Sciences, Semnan 35134, Iran;
| | - Ali Babaeizad
- School of Medicine, Semnan University of Medical Sciences, Semnan 35134, Iran; (A.B.); (S.Z.B.)
| | | | - Mahdi Mazandarani
- Endocrinology and Metabolism Research Center, Faculty of Medicine, Tehran University of Medical Sciences, Tehran 11369, Iran;
| | - Aref Hoseini
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari 49414, Iran;
| | - Mohammad Ramezankhah
- Student Research Committee, Faculty of Medicine, Babol University of Medical Sciences, Babol 47134, Iran;
| | - Valentyn Oksenych
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Bahman Yousefi
- Cancer Research Center, Faculty of Medicine, Semnan University of Medical Sciences, Semnan 35134, Iran
| |
Collapse
|
13
|
Sánchez V, Baumann A, Kromm F, Yergaliyev T, Brandt A, Scholda J, Kopp F, Camarinha-Silva A, Bergheim I. Oral supplementation of choline attenuates the development of alcohol-related liver disease (ALD). Mol Med 2024; 30:181. [PMID: 39425011 PMCID: PMC11488139 DOI: 10.1186/s10020-024-00950-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Chronic alcohol intake is associated with alterations of choline metabolism in various tissues. Here, we assessed if an oral choline supplementation attenuated the development of alcohol-related liver disease (ALD) in mice. METHODS Female C57BL/6 J mice (n = 8/group) were either pair-fed a liquid control diet, or a Lieber DeCarli liquid diet (5% ethanol) ± 2.7 g choline/kg diet for 29 days. Liver damage, markers of intestinal permeability and intestinal microbiota composition were determined. Moreover, the effects of choline on ethanol-induced intestinal permeability were assessed in an ex vivo model. RESULTS ALD development as determined by liver histology and assessing markers of inflammation (e.g., nitric oxide, interleukin 6 and 4-hydroxynonenal protein adducts) was attenuated by the supplementation of choline. Intestinal permeability in small intestine being significantly higher in ethanol-fed mice was at the level of controls in ethanol-fed mice receiving choline. In contrast, no effects of the choline supplementation were found on intestinal microbiota composition. Choline also significantly attenuated the ethanol-induced intestinal barrier dysfunction in small intestinal tissue ex vivo, an effect almost entirely abolished by the choline oxidase inhibitor dimbunol. CONCLUSION Our results suggest that an oral choline supplementation attenuates the development of ALD in mice and is related to a protection from intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Victor Sánchez
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), A-1090, Vienna, Austria
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), A-1090, Vienna, Austria
| | - Franziska Kromm
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), A-1090, Vienna, Austria
| | - Timur Yergaliyev
- Livestock Microbial Ecology Department, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Annette Brandt
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), A-1090, Vienna, Austria
| | - Julia Scholda
- Department of Pharmaceutical Sciences, Clinical Pharmacy Group, University of Vienna, Vienna, Austria
| | - Florian Kopp
- Department of Pharmaceutical Sciences, Clinical Pharmacy Group, University of Vienna, Vienna, Austria
| | - Amélia Camarinha-Silva
- Livestock Microbial Ecology Department, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), A-1090, Vienna, Austria.
| |
Collapse
|
14
|
Bernard DJ, Pangilinan F, Mendina C, Desporte T, Wincovitch SM, Walsh DJ, Porter RK, Molloy AM, Shane B, Brody LC. SLC25A48 influences plasma levels of choline and localizes to the inner mitochondrial membrane. Mol Genet Metab 2024; 143:108518. [PMID: 39047301 DOI: 10.1016/j.ymgme.2024.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
Choline contributes to the biogenesis of methyl groups, neurotransmitters, and cell membranes. Our genome-wide association study (GWAS) of circulating choline in 2228 college students found that alleles in SLC25A48 (rs6596270) influence choline concentrations in men (p = 9.6 × 10-8), but not women. Previously, the subcellular location and function of SLC25A48 were unknown. Using super-resolution immunofluorescence microscopy, we localized SLC25A48 to the inner mitochondrial membrane. Our results suggest that SLC25A48 transports choline across the inner mitochondrial membrane.
Collapse
Affiliation(s)
- David J Bernard
- Gene and Environment Interaction Section, SBRB, NHGRI, NIH, Bethsda, Maryland, USA
| | - Faith Pangilinan
- Gene and Environment Interaction Section, SBRB, NHGRI, NIH, Bethsda, Maryland, USA
| | - Caitlin Mendina
- Gene and Environment Interaction Section, SBRB, NHGRI, NIH, Bethsda, Maryland, USA
| | - Tara Desporte
- Gene and Environment Interaction Section, SBRB, NHGRI, NIH, Bethsda, Maryland, USA
| | | | - Darren J Walsh
- Gene and Environment Interaction Section, SBRB, NHGRI, NIH, Bethsda, Maryland, USA
| | - Richard K Porter
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Anne M Molloy
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Barry Shane
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Lawrence C Brody
- Gene and Environment Interaction Section, SBRB, NHGRI, NIH, Bethsda, Maryland, USA.
| |
Collapse
|
15
|
Coursen JC, Tuhy T, Naranjo M, Woods A, Hummers LK, Shah AA, Suresh K, Visovatti SH, Mathai SC, Hassoun PM, Damico RL, Simpson CE. Aberrant long-chain fatty acid metabolism associated with evolving systemic sclerosis-associated pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2024; 327:L54-L64. [PMID: 38651694 PMCID: PMC11380974 DOI: 10.1152/ajplung.00057.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
We sought to investigate differential metabolism in patients with systemic sclerosis (SSc) who develop pulmonary arterial hypertension (PAH) versus those who do not, as a method of identifying potential disease biomarkers. In a nested case-control design, serum metabolites were assayed in SSc subjects who developed right heart catheterization-confirmed PAH (n = 22) while under surveillance in a longitudinal cohort from Johns Hopkins, then compared with metabolites assayed in matched SSc patients who did not develop PAH (n = 22). Serum samples were collected at "proximate" (within 12 months) and "distant" (within 1-5 yr) time points relative to PAH diagnosis. Metabolites were identified using liquid chromatography-mass spectroscopy (LC-MS). An LC-MS dataset from SSc subjects with either mildly elevated pulmonary pressures or overt PAH from the University of Michigan was compared. Differentially abundant metabolites were tested as predictors of PAH in two additional validation SSc cohorts. Long-chain fatty acid metabolism (LCFA) consistently differed in SSc-PAH versus SSc without PH. LCFA metabolites discriminated SSc-PAH patients with mildly elevated pressures in the Michigan cohort and predicted SSc-PAH up to 2 yr before clinical diagnosis in the Hopkins cohort. Acylcholines containing LCFA residues and linoleic acid metabolites were most important for discriminating SSc-PAH. Combinations of acylcholines and linoleic acid metabolites provided good discrimination of SSc-PAH across cohorts. Aberrant lipid metabolism is observed throughout the evolution of PAH in SSc. Lipidomic signatures of abnormal LCFA metabolism distinguish SSc-PAH patients from those without PH, including before clinical diagnosis and in mild disease.NEW & NOTEWORTHY Abnormal lipid metabolism is evident across time in the development of SSc-PAH, and dysregulated long-chain fatty acid metabolism predicts overt PAH.
Collapse
Affiliation(s)
- Julie C Coursen
- Division of Hospital Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Tijana Tuhy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Mario Naranjo
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania, United States
| | - Adrianne Woods
- Division of Rheumatology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Laura K Hummers
- Division of Rheumatology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Ami A Shah
- Division of Rheumatology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Scott H Visovatti
- Division of Cardiology, Department of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Stephen C Mathai
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Rachel L Damico
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Catherine E Simpson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
16
|
Bernhard W, Böckmann KA, Minarski M, Wiechers C, Busch A, Bach D, Poets CF, Franz AR. Evidence and Perspectives for Choline Supplementation during Parenteral Nutrition-A Narrative Review. Nutrients 2024; 16:1873. [PMID: 38931230 PMCID: PMC11206924 DOI: 10.3390/nu16121873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Choline is an essential nutrient, with high requirements during fetal and postnatal growth. Tissue concentrations of total choline are tightly regulated, requiring an increase in its pool size proportional to growth. Phosphatidylcholine and sphingomyelin, containing a choline headgroup, are constitutive membrane phospholipids, accounting for >85% of total choline, indicating that choline requirements are particularly high during growth. Daily phosphatidylcholine secretion via bile for lipid digestion and very low-density lipoproteins for plasma transport of arachidonic and docosahexaenoic acid to other organs exceed 50% of its hepatic pool. Moreover, phosphatidylcholine is required for converting pro-apoptotic ceramides to sphingomyelin, while choline is the source of betaine as a methyl donor for creatine synthesis, DNA methylation/repair and kidney function. Interrupted choline supply, as during current total parenteral nutrition (TPN), causes a rapid drop in plasma choline concentration and accumulating deficit. The American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) defined choline as critical to all infants requiring TPN, claiming its inclusion in parenteral feeding regimes. We performed a systematic literature search in Pubmed with the terms "choline" and "parenteral nutrition", resulting in 47 relevant publications. Their results, together with cross-references, are discussed. While studies on parenteral choline administration in neonates and older children are lacking, preclinical and observational studies, as well as small randomized controlled trials in adults, suggest choline deficiency as a major contributor to acute and chronic TPN-associated liver disease, and the safety and efficacy of parenteral choline administration for its prevention. Hence, we call for choline formulations suitable to be added to TPN solutions and clinical trials to study their efficacy, particularly in growing children including preterm infants.
Collapse
Affiliation(s)
- Wolfgang Bernhard
- Department of Neonatology, University Children’s Hospital, 72076 Tübingen, Germany; (W.B.); (K.A.B.); (M.M.); (C.W.); (C.F.P.)
| | - Katrin A. Böckmann
- Department of Neonatology, University Children’s Hospital, 72076 Tübingen, Germany; (W.B.); (K.A.B.); (M.M.); (C.W.); (C.F.P.)
| | - Michaela Minarski
- Department of Neonatology, University Children’s Hospital, 72076 Tübingen, Germany; (W.B.); (K.A.B.); (M.M.); (C.W.); (C.F.P.)
| | - Cornelia Wiechers
- Department of Neonatology, University Children’s Hospital, 72076 Tübingen, Germany; (W.B.); (K.A.B.); (M.M.); (C.W.); (C.F.P.)
| | - Annegret Busch
- Pharmaceutical Department, University Hospital, 72076 Tübingen, Germany; (A.B.); (D.B.)
| | - Daniela Bach
- Pharmaceutical Department, University Hospital, 72076 Tübingen, Germany; (A.B.); (D.B.)
| | - Christian F. Poets
- Department of Neonatology, University Children’s Hospital, 72076 Tübingen, Germany; (W.B.); (K.A.B.); (M.M.); (C.W.); (C.F.P.)
| | - Axel R. Franz
- Department of Neonatology, University Children’s Hospital, 72076 Tübingen, Germany; (W.B.); (K.A.B.); (M.M.); (C.W.); (C.F.P.)
