1
|
Wen P, Sun Z, Gou F, Wang J, Fan Q, Zhao D, Yang L. Oxidative stress and mitochondrial impairment: Key drivers in neurodegenerative disorders. Ageing Res Rev 2025; 104:102667. [PMID: 39848408 DOI: 10.1016/j.arr.2025.102667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Mitochondrial dysfunction and oxidative stress are critical factors in the pathogenesis of neurodegenerative diseases. The complex interplay between these factors exacerbates neuronal damage and accelerates disease progression. In neurodegenerative diseases, mitochondrial dysfunction impairs ATP production and promotes the generation of reactive oxygen species (ROS). The accumulation of ROS further damages mitochondrial DNA, proteins, and lipids, creating a vicious cycle of oxidative stress and mitochondrial impairment. This review aims to elucidate the mechanisms by which mitochondrial dysfunction and oxidative stress lead to neurodegeneration, and to highlight potential therapeutic targets to mitigate their harmful effects.
Collapse
Affiliation(s)
- Pei Wen
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhixin Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fengting Gou
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingjing Wang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qing Fan
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Deming Zhao
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lifeng Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Lui JC, Palmer AC, Christian P. Nutrition, Other Environmental Influences, and Genetics in the Determination of Human Stature. Annu Rev Nutr 2024; 44:205-229. [PMID: 38759081 DOI: 10.1146/annurev-nutr-061121-091112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Linear growth during three distinct stages of life determines attained stature in adulthood: namely, in utero, early postnatal life, and puberty and the adolescent period. Individual host factors, genetics, and the environment, including nutrition, influence attained human stature. Each period of physical growth has its specific biological and environmental considerations. Recent epidemiologic investigations reveal a strong influence of prenatal factors on linear size at birth that in turn influence the postnatal growth trajectory. Although average population height changes have been documented in high-income regions, stature as a complex human trait is not well understood or easily modified. This review summarizes the biology of linear growth and its major drivers, including nutrition from a life-course perspective, the genetics of programmed growth patterns or height, and gene-environment interactions that determine human stature in toto over the life span. Implications for public health interventions and knowledge gaps are discussed.
Collapse
Affiliation(s)
- Julian C Lui
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Amanda C Palmer
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - Parul Christian
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| |
Collapse
|
3
|
Lui JC. Growth disorders caused by variants in epigenetic regulators: progress and prospects. Front Endocrinol (Lausanne) 2024; 15:1327378. [PMID: 38370361 PMCID: PMC10870149 DOI: 10.3389/fendo.2024.1327378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Epigenetic modifications play an important role in regulation of transcription and gene expression. The molecular machinery governing epigenetic modifications, also known as epigenetic regulators, include non-coding RNA, chromatin remodelers, and enzymes or proteins responsible for binding, reading, writing and erasing DNA and histone modifications. Recent advancement in human genetics and high throughput sequencing technology have allowed the identification of causative variants, many of which are epigenetic regulators, for a wide variety of childhood growth disorders that include skeletal dysplasias, idiopathic short stature, and generalized overgrowth syndromes. In this review, we highlight the connection between epigenetic modifications, genetic variants in epigenetic regulators and childhood growth disorders being established over the past decade, discuss their insights into skeletal biology, and the potential of epidrugs as a new type of therapeutic intervention.
Collapse
Affiliation(s)
- Julian C. Lui
- Section on Growth and Development, National Institute of Child Health and Human Development, Bethesda, MD, United States
| |
Collapse
|
4
|
Weiss B, Ott T, Vick P, Lui JC, Roeth R, Vogel S, Waldmüller S, Hoffmann S, Baron J, Wit JM, Rappold GA. Identification of novel genes including NAV2 associated with isolated tall stature. Front Endocrinol (Lausanne) 2023; 14:1258313. [PMID: 38152138 PMCID: PMC10752378 DOI: 10.3389/fendo.2023.1258313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/07/2023] [Indexed: 12/29/2023] Open
Abstract
Very tall people attract much attention and represent a clinically and genetically heterogenous group of individuals. Identifying the genetic etiology can provide important insights into the molecular mechanisms regulating linear growth. We studied a three-generation pedigree with five isolated (non-syndromic) tall members and one individual with normal stature by whole exome sequencing; the tallest man had a height of 211 cm. Six heterozygous gene variants predicted as damaging were shared among the four genetically related tall individuals and not present in a family member with normal height. To gain insight into the putative role of these candidate genes in bone growth, we assessed the transcriptome of murine growth plate by microarray and RNA Seq. Two (Ift140, Nav2) of the six genes were well-expressed in the growth plate. Nav2 (p-value 1.91E-62) as well as Ift140 (p-value of 2.98E-06) showed significant downregulation of gene expression between the proliferative and hypertrophic zone, suggesting that these genes may be involved in the regulation of chondrocyte proliferation and/or hypertrophic differentiation. IFT140, NAV2 and SCAF11 have also significantly associated with height in GWAS studies. Pathway and network analysis indicated functional connections between IFT140, NAV2 and SCAF11 and previously associated (tall) stature genes. Knockout of the all-trans retinoic acid responsive gene, neuron navigator 2 NAV2, in Xenopus supports its functional role as a growth promotor. Collectively, our data expand the spectrum of genes with a putative role in tall stature phenotypes and, among other genes, highlight NAV2 as an interesting gene to this phenotype.
Collapse
Affiliation(s)
- Birgit Weiss
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Tim Ott
- Department of Zoology, University of Hohenheim, Stuttgart, Germany
| | - Philipp Vick
- Department of Zoology, University of Hohenheim, Stuttgart, Germany
| | - Julian C. Lui
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Ralph Roeth
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Sebastian Vogel
- Department of Zoology, University of Hohenheim, Stuttgart, Germany
| | - Stephan Waldmüller
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Sandra Hoffmann
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Jeffrey Baron
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Jan M. Wit
- Division of Pediatric Endocrinology, Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Gudrun A. Rappold
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
5
|
Campos AI, Namba S, Lin SC, Nam K, Sidorenko J, Wang H, Kamatani Y, Wang LH, Lee S, Lin YF, Feng YCA, Okada Y, Visscher PM, Yengo L. Boosting the power of genome-wide association studies within and across ancestries by using polygenic scores. Nat Genet 2023; 55:1769-1776. [PMID: 37723263 DOI: 10.1038/s41588-023-01500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/14/2023] [Indexed: 09/20/2023]
Abstract
Genome-wide association studies (GWASs) have been mostly conducted in populations of European ancestry, which currently limits the transferability of their findings to other populations. Here, we show, through theory, simulations and applications to real data, that adjustment of GWAS analyses for polygenic scores (PGSs) increases the statistical power for discovery across all ancestries. We applied this method to analyze seven traits available in three large biobanks with participants of East Asian ancestry (n = 340,000 in total) and report 139 additional associations across traits. We also present a two-stage meta-analysis strategy whereby, in contributing cohorts, a PGS-adjusted GWAS is rerun using PGSs derived from a first round of a standard meta-analysis. On average, across traits, this approach yields a 1.26-fold increase in the number of detected associations (range 1.07- to 1.76-fold increase). Altogether, our study demonstrates the value of using PGSs to increase the power of GWASs in underrepresented populations and promotes such an analytical strategy for future GWAS meta-analyses.
Collapse
Affiliation(s)
- Adrian I Campos
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| | - Shinichi Namba
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shu-Chin Lin
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Kisung Nam
- Graduate School of Data Science, Seoul National University, Seoul, Republic of Korea
| | - Julia Sidorenko
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Huanwei Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Ling-Hua Wang
- Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Seunggeun Lee
- Graduate School of Data Science, Seoul National University, Seoul, Republic of Korea
| | - Yen-Feng Lin
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Yen-Chen Anne Feng
- Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taipei, Taiwan
- Division of Biostatistics and Data Science, Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Loic Yengo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
6
|
Raben TG, Lello L, Widen E, Hsu SDH. Biobank-scale methods and projections for sparse polygenic prediction from machine learning. Sci Rep 2023; 13:11662. [PMID: 37468507 PMCID: PMC10356957 DOI: 10.1038/s41598-023-37580-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/23/2023] [Indexed: 07/21/2023] Open
Abstract
In this paper we characterize the performance of linear models trained via widely-used sparse machine learning algorithms. We build polygenic scores and examine performance as a function of training set size, genetic ancestral background, and training method. We show that predictor performance is most strongly dependent on size of training data, with smaller gains from algorithmic improvements. We find that LASSO generally performs as well as the best methods, judged by a variety of metrics. We also investigate performance characteristics of predictors trained on one genetic ancestry group when applied to another. Using LASSO, we develop a novel method for projecting AUC and correlation as a function of data size (i.e., for new biobanks) and characterize the asymptotic limit of performance. Additionally, for LASSO (compressed sensing) we show that performance metrics and predictor sparsity are in agreement with theoretical predictions from the Donoho-Tanner phase transition. Specifically, a future predictor trained in the Taiwan Precision Medicine Initiative for asthma can achieve an AUC of [Formula: see text] and for height a correlation of [Formula: see text] for a Taiwanese population. This is above the measured values of [Formula: see text] and [Formula: see text], respectively, for UK Biobank trained predictors applied to a European population.
Collapse
Affiliation(s)
- Timothy G Raben
- Department of Physics and Astronomy, Michigan State University, Michigan, USA.
| | - Louis Lello
- Department of Physics and Astronomy, Michigan State University, Michigan, USA
- Genomic Prediction, Inc., North Brunswick, NJ, USA
| | - Erik Widen
- Department of Physics and Astronomy, Michigan State University, Michigan, USA
- Genomic Prediction, Inc., North Brunswick, NJ, USA
| | - Stephen D H Hsu
- Department of Physics and Astronomy, Michigan State University, Michigan, USA
- Genomic Prediction, Inc., North Brunswick, NJ, USA
| |
Collapse
|
7
|
Bartell E, Lin K, Tsuo K, Gan W, Vedantam S, Cole JB, Baronas JM, Yengo L, Marouli E, Amariuta T, Chen Z, Li L, Renthal NE, Jacobsen CM, Salem RM, Walters RG, Hirschhorn JN. Genetics of skeletal proportions in two different populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541772. [PMID: 37292977 PMCID: PMC10245876 DOI: 10.1101/2023.05.22.541772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Human height can be divided into sitting height and leg length, reflecting growth of different parts of the skeleton whose relative proportions are captured by the ratio of sitting to total height (as sitting height ratio, SHR). Height is a highly heritable trait, and its genetic basis has been well-studied. However, the genetic determinants of skeletal proportion are much less well-characterized. Expanding substantially on past work, we performed a genome-wide association study (GWAS) of SHR in ∼450,000 individuals with European ancestry and ∼100,000 individuals with East Asian ancestry from the UK and China Kadoorie Biobanks. We identified 565 loci independently associated with SHR, including all genomic regions implicated in prior GWAS in these ancestries. While SHR loci largely overlap height-associated loci (P < 0.001), the fine-mapped SHR signals were often distinct from height. We additionally used fine-mapped signals to identify 36 credible sets with heterogeneous effects across ancestries. Lastly, we used SHR, sitting height, and leg length to identify genetic variation acting on specific body regions rather than on overall human height.
Collapse
|
8
|
Baronas JM, Bartell E, Eliasen A, Doench JG, Yengo L, Vedantam S, Marouli E, GIANT Consortium, Kronenberg HM, Hirschhorn JN, Renthal NE. Genome-wide CRISPR screening of chondrocyte maturation newly implicates genes in skeletal growth and height-associated GWAS loci. CELL GENOMICS 2023; 3:100299. [PMID: 37228756 PMCID: PMC10203046 DOI: 10.1016/j.xgen.2023.100299] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/14/2022] [Accepted: 03/17/2023] [Indexed: 05/27/2023]
Abstract
Alterations in the growth and maturation of chondrocytes can lead to variation in human height, including monogenic disorders of skeletal growth. We aimed to identify genes and pathways relevant to human growth by pairing human height genome-wide association studies (GWASs) with genome-wide knockout (KO) screens of growth-plate chondrocyte proliferation and maturation in vitro. We identified 145 genes that alter chondrocyte proliferation and maturation at early and/or late time points in culture, with 90% of genes validating in secondary screening. These genes are enriched in monogenic growth disorder genes and in KEGG pathways critical for skeletal growth and endochondral ossification. Further, common variants near these genes capture height heritability independent of genes computationally prioritized from GWASs. Our study emphasizes the value of functional studies in biologically relevant tissues as orthogonal datasets to refine likely causal genes from GWASs and implicates new genetic regulators of chondrocyte proliferation and maturation.
Collapse
Affiliation(s)
- John M. Baronas
- Department of Pediatrics, Division of Endocrinology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Eric Bartell
- Department of Pediatrics, Division of Endocrinology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Anders Eliasen
- Department of Pediatrics, Division of Endocrinology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - John G. Doench
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Loic Yengo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Sailaja Vedantam
- Department of Pediatrics, Division of Endocrinology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eirini Marouli
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - GIANT Consortium
- Department of Pediatrics, Division of Endocrinology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Kgs. Lyngby, Denmark
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Henry M. Kronenberg
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Joel N. Hirschhorn
- Department of Pediatrics, Division of Endocrinology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nora E. Renthal
- Department of Pediatrics, Division of Endocrinology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Turkyilmaz A, Donmez AS, Cayir A. A Genetic Approach in the Evaluation of Short Stature. Eurasian J Med 2022; 54:179-186. [PMID: 36655465 PMCID: PMC11163345 DOI: 10.5152/eurasianjmed.2022.22171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/28/2022] [Indexed: 01/19/2023] Open
Abstract
Short stature is considered a condition in which the height is 2 standard deviations below the mean height of a given age, sex, and population group. Human height is a polygenic and heterogeneous characteristic, and its heritability is reported to be approximately 80%. More than 600 variants associated with human growth were detected in the genome-wide association studies. Rare and common variants concurrently affect human height. The rare variations that play a role in human height determination and have a strong impact on protein functions lead to monogenic short stature phenotypes, which are a highly heterogeneous group. With rapidly developing technologies in the last decade, molecular genetic tests have begun to be used widely in clinical genetics, and thus, the genetic etiology of several rare diseases has been elucidated. Identifying the genetic etiology underlying idiopathic short stature which represents phenotypically heterogeneous group of diseases ranging from isolated short stature to severe and syndromic short stature has promoted the understanding of the genetic regulation of growth plate and longitudinal bone growth. In cases of short stature, definite molecular diagnosis based on genetic evaluation enables the patient and family to receive genetic counseling on the natural course of the disease, prognosis, genetic basis, and recurrence risk. The determination of the genetic etiology in growth disorders is essential for the development of novel targeted therapies and crucial in the development of mutation-specific treatments in the future.
Collapse
Affiliation(s)
- Ayberk Turkyilmaz
- Department of Medical Genetics, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| | - Ayse Sena Donmez
- Department of Pediatrics, Regional Training and Research Hospital, Erzurum, Turkey
| | - Atilla Cayir
- Department of Pediatric Endocrinology, Regional Training and Research Hospital, Erzurum, Turkey
| |
Collapse
|
10
|
Yengo L, Vedantam S, Marouli E, Sidorenko J, Bartell E, Sakaue S, Graff M, Eliasen AU, Jiang Y, Raghavan S, Miao J, Arias JD, Graham SE, Mukamel RE, Spracklen CN, Yin X, Chen SH, Ferreira T, Highland HH, Ji Y, Karaderi T, Lin K, Lüll K, Malden DE, Medina-Gomez C, Machado M, Moore A, Rüeger S, Sim X, Vrieze S, Ahluwalia TS, Akiyama M, Allison MA, Alvarez M, Andersen MK, Ani A, Appadurai V, Arbeeva L, Bhaskar S, Bielak LF, Bollepalli S, Bonnycastle LL, Bork-Jensen J, Bradfield JP, Bradford Y, Braund PS, Brody JA, Burgdorf KS, Cade BE, Cai H, Cai Q, Campbell A, Cañadas-Garre M, Catamo E, Chai JF, Chai X, Chang LC, Chang YC, Chen CH, Chesi A, Choi SH, Chung RH, Cocca M, Concas MP, Couture C, Cuellar-Partida G, Danning R, Daw EW, Degenhard F, Delgado GE, Delitala A, Demirkan A, Deng X, Devineni P, Dietl A, Dimitriou M, Dimitrov L, Dorajoo R, Ekici AB, Engmann JE, Fairhurst-Hunter Z, Farmaki AE, Faul JD, Fernandez-Lopez JC, Forer L, Francescatto M, Freitag-Wolf S, Fuchsberger C, Galesloot TE, Gao Y, Gao Z, Geller F, Giannakopoulou O, Giulianini F, Gjesing AP, Goel A, Gordon SD, Gorski M, Grove J, Guo X, et alYengo L, Vedantam S, Marouli E, Sidorenko J, Bartell E, Sakaue S, Graff M, Eliasen AU, Jiang Y, Raghavan S, Miao J, Arias JD, Graham SE, Mukamel RE, Spracklen CN, Yin X, Chen SH, Ferreira T, Highland HH, Ji Y, Karaderi T, Lin K, Lüll K, Malden DE, Medina-Gomez C, Machado M, Moore A, Rüeger S, Sim X, Vrieze S, Ahluwalia TS, Akiyama M, Allison MA, Alvarez M, Andersen MK, Ani A, Appadurai V, Arbeeva L, Bhaskar S, Bielak LF, Bollepalli S, Bonnycastle LL, Bork-Jensen J, Bradfield JP, Bradford Y, Braund PS, Brody JA, Burgdorf KS, Cade BE, Cai H, Cai Q, Campbell A, Cañadas-Garre M, Catamo E, Chai JF, Chai X, Chang LC, Chang YC, Chen CH, Chesi A, Choi SH, Chung RH, Cocca M, Concas MP, Couture C, Cuellar-Partida G, Danning R, Daw EW, Degenhard F, Delgado GE, Delitala A, Demirkan A, Deng X, Devineni P, Dietl A, Dimitriou M, Dimitrov L, Dorajoo R, Ekici AB, Engmann JE, Fairhurst-Hunter Z, Farmaki AE, Faul JD, Fernandez-Lopez JC, Forer L, Francescatto M, Freitag-Wolf S, Fuchsberger C, Galesloot TE, Gao Y, Gao Z, Geller F, Giannakopoulou O, Giulianini F, Gjesing AP, Goel A, Gordon SD, Gorski M, Grove J, Guo X, Gustafsson S, Haessler J, Hansen TF, Havulinna AS, Haworth SJ, He J, Heard-Costa N, Hebbar P, Hindy G, Ho YLA, Hofer E, Holliday E, Horn K, Hornsby WE, Hottenga JJ, Huang H, Huang J, Huerta-Chagoya A, Huffman JE, Hung YJ, Huo S, Hwang MY, Iha H, Ikeda DD, Isono M, Jackson AU, Jäger S, Jansen IE, Johansson I, Jonas JB, Jonsson A, Jørgensen T, Kalafati IP, Kanai M, Kanoni S, Kårhus LL, Kasturiratne A, Katsuya T, Kawaguchi T, Kember RL, Kentistou KA, Kim HN, Kim YJ, Kleber ME, Knol MJ, Kurbasic A, Lauzon M, Le P, Lea R, Lee JY, Leonard HL, Li SA, Li X, Li X, Liang J, Lin H, Lin SY, Liu J, Liu X, Lo KS, Long J, Lores-Motta L, Luan J, Lyssenko V, Lyytikäinen LP, Mahajan A, Mamakou V, Mangino M, Manichaikul A, Marten J, Mattheisen M, Mavarani L, McDaid AF, Meidtner K, Melendez TL, Mercader JM, Milaneschi Y, Miller JE, Millwood IY, Mishra PP, Mitchell RE, Møllehave LT, Morgan A, Mucha S, Munz M, Nakatochi M, Nelson CP, Nethander M, Nho CW, Nielsen AA, Nolte IM, Nongmaithem SS, Noordam R, Ntalla I, Nutile T, Pandit A, Christofidou P, Pärna K, Pauper M, Petersen ERB, Petersen LV, Pitkänen N, Polašek O, Poveda A, Preuss MH, Pyarajan S, Raffield LM, Rakugi H, Ramirez J, Rasheed A, Raven D, Rayner NW, Riveros C, Rohde R, Ruggiero D, Ruotsalainen SE, Ryan KA, Sabater-Lleal M, Saxena R, Scholz M, Sendamarai A, Shen B, Shi J, Shin JH, Sidore C, Sitlani CM, Slieker RC, Smit RAJ, Smith AV, Smith JA, Smyth LJ, Southam L, Steinthorsdottir V, Sun L, Takeuchi F, Tallapragada DSP, Taylor KD, Tayo BO, Tcheandjieu C, Terzikhan N, Tesolin P, Teumer A, Theusch E, Thompson DJ, Thorleifsson G, Timmers PRHJ, Trompet S, Turman C, Vaccargiu S, van der Laan SW, van der Most PJ, van Klinken JB, van Setten J, Verma SS, Verweij N, Veturi Y, Wang CA, Wang C, Wang L, Wang Z, Warren HR, Bin Wei W, Wickremasinghe AR, Wielscher M, Wiggins KL, Winsvold BS, Wong A, Wu Y, Wuttke M, Xia R, Xie T, Yamamoto K, Yang J, Yao J, Young H, Yousri NA, Yu L, Zeng L, Zhang W, Zhang X, Zhao JH, Zhao W, Zhou W, Zimmermann ME, Zoledziewska M, Adair LS, Adams HHH, Aguilar-Salinas CA, Al-Mulla F, Arnett DK, Asselbergs FW, Åsvold BO, Attia J, Banas B, Bandinelli S, Bennett DA, Bergler T, Bharadwaj D, Biino G, Bisgaard H, Boerwinkle E, Böger CA, Bønnelykke K, Boomsma DI, Børglum AD, Borja JB, Bouchard C, Bowden DW, Brandslund I, Brumpton B, Buring JE, Caulfield MJ, Chambers JC, Chandak GR, Chanock SJ, Chaturvedi N, Chen YDI, Chen Z, Cheng CY, Christophersen IE, Ciullo M, Cole JW, Collins FS, Cooper RS, Cruz M, Cucca F, Cupples LA, Cutler MJ, Damrauer SM, Dantoft TM, de Borst GJ, de Groot LCPGM, De Jager PL, de Kleijn DPV, Janaka de Silva H, Dedoussis GV, den Hollander AI, Du S, Easton DF, Elders PJM, Eliassen AH, Ellinor PT, Elmståhl S, Erdmann J, Evans MK, Fatkin D, Feenstra B, Feitosa MF, Ferrucci L, Ford I, Fornage M, Franke A, Franks PW, Freedman BI, Gasparini P, Gieger C, Girotto G, Goddard ME, Golightly YM, Gonzalez-Villalpando C, Gordon-Larsen P, Grallert H, Grant SFA, Grarup N, Griffiths L, Gudnason V, Haiman C, Hakonarson H, Hansen T, Hartman CA, Hattersley AT, Hayward C, Heckbert SR, Heng CK, Hengstenberg C, Hewitt AW, Hishigaki H, Hoyng CB, Huang PL, Huang W, Hunt SC, Hveem K, Hyppönen E, Iacono WG, Ichihara S, Ikram MA, Isasi CR, Jackson RD, Jarvelin MR, Jin ZB, Jöckel KH, Joshi PK, Jousilahti P, Jukema JW, Kähönen M, Kamatani Y, Kang KD, Kaprio J, Kardia SLR, Karpe F, Kato N, Kee F, Kessler T, Khera AV, Khor CC, Kiemeney LALM, Kim BJ, Kim EK, Kim HL, Kirchhof P, Kivimaki M, Koh WP, Koistinen HA, Kolovou GD, Kooner JS, Kooperberg C, Köttgen A, Kovacs P, Kraaijeveld A, Kraft P, Krauss RM, Kumari M, Kutalik Z, Laakso M, Lange LA, Langenberg C, Launer LJ, Le Marchand L, Lee H, Lee NR, Lehtimäki T, Li H, Li L, Lieb W, Lin X, Lind L, Linneberg A, Liu CT, Liu J, Loeffler M, London B, Lubitz SA, Lye SJ, Mackey DA, Mägi R, Magnusson PKE, Marcus GM, Vidal PM, Martin NG, März W, Matsuda F, McGarrah RW, McGue M, McKnight AJ, Medland SE, Mellström D, Metspalu A, Mitchell BD, Mitchell P, Mook-Kanamori DO, Morris AD, Mucci LA, Munroe PB, Nalls MA, Nazarian S, Nelson AE, Neville MJ, Newton-Cheh C, Nielsen CS, Nöthen MM, Ohlsson C, Oldehinkel AJ, Orozco L, Pahkala K, Pajukanta P, Palmer CNA, Parra EJ, Pattaro C, Pedersen O, Pennell CE, Penninx BWJH, Perusse L, Peters A, Peyser PA, Porteous DJ, Posthuma D, Power C, Pramstaller PP, Province MA, Qi Q, Qu J, Rader DJ, Raitakari OT, Ralhan S, Rallidis LS, Rao DC, Redline S, Reilly DF, Reiner AP, Rhee SY, Ridker PM, Rienstra M, Ripatti S, Ritchie MD, Roden DM, Rosendaal FR, Rotter JI, Rudan I, Rutters F, Sabanayagam C, Saleheen D, Salomaa V, Samani NJ, Sanghera DK, Sattar N, Schmidt B, Schmidt H, Schmidt R, Schulze MB, Schunkert H, Scott LJ, Scott RJ, Sever P, Shiroma EJ, Shoemaker MB, Shu XO, Simonsick EM, Sims M, Singh JR, Singleton AB, Sinner MF, Smith JG, Snieder H, Spector TD, Stampfer MJ, Stark KJ, Strachan DP, 't Hart LM, Tabara Y, Tang H, Tardif JC, Thanaraj TA, Timpson NJ, Tönjes A, Tremblay A, Tuomi T, Tuomilehto J, Tusié-Luna MT, Uitterlinden AG, van Dam RM, van der Harst P, Van der Velde N, van Duijn CM, van Schoor NM, Vitart V, Völker U, Vollenweider P, Völzke H, Wacher-Rodarte NH, Walker M, Wang YX, Wareham NJ, Watanabe RM, Watkins H, Weir DR, Werge TM, Widen E, Wilkens LR, Willemsen G, Willett WC, Wilson JF, Wong TY, Woo JT, Wright AF, Wu JY, Xu H, Yajnik CS, Yokota M, Yuan JM, Zeggini E, Zemel BS, Zheng W, Zhu X, Zmuda JM, Zonderman AB, Zwart JA, Chasman DI, Cho YS, Heid IM, McCarthy MI, Ng MCY, O'Donnell CJ, Rivadeneira F, Thorsteinsdottir U, Sun YV, Tai ES, Boehnke M, Deloukas P, Justice AE, Lindgren CM, Loos RJF, Mohlke KL, North KE, Stefansson K, Walters RG, Winkler TW, Young KL, Loh PR, Yang J, Esko T, Assimes TL, Auton A, Abecasis GR, Willer CJ, Locke AE, Berndt SI, Lettre G, Frayling TM, Okada Y, Wood AR, Visscher PM, Hirschhorn JN. A saturated map of common genetic variants associated with human height. Nature 2022; 610:704-712. [PMID: 36224396 PMCID: PMC9605867 DOI: 10.1038/s41586-022-05275-y] [Show More Authors] [Citation(s) in RCA: 351] [Impact Index Per Article: 117.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 08/24/2022] [Indexed: 02/08/2023]
Abstract
Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.
