1
|
Cong H, Han X, Lv M, Chang Y, Wang X, Lei R. Integrated duplex reverse transcription-recombinase aided amplification (RT-RAA) and lateral flow assay (LFA) for rapid simultaneous detection of Zika virus and Japanese encephalitis virus in single reaction format. Talanta 2025; 294:128195. [PMID: 40315800 DOI: 10.1016/j.talanta.2025.128195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/06/2025] [Accepted: 04/20/2025] [Indexed: 05/04/2025]
Abstract
Zika virus (ZIKV) and Japanese encephalitis virus (JEV), two consequential mosquito-borne flaviviruses, induce severe systemic and neurotropic-encephalitic pathologies with overlapping symptoms profiles, complicating differential diagnosis in co-endemic regions. To address this critical challenge, we developed a dual reverse-transcription recombinase-aided amplification (RT-RAA) coupled with duplex lateral flow assay (LFA) platform for rapid, equipment-free co-detection of ZIKV and JEV in a single reaction tube. The assay achieved isothermal amplification at 39 °C within 40 min using a field-deployable incubator. The limit of detection (LOD) reached as low as 8.5 copies ZIKV RNA, and 1.1 copies JEV RNA in single pathogen detection, while 110 copies JEV RNA in co-detection mode. This technological advance bridges the critical sensitivity gap between lab-based PCR and conventional rapid tests, enabling first-line healthcare responders to conduct precision diagnostics in non-laboratory settings from rural clinics to mobile outbreak response units.
Collapse
Affiliation(s)
- Haolong Cong
- Center for Biosafety, Chinese Academy of Inspection and Quarantine, Sanya, 572024, China; Chinese Academy of Quality and Inspection & Testing, Beijing, 100176, China
| | - Xiaodong Han
- College of Life Sciences, Inner Mongolia Agriculture University, Hohhot, Inner Mongolia, China
| | - Mengyuan Lv
- School of Life and Health, Dalian University, Dalian, 116622, China
| | - Yutong Chang
- Chinese Academy of Quality and Inspection & Testing, Beijing, 100176, China
| | - Xinyi Wang
- School of Life and Health, Dalian University, Dalian, 116622, China.
| | - Rong Lei
- Center for Biosafety, Chinese Academy of Inspection and Quarantine, Sanya, 572024, China; Chinese Academy of Quality and Inspection & Testing, Beijing, 100176, China.
| |
Collapse
|
2
|
Xie S, Lin X, Yang Q, Shi M, Yang X, Cao Z, Cao R. The Japanese encephalitis virus NS1 protein concentrates ER membranes in a cytoskeleton-independent manner to facilitate viral replication. J Virol 2025; 99:e0211324. [PMID: 39907281 PMCID: PMC11915877 DOI: 10.1128/jvi.02113-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/12/2025] [Indexed: 02/06/2025] Open
Abstract
Orthoflaviviruses remodel the endoplasmic reticulum (ER) network to construct replication organelles (ROs) for RNA replication. In this study, we demonstrate that the Japanese encephalitis virus (JEV) NS1 protein concentrates ER membranes in the perinuclear region, which provides a substantial membrane source for viral replication. Subsequently, the virus forms main replication organelles within this membrane-concentrated area to facilitate efficient replication. This process relies on the ER localization signal, glycosylation, dimerization, and membrane-binding sites of the NS1 protein. In conclusion, our study highlights the role of the NS1 protein in the formation of the ROs by JEV, providing new insights into orthoflavivirus replication.IMPORTANCEOrthoflaviviruses use the endoplasmic reticulum (ER) membranes for replication by forming invaginations to assemble the replication organelles. Here, we found that Japanese encephalitis virus (JEV) utilizes the NS1 protein to concentrate a significant number of ER membranes in the perinuclear area, thereby providing a membrane source for viral replication and facilitating the formation of main replication organelles (MROs). This process depends on the ER localization signals of NS1, as well as its glycosylation, dimerization, and membrane-binding sites, but not on the cytoskeleton. In summary, our study highlights how NS1 remodels ER membranes to facilitate the formation of MROs for JEV, thereby accelerating viral replication.
Collapse
Affiliation(s)
- Shengda Xie
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xinxin Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qing Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Miaolei Shi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xingmiao Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ziyu Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ruibing Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Moore KT, Mangan MJ, Linnegar B, Athni TS, McCallum HI, Trewin BJ, Skinner E. Australian vertebrate hosts of Japanese encephalitis virus: a review of the evidence. Trans R Soc Trop Med Hyg 2025; 119:189-202. [PMID: 39451055 PMCID: PMC11887621 DOI: 10.1093/trstmh/trae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/04/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024] Open
Abstract
Japanese encephalitis virus (JEV) transmission in temperate Australia has underscored a critical need to characterise transmission pathways and identify probable hosts of the virus. This systematic review consolidates existing research on the vertebrate hosts of JEV that are known to exist in Australia. Specifically, we aim to identify probable species involved in JEV transmission, their potential role as hosts and identify critical knowledge gaps. Data were extracted from studies involving experimental infection, seroprevalence and virus isolation and were available for 22 vertebrate species known to reside in Australia. A host competence score was calculated to assess the ability of each species to generate and sustain a viraemia. Based on the host competence score and ecology of each species, we find that ardeid birds, feral pigs and flying foxes have potential as maintenance hosts for JEV in the Australian context. We also note that domestic pigs are frequently infected during outbreaks, but their role as amplification hosts in Australia is unclear. Evidence to confirm these roles is sparse, emphasising the need for further targeted research. This review provides a foundation for future investigations into JEV transmission in Australia, advocating for enhanced surveillance and standardised research methodologies to better understand and mitigate the virus's impact.
Collapse
Affiliation(s)
- Kevin T Moore
- Centre for Planetary Health and Food Security, Griffith University, Gold Coast, QLD 4222, Australia
| | - Madelyn J Mangan
- Centre for Planetary Health and Food Security, Griffith University, Gold Coast, QLD 4222, Australia
| | - Belinda Linnegar
- Centre for Planetary Health and Food Security, Griffith University, Gold Coast, QLD 4222, Australia
| | - Tejas S Athni
- Harvard Medical School, Boston, MA 02115, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Hamish I McCallum
- Centre for Planetary Health and Food Security, Griffith University, Gold Coast, QLD 4222, Australia
| | | | - Eloise Skinner
- Centre for Planetary Health and Food Security, Griffith University, Gold Coast, QLD 4222, Australia
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Rajkhowa S, Sonowal J, Pegu SR, Deb R, Gupta VK. Epidemiology and Emerging Trends of Zoonotic Viral Diseases of Pigs in India. Viruses 2025; 17:381. [PMID: 40143309 PMCID: PMC11945754 DOI: 10.3390/v17030381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/22/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Pigs serve as critical reservoirs and amplifiers for numerous zoonotic viral diseases, presenting substantial public health challenges in India. This study highlights the epidemiology and emerging trends of key zoonotic viruses associated with pigs, emphasizing their role in endemic and emerging disease dynamics. Japanese encephalitis virus (JEV) persists as a major concern, with pigs acting as amplifying host, while hepatitis E virus (HEV) remains a prominent cause of viral hepatitis, transmitted via contaminated water and pork products. Emerging high-fatality viral zoonoses caused by Nipah virus (NiV) and recurrent threats from swine influenza virus (SIV) demonstrate that the zoonotic landscape is evolving. Furthermore, zoonotic viruses like rotavirus, pseudorabies (ADV or SuHV-1), porcine astrovirus (PAstV), and Torque teno sus virus (TTSuV) reflect the expanding diversity of pig-associated pathogens in India. Emerging evidence also implicates viruses such as Chandipura virus (CHPV) in localized outbreaks, indicating broader zoonotic potential. Novel risks such as swine acute diarrhea syndrome coronavirus (SADS-CoV) and SARS-CoV-2 emphasize the role of pigs as potential intermediaries for pandemic-prone viruses. This comprehensive study evaluates the prevalence, outbreak dynamics, and public health implications of zoonotic viral diseases of pigs in India, providing valuable direction for developing effective control measures.
Collapse
Affiliation(s)
- Swaraj Rajkhowa
- ICAR-National Research Centre on Pig, Rani, Guwahati 781131, India; (S.R.P.); (R.D.); (V.K.G.)
| | - Joyshikh Sonowal
- Krishi Vigyan Kendra, Assam Agricultural University, Sribhumi 788712, India
| | - Seema Rani Pegu
- ICAR-National Research Centre on Pig, Rani, Guwahati 781131, India; (S.R.P.); (R.D.); (V.K.G.)
| | - Rajib Deb
- ICAR-National Research Centre on Pig, Rani, Guwahati 781131, India; (S.R.P.); (R.D.); (V.K.G.)
| | - Vivek Kumar Gupta
- ICAR-National Research Centre on Pig, Rani, Guwahati 781131, India; (S.R.P.); (R.D.); (V.K.G.)
| |
Collapse
|
5
|
Zhang H, Zhang Y, Li D, Zheng J, Zhang J, Li Z, Liu K, Li B, Shao D, Qiu Y, Ma Z, Wei J, Liu J. Partial protective efficacy of the current licensed Japanese encephalitis live vaccine against the emerging genotype I Japanese encephalitis virus isolated from sheep. Front Immunol 2025; 16:1513261. [PMID: 40018033 PMCID: PMC11865068 DOI: 10.3389/fimmu.2025.1513261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/29/2025] [Indexed: 03/01/2025] Open
Abstract
Introduction Vaccination remains the most effective strategy for preventing and controlling Japanese encephalitis (JE). The Japanese encephalitis virus (JEV) seroconversion has been documented in sheep and goats across various countries, with occasional fatal cases occurring among sheep on farms in China. Despite the widespread use of attenuated live vaccines, the efficacy of these vaccines in protecting sheep against JE remains uncertain. This study aimed to assess the protective efficacy of currently available attenuated vaccines against genotype I (GI) JEV strains isolated from sheep using a mouse challenge model. Methods In this study, vaccination-challenge experiments were conducted using a mouse challenge model to assess the efficacy of attenuated vaccines. The specific vaccines tested were the SA14-14-2 (GI) and SD12-F120 (GI) attenuated live vaccines. The neutralizing antibodies generated by these vaccines were titrated to evaluate their levels of protection. Mice were immunized with high, medium, or low doses of the vaccines and then challenged with either homologous or heterologous JEV strains. The challenge strains included the SH2201 (GI) and N28 (GIII) strains. Viremia levels and the development of encephalitis lesions were monitored as indicators of protection. Results The neutralizing antibody titers against the sheep-derived SH2201 (GI) strain were significantly lower in mice immunized with the SA14-14-2 (GIII) vaccine compared to those receiving the SD12-F120 (GI) vaccine. Immunization with high and medium doses of SA14-14-2 (GIII) vaccine provided complete protection against challenge with the homologous N28 (GIII) strain but only partial protection against the heterologous SH2201 (GI) strain. Mice immunized with medium and low doses of SA14-14-2 (GIII) vaccine showed varying levels of viremia and developed characteristic encephalitis lesions after being challenged with the heterologous SH2201 (GI) strain. Conversely, mice immunized with high and medium doses of the SD12-F120 (GI) vaccine exhibited 100% protection against the challenge with the homologous SH2201 (GI) strain. Discussion The results of this study suggest that while the SA14-14-2 (GIII) attenuated live vaccine offers partial protection against sheep-derived GI strains, it is not fully effective against heterologous strains like SH2201 (GI). This highlights a significant gap in the ability of the current vaccines to protect across different JEV genotypes and host species. In contrast, the SD12-F120 (GI) vaccine demonstrated stronger protection against the homologous SH2201 (GI) strain. These findings indicate a pressing need for the development of new vaccination strategies that can provide broader and more effective protection against JE, particularly in diverse host species and against a wide range of JEV genotypes.
Collapse
MESH Headings
- Animals
- Encephalitis Virus, Japanese/immunology
- Encephalitis Virus, Japanese/genetics
- Japanese Encephalitis Vaccines/immunology
- Japanese Encephalitis Vaccines/administration & dosage
- Encephalitis, Japanese/prevention & control
- Encephalitis, Japanese/immunology
- Encephalitis, Japanese/virology
- Encephalitis, Japanese/veterinary
- Mice
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/administration & dosage
- Sheep/virology
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Genotype
- Female
- Disease Models, Animal
- Vaccination
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Hailong Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yan Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Dan Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jiayang Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Junjie Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zongjie Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| |
Collapse
|
6
|
Song BH, Yun SI, Goldhardt JL, Kim J, Lee YM. Key virulence factors responsible for differences in pathogenicity between clinically proven live-attenuated Japanese encephalitis vaccine SA14-14-2 and its pre-attenuated highly virulent parent SA14. PLoS Pathog 2025; 21:e1012844. [PMID: 39775684 PMCID: PMC11741592 DOI: 10.1371/journal.ppat.1012844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/17/2025] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Japanese encephalitis virus (JEV), a neuroinvasive and neurovirulent orthoflavivirus, can be prevented in humans with the SA14-14-2 vaccine, a live-attenuated version derived from the wild-type SA14 strain. To determine the viral factors responsible for the differences in pathogenicity between SA14 and SA14-14-2, we initially established a reverse genetics system that includes a pair of full-length infectious cDNAs for both strains. Using this cDNA pair, we then systematically exchanged genomic regions between SA14 and SA14-14-2 to generate 20 chimeric viruses and evaluated their replication capability in cell culture and their pathogenic potential in mice. Our findings revealed the following: (i) The single envelope (E) protein of SA14-14-2, which contains nine mutations (eight in the ectodomain and one in the stem region), is both necessary and sufficient to render SA14 non-neuroinvasive and non-neurovirulent. (ii) Conversely, the E protein of SA14 alone is necessary for SA14-14-2 to become highly neurovirulent, but it is not sufficient to make it highly neuroinvasive. (iii) The limited neuroinvasiveness of an SA14-14-2 derivative that contains the E gene of SA14 significantly increases (approaching that of the wild-type strain) when two viral nonstructural proteins are replaced by their counterparts from SA14: (a) NS1/1', which has four mutations on the external surface of the core β-ladder domain; and (b) NS2A, which has two mutations in the N-terminal region, including two non-transmembrane α-helices. In line with their roles in viral pathogenicity, the E, NS1/1', and NS2A genes all contribute to the enhanced spread of the virus in cell culture. Collectively, our data reveal for the first time that the E protein of JEV has a dual function: It is the master regulator of viral neurovirulence and also the primary initiator of viral neuroinvasion. After the initial E-mediated neuroinvasion, the NS1/1' and NS2A proteins act as secondary promoters, further amplifying viral neuroinvasiveness.