- Center for Pediatric Clinical Studies, University Children’s Hospital, 72076 Tübingen, Germany
| |
Collapse
|
17
|
Agarwal M, Roth K, Yang Z, Sharma R, Maddipati K, Westrick J, Petriello MC. Loss of flavin-containing monooxygenase 3 modulates dioxin-like polychlorinated biphenyl 126-induced oxidative stress and hepatotoxicity. ENVIRONMENTAL RESEARCH 2024; 250:118492. [PMID: 38373550 PMCID: PMC11102846 DOI: 10.1016/j.envres.2024.118492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Dioxin-like pollutants (DLPs), such as polychlorinated biphenyl 126 (PCB 126), are synthetic chemicals classified as persistent organic pollutants. They accumulate in adipose tissue and have been linked to cardiometabolic disorders, including fatty liver disease. The toxicity of these compounds is associated with activation of the aryl hydrocarbon receptor (Ahr), leading to the induction of phase I metabolizing enzyme cytochrome P4501a1 (Cyp1a1) and the subsequent production of reactive oxygen species (ROS). Recent research has shown that DLPs can also induce the xenobiotic detoxification enzyme flavin-containing monooxygenase 3 (FMO3), which plays a role in metabolic homeostasis. We hypothesized whether genetic deletion of Fmo3 could protect mice, particularly in the liver, where Fmo3 is most inducible, against PCB 126 toxicity. To test this hypothesis, male C57BL/6 wild-type (WT) mice and Fmo3 knockout (Fmo3 KO) mice were exposed to PCB 126 or vehicle (safflower oil) during a 12-week study, at weeks 2 and 4. Various analyses were performed, including hepatic histology, RNA-sequencing, and quantitation of PCB 126 and F2-isoprostane concentrations. The results showed that PCB 126 exposure caused macro and microvesicular fat deposition in WT mice, but this macrovesicular fatty change was absent in Fmo3 KO mice. Moreover, at the pathway level, the hepatic oxidative stress response was significantly different between the two genotypes, with the induction of specific genes observed only in WT mice. Notably, the most abundant F2-isoprostane, 8-iso-15-keto PGE2, increased in WT mice in response to PCB 126 exposure. The study's findings also demonstrated that hepatic tissue concentrations of PCB 126 were higher in WT mice compared to Fmo3 KO mice. In summary, the absence of FMO3 in mice led to a distinctive response to dioxin-like pollutant exposure in the liver, likely due to alterations in lipid metabolism and storage, underscoring the complex interplay of genetic factors in the response to environmental toxins.
Collapse
Affiliation(s)
- Manisha Agarwal
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, 48202, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Katherine Roth
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Zhao Yang
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Rahul Sharma
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Krishnarao Maddipati
- Department of Pathology, Lipidomic Core Facility, Wayne State University, Detroit, MI, 48202, USA
| | - Judy Westrick
- Department of Chemistry, Lumigen Instrumentation Center, Wayne State University, Detroit, MI, 48202, USA
| | - Michael C Petriello
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, 48202, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
18
|
Lin H, Zhong Z, Zhang C, Jin X, Qi X, Lian J. An inverse association of dietary choline with atherosclerotic cardiovascular disease among US adults: a cross-sectional NHANES analysis. BMC Public Health 2024; 24:1460. [PMID: 38822299 PMCID: PMC11141004 DOI: 10.1186/s12889-024-18837-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 05/13/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND The role of diet choline in atherosclerotic cardiovascular disease (ASCVD) is uncertain. Findings from animal experiments are contradictory while there is a lack of clinical investigations. This study aimed to investigate the association between choline intake and ASCVD based on individuals from the National Health and Nutrition Examination Survey (NHANES) database. METHODS This cross-sectional study was conducted in 5525 individuals from the NHANES between 2011 and 2018. Participants were categorized into the ASCVD (n = 5015) and non-ASCVD (n = 510) groups. Univariable and multivariable-adjusted regression analyses were employed to investigate the relationship between diet choline and pertinent covariates. Logistic regression analysis and restricted cubic spline analysis were used to evaluate the association between choline intake and ASCVD. RESULTS ASCVD participants had higher choline intake compared to those without ASCVD. In the higher tertiles of choline intake, there was a greater proportion of males, married individuals, highly educated individuals, and those with increased physical activity, but a lower proportion of smokers and drinkers. In the higher tertiles of choline intake, a lower proportion of individuals had a history of congestive heart failure and stroke. After adjusting for age, gender, race, ethnicity, and physical activity, an inverse association between choline intake and heart disease, stroke, and ASCVD was found. A restricted cubic spline analysis showed a mirrored J-shaped relationship between choline and ASCVD, stroke and congestive heart failure in males. There was no association between dietary choline and metabolic syndrome. CONCLUSION An inverse association was observed between choline intake and ASVCD among U.S. adults. Further large longitudinal studies are needed to test the causal relationship of choline and ASVCD.
Collapse
Affiliation(s)
- Hui Lin
- Department of Cardiology, The Affiliated Lihuili Hospital of Ningbo University Health Science Center, Ningbo, Zhejiang, 315211, China
| | - Zuoquan Zhong
- Department of Respiratory Medicine, Shaoxing People's Hospital, Shaoxing, China
| | - Chuanjin Zhang
- Department of Cardiology, The Affiliated Lihuili Hospital of Ningbo University Health Science Center, Ningbo, Zhejiang, 315211, China
| | - Xiaojun Jin
- Department of Cardiology, The Affiliated Lihuili Hospital of Ningbo University Health Science Center, Ningbo, Zhejiang, 315211, China
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing, China.
| | - Jiangfang Lian
- Department of Cardiology, The Affiliated Lihuili Hospital of Ningbo University Health Science Center, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
19
|
Suzuki A, Henao R, Reed MC, Nijhout HF, Tripathi M, Singh BK, Yen PM, Diehl AM, Abdelmalek MF. Lower hepatic CBS and PEMT expression in advanced NAFLD: inferencing strategies to lower homocysteine with a mathematical model. METABOLISM AND TARGET ORGAN DAMAGE 2024; 4. [DOI: 10.20517/mtod.2024.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Aim: Hepatic homocysteine (Hcy) accumulation promotes inflammation and fibrosis in experimental nonalcoholic fatty liver disease (NAFLD), while vitamin B12 and folate reduce hepatic Hcy and protect animals from nonalcoholic steatohepatitis. This suggests clinical implications for preventing/treating patients with NAFLD. Given the known sex-specific regulation of one-carbon metabolism (OCM), the response to various OCM cofactors may vary by sex and reproductive status. We aimed to strategize an effective Hcy-lowering treatment in broader NAFLD patients while discerning disparities in treatment responses.
Methods: We analyzed existing hepatic microarray data relevant to Hcy metabolism with clinical and histologic data from patients with NAFLD (N = 82), while considering potential age/sex disparities. Additionally, we performed computer simulation analyses using a mathematical model of OCM to predict hepatic Hcy-lowering effects of OCM cofactors by sex.
Results: Of 82 patients with NAFLD, 98% had at least one metabolic feature [i.e., metabolic dysfunction-associated steatotic liver disease (MASLD)]. Lower hepatic gene expressions of cystathionine-beta synthase (CBS ) and phosphatidyl- ethanolamine N-methyltransferase (PEMT ) were associated with more severe fibrosis in NAFLD, while sub-analysis suggested possible variations by age and sex. The simulation analysis demonstrated sex differences in the Hcy-lowering effects of the OCM cofactors (vitamins B6 and B12, folate, and betaine), with the combination of these cofactors consistently showing the maximum Hcy-lowering effect in both sexes.
Conclusion: We theorize that the combination of OCM cofactors would maximize Hcy-lowering effects in the broader MASLD population. Our findings also underscore the importance of considering sex and age in designing future studies on homocysteine metabolism.
Collapse
|
20
|
Sfakianoudis K, Zikopoulos A, Grigoriadis S, Seretis N, Maziotis E, Anifandis G, Xystra P, Kostoulas C, Giougli U, Pantos K, Simopoulou M, Georgiou I. The Role of One-Carbon Metabolism and Methyl Donors in Medically Assisted Reproduction: A Narrative Review of the Literature. Int J Mol Sci 2024; 25:4977. [PMID: 38732193 PMCID: PMC11084717 DOI: 10.3390/ijms25094977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
One-carbon (1-C) metabolic deficiency impairs homeostasis, driving disease development, including infertility. It is of importance to summarize the current evidence regarding the clinical utility of 1-C metabolism-related biomolecules and methyl donors, namely, folate, betaine, choline, vitamin B12, homocysteine (Hcy), and zinc, as potential biomarkers, dietary supplements, and culture media supplements in the context of medically assisted reproduction (MAR). A narrative review of the literature was conducted in the PubMed/Medline database. Diet, ageing, and the endocrine milieu of individuals affect both 1-C metabolism and fertility status. In vitro fertilization (IVF) techniques, and culture conditions in particular, have a direct impact on 1-C metabolic activity in gametes and embryos. Critical analysis indicated that zinc supplementation in cryopreservation media may be a promising approach to reducing oxidative damage, while female serum homocysteine levels may be employed as a possible biomarker for predicting IVF outcomes. Nonetheless, the level of evidence is low, and future studies are needed to verify these data. One-carbon metabolism-related processes, including redox defense and epigenetic regulation, may be compromised in IVF-derived embryos. The study of 1-C metabolism may lead the way towards improving MAR efficiency and safety and ensuring the lifelong health of MAR infants.
Collapse
Affiliation(s)
- Konstantinos Sfakianoudis
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (K.P.)
| | - Athanasios Zikopoulos
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
- Obstetrics and Gynecology, Royal Cornwall Hospital, Treliske, Truro TR1 3LJ, UK
| | - Sokratis Grigoriadis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Nikolaos Seretis
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Evangelos Maziotis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - George Anifandis
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41222 Larisa, Greece;
| | - Paraskevi Xystra
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Charilaos Kostoulas
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Urania Giougli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Konstantinos Pantos
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (K.P.)
| | - Mara Simopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| |
Collapse
|
21
|
Karlsson T, Winkvist A, Strid A, Lindahl B, Johansson I. Associations of dietary choline and betaine with all-cause mortality: a prospective study in a large Swedish cohort. Eur J Nutr 2024; 63:785-796. [PMID: 38175250 PMCID: PMC10948568 DOI: 10.1007/s00394-023-03300-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE Investigate the association between choline and betaine intake and all-cause mortality in a large Swedish cohort. METHODS Women (52,246) and men (50,485) attending the Västerbotten Intervention Programme 1990-2016 were included. Cox proportional hazard regression models adjusted for energy intake, age, BMI, smoking, education, and physical activity were used to estimate mortality risk according to betaine, total choline, phosphatidylcholine, glycerophosphocholine, phosphocholine, sphingomyelin, and free choline intakes [continuous (per 50 mg increase) and in quintiles]. RESULTS During a median follow-up of 16 years, 3088 and 4214 deaths were registered in women and men, respectively. Total choline intake was not associated with all-cause mortality in women (HR 1.01; 95% CI 0.97, 1.06; P = 0.61) or men (HR 1.01; 95% CI 0.98, 1.04; P = 0.54). Betaine intake was associated with decreased risk of all-cause mortality in women (HR 0.95; 95% CI 0.91, 0.98; P < 0.01) but not in men. Intake of free choline was negatively associated with risk of all-cause mortality in women (HR 0.98; 95% CI 0.96, 1.00; P = 0.01). No other associations were found between intake of the different choline compounds and all-cause mortality. In women aged ≥ 55 years, phosphatidylcholine intake was positively associated with all-cause mortality. In men with higher folate intake, total choline intake was positively associated with all-cause mortality. CONCLUSION Overall, our results do not support that intake of total choline is associated with all-cause mortality. However, some associations were modified by age and with higher folate intake dependent on sex. Higher intake of betaine was associated with lower risk of all-cause mortality in women.
Collapse
Affiliation(s)
- Therese Karlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, P. O. Box 459, S-405 30, Gothenburg, Sweden.