Collapse
Affiliation(s)
- Loïc Yengo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| | - Sailaja Vedantam
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eirini Marouli
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Julia Sidorenko
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Eric Bartell
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Saori Sakaue
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Divisions of Genetics and Rheumatology, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Marielisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anders U Eliasen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
| | | | - Sridharan Raghavan
- Department of Veterans Affairs, Eastern Colorado Healthcare System, Aurora, CO, USA
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jenkai Miao
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joshua D Arias
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Sarah E Graham
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Ronen E Mukamel
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Cassandra N Spracklen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Xianyong Yin
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Shyh-Huei Chen
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Teresa Ferreira
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Heather H Highland
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yingjie Ji
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Tugce Karaderi
- Center for Health Data Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kuang Lin
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Kreete Lüll
- Institute of Genomics, Estonian Genome Centre, University of Tartu, Tartu, Estonia
| | - Deborah E Malden
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Moara Machado
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Amy Moore
- Division of Biostatistics and Epidemiology, RTI International, Durham, NC, USA
| | - Sina Rüeger
- Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Scott Vrieze
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Tarunveer S Ahluwalia
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Biology, The Bioinformatics Center, University of Copenhagen, Copenhagen, Denmark
| | - Masato Akiyama
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Matthew A Allison
- Department of Family Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Marcus Alvarez
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Mette K Andersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alireza Ani
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vivek Appadurai
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark
| | - Liubov Arbeeva
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Seema Bhaskar
- Genomic Research on Complex diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Lawrence F Bielak
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Sailalitha Bollepalli
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Lori L Bonnycastle
- Molecular Genetics Section, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan P Bradfield
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Quantinuum Research, Wayne, PA, USA
| | - Yuki Bradford
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter S Braund
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kristoffer S Burgdorf
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- NovoNordic Center for Protein Research, Copenhagen University, Copenhagen, Denmark
| | - Brian E Cade
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Hui Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | | - Eulalia Catamo
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy
| | - Jin-Fang Chai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Xiaoran Chai
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, National University of Singapore and National University Health System, Singapore, Singapore
| | - Li-Ching Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Cheng Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, Medical College, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Alessandra Chesi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Spatial and Functional Genomics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Seung Hoan Choi
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ren-Hua Chung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Massimiliano Cocca
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy
| | - Maria Pina Concas
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy
| | - Christian Couture
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec City, Quebec, Canada
| | - Gabriel Cuellar-Partida
- 23andMe, Sunnyvale, CA, USA
- Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Rebecca Danning
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - E Warwick Daw
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Frauke Degenhard
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Graciela E Delgado
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alessandro Delitala
- Dipartimento di Scienze Mediche Chirurgiche e Sperimentali, Università degli Studi di Sassari, Sassari, Italy
| | - Ayse Demirkan
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Section of Statistical Multi-omics, Department of Clinical and Experimental Medicine, University of Surrey, Guildford, UK
| | - Xuan Deng
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Poornima Devineni
- Center for Data and Computational Sciences, VA Boston Healthcare System, Boston, MA, USA
| | - Alexander Dietl
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Maria Dimitriou
- Department of Nutrition and Dietetics, School of Health and Education, Harokopio University of Athens, Athens, Greece
| | - Latchezar Dimitrov
- Center for Precision Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Arif B Ekici
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jorgen E Engmann
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
| | | | - Aliki-Eleni Farmaki
- Department of Nutrition and Dietetics, School of Health and Education, Harokopio University of Athens, Athens, Greece
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | | | - Lukas Forer
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Sandra Freitag-Wolf
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Christian Fuchsberger
- Eurac Research, Institute for Biomedicine, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Tessel E Galesloot
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department for Health Evidence, Nijmegen, The Netherlands
| | - Yan Gao
- Jackson Heart Study, Department of Medicine, University of Mississippi, Jackson, MS, USA
| | - Zishan Gao
- Nanjing University of Chinese Medicine, Nanjing, China
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Germany
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Olga Giannakopoulou
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Anette P Gjesing
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anuj Goel
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Scott D Gordon
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mathias Gorski
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Jakob Grove
- Department of Biomedicine (Human Genetics) and iSEQ Center, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- BiRC-Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | - Jeffrey Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Thomas F Hansen
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark
- NovoNordic Center for Protein Research, Copenhagen University, Copenhagen, Denmark
- Danish Headache Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Rigshospitalet, Copenhagen, Denmark
| | - Aki S Havulinna
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Simon J Haworth
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Dental School, University of Bristol, Bristol, UK
| | - Jing He
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nancy Heard-Costa
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Prashantha Hebbar
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - George Hindy
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Yuk-Lam A Ho
- Veterans Affairs Boston Healthcare System, Boston, MA, USA
| | - Edith Hofer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Elizabeth Holliday
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Katrin Horn
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Medical Faculty, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Medical Faculty, Leipzig, Germany
| | - Whitney E Hornsby
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Hongyan Huang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jie Huang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
- Institute for Global Health and Development, Peking University, Beijing, China
| | - Alicia Huerta-Chagoya
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México Ciudad Universitaria, Mexico City, Mexico
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición, Mexico City, Mexico
| | | | - Yi-Jen Hung
- Division of Endocrine and Metabolism, Tri-Service General Hospital Songshan Branch, Taipei, Taiwan
| | - Shaofeng Huo
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mi Yeong Hwang
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju, Republic of Korea
| | - Hiroyuki Iha
- Biomedical Technology Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Tokushima, Japan
| | - Daisuke D Ikeda
- Biomedical Technology Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Tokushima, Japan
| | - Masato Isono
- Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Susanne Jäger
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Iris E Jansen
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Pediatric Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Ingegerd Johansson
- Department of Biobank Research, Umeå University, Umeå, Sweden
- Department of Odontology, Umeå University, Umeå, Sweden
| | - Jost B Jonas
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Privatpraxis Prof Jonas und Dr Panda-Jonas, Heidelberg, Germany
- Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Anna Jonsson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Jørgensen
- Center for Clinical Research and Prevention, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ioanna-Panagiota Kalafati
- Department of Nutrition and Dietetics, School of Health and Education, Harokopio University of Athens, Athens, Greece
| | - Masahiro Kanai
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Line L Kårhus
- Center for Clinical Research and Prevention, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | | | - Tomohiro Katsuya
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Rachel L Kember
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine A Kentistou
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
- Centre for Cardiovascular Sciences, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Han-Na Kim
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Clinical Research Design and Evaluation (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Young Jin Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju, Republic of Korea
| | - Marcus E Kleber
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- SYNLAB MVZ Humangenetik Mannheim, Mannheim, Germany
| | - Maria J Knol
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Azra Kurbasic
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, Sweden
| | - Marie Lauzon
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Phuong Le
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, Ontario, Canada
| | - Rodney Lea
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Jong-Young Lee
- Oneomics, Soonchunhyang Mirai Medical Center, Bucheon-si, Republic of Korea
| | - Hampton L Leonard
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Glen Echo, MD, USA
| | - Shengchao A Li
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Rockville, MD, USA
| | - Xiaohui Li
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Xiaoyin Li
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Mathematics and Statistics, St Cloud State University, St Cloud, MN, USA
| | - Jingjing Liang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jun Liu
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Xueping Liu
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Ken Sin Lo
- Montreal Heart Institute, Montreal, Quebec, Canada
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Laura Lores-Motta
- Departments of Ophthalmology and Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Valeriya Lyssenko
- Department of Clinical Science, Center for Diabetes Research, University of Bergen, Bergen, Norway
- Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Cardiology, Heart Center, Tampere University Hospital, Tampere, Finland
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Vasiliki Mamakou
- National and Kapodistrian University of Athens, Dromokaiteio Psychiatric Hospital, Athens, Greece
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, UK
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jonathan Marten
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Manuel Mattheisen
- Department of Biomedicine (Human Genetics) and iSEQ Center, Aarhus University, Aarhus, Denmark
- Department of Psychiatry and Department of Community Health and Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Laven Mavarani
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, Essen, Germany
| | - Aaron F McDaid
- Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Karina Meidtner
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Tori L Melendez
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Josep M Mercader
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC and Vrije Universiteit, Amsterdam, The Netherlands
| | - Jason E Miller
- Biomedical and Translational Informatics Institute, Geisinger, Danville, PA, USA
- Department of Genetics, Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Iona Y Millwood
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ruth E Mitchell
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Line T Møllehave
- Center for Clinical Research and Prevention, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Anna Morgan
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy
| | - Soeren Mucha
- Institute for Cardiogenetics, University of Lübeck, DZHK (German Research Centre for Cardiovascular Research) partner site Hamburg/Lübeck/Kiel and University Heart Center Lübeck, Lübeck, Germany
| | - Matthias Munz
- Institute for Cardiogenetics, University of Lübeck, DZHK (German Research Centre for Cardiovascular Research) partner site Hamburg/Lübeck/Kiel and University Heart Center Lübeck, Lübeck, Germany
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Maria Nethander
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Chu Won Nho
- Korea Institute of Science and Technology, Gangneung Institute of Natural Products, Gangneung, Republic of Korea
| | - Aneta A Nielsen
- Department of Clinical Biochemistry, Lillebaelt Hospital, Kolding, Denmark
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Suraj S Nongmaithem
- Genomic Research on Complex diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ioanna Ntalla
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Teresa Nutile
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Anita Pandit
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | | | - Katri Pärna
- Institute of Genomics, Estonian Genome Centre, University of Tartu, Tartu, Estonia
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marc Pauper
- Departments of Ophthalmology and Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Eva R B Petersen
- Department of Clinical Biochemistry and Immunology, Hospital of Southern Jutland, Aabenraa, Denmark
| | - Liselotte V Petersen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- The National Centre for Register-based Research, University of Aarhus, Aarhus, Denmark
| | - Niina Pitkänen
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Ozren Polašek
- Medical School, University of Split, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - Alaitz Poveda
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, Sweden
| | - Michael H Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saiju Pyarajan
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Center for Data and Computational Sciences, VA Boston Healthcare System, Boston, MA, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Julia Ramirez
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Aragon Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Asif Rasheed
- Center for Non-Communicable Diseases, Karachi, Pakistan
| | - Dennis Raven
- Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nigel W Rayner
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | - Carlos Riveros
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Rebecca Rohde
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniela Ruggiero
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Sanni E Ruotsalainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kathleen A Ryan
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maria Sabater-Lleal
- Unit of Genomics of Complex Diseases, Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | - Richa Saxena
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Medical Faculty, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Medical Faculty, Leipzig, Germany
| | - Anoop Sendamarai
- Center for Data and Computational Sciences, VA Boston Healthcare System, Boston, MA, USA
| | - Botong Shen
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | | | - Jae Hun Shin
- Department of Biomedical Science, Hallym University, Chuncheon, Republic of Korea
| | - Carlo Sidore
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Roderick C Slieker
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
- Epidemiology and Data Science, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Roelof A J Smit
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Albert V Smith
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Icelandic Heart Association, Kópavogur, Iceland
| | - Jennifer A Smith
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Laura J Smyth
- Centre for Public Health, Queen's University of Belfast, Belfast, UK
| | - Lorraine Southam
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Wellcome Sanger Institute, Hinxton, UK
| | | | - Liang Sun
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fumihiko Takeuchi
- Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Divya Sri Priyanka Tallapragada
- Genomic Research on Complex diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Bamidele O Tayo
- Department of Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, USA
| | - Catherine Tcheandjieu
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Natalie Terzikhan
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Paola Tesolin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Elizabeth Theusch
- Cardiology Division, Department of Pediatrics, University of California, San Francisco, Oakland, CA, USA
| | - Deborah J Thompson
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Paul R H J Timmers
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Stella Trompet
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Constance Turman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Simona Vaccargiu
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan B van Klinken
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jessica van Setten
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Shefali S Verma
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Niek Verweij
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yogasudha Veturi
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Carol A Wang
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Chaolong Wang
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lihua Wang
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Helen R Warren
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Wen Bin Wei
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | | | - Matthias Wielscher
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Kerri L Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Bendik S Winsvold
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at UCL, Institute of Cardiovascular Science, University College London, London, UK
| | - Yang Wu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthias Wuttke
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- Department of Medicine IV - Nephrology and Primary Care, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Rui Xia
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tian Xie
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Japan
| | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Hannah Young
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Noha A Yousri
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
- Department of Computer and Systems Engineering, Alexandria University, Alexandria, Egypt
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Lingyao Zeng
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
| | - Weihua Zhang
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, London, UK
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Xinyuan Zhang
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jing-Hua Zhao
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Wei Zhao
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Wei Zhou
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Martina E Zimmermann
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Magdalena Zoledziewska
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Linda S Adair
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hieab H H Adams
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Carlos A Aguilar-Salinas
- Unidad de Investigacion de Enfermedades Metabolicas and Direction of Nutrition, Instituto Nacional de Ciencias Medicas y Nutricion, Mexico City, Mexico
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Mexico
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Donna K Arnett
- Department of Epidemiology and Dean's Office, College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
- Health Data Research UK and Institute of Health Informatics, University College London, London, UK
| | - Bjørn Olav Åsvold
- KG Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Levanger, Norway
- Department of Endocrinology, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - John Attia
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Bernhard Banas
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | | | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Tobias Bergler
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Dwaipayan Bharadwaj
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University (JNU), New Delhi, India
| | - Ginevra Biino
- Institute of Molecular Genetics, National Research Council of Italy, Pavia, Italy
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Eric Boerwinkle
- Human Genetics Center and Department of Epidemiology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Carsten A Böger
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
- Department of Nephrology and Rheumatology, Kliniken Südostbayern, Regensburg, Germany
- KfH Kidney Center Traunstein, Traunstein, Germany
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Dorret I Boomsma
- Department of Biological Psychology, Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Anders D Børglum
- Department of Biomedicine (Human Genetics) and iSEQ Center, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine (CGPM), Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Judith B Borja
- USC-Office of Population Studies Foundation, University of San Carlos, Cebu City, Philippines
- Department of Nutrition and Dietetics, University of San Carlos, Cebu City, Philippines
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Donald W Bowden
- Center for Precision Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Ivan Brandslund
- Department of Clinical Biochemistry, Lillebaelt Hospital, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Ben Brumpton
- KG Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
- Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Julie E Buring
- Harvard Medical School, Boston, MA, USA
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Mark J Caulfield
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - John C Chambers
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, London, UK
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Imperial College Healthcare NHS Trust, Imperial College London, London, UK
| | - Giriraj R Chandak
- Genomic Research on Complex diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- Adjunct Faculty, JSS University Academy of Higher Education and Research (JSSAHER), JSS (Deemed to be) University, Mysuru, India
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Nish Chaturvedi
- MRC Unit for Lifelong Health and Ageing at UCL, Institute of Cardiovascular Science, University College London, London, UK
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Zhengming Chen
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Ching-Yu Cheng
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Ingrid E Christophersen
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
| | - Marina Ciullo
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - John W Cole
- Department of Neurology, Division of Vascular Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
- Baltimore Veterans Affairs Medical Center, Department of Neurology, Baltimore, MD, USA
| | - Francis S Collins
- Molecular Genetics Section, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Richard S Cooper
- Department of Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, USA
| | - Miguel Cruz
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Michael J Cutler
- Intermountain Heart Institute, Intermountain Medical Center, Murray, UT, USA
| | - Scott M Damrauer
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Thomas M Dantoft
- Center for Clinical Research and Prevention, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Gert J de Borst
- Department of Vascular Surgery, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | | | - Philip L De Jager
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Dominique P V de Kleijn
- Department of Vascular Surgery, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | | | - George V Dedoussis
- Department of Nutrition and Dietetics, School of Health and Education, Harokopio University of Athens, Athens, Greece
| | - Anneke I den Hollander
- Departments of Ophthalmology and Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Shufa Du
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Petra J M Elders
- Department of General Practice, Amsterdam Public Health Institute, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - A Heather Eliassen
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Sölve Elmståhl
- Department of Clinical Sciences in Malmö, Division of Geriatric Medicine, Lund University, Malmö, Sweden
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, DZHK (German Research Centre for Cardiovascular Research) partner site Hamburg/Lübeck/Kiel and University Heart Center Lübeck, Lübeck, Germany
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Diane Fatkin
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
- Cardiology Department, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
- Faculty of Medicine, UNSW Sydney, Kensington, New South Wales, Australia
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ian Ford
- Robertson Center for Biostatistics, University of Glasgow, Glasgow, UK
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, Sweden
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Barry I Freedman
- Department of Internal Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Paolo Gasparini
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Giorgia Girotto
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Michael E Goddard
- Faculty of Veterinary and Agricultural Science, University of Melbourne, Parkville, Victoria, Australia
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Bundoora, Victoria, Australia
| | - Yvonne M Golightly
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Injury Prevention Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Clicerio Gonzalez-Villalpando
- Centro de Investigacion en Salud Poblacional Instituto Nacional de Salud Publica and Centro de Estudios en Diabetes, Cuernavaca, Mexico
| | - Penny Gordon-Larsen
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Struan F A Grant
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Departments of Pediatrics and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lyn Griffiths
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kópavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Christopher Haiman
- Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Catharina A Hartman
- Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Susan R Heckbert
- Cardiovascular Health Research Unit, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Christian Hengstenberg
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Alex W Hewitt
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Lions Eye Institute, Centre for Ophthalmology and Vision Science, University of Western Australia, Perth, Western Australia, Australia
| | - Haretsugu Hishigaki
- Biomedical Technology Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Tokushima, Japan
| | - Carel B Hoyng
- Departments of Ophthalmology and Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Paul L Huang
- Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Wei Huang
- Department of Genetics, Shanghai-MOST Key Laboratory of Heath and Disease Genomics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute, Shanghai, China
| | - Steven C Hunt
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Kristian Hveem
- KG Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Levanger, Norway
| | - Elina Hyppönen
- Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - William G Iacono
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Carmen R Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rebecca D Jackson