Collapse
Affiliation(s)
- Byung-Hak Song
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Joseph L. Goldhardt
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Jiyoun Kim
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| |
Collapse
|
7
|
Wang G, Zhong L, Wang M, Zhou J, Liu S, Miao W, Li L, Liu Y, Guo S, Li H, Wang X, Xie L, Xie M, Fu S, Xuan T, Li F, Yang T, Shao L, Shi M, Li X, Li X, Gao L, Zhai S, Ding J, Wang T, Liu D, Ma G, Wu J, Wan D, Guo J, Zhang X, Wu J, Wang Y, Jin A, Ma L, Yang H, He X, Ma X, Liu H, Ma B, Yang N, Hou X, Xu T, Qin CF, Wang H, Xie P, Wang Z. Peripheral nerve injury associated with JEV infection in high endemic regions, 2016-2020: a multicenter retrospective study in China. Emerg Microbes Infect 2024; 13:2337677. [PMID: 38578315 PMCID: PMC11036900 DOI: 10.1080/22221751.2024.2337677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/17/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Previously, we reported a cohort of Japanese encephalitis (JE) patients with Guillain-Barré syndrome. However, the evidence linking Japanese encephalitis virus (JEV) infection and peripheral nerve injury (PNI) remains limited, especially the epidemiology, clinical presentation, diagnosis, treatment, and outcome significantly differ from traditional JE. We performed a retrospective and multicenter study of 1626 patients with JE recorded in the surveillance system of the Chinese Center for Disease Control and Prevention, spanning the years 2016-2020. Cases were classified into type 1 and type 2 JE based on whether the JE was combined with PNI or not. A comparative analysis was conducted on demographic characteristics, clinical manifestations, imaging findings, electromyography data, laboratory results, and treatment outcomes. Among 1626 laboratory confirmed JE patients, 230 (14%) were type 2 mainly located along the Yellow River in northwest China. In addition to fever, headache, and disturbance of consciousness, type 2 patients experienced acute flaccid paralysis of the limbs, as well as severe respiratory muscle paralysis. These patients presented a greater mean length of stay in hospital (children, 22 years [range, 1-34]; adults, 25 years [range, 0-183]) and intensive care unit (children, 16 years [range, 1-30]; adults, 17 years [range, 0-102]). The mortality rate was higher in type 2 patients (36/230 [16%]) compared to type 1 (67/1396 [5%]). The clinical classification of the diagnosis of JE may play a crucial role in developing a rational treatment strategy, thereby mitigating the severity of the disease and potentially reducing disability and mortality rates among patients.
Collapse
Affiliation(s)
- Guowei Wang
- The First Clinical Medical School, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Lianmei Zhong
- Xuanwu Hospital Capital Medical University, Beijing, People’s Republic of China
| | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, People’s Republic of China
| | - Juan Zhou
- Guangzhou Women and Children’s Medical Center, Guangzhou, People’s Republic of China
| | - Shuting Liu
- Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Wang Miao
- Neuro-Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Leilei Li
- West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Yonghong Liu
- Department of Neurology, Xijing Hospital, The Air Force Medical University, Xi’an, People’s Republic of China
| | - Shougang Guo
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Haining Li
- Neurology Center, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Xiaoming Wang
- The Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China
| | - Liuqing Xie
- Meishan People’s Hospital, Meishan, People’s Republic of China
| | - Min Xie
- Chengdu Seventh People’s Hospital, Chengdu, People’s Republic of China
| | - Shihong Fu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Tingting Xuan
- The First Clinical Medical School, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Fan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Tingting Yang
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
- Diagnosis and Treatment Engineering Technology Research Center of Nervous System Diseases of Ningxia, Yinchuan, People’s Republic of China
| | - Lufei Shao
- Neurology Center, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Mingfang Shi
- Department of Pediatrics, Yibin Hospital, Children's Hospital of Chongqing Medical University, Yibin, People’s Republic of China
| | - Xiaocong Li
- The First Clinical Medical School, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Xiaoling Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, People’s Republic of China
| | - Li Gao
- Baoji Central Hospital, Baoji, People’s Republic of China
| | - Shaopeng Zhai
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, People’s Republic of China
| | - Jia Ding
- The First People’s Hospital of Tianshui, Tianshui, People’s Republic of China
| | - Tianhong Wang
- The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Dayong Liu
- The Affiliated Hospital of Gansu Medical College, Pingliang, People’s Republic of China
| | - Guosheng Ma
- Gansu Provincial People’s Hospital, Lanzhou, People’s Republic of China
| | - Jiang Wu
- The First People’s Hospital of Longnan, Longnan, People’s Republic of China
| | - Dongjun Wan
- The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou, People’s Republic of China
| | - Junlin Guo
- Qingyang People's Hospital, Qingyang, People’s Republic of China
| | - Xinbo Zhang
- Department of Neurology, Xijing Hospital, The Air Force Medical University, Xi’an, People’s Republic of China
| | - Jinxia Wu
- Department of Pediatrics, Yibin Hospital, Children's Hospital of Chongqing Medical University, Yibin, People’s Republic of China
| | - Yinxu Wang
- The Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China
| | - Ansong Jin
- The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Lei Ma
- Emergency Center, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Huan Yang
- Emergency Center, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Xuexian He
- Cerebrospinal Fluid Laboratory, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Xiaona Ma
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
- Diagnosis and Treatment Engineering Technology Research Center of Nervous System Diseases of Ningxia, Yinchuan, People’s Republic of China
| | - Huijuan Liu
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Boya Ma
- Neurology Center, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Ningai Yang
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
- Diagnosis and Treatment Engineering Technology Research Center of Nervous System Diseases of Ningxia, Yinchuan, People’s Republic of China
| | - Xiaolin Hou
- Neurology Center, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Ting Xu
- General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Cheng-feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Huanyu Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing, People’s Republic of China
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zhenhai Wang
- Neurology Center, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
- Diagnosis and Treatment Engineering Technology Research Center of Nervous System Diseases of Ningxia, Yinchuan, People’s Republic of China
| |
Collapse
|
8
|
Liu MDE, Li QH, Liu T, Xu XY, Ge J, Shen TY, Wang YBO, Zhao XF, Zeng XP, Zhang Y, Tong Y. Spatiotemporal distribution, environmental correlation and health risk analysis of Culex tritaeniorhynchus (Diptera: Culicidae) in Beijing, China. Heliyon 2024; 10:e39948. [PMID: 39553560 PMCID: PMC11564016 DOI: 10.1016/j.heliyon.2024.e39948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024] Open
Abstract
The Culex tritaeniorhynchus Giles, 1901 (Diptera: Culicidae) is major vector of Japanese encephalitis (JE) in China, and this study aimed to uncover the vector's spatiotemporal distribution and environmental correlation in Beijing. In study area, the Remote Sensing (RS), Global Position System (GPS), and Geographic Information System (GPS) were used to clarify the distribution characteristics of vector on spatial and temporal scales, and regressions analysis of cross-sectional study was performed to detect the environmental factors linked with the density and presence of Cx. tritaeniorhynchus. In study area, the scenic area was the major environmental area for breeding of the vector, August was the primary peak month, the new urban development area (NUDA) was major distribution subarea of Beijing, and the vector could be detected throughout the subarea of Beijing from June to September. In the scenic area, the total value of light index within buffer zones of 100 m (LT_100) and the total value of NDVI index within buffer zones of 800 m (NDVI_800) determined whether there was a positive or negative vector in the trapping sites, and the total value of NDVI index within buffer zones of 100 m (NDVI_100) and LT_100 was linked to the density of the vector. Our findings provide better insight into the spatio-temporal distribution pattern, associated environmental risk factors, and health risk of vector in Beijing. Based on the results here, we could predict the risk of JE and create and implement location-specific JE prevention and control measures to prevent future risks during the urbanization advancement of Beijing.
Collapse
Affiliation(s)
- Mei-DE. Liu
- Beijing Municipal Center for Disease Prevention and Control, Beijing, 100013, China
| | - Qiu-Hong Li
- Beijing Municipal Center for Disease Prevention and Control, Beijing, 100013, China
| | - Ting Liu
- Beijing Municipal Center for Disease Prevention and Control, Beijing, 100013, China
| | - Xiu-Yan Xu
- Beijing Municipal Center for Disease Prevention and Control, Beijing, 100013, China
| | - Junqi Ge
- Chaoyang District Center for Disease Control and Prevention, Beijing, 100021, China
| | - Tong-Yan Shen
- Xicheng District Center for Disease Control and Prevention, Beijing, 100020, China
| | - Yun-BO. Wang
- Dongcheng District Center for Disease Control and Prevention, Beijing, 100009, China
| | - Xian-Feng Zhao
- Tongzhou District Center for Disease Control and Prevention, Beijing, 101100, China
| | - Xiao-Peng Zeng
- Beijing Municipal Center for Disease Prevention and Control, Beijing, 100013, China
| | - Yong Zhang
- Beijing Municipal Center for Disease Prevention and Control, Beijing, 100013, China
| | - Ying Tong
- Beijing Municipal Center for Disease Prevention and Control, Beijing, 100013, China
| |
Collapse
|
9
|
Yang K, Li X, Yang S, Zheng Y, Cao S, Yan Q, Huang X, Wen Y, Zhao Q, Du S, Lang Y, Zhao S, Wu R. Japanese encephalitis virus infection induces mitochondrial-mediated apoptosis through the proapoptotic protein BAX. Front Microbiol 2024; 15:1485667. [PMID: 39529669 PMCID: PMC11550975 DOI: 10.3389/fmicb.2024.1485667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024] Open
Abstract
The Japanese encephalitis virus (JEV), a zoonotic flavivirus, is Asia's primary cause of viral encephalitis. JEV induces apoptosis in a variety of cells; however, the precise mechanisms underlying this apoptosis resulting from JEV infection remain to be elucidated. Our previous studies showed that the proapoptosis gene BAX may have a role in JEV proliferation. In this study, we constructed a PK-15 cell line (BAX.KO) with a knockout of the BAX gene using CRISPR/Cas9. The knockout of the BAX gene effectively inhibited the proliferation of JEV, resulting in a 39.9% decrease in viral protein levels, while BAX overexpression produced the opposite effect. We confirmed that JEV induces apoptosis of PK-15 using 4',6-diamidino-2-phenylindole (DAPI) staining and Annexin V-FITC/PI staining. Furthermore, we found that the phosphorylation of P53 and the expression levels of BAX, NOXA, PUMA, and cleaved-caspase-3/9 were significantly upregulated after JEV infection. Moreover, we found that JEV infection not only caused mitochondrial damage, the release of mitochondrial cytochrome C (Cyt C), and the downregulation of the apoptosis-inhibiting protein BCL-2 but also reduced the mitochondrial membrane potential (MOMP) and the accumulation of intracellular reactive oxygen species (ROS). These factors collectively encourage the activation of the mitochondrial apoptosis pathway. In contrast, BAX gene knockout significantly reduces the apoptotic changes caused by JEV infection. Treatment with the caspase3 inhibitor attenuated JEV-induced viral proliferation and release, leading to a decrease in viral protein levels of 46% in PK-15 cells and 30% in BAX.KO cells. In conclusion, this study clarified the molecular mechanisms of JEV-induced apoptosis and provided a theoretical basis for revealing the pathogenic mechanisms of JEV infection.