- Department of Life Sciences, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden.
| | - Anna Winkvist
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, P. O. Box 459, S-405 30, Gothenburg, Sweden
- Department of Public Health and Clinical Medicine, Sustainable Health, Umeå University, Umeå, Sweden
| | - Anna Strid
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, P. O. Box 459, S-405 30, Gothenburg, Sweden
| | - Bernt Lindahl
- Department of Public Health and Clinical Medicine, Sustainable Health, Umeå University, Umeå, Sweden
| | | |
Collapse
|
22
|
Srećković M, Backović D, Dugandžija T, Dragičević I, Nikolić LP, Mulić M, Damnjanović B. EXPOSURE TO ARSENIC IN DRINKING WATER AND RISK OF BLADDER CANCER. Acta Clin Croat 2024; 63:55-64. [PMID: 39959312 PMCID: PMC11827384 DOI: 10.20471/acc.2024.63.01.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/19/2020] [Indexed: 02/18/2025] Open
Abstract
The municipality of Bogatić, part of Mačva District, belongs to the Pannonian Basin, where high concentrations of arsenic in artesian wells were detected. Numerous epidemiological studies have confirmed the association of exposure to arsenic in drinking water and bladder cancer (C67). This retrospective ten-year analysis included age-standardized incidence rates (ASRs) and age-specific incidence rates of C67 in the municipality of Bogatić and rural municipalities of Mačva District. The concentration of arsenic in drinking water was determined at Šabac Public Health Institute (PHI) laboratories in 2015. ASRs were estimated using data from regional cancer registries at Šabac PHI and compared by use of the Mann-Whitney U test. Control population was recruited from an area where there were no artesian wells or hydrogeological conditions that would indicate elevated concentrations of arsenic in drinking water. Arsenic levels in all artesian wells in Bogatić municipality were 1.4 to 41 times higher than the maximum permissible concentration (mean 120 µg/L±165). Female subjects from Bogatić municipality had higher ASRs of C67 compared with the populations in rural municipalities of Mačva District (p<0.01), while the incidence of bladder cancer was by 13% greater than that in central Serbia (standardized incidence ratio, 113; 95% CI 96.97-131.35). Male subjects from Bogatić municipality had higher ASRs of C67 but the difference was not statistically significant (p>0.05). Our analyses suggested that exposure to arsenic in drinking water could triple the risk of bladder cancer. These results support the conclusions of previous studies that there may be an association between higher concentrations of arsenic in drinking water and higher ASRs of bladder cancer in both male and female subjects.
Collapse
Affiliation(s)
- Marijana Srećković
- Šabac Academy of Professional Studies, Department of Medical and Business-Technological Studies, Šabac, Serbia
- Institute of Hygiene and Medical Ecology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Dušan Backović
- Institute of Hygiene and Medical Ecology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tihomir Dugandžija
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Oncology Institute of Vojvodina, Novi Sad, Serbia
| | | | - Ljubica Pajić Nikolić
- Šabac Academy of Professional Studies, Department of Medical and Business-Technological Studies, Šabac, Serbia
| | - Maida Mulić
- Medical Faculty, University of Tuzla, Department of Social Medicine, Tuzla, Bosnia and Herzegovina
- Public Health Institute of Tuzla Canton, Tuzla, Bosnia and Herzegovina
| | - Bojan Damnjanović
- Šabac Academy of Professional Studies, Department of Medical and Business-Technological Studies, Šabac, Serbia
| |
Collapse
|
23
|
Sheyn D, Momotaz H, Hijaz A, Zeleznik O, Minassian V, Penney KL. Effect of Dietary Choline Consumption on the Development of Urinary Urgency Incontinence in a Longitudinal Cohort of Women. Int Urogynecol J 2024; 35:667-676. [PMID: 38334759 DOI: 10.1007/s00192-024-05740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024]
Abstract
INTRODUCTION AND HYPOTHESIS The objective of this study was to determine whether differences in the cumulative dietary intake of choline, is associated with the risk of developing urge urinary incontinence (UUI). METHODS This was an analysis within the Nurses' Health Study (NHS) I and II. The main exposure was the cumulative daily intake for each choline-containing compound obtained from a detailed daily food frequency questionnaire. The primary outcome was UUI, defined as urine loss with a sudden feeling of bladder fullness or when a toilet is inaccessible, occurring >1/month. Cox proportional hazards regression models were used to calculate multivariate-adjusted relative risks and 95% confidence intervals (CIs) for the association between total choline and choline derivatives and risk of UUI. Fixed effects meta-analyses of results from NHSI and NHSII were performed for postmenopausal women only to obtain a pooled estimate of the impact of choline consumption on UUI. RESULTS There were 33,273 participants in NHSI and 38,732 in NHSII who met all the criteria for inclusion in the analysis. The incidence of UUI was 9.41% (n=3,139) in NHSI and 4.25% (n=1,646) in NHSII. After adjusting for confounders choline was not found to be associated with UUI in postmenopausal women. However, in premenopausal women, relative to the lowest quartile, the highest quartile of consumption of total choline (aRR = 0.79, 95% CI: 0.64-0.99), free choline (aRR = 0.74, 95% CI: 0.58-0.94), and phosphocholine (aRR = 0.77, 95% CI: 0.61-0.96) were associated with a reduced risk of UUI. CONCLUSIONS Increased dietary choline consumption was associated with a reduced risk of UUI among premenopausal women.
Collapse
Affiliation(s)
- David Sheyn
- Department of Urology, University Hospitals System, Cleveland, OH, 44104, USA.
- Case Western Reserve University, Cleveland, OH, USA.
| | | | - Adonis Hijaz
- Department of Urology, University Hospitals System, Cleveland, OH, 44104, USA
- Case Western Reserve University, Cleveland, OH, USA
| | - Oana Zeleznik
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Vatche Minassian
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kathryn L Penney
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
24
|
Obeid R, Schön C, Derbyshire E, Jiang X, Mellott TJ, Blusztajn JK, Zeisel SH. A Narrative Review on Maternal Choline Intake and Liver Function of the Fetus and the Infant; Implications for Research, Policy, and Practice. Nutrients 2024; 16:260. [PMID: 38257153 PMCID: PMC10820518 DOI: 10.3390/nu16020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Dietary choline is needed to maintain normal health, including normal liver function in adults. Fatty liver induced by a choline-deficient diet has been consistently observed in human and animal studies. The effect of insufficient choline intake on hepatic fat accumulation is specific and reversible when choline is added to the diet. Choline requirements are higher in women during pregnancy and lactation than in young non-pregnant women. We reviewed the evidence on whether choline derived from the maternal diet is necessary for maintaining normal liver function in the fetus and breastfed infants. Studies have shown that choline from the maternal diet is actively transferred to the placenta, fetal liver, and human milk. This maternal-to-child gradient can cause depletion of maternal choline stores and increase the susceptibility of the mother to fatty liver. Removing choline from the diet of pregnant rats causes fatty liver both in the mother and the fetus. The severity of fatty liver in the offspring was found to correspond to the severity of fatty liver in the respective mothers and to the duration of feeding the choline-deficient diet to the mother. The contribution of maternal choline intake in normal liver function of the offspring can be explained by the role of phosphatidylcholine in lipid transport and as a component of cell membranes and the function of choline as a methyl donor that enables synthesis of phosphatidylcholine in the liver. Additional evidence is needed on the effect of choline intake during pregnancy and lactation on health outcomes in the fetus and infant. Most pregnant and lactating women are currently not achieving the adequate intake level of choline through the diet. Therefore, public health policies are needed to ensure sufficient choline intake through adding choline to maternal multivitamin supplements.
Collapse
Affiliation(s)
- Rima Obeid
- Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, D-66420 Homburg, Germany
| | - Christiane Schön
- BioTeSys GmbH, Nutritional CRO, Schelztorstrasse 54-56, D-73728 Esslingen, Germany
| | | | - Xinyin Jiang
- Department of Health and Nutrition Sciences, Brooklyn College, City University of New York, 4110C Ingersoll Hall, 2900 Bedford Ave., Brooklyn, NY 11210, USA
| | - Tiffany J. Mellott
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jan Krzysztof Blusztajn
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Steven H. Zeisel
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27514, USA
| |
Collapse
|
25
|
Myers AJ, Potts C, Makarewicz JA, McGee E, Dumas JA. Choline kinase alpha genotype is related to hippocampal brain volume and cognition in postmenopausal women. Heliyon 2024; 10:e23963. [PMID: 38226229 PMCID: PMC10788445 DOI: 10.1016/j.heliyon.2023.e23963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/19/2023] [Indexed: 01/17/2024] Open
Abstract
This study examined how single nucleotide polymorphisms (SNPs) related to choline synthesis and metabolism, processes largely regulated by estrogen, influenced hippocampal volume and neuropsychological function following menopause. We investigated the effect of choline kinase alpha (CHKA) genotype on brain volume and neuropsychological performance in postmenopausal women. The effect alleles of certain CHKA SNPs (rs6591331 T, rs10791957 A) are associated with varied responses to choline deficiency and delegation of choline to physiological pathways. The presence of these alleles was hypothesized to correlate with worse cognitive performance in women after menopause. Results from structural MRI scans revealed larger right hippocampal volumes in subjects with a T/T CHKA rs6591331 genotype compared to A/A subjects. Delayed memory scores from the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) were lower in subjects with T/T genotypes compared to those with the A/T genotype and the A/A genotype. Based on these findings, we proposed a CHKA-dependent mechanism present within the brain to compensate for the decreased estrogen and biosynthesized choline associated with menopause.
Collapse
Affiliation(s)
- Abigail J. Myers
- Department of Psychiatry, Larner College of Medicine, University of Vermont, USA
| | - Callum Potts
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Larner College of Medicine, University of Vermont, USA
| | - Jenna A. Makarewicz
- Department of Psychiatry, Larner College of Medicine, University of Vermont, USA
| | - Elizabeth McGee
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Larner College of Medicine, University of Vermont, USA
| | - Julie A. Dumas
- Department of Psychiatry, Larner College of Medicine, University of Vermont, USA
| |
Collapse
|
26
|
Roh T, Regan AK, Johnson NM, Hasan NT, Trisha NF, Aggarwal A, Han D. Association of arsenic exposure with measles antibody titers in US children: Influence of sex and serum folate levels. ENVIRONMENT INTERNATIONAL 2024; 183:108329. [PMID: 38071850 DOI: 10.1016/j.envint.2023.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/18/2023] [Accepted: 11/14/2023] [Indexed: 01/25/2024]
Abstract
Exposure to arsenic during childhood is associated with various adverse health conditions. However, little is known about the effect of arsenic exposure on vaccine-related humoral immunity in children. We analyzed data from the National Health and Nutrition Examination Survey (2003-2004 and 2009-2010) to study the relationship between urinary arsenic and measles antibody levels in 476 US children aged 6-11. Multivariable linear regression was used to evaluate the association, adjusting for cycle, age, race, body mass index (BMI), serum cotinine, poverty index ratio, and vitamin B12 and selenium intakes. Stratified analyses were conducted by sex and serum folate levels using the median as cutoff (18.7 ng/mL). The measles antibody concentrations in the 3rd and 4th quartiles were found to have significantly decreased by 28.5 % (95 % Confidence Interval (CI) -47.6, -2.28) and 36.8 % (95 % CI -50.2, -19.5), compared to the lowest quartile among boys with serum folate levels lower than 18.7 ng/ml. The serum measles antibody titers significantly decreased by 16.7 % (95 %CI -25.0, -7.61) for each doubling of creatinine-corrected urinary total inorganic arsenic concentrations in the same group. No associations were found in boys with high serum folate levels or in girls. Further prospective studies are needed to validate these findings and develop interventions to protect children from infectious diseases.