- Division of Endocrinology, Diabetes and Metabolism, School of Medicine, Ohio State University, Columbus, OH, USA
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Unit of Primary Health Care, Oulu University Hospital, OYS, Oulu, Finland
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, Essen, Germany
| | - Peter K Joshi
- Centre for Cardiovascular Sciences, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Pekka Jousilahti
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, LUMC, Leiden, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
- Department of Clinical Physiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Kui Dong Kang
- Department of Ophthalmology, The Catholic University of Korea Incheon St. Mary's Hospital, Incheon, Republic of Korea
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Norihiro Kato
- Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Frank Kee
- Centre for Public Health, Queen's University of Belfast, Belfast, UK
| | - Thorsten Kessler
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Amit V Khera
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Lambertus A L M Kiemeney
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department for Health Evidence, Nijmegen, The Netherlands
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Urology, Nijmegen, The Netherlands
| | - Bong-Jo Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju, Republic of Korea
| | - Eung Kweon Kim
- Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Saevit Eye Hospital, Goyang, Republic of Korea
| | - Hyung-Lae Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Paulus Kirchhof
- Department of Cardiology, University Heart and Vascular Center UKE Hamburg, Hamburg, Germany
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- German Center for Cardiovascular Research, partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Atrial Fibrillation NETwork, Münster, Germany
| | - Mika Kivimaki
- Department of Epidemiology and Public Health, UCL Institute of Epidemiology and Health Care, University College London, London, UK
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Heikki A Koistinen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- University of Helsinki and Department of Medicine, Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Genovefa D Kolovou
- Department of Preventive Cardiology, Lipoprotein Apheresis Unit and Lipid Disorders Clinic, Metropolitan Hospital, Athens, Greece
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, London, UK
- Imperial College Healthcare NHS Trust, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Adriaan Kraaijeveld
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ronald M Krauss
- Cardiology Division, Department of Pediatrics, University of California, San Francisco, Oakland, CA, USA
| | - Meena Kumari
- Institute for Social and Economic Research, University of Essex, Colchester, UK
| | - Zoltan Kutalik
- Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Leslie A Lange
- Department of Medicine, University of Colorado at Denver, Aurora, CO, USA
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Hyejin Lee
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| | - Nanette R Lee
- USC-Office of Population Studies Foundation, University of San Carlos, Cebu City, Philippines
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Huaixing Li
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liming Li
- Department of Epidemiology and Biostatistics, Peking University Health Science Center, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
| | - Wolfgang Lieb
- Institute of Epidemiology and Biobank Popgen, Kiel University, Kiel, Germany
| | - Xu Lin
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Medical Faculty, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Medical Faculty, Leipzig, Germany
| | - Barry London
- Division of Cardiovascular Medicine and Abboud Cardiovascular Research Center, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Steven A Lubitz
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Stephen J Lye
- Alliance for Human Development, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - David A Mackey
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
- Lions Eye Institute, Centre for Ophthalmology and Vision Science, University of Western Australia, Perth, Western Australia, Australia
| | - Reedik Mägi
- Institute of Genomics, Estonian Genome Centre, University of Tartu, Tartu, Estonia
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Gregory M Marcus
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Pedro Marques Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
- University of Lausanne, Lausanne, Switzerland
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Winfried März
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- SYNLAB Academy, SYNLAB Holding Deutschland, Mannheim, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Robert W McGarrah
- Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Matt McGue
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | | | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Dan Mellström
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Geriatric Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Andres Metspalu
- Institute of Genomics, Estonian Genome Centre, University of Tartu, Tartu, Estonia
| | - Braxton D Mitchell
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Paul Mitchell
- Centre for Vision Research and Department of Ophthalmology, Westmead Millennium Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew D Morris
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Glen Echo, MD, USA
| | - Saman Nazarian
- Electrophysiology Section, Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amanda E Nelson
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matt J Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Christopher Newton-Cheh
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Christopher S Nielsen
- Department of Chronic Diseases, Norwegian Institute of Public Health, Oslo, Norway
- Department of Pain Management and Research, Oslo University Hospital, Oslo, Norway
| | - Markus M Nöthen
- Institute of Human Genetics, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital, Department of Drug Treatment, Gothenburg, Sweden
| | - Albertine J Oldehinkel
- Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lorena Orozco
- Laboratorio de Inmunogenómica y Enfermedades Metabólicas, Instituto Nacional de Medicina Genómica, CDMX, Mexico City, Mexico
| | - Katja Pahkala
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Paavo Nurmi Centre, Sports and Exercise Medicine Unit, Department of Physical Activity and Health, University of Turku, Turku, Finland
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Institute for Precision Health, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Colin N A Palmer
- Pat MacPherson Centre for Pharmacogenetics and Pharmacogenomics, Division of Population Health and Genomics, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Esteban J Parra
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, Ontario, Canada
| | - Cristian Pattaro
- Eurac Research, Institute for Biomedicine, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Craig E Pennell
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC and Vrije Universiteit, Amsterdam, The Netherlands
| | - Louis Perusse
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec City, Quebec, Canada
- Centre Nutrition, Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods, Université Laval, Québec City, Quebec, Canada
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- IBE-Chair of Epidemiology, LMU Munich, Neuherberg, Germany
| | - Patricia A Peyser
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Chris Power
- Population, Policy and Practice, UCL Great Ormond Street Hospital Institute of Child Health, London, UK
| | - Peter P Pramstaller
- Eurac Research, Institute for Biomedicine, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jia Qu
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Daniel J Rader
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Sarju Ralhan
- Hero DMC Heart Institute, Dyanand Medical College, Ludhiana, India
| | - Loukianos S Rallidis
- Second Department of Cardiology, Medical School, National and Kapodistrian University of Athens, University General Hospital Attikon, Athens, Greece
| | - Dabeeru C Rao
- Division of Biostatistics, Washington University School of Medicine, St Louis, MO, USA
| | - Susan Redline
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Alexander P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Sang Youl Rhee
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Korea
| | - Paul M Ridker
- Harvard Medical School, Boston, MA, USA
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Michiel Rienstra
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Samuli Ripatti
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marylyn D Ritchie
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Dan M Roden
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Igor Rudan
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Femke Rutters
- Department of Epidemiology and Data Science, Amsterdam Public Health Institute, Amsterdam Cardiovascular Sciences Institute, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Charumathi Sabanayagam
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Danish Saleheen
- Center for Non-Communicable Diseases, Karachi, Pakistan
- Department of Cardiology and Department of Medicine, Columbia University, New York, NY, USA
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Dharambir K Sanghera
- Department of Pediatrics, Section of Genetics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Börge Schmidt
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, Essen, Germany
| | - Helena Schmidt
- Gottfried Schatz Research Center (for Cell Signaling, Metabolism and Aging), Medical University of Graz, Graz, Austria
| | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Cardiology, Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK) - Munich Heart Alliance, and Technische Universität München, München, Germany
| | - Laura J Scott
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Rodney J Scott
- School of Biomedical Science and Pharmacy, University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Peter Sever
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Eric J Shiroma
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - M Benjamin Shoemaker
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eleanor M Simonsick
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Mario Sims
- Jackson Heart Study, Department of Medicine, University of Mississippi, Jackson, MS, USA
| | | | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Moritz F Sinner
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - J Gustav Smith
- Department of Cardiology, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University and the Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Wallenberg Center for Molecular Medicine and Lund University Diabetes Center, Lund University, Lund, Sweden
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Meir J Stampfer
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Klaus J Stark
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - David P Strachan
- Population Health Research Institute, St George's, University of London, London, UK
| | - Leen M 't Hart
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
- Epidemiology and Data Science, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- Molecular Epidemiology Section, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hua Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jean-Claude Tardif
- Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Thangavel A Thanaraj
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Anke Tönjes
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Angelo Tremblay
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec City, Quebec, Canada
- Centre Nutrition, Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods, Université Laval, Québec City, Quebec, Canada
| | - Tiinamaija Tuomi
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
- Helsinki University Central Hospital, Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Jaakko Tuomilehto
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maria-Teresa Tusié-Luna
- Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Andre G Uitterlinden
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Pim van der Harst
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nathalie Van der Velde
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department Geriatric Medicine, Amsterdam Public Health, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelia M van Duijn
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Natasja M van Schoor
- Department of Epidemiology and Data Science, Amsterdam UMC, Amsterdam, The Netherlands
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Uwe Völker
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
- University of Lausanne, Lausanne, Switzerland
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Niels H Wacher-Rodarte
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Mark Walker
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ya Xing Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Richard M Watanabe
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine of USC, Los Angeles, CA, USA
- USC Diabetes and Obesity Research Institute, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Hugh Watkins
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Thomas M Werge
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Lundbeck Foundation Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Elisabeth Widen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Lynne R Wilkens
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Gonneke Willemsen
- Department of Biological Psychology, Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Walter C Willett
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - James F Wilson
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Tien-Yin Wong
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Jeong-Taek Woo
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Korea
| | - Alan F Wright
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Huichun Xu
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Wellcome Sanger Institute, Hinxton, UK
- TUM School of Medicine, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany
| | - Babette S Zemel
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Spatial and Functional Genomics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Joseph M Zmuda
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - John-Anker Zwart
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Daniel I Chasman
- Harvard Medical School, Boston, MA, USA
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Yoon Shin Cho
- Department of Biomedical Science, Hallym University, Chuncheon, Republic of Korea
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - Maggie C Y Ng
- Center for Precision Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher J O'Donnell
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Veterans Affairs Boston Healthcare System, Boston, MA, USA
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Atlanta VA Health Care System, Decatur, GA, USA
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Panos Deloukas
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anne E Justice
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Population Health Sciences, Geisinger, Danville, PA, USA
| | - Cecilia M Lindgren
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ruth J F Loos
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kari Stefansson
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Robin G Walters
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Kristin L Young
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Po-Ru Loh
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jian Yang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Tõnu Esko
- Institute of Genomics, Estonian Genome Centre, University of Tartu, Tartu, Estonia
| | - Themistocles L Assimes
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Goncalo R Abecasis
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Cristen J Willer
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Adam E Locke
- McDonnell Genome Institute and Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Guillaume Lettre
- Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Timothy M Frayling
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Yukinori Okada
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan.
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Andrew R Wood
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, UK.
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| | - Joel N Hirschhorn
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA.
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Renthal NE, Nakka P, Baronas JM, Kronenberg HM, Hirschhorn JN. Genes with specificity for expression in the round cell layer of the growth plate are enriched in genomewide association study (GWAS) of human height. J Bone Miner Res 2021; 36:2300-2308. [PMID: 34346115 PMCID: PMC10249375 DOI: 10.1002/jbmr.4408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/25/2021] [Accepted: 06/27/2021] [Indexed: 11/09/2022]
Abstract
Human adult height reflects the outcome of childhood skeletal growth. Growth plate (epiphyseal) chondrocytes are key determinants of height. As epiphyseal chondrocytes mature and proliferate, they pass through three developmental stages, which are organized into three distinct layers in the growth plate: (i) resting (round), (ii) proliferative (flat), and (iii) hypertrophic. Recent genomewide association studies (GWASs) of human height identified numerous associated loci, which are enriched for genes expressed in growth plate chondrocytes. However, it remains unclear which specific genes expressed in which layers of the growth plate regulate skeletal growth and human height. To connect the genetics of height and growth plate biology, we analyzed GWAS data through the lens of gene expression in the three dissected layers of murine newborn tibial growth plate. For each gene, we derived a specificity score for each growth plate layer and regressed these scores against gene-level p values from recent height GWAS data. We found that specificity for expression in the round cell layer, which contains chondrocytes early in maturation, is significantly associated with height GWAS p values (p = 8.5 × 10-9 ); this association remains after conditioning on specificity for the other cell layers. The association also remains after conditioning on membership in an "Online Mendelian Inheritance in Man (OMIM) gene set" (genes known to cause monogenic skeletal growth disorders, p < 9.7 × 10-6 ). We replicated the association in RNA-sequencing (RNA-seq) data from maturing chondrocytes sampled at early and late time points during differentiation in vitro: we found that expression early in differentiation is significantly associated with p values from height GWASs (p = 6.1 × 10-10 ) and that this association remains after conditioning on expression at 10 days in culture and on the OMIM gene set (p < 0.006). These findings newly implicate genes highlighted by GWASs of height and specifically expressed in the round cell layer as being potentially important regulators of skeletal biology. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Nora E. Renthal
- Department of Pediatrics, Division of Endocrinology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Priyanka Nakka
- Department of Pediatrics, Division of Endocrinology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | - John M. Baronas
- Department of Pediatrics, Division of Endocrinology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Henry M. Kronenberg
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Joel N. Hirschhorn
- Department of Pediatrics, Division of Endocrinology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
12
|
Mathieu H, Patten SA, Aragon-Martin JA, Ocaka L, Simpson M, Child A, Moldovan F. Genetic variant of TTLL11 gene and subsequent ciliary defects are associated with idiopathic scoliosis in a 5-generation UK family. Sci Rep 2021; 11:11026. [PMID: 34040021 PMCID: PMC8155187 DOI: 10.1038/s41598-021-90155-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Idiopathic scoliosis (IS) is a complex 3D deformation of the spine with a strong genetic component, most commonly found in adolescent girls. Adolescent idiopathic scoliosis (AIS) affects around 3% of the general population. In a 5-generation UK family, linkage analysis identified the locus 9q31.2-q34.2 as a candidate region for AIS; however, the causative gene remained unidentified. Here, using exome sequencing we identified a rare insertion c.1569_1570insTT in the tubulin tyrosine ligase like gene, member 11 (TTLL11) within that locus, as the IS causative gene in this British family. Two other TTLL11 mutations were also identified in two additional AIS cases in the same cohort. Analyses of primary cells of individuals carrying the c.1569_1570insTT (NM_194252) mutation reveal a defect at the primary cilia level, which is less present, smaller and less polyglutamylated compared to control. Further, in a zebrafish, the knock down of ttll11, and the mutated ttll11 confirmed its role in spine development and ciliary function in the fish retina. These findings provide evidence that mutations in TTLL11, a ciliary gene, contribute to the pathogenesis of IS.
Collapse
Affiliation(s)
- Hélène Mathieu
- CHU Sainte-Justine Research Center, 3175 Côte Sainte-Catherine, 2.17.026, Montreal, QC, H3T 1C5, Canada
| | - Shunmoogum A Patten
- INRS-Centre Armand-Frappier Santé et Biotechnologie, Laval, QC, H7V1B7, Canada
| | | | - Louise Ocaka
- Centre for Translational Omics-GOSgene, Department of Genetics and Genomic Medicine, UCL GOSH Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Michael Simpson
- Genetics and Molecular Medicine, King's College London, SE1 1UL, London, UK
| | - Anne Child
- Marfan Trust, NHLI, Imperial College, Guy Scadding Building, London, SW3 6LY, UK.
| | - Florina Moldovan
- CHU Sainte-Justine Research Center, 3175 Côte Sainte-Catherine, 2.17.026, Montreal, QC, H3T 1C5, Canada.
- Faculty of Dentistry, Université de Montréal, Montreal, QC, H3T 1J4, Canada.
| |
Collapse
|
13
|
Faienza MF, Chiarito M, Brunetti G, D'Amato G. Growth plate gene involment and isolated short stature. Endocrine 2021; 71:28-34. [PMID: 32504378 DOI: 10.1007/s12020-020-02362-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Short stature is a common clinical presentation, thus it is widely accepted that it is a polygenic trait. However, genome wide association and next generation sequencing studies have recently challenged this view, suggesting that many of the children classified as idiopathic short stature could instead have monogenic defects. Linear growth is determined primarily by chondrogenesis at the growth plate. This process results from chondrocyte proliferation, hypertrophy, and extracellular matrix secretion, and it is perfectly coordinated by complex networks of local paracrine and endocrine factors. Alterations in genes which control growth plate development can explain a large number of cases of isolated short stature, allowing an etiological diagnosis. METHODS/RESULTS We reviewed recent data on the genetic alterations in fundamental cellular processes, paracrine signaling, and cartilage matrix formation associated with impaired growth plate chondrogenesis. In particular we focused on growth plate gene involvement in nonsyndromic short stature. CONCLUSIONS The identification of genetic basis of growth failure will have a significant impact on the care of children affected with short stature.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Paediatric Unit, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy.
| | - Mariangela Chiarito
- Paediatric Unit, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Giacomina Brunetti
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Human Anatomy and Histology, University of Bari "A. Moro", Bari, Italy
| | | |
Collapse
|
14
|
Weiss B, Eberle B, Roeth R, de Bruin C, Lui JC, Paramasivam N, Hinderhofer K, van Duyvenvoorde HA, Baron J, Wit JM, Rappold GA. Evidence That Non-Syndromic Familial Tall Stature Has an Oligogenic Origin Including Ciliary Genes. Front Endocrinol (Lausanne) 2021; 12:660731. [PMID: 34194391 PMCID: PMC8237855 DOI: 10.3389/fendo.2021.660731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Human growth is a complex trait. A considerable number of gene defects have been shown to cause short stature, but there are only few examples of genetic causes of non-syndromic tall stature. Besides rare variants with large effects and common risk alleles with small effect size, oligogenic effects may contribute to this phenotype. Exome sequencing was carried out in a tall male (height 3.5 SDS) and his parents. Filtered damaging variants with high CADD scores were validated by Sanger sequencing in the trio and three other affected and one unaffected family members. Network analysis was carried out to assess links between the candidate genes, and the transcriptome of murine growth plate was analyzed by microarray as well as RNA Seq. Heterozygous gene variants in CEP104, CROCC, NEK1, TOM1L2, and TSTD2 predicted as damaging were found to be shared between the four tall family members. Three of the five genes (CEP104, CROCC, and NEK1) belong to the ciliary gene family. All genes are expressed in mouse growth plate. Pathway and network analyses indicated close functional connections. Together, these data expand the spectrum of genes with a role in linear growth and tall stature phenotypes.
Collapse
Affiliation(s)
- Birgit Weiss
- Department of Human Molecular Genetics, Institute of Human Genetics, Ruprecht Karls University Heidelberg, Heidelberg, Germany
| | - Birgit Eberle
- Department of Human Molecular Genetics, Institute of Human Genetics, Ruprecht Karls University Heidelberg, Heidelberg, Germany
| | - Ralph Roeth
- Department of Human Molecular Genetics, Institute of Human Genetics, Ruprecht Karls University Heidelberg, Heidelberg, Germany
| | - Christiaan de Bruin
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Julian C. Lui
- Section on Growth and Development, National Institute of Health, Bethesda, MD, United States
| | - Nagarajan Paramasivam
- Computational Oncology Group, Molecular Diagnostics Program at the National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katrin Hinderhofer
- Institute of Human Genetics, Ruprecht Karls University Heidelberg, Heidelberg, Germany
| | | | - Jeffrey Baron
- Section on Growth and Development, National Institute of Health, Bethesda, MD, United States
| | - Jan M. Wit
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Gudrun A. Rappold
- Department of Human Molecular Genetics, Institute of Human Genetics, Ruprecht Karls University Heidelberg, Heidelberg, Germany
- *Correspondence: Gudrun A. Rappold,
| |
Collapse
|
15
|
Zhou E, Lui J. Physiological regulation of bone length and skeletal proportion in mammals. Exp Physiol 2020; 106:389-395. [PMID: 33369789 DOI: 10.1113/ep089086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/11/2020] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? Mechanisms regulating bone length and skeletal proportions What advances does it highlight? The study of differential bone length between leg and finger bones, metatarsals of the Egyptian jerboa and genomic analysis of giraffes. ABSTRACT Among mammalian species, skeletal structures vary greatly in size and shape, leading to a dramatic variety of body sizes and proportions. How different bones grow to different lengths, whether among different species, different individuals of the same species, or even in different anatomical parts of our the body, has always been a fascinating subject of research in biology and physiology. In the current review, we focus on some of the recent advances in the field and discuss how these provided important new insights into the mechanisms regulating bone length and skeletal proportions.
Collapse
Affiliation(s)
- Elaine Zhou
- Section on Growth and Development, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Julian Lui
- Section on Growth and Development, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Hanley PC, Kanwar HS, Martineau C, Levine MA. Short Stature is Progressive in Patients with Heterozygous NPR2 Mutations. J Clin Endocrinol Metab 2020; 105:5877389. [PMID: 32720985 PMCID: PMC7442278 DOI: 10.1210/clinem/dgaa491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/22/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND NPR2 encodes atrial natriuretic peptide receptor B (ANPRB), a regulator of skeletal growth. Biallelic loss-of-function mutations in NPR2 result in acromesomelic dysplasia Maroteaux type (AMDM; OMIM 602875), while heterozygous mutations may account for 2% to 6% of idiopathic short stature (ISS). OBJECTIVE Describe the physical proportions and growth characteristics of an extended family with novel NPR2 mutations including members with AMDM, ISS, or normal stature. DESIGN AND PARTICIPANTS We performed whole exome sequencing in 2 healthy parents and 2 children with AMDM. Detailed genotyping and phenotyping were performed on members of a multigenerational family in an academic medical center. We expressed mutant proteins in mammalian cells and characterized expression and function. RESULTS The sisters with AMDM were compound heterozygotes for missense mutations in the NPR2 gene, a novel p.P93S (maternal) and the previously reported p.R989L (paternal). Both mutant ANPRB proteins were normally expressed in HEK293T cells and exhibited dominant negative effects on wild-type ANPRB catalytic activity. Heterozygous relatives had proportionate short stature (height z-scores -2.06 ± 0.97, median ± SD) compared with their wild-type siblings (-1.37 ± 0.59). Height z-scores progressively and significantly decreased as NPR2-heterozygous children matured, while remaining constant in their wild-type siblings. CONCLUSIONS Biallelic NPR2 mutations cause severe skeletal dysplasia (AMDM), whereas heterozygous mutations lead to a subtler phenotype characterized by progressive short stature with by increasing loss of height potential with age.