Collapse
Affiliation(s)
- Ke Yang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinran Li
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shuqing Yang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yi Zheng
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sanjie Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qin Zhao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Senyan Du
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yifei Lang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shan Zhao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Wu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experiment Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
| |
Collapse
|
10
|
Levesque ZA, Walsh MG, Webb CE, Zadoks RN, Brookes VJ. A scoping review of evidence of naturally occurring Japanese encephalitis infection in vertebrate animals other than humans, ardeid birds and pigs. PLoS Negl Trop Dis 2024; 18:e0012510. [PMID: 39365832 PMCID: PMC11482687 DOI: 10.1371/journal.pntd.0012510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/16/2024] [Accepted: 09/04/2024] [Indexed: 10/06/2024] Open
Abstract
Japanese encephalitis virus (JEV) is the leading cause of human encephalitis in Asia. JEV is a vector-borne disease, mainly transmitted by Culex mosquitoes, with Ardeidae birds as maintenance hosts and pigs as amplifying hosts. Other vertebrate animal hosts have been suggested to play a role in the epidemiology of JEV. This scoping review followed PRISMA guidelines to identify species in which evidence of naturally occurring JEV infection was detected in vertebrates other than ardeid birds, pigs and people. Following systematic searches, 4372 records were screened, and data were extracted from 62 eligible studies. Direct evidence (virus, viral antigen or viral RNA) of JEV infection was identified in a variety of mammals and birds (not always identified to the species level), including bats, passerine birds (family Turdidae), livestock (cattle [Bos taurus] and a goat [Capra hircus]), carnivores (two meerkats [Suricata suricatta]), and one horse (Equus caballus). Bat families included Pteropodidae, Vespertilionidae, Rhinolophidae, Miniopteridae, Hipposideridae. Indirect evidence (antibodies) was identified in several mammalian and avian orders, as well as reported in two reptile species. However, a major limitation of the evidence of JEV infection identified in this review was diagnostic test accuracy, particularly for serological testing. Studies generally did not report diagnostic sensitivity or specificity which is critical given the potential for cross-reactivity in orthoflavivirus detection. We hypothesise that bats and passerine birds could play an underappreciated role in JEV epidemiology; however, development of diagnostic tests to differentiate JEV from other orthoflaviviruses will be essential for effective surveillance in these, as well as the companion and livestock species that could be used to evaluate JEV control measures in currently endemic regions.
Collapse
Affiliation(s)
- Zoë A. Levesque
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
| | - Michael G. Walsh
- Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- One Health Centre, The Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
- The Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Cameron E. Webb
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Department of Medical Entomology, NSW Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Ruth N. Zadoks
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| | - Victoria J. Brookes
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
11
|
Panda D, Pandit RS, Sahu B, Kamaraju R, Barik TK. Understanding Mosquito Faunal Diversity: An Approach to Assess the Burden of Vector-Borne Diseases in Three Representative Topographies (Rural, Urban, and Peri-Urban) of Ganjam District in Odisha State, India. J Trop Med 2024; 2024:9701356. [PMID: 39372239 PMCID: PMC11455597 DOI: 10.1155/2024/9701356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Mosquitoes are the best-known disease vectors for most vector-borne diseases that significantly impact global health in terms of morbidity and mortality. In a geographical area, mosquito faunal diversity often alters with changing climatic factors and variable breeding habitats that differ across seasons. Using biodiversity indicators as tools, a study was conducted in rural, peri-urban, and urban areas of district Ganjam, Odisha state, to determine mosquito faunal diversity as an approach to forecast the possible risk of disease transmission in the three representative topographies. A two-year study was undertaken to assess the alpha diversity of mosquito species by the numerical strength of the species using various eco-diversity indices. Species richness and abundance of mosquito species are significantly higher in peri-urban areas compared to urban and rural areas. The species dominance of Culex quinquefasciatus was observed in all three topographies, while Aedes aegypti, Aedes albopictus, and Anopheles stephensi were in urban areas. Species richness may dilute the risk of disease in an area, but increased species dominance, mostly vector species, in a new habitat often allows pathogens to infect newer communities at risk, leading to the emergence of new diseases. The current study indicates the possible risk of lymphatic filariasis (LF) infection in all three topographies. On the other hand, the risk of malaria and dengue/chikungunya transmission is higher in urban areas. With routine entomological monitoring, including vector incrimination, the biodiversity indicators will be the best tool to forecast the risk of vector-borne diseases in an area; accordingly, judicious vector control strategies can be adopted.
Collapse
Affiliation(s)
- Deepika Panda
- Department of ZoologyBerhampur University, Bhanja Bihar 760007, Odisha, India
| | - Rabi Sankar Pandit
- Integrated Disease Surveillance Programme (IDSP)State Surveillance Unit, Bhubaneswar, Odisha 751001, India
| | - Bijayalaxmi Sahu
- Department of ZoologyBerhampur University, Bhanja Bihar 760007, Odisha, India
| | - Raghavendra Kamaraju
- ICMR-National Institute of Malaria Research, Sector–8, Dwarka, New Delhi 110077, India
| | - Tapan Kumar Barik
- Department of ZoologyBerhampur University, Bhanja Bihar 760007, Odisha, India
| |
Collapse
|
12
|
Krambrich J, Nguyen-Tien T, Pham-Thanh L, Dang-Xuan S, Andersson E, Höller P, Vu DT, Tran SH, Vu LT, Akaberi D, Ling J, Pettersson JHO, Hesson JC, Lindahl JF, Lundkvist Å. Study on the temporal and spatial distribution of Culex mosquitoes in Hanoi, Vietnam. Sci Rep 2024; 14:16573. [PMID: 39020003 PMCID: PMC11255287 DOI: 10.1038/s41598-024-67438-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024] Open
Abstract
Arboviruses transmitted by mosquitoes, including Japanese encephalitis virus (JEV), present a substantial global health threat. JEV is transmitted by mosquitoes in the genus Culex, which are common in both urban and rural areas in Vietnam. In 2020, we conducted a 1-year survey of Culex mosquito abundance in urban, suburban, and peri-urban areas of Hanoi using CDC-light traps. Mosquitoes were identified to species and sorted into pools based on species, sex, and trap location. The mosquito pools were also investigated by RT-qPCR for detection of JEV. In total, 4829 mosquitoes were collected over a total of 455 trap-nights, across 13 months. Collected mosquitoes included Culex, Aedes, Anopheles, and Mansonia species. Culex mosquitoes, primarily Cx. quinquefasciatus, predominated, especially in peri-urban areas. Most Culex mosquitoes were caught in the early months of the year. The distribution and abundance of mosquitoes exhibited variations across urban, suburban, and peri-urban sites, emphasizing the influence of environmental factors such as degree of urbanization, temperature and humidity on Culex abundance. No JEV was detected in the mosquito pools. This study establishes baseline knowledge of Culex abundance and temporal variation, which is crucial for understanding the potential for JEV transmission in Hanoi.
Collapse
Affiliation(s)
- Janina Krambrich
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center (ZSC), Uppsala University, Uppsala, Sweden.
| | - Thang Nguyen-Tien
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center (ZSC), Uppsala University, Uppsala, Sweden
- International Livestock Research Institute, Hanoi, Vietnam
| | - Long Pham-Thanh
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center (ZSC), Uppsala University, Uppsala, Sweden
- International Livestock Research Institute, Hanoi, Vietnam
- Department of Animal Health, Ministry of Agriculture and Rural Development (MARD), Hanoi, Vietnam
| | - Sinh Dang-Xuan
- International Livestock Research Institute, Hanoi, Vietnam
| | - Ella Andersson
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center (ZSC), Uppsala University, Uppsala, Sweden
| | - Patrick Höller
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center (ZSC), Uppsala University, Uppsala, Sweden
| | - Duoc Trong Vu
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Son Hai Tran
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Lieu Thi Vu
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Dario Akaberi
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center (ZSC), Uppsala University, Uppsala, Sweden
| | - Jiaxin Ling
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center (ZSC), Uppsala University, Uppsala, Sweden
| | - John H-O Pettersson
- Clinical Microbiology, Department of Medical Sciences, University of Uppsala, Uppsala, Sweden
- Clinical Microbiology and Hospital Hygiene, Uppsala University Hospital, Uppsala, Sweden
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Jenny C Hesson
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center (ZSC), Uppsala University, Uppsala, Sweden
- Biologisk Myggkontroll, Nedre Dalälvens Utvecklings AB, Gysinge, Sweden
| | - Johanna F Lindahl
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center (ZSC), Uppsala University, Uppsala, Sweden
- International Livestock Research Institute, Hanoi, Vietnam
- Department of Animal Health and Antibiotic Strategies, Swedish Veterinary Agency, Uppsala, Sweden
| | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center (ZSC), Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Viennet E, Frentiu FD, McKenna E, Torres Vasconcelos F, Flower RLP, Faddy HM. Arbovirus Transmission in Australia from 2002 to 2017. BIOLOGY 2024; 13:524. [PMID: 39056717 PMCID: PMC11273437 DOI: 10.3390/biology13070524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Arboviruses pose a significant global public health threat, with Ross River virus (RRV), Barmah Forest virus (BFV), and dengue virus (DENV) being among the most common and clinically significant in Australia. Some arboviruses, including those prevalent in Australia, have been reported to cause transfusion-transmitted infections. This study examined the spatiotemporal variation of these arboviruses and their potential impact on blood donation numbers across Australia. Using data from the Australian Department of Health on eight arboviruses from 2002 to 2017, we retrospectively assessed the distribution and clustering of incidence rates in space and time using Geographic Information System mapping and space-time scan statistics. Regression models were used to investigate how weather variables, their lag months, space, and time affect case and blood donation counts. The predictors' importance varied with the spatial scale of analysis. Key predictors were average rainfall, minimum temperature, daily temperature variation, and relative humidity. Blood donation number was significantly associated with the incidence rate of all viruses and its interaction with local transmission of DENV, overall. This study, the first to cover eight clinically relevant arboviruses at a fine geographical level in Australia, identifies regions at risk for transmission and provides valuable insights for public health intervention.
Collapse
Affiliation(s)
- Elvina Viennet
- Research and Development, Strategy and Growth, Australian Red Cross Lifeblood, Kelvin Grove, QLD 4059, Australia; (E.M.); (F.T.V.); (R.L.P.F.); (H.M.F.)
- School of Biomedical Sciences, Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, QLD 4001, Australia;
| | - Francesca D. Frentiu
- School of Biomedical Sciences, Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, QLD 4001, Australia;
| | - Emilie McKenna
- Research and Development, Strategy and Growth, Australian Red Cross Lifeblood, Kelvin Grove, QLD 4059, Australia; (E.M.); (F.T.V.); (R.L.P.F.); (H.M.F.)
- School of Biomedical Sciences, Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, QLD 4001, Australia;
| | - Flavia Torres Vasconcelos
- Research and Development, Strategy and Growth, Australian Red Cross Lifeblood, Kelvin Grove, QLD 4059, Australia; (E.M.); (F.T.V.); (R.L.P.F.); (H.M.F.)
- School of Health, University of the Sunshine Coast, Petrie, QLD 4052, Australia
| | - Robert L. P. Flower
- Research and Development, Strategy and Growth, Australian Red Cross Lifeblood, Kelvin Grove, QLD 4059, Australia; (E.M.); (F.T.V.); (R.L.P.F.); (H.M.F.)
- School of Biomedical Sciences, Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, QLD 4001, Australia;
| | - Helen M. Faddy
- Research and Development, Strategy and Growth, Australian Red Cross Lifeblood, Kelvin Grove, QLD 4059, Australia; (E.M.); (F.T.V.); (R.L.P.F.); (H.M.F.)
- School of Health, University of the Sunshine Coast, Petrie, QLD 4052, Australia
| |
Collapse
|
14
|
Kim S, Kim MS, Nowakowska A, Choi H, Bang HW, Kim YB, Lee HJ. Generation of rescued Japanese encephalitis virus genotype 1 from infectious full-size clone using reverse genetics. Heliyon 2024; 10:e33142. [PMID: 39040327 PMCID: PMC11261045 DOI: 10.1016/j.heliyon.2024.e33142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/24/2024] Open
Abstract
Japanese encephalitis virus (JEV) is a pathogen responsible for high mortality and morbidity rates among children with encephalitis. Since JEV genotype 1 (GI) is the most prevalent strain in South Korea these days, corresponding research and vaccine development is urgently required. Molecular genetic studies on JEV vaccines can be boosted by obtaining genetically stable full-length infectious JEV complementary DNA (cDNA) clones. Furthermore, the significance of the reverse genetics system in facilitating molecular biological analyses of JEV properties has been demonstrated. This study constructed a recombinant JEV-GI strain using a reverse genetics system based on a Korean wild-type GI isolate (K05GS). RNA extracted from JEV-GI was used to synthesize cDNA, a recombinant full-length JEV clone, pTRE-JEVGI, was generated from the DNA fragment, and the virus was rescued. We performed in vitro and in vivo experiments to analyze the rescued JEV-GI virus. The rescued JEV-GI exhibited similar characteristics to wild-type JEV. These results suggest that our reverse genetics system can generate full-length infectious clones that can be used to analyze molecular biological factors that influence viral properties and immunogenicity. Additionally, it may be useful as a heterologous gene expression vector and help develop new strains for JEV vaccines.