Collapse
Affiliation(s)
- Taehyun Roh
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA.
| | - Annette K Regan
- School of Nursing and Health Professions, University of San Francisco, San Francisco, CA 94117, USA
| | - Natalie M Johnson
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Nishat Tasnim Hasan
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Nusrat Fahmida Trisha
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Anisha Aggarwal
- Department of Health Behavior, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Daikwon Han
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
27
|
Rodriguez-Ramiro I, Pastor-Fernández A, López-Aceituno JL, Garcia-Dominguez E, Sierra-Ramirez A, Valverde AM, Martinez-Pastor B, Efeyan A, Gomez-Cabrera MC, Viña J, Fernandez-Marcos PJ. Pharmacological and genetic increases in liver NADPH levels ameliorate NASH progression in female mice. Free Radic Biol Med 2024; 210:448-461. [PMID: 38036067 DOI: 10.1016/j.freeradbiomed.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is one of the fastest growing liver diseases worldwide, and oxidative stress is one of NASH main key drivers. Nicotinamide adenine dinucleotide phosphate (NADPH) is the ultimate donor of reductive power to a number of antioxidant defences. Here, we explored the potential of increasing NADPH levels to prevent NASH progression. We used nicotinamide riboside (NR) supplementation or a G6PD-tg mouse line harbouring an additional copy of the human G6PD gene. In a NASH mouse model induced by feeding mice a methionine-choline deficient (MCD) diet for three weeks, both tools increased the hepatic levels of NADPH and ameliorated the NASH phenotype induced by the MCD intervention, but only in female mice. Boosting NADPH levels in females increased the liver expression of the antioxidant genes Gsta3, Sod1 and Txnrd1 in NR-treated mice, or of Gsr for G6PD-tg mice. Both strategies significantly reduced hepatic lipid peroxidation. NR-treated female mice showed a reduction of steatosis accompanied by a drop of the hepatic triglyceride levels, that was not observed in G6PD-tg mice. NR-treated mice tended to reduce their lobular inflammation, showed a reduction of the NK cell population and diminished transcription of the damage marker Lcn2. G6PD-tg female mice exhibited a reduction of their lobular inflammation and hepatocyte ballooning induced by the MCD diet, that was related to a reduction of the monocyte-derived macrophage population and the Tnfa, Ccl2 and Lcn2 gene expression. As conclusion, boosting hepatic NADPH levels attenuated the oxidative lipid damage and the exhausted antioxidant gene expression specifically in female mice in two different models of NASH, preventing the progression of the inflammatory process and hepatic injury.
Collapse
Affiliation(s)
- Ildefonso Rodriguez-Ramiro
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, E28049, Madrid, Spain; Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.
| | - Andrés Pastor-Fernández
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, E28049, Madrid, Spain
| | - José Luis López-Aceituno
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, E28049, Madrid, Spain
| | - Esther Garcia-Dominguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Aranzazu Sierra-Ramirez
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, E28049, Madrid, Spain
| | - Angela M Valverde
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC/UAM), Madrid, E28029, Spain; Centro de Investigaciones Biomédicas en Red de Diabetes y Enfermedades Metabólicas Asociadas, ISCIII, Spain
| | - Bárbara Martinez-Pastor
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alejo Efeyan
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Mari Carmen Gomez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Pablo J Fernandez-Marcos
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, E28049, Madrid, Spain.
| |
Collapse
|
28
|
Severi I, Perugini J, Ruocco C, Coppi L, Pedretti S, Di Mercurio E, Senzacqua M, Ragni M, Imperato G, Valerio A, Mitro N, Crestani M, Nisoli E, Giordano A. Activation of a non-neuronal cholinergic system in visceral white adipose tissue of obese mice and humans. Mol Metab 2024; 79:101862. [PMID: 38141849 PMCID: PMC10792749 DOI: 10.1016/j.molmet.2023.101862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Since white adipose tissue (WAT) lacks parasympathetic cholinergic innervation, the source of the acetylcholine (ACh) acting on white adipocyte cholinergic receptors is unknown. This study was designed to identify ACh-producing cells in mouse and human visceral WAT and to determine whether a non-neuronal cholinergic system becomes activated in obese inflamed WAT. METHODS Mouse epididymal WAT (eWAT) and human omental fat were studied in normal and obese subjects. The expression of the key molecules involved in cholinergic signaling was evaluated by qRT-PCR and western blotting whereas their tissue distribution and cellular localization were investigated by immunohistochemistry, confocal microscopy and in situ hybridization. ACh levels were measured by liquid chromatography/tandem mass spectrometry. The cellular effects of ACh were assessed in cultured human multipotent adipose-derived stem cell (hMADS) adipocytes. RESULTS In mouse eWAT, diet-induced obesity modulated the expression of key cholinergic molecular components and, especially, raised the expression of choline acetyltransferase (ChAT), the ACh-synthesizing enzyme, which was chiefly detected in interstitial macrophages, in macrophages forming crown-like structures (CLSs), and in multinucleated giant cells (MGCs). The stromal vascular fraction of obese mouse eWAT contained significantly higher ACh and choline levels than that of control mice. ChAT was undetectable in omental fat from healthy subjects, whereas it was expressed in a number of interstitial macrophages, CLSs, and MGCs from some obese individuals. In hMADS adipocytes stressed with tumor necrosis factor α, ACh, alone or combined with rivastigmine, significantly blunted monocyte chemoattractant protein 1 and interleukin 6 expression, it partially but significantly, restored adiponectin and GLUT4 expression, and promoted glucose uptake. CONCLUSIONS In mouse and human visceral WAT, obesity induces activation of a macrophage-dependent non-neuronal cholinergic system that is capable of exerting anti-inflammatory and insulin-sensitizing effects on white adipocytes.
Collapse
Affiliation(s)
- Ilenia Severi
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, 60126 Ancona, Italy
| | - Jessica Perugini
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, 60126 Ancona, Italy
| | - Chiara Ruocco
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milano, Italy
| | - Lara Coppi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20122 Milano, Italy
| | - Silvia Pedretti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20122 Milano, Italy
| | - Eleonora Di Mercurio
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, 60126 Ancona, Italy
| | - Martina Senzacqua
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, 60126 Ancona, Italy
| | - Maurizio Ragni
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milano, Italy
| | - Gabriele Imperato
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20122 Milano, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20122 Milano, Italy; Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Maurizio Crestani
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20122 Milano, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milano, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, 60126 Ancona, Italy; Center of Obesity, Marche Polytechnic University-United Hospitals, Ancona, Italy.
| |
Collapse
|
29
|
Li W, Li C, Liu T, Song Y, Chen P, Liu L, Wang B, Qu J. The association of serum choline concentrations with the risk of cancers: a community-based nested case-control study. Sci Rep 2023; 13:22144. [PMID: 38092871 PMCID: PMC10719238 DOI: 10.1038/s41598-023-49610-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023] Open
Abstract
Few studies have been designed to investigate the effect of serum choline on the risk of incident cancer. This study aims to explore the association between serum choline and the risk of new-onset cancer. We conducted a case-control study, including 199 patients with incident cancer and 199 matched controls during a median of 3.9 years of follow-up, nested within the China Stroke Primary Prevention Trial. Cubic spline regression (RCS) and conditional logistic regression analysis was used to assess the association of serum choline and incident cancer risk. We observed a positive dose-response association between serum choline levels and the risk of overall (p for overall = 0.046) and digestive system cancer (p for overall = 0.039). Compared with patients with the lowest choline levels (Q1 group), patients in the highest levels of choline (Q4) had a 3.69-fold and 6.01-fold increased risk of overall (OR = 3.69, 95% CI 1.17-11.63) and digestive system cancer (OR = 6.01, 95% CI 1.14-31.67). Elevated choline levels (per SD, 11.49 μg/mL) were associated with a higher risk of overall cancer among participants who were older, male, and smokers in the subgroup analyses. We found a positive association between elevated levels of serum choline with increased risk of incident cancer. Our findings have critical clinical implications for cancer prevention and diagnosis.Trial registration CSPPT, NCT00794885. Registered: November 20, 2008. https://www.clinicaltrials.gov/ct2/show/study/NCT00794885 https://www.clinicaltrials.gov/ct2/show/study/NCT00794885.
Collapse
Affiliation(s)
- Wenqiang Li
- Department of General Surgery, Aerospace Center Hospital, Beijing, 100038, China
| | - Chong Li
- Department of Oncology, Dazu Hospital of Chongqing Medical University, Chongqing, 402360, China
| | - Tong Liu
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China
| | - Yun Song
- Shenzhen Evergreen Medical Institute, Shenzhen, 518000, China
| | - Ping Chen
- Shenzhen Evergreen Medical Institute, Shenzhen, 518000, China
| | - Lishun Liu
- Shenzhen Evergreen Medical Institute, Shenzhen, 518000, China
| | - Binyan Wang
- Shenzhen Evergreen Medical Institute, Shenzhen, 518000, China.
| | - Jun Qu
- Department of General Surgery, Aerospace Center Hospital, Beijing, 100038, China.
| |
Collapse
|
30
|
Khan MQ, Hassan S, Lizaola-Mayo BC, Bhat M, Watt KD. Navigating the "specific etiology" steatohepatitis category: Evaluation and management of nonalcoholic/nonmetabolic dysfunction-associated steatohepatitis. Hepatology 2023:01515467-990000000-00637. [PMID: 37939197 DOI: 10.1097/hep.0000000000000674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Affiliation(s)
- Mohammad Qasim Khan
- Department of Internal Medicine, Division of Gastroenterology, University of Western Ontario, London, Ontario, Canada
| | - Sara Hassan
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| | - Blanca C Lizaola-Mayo
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Phoenix, Arizona, USA
| | - Mamatha Bhat
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Toronto, Toronto, Ontario, Canada
| | - Kymberly D Watt
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
31
|
Ashley-Martin J, Fisher M, Belanger P, Cirtiu CM, Arbuckle TE. Biomonitoring of inorganic arsenic species in pregnancy. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:921-932. [PMID: 35948664 PMCID: PMC10733137 DOI: 10.1038/s41370-022-00457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Exposure assessment of inorganic arsenic is challenging due to the existence of multiple species, complexity of arsenic metabolism, and variety of exposure sources. Exposure assessment of arsenic during pregnancy is further complicated by the physiological changes that occur to support fetal growth. Given the well-established toxicity of inorganic arsenic at high concentrations, continued research into the potential health effects of low-level exposure on maternal and fetal health is necessary. Our objectives were to review the value of and challenges inherent in measuring inorganic arsenic species in pregnancy and highlight related research priorities. We discussed how the physiological changes of pregnancy influence arsenic metabolism and necessitate the need for pregnancy-specific data. We reviewed the biomonitoring challenges according to common and novel biological matrices and discussed how each matrix differs according to half-life, bioavailability, availability of laboratory methods, and interpretation within pregnancy. Exposure assessment in both established and novel matrices that accounts for the physiological changes of pregnancy and complexity of speciation is a research priority. Standardization of laboratory method for novel matrices will help address these data gaps. Research is particularly lacking in contemporary populations of pregnant women without naturally elevated arsenic drinking water concentrations (i.e. <10 µg/l).
Collapse
Affiliation(s)
- Jillian Ashley-Martin
- Environmental Health, Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - Mandy Fisher
- Environmental Health, Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Patrick Belanger
- INSPQ, Centre de toxicologie du Québec, Direction de la santé environnementale, au travail et de la toxicology, Quebec, QC, Canada
| | - Ciprian Mihai Cirtiu
- INSPQ, Centre de toxicologie du Québec, Direction de la santé environnementale, au travail et de la toxicology, Quebec, QC, Canada
| | - Tye E Arbuckle
- Environmental Health, Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
32
|
Yang Y, Yang B, Liu B, Liang Y, Luo Q, Zhao Z, Liu Z, Zeng Q, Xiong C. Circulating choline levels are associated with prognoses in patients with pulmonary hypertension: a cohort study. BMC Pulm Med 2023; 23:313. [PMID: 37689632 PMCID: PMC10493021 DOI: 10.1186/s12890-023-02547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/02/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUNDS Mounting evidences have highlighted the association between metabolites and cardiovascular diseases. Our previous works have demonstrated that circulating metabolite, trimethylamine oxide, was associated with prognosis of patients with pulmonary hypertension (PH). Choline is a precursor of trimethylamine oxide and its role in PH remains unknown. Here, we aimed to validate the hypothesis that circulating choline levels were associated with prognoses in patients with PH. METHODS Inpatients diagnosed with PH-defined as mean pulmonary arterial pressure ≥ 25 mmHg by right heart catheterisation-from Fuwai Hospital were enrolled after excluding relative comorbidities. Fasting blood samples were obtained to assess choline levels and other clinical variables. The primary endpoints were defined as death, escalation of targeted medication, rehospitalization due to heart failure, PH deterioration. The follow-up duration was defined as the time from the choline examination to the occurrence of outcomes or the end of the study. The associations between circulating choline levels and disease severity and prognoses were explored. RESULTS Totally, 272 inpatients with PH were enrolled in this study. Patients were divided into high and low choline groups according to the 50th quartile of circulating choline levels, defined as 12.6 µM. After confounders adjustment, the high circulating choline levels were still associated with poor World Health Organization functional class, elevated N-terminal pro-B-type natriuretic peptide, and decreased cardiac output index indicating the severe disease condition. Moreover, elevated choline levels were associated with poor prognoses in PH patients even after adjusting for confounders (hazard ratio = 1.934; 95% CI, 1.034-3.619; P = 0.039). Subgroup analyses showed that choline levels predicted the prognosis of patients with pulmonary arterial hypertension but not chronic thromboembolic pulmonary hypertension. CONCLUSIONS Choline levels were associated with disease severity and poor prognoses of patients with PH, especially in pulmonary arterial hypertension suggesting its potential biomarker role.