Collapse
Affiliation(s)
- Patrick C Hanley
- Division of Endocrinology, Nemours Alfred I. duPont Hospital for Children, Wilmington, Delaware
- Correspondence and Reprint Requests: Patrick C. Hanley, MD, Division of Endocrinology, Nemours Alfred I. DuPont Hospital for Children, 1600 Rockland Rd, Wilmington, DE 19803. E-mail:
| | - Harsh S Kanwar
- Division of Endocrinology and Diabetes and Center for Bone Health, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Corine Martineau
- Division of Endocrinology and Diabetes and Center for Bone Health, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Michael A Levine
- Division of Endocrinology and Diabetes and Center for Bone Health, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The goal of the review is to provide a comprehensive overview of the current understanding of the mechanisms underlying variation in human stature. RECENT FINDINGS Human height is an anthropometric trait that varies considerably within human populations as well as across the globe. Historically, much research focus was placed on understanding the biology of growth plate chondrocytes and how modifications to core chondrocyte proliferation and differentiation pathways potentially shaped height attainment in normal as well as pathological contexts. Recently, much progress has been made to improve our understanding regarding the mechanisms underlying the normal and pathological range of height variation within as well as between human populations, and today, it is understood to reflect complex interactions among a myriad of genetic, environmental, and evolutionary factors. Indeed, recent improvements in genetics (e.g., GWAS) and breakthroughs in functional genomics (e.g., whole exome sequencing, DNA methylation analysis, ATAC-sequencing, and CRISPR) have shed light on previously unknown pathways/mechanisms governing pathological and common height variation. Additionally, the use of an evolutionary perspective has also revealed important mechanisms that have shaped height variation across the planet. This review provides an overview of the current knowledge of the biological mechanisms underlying height variation by highlighting new research findings on skeletal growth control with an emphasis on previously unknown pathways/mechanisms influencing pathological and common height variation. In this context, this review also discusses how evolutionary forces likely shaped the genomic architecture of height across the globe.
Collapse
Affiliation(s)
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
18
|
Yue S, Whalen P, Jee YH. Genetic regulation of linear growth. Ann Pediatr Endocrinol Metab 2019; 24:2-14. [PMID: 30943674 PMCID: PMC6449614 DOI: 10.6065/apem.2019.24.1.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 03/07/2019] [Indexed: 12/20/2022] Open
Abstract
Linear growth occurs at the growth plate. Therefore, genetic defects that interfere with the normal function of the growth plate can cause linear growth disorders. Many genetic causes of growth disorders have already been identified in humans. However, recent genome-wide approaches have broadened our knowledge of the mechanisms of linear growth, not only providing novel monogenic causes of growth disorders but also revealing single nucleotide polymorphisms in genes that affect height in the general population. The genes identified as causative of linear growth disorders are heterogeneous, playing a role in various growth-regulating mechanisms including those involving the extracellular matrix, intracellular signaling, paracrine signaling, endocrine signaling, and epigenetic regulation. Understanding the underlying genetic defects in linear growth is important for clinicians and researchers in order to provide proper diagnoses, management, and genetic counseling, as well as to develop better treatment approaches for children with growth disorders.
Collapse
Affiliation(s)
- Shanna Yue
- Pediatric Endocrine, Metabolism and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Philip Whalen
- Pediatric Endocrine, Metabolism and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Youn Hee Jee
- Pediatric Endocrine, Metabolism and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA,Address for correspondence: Youn Hee Jee, MD Pediatric Endocrine, Metabolism and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, CRC, Room 1-3330, 10 Center Drive MSC 1103, Bethesda, MD 20892-1103, USA Tel: +1-301-435-5834 Fax: +1-301-402-0574 E-mail:
| |
Collapse
|
19
|
Burkardt DD, Graham JM. Abnormal Body Size and Proportion. EMERY AND RIMOIN'S PRINCIPLES AND PRACTICE OF MEDICAL GENETICS AND GENOMICS 2019:81-143. [DOI: 10.1016/b978-0-12-812536-6.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
20
|
Polygenic adaptation and convergent evolution on growth and cardiac genetic pathways in African and Asian rainforest hunter-gatherers. Proc Natl Acad Sci U S A 2018; 115:E11256-E11263. [PMID: 30413626 DOI: 10.1073/pnas.1812135115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Different human populations facing similar environmental challenges have sometimes evolved convergent biological adaptations, for example, hypoxia resistance at high altitudes and depigmented skin in northern latitudes on separate continents. The "pygmy" phenotype (small adult body size), characteristic of hunter-gatherer populations inhabiting both African and Asian tropical rainforests, is often highlighted as another case of convergent adaptation in humans. However, the degree to which phenotypic convergence in this polygenic trait is due to convergent versus population-specific genetic changes is unknown. To address this question, we analyzed high-coverage sequence data from the protein-coding portion of the genomes of two pairs of populations: Batwa rainforest hunter-gatherers and neighboring Bakiga agriculturalists from Uganda and Andamanese rainforest hunter-gatherers and Brahmin agriculturalists from India. We observed signatures of convergent positive selection between the rainforest hunter-gatherers across the set of genes with "growth factor binding" functions ([Formula: see text]). Unexpectedly, for the rainforest groups, we also observed convergent and population-specific signatures of positive selection in pathways related to cardiac development (e.g., "cardiac muscle tissue development"; [Formula: see text]). We hypothesize that the growth hormone subresponsiveness likely underlying the adult small body-size phenotype may have led to compensatory changes in cardiac pathways, in which this hormone also plays an essential role. Importantly, in the agriculturalist populations, we did not observe similar patterns of positive selection on sets of genes associated with growth or cardiac development, indicating our results most likely reflect a history of convergent adaptation to the similar ecology of rainforests rather than a more general evolutionary pattern.
Collapse
|
21
|
Guo MH, Hirschhorn JN, Dauber A. Insights and Implications of Genome-Wide Association Studies of Height. J Clin Endocrinol Metab 2018; 103:3155-3168. [PMID: 29982553 PMCID: PMC7263788 DOI: 10.1210/jc.2018-01126] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 06/27/2018] [Indexed: 01/24/2023]
Abstract
CONTEXT In the last decade, genome-wide association studies (GWASs) have catalyzed our understanding of the genetics of height and have identified hundreds of regions of the genome associated with adult height and other height-related body measurements. EVIDENCE ACQUISITION GWASs related to height were identified via PubMed search and a review of the GWAS catalog. EVIDENCE SYNTHESIS The GWAS results demonstrate that height is highly polygenic: that is, many thousands of genetic variants distributed across the genome each contribute to an individual's height. These height-associated regions of the genome are enriched for genes in known biological pathways involved in growth, such as fibroblast growth factor signaling, as well as for genes expressed in relevant tissues, such as the growth plate. GWASs can also uncover previously unappreciated biological pathways, such as the STC2/PAPPA/IGFBP4 pathway. The genes implicated by GWASs are often the same genes that are the genetic causes of Mendelian growth disorders or skeletal dysplasias, and GWAS results can provide complementary information about these disorders. CONCLUSIONS Here, we review the rationale behind GWASs and what we have learned from GWASs for height, including how it has enhanced our understanding of the underlying biology of human growth. We also highlight the implications of GWASs in terms of prediction of adult height and our understanding of Mendelian growth disorders.
Collapse
Affiliation(s)
- Michael H Guo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- College of Medicine, University of Florida, Gainesville, Florida
| | - Joel N Hirschhorn
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Andrew Dauber
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Correspondence and Reprint Requests: Andrew Dauber, MD, MMSc, Division of Endocrinology, Children’s National Medical Center, 111 Michigan Avenue NW, West Wing Floor 3.5, Suite 200, Room 1215, Washington, DC 20010. E-mail:
| |
Collapse
|
22
|
Teunissen M, Riemers FM, van Leenen D, Groot Koerkamp MJA, Meij BP, Alblas J, Penning LC, Miranda‐Bedate A, Tryfonidou MA. Growth plate expression profiling: Large and small breed dogs provide new insights in endochondral bone formation. J Orthop Res 2018; 36:138-148. [PMID: 28681971 PMCID: PMC5873274 DOI: 10.1002/jor.23647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/21/2017] [Indexed: 02/04/2023]
Abstract
The difference in the adult height of mammals, and hence in endochondral bone formation, is not yet fully understood and may serve to identify targets for bone and cartilage regeneration. In line with this hypothesis, the intra-species disparity between the adult height of Great Danes and Miniature Poodles was investigated at a transcriptional level. Microarray analysis of the growth plate of five Great Danes and five Miniature Poodles revealed 2,981 unique genes that were differentially expressed, including many genes with an unknown role in skeletal development. A signaling pathway impact analysis indicated activation of the cell cycle, extracellular matrix receptor interaction and the tight junction pathway, and inhibition of pathways associated with inflammation and the complement cascade. In additional validation steps, the gene expression profile of the separate growth plate zones for both dog breeds were determined. Given that the BMP signaling is known for its crucial role in skeletal development and fracture healing, and BMP-2 is used in orthopaedic and spine procedures for bone augmentation, further investigations concentrated on the BMP pathway.The canonical BMP-2 and BMP-6 signaling pathway was activated in the Great Danes compared to Miniature Poodles. In conclusion, investigating the differential expression of genes involved in endochondral bone formation in small and large breed dogs, could be a game changing strategy to provide new insights in growth plate development and identify new targets for bone and cartilage regeneration. © 2017 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 36:138-148, 2018.
Collapse
Affiliation(s)
- Michelle Teunissen
- Faculty of Veterinary Medicine, Department of Clinical Sciences of Companion AnimalsUtrecht UniversityYalelaan 108Utrecht 3584 CMThe Netherlands
| | - Frank M. Riemers
- Faculty of Veterinary Medicine, Department of Clinical Sciences of Companion AnimalsUtrecht UniversityYalelaan 108Utrecht 3584 CMThe Netherlands
| | - Dik van Leenen
- Molecular Cancer ResearchUniversity Medical Centre UtrechtUtrechtThe Netherlands
| | | | - Björn P. Meij
- Faculty of Veterinary Medicine, Department of Clinical Sciences of Companion AnimalsUtrecht UniversityYalelaan 108Utrecht 3584 CMThe Netherlands
| | - Jacqueline Alblas
- Department of OrthopaedicsUniversity Medical Centre UtrechtUtrechtThe Netherlands
| | - Louis C. Penning
- Faculty of Veterinary Medicine, Department of Clinical Sciences of Companion AnimalsUtrecht UniversityYalelaan 108Utrecht 3584 CMThe Netherlands
| | - Alberto Miranda‐Bedate
- Faculty of Veterinary Medicine, Department of Clinical Sciences of Companion AnimalsUtrecht UniversityYalelaan 108Utrecht 3584 CMThe Netherlands
| | - Marianna A. Tryfonidou
- Faculty of Veterinary Medicine, Department of Clinical Sciences of Companion AnimalsUtrecht UniversityYalelaan 108Utrecht 3584 CMThe Netherlands
| |
Collapse
|
23
|
Guo M, Liu Z, Willen J, Shaw CP, Richard D, Jagoda E, Doxey AC, Hirschhorn J, Capellini TD. Epigenetic profiling of growth plate chondrocytes sheds insight into regulatory genetic variation influencing height. eLife 2017; 6:29329. [PMID: 29205154 PMCID: PMC5716665 DOI: 10.7554/elife.29329] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/07/2017] [Indexed: 12/23/2022] Open
Abstract
GWAS have identified hundreds of height-associated loci. However, determining causal mechanisms is challenging, especially since height-relevant tissues (e.g. growth plates) are difficult to study. To uncover mechanisms by which height GWAS variants function, we performed epigenetic profiling of murine femoral growth plates. The profiled open chromatin regions recapitulate known chondrocyte and skeletal biology, are enriched at height GWAS loci, particularly near differentially expressed growth plate genes, and enriched for binding motifs of transcription factors with roles in chondrocyte biology. At specific loci, our analyses identified compelling mechanisms for GWAS variants. For example, at CHSY1, we identified a candidate causal variant (rs9920291) overlapping an open chromatin region. Reporter assays demonstrated that rs9920291 shows allelic regulatory activity, and CRISPR/Cas9 targeting of human chondrocytes demonstrates that the region regulates CHSY1 expression. Thus, integrating biologically relevant epigenetic information (here, from growth plates) with genetic association results can identify biological mechanisms important for human growth.
Collapse
Affiliation(s)
- Michael Guo
- Broad Institute of MIT and Harvard, Cambridge, United States.,Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States
| | - Zun Liu
- Department of Human Evolutionary Biology, Harvard University, Cambridge, United States
| | - Jessie Willen
- Department of Human Evolutionary Biology, Harvard University, Cambridge, United States
| | - Cameron P Shaw
- Department of Human Evolutionary Biology, Harvard University, Cambridge, United States
| | - Daniel Richard
- Department of Human Evolutionary Biology, Harvard University, Cambridge, United States.,Department of Biology, University of Waterloo, Waterloo, Canada
| | - Evelyn Jagoda
- Department of Human Evolutionary Biology, Harvard University, Cambridge, United States
| | - Andrew C Doxey
- Department of Biology, University of Waterloo, Waterloo, Canada
| | - Joel Hirschhorn
- Broad Institute of MIT and Harvard, Cambridge, United States.,Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States
| | - Terence D Capellini
- Broad Institute of MIT and Harvard, Cambridge, United States.,Department of Human Evolutionary Biology, Harvard University, Cambridge, United States
| |
Collapse
|
24
|
Abstract
Short stature is a common and heterogeneous condition that is often genetic in etiology. For most children with genetic short stature, the specific molecular causes remain unknown; but with advances in exome/genome sequencing and bioinformatics approaches, new genetic causes of growth disorders have been identified, contributing to the understanding of the underlying molecular mechanisms of longitudinal bone growth and growth failure. Identifying new genetic causes of growth disorders has the potential to improve diagnosis, prognostic accuracy, and individualized management, and help avoid unnecessary testing for endocrine and other disorders.
Collapse
Affiliation(s)
- Youn Hee Jee
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, CRC, Room 1-3330, 10 Center Drive MSC 1103, Bethesda, MD 20892-1103, USA.
| | - Anenisia C Andrade
- Division of Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Solnavägen 1, Solna 171 77, Sweden
| | - Jeffrey Baron
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, CRC, Room 1-3330, 10 Center Drive MSC 1103, Bethesda, MD 20892-1103, USA
| | - Ola Nilsson
- Division of Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Solnavägen 1, Solna 171 77, Sweden; University Hospital, Örebro University, Södra Grev Rosengatan, Örebro 701 85, Sweden
| |
Collapse
|
25
|
Morrow JD, Zhou X, Lao T, Jiang Z, DeMeo DL, Cho MH, Qiu W, Cloonan S, Pinto-Plata V, Celli B, Marchetti N, Criner GJ, Bueno R, Washko GR, Glass K, Quackenbush J, Choi AMK, Silverman EK, Hersh CP. Functional interactors of three genome-wide association study genes are differentially expressed in severe chronic obstructive pulmonary disease lung tissue. Sci Rep 2017; 7:44232. [PMID: 28287180 PMCID: PMC5347019 DOI: 10.1038/srep44232] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/06/2017] [Indexed: 12/20/2022] Open
Abstract
In comparison to genome-wide association studies (GWAS), there has been poor replication of gene expression studies in chronic obstructive pulmonary disease (COPD). We performed microarray gene expression profiling on a large sample of resected lung tissues from subjects with severe COPD. Comparing 111 COPD cases and 40 control smokers, 204 genes were differentially expressed; none were at significant GWAS loci. The top differentially expressed gene was HMGB1, which interacts with AGER, a known COPD GWAS gene. Differentially expressed genes showed enrichment for putative interactors of the first three identified COPD GWAS genes IREB2, HHIP, and FAM13A, based on gene sets derived from protein and RNA binding studies, RNA-interference, a murine smoking model, and expression quantitative trait locus analyses. The gene module most highly associated for COPD in Weighted Gene Co-Expression Network Analysis (WGCNA) was enriched for B cell pathways, and shared seventeen genes with a mouse smoking model and twenty genes with previous emphysema studies. As in other common diseases, genes at COPD GWAS loci were not differentially expressed; however, using a combination of network methods, experimental studies and careful phenotype definition, we found differential expression of putative interactors of these genes, and we replicated previous human and mouse microarray results.
Collapse
Affiliation(s)
- Jarrett D Morrow
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Taotao Lao
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Zhiqiang Jiang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Weiliang Qiu
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Suzanne Cloonan
- Department of Medicine, New York Presbyterian/Weill Cornell Medical Center, New York, NY, USA
| | - Victor Pinto-Plata
- Department of Critical Care Medicine and Pulmonary Disease, Baystate Medical Center, Springfield, MA, USA
| | - Bartholome Celli
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Nathaniel Marchetti
- Division of Pulmonary and Critical Care Medicine, Temple University, Philadelphia, PA, USA
| | - Gerard J Criner
- Division of Pulmonary and Critical Care Medicine, Temple University, Philadelphia, PA, USA
| | - Raphael Bueno
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Kimberly Glass
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - John Quackenbush
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Augustine M K Choi
- Department of Medicine, New York Presbyterian/Weill Cornell Medical Center, New York, NY, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW As the incidence of type 1 diabetes (T1DM) continues to rise, complications including impairment of childhood growth remain a major concern. This review provides an overview of alterations in growth patterns before and after the onset of T1DM. RECENT FINDINGS Recent advances in this field include several prospective investigations of height and weight trajectories in children leading up to the development of islet autoimmunity and T1DM as well as evaluations of larger cohorts of T1DM patients to better assess predictors of altered growth. In addition, genetic and metabolic investigations have improved our understanding of the more rare severe growth impairment of Mauriac Syndrome. SUMMARY Despite advances in medical care of children with T1DM, growth remains suboptimal in this population and likely reflects ongoing metabolic derangement linked with classic microvascular diabetic complications.
Collapse
Affiliation(s)
- Deborah M Mitchell
- Endocrine Unit and Pediatric Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
27
|
A systematic SNP selection approach to identify mechanisms underlying disease aetiology: linking height to post-menopausal breast and colorectal cancer risk. Sci Rep 2017; 7:41034. [PMID: 28117334 PMCID: PMC5259777 DOI: 10.1038/srep41034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/15/2016] [Indexed: 01/28/2023] Open
Abstract
Data from GWAS suggest that SNPs associated with complex diseases or traits tend to co-segregate in regions of low recombination, harbouring functionally linked gene clusters. This phenomenon allows for selecting a limited number of SNPs from GWAS repositories for large-scale studies investigating shared mechanisms between diseases. For example, we were interested in shared mechanisms between adult-attained height and post-menopausal breast cancer (BC) and colorectal cancer (CRC) risk, because height is a risk factor for these cancers, though likely not a causal factor. Using SNPs from public GWAS repositories at p-values < 1 × 10−5 and a genomic sliding window of 1 mega base pair, we identified SNP clusters including at least one SNP associated with height and one SNP associated with either post-menopausal BC or CRC risk (or both). SNPs were annotated to genes using HapMap and GRAIL and analysed for significantly overrepresented pathways using ConsensuspathDB. Twelve clusters including 56 SNPs annotated to 26 genes were prioritised because these included at least one height- and one BC risk- or CRC risk-associated SNP annotated to the same gene. Annotated genes were involved in Indian hedgehog signalling (p-value = 7.78 × 10−7) and several cancer site-specific pathways. This systematic approach identified a limited number of clustered SNPs, which pinpoint potential shared mechanisms linking together the complex phenotypes height, post-menopausal BC and CRC.
Collapse
|
28
|
Levine ME, Langfelder P, Horvath S. A Weighted SNP Correlation Network Method for Estimating Polygenic Risk Scores. Methods Mol Biol 2017; 1613:277-290. [PMID: 28849564 PMCID: PMC5998804 DOI: 10.1007/978-1-4939-7027-8_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Polygenic scores are useful for examining the joint associations of genetic markers. However, because traditional methods involve summing weighted allele counts, they may fail to capture the complex nature of biology. Here we describe a network-based method, which we call weighted SNP correlation network analysis (WSCNA), and demonstrate how it could be used to generate meaningful polygenic scores. Using data on human height in a US population of non-Hispanic whites, we illustrate how this method can be used to identify SNP networks from GWAS data, create network-specific polygenic scores, examine network topology to identify hub SNPs, and gain biological insights into complex traits. In our example, we show that this method explains a larger proportion of the variance in human height than traditional polygenic score methods. We also identify hub genes and pathways that have previously been identified as influencing human height. In moving forward, this method may be useful for generating genetic susceptibility measures for other health related traits, examining genetic pleiotropy, identifying at-risk individuals, examining gene score by environmental effects, and gaining a deeper understanding of the underlying biology of complex traits.
Collapse
Affiliation(s)
- Morgan E Levine
- Department of Human Genetics, University of California, Box 708822, 695 Charles E. Young Drive South, Los Angeles, CA, 90095, USA.
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, 90095, USA.
| | - Peter Langfelder
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, 90095, USA
| | - Steve Horvath
- Department of Human Genetics, University of California, Box 708822, 695 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
- Department of Biostatistics, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
29
|
Lui JC, Garrison P, Nguyen Q, Ad M, Keembiyehetty C, Chen W, Jee YH, Landman E, Nilsson O, Barnes KM, Baron J. EZH1 and EZH2 promote skeletal growth by repressing inhibitors of chondrocyte proliferation and hypertrophy. Nat Commun 2016; 7:13685. [PMID: 27897169 PMCID: PMC5477487 DOI: 10.1038/ncomms13685] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 10/25/2016] [Indexed: 12/16/2022] Open
Abstract
Histone methyltransferases EZH1 and EZH2 catalyse the trimethylation of histone H3 at lysine 27 (H3K27), which serves as an epigenetic signal for chromatin condensation and transcriptional repression. Genome-wide associated studies have implicated EZH2 in the control of height and mutations in EZH2 cause Weaver syndrome, which includes skeletal overgrowth. Here we show that the combined loss of Ezh1 and Ezh2 in chondrocytes severely impairs skeletal growth in mice. Both of the principal processes underlying growth plate chondrogenesis, chondrocyte proliferation and hypertrophy, are compromised. The decrease in chondrocyte proliferation is due in part to derepression of cyclin-dependent kinase inhibitors Ink4a/b, while ineffective chondrocyte hypertrophy is due to the suppression of IGF signalling by the increased expression of IGF-binding proteins. Collectively, our findings reveal a critical role for H3K27 methylation in the regulation of chondrocyte proliferation and hypertrophy in the growth plate, which are the central determinants of skeletal growth.