Collapse
Affiliation(s)
- Sehyun Kim
- Department of Bio-industrial Technologies, Konkuk University, Seoul, 05029, Republic of Korea
| | - Min Sun Kim
- Department of Biological Sciences, Kongju National University, Chungcheongnam-do, 32588, Republic of Korea
| | - Aleksandra Nowakowska
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Heejae Choi
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hee Won Bang
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Young Bong Kim
- Department of Bio-industrial Technologies, Konkuk University, Seoul, 05029, Republic of Korea
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hee-Jung Lee
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
15
|
Sun CQ, Fu YQ, Ma X, Shen JR, Hu B, Zhang Q, Wang LK, Hu R, Chen JJ. Trends in temporal and spatial changes of Japanese encephalitis in Chinese mainland, 2004-2019: A population-based surveillance study. Travel Med Infect Dis 2024; 60:102724. [PMID: 38692338 DOI: 10.1016/j.tmaid.2024.102724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/23/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Japanese encephalitis (JE) is a serious health concern in China, with approximately 80 % of global infections occurring in China. To develop effective prevention and control strategies, this study explored the epidemiological characteristics of JE in China based on spatiotemporal data, to understand the patterns and trends of JE incidence in different regions and time periods. METHOD The incidence and mortality rates of JE were extracted from the Public Health Data Center, the official website of the National Health Commission of the People's Republic of China, and the National Notifiable Infectious Disease Surveillance System from 2004 to 2019. Joinpoint regression was applied to examine the spatiotemporal patterns and annual percentage change in incidence and mortality of the JE. RESULTS From 2004 to 2019, a total of 43,569 cases of JE were diagnosed, including 2081 deaths. The annual incidence rate of JE decreased from 0.4171/100,000 in 2004 to 0.0298/100,000 in 2019, with an annual percentage change (APC) of -13.5 % (P < 0.001). The annual mortality rate of JE showed three stages of change, with inflection points in 2006 and 2014. The incidence and mortality rates of JE have declined in all provinces of China, and more cases were reported in 0-14 years of age, accounting for nearly 80 % of all patients. CONCLUSIONS The morbidity and mortality rates of JE in China are generally on a downward trend, and emphasis should be placed on strengthening disease surveillance in special areas and populations, popularizing vaccination, and increasing publicity.
Collapse
Affiliation(s)
- Chang-Qing Sun
- Department of College of Public Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China; School of Nursing and Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China.
| | - Yun-Qiang Fu
- Department of College of Public Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China.
| | - Xuan Ma
- Department of College of Public Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China
| | - Jun-Ru Shen
- Department of College of Public Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China
| | - Bo Hu
- School of Nursing and Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China
| | - Qiang Zhang
- School of Nursing and Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China
| | - Lian-Ke Wang
- School of Nursing and Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China
| | - Rui Hu
- Department of College of Public Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China
| | - Jia-Jun Chen
- Department of College of Public Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China.
| |
Collapse
|
16
|
Dhanalakshmi M, Dhanze H, Bhilegaonkar KN, Mote A, Gupta I, Agri H, Di Bari C, Singh BB. Seroprevalence of Japanese encephalitis virus in pig populations of Tamil Nadu, India: Exploring the tropical endemic link of virus. Comp Immunol Microbiol Infect Dis 2024; 110:102189. [PMID: 38718722 DOI: 10.1016/j.cimid.2024.102189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024]
Abstract
Japanese encephalitis virus (JEV) is a major cause of encephalitis in Southeast Asia. Tamil Nadu, a state located in the southern part of India, contributes substantially to the national burden of human JE cases every year. However, limited information is available on the epidemiology of JE in pig populations of Tamil Nadu. A cross-sectional study was conducted to assess JEV prevalence in pig populations of Tamil Nadu. A total of 710 pigs reared in 118 farms across 10 districts of Tamil Nadu were sampled using multistage cluster random sampling. Serum samples were analyzed for their JEV status using Immunoglobulin M (IgM) and Immunoglobulin G (IgG) Enzyme-Linked Immunosorbent Assay (ELISA). At the animal-level, the apparent JEV seroprevalence was 60.4% (95% CI: 56.8% - 64.0%) and the true seroprevalence was 50.1% (95% CI: 47.0% - 53.2%). The herd-level apparent seroprevalence was 94.1% (95% CI: 88.1% - 97.5%) and the true seroprevalence was 93.3% (95% CI: 89.5% - 96.2%). The intensity of JEV circulation was high in all the districts, with seroprevalence ranging between 43% and 100%. Pigs across all age categories were seropositive and a high overall seroprevalence of 95.2% (95% CI: 76.2% - 99.9%) was recorded in pigs older than 12 months. JEV seropositivity was recorded in all the seasons but the prevalence peaked in the monsoon (67.9%, 95% CI: 61.1% - 74.2%) followed by winter (65.1%, 95%CI: 57.4% - 72.2%) and summer (53.3%, 95% CI: 47.8% - 58.8%) seasons. The results indicate that JEV is endemic in pigs populations of the state and a one health approach is essential with collaborative actions from animal and public health authorities to control JE in Tamil Nadu, India.
Collapse
Affiliation(s)
- M Dhanalakshmi
- Division of Veterinary Public Health, ICAR - Indian Veterinary Research Institute, Uttar Pradesh, India; Veterinary College and Research Institute, Orathanadu, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Himani Dhanze
- Division of Veterinary Public Health, ICAR - Indian Veterinary Research Institute, Uttar Pradesh, India.
| | - K N Bhilegaonkar
- Division of Veterinary Public Health, ICAR - Indian Veterinary Research Institute, Uttar Pradesh, India
| | - Akash Mote
- Division of Veterinary Public Health, ICAR - Indian Veterinary Research Institute, Uttar Pradesh, India
| | - Ishita Gupta
- Division of Veterinary Public Health, ICAR - Indian Veterinary Research Institute, Uttar Pradesh, India
| | - Himani Agri
- Division of Veterinary Epidemiology, ICAR - Indian Veterinary Research Institute, Uttar Pradesh, India
| | | | - Balbir B Singh
- Centre for One Health, Guru Angad Dev Veterinary & Animal Sciences University, Punjab, India
| |
Collapse
|
17
|
Krambrich J, Akaberi D, Lindahl JF, Lundkvist Å, Hesson JC. Vector competence of Swedish Culex pipiens mosquitoes for Japanese encephalitis virus. Parasit Vectors 2024; 17:220. [PMID: 38741172 PMCID: PMC11092019 DOI: 10.1186/s13071-024-06269-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/02/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Japanese encephalitis virus (JEV) is an emerging mosquito-borne Orthoflavivirus that poses a significant public health risk in many temperate and tropical regions in Asia. Since the climate in some endemic countries is similar to temperate climates observed in Europe, understanding the role of specific mosquito species in the transmission of JEV is essential for predicting and effectively controlling the potential for the introduction and establishment of JEV in Europe. METHODS This study aimed to investigate the vector competence of colonized Culex pipiens biotype molestus mosquitoes for JEV. The mosquitoes were initially collected from the field in southern Sweden. The mosquitoes were offered a blood meal containing the Nakayama strain of JEV (genotype III), and infection rates, dissemination rates, and transmission rates were evaluated at 14, 21, and 28 days post-feeding. RESULTS The study revealed that colonized Swedish Cx. pipiens are susceptible to JEV infection, with a stable infection rate of around 10% at all timepoints. However, the virus was only detected in the legs of one mosquito at 21 days post-feeding, and no mosquito saliva contained JEV. CONCLUSIONS Overall, this research shows that Swedish Cx. pipiens can become infected with JEV, and emphasizes the importance of further understanding of the thresholds and barriers for JEV dissemination in mosquitoes.
Collapse
Affiliation(s)
- Janina Krambrich
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 75237, Uppsala, Sweden.
| | - Dario Akaberi
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 75237, Uppsala, Sweden
| | - Johanna F Lindahl
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 75237, Uppsala, Sweden
- International Livestock Research Institute, Hanoi, Vietnam
- Department of Animal Health and Antibiotic Strategies, Swedish National Veterinary Institute, Uppsala, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 75237, Uppsala, Sweden
| | - Jenny C Hesson
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 75237, Uppsala, Sweden
- Biologisk Myggkontroll, Nedre Dalälvens Utvecklings AB, Gysinge, Sweden
| |
Collapse
|
18
|
Zhang WX, Zhao S, Pan C, Zhou Y, Wang C, Rui L, Du J, Wei TT, Liu YQ, Liu M, Lu QB, Cui F. Mass immunisation to eradicate Japanese encephalitis: Real-world evidence from Guizhou Province in 2005-2021. J Virus Erad 2024; 10:100366. [PMID: 38586471 PMCID: PMC10998223 DOI: 10.1016/j.jve.2024.100366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Objectives To explore epidemiological changes of Japanese encephalitis (JE) in a long-time span and evaluate the impact of mass immunisation. Method Data on JE cases from hospitals and the county Centers for Disease Control and Prevention in Guizhou Province was collected between 2005 and 2021. Epidemiological changes were analyzed according to a series of policy implementations and the coronavirus disease 2019 (COVID-19) pandemic. Results A total of 5138 JE cases and 152 deaths were reported in Guizhou Province during 2005-2021. The average incidence and case fatality rates were 0.83/100,000 and 2.96%, respectively. The JE prevalence showed a declining trend over the years with the reduced incidence gap between age groups and narrowing of the high-epidemic regions. During the COVID-19 pandemic, the JE activity reached its nadir in 2020. The inclusion in the Expanded Program on Immunization of the JE vaccine and catch-up immunisations showed a significant impact on the JE declining incidence rate. Conclusions The implementation of JE immunisation programs has played a crucial role in controlling its spread. Continued efforts should be made to maintain high coverage of the JE vaccine and strengthen disease surveillance systems, ensuring JE effective control and eventual elimination.
Collapse
Affiliation(s)
- Wan-Xue Zhang
- Center for Infectious Disease and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Suye Zhao
- Institute for Immunization Program, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, China
| | - Chunliu Pan
- Guiyang Center for Disease Control and Prevention, Guiyang, China
| | - Yiguo Zhou
- Center for Infectious Disease and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
- Department of Health Policy and Management, School of Public Health, Peking University, Beijing, China
| | - Chao Wang
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, China
| | - Liping Rui
- Institute for Immunization Program, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, China
| | - Juan Du
- Center for Infectious Disease and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
| | - Ting-Ting Wei
- Center for Infectious Disease and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Ya-Qiong Liu
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, China
| | - Ming Liu
- Institute for Immunization Program, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, China
| | - Qing-Bin Lu
- Center for Infectious Disease and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Department of Health Policy and Management, School of Public Health, Peking University, Beijing, China
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Fuqiang Cui
- Center for Infectious Disease and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Department of Health Policy and Management, School of Public Health, Peking University, Beijing, China
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| |
Collapse
|
19
|
Khan A, Riaz R, Nadeem A, Amir A, Siddiqui T, Batool UEA, Raufi N. Japanese encephlu emergence in Australia: the potential population at risk. Ann Med Surg (Lond) 2024; 86:1540-1549. [PMID: 38463109 PMCID: PMC10923274 DOI: 10.1097/ms9.0000000000001739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/08/2024] [Indexed: 03/12/2024] Open
Abstract
Japanese encephalitis virus (JEV), an RNA virus transmitted by Culex mosquitoes, primarily cycles between aquatic birds and mosquitoes with pigs as amplifying hosts, posing a significant global encephalitis threat. The emergence and spread of the JEV in new epidemiological regions, such as recent cases in Australia and nonendemic areas like Pune, India, raise significant concerns. With an estimated 68 000 clinical cases and 13 600 to 20 400 deaths annually, JEV poses a substantial global health threat. The virus primarily affects children, with a case-fatality ratio of 20-30% and long-term neurological sequelae in survivors. The changing epidemiology, influenced by factors like bird migration, climate change, and increased urbanization, contributes to the geographic expansion of JEV. The recent outbreaks underscore the potential for the virus to establish itself in nonendemic regions, posing a threat to populations previously considered at low-risk. With limited treatment options and high rates of neurological complications, continued surveillance, traveler vaccination, and research into treatments are crucial to mitigate the impact of JEV on human health. The evolving scenario necessitates proactive measures to prevent and control the spread of the virus in both endemic and newly affected areas.
Collapse
Affiliation(s)
- Afsheen Khan
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Rumaisa Riaz
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Abdullah Nadeem
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Ayesha Amir
- Department of Surgery, Hamad Medical Corporation
| | - Tasmiyah Siddiqui
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Um e A. Batool
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Nahid Raufi
- Department of Medicine, Kabul Medical University, Afghanistan
| |
Collapse
|
20
|
Kardena IM, Adi AAAM, Astawa INM, Oka IBM, Sahibzada S, Bruce M, O’Dea M. Seroconversion, genotyping, and potential mosquito vector identification of Japanese encephalitis virus in pig sentinel settings in Bali, Indonesia. Vet World 2024; 17:89-98. [PMID: 38406355 PMCID: PMC10884589 DOI: 10.14202/vetworld.2024.89-98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/05/2023] [Indexed: 02/27/2024] Open
Abstract
Background and Aims Despite the endemicity of Japanese encephalitis virus (JEV) in humans and animals in the Province of Bali, Indonesia, there is little data on whether seroconversion to the virus occurs in pigs, JEV genotypes circulating, and it's potential mosquito vectors in the area. The aims of this study were to (i) Determine whether JEV infection in Balinese pigs occurs before reaching their sexual maturity, (ii) identify the genotypes of circulating JEV, and (iii) identify potential JEV mosquito vectors at the study sites in urban and peri-urban areas of Bali. Materials and Methods Sixteen 1-week-old Landrace piglets from two different sows were housed in Denpasar. Similarly, 18 one-week-old mixed-breed piglets of two different sows were housed in Badung Regency. The piglets were bled every 1 to 4 weeks for up to 24 weeks. Serum samples from the 11 piglets were tested for antibodies against JEV, and seroconversion-suspected sera were titrated using an enzyme-linked immunosorbent assay. Blood of seroconverted sera from pigs were tested using polymerase chain reaction (PCR) to detect the genetic sequence of JEV. The mosquitoes in the sentinels were trapped throughout the study period to identify the potential mosquito vectors of JEV. Results Antibodies were detected in most of the selected piglets' sera from weeks 1 to 24 of their age. However, sera of pig B9 collected from the sentinel setting in Badung Regency showed a four-fold increase in antibody titer from week 4 to week 8, indicating seroconversion. PCR testing of blood from B9 (pooled blood sample collected from week 5 to week 8) identified JEV nucleic acids, which were phylogenetically classified as belonging to the JEV genotype III. Meanwhile, 1271 of two genera of mosquitoes, Anopheles spp. and Culex spp. were trapped in the pig sentinels. Conclusion JEV seroconversion likely occurs before the pig reaches sexual maturity in Badung Regency. Sequence data indicate that JEV genotype III is circulating in the pig sentinel setting in the regency; however, circulating genotypes need to be clarified through increased surveillance. Meanwhile, Culex spp. and most likely Culex quinquefasciatus and Anopheles spp. were the dominant mosquitoes present in the study sites set in the urban area of Denpasar and peri-urban areas of Badung, Bali, indicating that these are likely vectors in spread of JEV in the region.