Collapse
Affiliation(s)
- Yicheng Yang
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Beilan Yang
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Bingyang Liu
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Yanru Liang
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Qin Luo
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Zhihui Zhao
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Zhihong Liu
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Qixian Zeng
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China.
| | - Changming Xiong
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
33
|
Lee CW, Lee TV, Galvan E, Chen VCW, Bui S, Crouse SF, Fluckey JD, Smith SB, Riechman SE. The Effect of Choline and Resistance Training on Strength and Lean Mass in Older Adults. Nutrients 2023; 15:3874. [PMID: 37764658 PMCID: PMC10534351 DOI: 10.3390/nu15183874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Choline plays many important roles, including the synthesis of acetylcholine, and may affect muscle responses to exercise. We previously observed correlations between low choline intake and reduced gains in strength and lean mass following a 12-week resistance exercise training (RET) program for older adults. To further explore these findings, we conducted a randomized controlled trial. Three groups of 50-to-69-year-old healthy adults underwent a 12-week RET program (3x/week, 3 sets, 8-12 reps, 70% of maximum strength (1RM)) and submitted >48 diet logs (>4x/week for 12 weeks). Participants' diets were supplemented with 0.7 mg/kg lean/d (low, n = 13), 2.8 mg/kg lean/d (med, n = 11), or 7.5 mg/kg lean/d (high, n = 13) of choline from egg yolk and protein powder. The ANCOVA tests showed that low choline intake, compared with med or high choline intakes, resulted in significantly diminished gains in composite strength (leg press + chest press 1RM; low, 19.4 ± 8.2%; med, 46.8 ± 8.9%; high, 47.4 ± 8.1%; p = 0.034) and thigh-muscle quality (leg press 1RM/thigh lean mass; low, 12.3 ± 9.6%; med/high, 46.4 ± 7.0%; p = 0.010) after controlling for lean mass, protein, betaine, and vitamin B12. These data suggest that low choline intake may negatively affect strength gains with RET in older adults.
Collapse
Affiliation(s)
- Chang Woock Lee
- Department of Health and Human Performance, Nursing and Counseling, University of Houston-Victoria, Victoria, TX 77901, USA;
| | - Teak V. Lee
- Life Sciences Department, Pierce College, Woodland Hills, CA 91367, USA;
| | - Elfego Galvan
- School of Osteopathic Medicine in Arizona, A.T. Still University, Mesa, AZ 85206, USA;
| | - Vincent C. W. Chen
- Department of Integrative Health and Exercise Science, Georgian Court University, Lakewood, NJ 08701, USA;
| | - Steve Bui
- Department of Health and Human Performance, Utah Tech University, St. George, UT 84770, USA;
| | - Stephen F. Crouse
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (S.F.C.); (J.D.F.)
| | - James D. Fluckey
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (S.F.C.); (J.D.F.)
| | - Stephen B. Smith
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Steven E. Riechman
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (S.F.C.); (J.D.F.)
| |
Collapse
|
34
|
Moro J, Roisné-Hamelin G, Khodorova N, Rutledge DN, Martin JC, Barbillon P, Tomé D, Gaudichon C, Tardivel C, Jouan-Rimbaud Bouveresse D, Azzout-Marniche D. Pipecolate and Taurine are Rat Urinary Biomarkers for Lysine and Threonine Deficiencies. J Nutr 2023; 153:2571-2584. [PMID: 37394117 DOI: 10.1016/j.tjnut.2023.06.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023] Open
Abstract
BACKGROUND The consumption of poor-quality protein increases the risk of essential amino acid (EAA) deficiency, particularly for lysine and threonine. Thus, it is necessary to be able to detect easily EAA deficiency. OBJECTIVES The purpose of this study was to develop metabolomic approaches to identify specific biomarkers for an EAA deficiency, such as lysine and threonine. METHODS Three experiments were performed on growing rats. In experiment 1, rats were fed for 3 weeks with lysine (L30), or threonine (T53)-deficient gluten diets, or nondeficient gluten diet (LT100) in comparison with the control diet (milk protein, PLT). In experiments 2a and 2b, rats were fed at different concentrations of lysine (L) or threonine (T) deficiency: L/T15, L/T25, L/T40, L/T60, L/T75, P20, L/T100 and L/T170. Twenty-four-hour urine and blood samples from portal vein and vena cava were analyzed using LC-MS. Data from experiment 1 were analyzed by untargeted metabolomic and Independent Component - Discriminant Analysis (ICDA) and data from experiments 2a and 2b by targeted metabolomic and a quantitative Partial Least- Squares (PLS) regression model. Each metabolite identified as significant by PLS or ICDA was then tested by 1-way ANOVA to evaluate the diet effect. A two-phase linear regression analysis was used to determine lysine and threonine requirements. RESULTS ICDA and PLS found molecules that discriminated between the different diets. A common metabolite, the pipecolate, was identified in experiments 1 and 2a, confirming that it could be specific to lysine deficiency. Another metabolite, taurine, was found in experiments 1 and 2b, so probably specific to threonine deficiency. Pipecolate or taurine breakpoints obtained give a value closed to the values obtained by growth indicators. CONCLUSIONS Our results showed that the EAA deficiencies influenced the metabolome. Specific urinary biomarkers identified could be easily applied to detect EAA deficiency and to determine which AA is deficient.
Collapse
Affiliation(s)
- Joanna Moro
- Université Paris-Saclay, AgroParisTech, Institut National de recherche pour l'agriculture, l'alimentation et l'environnement, UMR Physiologie de la Nutrition et du Comportement Alimentaire, Palaiseau, France
| | - Gaëtan Roisné-Hamelin
- Université Paris-Saclay, AgroParisTech, Institut National de recherche pour l'agriculture, l'alimentation et l'environnement, UMR Physiologie de la Nutrition et du Comportement Alimentaire, Palaiseau, France
| | - Nadezda Khodorova
- Université Paris-Saclay, AgroParisTech, Institut National de recherche pour l'agriculture, l'alimentation et l'environnement, UMR Physiologie de la Nutrition et du Comportement Alimentaire, Palaiseau, France
| | - Douglas N Rutledge
- AgroParisTech, Université Paris-Saclay, Institut National de recherche pour l'agriculture, l'alimentation et l'environnement, UMR SayFood, Massy, France
| | - Jean-Charles Martin
- Aix Marseille Université, INSERM, Institut National de recherche pour l'agriculture, l'alimentation et l'environnement, Centre de recherche en cardiovasculaire et Nutrition, Marseille, France
| | - Pierre Barbillon
- Université Paris-Saclay, AgroParisTech, Institut National de recherche pour l'agriculture, l'alimentation et l'environnement, UMR Mathématiques et Informatique Appliquées Paris-Saclay, Palaiseau, France
| | - Daniel Tomé
- Université Paris-Saclay, AgroParisTech, Institut National de recherche pour l'agriculture, l'alimentation et l'environnement, UMR Physiologie de la Nutrition et du Comportement Alimentaire, Palaiseau, France
| | - Claire Gaudichon
- Université Paris-Saclay, AgroParisTech, Institut National de recherche pour l'agriculture, l'alimentation et l'environnement, UMR Physiologie de la Nutrition et du Comportement Alimentaire, Palaiseau, France
| | - Catherine Tardivel
- Aix Marseille Université, INSERM, Institut National de recherche pour l'agriculture, l'alimentation et l'environnement, Centre de recherche en cardiovasculaire et Nutrition, Marseille, France
| | - Delphine Jouan-Rimbaud Bouveresse
- Université Paris-Saclay, AgroParisTech, Institut National de recherche pour l'agriculture, l'alimentation et l'environnement, UMR Physiologie de la Nutrition et du Comportement Alimentaire, Palaiseau, France
| | - Dalila Azzout-Marniche
- Université Paris-Saclay, AgroParisTech, Institut National de recherche pour l'agriculture, l'alimentation et l'environnement, UMR Physiologie de la Nutrition et du Comportement Alimentaire, Palaiseau, France.
| |
Collapse
|
35
|
Chen Y, Xiang L, Luo L, Qin H, Tong S. Correlation of Nonalcoholic Fatty Liver Disease with Dietary Folate and Serum Folate in U.S. Adults: Cross-Sectional Analyses from National Health and Nutrition Examination Survey 2009-2018. Metab Syndr Relat Disord 2023; 21:389-396. [PMID: 37733056 DOI: 10.1089/met.2023.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
Background and Aims: Nonalcoholic fatty liver disease (NAFLD) is a global health problem, and dietary intervention is still considered one of the primary interventions. This study aimed to examine cross-sectional associations between dietary and serum levels of folate and NAFLD. Methods: We conducted a study of 7543 adults who participated in the National Health and Nutrition Examination Survey, 2009-2018. NAFLD status was determined by a fatty liver index (FLI) value ≥60. Multivariable logistic regression models were used to estimate associations between folate and NAFLD. Results: Almost half (45%) of the patients were classified as having NAFLD based on the FLI. In the fully adjusted model, participants in the highest quartile of dietary total folate and food folate were found to have a lower prevalence of NAFLD than those in the lowest quartile [odds ratio (OR)quartile 4 versus 1 = 0.582; 95% confidence interval (CI) = 0.350-0.968; and ORquartile 4 versus 1 = 0.737; 95% CI = 0.611-0.888, respectively], and the fourth quartile values of serum total folate and 5-methyl-tetrahydrofolate were significantly negatively associated with NAFLD prevalence (ORquartile 4 versus 1 = 0.664; 95% CI = 0.495-0.891; and ORquartile 4 versus 1 = 0.712; 95% CI = 0.532-0.954, respectively). Subgroup analyses revealed that this beneficial association was more significant in women (ORquartile 4 versus 1 = 0.526; 95% CI = 0.329-0.843; pinteraction < 0.001) than in men (ORquartile 4 versus 1 = 0.805; 95% CI = 0.546-1.186). Conclusions: Higher dietary folate intake and serum folate levels are associated with a lower NAFLD prevalence among U.S. adults and the trend is more pronounced among women, indicating opportunities for dietary NAFLD interventions.