Collapse
Affiliation(s)
- Julian C Lui
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, CRC, Room 1-3330, 10 Center Drive, MSC-1103, Bethesda, Maryland 20892, USA
| | - Presley Garrison
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, CRC, Room 1-3330, 10 Center Drive, MSC-1103, Bethesda, Maryland 20892, USA
| | - Quang Nguyen
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, CRC, Room 1-3330, 10 Center Drive, MSC-1103, Bethesda, Maryland 20892, USA
| | - Michal Ad
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, CRC, Room 1-3330, 10 Center Drive, MSC-1103, Bethesda, Maryland 20892, USA
| | - Chithra Keembiyehetty
- Genomic Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg8, Room 1A11, 8 Center Drive, Bethesda, Maryland 20892, USA
| | - Weiping Chen
- Genomic Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg8, Room 1A11, 8 Center Drive, Bethesda, Maryland 20892, USA
| | - Youn Hee Jee
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, CRC, Room 1-3330, 10 Center Drive, MSC-1103, Bethesda, Maryland 20892, USA
| | - Ellie Landman
- Division of Pediatric Endocrinology. Q2:08, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, 171 76 Stockholm, Sweden
| | - Ola Nilsson
- Division of Pediatric Endocrinology. Q2:08, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, 171 76 Stockholm, Sweden.,Department of Medical Sciences, Rm C1213, Örebro University and University Hospital, 701 85 Örebro, Sweden
| | - Kevin M Barnes
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, CRC, Room 1-3330, 10 Center Drive, MSC-1103, Bethesda, Maryland 20892, USA
| | - Jeffrey Baron
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, CRC, Room 1-3330, 10 Center Drive, MSC-1103, Bethesda, Maryland 20892, USA
| |
Collapse
|
30
|
Wen X, Li X, Tang Y, Tang J, Zhou S, Xie Y, Guo J, Yang J, Du X, Su N, Chen L. Chondrocyte FGFR3 Regulates Bone Mass by Inhibiting Osteogenesis. J Biol Chem 2016; 291:24912-24921. [PMID: 27729453 DOI: 10.1074/jbc.m116.730093] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/24/2016] [Indexed: 12/13/2022] Open
Abstract
Chondrogenesis can regulate bone formation. Fibroblast growth factor receptor 3, highly expressed in chondrocytes, is a negative regulator of bone growth. To investigate whether chondrocyte FGFR3 regulates osteogenesis, thereby contributing to postnatal bone formation and bone remodeling, mice with conditional knock-out of Fgfr3 in chondrocytes (mutant (MUT)) were generated. MUT mice displayed overgrowth of bone with lengthened growth plates. Bone mass of MUT mice was significantly increased at both 1 month and 4 months of age. Histological analysis showed that osteoblast number and bone formation were remarkably enhanced after deletion of Fgfr3 in chondrocytes. Chondrocyte-osteoblast co-culture assay further revealed that Fgfr3 deficiency in chondrocytes promoted differentiation and mineralization of osteoblasts by up-regulating the expressions of Ihh, Bmp2, Bmp4, Bmp7, Wnt4, and Tgf-β1, as well as down-regulating Nog expression. In addition, osteoclastogenesis was also impaired in MUT mice with decreased number of osteoclasts lining trabecular bone, which may be related to the reduced ratio of Rankl to Opg in Fgfr3-deficient chondrocytes. This study reveals that chondrocyte FGFR3 is involved in the regulation of bone formation and bone remodeling by a paracrine mechanism.
Collapse
Affiliation(s)
- Xuan Wen
- From the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042
| | - Xiaogang Li
- From the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042.,the 305 Hospital of Chinese People's Liberation Army, Beijing 100017, and
| | - Yubin Tang
- From the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042.,the Department of Emergency Treatment, Lanzhou General Hospital, Lanzhou Command, Chinese People's Liberation Army, Lanzhou 730050, China
| | - Junzhou Tang
- From the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042
| | - Siru Zhou
- From the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042
| | - Yangli Xie
- From the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042
| | - Jingyuan Guo
- From the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042
| | - Jing Yang
- From the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042
| | - Xiaolan Du
- From the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042
| | - Nan Su
- From the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042,
| | - Lin Chen
- From the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042,
| |
Collapse
|
31
|
Marchini A, Ogata T, Rappold GA. A Track Record on SHOX: From Basic Research to Complex Models and Therapy. Endocr Rev 2016; 37:417-48. [PMID: 27355317 PMCID: PMC4971310 DOI: 10.1210/er.2016-1036] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SHOX deficiency is the most frequent genetic growth disorder associated with isolated and syndromic forms of short stature. Caused by mutations in the homeobox gene SHOX, its varied clinical manifestations include isolated short stature, Léri-Weill dyschondrosteosis, and Langer mesomelic dysplasia. In addition, SHOX deficiency contributes to the skeletal features in Turner syndrome. Causative SHOX mutations have allowed downstream pathology to be linked to defined molecular lesions. Expression levels of SHOX are tightly regulated, and almost half of the pathogenic mutations have affected enhancers. Clinical severity of SHOX deficiency varies between genders and ranges from normal stature to profound mesomelic skeletal dysplasia. Treatment options for children with SHOX deficiency are available. Two decades of research support the concept of SHOX as a transcription factor that integrates diverse aspects of bone development, growth plate biology, and apoptosis. Due to its absence in mouse, the animal models of choice have become chicken and zebrafish. These models, therefore, together with micromass cultures and primary cell lines, have been used to address SHOX function. Pathway and network analyses have identified interactors, target genes, and regulators. Here, we summarize recent data and give insight into the critical molecular and cellular functions of SHOX in the etiopathogenesis of short stature and limb development.
Collapse
Affiliation(s)
- Antonio Marchini
- Tumour Virology Division F010 (A.M.), German Cancer Research Center, 69120 Heidelberg, Germany; Department of Oncology (A.M.), Luxembourg Institute of Health 84, rue Val Fleuri L-1526, Luxembourg; Department of Pediatrics (T.O.), Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu 431-3192, Japan; and Department of Human Molecular Genetics (G.A.R.), Institute of Human Genetics, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Tsutomu Ogata
- Tumour Virology Division F010 (A.M.), German Cancer Research Center, 69120 Heidelberg, Germany; Department of Oncology (A.M.), Luxembourg Institute of Health 84, rue Val Fleuri L-1526, Luxembourg; Department of Pediatrics (T.O.), Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu 431-3192, Japan; and Department of Human Molecular Genetics (G.A.R.), Institute of Human Genetics, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Gudrun A Rappold
- Tumour Virology Division F010 (A.M.), German Cancer Research Center, 69120 Heidelberg, Germany; Department of Oncology (A.M.), Luxembourg Institute of Health 84, rue Val Fleuri L-1526, Luxembourg; Department of Pediatrics (T.O.), Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu 431-3192, Japan; and Department of Human Molecular Genetics (G.A.R.), Institute of Human Genetics, Heidelberg University Hospital, 69120 Heidelberg, Germany
| |
Collapse
|
32
|
Affiliation(s)
| | - Jeffrey Baron
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
33
|
Wit JM, Oostdijk W, Losekoot M, van Duyvenvoorde HA, Ruivenkamp CAL, Kant SG. MECHANISMS IN ENDOCRINOLOGY: Novel genetic causes of short stature. Eur J Endocrinol 2016; 174:R145-73. [PMID: 26578640 DOI: 10.1530/eje-15-0937] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/16/2015] [Indexed: 12/17/2022]
Abstract
The fast technological development, particularly single nucleotide polymorphism array, array-comparative genomic hybridization, and whole exome sequencing, has led to the discovery of many novel genetic causes of growth failure. In this review we discuss a selection of these, according to a diagnostic classification centred on the epiphyseal growth plate. We successively discuss disorders in hormone signalling, paracrine factors, matrix molecules, intracellular pathways, and fundamental cellular processes, followed by chromosomal aberrations including copy number variants (CNVs) and imprinting disorders associated with short stature. Many novel causes of GH deficiency (GHD) as part of combined pituitary hormone deficiency have been uncovered. The most frequent genetic causes of isolated GHD are GH1 and GHRHR defects, but several novel causes have recently been found, such as GHSR, RNPC3, and IFT172 mutations. Besides well-defined causes of GH insensitivity (GHR, STAT5B, IGFALS, IGF1 defects), disorders of NFκB signalling, STAT3 and IGF2 have recently been discovered. Heterozygous IGF1R defects are a relatively frequent cause of prenatal and postnatal growth retardation. TRHA mutations cause a syndromic form of short stature with elevated T3/T4 ratio. Disorders of signalling of various paracrine factors (FGFs, BMPs, WNTs, PTHrP/IHH, and CNP/NPR2) or genetic defects affecting cartilage extracellular matrix usually cause disproportionate short stature. Heterozygous NPR2 or SHOX defects may be found in ∼3% of short children, and also rasopathies (e.g., Noonan syndrome) can be found in children without clear syndromic appearance. Numerous other syndromes associated with short stature are caused by genetic defects in fundamental cellular processes, chromosomal abnormalities, CNVs, and imprinting disorders.
Collapse
Affiliation(s)
- Jan M Wit
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Wilma Oostdijk
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Monique Losekoot
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Hermine A van Duyvenvoorde
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Claudia A L Ruivenkamp
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Sarina G Kant
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
34
|
Hu G, Fan Y, Wang L, Yao RE, Huang X, Shen Y, Yu Y, Gu X. Copy number variations in 119 Chinese children with idiopathic short stature identified by the custom genome-wide microarray. Mol Cytogenet 2016; 9:16. [PMID: 26884814 PMCID: PMC4755006 DOI: 10.1186/s13039-016-0225-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/29/2016] [Indexed: 12/26/2022] Open
Abstract
Background Idiopathic short stature (ISS) refers to short stature with no evident etiologies. The custom genome-wide microarray specifically designed to cover height-related genes may be helpful to detect copy number variations (CNVs) in ISS patients, which may be missed by the general microarray. The aim of the study was to validate the applicability of the custom microarray and to analyze CNVs in Chinese ISS children. Results Sixty non-polymorphic CNVs were identified in 119 ISS patients. There were 13 small CNVs with a size below 50 kb, accounting for 21.7 % of all the CNVs (13/60). Five pathogenic or possibly pathogenic CNVs were detected in five patients, including deletions at 22q11.21, duplications at 4q11-q13.1, 4q12 and Yp11.32-p11.2. Taking only the pathogenic variants into account, the diagnostic yield was 2.5 % (3/119). The TMEM165, POLR2B and PDGFRA genes were analyzed as candidate genes. A 15 kb deletion in the RASA2 gene was of interest for further investigation. Conclusions This study showed that the custom microarray is applicable to detect CNVs in patients with short stature. Candidate genes and CNVs detected in ISS patients may be helpful for CNV analysis of short stature, especially in East Asian population. Electronic supplementary material The online version of this article (doi:10.1186/s13039-016-0225-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guorui Hu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092 China
| | - Yanjie Fan
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092 China
| | - Lili Wang
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092 China
| | - Ru-En Yao
- Medical Genetics Department, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Xiaodong Huang
- Division of Endocrinology and Genetic Metabolism, Department of Internal Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Yiping Shen
- Medical Genetics Department, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China ; Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA USA
| | - Yongguo Yu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092 China
| | - Xuefan Gu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092 China
| |
Collapse
|
35
|
Hirbo J, Eidem H, Rokas A, Abbot P. Integrating Diverse Types of Genomic Data to Identify Genes that Underlie Adverse Pregnancy Phenotypes. PLoS One 2015; 10:e0144155. [PMID: 26641094 PMCID: PMC4671692 DOI: 10.1371/journal.pone.0144155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/14/2015] [Indexed: 11/18/2022] Open
Abstract
Progress in understanding complex genetic diseases has been bolstered by synthetic approaches that overlay diverse data types and analyses to identify functionally important genes. Pre-term birth (PTB), a major complication of pregnancy, is a leading cause of infant mortality worldwide. A major obstacle in addressing PTB is that the mechanisms controlling parturition and birth timing remain poorly understood. Integrative approaches that overlay datasets derived from comparative genomics with function-derived ones have potential to advance our understanding of the genetics of birth timing, and thus provide insights into the genes that may contribute to PTB. We intersected data from fast evolving coding and non-coding gene regions in the human and primate lineage with data from genes expressed in the placenta, from genes that show enriched expression only in the placenta, as well as from genes that are differentially expressed in four distinct PTB clinical subtypes. A large fraction of genes that are expressed in placenta, and differentially expressed in PTB clinical subtypes (23–34%) are fast evolving, and are associated with functions that include adhesion neurodevelopmental and immune processes. Functional categories of genes that express fast evolution in coding regions differ from those linked to fast evolution in non-coding regions. Finally, there is a surprising lack of overlap between fast evolving genes that are differentially expressed in four PTB clinical subtypes. Integrative approaches, especially those that incorporate evolutionary perspectives, can be successful in identifying potential genetic contributions to complex genetic diseases, such as PTB.
Collapse
Affiliation(s)
- Jibril Hirbo
- Department of Biological Sciences, Vanderbilt University, Box 35164 Station B, Nashville, TN, 37235–1634, United States of America
| | - Haley Eidem
- Department of Biological Sciences, Vanderbilt University, Box 35164 Station B, Nashville, TN, 37235–1634, United States of America
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Box 35164 Station B, Nashville, TN, 37235–1634, United States of America
| | - Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Box 35164 Station B, Nashville, TN, 37235–1634, United States of America
- * E-mail:
| |
Collapse
|
36
|
Baron J, Sävendahl L, De Luca F, Dauber A, Phillip M, Wit JM, Nilsson O. Short and tall stature: a new paradigm emerges. Nat Rev Endocrinol 2015; 11:735-46. [PMID: 26437621 PMCID: PMC5002943 DOI: 10.1038/nrendo.2015.165] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In the past, the growth hormone (GH)-insulin-like growth factor 1 (IGF-1) axis was often considered to be the main system that regulated childhood growth and, therefore, determined short stature and tall stature. However, findings have now revealed that the GH-IGF-1 axis is just one of many regulatory systems that control chondrogenesis in the growth plate, which is the biological process that drives height gain. Consequently, normal growth in children depends not only on GH and IGF-1 but also on multiple hormones, paracrine factors, extracellular matrix molecules and intracellular proteins that regulate the activity of growth plate chondrocytes. Mutations in the genes that encode many of these local proteins cause short stature or tall stature. Similarly, genome-wide association studies have revealed that the normal variation in height seems to be largely due to genes outside the GH-IGF-1 axis that affect growth at the growth plate through a wide variety of mechanisms. These findings point to a new conceptual framework for understanding short and tall stature that is centred not on two particular hormones but rather on the growth plate, which is the structure responsible for height gain.
Collapse
Affiliation(s)
- Jeffrey Baron
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Lars Sävendahl
- Division of Pediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Francesco De Luca
- St. Christopher’s Hospital for Children, Section of Endocrinology and Diabetes; Drexel University College of Medicine, Department of Pediatrics, Philadelphia, PA, U.S.A
| | - Andrew Dauber
- Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, Division of Endocrinology, Cincinnati, Ohio, USA
| | - Moshe Phillip
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Children’s Diabetes, Schneider Children’s Medical Center of Israel, Petah Tikva, Israel
| | - Jan M. Wit
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ola Nilsson
- Division of Pediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet, SE-171 76 Stockholm, Sweden
- Center for Molecular Medicine, Department of Women’s and Children’s Health, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Recent basic studies have yielded important new insights into the molecular mechanisms that regulate growth locally. Simultaneously, clinical studies have identified new molecular defects that cause growth failure and overgrowth, and genome-wide association studies have elucidated the genetic basis for normal human height variation. RECENT FINDINGS The Hippo pathway has emerged as one of the major mechanisms controlling organ size. In addition, an extensive genetic program has been described that allows rapid body growth in the fetus and infant but then causes growth to slow with age in multiple tissues. In human genome-wide association studies, hundreds of loci associated with adult stature have been identified; many appear to involve genes that function locally in the growth plate. Clinical genetic studies have identified a new genetic abnormality, microduplication of Xq26.3, that is responsible for growth hormone excess, and a gene, DNMT3A, in which mutations cause an overgrowth syndrome through epigenetic mechanisms. SUMMARY These recent advances in our understanding of somatic growth not only provide insight into childhood growth disorders but also have broader medical applications because disruption of these regulatory systems contributes to oncogenesis.
Collapse
Affiliation(s)
- Julian C Lui
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Presley Garrison
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Jeffrey Baron
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| |
Collapse
|
38
|
Sun MMG, Beier F. Chondrocyte hypertrophy in skeletal development, growth, and disease. ACTA ACUST UNITED AC 2015; 102:74-82. [PMID: 24677724 DOI: 10.1002/bdrc.21062] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 02/27/2014] [Indexed: 12/31/2022]
Abstract
Most of our bones form through the process of endochondral ossification, which is tightly regulated by the activity of the cartilage growth plate. Chondrocyte maturation through the various stages of growth plate physiology ultimately results in hypertrophy. Chondrocyte hypertrophy is an essential contributor to longitudinal bone growth, but recent data suggest that these cells also play fundamental roles in signaling to other skeletal cells, thus coordinating endochondral ossification. On the other hand, ectopic hypertrophy of articular chondrocytes has been implicated in the pathogenesis of osteoarthritis. Thus, a better understanding of the processes that control chondrocyte hypertrophy in the growth plate as well as in articular cartilage is required for improved management of both skeletal growth disorders and osteoarthritis. This review summarizes recent findings on the regulation of hypertrophic chondrocyte differentiation, the cellular mechanisms involved in hypertrophy, and the role of chondrocyte hypertrophy in skeletal physiology and pathophysiology.
Collapse
Affiliation(s)
- Margaret Man-Ger Sun
- Department of Physiology and Pharmacology, Western University, and Children's Health Research Institute, London, Ontario, Canada
| | | |
Collapse
|
39
|
Cheung CSF, Zhu Z, Lui JCK, Dimitrov D, Baron J. Human monoclonal antibody fragments targeting matrilin-3 in growth plate cartilage. Pharm Res 2015; 32:2439-49. [PMID: 25690340 DOI: 10.1007/s11095-015-1636-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/21/2015] [Indexed: 11/26/2022]
Abstract
PURPOSE Many genetic disorders, including chondrodysplasias, and acquired disorders impair growth plate function, resulting in short and sometimes malformed bones. There are multiple endocrine and paracrine factors that promote chondrogenesis at the growth plate, which could potentially be used to treat these disorders. Targeting these growth factors specifically to the growth plate might augment the therapeutic skeletal effect while diminishing undesirable effects on non-target tissues. METHODS Using yeast display technology, we selected single-chain variable antibody fragments that bound to human and mouse matrilin-3, an extracellular matrix protein specifically expressed in cartilage tissue. The ability of the selected antibody fragments to bind matrilin-3 and to bind cartilage tissue in vitro and in vivo was assessed by ELISA and immunohistochemistry. RESULTS We identified antibody fragments that bound matrilin-3 with high affinity and also bound with high tissue specificity to cartilage homogenates and to cartilage structures in mouse embryo sections. When injected intravenously in mice, the antibody fragments specifically homed to cartilage. CONCLUSIONS Yeast display successfully selected antibody fragments that are able to target cartilage tissue in vivo. Coupling these antibodies to chondrogenic endocrine and paracrine signaling molecules has the potential to open up new pharmacological approaches to treat childhood skeletal growth disorders.
Collapse
Affiliation(s)
- Crystal Sao-Fong Cheung
- Section on Growth and Development, National Institute of Child Health and Development, National Institutes of Health, Bldg. 10 CRC, Rm. 1-3330, 10 Center Drive, Bethesda, Maryland, 20892, USA
| | | | | | | | | |
Collapse
|
40
|
Biological interpretation of genome-wide association studies using predicted gene functions. Nat Commun 2015; 6:5890. [PMID: 25597830 DOI: 10.1038/ncomms6890] [Citation(s) in RCA: 545] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/18/2014] [Indexed: 12/17/2022] Open
Abstract
The main challenge for gaining biological insights from genetic associations is identifying which genes and pathways explain the associations. Here we present DEPICT, an integrative tool that employs predicted gene functions to systematically prioritize the most likely causal genes at associated loci, highlight enriched pathways and identify tissues/cell types where genes from associated loci are highly expressed. DEPICT is not limited to genes with established functions and prioritizes relevant gene sets for many phenotypes.
Collapse
|
41
|
Abstract
Environmental temperature can have a surprising impact on extremity growth in homeotherms, but the underlying mechanisms have remained elusive for over a century. Limbs of animals raised at warm ambient temperature are significantly and permanently longer than those of littermates housed at cooler temperature. These remarkably consistent lab results closely resemble the ecogeographical tenet described by Allen's "extremity size rule," that appendage length correlates with temperature and latitude. This phenotypic growth plasticity could have adaptive significance for thermal physiology. Shortened extremities help retain body heat in cold environments by decreasing surface area for potential heat loss. Homeotherms have evolved complex mechanisms to maintain tightly regulated internal temperatures in challenging environments, including "facultative extremity heterothermy" in which limb temperatures can parallel ambient. Environmental modulation of tissue temperature can have direct and immediate consequences on cell proliferation, metabolism, matrix production, and mineralization in cartilage. Temperature can also indirectly influence cartilage growth by modulating circulating levels and delivery routes of essential hormones and paracrine regulators. Using an integrated approach, this article synthesizes classic studies with new data that shed light on the basis and significance of this enigmatic growth phenomenon and its relevance for treating human bone elongation disorders. Discussion centers on the vasculature as a gateway to understanding the complex interconnection between direct (local) and indirect (systemic) mechanisms of temperature-enhanced bone lengthening. Recent advances in imaging modalities that enable the dynamic study of cartilage growth plates in vivo will be key to elucidating fundamental physiological mechanisms of long bone growth regulation.