Collapse
Affiliation(s)
- I Made Kardena
- Department of Pathobiology, Faculty of Veterinary Medicine, Udayana University, Jalan PB Sudirman, Denpasar, Bali, 80234, Indonesia
- School of Veterinary Medicine and Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, 6150, Australia
| | - Anak Agung Ayu Mirah Adi
- Department of Pathobiology, Faculty of Veterinary Medicine, Udayana University, Jalan PB Sudirman, Denpasar, Bali, 80234, Indonesia
| | - I Nyoman Mantik Astawa
- Department of Pathobiology, Faculty of Veterinary Medicine, Udayana University, Jalan PB Sudirman, Denpasar, Bali, 80234, Indonesia
| | - Ida Bagus Made Oka
- Department of Pathobiology, Faculty of Veterinary Medicine, Udayana University, Jalan PB Sudirman, Denpasar, Bali, 80234, Indonesia
| | - Shafi Sahibzada
- School of Veterinary Medicine and Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, 6150, Australia
- Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organization, Geelong, VIC 3220, Australia
| | - Mieghan Bruce
- School of Veterinary Medicine and Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, 6150, Australia
| | - Mark O’Dea
- School of Veterinary Medicine and Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, 6150, Australia
| |
Collapse
|
21
|
Sistrom M, Andrews H, Edwards DL. Comparative genomics of Japanese encephalitis virus shows low rates of recombination and a small subset of codon positions under episodic diversifying selection. PLoS Negl Trop Dis 2024; 18:e0011459. [PMID: 38295106 PMCID: PMC10861042 DOI: 10.1371/journal.pntd.0011459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 02/12/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Orthoflavivirus japonicum (JEV) is the dominant cause of viral encephalitis in the Asian region with 100,000 cases and 25,000 deaths reported annually. The genome is comprised of a single polyprotein that encodes three structural and seven non-structural proteins. We collated a dataset of 349 complete genomes from a number of public databases, and analysed the data for recombination, evolutionary selection and phylogenetic structure. There are low rates of recombination in JEV, subsequently recombination is not a major evolutionary force shaping JEV. We found a strong overall signal of purifying selection in the genome, which is the main force affecting the evolutionary dynamics in JEV. There are also a small number of genomic sites under episodic diversifying selection, especially in the envelope protein and non-structural proteins 3 and 5. Overall, these results support previous analyses of JEV evolutionary genomics and provide additional insight into the evolutionary processes shaping the distribution and adaptation of this important pathogenic arbovirus.
Collapse
Affiliation(s)
- Mark Sistrom
- Department of Industry, Trade and Tourism, Berrimah Veterinary Laboratories, Darwin, Australia
- Research Institute for the Environment and Livelihoods, Faculty of Science and Technology, Charles Darwin University, Casuarina, Australia
| | - Hannah Andrews
- Department of Industry, Trade and Tourism, Berrimah Veterinary Laboratories, Darwin, Australia
| | - Danielle L. Edwards
- Research Institute for the Environment and Livelihoods, Faculty of Science and Technology, Charles Darwin University, Casuarina, Australia
- Department of Natural Sciences, Museum and Art Gallery of the Northern Territory, Darwin, Australia
| |
Collapse
|
22
|
Xia Q, Yang Y, Zhang Y, Zhou L, Ma X, Xiao C, Zhang J, Li Z, Liu K, Li B, Shao D, Qiu Y, Wei J, Ma Z. Shift in dominant genotypes of Japanese encephalitis virus and its impact on current vaccination strategies. Front Microbiol 2023; 14:1302101. [PMID: 38045034 PMCID: PMC10690641 DOI: 10.3389/fmicb.2023.1302101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023] Open
Abstract
Japanese encephalitis (JE) is a zoonotic ailment from the Japanese encephalitis virus (JEV). JEV belongs to the flavivirus genus and is categorized into a solitary serotype consisting of five genetically diverse genotypes (I, II, III, IV, and V). The JEV genotype III (GIII) was the prevailing strain responsible for multiple outbreaks in countries endemic to JEV until 1990. In recent years, significant improvements have occurred in the epidemiology of JE, encompassing the geographical expansion of the epidemic zone and the displacement of prevailing genotypes. The dominant genotype of the JEV has undergone a progressive shift from GIII to GI due to variations in its adaptability within avian populations. From 2021 to 2022, Australia encountered an epidemic of viral encephalitis resulting from infection with the GIV JEV pathogen. The current human viral encephalitis caused by GIV JEV is the initial outbreak since its initial discovery in Indonesia during the late 1970s. Furthermore, following a time frame of 50 years, the detection and isolation of GV JEV have been reported in Culex mosquitoes across China and South Korea. Evidence suggests that the prevalence of GIV and GV JEV epidemic regions may be on the rise, posing a significant threat to public safety and the sustainable growth of animal husbandry. The global approach to preventing and managing JE predominantly revolves around utilizing the GIII strain vaccine for vaccination purposes. Nevertheless, research has demonstrated that the antibodies generated by the GIII strain vaccine exhibit limited capacity to neutralize the GI and GV strains. Consequently, these antibodies cannot protect against JEV challenge caused by animal GI and GV strains. The limited cross-protective and neutralizing effects observed between various genotypes may be attributed to the low homology of the E protein with other genotypes. In addition, due to the GIV JEV outbreak in Australia, further experiments are needed to evaluate the protective efficiency of the current GIII based JE vaccine against GIV JEV. The alteration of the prevailing genotype of JEV and the subsequent enlargement of the geographical extent of the epidemic have presented novel obstacles in JE prevention and control. This paper examines the emerging features of the JE epidemic in recent years and the associated problems concerning prevention and control.
Collapse
Affiliation(s)
- Qiqi Xia
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yang Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yan Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lujia Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xiaochun Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Changguang Xiao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Junjie Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zongjie Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
23
|
Morris RS, Bingham PC. Japanese encephalitis virus: epidemiology and risk-based surveillance approaches for New Zealand. N Z Vet J 2023; 71:283-294. [PMID: 37621178 DOI: 10.1080/00480169.2023.2248054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
The introduction and subsequent rapid spread of Japanese encephalitis virus genotype IV across all Australian mainland states and the Northern Territory since late 2021 has increased the risk of an incursion of this mosquito-transmitted zoonotic virus disease into New Zealand, with serious implications for both animal and human health. The potential modes of entry are through introduction of infected mosquitoes as hitchhikers on ships or aircraft, windborne transfer of mosquitoes, or arrival of infected reservoir bird species. A competent vector mosquito, Culex quinquefasciatus, is endemic in New Zealand and other mosquito species may also become involved. If infection becomes established in New Zealand, the scale of transmission may be considerably less than has occurred in Australia because climatic and epidemiological factors are not so favourable. Early evidence of an incursion could come from detection of clinical disease in horses or pigs, or from human cases. Targeted surveillance to confirm or refute indications of an incursion could be undertaken by antibody detection in a number of species. Dogs have been shown to be a particularly valuable sentinel species due to their cohabitation with people and high seroconversion rate. Other novel methods of surveillance could include reverse transcriptase PCR (RT-PCR) on oronasal secretions of pigs. Should evidence of the disease be detected, prompt action would be required to vaccinate at-risk human populations and clarify the epidemiological situation with respect to mammalian hosts and mosquito vector species, including whether a new mosquito species had arrived in the country.Abbreviations: AHL: Animal Health Laboratory; JE: Japanese encephalitis disease; JEV: Japanese encephalitis virus; RT-PCR: Reverse transcriptase PCR.
Collapse
Affiliation(s)
- R S Morris
- MorVet Ltd., Masterton, New Zealand
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - P C Bingham
- Diagnostic and Surveillance Services Directorate, Operations Branch, Ministry for Primary Industries, Wallaceville, New Zealand
| |
Collapse
|
24
|
Okamoto S, Echigoya Y, Tago A, Segawa T, Sato Y, Itou T. Antiviral Efficacy of RNase H-Dependent Gapmer Antisense Oligonucleotides against Japanese Encephalitis Virus. Int J Mol Sci 2023; 24:14846. [PMID: 37834294 PMCID: PMC10573891 DOI: 10.3390/ijms241914846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
RNase H-dependent gapmer antisense oligonucleotides (ASOs) are a promising therapeutic approach via sequence-specific binding to and degrading target RNAs. However, the efficacy and mechanism of antiviral gapmer ASOs have remained unclear. Here, we investigated the inhibitory effects of gapmer ASOs containing locked nucleic acids (LNA gapmers) on proliferating a mosquito-borne flavivirus, Japanese encephalitis virus (JEV), with high mortality. We designed several LNA gapmers targeting the 3' untranslated region of JEV genomic RNAs. In vitro screening by plaque assay using Vero cells revealed that LNA gapmers targeting a stem-loop region effectively inhibit JEV proliferation. Cell-based and RNA cleavage assays using mismatched LNA gapmers exhibited an underlying mechanism where the inhibition of viral production results from JEV RNA degradation by LNA gapmers in a sequence- and modification-dependent manner. Encouragingly, LNA gapmers potently inhibited the proliferation of five JEV strains of predominant genotypes I and III in human neuroblastoma cells without apparent cytotoxicity. Database searching showed a low possibility of off-target binding of our LNA gapmers to human RNAs. The target viral RNA sequence conservation observed here highlighted their broad-spectrum antiviral potential against different JEV genotypes/strains. This work will facilitate the development of an antiviral LNA gapmer therapy for JEV and other flavivirus infections.
Collapse
Affiliation(s)
- Shunsuke Okamoto
- Laboratory of Preventive Veterinary Medicine and Animal Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan; (S.O.); (T.S.); (T.I.)
- Nihon University Veterinary Research Center, Fujisawa, Kanagawa 252-0880, Japan; (A.T.); (Y.S.)
| | - Yusuke Echigoya
- Nihon University Veterinary Research Center, Fujisawa, Kanagawa 252-0880, Japan; (A.T.); (Y.S.)
- Laboratory of Biomedical Science, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Ayaka Tago
- Nihon University Veterinary Research Center, Fujisawa, Kanagawa 252-0880, Japan; (A.T.); (Y.S.)
- Laboratory of Biomedical Science, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Takao Segawa
- Laboratory of Preventive Veterinary Medicine and Animal Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan; (S.O.); (T.S.); (T.I.)
- Nihon University Veterinary Research Center, Fujisawa, Kanagawa 252-0880, Japan; (A.T.); (Y.S.)
| | - Yukita Sato
- Nihon University Veterinary Research Center, Fujisawa, Kanagawa 252-0880, Japan; (A.T.); (Y.S.)
- Laboratory of Biomedical Science, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Takuya Itou
- Laboratory of Preventive Veterinary Medicine and Animal Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan; (S.O.); (T.S.); (T.I.)
- Nihon University Veterinary Research Center, Fujisawa, Kanagawa 252-0880, Japan; (A.T.); (Y.S.)
| |
Collapse
|
25
|
Manan MR, Nawaz I, Zafar F. Uncovering the mosaic of emerging infections: The threat of Japanese encephalitis virus in Pakistan. Trop Doct 2023; 53:410-411. [PMID: 37278007 DOI: 10.1177/00494755231178946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
| | - Iqra Nawaz
- Medical Student, Quaid-e-Azam Medical College, Bahawalpur, Pakistan
| | - Fatima Zafar
- Medical Student, Services Institute of Medical Sciences, Lahore, Pakistan
| |
Collapse
|
26
|
Olson MF, Brooks C, Kakazu A, Promma P, Sornjai W, Smith DR, Davis TJ. Mosquito surveillance on U.S military installations as part of a Japanese encephalitis virus detection program: 2016 to 2021. PLoS Negl Trop Dis 2023; 17:e0011422. [PMID: 37856569 PMCID: PMC10617694 DOI: 10.1371/journal.pntd.0011422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/31/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
Japanese encephalitis virus (JEV) continues to circulate throughout Southeast Asia and the Western Pacific where approximately 3 billion people in 24 countries are at risk of infection. Surveillance targeting the mosquito vectors of JEV was conducted at four military installations on Okinawa, Japan, between 2016 and 2021. Out of a total of 10,426 mosquitoes from 20 different species, zero were positive for JEV. The most abundant mosquito species collected were Aedes albopictus (36.4%) followed by Culex sitiens (24.3%) and Armigeres subalbatus (19%). Statistically significant differences in mosquito species populations according to location were observed. Changes in land use over time appear to be correlated with the species and number of mosquitoes trapped in each location. JEV appears to be absent from mosquito populations on Okinawa, but further research on domestic pigs and ardeid birds is warranted.