Collapse
Affiliation(s)
- Yushi Chen
- Department of Clinical Nutrition, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ling Xiang
- Department of Clinical Nutrition, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ling Luo
- Department of Clinical Nutrition, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Haixia Qin
- Department of Clinical Nutrition, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shiwen Tong
- Department of Clinical Nutrition, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
36
|
Tate BN, Van Guilder GP, Aly M, Spence LA, Diaz-Rubio ME, Le HH, Johnson EL, McFadden JW, Perry CA. Changes in Choline Metabolites and Ceramides in Response to a DASH-Style Diet in Older Adults. Nutrients 2023; 15:3687. [PMID: 37686719 PMCID: PMC10489641 DOI: 10.3390/nu15173687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
This feeding trial evaluated the impact of the Dietary Approaches to Stop Hypertension diet on changes in plasma choline, choline metabolites, and ceramides in obese older adults; 28 adults consumed 3oz (n = 15) or 6oz (n = 13) of beef within a standardized DASH diet for 12 weeks. Plasma choline, betaine, methionine, dimethylglycine (DMG), phosphatidylcholine (PC), lysophosphotidylcholine (LPC), sphingomyelin, trimethylamine-N-oxide (TMAO), L-carnitine, ceramide, and triglycerides were measured in fasted blood samples. Plasma LPC, sphingomyelin, and ceramide species were also quantified. In response to the study diet, with beef intake groups combined, plasma choline decreased by 9.6% (p = 0.012); DMG decreased by 10% (p = 0.042); PC decreased by 51% (p < 0.001); total LPC increased by 281% (p < 0.001); TMAO increased by 26.5% (p < 0.001); total ceramide decreased by 22.1% (p < 0.001); and triglycerides decreased by 18% (p = 0.021). All 20 LPC species measured increased (p < 0.01) with LPC 16:0 having the greatest response. Sphingomyelin 16:0, 18:0, and 18:1 increased (all p < 0.001) by 10.4%, 22.5%, and 24%, respectively. In contrast, we observed that sphingomyelin 24:0 significantly decreased by 10%. Ceramide 22:0 and 24:0 decreased by 27.6% and 10.9% (p < 0.001), respectively, and ceramide 24:1 increased by 36.8% (p = 0.013). Changes in choline and choline metabolites were in association with anthropometric and cardiometabolic outcomes. These findings show the impact of the DASH diet on choline metabolism in older adults and demonstrate the influence of diet to modify circulating LPC, sphingomyelin, and ceramide species.
Collapse
Affiliation(s)
- Brianna N. Tate
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA; (B.N.T.); (J.W.M.)
| | - Gary P. Van Guilder
- High Altitude Exercise Physiology Department, Western Colorado University, Gunnison, CO 81231, USA;
| | - Marwa Aly
- Department of Applied Health Science, Indiana University School of Public Health, Bloomington, IN 47405, USA; (M.A.); (L.A.S.)
| | - Lisa A. Spence
- Department of Applied Health Science, Indiana University School of Public Health, Bloomington, IN 47405, USA; (M.A.); (L.A.S.)
| | - M. Elena Diaz-Rubio
- Proteomic and Metabolomics Facility, Cornell University, Ithaca, NY 14853, USA;
| | - Henry H. Le
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; (H.H.L.); (E.L.J.)
| | - Elizabeth L. Johnson
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; (H.H.L.); (E.L.J.)
| | - Joseph W. McFadden
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA; (B.N.T.); (J.W.M.)
| | - Cydne A. Perry
- Department of Applied Health Science, Indiana University School of Public Health, Bloomington, IN 47405, USA; (M.A.); (L.A.S.)
| |
Collapse
|
37
|
Begdache L, Marhaba R. Bioactive Compounds for Customized Brain Health: What Are We and Where Should We Be Heading? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6518. [PMID: 37569058 PMCID: PMC10418716 DOI: 10.3390/ijerph20156518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Many strides have been made in the field of nutrition that are making it an attractive field not only to nutrition professionals but also to healthcare practitioners. Thanks to the emergence of molecular nutrition, there is a better appreciation of how the diet modulates health at the cellular and molecular levels. More importantly, the advancements in brain imaging have produced a greater appreciation of the impact of diet on brain health. To date, our understanding of the effect of nutrients on brain health goes beyond the action of vitamins and minerals and dives into the intracellular, molecular, and epigenetic effects of nutrients. Bioactive compounds (BCs) in food are gaining a lot of attention due to their ability to modulate gene expression. In addition, bioactive compounds activate some nuclear receptors that are the target of many pharmaceuticals. With the emergence of personalized medicine, gaining an understanding of the biologically active compounds may help with the customization of therapies. This review explores the prominent BCs that can impact cognitive functions and mental health to deliver a potentially prophylactic framework for practitioners. Another purpose is to identify potential gaps in the literature to suggest new research agendas for scientists.
Collapse
Affiliation(s)
- Lina Begdache
- Health and Wellness Studies Department, Binghamton University, Binghamton, NY 13902, USA
| | - Rani Marhaba
- Norton College of Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
38
|
Schoen MS, Boland KM, Christ SE, Cui X, Ramakrishnan U, Ziegler TR, Alvarez JA, Singh RH. Total choline intake and working memory performance in adults with phenylketonuria. Orphanet J Rare Dis 2023; 18:222. [PMID: 37516884 PMCID: PMC10386684 DOI: 10.1186/s13023-023-02842-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/21/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND Despite early diagnosis and compliance with phenylalanine (Phe)-restricted diets, many individuals with phenylketonuria (PKU) still exhibit neurological changes and experience deficits in working memory and other executive functions. Suboptimal choline intake may contribute to these impairments, but this relationship has not been previously investigated in PKU. The objective of this study was to determine if choline intake is correlated with working memory performance, and if this relationship is modified by diagnosis and metabolic control. METHODS This was a cross-sectional study that included 40 adults with PKU and 40 demographically matched healthy adults. Web-based neurocognitive tests were used to assess working memory performance and 3-day dietary records were collected to evaluate nutrient intake. Recent and historical blood Phe concentrations were collected as measures of metabolic control. RESULTS Working memory performance was 0.32 z-scores (95% CI 0.06, 0.58) lower, on average, in participants with PKU compared to participants without PKU, and this difference was not modified by total choline intake (F[1,75] = 0.85, p = 0.36). However, in a subgroup with complete historical blood Phe data, increased total choline intake was related to improved working memory outcomes among participants with well controlled PKU (Phe = 360 µmol/L) after adjusting for intellectual ability and mid-childhood Phe concentrations (average change in working memory per 100 mg change in choline = 0.11; 95% CI 0.02, 0.20; p = 0.02). There also was a trend, albeit nonsignificant (p = 0.10), for this association to be attenuated with increased Phe concentrations. CONCLUSIONS Clinical monitoring of choline intake is essential for all individuals with PKU but may have important implications for working memory functioning among patients with good metabolic control. Results from this study should be confirmed in a larger controlled trial in people living with PKU.
Collapse
Affiliation(s)
- Meriah S Schoen
- Department of Human Genetics, Emory University School of Medicine, 101 Woodruff Circle, Suite 7130, Atlanta, GA, 30322, USA.
| | - Kelly M Boland
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Shawn E Christ
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Xiangqin Cui
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Usha Ramakrishnan
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Thomas R Ziegler
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jessica A Alvarez
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Rani H Singh
- Department of Human Genetics, Emory University School of Medicine, 101 Woodruff Circle, Suite 7130, Atlanta, GA, 30322, USA
| |
Collapse
|
39
|
Wu CH, Chang TY, Chen YC, Huang RFS. PEMT rs7946 Polymorphism and Sex Modify the Effect of Adequate Dietary Choline Intake on the Risk of Hepatic Steatosis in Older Patients with Metabolic Disorders. Nutrients 2023; 15:3211. [PMID: 37513629 PMCID: PMC10383596 DOI: 10.3390/nu15143211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
In humans, PEMT rs7946 polymorphism exerts sex-specific effects on choline requirement and hepatic steatosis (HS) risk. Few studies have explored the interaction effect of the PEMT rs7946 polymorphism and sex on the effect of adequate choline intake on HS risk. In this cross-sectional study, we investigated the association between PEMT polymorphism and adequate choline intake on HS risk. We enrolled 250 older patients with metabolic disorders with (n = 152) or without (n = 98; control) ultrasonically diagnosed HS. An elevated PEMT rs7946 A allele level was associated with a lower HS risk and body mass index in both men and women. Dietary choline intake-assessed using a semiquantitative food frequency questionnaire-was associated with reduced obesity in men only (p for trend < 0.05). ROC curve analysis revealed that the cutoff value of energy-adjusted choline intake for HS diagnosis was 448 mg/day in women (AUC: 0.62; 95% CI: 0.57-0.77) and 424 mg/day in men (AUC: 0.63, 95% CI: 0.57-0.76). In women, GG genotype and high choline intake (>448 mg/day) were associated with a 79% reduction in HS risk (adjusted OR: 0.21; 95% CI: 0.05-0.82); notably, GA or AA genotype was associated with a reduced HS risk regardless of choline intake (p < 0.05). In men, GG genotype and high choline intake (>424 mg/day) were associated with a 3.7-fold increase in HS risk (OR: 3.7; 95% CI: 1.19-11.9). Further adjustments for a high-density lipoprotein level and body mass index mitigated the effect of choline intake on HS risk. Current dietary choline intake may be inadequate for minimizing HS risk in postmenopausal Taiwanese women carrying the PEMT rs7946 GG genotype. Older men consuming more than the recommended amount of choline may have an increased risk of nonalcoholic fatty liver disease; this risk is mediated by a high-density lipoprotein level and obesity.
Collapse
Affiliation(s)
- Chien-Hsien Wu
- Ph.D. Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Department of Gastroenterology and Hepatology, Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242033, Taiwan
| | - Ting-Yu Chang
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Yen-Chu Chen
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Rwei-Fen S Huang
- Ph.D. Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| |
Collapse
|
40
|
EFSA Panel on Nutrition, Novel Foods and Food allergens (NDA), Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Knutsen HK, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pentieva K, Thies F, Tsabouri S, Vinceti M, Bresson J, Fiolet T, Siani A. Choline and contribution to normal liver function of the foetus and exclusively breastfed infants: evaluation of a health claim pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA J 2023; 21:e08115. [PMID: 37502017 PMCID: PMC10369243 DOI: 10.2903/j.efsa.2023.8115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Following an application from Procter & Gamble BV pursuant to Article 14 of Regulation (EC) No 1924/2006 via the Competent Authority of Belgium, the Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on the scientific substantiation of a health claim related to choline and contribution to normal liver function of the foetus and exclusively breastfed infant. The scope of the application was proposed to fall under a health claim referring to children's development and health. The Panel considers that choline is sufficiently characterised. The claimed effect proposed by the applicant is contribution 'to normal foetal and infant development, especially liver'. The proposed target population is 'unborn fetuses and breastfed infants'. Choline is involved in the structure of cell membranes, cell signalling, metabolism and transport of lipids and cholesterol and neurotransmitter synthesis. Although choline can be synthesised de novo by the human body, depletion-repletion studies in humans show that low choline intake leads to liver dysfunction and muscle damage, which are reverted by the administration of dietary choline. For these functions, de novo synthesis of choline by the human body is insufficient and choline must be obtained from dietary sources. No human studies have addressed the effect of low maternal dietary choline intake on liver function in the fetus or exclusively breastfed infants. However, the Panel considers that the biological role of choline in normal liver function and dietary choline being essential for the function applies to all ages, including fetus and infants. The Panel concludes that a cause and effect relationship has been established between the intake of choline by pregnant and lactating women and contribution to normal liver function of the fetus and exclusively breastfed infants.
Collapse
|
41
|
DiStefano JK. The Role of Choline, Soy Isoflavones, and Probiotics as Adjuvant Treatments in the Prevention and Management of NAFLD in Postmenopausal Women. Nutrients 2023; 15:2670. [PMID: 37375574 DOI: 10.3390/nu15122670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a prevalent condition among postmenopausal women that can lead to severe liver dysfunction and increased mortality. In recent years, research has focused on identifying potential lifestyle dietary interventions that may prevent or treat NAFLD in this population. Due to the complex and multifactorial nature of NAFLD in postmenopausal women, the disease can present as different subtypes, with varying levels of clinical presentation and variable treatment responses. By recognizing the significant heterogeneity of NAFLD in postmenopausal women, it may be possible to identify specific subsets of individuals who may benefit from targeted nutritional interventions. The purpose of this review was to examine the current evidence supporting the role of three specific nutritional factors-choline, soy isoflavones, and probiotics-as potential nutritional adjuvants in the prevention and treatment of NAFLD in postmenopausal women. There is promising evidence supporting the potential benefits of these nutritional factors for NAFLD prevention and treatment, particularly in postmenopausal women, and further research is warranted to confirm their effectiveness in alleviating hepatic steatosis in this population.