Collapse
Affiliation(s)
- Maria A Serrat
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| |
Collapse
|
42
|
Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, Chu AY, Estrada K, Luan J, Kutalik Z, Amin N, Buchkovich ML, Croteau-Chonka DC, Day FR, Duan Y, Fall T, Fehrmann R, Ferreira T, Jackson AU, Karjalainen J, Lo KS, Locke AE, Mägi R, Mihailov E, Porcu E, Randall JC, Scherag A, Vinkhuyzen AAE, Westra HJ, Winkler TW, Workalemahu T, Zhao JH, Absher D, Albrecht E, Anderson D, Baron J, Beekman M, Demirkan A, Ehret GB, Feenstra B, Feitosa MF, Fischer K, Fraser RM, Goel A, Gong J, Justice AE, Kanoni S, Kleber ME, Kristiansson K, Lim U, Lotay V, Lui JC, Mangino M, Mateo Leach I, Medina-Gomez C, Nalls MA, Nyholt DR, Palmer CD, Pasko D, Pechlivanis S, Prokopenko I, Ried JS, Ripke S, Shungin D, Stancáková A, Strawbridge RJ, Sung YJ, Tanaka T, Teumer A, Trompet S, van der Laan SW, van Setten J, Van Vliet-Ostaptchouk JV, Wang Z, Yengo L, Zhang W, Afzal U, Arnlöv J, Arscott GM, Bandinelli S, Barrett A, Bellis C, Bennett AJ, Berne C, Blüher M, Bolton JL, Böttcher Y, Boyd HA, Bruinenberg M, Buckley BM, Buyske S, Caspersen IH, Chines PS, Clarke R, Claudi-Boehm S, Cooper M, Daw EW, De Jong PA, Deelen J, Delgado G, et alWood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, Chu AY, Estrada K, Luan J, Kutalik Z, Amin N, Buchkovich ML, Croteau-Chonka DC, Day FR, Duan Y, Fall T, Fehrmann R, Ferreira T, Jackson AU, Karjalainen J, Lo KS, Locke AE, Mägi R, Mihailov E, Porcu E, Randall JC, Scherag A, Vinkhuyzen AAE, Westra HJ, Winkler TW, Workalemahu T, Zhao JH, Absher D, Albrecht E, Anderson D, Baron J, Beekman M, Demirkan A, Ehret GB, Feenstra B, Feitosa MF, Fischer K, Fraser RM, Goel A, Gong J, Justice AE, Kanoni S, Kleber ME, Kristiansson K, Lim U, Lotay V, Lui JC, Mangino M, Mateo Leach I, Medina-Gomez C, Nalls MA, Nyholt DR, Palmer CD, Pasko D, Pechlivanis S, Prokopenko I, Ried JS, Ripke S, Shungin D, Stancáková A, Strawbridge RJ, Sung YJ, Tanaka T, Teumer A, Trompet S, van der Laan SW, van Setten J, Van Vliet-Ostaptchouk JV, Wang Z, Yengo L, Zhang W, Afzal U, Arnlöv J, Arscott GM, Bandinelli S, Barrett A, Bellis C, Bennett AJ, Berne C, Blüher M, Bolton JL, Böttcher Y, Boyd HA, Bruinenberg M, Buckley BM, Buyske S, Caspersen IH, Chines PS, Clarke R, Claudi-Boehm S, Cooper M, Daw EW, De Jong PA, Deelen J, Delgado G, Denny JC, Dhonukshe-Rutten R, Dimitriou M, Doney ASF, Dörr M, Eklund N, Eury E, Folkersen L, Garcia ME, Geller F, Giedraitis V, Go AS, Grallert H, Grammer TB, Gräßler J, Grönberg H, de Groot LCPGM, Groves CJ, Haessler J, Hall P, Haller T, Hallmans G, Hannemann A, Hartman CA, Hassinen M, Hayward C, Heard-Costa NL, Helmer Q, Hemani G, Henders AK, Hillege HL, Hlatky MA, Hoffmann W, Hoffmann P, Holmen O, Houwing-Duistermaat JJ, Illig T, Isaacs A, James AL, Jeff J, Johansen B, Johansson Å, Jolley J, Juliusdottir T, Junttila J, Kho AN, Kinnunen L, Klopp N, Kocher T, Kratzer W, Lichtner P, Lind L, Lindström J, Lobbens S, Lorentzon M, Lu Y, Lyssenko V, Magnusson PKE, Mahajan A, Maillard M, McArdle WL, McKenzie CA, McLachlan S, McLaren PJ, Menni C, Merger S, Milani L, Moayyeri A, Monda KL, Morken MA, Müller G, Müller-Nurasyid M, Musk AW, Narisu N, Nauck M, Nolte IM, Nöthen MM, Oozageer L, Pilz S, Rayner NW, Renstrom F, Robertson NR, Rose LM, Roussel R, Sanna S, Scharnagl H, Scholtens S, Schumacher FR, Schunkert H, Scott RA, Sehmi J, Seufferlein T, Shi J, Silventoinen K, Smit JH, Smith AV, Smolonska J, Stanton AV, Stirrups K, Stott DJ, Stringham HM, Sundström J, Swertz MA, Syvänen AC, Tayo BO, Thorleifsson G, Tyrer JP, van Dijk S, van Schoor NM, van der Velde N, van Heemst D, van Oort FVA, Vermeulen SH, Verweij N, Vonk JM, Waite LL, Waldenberger M, Wennauer R, Wilkens LR, Willenborg C, Wilsgaard T, Wojczynski MK, Wong A, Wright AF, Zhang Q, Arveiler D, Bakker SJL, Beilby J, Bergman RN, Bergmann S, Biffar R, Blangero J, Boomsma DI, Bornstein SR, Bovet P, Brambilla P, Brown MJ, Campbell H, Caulfield MJ, Chakravarti A, Collins R, Collins FS, Crawford DC, Cupples LA, Danesh J, de Faire U, den Ruijter HM, Erbel R, Erdmann J, Eriksson JG, Farrall M, Ferrannini E, Ferrières J, Ford I, Forouhi NG, Forrester T, Gansevoort RT, Gejman PV, Gieger C, Golay A, Gottesman O, Gudnason V, Gyllensten U, Haas DW, Hall AS, Harris TB, Hattersley AT, Heath AC, Hengstenberg C, Hicks AA, Hindorff LA, Hingorani AD, Hofman A, Hovingh GK, Humphries SE, Hunt SC, Hypponen E, Jacobs KB, Jarvelin MR, Jousilahti P, Jula AM, Kaprio J, Kastelein JJP, Kayser M, Kee F, Keinanen-Kiukaanniemi SM, Kiemeney LA, Kooner JS, Kooperberg C, Koskinen S, Kovacs P, Kraja AT, Kumari M, Kuusisto J, Lakka TA, Langenberg C, Le Marchand L, Lehtimäki T, Lupoli S, Madden PAF, Männistö S, Manunta P, Marette A, Matise TC, McKnight B, Meitinger T, Moll FL, Montgomery GW, Morris AD, Morris AP, Murray JC, Nelis M, Ohlsson C, Oldehinkel AJ, Ong KK, Ouwehand WH, Pasterkamp G, Peters A, Pramstaller PP, Price JF, Qi L, Raitakari OT, Rankinen T, Rao DC, Rice TK, Ritchie M, Rudan I, Salomaa V, Samani NJ, Saramies J, Sarzynski MA, Schwarz PEH, Sebert S, Sever P, Shuldiner AR, Sinisalo J, Steinthorsdottir V, Stolk RP, Tardif JC, Tönjes A, Tremblay A, Tremoli E, Virtamo J, Vohl MC, Amouyel P, Asselbergs FW, Assimes TL, Bochud M, Boehm BO, Boerwinkle E, Bottinger EP, Bouchard C, Cauchi S, Chambers JC, Chanock SJ, Cooper RS, de Bakker PIW, Dedoussis G, Ferrucci L, Franks PW, Froguel P, Groop LC, Haiman CA, Hamsten A, Hayes MG, Hui J, Hunter DJ, Hveem K, Jukema JW, Kaplan RC, Kivimaki M, Kuh D, Laakso M, Liu Y, Martin NG, März W, Melbye M, Moebus S, Munroe PB, Njølstad I, Oostra BA, Palmer CNA, Pedersen NL, Perola M, Pérusse L, Peters U, Powell JE, Power C, Quertermous T, Rauramaa R, Reinmaa E, Ridker PM, Rivadeneira F, Rotter JI, Saaristo TE, Saleheen D, Schlessinger D, Slagboom PE, Snieder H, Spector TD, Strauch K, Stumvoll M, Tuomilehto J, Uusitupa M, van der Harst P, Völzke H, Walker M, Wareham NJ, Watkins H, Wichmann HE, Wilson JF, Zanen P, Deloukas P, Heid IM, Lindgren CM, Mohlke KL, Speliotes EK, Thorsteinsdottir U, Barroso I, Fox CS, North KE, Strachan DP, Beckmann JS, Berndt SI, Boehnke M, Borecki IB, McCarthy MI, Metspalu A, Stefansson K, Uitterlinden AG, van Duijn CM, Franke L, Willer CJ, Price AL, Lettre G, Loos RJF, Weedon MN, Ingelsson E, O'Connell JR, Abecasis GR, Chasman DI, Goddard ME, Visscher PM, Hirschhorn JN, Frayling TM. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet 2014; 46:1173-86. [PMID: 25282103 PMCID: PMC4250049 DOI: 10.1038/ng.3097] [Show More Authors] [Citation(s) in RCA: 1235] [Impact Index Per Article: 112.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 08/29/2014] [Indexed: 12/17/2022]
Abstract
Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated ∼2,000, ∼3,700 and ∼9,500 SNPs explained ∼21%, ∼24% and ∼29% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/β-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants.
Collapse
Affiliation(s)
- Andrew R Wood
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Tonu Esko
- 1] Estonian Genome Center, University of Tartu, Tartu, Estonia. [2] Division of Endocrinology, Genetics and Basic and Translational Obesity Research, Boston Children's Hospital, Boston, Massachusetts, USA. [3] Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA. [4] Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jian Yang
- 1] Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia. [2] University of Queensland Diamantina Institute, Translation Research Institute, Brisbane, Queensland, Australia
| | - Sailaja Vedantam
- 1] Division of Endocrinology, Genetics and Basic and Translational Obesity Research, Boston Children's Hospital, Boston, Massachusetts, USA. [2] Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
| | - Tune H Pers
- 1] Division of Endocrinology, Genetics and Basic and Translational Obesity Research, Boston Children's Hospital, Boston, Massachusetts, USA. [2] Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA. [3] Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA. [4] Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Stefan Gustafsson
- 1] Science for Life Laboratory, Uppsala University, Uppsala, Sweden. [2] Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Audrey Y Chu
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Karol Estrada
- 1] Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA. [2] Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands. [3] Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jian'an Luan
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Zoltán Kutalik
- 1] Institute of Social and Preventive Medicine (IUMSP), Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland. [2] Swiss Institute of Bioinformatics, Lausanne, Switzerland. [3] Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Najaf Amin
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Martin L Buchkovich
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Damien C Croteau-Chonka
- 1] Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA. [2] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Felix R Day
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Yanan Duan
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tove Fall
- 1] Science for Life Laboratory, Uppsala University, Uppsala, Sweden. [2] Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden. [3] Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Rudolf Fehrmann
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Teresa Ferreira
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Anne U Jackson
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Juha Karjalainen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ken Sin Lo
- Montreal Heart Institute, Montreal, Quebec, Canada
| | - Adam E Locke
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Reedik Mägi
- 1] Estonian Genome Center, University of Tartu, Tartu, Estonia. [2] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Evelin Mihailov
- 1] Estonian Genome Center, University of Tartu, Tartu, Estonia. [2] Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Eleonora Porcu
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, Cagliari, Italy
| | - Joshua C Randall
- 1] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. [2] Wellcome Trust Sanger Institute, Hinxton, UK
| | - André Scherag
- 1] Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, Essen, Germany. [2] Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Anna A E Vinkhuyzen
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Harm-Jan Westra
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Thomas W Winkler
- Department of Genetic Epidemiology, Institute of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Tsegaselassie Workalemahu
- Department of Nutrition, Harvard School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Jing Hua Zhao
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Devin Absher
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Eva Albrecht
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Denise Anderson
- Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth, Western Australia, Australia
| | - Jeffrey Baron
- Section on Growth and Development, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, US National Institutes of Health, Bethesda, Maryland, USA
| | - Marian Beekman
- 1] Netherlands Consortium for Healthy Aging (NCHA), Leiden University Medical Center, Leiden, the Netherlands. [2] Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ayse Demirkan
- 1] Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands. [2] Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Georg B Ehret
- 1] Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [2] Department of Specialties of Internal Medicine, Division of Cardiology, Geneva University Hospital, Geneva, Switzerland
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Mary F Feitosa
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Krista Fischer
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Ross M Fraser
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - Anuj Goel
- 1] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. [2] Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - Jian Gong
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Anne E Justice
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Marcus E Kleber
- 1] Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty of Mannheim, University of Heidelberg, Heidelberg, Germany. [2] Department of Internal Medicine II, Ulm University Medical Centre, Ulm, Germany
| | | | - Unhee Lim
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Vaneet Lotay
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Julian C Lui
- Section on Growth and Development, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, US National Institutes of Health, Bethesda, Maryland, USA
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Irene Mateo Leach
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Carolina Medina-Gomez
- 1] Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands. [2] Netherlands Consortium for Healthy Aging (NCHA), Rotterdam, the Netherlands. [3] Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Michael A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, US National Institutes of Health, Bethesda, Maryland, USA
| | - Dale R Nyholt
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Cameron D Palmer
- 1] Division of Endocrinology, Genetics and Basic and Translational Obesity Research, Boston Children's Hospital, Boston, Massachusetts, USA. [2] Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
| | - Dorota Pasko
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Sonali Pechlivanis
- Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, Essen, Germany
| | - Inga Prokopenko
- 1] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. [2] Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK. [3] Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London, UK
| | - Janina S Ried
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Stephan Ripke
- 1] Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA. [2] Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
| | - Dmitry Shungin
- 1] Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University Diabetes Center, Skåne University Hospital, Malmö, Sweden. [2] Department of Public Health and Clinical Medicine, Unit of Medicine, Umeå University, Umeå, Sweden. [3] Department of Odontology, Umeå University, Umeå, Sweden
| | - Alena Stancáková
- Department of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Rona J Strawbridge
- Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yun Ju Sung
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland, USA
| | - Alexander Teumer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stella Trompet
- 1] Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands. [2] Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sander W van der Laan
- Experimental Cardiology Laboratory, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jessica van Setten
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jana V Van Vliet-Ostaptchouk
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Zhaoming Wang
- 1] DZHK (Deutsches Zentrum für Herz-Kreislaufforschung-German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany. [2] Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany. [3] Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA. [4] Core Genotyping Facility, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, USA
| | - Loïc Yengo
- 1] CNRS UMR 8199, Lille, France. [2] European Genomic Institute for Diabetes, Lille, France. [3] Université de Lille 2, Lille, France
| | - Weihua Zhang
- 1] Ealing Hospital National Health Service (NHS) Trust, Middlesex, UK. [2] Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Uzma Afzal
- 1] Ealing Hospital National Health Service (NHS) Trust, Middlesex, UK. [2] Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Johan Arnlöv
- 1] Science for Life Laboratory, Uppsala University, Uppsala, Sweden. [2] Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden. [3] School of Health and Social Studies, Dalarna University, Falun, Sweden
| | - Gillian M Arscott
- PathWest Laboratory Medicine of Western Australia, Nedlands, Western Australia, Australia
| | | | - Amy Barrett
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Claire Bellis
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Amanda J Bennett
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Christian Berne
- Department of Medical Sciences, Endocrinology, Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Matthias Blüher
- 1] Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany. [2] Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Jennifer L Bolton
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - Yvonne Böttcher
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Heather A Boyd
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Marcel Bruinenberg
- LifeLines, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Brendan M Buckley
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Steven Buyske
- 1] Department of Statistics and Biostatistics, Rutgers University, Piscataway, New Jersy, USA. [2] Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
| | - Ida H Caspersen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Peter S Chines
- Genome Technology Branch, National Human Genome Research Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Robert Clarke
- Clinical Trial Service Unit, Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Simone Claudi-Boehm
- Division of Endocrinology, Diabetes and Metabolism, Ulm University Medical Centre, Ulm, Germany
| | - Matthew Cooper
- Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth, Western Australia, Australia
| | - E Warwick Daw
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pim A De Jong
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joris Deelen
- 1] Netherlands Consortium for Healthy Aging (NCHA), Leiden University Medical Center, Leiden, the Netherlands. [2] Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Graciela Delgado
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty of Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Josh C Denny
- Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Maria Dimitriou
- Department of Dietetics-Nutrition, Harokopio University, Athens, Greece
| | - Alex S F Doney
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Marcus Dörr
- 1] DZHK (Deutsches Zentrum für Herz-Kreislaufforschung-German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany. [2] Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Niina Eklund
- 1] National Institute for Health and Welfare, Helsinki, Finland. [2] Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
| | - Elodie Eury
- 1] CNRS UMR 8199, Lille, France. [2] European Genomic Institute for Diabetes, Lille, France. [3] Université de Lille 2, Lille, France
| | - Lasse Folkersen
- Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Melissa E Garcia
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, US National Institutes of Health, Bethesda, Maryland, USA
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Alan S Go
- Kaiser Permanente, Division of Research, Oakland, California, USA
| | - Harald Grallert
- 1] Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany. [2] Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany. [3] German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Tanja B Grammer
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty of Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Jürgen Gräßler
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Henrik Grönberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - Christopher J Groves
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Jeffrey Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Toomas Haller
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Goran Hallmans
- Unit of Nutritional Research, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Anke Hannemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Catharina A Hartman
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Maija Hassinen
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Nancy L Heard-Costa
- 1] National Heart, Lung, and Blood Institute, Framingham Heart Study, Framingham, Massachusetts, USA. [2] Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Quinta Helmer
- 1] Netherlands Consortium for Healthy Aging (NCHA), Leiden University Medical Center, Leiden, the Netherlands. [2] Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, the Netherlands. [3] Faculty of Psychology and Education, VU University Amsterdam, Amsterdam, the Netherlands
| | - Gibran Hemani
- 1] Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia. [2] University of Queensland Diamantina Institute, Translation Research Institute, Brisbane, Queensland, Australia
| | - Anjali K Henders
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Hans L Hillege
- 1] Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands. [2] Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Mark A Hlatky
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Wolfgang Hoffmann
- 1] DZHK (Deutsches Zentrum für Herz-Kreislaufforschung-German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany. [2] Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Per Hoffmann
- 1] Department of Biomedicine, Division of Medical Genetics, University of Basel, Basel, Switzerland. [2] Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany. [3] Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Oddgeir Holmen
- Department of Public Health and General Practice, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jeanine J Houwing-Duistermaat
- 1] Netherlands Consortium for Healthy Aging (NCHA), Leiden University Medical Center, Leiden, the Netherlands. [2] Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, the Netherlands
| | - Thomas Illig
- 1] Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany. [2] Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Aaron Isaacs
- 1] Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands. [2] Center for Medical Systems Biology, Leiden, the Netherlands
| | - Alan L James
- 1] Department of Pulmonary Physiology and Sleep Medicine, Nedlands, Western Australia, Australia. [2] School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia
| | - Janina Jeff
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Berit Johansen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, SciLifeLab, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Jennifer Jolley
- 1] Department of Haematology, University of Cambridge, Cambridge, UK. [2] NHS Blood and Transplant, Cambridge, UK
| | | | | | - Abel N Kho
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Leena Kinnunen
- National Institute for Health and Welfare, Helsinki, Finland
| | - Norman Klopp
- 1] Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany. [2] Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Thomas Kocher
- Unit of Periodontology, Department of Restorative Dentistry, Periodontology and Endodontology, University Medicine Greifswald, Greifswald, Germany
| | - Wolfgang Kratzer
- Department of Internal Medicine I, Ulm University Medical Centre, Ulm, Germany
| | - Peter Lichtner
- Institute of Human Genetics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Jaana Lindström
- National Institute for Health and Welfare, Helsinki, Finland
| | - Stéphane Lobbens
- 1] CNRS UMR 8199, Lille, France. [2] European Genomic Institute for Diabetes, Lille, France. [3] Université de Lille 2, Lille, France
| | - Mattias Lorentzon
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yingchang Lu
- 1] Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA. [2] Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Marc Maillard
- Service of Nephrology, Department of Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Wendy L McArdle
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Colin A McKenzie
- Tropical Metabolism Research Unit, Tropical Medicine Research Institute, University of the West Indies, Mona, Kingston, Jamaica
| | - Stela McLachlan
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - Paul J McLaren
- 1] Global Health Institute, Department of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. [2] Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Sigrun Merger
- Division of Endocrinology, Diabetes and Metabolism, Ulm University Medical Centre, Ulm, Germany
| | - Lili Milani
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Alireza Moayyeri
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Keri L Monda
- 1] Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Center for Observational Research, Amgen, Inc., Thousand Oaks, California, USA
| | - Mario A Morken
- Genome Technology Branch, National Human Genome Research Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Gabriele Müller
- Center for Evidence-Based Healthcare, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Martina Müller-Nurasyid
- 1] Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany. [2] Department of Medicine I, University Hospital Großhadern, Ludwig Maximilians Universität, Munich, Germany. [3] Chair of Genetic Epidemiology, Institute of Medical Informatics, Biometry and Epidemiology, Ludwig Maximilians Universität, Neuherberg, Germany. [4] DZHK (Deutsches Forschungszentrum für Herz-Kreislauferkrankungen-German Research Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Arthur W Musk
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Narisu Narisu
- Genome Technology Branch, National Human Genome Research Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Matthias Nauck
- 1] DZHK (Deutsches Zentrum für Herz-Kreislaufforschung-German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany. [2] Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Ilja M Nolte
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Markus M Nöthen
- 1] Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany. [2] Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Laticia Oozageer
- Ealing Hospital National Health Service (NHS) Trust, Middlesex, UK
| | - Stefan Pilz
- 1] Department of Epidemiology and Biostatistics, Institute for Research in Extramural Medicine (EMGO) Institute for Health and Care Research, VU University Medical Center, Amsterdam, the Netherlands. [2] Department of Internal Medicine, Division of Endocrinology and Metabolism, Medical University of Graz, Graz, Austria
| | - Nigel W Rayner
- 1] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. [2] Wellcome Trust Sanger Institute, Hinxton, UK. [3] Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Frida Renstrom
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University Diabetes Center, Skåne University Hospital, Malmö, Sweden
| | - Neil R Robertson
- 1] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. [2] Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Lynda M Rose
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Ronan Roussel
- 1] Diabetology-Endocrinology-Nutrition, Public Hospital System of the City of Paris (AP-HP), Bichat Hospital, Paris, France. [2] INSERM U872, Centre de Recherche des Cordeliers, Paris, France. [3] Paris Diderot University, Paris, France
| | - Serena Sanna
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, Cagliari, Italy
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Salome Scholtens
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Fredrick R Schumacher
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Heribert Schunkert
- 1] DZHK (Deutsches Forschungszentrum für Herz-Kreislauferkrankungen-German Research Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany. [2] Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Robert A Scott
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Joban Sehmi
- 1] Ealing Hospital National Health Service (NHS) Trust, Middlesex, UK. [2] Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University Medical Centre, Ulm, Germany
| | - Jianxin Shi
- National Cancer Institute, Bethesda, Maryland, USA
| | | | - Johannes H Smit
- 1] EMGO Institute for Health and Care Research, VU University, Amsterdam, the Netherlands. [2] Department of Psychiatry, Neuroscience Campus, VU University Amsterdam, Amsterdam, the Netherlands
| | - Albert Vernon Smith
- 1] Icelandic Heart Association, Kopavogur, Iceland. [2] University of Iceland, Reykjavik, Iceland
| | - Joanna Smolonska
- 1] Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands. [2] Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Alice V Stanton
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kathleen Stirrups
- 1] Wellcome Trust Sanger Institute, Hinxton, UK. [2] William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David J Stott
- Institute of Cardiovascular and Medical Sciences, Faculty of Medicine, University of Glasgow, Glasgow, UK
| | - Heather M Stringham
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Johan Sundström
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Morris A Swertz
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ann-Christine Syvänen
- 1] Science for Life Laboratory, Uppsala University, Uppsala, Sweden. [2] Department of Medical Sciences, Molecular Medicine, Uppsala University, Uppsala, Sweden
| | - Bamidele O Tayo
- Department of Public Health Sciences, Stritch School of Medicine, Loyola University of Chicago, Maywood, Illinois, USA
| | | | | | - Suzanne van Dijk
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Natasja M van Schoor
- Department of Epidemiology and Biostatistics, Institute for Research in Extramural Medicine (EMGO) Institute for Health and Care Research, VU University Medical Center, Amsterdam, the Netherlands
| | - Nathalie van der Velde
- 1] Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands. [2] Section of Geriatrics, Department of Internal Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Diana van Heemst
- 1] Netherlands Consortium for Healthy Aging (NCHA), Leiden University Medical Center, Leiden, the Netherlands. [2] Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Floor V A van Oort
- Department of Child and Adolescent Psychiatry, Psychology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sita H Vermeulen
- 1] Department for Health Evidence, Radboud University Medical Centre, Nijmegen, the Netherlands. [2] Department of Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Niek Verweij
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Judith M Vonk
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Lindsay L Waite
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Roman Wennauer
- Department of Clinical Chemistry, Ulm University Medical Centre, Ulm, Germany
| | - Lynne R Wilkens
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Christina Willenborg
- 1] DZHK (Deutsches Forschungszentrum für Herz-Kreislauferkrankungen-German Research Centre for Cardiovascular Research), partner site Hamburg-Lubeck-Kiel, Lubeck, Germany. [2] Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany
| | - Tom Wilsgaard