Collapse
Affiliation(s)
- Mark F. Olson
- United States Air Force, Pacific Air Forces, Theater Preventive Medicine Flight, Armed Forces Pacific, United States of America
| | - Caroline Brooks
- United States Air Force, Pacific Air Forces, Theater Preventive Medicine Flight, Armed Forces Pacific, United States of America
| | - Akira Kakazu
- United States Air Force, Pacific Air Forces, Theater Preventive Medicine Flight, Armed Forces Pacific, United States of America
| | - Ploenphit Promma
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Wannapa Sornjai
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Duncan R. Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Timothy J. Davis
- United States Air Force, Pacific Air Forces, Theater Preventive Medicine Flight, Armed Forces Pacific, United States of America
| |
Collapse
|
27
|
Dong N, Zhang X, Zhang H, Zheng J, Qiu Y, Li Z, Li B, Liu K, Shao D, Ma Z, Wei J. Genotype Change in Circulating JEV Strains in Fujian Province, China. Viruses 2023; 15:1822. [PMID: 37766229 PMCID: PMC10536422 DOI: 10.3390/v15091822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Japanese encephalitis (JE), found in pigs, is a serious mosquito-borne zoonotic infectious disease caused by the Japanese encephalitis virus (JEV). JEV is maintained in an enzootic cycle between mosquitoes and amplifying vertebrate hosts, mainly pigs and wading birds. It is transmitted to humans through the bite of an infected mosquito, allowing the pathogen to spread and cause disease epidemics. However, there is little research on JEV genotype variation in mosquitoes and pigs in Fujian province. Previous studies have shown that the main epidemic strain of JEV in Fujian Province is genotype III. In this study, a survey of mosquito species diversity in pig farms and molecular evolutionary analyses of JEV were conducted in Fujian, China, in the summer of 2019. A total of 19,177 mosquitoes were collected at four sites by UV trap. Four genera were identified, of which the Culex tritaeniorhynchus was the most common mosquito species, accounting for 76.4% of the total (14,651/19,177). Anopheles sinensi (19.25%, 3691/19,177) was the second largest species. High mosquito infection rateswere an important factor in the outbreak. The captured mosquito samples were milled and screened with JEV-specific primers. Five viruses were isolated, FJ1901, FJ1902, FJ1903, FJ1904, and FJ1905. Genetic affinity was determined by analyzing the envelope (E) gene variants. The results showed that they are JEV gene type I and most closely related to the strains SH-53 and SD0810. In this study, it was found through genetic evolution analysis that the main epidemic strain of JE in pig farms changed from gene type III to gene type I. Compared with the SH-53 and SD0810 strains, we found no change in key sites related to antigenic activity and neurovirulence of JEV in Fujian JEV and pig mosquito strains, respectively. The results of the study provide basic data for analyzing the genotypic shift of JEV in Fujian Province and support the prevention and control of JEV.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (N.D.); (X.Z.); (H.Z.); (J.Z.); (Y.Q.); (Z.L.); (B.L.); (K.L.); (D.S.)
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (N.D.); (X.Z.); (H.Z.); (J.Z.); (Y.Q.); (Z.L.); (B.L.); (K.L.); (D.S.)
| |
Collapse
|
28
|
Liang Z, Pan J, Xie S, Yang X, Cao R. Interaction between hTIM-1 and Envelope Protein Is Important for JEV Infection. Viruses 2023; 15:1589. [PMID: 37515282 PMCID: PMC10383738 DOI: 10.3390/v15071589] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne zoonotic virus, is one of the most important causes of human viral encephalitis. JEV relies on various attachment or entry co-factors to enter host cells. Among these co-factors, hTIM-1 has been identified as an attachment factor to promote JEV infection through interacting with phosphatidylserine (PS) on the viral envelope. However, the reasons why JEV prefers to use hTIM-1 over other PS binding receptors are unknown. Here, we demonstrated that hTIM-1 can directly interact with JEV E protein. The interaction between hTIM-1 and JEV relies on specific binding sites, respectively, ND114115 in the hTIM-1 IgV domain and K38 of the E protein. Furthermore, during the early stage of infection, hTIM-1 and JEV are co-internalized into cells and transported into early and late endosomes. Additionally, we found that the hTIM-1 soluble ectodomain protein effectively inhibits JEV infection in vitro. Moreover, hTIM-1-specific antibodies have been shown to downregulate JEV infectivity in cells. Taken together, these findings suggested that hTIM-1 protein directly interacts with JEV E protein and mediates JEV infection, in addition to the PS-TIM-1 interaction.
Collapse
Affiliation(s)
- Zhenjie Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Junhui Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengda Xie
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xingmiao Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruibing Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
29
|
Frank JC, Song BH, Lee YM. Mice as an Animal Model for Japanese Encephalitis Virus Research: Mouse Susceptibility, Infection Route, and Viral Pathogenesis. Pathogens 2023; 12:pathogens12050715. [PMID: 37242385 DOI: 10.3390/pathogens12050715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Japanese encephalitis virus (JEV), a zoonotic flavivirus, is principally transmitted by hematophagous mosquitoes, continually between susceptible animals and incidentally from those animals to humans. For almost a century since its discovery, JEV was geographically confined to the Asia-Pacific region with recurrent sizable outbreaks involving wildlife, livestock, and people. However, over the past decade, it has been detected for the first time in Europe (Italy) and Africa (Angola) but has yet to cause any recognizable outbreaks in humans. JEV infection leads to a broad spectrum of clinical outcomes, ranging from asymptomatic conditions to self-limiting febrile illnesses to life-threatening neurological complications, particularly Japanese encephalitis (JE). No clinically proven antiviral drugs are available to treat the development and progression of JE. There are, however, several live and killed vaccines that have been commercialized to prevent the infection and transmission of JEV, yet this virus remains the main cause of acute encephalitis syndrome with high morbidity and mortality among children in the endemic regions. Therefore, significant research efforts have been directed toward understanding the neuropathogenesis of JE to facilitate the development of effective treatments for the disease. Thus far, multiple laboratory animal models have been established for the study of JEV infection. In this review, we focus on mice, the most extensively used animal model for JEV research, and summarize the major findings on mouse susceptibility, infection route, and viral pathogenesis reported in the past and present, and discuss some unanswered key questions for future studies.
Collapse
Affiliation(s)
- Jordan C Frank
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | - Byung-Hak Song
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
30
|
Zhang X, Jin N, Tu A, Dong M, Shi T, Ren X, Liu S, Zhao X, Liu J, Wu Z, Li Y, Wu D, Wang H, Wang H, Hu Y, Zhang B, Wang W, Meng L. Adults in Northwest China experienced the largest outbreak of Japanese encephalitis in history 10 years after the Japanese encephalitis vaccine was included in the national immunization program: A retrospective epidemiological study. J Med Virol 2023; 95:e28782. [PMID: 37212323 DOI: 10.1002/jmv.28782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/23/2023] [Accepted: 04/28/2023] [Indexed: 05/23/2023]
Abstract
Mainland China included Japanese encephalitis (JE) vaccine in the national immunization program in 2008 to control the JE epidemic. However, Gansu province in Western China experienced the largest JE outbreak since 1958 in 2018. We conducted a retrospective epidemiological study to explore the causes of this outbreak. We found that adults aged ≥20 years (especially those in rural areas) were the main JE cases in Gansu Province, with a significant increase in the JE incidence in older adults aged ≥60 years in 2017 and 2018. In addition, JE outbreaks in Gansu Province were mainly located in the southeastern region, while the temperature and precipitation in Gansu Province were gradually increasing in recent years, which made the JE epidemic areas in Gansu Province gradually spread to the western of Gansu Province. We also found that adults aged ≥20 years in Gansu Province had lower JE antibody positivity than children and infants, and the antibody positivity rate decreased with age. In the summer of 2017 and 2018, the density of mosquitoes (mainly the Culex tritaeniorhynchus) in Gansu Province was significantly higher than in other years, and the genotype of JEV was mainly Genotype-G1. Therefore, in the future JE control in Gansu Province, we need to strengthen JE vaccination for adults. Moreover, strengthening mosquito surveillance can provide early warning of JE outbreaks and the spread of epidemic areas in Gansu Province. At the same time, strengthening JE antibody surveillance is also necessary for JE control.
Collapse
Affiliation(s)
- Xiaoshu Zhang
- Department of Immunization Program, Gansu Provincial Center for Disease Control and Prevention, Lanzhou, China
| | - Na Jin
- Department of Immunization Program, Gansu Provincial Center for Disease Control and Prevention, Lanzhou, China
| | - Aixia Tu
- Department of Immunization Program, Gansu Provincial Center for Disease Control and Prevention, Lanzhou, China
| | - Maoxing Dong
- Department of Immunization Program, Gansu Provincial Center for Disease Control and Prevention, Lanzhou, China
| | - Tianshan Shi
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaowei Ren
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, China
| | - Shuyu Liu
- Department of Immunization Program, Gansu Provincial Center for Disease Control and Prevention, Lanzhou, China
| | - Xiaohong Zhao
- Department of Immunization Program, Gansu Provincial Center for Disease Control and Prevention, Lanzhou, China
| | - Jianfeng Liu
- Department of Immunization Program, Gansu Provincial Center for Disease Control and Prevention, Lanzhou, China
| | - Zhao Wu
- Department of Immunization Program, Gansu Provincial Center for Disease Control and Prevention, Lanzhou, China
| | - Yixing Li
- Department of Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dan Wu
- Department of Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huanyu Wang
- Department of Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haijun Wang
- Department of Immunization Program, Longnan Center for Disease Control and Prevention, Longnan, China
| | - Yukun Hu
- Department of Immunization Program, Pingliang Center for Disease Control and Prevention, Pingliang, China
| | - Bin Zhang
- Department of Immunization Program, Tianshui Center for Disease Control and Prevention, Tianshui, China
| | - Wenjun Wang
- Department of Immunization Program, Qingyang Center for Disease Control and Prevention, Qingyang, China
| | - Lei Meng
- Department of Immunization Program, Gansu Provincial Center for Disease Control and Prevention, Lanzhou, China
| |
Collapse
|
31
|
Zhu Y, Chen S, Lurong Q, Qi Z. Recent Advances in Antivirals for Japanese Encephalitis Virus. Viruses 2023; 15:v15051033. [PMID: 37243122 DOI: 10.3390/v15051033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Culex mosquitoes are the primary vectors of the Japanese encephalitis virus (JEV). Since its discovery in 1935, Japanese encephalitis (JE), caused by JEV, has posed a significant threat to human health. Despite the widespread implementation of several JEV vaccines, the transmission chain of JEV in the natural ecosystem has not changed, and the vector of transmission cannot be eradicated. Therefore, JEV is still the focus of attention for flaviviruses. At present, there is no clinically specific drug for JE treatment. JEV infection is a complex interaction between the virus and the host cell, which is the focus of drug design and development. An overview of antivirals that target JEV elements and host factors is presented in this review. In addition, drugs that balance antiviral effects and host protection by regulating innate immunity, inflammation, apoptosis, or necrosis are reviewed to treat JE effectively.
Collapse
Affiliation(s)
- Yongzhe Zhu
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Shenglin Chen
- Department of Clinic Laboratory Diagnostics, General Hospital of Tibet Military Area Command of PLA, Lhasa 850007, China
| | - Qilin Lurong
- Department of Geriatrics, General Hospital of Tibet Military Area Command of PLA, Lhasa 850007, China
| | - Zhongtian Qi
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
32
|
Feifei L, Hairong L, Linsheng Y, Li W, Lijuan G, Gemei Z, Lan Z. The spatial-temporal pattern of Japanese encephalitis and its influencing factors in Guangxi, China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 111:105433. [PMID: 37037290 DOI: 10.1016/j.meegid.2023.105433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023]
Abstract
Japanese encephalitis (JE) is a major global public health threat. Using Japanese encephalitis incidence data from 2004 to 2010 in Guangxi Province, China, this study comprehensively explored the driving forces and the interactive effects between environmental and social factors of Japanese encephalitis using the Geo-detector method. The results indicated that the incidence of Japanese encephalitis showed a fluctuating downward trend from 2004 to 2010. The onset of JE was seasonal, mainly concentrated in June-July, and highly aggregated in northwestern Guangxi. Among the factors associated with Japanese encephalitis, days with temperatures >30 °C, accumulated temperatures >25 °C, slope, the normalized difference vegetation index, the gross domestic product of tertiary industries, the gross domestic product of primary industries and the number of pigs slaughtered showed higher contributions to Japanese encephalitis incidence. An enhanced interactive effect was found between environmental and social factors, and the interaction between days with humidity levels >80% and the gross domestic product of tertiary industries had the greatest combined effect on JE. These findings enhanced the understanding of the combined effect of social and environmental factors on the incidence of Japanese encephalitis and could help improve Japanese encephalitis transmission control and prevention strategies.