Collapse
Affiliation(s)
- Johanna K DiStefano
- Diabetes and Metabolic Disease Research Unit, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| |
Collapse
|
42
|
Li J, Xin Y, Li J, Chen H, Li H. Phosphatidylethanolamine N-methyltransferase: from Functions to Diseases. Aging Dis 2023; 14:879-891. [PMID: 37191416 PMCID: PMC10187709 DOI: 10.14336/ad.2022.1025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022] Open
Abstract
Locating on endoplasmic reticulum and mitochondria associated membrane, Phosphatidylethanolamine N-methyltransferase (PEMT), catalyzes phosphatidylethanolamine methylation to phosphatidylcholine. As the only endogenous pathway for choline biosynthesis in mammals, the dysregulation of PEMT can lead to imbalance of phospholipid metabolism. Dysregulation of phospholipid metabolism in the liver or heart can lead to deposition of toxic lipid species that adversely result in dysfunction of hepatocyte/cardiomyocyte. Studies have shown that PEMT-/- mice increased susceptibility of diet-induced fatty liver and steatohepatitis. However, knockout of PEMT protects against diet-induced atherosclerosis, diet-induced obesity, and insulin resistance. Thus, novel insights to the function of PEMT in various organs should be summarized. Here, we reviewed the structural and functional properties of PEMT, highlighting its role in the pathogenesis of obesity, liver diseases, cardiovascular diseases, and other conditions.
Collapse
Affiliation(s)
- Jiayu Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Yanguo Xin
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Jingye Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Hui Chen
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Hongwei Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Beijing, China.
| |
Collapse
|
43
|
Yamashima T, Mori Y, Seike T, Ahmed S, Boontem P, Li S, Oikawa S, Kobayashi H, Yamashita T, Kikuchi M, Kaneko S, Mizukoshi E. Vegetable Oil-Peroxidation Product 'Hydroxynonenal' Causes Hepatocyte Injury and Steatosis via Hsp70.1 and BHMT Disorders in the Monkey Liver. Nutrients 2023; 15:nu15081904. [PMID: 37111122 PMCID: PMC10145254 DOI: 10.3390/nu15081904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Hsp70.1 has a dual function as a chaperone protein and lysosomal stabilizer. In 2009, we reported that calpain-mediated cleavage of carbonylated Hsp70.1 causes neuronal death by inducing lysosomal rupture in the hippocampal CA1 neurons of monkeys after transient brain ischemia. Recently, we also reported that consecutive injections of the vegetable oil-peroxidation product 'hydroxynonenal' induce hepatocyte death via a similar cascade in monkeys. As Hsp70.1 is also related to fatty acid β-oxidation in the liver, its deficiency causes fat accumulation. The genetic deletion of betaine-homocysteine S-methyltransferase (BHMT) was reported to perturb choline metabolism, inducing a decrease in phosphatidylcholine and resulting in hepatic steatosis. Here, focusing on Hsp70.1 and BHMT disorders, we studied the mechanisms of hepatocyte degeneration and steatosis. Monkey liver tissues with and without hydroxynonenal injections were compared using proteomics, immunoblotting, immunohistochemical, and electron microscopy-based analyses. Western blotting showed that neither Hsp70.1 nor BHMT were upregulated, but an increased cleavage was observed in both. Proteomics showed a marked downregulation of Hsp70.1, albeit a two-fold increase in the carbonylated BHMT. Hsp70.1 carbonylation was negligible, in contrast to the ischemic hippocampus, which was associated with ~10-fold increments. Although histologically, the control liver showed very little lipid deposition, numerous tiny lipid droplets were seen within and around the degenerating/dying hepatocytes in monkeys after the hydroxynonenal injections. Electron microscopy showed permeabilization/rupture of lysosomal membranes, dissolution of the mitochondria and rough ER membranes, and proliferation of abnormal peroxisomes. It is probable that the disruption of the rough ER caused impaired synthesis of the Hsp70.1 and BHMT proteins, while impairment of the mitochondria and peroxisomes contributed to the sustained generation of reactive oxygen species. In addition, hydroxynonenal-induced disorders facilitated degeneration and steatosis in the hepatocytes.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
- Department of Cell Metabolism and Nutrition, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Yurie Mori
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Takuya Seike
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Sharif Ahmed
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Piyakarn Boontem
- Department of Cell Metabolism and Nutrition, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Shihui Li
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Tatsuya Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
- Department of Cell Metabolism and Nutrition, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| |
Collapse
|
44
|
Vasconcellos C, Ferreira O, Lopes MF, Ribeiro AF, Vasques J, Guerreiro CS. Nutritional Genomics in Nonalcoholic Fatty Liver Disease. Biomedicines 2023; 11:biomedicines11020319. [PMID: 36830856 PMCID: PMC9953045 DOI: 10.3390/biomedicines11020319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common chronic condition associated with genetic and environmental factors in which fat abnormally accumulates in the liver. NAFLD is epidemiologically associated with obesity, type 2 diabetes, and dyslipidemia. Environmental factors, such as physical inactivity and an unbalanced diet, interact with genetic factors, such as epigenetic mechanisms and polymorphisms for the genesis and development of the condition. Different genetic polymorphisms seem to be involved in this context, including variants in PNPLA3, TM6SF2, PEMT, and CHDH genes, playing a role in the disease's susceptibility, development, and severity. From carbohydrate intake and weight loss to omega-3 supplementation and caloric restriction, different dietary and nutritional factors appear to be involved in controlling the onset and progression of NAFLD conditions influencing metabolism, gene, and protein expression. The polygenic risk score represents a sum of trait-associated alleles carried by an individual and seems to be associated with NAFLD outcomes depending on the dietary context. Understanding the exact extent to which lifestyle interventions and genetic predispositions can play a role in the prevention and management of NAFLD can be crucial for the establishment of a personalized and integrative approach to patients.
Collapse
Affiliation(s)
- Carolina Vasconcellos
- Laboratório de Nutrição, Faculdade de Medicina, Centro Académico de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Oureana Ferreira
- Laboratório de Nutrição, Faculdade de Medicina, Centro Académico de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Marta Filipa Lopes
- Laboratório de Nutrição, Faculdade de Medicina, Centro Académico de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - André Filipe Ribeiro
- Laboratório de Nutrição, Faculdade de Medicina, Centro Académico de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - João Vasques
- Laboratório de Nutrição, Faculdade de Medicina, Centro Académico de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Catarina Sousa Guerreiro
- Laboratório de Nutrição, Faculdade de Medicina, Centro Académico de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
45
|
Dave N, Judd JM, Decker A, Winslow W, Sarette P, Villarreal Espinosa O, Tallino S, Bartholomew SK, Bilal A, Sandler J, McDonough I, Winstone JK, Blackwood EA, Glembotski C, Karr T, Velazquez R. Dietary choline intake is necessary to prevent systems-wide organ pathology and reduce Alzheimer's disease hallmarks. Aging Cell 2023; 22:e13775. [PMID: 36642814 PMCID: PMC9924938 DOI: 10.1111/acel.13775] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/17/2023] Open
Abstract
There is an urgent need to identify modifiable environmental risk factors that reduce the incidence of Alzheimer's disease (AD). The B-like vitamin choline plays key roles in body- and brain-related functions. Choline produced endogenously by the phosphatidylethanolamine N-methyltransferase protein in the liver is not sufficient for adequate physiological functions, necessitating daily dietary intake. ~90% of Americans do not reach the recommended daily intake of dietary choline. Thus, it's imperative to determine whether dietary choline deficiency increases disease outcomes. Here, we placed 3xTg-AD, a model of AD, and non-transgenic (NonTg) control mice on either a standard laboratory diet with sufficient choline (ChN; 2.0 g/kg choline bitartrate) or a choline-deficient diet (Ch-; 0.0 g/kg choline bitartrate) from 3 to 12 (early to late adulthood) months of age. A Ch- diet reduced blood plasma choline levels, increased weight, and impaired both motor function and glucose metabolism in NonTg mice, with 3xTg-AD mice showing greater deficits. Tissue analyses showed cardiac and liver pathology, elevated soluble and insoluble Amyloid-β and Thioflavin S structures, and tau hyperphosphorylation at various pathological epitopes in the hippocampus and cortex of 3xTg-AD Ch- mice. To gain mechanistic insight, we performed unbiased proteomics of hippocampal and blood plasma samples. Dietary choline deficiency altered hippocampal networks associated with microtubule function and postsynaptic membrane regulation. In plasma, dietary choline deficiency altered protein networks associated with insulin metabolism, mitochondrial function, inflammation, and fructose metabolic processing. Our data highlight that dietary choline intake is necessary to prevent systems-wide organ pathology and reduce hallmark AD pathologies.
Collapse
Affiliation(s)
- Nikhil Dave
- Arizona State University‐Banner Neurodegenerative Disease Research Center at the Biodesign InstituteArizona State UniversityTempeArizonaUSA
| | - Jessica M. Judd
- Arizona State University‐Banner Neurodegenerative Disease Research Center at the Biodesign InstituteArizona State UniversityTempeArizonaUSA,Arizona Alzheimer's ConsortiumPhoenixArizonaUSA
| | - Annika Decker
- Arizona State University‐Banner Neurodegenerative Disease Research Center at the Biodesign InstituteArizona State UniversityTempeArizonaUSA
| | - Wendy Winslow
- Arizona State University‐Banner Neurodegenerative Disease Research Center at the Biodesign InstituteArizona State UniversityTempeArizonaUSA
| | - Patrick Sarette
- Arizona State University‐Banner Neurodegenerative Disease Research Center at the Biodesign InstituteArizona State UniversityTempeArizonaUSA
| | - Oscar Villarreal Espinosa
- Arizona State University‐Banner Neurodegenerative Disease Research Center at the Biodesign InstituteArizona State UniversityTempeArizonaUSA
| | - Savannah Tallino
- Arizona State University‐Banner Neurodegenerative Disease Research Center at the Biodesign InstituteArizona State UniversityTempeArizonaUSA,Arizona Alzheimer's ConsortiumPhoenixArizonaUSA,School of Life SciencesArizona State UniversityTempeArizonaUSA
| | - Samantha K. Bartholomew
- Arizona State University‐Banner Neurodegenerative Disease Research Center at the Biodesign InstituteArizona State UniversityTempeArizonaUSA,Arizona Alzheimer's ConsortiumPhoenixArizonaUSA,School of Life SciencesArizona State UniversityTempeArizonaUSA
| | - Alina Bilal
- Translational Cardiovascular Research Center and Department of Internal MedicineUniversity of Arizona College of MedicinePhoenixArizonaUSA
| | - Jessica Sandler
- Biosciences Mass Spectrometry Facility, Biodesign InstituteArizona State UniversityTempeArizonaUSA
| | - Ian McDonough
- Arizona State University‐Banner Neurodegenerative Disease Research Center at the Biodesign InstituteArizona State UniversityTempeArizonaUSA
| | - Joanna K. Winstone
- Arizona State University‐Banner Neurodegenerative Disease Research Center at the Biodesign InstituteArizona State UniversityTempeArizonaUSA,Arizona Alzheimer's ConsortiumPhoenixArizonaUSA,School of Life SciencesArizona State UniversityTempeArizonaUSA
| | - Erik A. Blackwood
- Translational Cardiovascular Research Center and Department of Internal MedicineUniversity of Arizona College of MedicinePhoenixArizonaUSA
| | - Christopher Glembotski
- Translational Cardiovascular Research Center and Department of Internal MedicineUniversity of Arizona College of MedicinePhoenixArizonaUSA
| | - Timothy Karr
- Arizona State University‐Banner Neurodegenerative Disease Research Center at the Biodesign InstituteArizona State UniversityTempeArizonaUSA,Biosciences Mass Spectrometry Facility, Biodesign InstituteArizona State UniversityTempeArizonaUSA
| | - Ramon Velazquez
- Arizona State University‐Banner Neurodegenerative Disease Research Center at the Biodesign InstituteArizona State UniversityTempeArizonaUSA,Arizona Alzheimer's ConsortiumPhoenixArizonaUSA,School of Life SciencesArizona State UniversityTempeArizonaUSA
| |
Collapse
|
46
|
Jansakun C, Chunglok W, Altamura S, Muckenthaler M, Staffer S, Tuma-Kellner S, Merle U, Chamulitrat W. Myeloid- and hepatocyte-specific deletion of group VIA calcium-independent phospholipase A2 leads to dichotomous opposing phenotypes during MCD diet-induced NASH. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166590. [PMID: 36334837 DOI: 10.1016/j.bbadis.2022.166590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
Abstract
Polymorphisms of phospholipase A2VIA (iPLA2β or PLA2G6) are associated with body weights and blood C-reactive protein. The role of iPLA2β/PLA2G6 in non-alcoholic steatohepatitis (NASH) is still elusive because female iPla2β-null mice showed attenuated hepatic steatosis but exacerbated hepatic fibrosis after feeding with methionine- and choline-deficient diet (MCDD). Herein, female mice with myeloid- (MPla2g6-/-) and hepatocyte- (LPla2g6-/-) specific PLA2G6 deletion were generated and phenotyped after MCDD feeding. Without any effects on hepatic steatosis, MCDD-fed MPla2g6-/- mice showed further exaggeration of liver inflammation and fibrosis as well as elevation of plasma TNFα, CCL2, and circulating monocytes. Bone-marrow-derived macrophages (BMDMs) from MPla2g6-/- mice displayed upregulation of PPARγ and CEBPα proteins, and elevated release of IL6 and CXCL1 under LPS stimulation. LPS-stimulated BMDMs from MCDD-fed MPla2g6-/- mice showed suppressed expression of M1 Tnfa and Il6, but marked upregulation of M2 Arg1, Chil3, IL10, and IL13 as well as chemokine receptors Ccr2 and Ccr5. This in vitro shift was associated with exaggeration of hepatic M1/M2 cytokines, chemokines/chemokine receptors, and fibrosis genes. Contrarily, MCDD-fed LPla2g6-/- mice showed a complete protection which was associated with upregulation of Ppara/PPARα and attenuated expression of Pparg/PPARγ, fatty-acid uptake, triglyceride synthesis, and de novo lipogenesis genes. Interestingly, LPla2g6-/- mice fed with chow or MCDD displayed an attenuation of blood monocytes and elevation of anti-inflammatory lipoxin A4 in plasma and liver. Thus, PLA2G6 inactivation specifically in myeloid cells and hepatocytes led to opposing phenotypes in female mice undergoing NASH. Hepatocyte-specific PLA2G6 inhibitors may be further developed for treatment of this disease.