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Tromsø, Tromsø, Norway
| | - Mary K Wojczynski
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at University College London, London, UK
| | - Alan F Wright
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Qunyuan Zhang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dominique Arveiler
- Department of Epidemiology and Public Health, University of Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Stephan J L Bakker
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - John Beilby
- 1] PathWest Laboratory Medicine of Western Australia, Nedlands, Western Australia, Australia. [2] Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Richard N Bergman
- Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California, USA
| | - Sven Bergmann
- 1] Swiss Institute of Bioinformatics, Lausanne, Switzerland. [2] Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Reiner Biffar
- Department of Prosthetic Dentistry, Gerostomatology and Dental Materials, University Medicine Greifswald, Greifswald, Germany
| | - John Blangero
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Dorret I Boomsma
- Biological Psychology, VU University Amsterdam, Amsterdam, the Netherlands
| | - Stefan R Bornstein
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Pascal Bovet
- 1] Institute of Social and Preventive Medicine (IUMSP), Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne, Switzerland. [2] Ministry of Health, Victoria, Republic of Seychelles
| | - Paolo Brambilla
- Laboratory Medicine, Hospital of Desio, Department of Health Sciences, University of Milano, Bicocca, Italy
| | - Morris J Brown
- Clinical Pharmacology Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Harry Campbell
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - Mark J Caulfield
- 1] Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK. [2] Barts and The London Genome Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Aravinda Chakravarti
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rory Collins
- Clinical Trial Service Unit, Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Francis S Collins
- Genome Technology Branch, National Human Genome Research Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Dana C Crawford
- 1] Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [2] Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - L Adrienne Cupples
- 1] National Heart, Lung, and Blood Institute, Framingham Heart Study, Framingham, Massachusetts, USA. [2] Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - John Danesh
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Ulf de Faire
- Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hester M den Ruijter
- 1] Experimental Cardiology Laboratory, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands. [2] Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Raimund Erbel
- Clinic of Cardiology, West German Heart Centre, University Hospital Essen, Essen, Germany
| | - Jeanette Erdmann
- 1] DZHK (Deutsches Forschungszentrum für Herz-Kreislauferkrankungen-German Research Centre for Cardiovascular Research), partner site Hamburg-Lubeck-Kiel, Lubeck, Germany. [2] Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany
| | - Johan G Eriksson
- 1] National Institute for Health and Welfare, Helsinki, Finland. [2] Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland. [3] Unit of General Practice, Helsinki University Central Hospital, Helsinki, Finland
| | - Martin Farrall
- 1] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. [2] Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - Ele Ferrannini
- 1] Department of Internal Medicine, University of Pisa, Pisa, Italy. [2] National Research Council (CNR) Institute of Clinical Physiology, University of Pisa, Pisa, Italy
| | - Jean Ferrières
- Department of Cardiology, Toulouse University School of Medicine, Rangueil Hospital, Toulouse, France
| | - Ian Ford
- Robertson Center for Biostatistics, University of Glasgow, Glasgow, UK
| | - Nita G Forouhi
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Terrence Forrester
- Tropical Metabolism Research Unit, Tropical Medicine Research Institute, University of the West Indies, Mona, Kingston, Jamaica
| | - Ron T Gansevoort
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Pablo V Gejman
- NorthShore University HealthSystem, University of Chicago, Evanston, Illinois, USA
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Alain Golay
- Service of Therapeutic Education for Diabetes, Obesity and Chronic Diseases, Geneva University Hospital, Geneva, Switzerland
| | - Omri Gottesman
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vilmundur Gudnason
- 1] Icelandic Heart Association, Kopavogur, Iceland. [2] University of Iceland, Reykjavik, Iceland
| | - Ulf Gyllensten
- Department of Immunology, Genetics and Pathology, SciLifeLab, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - David W Haas
- Department of Medicine, Pharmacology, Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alistair S Hall
- Leeds MRC Medical Bioinformatics Centre, University of Leeds, Leeds, UK
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, US National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter, Exeter, UK
| | - Andrew C Heath
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christian Hengstenberg
- 1] DZHK (Deutsches Forschungszentrum für Herz-Kreislauferkrankungen-German Research Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany. [2] Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Andrew A Hicks
- Center for Biomedicine, European Academy Bozen, Bolzano (EURAC), Bolzano, Italy (affiliated institute of the University of Lübeck, Lübeck, Germany)
| | - Lucia A Hindorff
- Division of Genomic Medicine, National Human Genome Research Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, University College London, London, UK
| | - Albert Hofman
- 1] Netherlands Consortium for Healthy Aging (NCHA), Rotterdam, the Netherlands. [2] Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - G Kees Hovingh
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Steve E Humphries
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Sciences, University College London, London, UK
| | - Steven C Hunt
- Cardiovascular Genetics Division, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Elina Hypponen
- 1] School of Population Health, University of South Australia, Adelaide, South Australia, Australia. [2] Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia. [3] South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia. [4] Centre for Paediatric Epidemiology and Biostatistics, University College London Institute of Child Health, London, UK
| | - Kevin B Jacobs
- 1] Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA. [2] Core Genotyping Facility, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, USA
| | - Marjo-Riitta Jarvelin
- 1] Department of Epidemiology and Biostatistics, Imperial College London, London, UK. [2] National Institute for Health and Welfare, Oulu, Finland. [3] MRC Health Protection Agency (HPA) Centre for Environment and Health, School of Public Health, Imperial College London, London, UK. [4] Unit of Primary Care, Oulu University Hospital, Oulu, Finland. [5] Biocenter Oulu, University of Oulu, Oulu, Finland. [6] Institute of Health Sciences, University of Oulu, Oulu, Finland
| | | | - Antti M Jula
- National Institute for Health and Welfare, Helsinki, Finland
| | - Jaakko Kaprio
- 1] National Institute for Health and Welfare, Helsinki, Finland. [2] Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland. [3] Hjelt Institute Department of Public Health, University of Helsinki, Helsinki, Finland
| | - John J P Kastelein
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Manfred Kayser
- 1] Netherlands Consortium for Healthy Aging (NCHA), Rotterdam, the Netherlands. [2] Department of Forensic Molecular Biology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Frank Kee
- UK Clinical Research Collaboration Centre of Excellence for Public Health (Northern Ireland), Queens University of Belfast, Belfast, UK
| | - Sirkka M Keinanen-Kiukaanniemi
- 1] Faculty of Medicine, Institute of Health Sciences, University of Oulu, Oulu, Finland. [2] Unit of General Practice, Oulu University Hospital, Oulu, Finland
| | - Lambertus A Kiemeney
- 1] Department for Health Evidence, Radboud University Medical Centre, Nijmegen, the Netherlands. [2] Department of Urology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Jaspal S Kooner
- 1] Ealing Hospital National Health Service (NHS) Trust, Middlesex, UK. [2] Imperial College Healthcare NHS Trust, London, UK. [3] National Heart and Lung Institute, Imperial College London, London, UK
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Seppo Koskinen
- National Institute for Health and Welfare, Helsinki, Finland
| | - Peter Kovacs
- 1] Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany. [2] Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Aldi T Kraja
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Meena Kumari
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Johanna Kuusisto
- Department of Medicine, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Timo A Lakka
- 1] Kuopio Research Institute of Exercise Medicine, Kuopio, Finland. [2] Department of Physiology, Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Kuopio, Finland. [3] Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Claudia Langenberg
- 1] Medical Research Council (MRC) Epidemiology Unit, University of Cambridge, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK. [2] Department of Epidemiology and Public Health, University College London, London, UK
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and School of Medicine, University of Tampere, Tampere, Finland
| | - Sara Lupoli
- 1] Department of Health Sciences, University of Milano, Milan, Italy. [2] Fondazione Filarete, Milan, Italy
| | - Pamela A F Madden
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Satu Männistö
- National Institute for Health and Welfare, Helsinki, Finland
| | - Paolo Manunta
- 1] Division of Nephrology and Dialysis, San Raffaele Scientific Institute, Milan, Italy. [2] Università Vita-Salute San Raffaele, Milan, Italy
| | - André Marette
- 1] Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada. [2] Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Tara C Matise
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
| | - Barbara McKnight
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Thomas Meitinger
- DZHK (Deutsches Forschungszentrum für Herz-Kreislauferkrankungen-German Research Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Frans L Moll
- Department of Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Grant W Montgomery
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Andrew D Morris
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Andrew P Morris
- 1] Estonian Genome Center, University of Tartu, Tartu, Estonia. [2] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. [3] Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Mari Nelis
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Albertine J Oldehinkel
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ken K Ong
- 1] Medical Research Council (MRC) Epidemiology Unit, University of Cambridge, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK. [2] MRC Unit for Lifelong Health and Ageing at University College London, London, UK
| | - Willem H Ouwehand
- 1] Department of Haematology, University of Cambridge, Cambridge, UK. [2] NHS Blood and Transplant, Cambridge, UK
| | - Gerard Pasterkamp
- Experimental Cardiology Laboratory, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Annette Peters
- 1] Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany. [2] DZHK (Deutsches Forschungszentrum für Herz-Kreislauferkrankungen-German Research Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany. [3] Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Peter P Pramstaller
- 1] Center for Biomedicine, European Academy Bozen, Bolzano (EURAC), Bolzano, Italy (affiliated institute of the University of Lübeck, Lübeck, Germany). [2] Department of Neurology, General Central Hospital, Bolzano, Italy
| | - Jackie F Price
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - Lu Qi
- 1] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. [2] Department of Nutrition, Harvard School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Olli T Raitakari
- 1] Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland. [2] Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - D C Rao
- 1] Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA. [2] Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, USA. [3] Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Treva K Rice
- 1] Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, USA. [2] Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Marylyn Ritchie
- Center for Systems Genomics, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Igor Rudan
- 1] Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK. [2] Croatian Centre for Global Health, Faculty of Medicine, University of Split, Split, Croatia
| | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Nilesh J Samani
- 1] Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, UK. [2] National Institute for Health Research (NIHR) Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | | | - Mark A Sarzynski
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Peter E H Schwarz
- 1] Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany. [2] Paul Langerhans Institute Dresden, German Center for Diabetes Research (DZD), Dresden, Germany
| | - Sylvain Sebert
- Institute of Health Sciences, University of Oulu, Oulu, Finland
| | - Peter Sever
- International Centre for Circulatory Health, Imperial College London, London, UK
| | - Alan R Shuldiner
- 1] Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA. [2] Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA. [3] Geriatric Research and Education Clinical Center, Vetrans Administration Medical Center, Baltimore, Maryland, USA
| | - Juha Sinisalo
- Helsinki University Central Hospital Heart and Lung Center, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Ronald P Stolk
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jean-Claude Tardif
- 1] Montreal Heart Institute, Montreal, Quebec, Canada. [2] Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Anke Tönjes
- 1] Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany. [2] Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Angelo Tremblay
- Department of Kinesiology, Laval University, Quebec City, Quebec, Canada
| | - Elena Tremoli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università di Milano and Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Jarmo Virtamo
- National Institute for Health and Welfare, Helsinki, Finland
| | - Marie-Claude Vohl
- 1] Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada. [2] Department of Food Science and Nutrition, Laval University, Quebec City, Quebec, Canada
| | - Philippe Amouyel
- Institut Pasteur de Lille, INSERM U744, Université de Lille 2, Lille, France
| | - Folkert W Asselbergs
- 1] Institute of Cardiovascular Science, University College London, London, UK. [2] Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands. [3] Durrer Center for Cardiogenetic Research, Interuniversity Cardiology Institute Netherlands-Netherlands Heart Institute, Utrecht, the Netherlands
| | - Themistocles L Assimes
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Murielle Bochud
- 1] Institute of Social and Preventive Medicine (IUMSP), Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne, Switzerland. [2] Ministry of Health, Victoria, Republic of Seychelles
| | - Bernhard O Boehm
- 1] Division of Endocrinology, Diabetes and Metabolism, Ulm University Medical Centre, Ulm, Germany. [2] Lee Kong Chian School of Medicine, Imperial College London and Nanyang Technological University, Singapore
| | - Eric Boerwinkle
- Health Science Center at Houston, University of Texas, Houston, Texas, USA
| | - Erwin P Bottinger
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Stéphane Cauchi
- 1] CNRS UMR 8199, Lille, France. [2] European Genomic Institute for Diabetes, Lille, France. [3] Université de Lille 2, Lille, France
| | - John C Chambers
- 1] Ealing Hospital National Health Service (NHS) Trust, Middlesex, UK. [2] Department of Epidemiology and Biostatistics, Imperial College London, London, UK. [3] Imperial College Healthcare NHS Trust, London, UK
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Richard S Cooper
- Department of Public Health Sciences, Stritch School of Medicine, Loyola University of Chicago, Maywood, Illinois, USA
| | - Paul I W de Bakker
- 1] Department of Medical Genetics, University Medical Center Utrecht, Utrecht, the Netherlands. [2] Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA. [3] Department of Epidemiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - George Dedoussis
- Department of Dietetics-Nutrition, Harokopio University, Athens, Greece
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland, USA
| | - Paul W Franks
- 1] Department of Nutrition, Harvard School of Public Health, Harvard University, Boston, Massachusetts, USA. [2] Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University Diabetes Center, Skåne University Hospital, Malmö, Sweden. [3] Department of Public Health and Clinical Medicine, Unit of Medicine, Umeå University, Umeå, Sweden
| | - Philippe Froguel
- 1] Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London, UK. [2] CNRS UMR 8199, Lille, France. [3] European Genomic Institute for Diabetes, Lille, France. [4] Université de Lille 2, Lille, France
| | - Leif C Groop
- 1] Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland. [2] Lund University Diabetes Centre, Lund University, Malmö, Sweden. [3] Diabetes and Endocrinology Unit, Department of Clinical Science, Lund University, Malmö, Sweden
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Anders Hamsten
- Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - M Geoffrey Hayes
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jennie Hui
- 1] PathWest Laboratory Medicine of Western Australia, Nedlands, Western Australia, Australia. [2] Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia, Australia. [3] School of Population Health, University of South Australia, Adelaide, South Australia, Australia. [4] Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - David J Hunter
- 1] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. [2] Department of Nutrition, Harvard School of Public Health, Harvard University, Boston, Massachusetts, USA. [3] Department of Epidemiology, Harvard School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Kristian Hveem
- Department of Public Health and General Practice, Norwegian University of Science and Technology, Trondheim, Norway
| | - J Wouter Jukema
- 1] Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands. [2] Durrer Center for Cardiogenetic Research, Interuniversity Cardiology Institute Netherlands-Netherlands Heart Institute, Utrecht, the Netherlands. [3] Interuniversity Cardiology Institute of the Netherlands (ICIN), Utrecht, the Netherlands
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine. Belfer, New York, USA
| | - Mika Kivimaki
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Diana Kuh
- MRC Unit for Lifelong Health and Ageing at University College London, London, UK
| | - Markku Laakso
- Department of Medicine, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Yongmei Liu
- Center for Human Genetics, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Winfried März
- 1] Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty of Mannheim, University of Heidelberg, Heidelberg, Germany. [2] Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria. [3] Synlab Academy, Synlab Services, Mannheim, Germany
| | - Mads Melbye
- 1] Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark. [2] Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Susanne Moebus
- Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, Essen, Germany
| | - Patricia B Munroe
- 1] Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK. [2] Barts and The London Genome Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Inger Njølstad
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Tromsø, Tromsø, Norway
| | - Ben A Oostra
- 1] Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands. [2] Center for Medical Systems Biology, Leiden, the Netherlands. [3] Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Colin N A Palmer
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Markus Perola
- 1] Estonian Genome Center, University of Tartu, Tartu, Estonia. [2] National Institute for Health and Welfare, Helsinki, Finland. [3] Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
| | - Louis Pérusse
- 1] Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada. [2] Department of Kinesiology, Laval University, Quebec City, Quebec, Canada
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Joseph E Powell
- 1] Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia. [2] University of Queensland Diamantina Institute, Translation Research Institute, Brisbane, Queensland, Australia
| | - Chris Power
- Centre for Paediatric Epidemiology and Biostatistics, University College London Institute of Child Health, London, UK
| | - Thomas Quertermous
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Rainer Rauramaa
- 1] Kuopio Research Institute of Exercise Medicine, Kuopio, Finland. [2] Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Eva Reinmaa
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Paul M Ridker
- 1] Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA. [2] Harvard Medical School, Boston, Massachusetts, USA
| | - Fernando Rivadeneira
- 1] Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands. [2] Netherlands Consortium for Healthy Aging (NCHA), Rotterdam, the Netherlands. [3] Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-University of California, Los Angeles Medical Center, Torrance, California, USA
| | - Timo E Saaristo
- 1] Finnish Diabetes Association, Tampere, Finland. [2] Pirkanmaa Hospital District, Tampere, Finland
| | - Danish Saleheen
- 1] Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK. [2] Center for Non-Communicable Diseases, Karatchi, Pakistan. [3] Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Schlessinger
- Laboratory of Genetics, National Institute on Aging, Baltimore, Maryland, USA
| | - P Eline Slagboom
- 1] Netherlands Consortium for Healthy Aging (NCHA), Leiden University Medical Center, Leiden, the Netherlands. [2] Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Harold Snieder
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Konstantin Strauch
- 1] Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany. [2] Chair of Genetic Epidemiology, Institute of Medical Informatics, Biometry and Epidemiology, Ludwig Maximilians Universität, Neuherberg, Germany
| | - Michael Stumvoll
- 1] Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany. [2] Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Jaakko Tuomilehto
- 1] National Institute for Health and Welfare, Helsinki, Finland. [2] Instituto de Investigacion Sanitaria del Hospital Universario La Paz (IdiPAZ), Madrid, Spain. [3] Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia. [4] Centre for Vascular Prevention, Danube University Krems, Krems, Austria
| | - Matti Uusitupa
- 1] Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland. [2] Research Unit, Kuopio University Hospital, Kuopio, Finland
| | - Pim van der Harst
- 1] Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands. [2] Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands. [3] Durrer Center for Cardiogenetic Research, Interuniversity Cardiology Institute Netherlands-Netherlands Heart Institute, Utrecht, the Netherlands
| | - Henry Völzke
- 1] DZHK (Deutsches Zentrum für Herz-Kreislaufforschung-German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany. [2] Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Mark Walker
- Institute of Cellular Medicine, Newcastle University, Newcastle, UK
| | - Nicholas J Wareham
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Hugh Watkins
- 1] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. [2] Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - H-Erich Wichmann
- 1] Chair of Epidemiology, Institute of Medical Informatics, Biometry and Epidemiology, Ludwig Maximilians Universität, Munich, Germany. [2] Klinikum Großhadern, Munich, Germany. [3] Institute of Epidemiology I, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - James F Wilson
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - Pieter Zanen
- Department of Pulmonology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Panos Deloukas
- 1] Wellcome Trust Sanger Institute, Hinxton, UK. [2] William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK. [3] King Abdulaziz University, Jeddah, Saudi Arabia
| | - Iris M Heid
- 1] Department of Genetic Epidemiology, Institute of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany. [2] Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Cecilia M Lindgren
- 1] Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA. [2] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Elizabeth K Speliotes
- 1] Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan, USA. [2] Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Unnur Thorsteinsdottir
- 1] deCODE Genetics, Amgen, Inc., Reykjavik, Iceland. [2] Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Inês Barroso
- 1] Wellcome Trust Sanger Institute, Hinxton, UK. [2] University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK. [3] NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Caroline S Fox
- National Heart, Lung, and Blood Institute, Framingham Heart Study, Framingham, Massachusetts, USA
| | - Kari E North
- 1] Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David P Strachan
- Division of Population Health Sciences and Education, St George's, University of London, London, UK
| | - Jacques S Beckmann
- 1] Swiss Institute of Bioinformatics, Lausanne, Switzerland. [2] Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland. [3] Service of Medical Genetics, CHUV University Hospital, Lausanne, Switzerland
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Boehnke
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Ingrid B Borecki
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mark I McCarthy
- 1] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. [2] Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK. [3] Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Andres Metspalu
- 1] Estonian Genome Center, University of Tartu, Tartu, Estonia. [2] Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Kari Stefansson
- 1] deCODE Genetics, Amgen, Inc., Reykjavik, Iceland. [2] Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - André G Uitterlinden
- 1] Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands. [2] Netherlands Consortium for Healthy Aging (NCHA), Rotterdam, the Netherlands. [3] Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Cornelia M van Duijn
- 1] Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands. [2] Netherlands Consortium for Healthy Aging (NCHA), Rotterdam, the Netherlands. [3] Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands. [4] Center for Medical Systems Biology, Leiden, the Netherlands
| | - Lude Franke
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Cristen J Willer
- 1] Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA. [2] Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA. [3] Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Alkes L Price
- 1] Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA. [2] Department of Epidemiology, Harvard School of Public Health, Harvard University, Boston, Massachusetts, USA. [3] Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Guillaume Lettre
- 1] Montreal Heart Institute, Montreal, Quebec, Canada. [2] Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Ruth J F Loos
- 1] Medical Research Council (MRC) Epidemiology Unit, University of Cambridge, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK. [2] Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA. [3] Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA. [4] Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael N Weedon
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Erik Ingelsson
- 1] Science for Life Laboratory, Uppsala University, Uppsala, Sweden. [2] Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden. [3] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jeffrey R O'Connell
- 1] Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA. [2] Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Goncalo R Abecasis
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel I Chasman
- 1] Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA. [2] Harvard Medical School, Boston, Massachusetts, USA
| | - Michael E Goddard
- 1] Biosciences Research Division, Department of Primary Industries, Melbourne, Victoria, Australia. [2] Department of Food and Agricultural Systems, University of Melbourne, Melbourne, Victoria, Australia
| | - Peter M Visscher
- 1] Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia. [2] University of Queensland Diamantina Institute, Translation Research Institute, Brisbane, Queensland, Australia
| | - Joel N Hirschhorn
- 1] Division of Endocrinology, Genetics and Basic and Translational Obesity Research, Boston Children's Hospital, Boston, Massachusetts, USA. [2] Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA. [3] Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| |
Collapse
|
43
|
Stevens A, De Leonibus C, Whatmore A, Hanson D, Murray P, Chatelain P, Westwood M, Clayton P. Pharmacogenomics related to growth disorders. Horm Res Paediatr 2014; 80:477-90. [PMID: 24296333 DOI: 10.1159/000355658] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/16/2013] [Indexed: 11/19/2022] Open
Abstract
Growth disorders resulting in short stature are caused by a wide range of underlying pathophysiological processes. To improve height many of these conditions are treated with recombinant human growth hormone (rhGH). However, substantial inter-individual variability in growth response both in the short and long-term is recognised. Over the last decade, disease-specific growth prediction models have been developed that the clinician can use to define a child's potential response to rhGH and to optimise starting and maintenance doses of rhGH. These models, however, are not able to predict all the variations in treatment response. There has, therefore, been recent interest in using genetic information to contribute to the evaluation of responses to rhGH, including high-throughput technologies for assessing DNA markers (genome) and mRNA transcripts (transcriptome) as pharmacogenomic tools. This review will focus on how these pharmacogenomic approaches are being applied to growth disorders.