Collapse
Affiliation(s)
- Li Feifei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Li Hairong
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yang Linsheng
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wang Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Gu Lijuan
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zhong Gemei
- Guangxi Center for Disease Prevention and Control, Guangxi 530000, China
| | - Zhang Lan
- National Institute of Environmental Health, China CDC, Beijing 100021, China
| |
Collapse
|
33
|
Srivastava KS, Jeswani V, Pal N, Bohra B, Vishwakarma V, Bapat AA, Patnaik YP, Khanna N, Shukla R. Japanese Encephalitis Virus: An Update on the Potential Antivirals and Vaccines. Vaccines (Basel) 2023; 11:vaccines11040742. [PMID: 37112654 PMCID: PMC10146181 DOI: 10.3390/vaccines11040742] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
Japanese encephalitis virus (JEV) is the causal agent behind Japanese encephalitis (JE), a potentially severe brain infection that spreads through mosquito bites. JE is predominant over the Asia-Pacific Region and has the potential to spread globally with a higher rate of morbidity and mortality. Efforts have been made to identify and select various target molecules essential in JEV’s progression, but until now, no licensed anti-JEV drug has been available. From a prophylactic point of view, a few licensed JE vaccines are available, but various factors, viz., the high cost and different side effects imposed by them, has narrowed their global use. With an average occurrence of >67,000 cases of JE annually, there is an urgent need to find a suitable antiviral drug to treat patients at the acute phase, as presently only supportive care is available to mitigate infection. This systematic review highlights the current status of efforts put in to develop antivirals against JE and the available vaccines, along with their effectiveness. It also summarizes epidemiology, structure, pathogenesis, and potential drug targets that can be explored to develop a new range of anti-JEV drugs to combat JEV infection globally.
Collapse
|
34
|
Furlong M, Adamu AM, Hoskins A, Russell TL, Gummow B, Golchin M, Hickson RI, Horwood PF. Japanese Encephalitis Enzootic and Epidemic Risks across Australia. Viruses 2023; 15:v15020450. [PMID: 36851664 PMCID: PMC9962251 DOI: 10.3390/v15020450] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Japanese encephalitis virus (JEV) is an arboviral, encephalitogenic, zoonotic flavivirus characterized by its complex epidemiology whose transmission cycle involves reservoir and amplifying hosts, competent vector species and optimal environmental conditions. Although typically endemic in Asia and parts of the Pacific Islands, unprecedented outbreaks in both humans and domestic pigs in southeastern Australia emphasize the virus' expanding geographical range. To estimate areas at highest risk of JEV transmission in Australia, ecological niche models of vectors and waterbirds, a sample of piggery coordinates and feral pig population density models were combined using mathematical and geospatial mapping techniques. These results highlight that both coastal and inland regions across the continent are estimated to have varying risks of enzootic and/or epidemic JEV transmission. We recommend increased surveillance of waterbirds, feral pigs and mosquito populations in areas where domestic pigs and human populations are present.
Collapse
Affiliation(s)
- Morgan Furlong
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| | - Andrew M. Adamu
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| | - Andrew Hoskins
- Commonwealth Scientific Industrial Research Organisation (CSIRO), Townsville, QLD 4811, Australia
| | - Tanya L. Russell
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4870, Australia
| | - Bruce Gummow
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - Maryam Golchin
- Commonwealth Scientific Industrial Research Organisation (CSIRO), Townsville, QLD 4811, Australia
| | - Roslyn I. Hickson
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Commonwealth Scientific Industrial Research Organisation (CSIRO), Townsville, QLD 4811, Australia
- Correspondence: (R.I.H.); (P.F.H.); Tel.: +61-7-4781-6106
| | - Paul F. Horwood
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Correspondence: (R.I.H.); (P.F.H.); Tel.: +61-7-4781-6106
| |
Collapse
|
35
|
Gupta A, Gawandi S, Vandna, Yadav I, Mohan H, Desai VG, Kumar S. Analysis of fluoro based pyrazole analogues as a potential therapeutics candidate against Japanese encephalitis virus infection. Virus Res 2023; 323:198955. [PMID: 36202293 PMCID: PMC10194371 DOI: 10.1016/j.virusres.2022.198955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/17/2022] [Accepted: 10/02/2022] [Indexed: 11/09/2022]
Abstract
Japanese encephalitis virus (JEV) is the leading causative agent of encephalitis and its associated mortality among children. JEV modulates host cell machinery for its advantage, such as oxidative damage which subsequently leads to stress responsive pathways. The present study analyzes new series of dinitroaryl substituted derivatives (1a-1f), containing pyrazole moiety and explores its potential ensuing anti-JEV activity. Out of all synthesized derivatives, compounds 1b and 1f were selected based on minimal cytotoxicity. In vitro inhibition of more than 70% and 90% were observed with compounds 1b and 1f, respectively, in neuronal cells. Dose-response analyses highlighted 1f exhibiting better antiviral activity than 1b. The mice treated with compound 1b or 1f did not show any noticeable toxicity at a dose of 100mg/kg/day when administered intraperitoneally till 96th h. Inhibition of up to 41% and 70% JEV mRNA in spleen and 33% to 43% in brain tissue was observed with compounds 1b and 1f, respectively. Both the compounds suppressed JEV induced ROS generation by up-regulating the NQO1 and HO-1 proteins. Our result suggests the interlocked positive feedback loops of NRF2-SQSTM1 signaling pathway to be regulated by the synthesized compounds. The potential of these compounds can be further tested for broad-spectrum antiviral effects with other flaviviruses in the path towards the development of therapeutics.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sinthiya Gawandi
- Department of Chemistry, Dnyanprassarak Mandal's College and Research Centre, Assagao-Bardez, Goa, India
| | - Vandna
- Center for Medical Biotechnology, M.D. University, Rohtak, Haryana 124001, India
| | - Inderjeet Yadav
- National Brain Research Centre, Manesar, Gurugram, Haryana 122051, India
| | - Hari Mohan
- Center for Medical Biotechnology, M.D. University, Rohtak, Haryana 124001, India
| | - Vidya G Desai
- Department of Chemistry, Dnyanprassarak Mandal's College and Research Centre, Assagao-Bardez, Goa, India.
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
36
|
Impact of temperature on infection with Japanese encephalitis virus of three potential urban vectors in Taiwan; Aedes albopictus, Armigeres subalbatus, and Culex quinquefasciatus. Acta Trop 2023; 237:106726. [DOI: 10.1016/j.actatropica.2022.106726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/19/2022]
|
37
|
Isolation and Genetic Characterization of Japanese Encephalitis Virus Two Decades after Its Elimination in Singapore. Viruses 2022; 14:v14122662. [PMID: 36560666 PMCID: PMC9786948 DOI: 10.3390/v14122662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Japanese encephalitis virus (JEV) is an important arbovirus in Asia that can cause serious neurological disease. JEV is transmitted by mosquitoes in an enzootic cycle involving porcine and avian reservoirs, in which humans are accidental, dead-end hosts. JEV is currently not endemic in Singapore, after pig farming was abolished in 1992; the last known human case was reported in 2005. However, due to its location along the East-Asian Australasian Flyway (EAAF), Singapore is vulnerable to JEV re-introduction from the endemic regions. Serological and genetic evidence in the last decade suggests JEV's presence in the local fauna. In the present study, we report the genetic characterization and the first isolation of JEV from 3214 mosquito pools consisting of 41,843 Culex mosquitoes, which were trapped from April 2014 to May 2021. The findings demonstrated the presence of genotype I of JEV (n = 10), in contrast to the previous reports of the presence of genotype II of JEV in Singapore. The genetic analyses also suggested that JEV has entered Singapore on several occasions and has potentially established an enzootic cycle in the local fauna. These observations have important implications in the risk assessment and the control of Japanese encephalitis in non-endemic countries, such as Singapore, that are at risk for JEV transmission.
Collapse
|
38
|
Wang X, Wang G, Yang H, Fu S, He Y, Li F, Wang H, Wang Z. A mouse model of peripheral nerve injury induced by Japanese encephalitis virus. PLoS Negl Trop Dis 2022; 16:e0010961. [PMID: 36441775 PMCID: PMC9731479 DOI: 10.1371/journal.pntd.0010961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 12/08/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
Japanese encephalitis virus (JEV) is the most important cause of acute encephalitis in Eastern/Southern Asia. Infection with this virus also induces peripheral nerve injury. However, the disease pathogenesis is still not completely understood. Reliable animal models are needed to investigate the molecular pathogenesis of this condition. We studied the effect of Japanese encephalitis virus infection in C57BL/6 mice after a subcutaneous challenge. Limb paralysis was determined in mice using behavioral tests, including a viral paralysis scale and the hanging wire test, as well as by changes in body weight. Nerve conduction velocity and electromyography testing indicated the presence of demyelinating neuropathy of the sciatic nerve. Pathological changes in neural tissues were examined by immunofluorescence and transmission electron microscopy, which confirmed that the predominant pathologic change was demyelination. Although Western blots confirmed the presence of the virus in neural tissue, additional studies demonstrated that an immune-induced inflammatory response resulted in severe never injury. Immunofluorescence confirmed the presence of Japanese encephalitis virus in the brains of infected mice, and an inflammatory reaction was observed with hematoxylin-eosin staining as well. However, these observations were inconsistent at the time of paralysis onset. In summary, our results demonstrated that Japanese encephalitis virus infection could cause inflammatory demyelination of the peripheral nervous system in C57BL/6 mice.
Collapse
Affiliation(s)
- Xiaoli Wang
- The NO.1 People’s Hospital of Shizuishan, Shizuishan, China
- Ningxia Medical University, Yinchuan, China
| | | | - Huan Yang
- Ningxia Medical University, Yinchuan, China
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Shihong Fu
- Department of Arbovirus, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ying He
- Department of Arbovirus, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fan Li
- Department of Arbovirus, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huanyu Wang
- Department of Arbovirus, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
- * E-mail: (HYW); (ZHW)
| | - Zhenhai Wang
- Neurology Center, General Hospital of Ningxia Medical University, Yinchuan, China
- Diagnosis and Treatment Engineering Technology Research Center of Nervous System Diseases of Ningxia Hui Autonomous Region, Yinchuan, China
- * E-mail: (HYW); (ZHW)
| |
Collapse
|
39
|
Mhaske A, Singh S, Abourehab MA, Kumar A, Kesharwani P, Shukla R. Recent pharmaceutical engineered trends as theranostics for Japanese encephalitis. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Bharucha T, Ayhan N, Pastorino B, Rattanavong S, Vongsouvath M, Mayxay M, Changthongthip A, Sengvilaipaseuth O, Phonemixay O, Pommier JD, Gorman C, Zitzmann N, Newton PN, de Lamballerie X, Dubot-Pérès A. Immunoglobulin M seroneutralization for improved confirmation of Japanese encephalitis virus infection in a flavivirus-endemic area. Trans R Soc Trop Med Hyg 2022; 116:1032-1042. [PMID: 35593182 PMCID: PMC9623734 DOI: 10.1093/trstmh/trac036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/21/2022] [Accepted: 03/28/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The mainstay of diagnostic confirmation of acute Japanese encephalitis (JE) involves detection of anti-JE virus (JEV) immunoglobulin M (IgM) by enzyme-linked immunosorbent assay (ELISA). Limitations in the specificity of this test are increasingly apparent with the introduction of JEV vaccinations and the endemicity of other cross-reactive flaviviruses. Virus neutralization testing (VNT) is considered the gold standard, but it is challenging to implement and interpret. We performed a pilot study to assess IgG depletion prior to VNT for detection of anti-JEV IgM neutralizing antibodies (IgM-VNT) as compared with standard VNT. METHODS We evaluated IgM-VNT in paired sera from anti-JEV IgM ELISA-positive patients (JE n=35) and negative controls of healthy flavivirus-naïve (n=10) as well as confirmed dengue (n=12) and Zika virus (n=4) patient sera. IgM-VNT was subsequently performed on single sera from additional JE patients (n=76). RESULTS Anti-JEV IgG was detectable in admission serum of 58% of JE patients. The positive, negative and overall percentage agreement of IgM-VNT as compared with standard VNT was 100%. A total of 12/14 (86%) patient samples were unclassified by VNT and, with sufficient sample available for IgG depletion and IgG ELISA confirming depletion, were classified by IgM-VNT. IgM-VNT enabled JE case classification in 72/76 (95%) patients for whom only a single sample was available. CONCLUSIONS The novel approach has been readily adapted for high-throughput testing of single patient samples and it holds promise for incorporation into algorithms for use in reference centres.