Collapse
Affiliation(s)
- Chutima Jansakun
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Warangkana Chunglok
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Sandro Altamura
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
| | - Martina Muckenthaler
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), German Centre for Cardiovascular Research, Partner Site, University of Heidelberg, Germany
| | - Simone Staffer
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Sabine Tuma-Kellner
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Uta Merle
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Walee Chamulitrat
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| |
Collapse
|
47
|
Abeyrathne EDNS, Nam KC, Huang X, Ahn DU. Egg yolk lipids: separation, characterization, and utilization. Food Sci Biotechnol 2022; 31:1243-1256. [PMID: 35992319 PMCID: PMC9385935 DOI: 10.1007/s10068-022-01138-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/22/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022] Open
Abstract
Egg yolk contains very high levels of lipids, which comprise 33% of whole egg yolk. Although triglyceride is the main lipid, egg yolk is the richest source of phospholipids and cholesterol in nature. The egg yolk phospholipids have a unique composition with high levels of phosphatidylcholine followed by phosphatidylethanolamine, sphingomyelin, plasmalogen, and phosphatidylinositol. All the egg yolk lipids are embedded inside the HDL and LDL micelles or granular particles. Egg yolk lipids can be easily extracted using solvents or supercritical extraction methods but their commercial applications of egg yolk lipids are limited. Egg yolk lipids have excellent potential as a food ingredient or cosmeceutical, pharmaceutical, and nutraceutical agents because they have excellent functional and biological characteristics. This review summarizes the current knowledge on egg yolk lipids' extraction methods and functions and discusses their current and future use, which will be important to increase the use and value of the egg.
Collapse
Affiliation(s)
- Edirisingha Dewage Nalaka Sandun Abeyrathne
- Department of Animal Science, Uva Wellassa University, Badulla, 90000 Sri Lanka
- Department of Animal Science & Technology, Suncheon National University, Suncheon, 57922 Korea
| | - Ki-Chang Nam
- Department of Animal Science & Technology, Suncheon National University, Suncheon, 57922 Korea
| | - Xi Huang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei People’s Republic of China
| | - Dong Uk Ahn
- Department of Animal Science, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
48
|
Piras IS, Raju A, Don J, Schork NJ, Gerhard GS, DiStefano JK. Hepatic PEMT Expression Decreases with Increasing NAFLD Severity. Int J Mol Sci 2022; 23:ijms23169296. [PMID: 36012560 PMCID: PMC9409182 DOI: 10.3390/ijms23169296] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Choline deficiency causes hepatic fat accumulation, and is associated with a higher risk of nonalcoholic fatty liver disease (NAFLD) and more advanced NAFLD-related hepatic fibrosis. Reduced expression of hepatic phosphatidylethanolamine N-methyltransferase (PEMT), which catalyzes the production of phosphatidylcholine, causes steatosis, inflammation, and fibrosis in mice. In humans, common PEMT variants impair phosphatidylcholine synthesis, and are associated with NAFLD risk. We investigated hepatic PEMT expression in a large cohort of patients representing the spectrum of NAFLD, and examined the relationship between PEMT genetic variants and gene expression. Hepatic PEMT expression was reduced in NAFLD patients with inflammation and fibrosis (i.e., nonalcoholic steatohepatitis or NASH) compared to participants with normal liver histology (β = −1.497; p = 0.005). PEMT levels also declined with increasing severity of fibrosis with cirrhosis < incomplete cirrhosis < bridging fibrosis (β = −1.185; p = 0.011). Hepatic PEMT expression was reduced in postmenopausal women with NASH compared to those with normal liver histology (β = −3.698; p = 0.030). We detected a suggestive association between rs7946 and hepatic fibrosis (p = 0.083). Although none of the tested variants were associated with hepatic PEMT expression, computational fine mapping analysis indicated that rs4646385 may impact PEMT levels in the liver. Hepatic PEMT expression decreases with increasing severity of NAFLD in obese individuals and postmenopausal women, and may contribute to disease pathogenesis in a subset of NASH patients.
Collapse
Affiliation(s)
- Ignazio S. Piras
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Anish Raju
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Janith Don
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | | | - Glenn S. Gerhard
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19122, USA
| | - Johanna K. DiStefano
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
- Correspondence:
| |
Collapse
|
49
|
Berger MM, Shenkin A, Schweinlin A, Amrein K, Augsburger M, Biesalski HK, Bischoff SC, Casaer MP, Gundogan K, Lepp HL, de Man AME, Muscogiuri G, Pietka M, Pironi L, Rezzi S, Cuerda C. ESPEN micronutrient guideline. Clin Nutr 2022; 41:1357-1424. [PMID: 35365361 DOI: 10.1016/j.clnu.2022.02.015] [Citation(s) in RCA: 282] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Trace elements and vitamins, named together micronutrients (MNs), are essential for human metabolism. Recent research has shown the importance of MNs in common pathologies, with significant deficiencies impacting the outcome. OBJECTIVE This guideline aims to provide information for daily clinical nutrition practice regarding assessment of MN status, monitoring, and prescription. It proposes a consensus terminology, since many words are used imprecisely, resulting in confusion. This is particularly true for the words "deficiency", "repletion", "complement", and "supplement". METHODS The expert group attempted to apply the 2015 standard operating procedures (SOP) for ESPEN which focuses on disease. However, this approach could not be applied due to the multiple diseases requiring clinical nutrition resulting in one text for each MN, rather than for diseases. An extensive search of the literature was conducted in the databases Medline, PubMed, Cochrane, Google Scholar, and CINAHL. The search focused on physiological data, historical evidence (published before PubMed release in 1996), and observational and/or randomized trials. For each MN, the main functions, optimal analytical methods, impact of inflammation, potential toxicity, and provision during enteral or parenteral nutrition were addressed. The SOP wording was applied for strength of recommendations. RESULTS There was a limited number of interventional trials, preventing meta-analysis and leading to a low level of evidence. The recommendations underwent a consensus process, which resulted in a percentage of agreement (%): strong consensus required of >90% of votes. Altogether the guideline proposes sets of recommendations for 26 MNs, resulting in 170 single recommendations. Critical MNs were identified with deficiencies being present in numerous acute and chronic diseases. Monitoring and management strategies are proposed. CONCLUSION This guideline should enable addressing suboptimal and deficient status of a bundle of MNs in at-risk diseases. In particular, it offers practical advice on MN provision and monitoring during nutritional support.
Collapse
Affiliation(s)
- Mette M Berger
- Department of Adult Intensive Care, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| | - Alan Shenkin
- Institute of Aging and Chronic Disease, University of Liverpool, Liverpool, UK.
| | - Anna Schweinlin
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Karin Amrein
- Medical University of Graz, Department of Internal Medicine, Division of Endocrinology and Diabetology, Austria.
| | - Marc Augsburger
- University Centre of Legal Medicine Lausanne-Geneva, Lausanne University Hospital and University of Lausanne, Geneva University Hospital and University of Geneva, Lausanne-Geneva, Switzerland.
| | | | - Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Michael P Casaer
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Intensive Care Medicine, Leuven, Belgium.
| | - Kursat Gundogan
- Division of Intensive Care Medicine, Department of Internal Medicine, Erciyes University School of Medicine, Kayseri, Turkey.
| | | | - Angélique M E de Man
- Department of Intensive Care Medicine, Research VUmc Intensive Care (REVIVE), Amsterdam Cardiovascular Science (ACS), Amsterdam Infection and Immunity Institute (AI&II), Amsterdam Medical Data Science (AMDS), Amsterdam UMC, Location VUmc, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.
| | - Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università di Napoli (Federico II), Naples, Italy; United Nations Educational, Scientific and Cultural Organization (UNESCO) Chair for Health Education and Sustainable Development, Federico II, University, Naples, Italy.
| | - Magdalena Pietka
- Pharmacy Department, Stanley Dudrick's Memorial Hospital, Skawina, Poland.
| | - Loris Pironi
- Alma Mater Studiorum - University of Bologna, Department of Medical and Surgical Sciences, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Centre for Chronic Intestinal Failure - Clinical Nutrition and Metabolism Unit, Italy.
| | - Serge Rezzi
- Swiss Nutrition and Health Foundation (SNHf), Epalinges, Switzerland.
| | - Cristina Cuerda
- Departamento de Medicina, Universidad Complutense de Madrid, Nutrition Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| |
Collapse
|
50
|
Egg Allergy in Children and Weaning Diet. Nutrients 2022; 14:nu14081540. [PMID: 35458102 PMCID: PMC9025129 DOI: 10.3390/nu14081540] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/02/2022] [Accepted: 04/03/2022] [Indexed: 02/01/2023] Open
Abstract
Eggs are a fundamental food in the human diet, and together with cow’s milk, they are the most common food allergen. This work highlights the main nutritional characteristics of eggs to show how their absence from a child’s diet can constitute a serious deficiency. We then analyze the risk factors that facilitate the onset of egg allergy. The third part of the paper reports possible interventions to lower the appearance of food allergy that have been occurred in trials. The last part of the paper is a synthesis of this research study that has been taken from several of the latest guidelines or from position papers.
Collapse
|