Collapse
Affiliation(s)
- A Stevens
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester and Manchester Academic Health Science Centre, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Lui JC, Nilsson O, Baron J. Recent research on the growth plate: Recent insights into the regulation of the growth plate. J Mol Endocrinol 2014; 53:T1-9. [PMID: 24740736 PMCID: PMC4133284 DOI: 10.1530/jme-14-0022] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For most bones, elongation is driven primarily by chondrogenesis at the growth plates. This process results from chondrocyte proliferation, hypertrophy, and extracellular matrix secretion, and it is carefully orchestrated by complex networks of local paracrine factors and modulated by endocrine factors. We review here recent advances in the understanding of growth plate physiology. These advances include new approaches to study expression patterns of large numbers of genes in the growth plate, using microdissection followed by microarray. This approach has been combined with genome-wide association studies to provide insights into the regulation of the human growth plate. We also review recent studies elucidating the roles of bone morphogenetic proteins, fibroblast growth factors, C-type natriuretic peptide, and suppressor of cytokine signaling in the local regulation of growth plate chondrogenesis and longitudinal bone growth.
Collapse
Affiliation(s)
- Julian C Lui
- Program in Developmental Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, CRC, Room 1-3330, 10 Center Drive, MSC 1103, Bethesda, Maryland 20892-1103, USACenter for Molecular Medicine and Pediatric Endocrinology UnitDepartment of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Ola Nilsson
- Program in Developmental Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, CRC, Room 1-3330, 10 Center Drive, MSC 1103, Bethesda, Maryland 20892-1103, USACenter for Molecular Medicine and Pediatric Endocrinology UnitDepartment of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, SwedenProgram in Developmental Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, CRC, Room 1-3330, 10 Center Drive, MSC 1103, Bethesda, Maryland 20892-1103, USACenter for Molecular Medicine and Pediatric Endocrinology UnitDepartment of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Jeffrey Baron
- Program in Developmental Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, CRC, Room 1-3330, 10 Center Drive, MSC 1103, Bethesda, Maryland 20892-1103, USACenter for Molecular Medicine and Pediatric Endocrinology UnitDepartment of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
45
|
Nilsson O, Guo MH, Dunbar N, Popovic J, Flynn D, Jacobsen C, Lui JC, Hirschhorn JN, Baron J, Dauber A. Short stature, accelerated bone maturation, and early growth cessation due to heterozygous aggrecan mutations. J Clin Endocrinol Metab 2014; 99:E1510-8. [PMID: 24762113 PMCID: PMC4121031 DOI: 10.1210/jc.2014-1332] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CONTEXT Many children with idiopathic short stature have a delayed bone age. Idiopathic short stature with advanced bone age is far less common. OBJECTIVE The aim was to identify underlying genetic causes of short stature with advanced bone age. SETTING AND DESIGN We used whole-exome sequencing to study three families with autosomal-dominant short stature, advanced bone age, and premature growth cessation. RESULTS Affected individuals presented with short stature [adult heights -2.3 to -4.2 standard deviation scores (SDS)] with histories of early growth cessation or childhood short stature (height SDS -1.9 to -3.5 SDS), advancement of bone age, and normal endocrine evaluations. Whole-exome sequencing identified novel heterozygous variants in ACAN, which encodes aggrecan, a proteoglycan in the extracellular matrix of growth plate and other cartilaginous tissues. The variants were present in all affected, but in no unaffected, family members. In Family 1, a novel frameshift mutation in exon 3 (c.272delA) was identified, which is predicted to cause early truncation of the aggrecan protein. In Family 2, a base-pair substitution was found in a highly conserved location within a splice donor site (c.2026+1G>A), which is also likely to alter the amino acid sequence of a large portion of the protein. In Family 3, a missense variant (c.7064T>C) in exon 14 affects a highly conserved residue (L2355P) and is strongly predicted to perturb protein function. CONCLUSIONS Our study demonstrates that heterozygous mutations in ACAN can cause a mild skeletal dysplasia, which presents clinically as short stature with advanced bone age. The accelerating effect on skeletal maturation has not previously been noted in the few prior reports of human ACAN mutations. Our findings thus expand the spectrum of ACAN defects and provide a new molecular genetic etiology for the unusual child who presents with short stature and accelerated skeletal maturation.
Collapse
Affiliation(s)
- Ola Nilsson
- Program in Developmental Endocrinology and Genetics (O.N., J.C.L., J.B.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; Center for Molecular Medicine and Pediatric Endocrinology Unit, Department of Women's and Children's Health (O.N.), Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden; Program in Biological and Biomedical Sciences (M.H.G.), Harvard Medical School, Boston, Massachusetts 02115; Connecticut Children's Medical Center (N.D.), Hartford, Connecticut 06106; Children's Hospital of Pittsburgh (J.P., D.F.), University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224; Division of Endocrinology (M.H.G., C.J., J.N.H., A.D.), Boston Children's Hospital, Boston, Massachusetts 02115; Department of Genetics (M.H.G., J.N.H.), Harvard Medical School, Boston, Massachusetts 02115; and Program in Medical and Population Genetics (J.N.H., A.D.), Broad Institute, Cambridge, Massachusetts 02142
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Xie Y, Zhou S, Chen H, Du X, Chen L. Recent research on the growth plate: Advances in fibroblast growth factor signaling in growth plate development and disorders. J Mol Endocrinol 2014; 53:T11-34. [PMID: 25114206 DOI: 10.1530/jme-14-0012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Skeletons are formed through two distinct developmental actions, intramembranous ossification and endochondral ossification. During embryonic development, most bone is formed by endochondral ossification. The growth plate is the developmental center for endochondral ossification. Multiple signaling pathways participate in the regulation of endochondral ossification. Fibroblast growth factor (FGF)/FGF receptor (FGFR) signaling has been found to play a vital role in the development and maintenance of growth plates. Missense mutations in FGFs and FGFRs can cause multiple genetic skeletal diseases with disordered endochondral ossification. Clarifying the molecular mechanisms of FGFs/FGFRs signaling in skeletal development and genetic skeletal diseases will have implications for the development of therapies for FGF-signaling-related skeletal dysplasias and growth plate injuries. In this review, we summarize the recent advances in elucidating the role of FGFs/FGFRs signaling in growth plate development, genetic skeletal disorders, and the promising therapies for those genetic skeletal diseases resulting from FGFs/FGFRs dysfunction. Finally, we also examine the potential important research in this field in the future.
Collapse
Affiliation(s)
- Yangli Xie
- Department of Rehabilitation MedicineCenter of Bone Metabolism and Repair, Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Siru Zhou
- Department of Rehabilitation MedicineCenter of Bone Metabolism and Repair, Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Hangang Chen
- Department of Rehabilitation MedicineCenter of Bone Metabolism and Repair, Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiaolan Du
- Department of Rehabilitation MedicineCenter of Bone Metabolism and Repair, Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Lin Chen
- Department of Rehabilitation MedicineCenter of Bone Metabolism and Repair, Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| |
Collapse
|
47
|
Cousminer DL, Stergiakouli E, Berry DJ, Ang W, Groen-Blokhuis MM, Körner A, Siitonen N, Ntalla I, Marinelli M, Perry JRB, Kettunen J, Jansen R, Surakka I, Timpson NJ, Ring S, Mcmahon G, Power C, Wang C, Kähönen M, Viikari J, Lehtimäki T, Middeldorp CM, Hulshoff Pol HE, Neef M, Weise S, Pahkala K, Niinikoski H, Zeggini E, Panoutsopoulou K, Bustamante M, Penninx BWJH, Murabito J, Torrent M, Dedoussis GV, Kiess W, Boomsma DI, Pennell CE, Raitakari OT, Hyppönen E, Davey Smith G, Ripatti S, McCarthy MI, Widén E. Genome-wide association study of sexual maturation in males and females highlights a role for body mass and menarche loci in male puberty. Hum Mol Genet 2014; 23:4452-64. [PMID: 24770850 DOI: 10.1093/hmg/ddu150] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Little is known about genes regulating male puberty. Further, while many identified pubertal timing variants associate with age at menarche, a late manifestation of puberty, and body mass, little is known about these variants' relationship to pubertal initiation or tempo. To address these questions, we performed genome-wide association meta-analysis in over 11 000 European samples with data on early pubertal traits, male genital and female breast development, measured by the Tanner scale. We report the first genome-wide significant locus for male sexual development upstream of myocardin-like 2 (MKL2) (P = 8.9 × 10(-9)), a menarche locus tagging a developmental pathway linking earlier puberty with reduced pubertal growth (P = 4.6 × 10(-5)) and short adult stature (p = 7.5 × 10(-6)) in both males and females. Furthermore, our results indicate that a proportion of menarche loci are important for pubertal initiation in both sexes. Consistent with epidemiological correlations between increased prepubertal body mass and earlier pubertal timing in girls, body mass index (BMI)-increasing alleles correlated with earlier breast development. In boys, some BMI-increasing alleles associated with earlier, and others with delayed, sexual development; these genetic results mimic the controversy in epidemiological studies, some of which show opposing correlations between prepubertal BMI and male puberty. Our results contribute to our understanding of the pubertal initiation program in both sexes and indicate that although mechanisms regulating pubertal onset in males and females may largely be shared, the relationship between body mass and pubertal timing in boys may be complex and requires further genetic studies.
Collapse
Affiliation(s)
| | | | - Diane J Berry
- Centre for Paediatric Epidemiology and Biostatistics, UCL Institute of Child Health, London, UK
| | - Wei Ang
- School of Women's and Infants' Health, The University of Western Australia, Perth, WA, Australia
| | | | - Antje Körner
- Center of Pediatric Research, Department of Women's & Child Health, University of Leipzig, Leipzig, Germany
| | - Niina Siitonen
- Research Centre of Applied and Preventive Cardiovascular Medicine
| | - Ioanna Ntalla
- Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, UK
| | - Marcella Marinelli
- Center for Research in Environmental Epidemiology (CREAL), Barcelona, Catelonia, Spain Hospital del Mar Research Institute (IMIM), Barcelona, Catalonia, Spain Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Barcelona, Catalonia, Spain
| | - John R B Perry
- MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Johannes Kettunen
- Institute for Molecular Medicine Finland (FIMM) Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Rick Jansen
- EMGO+ Institute for Health and Care Research Neuroscience Campus Amsterdam, VU University, Amsterdam, the Netherlands Department of Psychiatry, VU University Medical Center/GGZ inGeest, Amsterdam, The Netherlands
| | - Ida Surakka
- Institute for Molecular Medicine Finland (FIMM) Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | | | - Susan Ring
- Avon Longitudinal Study of Parents and Children (ALSPAC), School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - George Mcmahon
- Avon Longitudinal Study of Parents and Children (ALSPAC), School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Chris Power
- Centre for Paediatric Epidemiology and Biostatistics, UCL Institute of Child Health, London, UK
| | - Carol Wang
- School of Women's and Infants' Health, The University of Western Australia, Perth, WA, Australia
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and University of Tampere School of Medicine, Tampere 33521, Finland
| | - Jorma Viikari
- Department of Medicine, University of Turku and Turku University Hospital, Turku 20521, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and University of Tampere School of Medicine, Tampere 33520, Finland
| | - Christel M Middeldorp
- Department of Biological Psychology Neuroscience Campus Amsterdam, VU University, Amsterdam, the Netherlands Department of Psychiatry, VU University Medical Center/GGZ inGeest, Amsterdam, The Netherlands
| | - Hilleke E Hulshoff Pol
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Madlen Neef
- Center of Pediatric Research, Department of Women's & Child Health, University of Leipzig, Leipzig, Germany
| | - Sebastian Weise
- Center of Pediatric Research, Department of Women's & Child Health, University of Leipzig, Leipzig, Germany
| | - Katja Pahkala
- Research Centre of Applied and Preventive Cardiovascular Medicine Paavo Nurmi Centre, Sports & Exercise Medicine Unit, Department of Physical Activity and Health
| | - Harri Niinikoski
- Research Centre of Applied and Preventive Cardiovascular Medicine Department of Pediatrics, University of Turku, Turku, Finland
| | | | | | - Mariona Bustamante
- Center for Research in Environmental Epidemiology (CREAL), Barcelona, Catelonia, Spain Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Barcelona, Catalonia, Spain Genes and genomes, Center for Genomic Regulation (CRG), Barcelona, Catalonia, Spain and
| | - Brenda W J H Penninx
- EMGO+ Institute for Health and Care Research Neuroscience Campus Amsterdam, VU University, Amsterdam, the Netherlands Department of Psychiatry, VU University Medical Center/GGZ inGeest, Amsterdam, The Netherlands
| | | | - Joanne Murabito
- Department of Medicine, Section of General Internal Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Maties Torrent
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Barcelona, Catalonia, Spain ib-salut, Area de Salut de Menorca, Balearic Islands, Spain
| | - George V Dedoussis
- Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| | - Wieland Kiess
- Center of Pediatric Research, Department of Women's & Child Health, University of Leipzig, Leipzig, Germany
| | - Dorret I Boomsma
- Department of Biological Psychology EMGO+ Institute for Health and Care Research Neuroscience Campus Amsterdam, VU University, Amsterdam, the Netherlands
| | - Craig E Pennell
- School of Women's and Infants' Health, The University of Western Australia, Perth, WA, Australia
| | - Olli T Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Elina Hyppönen
- Centre for Paediatric Epidemiology and Biostatistics, UCL Institute of Child Health, London, UK School of Population Health and Sansom Institute for Health Research, University of South Australia, North Terrace, Adelaide, Australia South Australian Health and Medical Research Institute, North Terrace, Adelaide, Australia
| | | | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM) Hjelt Institute, University of Helsinki, Helsinki, Finland Wellcome Trust Sanger Institute, Hinxton, UK
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Old Road, Headington, Oxford, UK Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | | | | |
Collapse
|
48
|
Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. Am J Hum Genet 2014; 94:559-73. [PMID: 24702953 DOI: 10.1016/j.ajhg.2014.03.004] [Citation(s) in RCA: 389] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/11/2014] [Indexed: 01/23/2023] Open
Abstract
Annotations of gene structures and regulatory elements can inform genome-wide association studies (GWASs). However, choosing the relevant annotations for interpreting an association study of a given trait remains challenging. I describe a statistical model that uses association statistics computed across the genome to identify classes of genomic elements that are enriched with or depleted of loci influencing a trait. The model naturally incorporates multiple types of annotations. I applied the model to GWASs of 18 human traits, including red blood cell traits, platelet traits, glucose levels, lipid levels, height, body mass index, and Crohn disease. For each trait, I used the model to evaluate the relevance of 450 different genomic annotations, including protein-coding genes, enhancers, and DNase-I hypersensitive sites in over 100 tissues and cell lines. The fraction of phenotype-associated SNPs influencing protein sequence ranged from around 2% (for platelet volume) up to around 20% (for low-density lipoprotein cholesterol), repressed chromatin was significantly depleted for SNPs associated with several traits, and cell-type-specific DNase-I hypersensitive sites were enriched with SNPs associated with several traits (for example, the spleen in platelet volume). Finally, reweighting each GWAS by using information from functional genomics increased the number of loci with high-confidence associations by around 5%.
Collapse
|
49
|
Wit JM, van Duyvenvoorde HA, van Klinken JB, Caliebe J, Bosch CA, Lui JC, Gijsbers AC, Bakker E, Breuning MH, Oostdijk W, Losekoot M, Baron J, Binder G, Ranke MB, Ruivenkamp CA. Copy number variants in short children born small for gestational age. Horm Res Paediatr 2014; 82:310-8. [PMID: 25300501 PMCID: PMC4236248 DOI: 10.1159/000367712] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/18/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND/AIMS In addition to genome-wide association studies (GWAS), height-associated genes may be uncovered by studying individuals with extreme short or tall stature. METHODS Genome-wide analysis for copy number variants (CNVs), using single nucleotide polymorphism (SNP) arrays, was performed in 49 index cases born small for gestational age with persistent short stature. Segregation analysis was performed, and genes in CNVs were compared with information from GWAS, gene expression in rodents' growth plates, and published information. RESULTS CNVs were detected in 13 cases. In 5 children a known cause of short stature was found: UPD7, UPD14, a duplication of the SHOX enhancer region, an IGF1R deletion, and a 22q11.21 deletion. In the remaining 8 cases, potential pathogenic CNVs were detected, either de novo (n = 1), segregating (n = 2), or not segregating with short stature (n = 5). Bioinformatic analysis of the de novo and segregating CNVs suggested that HOXD4, AGPS, PDE11A, OSBPL6, PRKRA and PLEKHA3, and possibly DGKB and TNFRSF11B are potential candidate genes. A SERPINA7 or NRK defect may be associated with an X-linked form of short stature. CONCLUSION SNP arrays detected 5 known causes of short stature with prenatal onset and suggested several potential candidate genes.
Collapse
Affiliation(s)
- Jan M. Wit
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Jan B. van Klinken
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Janina Caliebe
- Paediatric Endocrinology Section, Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Cathy A.J. Bosch
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Julian C. Lui
- Section on Growth and Development, National Institutes of Health, Bethesda, MD, USA
| | - Antoinet C.J. Gijsbers
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Egbert Bakker
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Martijn H. Breuning
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Wilma Oostdijk
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Monique Losekoot
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeffrey Baron
- Section on Growth and Development, National Institutes of Health, Bethesda, MD, USA
| | - Gerhard Binder
- Paediatric Endocrinology Section, Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Michael B. Ranke
- Paediatric Endocrinology Section, Children’s Hospital, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
50
|
Waldman LA, Chia DJ. Towards identification of molecular mechanisms of short stature. INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2013; 2013:19. [PMID: 24257104 PMCID: PMC3835394 DOI: 10.1186/1687-9856-2013-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/08/2013] [Indexed: 12/02/2022]
Abstract
Growth evaluations are among the most common referrals to pediatric endocrinologists. Although a number of pathologies, both primary endocrine and non-endocrine, can present with short stature, an estimated 80% of evaluations fail to identify a clear etiology, leaving a default designation of idiopathic short stature (ISS). As a group, several features among children with ISS are suggestive of pathophysiology of the GH–IGF-1 axis, including low serum levels of IGF-1 despite normal GH secretion. Candidate gene analysis of rare cases has demonstrated that severe mutations of genes of the GH–IGF-1 axis can present with a profound height phenotype, leading to speculation that a collection of mild mutations or polymorphisms of these genes can explain poor growth in a larger proportion of patients. Recent genome-wide association studies have identified ~180 genomic loci associated with height that together account for approximately 10% of height variation. With only modest representation of the GH–IGF-1 axis, there is little support for the long-held hypothesis that common genetic variants of the hormone pathway provide the molecular mechanism for poor growth in a substantial proportion of individuals. The height-associated common variants are not observed in the anticipated frequency in the shortest individuals, suggesting rare genetic factors with large effect are more plausible in this group. As we advance towards establishing a molecular mechanism for poor growth in a greater percentage of those currently labeled ISS, we highlight two strategies that will likely be offered with increasing frequency: (1) unbiased genetic technologies including array analysis for copy number variation and whole exome/genome sequencing and (2) epigenetic alterations of key genomic loci. Ultimately data from subsets with similar molecular etiologies may emerge that will allow tailored interventions to achieve the best clinical outcome.
Collapse
Affiliation(s)
- Lindsey A Waldman
- Institutional addresses: Division of Pediatric Endocrinology & Diabetes, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L, Levy Place, New York, NY 10029, USA.
| | | |
Collapse
|