Collapse
Affiliation(s)
- Tehmina Bharucha
- Department of Biochemistry, University of Oxford, Oxford, UK
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Nazli Ayhan
- Unité des Virus Émergents, Aix-Marseille Univ-IRD 190-Inserm 1207, Marseille, France
| | - Boris Pastorino
- Unité des Virus Émergents, Aix-Marseille Univ-IRD 190-Inserm 1207, Marseille, France
| | - Sayaphet Rattanavong
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Manivanh Vongsouvath
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
- Institute of Research and Education Development, University of Health Sciences, Ministry of Health, Vientiane, Lao PDR
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Anisone Changthongthip
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Onanong Sengvilaipaseuth
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Ooyanong Phonemixay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Jean-David Pommier
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
- Institut Pasteur, Biology of Infection Unit, Paris, France
- Inserm U1117, Paris, France
- Intensive Care Department, University Hospital of Guadeloupe, France
| | | | - Nicole Zitzmann
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Paul N Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xavier de Lamballerie
- Unité des Virus Émergents, Aix-Marseille Univ-IRD 190-Inserm 1207, Marseille, France
| | - Audrey Dubot-Pérès
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
- Unité des Virus Émergents, Aix-Marseille Univ-IRD 190-Inserm 1207, Marseille, France
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
41
|
Xu B, Gong P, Zhang Y, Wang Y, Tao D, Fu L, Khazalwa EM, Liu H, Zhao S, Zhang X, Xie S. A one-tube rapid visual CRISPR assay for the field detection of Japanese encephalitis virus. Virus Res 2022; 319:198869. [PMID: 35842016 DOI: 10.1016/j.virusres.2022.198869] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/26/2022]
Abstract
Early and rapid detection of Japanese encephalitis virus (JEV) is necessary for timely preventive and control measures. However, JEV RNA detection remains challenging due to the low level of viremia. In this study, a RApid VIsual CRISPR (RAVI-CRISPR) assay based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) and CRISPR/Cas12a targeting was developed for easy detection of JEV in the field. We showed successful detection of 8.97 or more copies of the C gene sequence of JEV RNA within approximately 60 min. This assay also displayed no cross-reactivity with other porcine pathogens. We applied our one-tube RAVI-CRISPR assay to 18 brain tissue sample for JE diagnosis. The results from both fluorescence intensity measurements and directly naked-eye visualization were consistent with those from real-time PCR analysis. Taken together, our results showed that one-tube RAVI-CRISPR assay is robust, convenient, sensitive, specific, affordable, and potentially adaptable to on-site detection or surveillance of JEV in clinical and vector samples.
Collapse
Affiliation(s)
- Bingrong Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ping Gong
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Science, Wuhan 430208, PR China
| | - Yi Zhang
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Science, Wuhan 430208, PR China
| | - Yuan Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dagang Tao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Lanting Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Emmanuel M Khazalwa
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | - Hailong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, PR China
| | - Xuying Zhang
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Bünteweg 17p, Hannover 30559, Germany.
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, PR China.
| |
Collapse
|
42
|
Paulraj PS, Rajamannar V, Renu G, Kumar A. Changing Paradigm in the epidemiology of Japanese encephalitis in India. J Vector Borne Dis 2022; 59:312-319. [PMID: 36751762 DOI: 10.4103/0972-9062.345180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Japanese encephalitis (JE) is a very serious public health problem in India and the conducive environment permit its emergence in non-endemic areas in the country. There are constant changes taking place in the pattern of current agricultural practices and vector breeding habitats which had far-reaching consequences on the epidemiology of JE and the severity of epidemic outbreaks today. Due to the continuous ecological changes taking place, vectors changed in their breeding dynamics, feeding, and resting behavior and started invading previously non-endemic areas. JE has recently spread to new territories due to land-use changes, including forest fragmentation and concentrated livestock production. Changes in the livestock population decreased the cattle pig ratio which enhanced the Japanese encephalitis virus (JEV) infection. This review brings forth the present widespread changes encountered that grossly impact the risk of infection in many places for the emergence of Japanese encephalitis and to address the implications for its control.
Collapse
Affiliation(s)
| | | | - Govindarajan Renu
- ICMR-Vector Control Research Centre, Field Station, Madurai, Tamil Nadu, India
| | - Ashwani Kumar
- ICMR Vector Control Research Centre, Puducherry, India
| |
Collapse
|
43
|
Mohsin F, Suleman S, Anzar N, Narang J, Wadhwa S. A review on Japanese Encephalitis virus emergence, pathogenesis and detection: From conventional diagnostics to emerging rapid detection techniques. Int J Biol Macromol 2022; 217:435-448. [PMID: 35817236 DOI: 10.1016/j.ijbiomac.2022.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/29/2021] [Accepted: 07/04/2022] [Indexed: 11/18/2022]
Abstract
The virus known as Japanese Encephalitis (JEV) is among the common viral persisting Encephalitis caused by Flavivirus around the Globe, especially in Southeast Asian nations. JEV may be a leading reason for neurological illness in humans, with an estimated 70,000 human cases and 10,000 fatalities per annum. The conventional methods like PRNT (Plaque Reduction Neutralization Test), ELISA (Enzyme-linked immunosorbent assay) RT-PCR (reverse transcription-polymerase chain reaction), and virus isolation are few commercial tests being availed these days, but they have a variety of drawbacks, including being extremely expensive, time-consuming, and requiring expertise. Therefore, researches are being made in the development of improved inexpensive, shorter, sensitive, and time-saving strategies to diagnose the Japanese Encephalitis Virus. A number of these researches encompass the employment of immunosensors, electrochemical sensors and along with the applications of nanotechnology to create highly sensitive detecting device. This review article is based on contemporary breakthroughs in diagnosing Japanese Encephalitis Virus, which are crucial in severing the connection between the propagation of zoonotic disease into the current race, where humans function as dead-end hosts.
Collapse
Affiliation(s)
- Fatima Mohsin
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard, New Delhi 110062, India
| | - Shariq Suleman
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard, New Delhi 110062, India
| | - Nigar Anzar
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard, New Delhi 110062, India
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard, New Delhi 110062, India.
| | - Shikha Wadhwa
- Department of Chemistry, School of Applied Sciences, University of Petroleum & Energy Studies, Bidholi Campus, Dehradun 248007, India
| |
Collapse
|
44
|
Hernández-Triana LM, Folly AJ, Sewgobind S, Lean FZX, Ackroyd S, Nuñez A, Delacour S, Drago A, Visentin P, Mansfield KL, Johnson N. Susceptibility of Aedes albopictus and Culex quinquefasciatus to Japanese encephalitis virus. Parasit Vectors 2022; 15:210. [PMID: 35710580 PMCID: PMC9204976 DOI: 10.1186/s13071-022-05329-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Japanese encephalitis virus (JEV) is the principal cause of mosquito-borne encephalitis in human populations within Asia. If introduced into new geographic areas, it could have further implications for public and animal health. However, potential mosquito vectors for virus transmission have not been fully investigated. The Asian tiger mosquito, Aedes albopictus, has emerged in Europe and is now expanding its geographical range into more northerly latitudes. Culex quinquefasciatus, although absent from Europe, has been detected in Turkey, a country with territory in Europe, and could act as a vector for JEV in other regions. To assess the risk of these invasive species acting as vectors for JEV and therefore potentially contributing to its geographical expansion, we have investigated the vector competence of Ae. albopictus and Cx. quinquefasciatus. METHODS Two colonised lines of Ae. albopictus (Italy and Spain) and a line of Cx. quinquefasciatus (Tanzania) were compared for susceptibility to infection by oral feeding with JEV strain SA-14, genotype III at 106 PFU/ml and maintained at 25 °C. Specimens were processed at 7 and 14 days post-inoculation (dpi). Rates of infection, dissemination and transmission were assessed through detection of viral RNA by real-time polymerase chain reaction (RT-PCR) in mosquito body, legs and saliva, respectively, at each time point. Where possible, infection and dissemination were confirmed by immunohistochemical (IHC) detection of the JEV envelope protein. RESULTS Aedes albopictus from Italy showed no susceptibility to infection with JEV strain SA-14. Conversely, Ae. albopictus colonised in Spain was susceptible and 100% of infected mosquitoes that were subjected to saliva screening expressed viral RNA at 14 dpi. Culex quinquefasciatus was highly susceptible to infection as early as 7 dpi and 50% of infected mosquitoes that were subjected to saliva screening expressed viral RNA at 14 dpi. Infection and dissemination were confirmed in Cx. quinquefasciatus by IHC detection of JEV envelope protein in both the mid-gut and salivary glands. CONCLUSIONS Aedes albopictus from two different locations in Europe range from being susceptible to JEV and capable of transmission through to being resistant. Culex quinquefasciatus also appears highly susceptible; therefore, both species could potentially act as vectors for JEV and facilitate the emergence of JEV into new regions.
Collapse
Affiliation(s)
| | - Arran J Folly
- Vector Borne Diseases, Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - Sanam Sewgobind
- Vector Borne Diseases, Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - Fabian Z X Lean
- Pathology and Animal Sciences Department, Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - Stuart Ackroyd
- Pathology and Animal Sciences Department, Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - Alejandro Nuñez
- Pathology and Animal Sciences Department, Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - Sarah Delacour
- Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
| | - Andrea Drago
- Entostudio SrL, Viale del Lavoro 66, Ponte San Nicolò, Padua, Italy
| | | | - Karen L Mansfield
- Vector Borne Diseases, Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - Nicholas Johnson
- Vector Borne Diseases, Animal and Plant Health Agency, Addlestone, Surrey, UK
| |
Collapse
|
45
|
Shi T, Meng L, Li D, Jin N, Zhao X, Zhang X, Liu Y, Zheng H, Zhao X, Li J, Shen X, Ren X. Impact of the Expanded Program on Immunization on the incidence of Japanese encephalitis in different regions of Mainland China: An interrupt time series analysis. Acta Trop 2022; 233:106575. [DOI: 10.1016/j.actatropica.2022.106575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 11/01/2022]
|
46
|
Putra IGAA, Adi AAAM, Astawa INM, Kardena IM, Wandia IN, Soma IG, Brotcorne F, Fuentes A. First survey on seroprevalence of Japanese encephalitis in long-tailed macaques (Macaca fascicularis) in Bali, Indonesia. Vet World 2022; 15:1341-1346. [PMID: 35765485 PMCID: PMC9210850 DOI: 10.14202/vetworld.2022.1341-1346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/18/2022] [Indexed: 01/20/2023] Open
Abstract
Background and Aim: Japanese encephalitis (JE) is a zoonotic infectious inflammatory brain disease caused by the JE virus (JEV). Considerable research into the seroprevalence of JE in domestic animals has been conducted, but there have been no reports of its occurrence in wild animals, including long-tailed macaques (Macaca fascicularis). This study aimed to estimate the seroprevalence of JEV infection and its determinants in long-tailed macaques in Bali and the prevalence of mosquito vectors. Materials and Methods: Blood samples (3 mL) were collected from a population of M. fascicularis (92 heads) inhabiting a small forest with irrigated rice field nearby (wetland area) in Ubud, Gianyar, and from two populations in dryland areas with no wet rice field (Uluwatu, Badung, and Nusa Penida, Bali Province, Indonesia). The collected sera were tested for antibodies against JEV using a commercially available enzyme-linked immunosorbent assay kit (qualitative monkey JE Immunoglobulin G antibody kit). The seropositivity of the antibodies was then compared based on different variables, namely, habitat type, age, and sex. Results: The seroprevalence of the JEV antibodies in all the samples tested was found to be 41.3%. The seropositivity of the monkey serum samples collected from the wetland area was 46.4%, which was higher than the seropositivity of the sera samples collected from the dried field areas (1.25%). Monkey sera collected from the wetland areas were 6.1 times (odds ratio [OR]: 6.1; 95% confidence interval [CI]: 0.71-51.5, p>0.05) more likely to be seropositive compared to the monkey sera collected from the dried field areas. Meanwhile, female monkeys were 1.79 times (OR: 1.79; 95% CI: 0.76-4.21; p>0.05) more likely to be seropositive to JEV than males. Similarly, juvenile monkeys were 2.38 times (OR: 2.38; 95% CI: 0.98-5.79); p>0.05) more likely to be seropositive against the JEV than adult monkeys. However, none of these differences achieved statistical significance. Regarding the JEV mosquito vector collection, more Culex mosquitoes were found in the samples from the wetland areas than from the dried field areas. Conclusion: The study confirms the existence of JEV infection in long-tailed macaques in Bali. There were patterned seropositivity differences based on habitat, age, and sex of the monkeys, but these were not significant. The possibility of monkeys as a JEV reservoir and the presence of the mosquitoes as the JEV vector are suggested but require more study to confirm.
Collapse
Affiliation(s)
- I Gusti Agung Arta Putra
- Laboratory of Animal Anatomy and Physiology, Faculty of Animal Husbandry, Udayana University, Kampus Bukit, Jimbaran, Badung, Bali, Indonesia; Primate Research Center, Udayana University, Kampus Bukit, Jimbaran, Badung, Bali, Indonesia
| | - Anak Agung Ayu Mirah Adi
- Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine, Udayana University, Kampus Sudirman, Jalan PB Sudirman, Denpasar, Bali, Indonesia
| | - I Nyoman Mantik Astawa
- Laboratory of Veterinary Virology, Faculty of Veterinary Medicine, Udayana University, Kampus Sudirman, Jalan PB Sudirman, Denpasar, Bali, Indonesia
| | - I Made Kardena
- Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine, Udayana University, Kampus Sudirman, Jalan PB Sudirman, Denpasar, Bali, Indonesia
| | - I Nengah Wandia
- Primate Research Center, Udayana University, Kampus Bukit, Jimbaran, Badung, Bali, Indonesia
| | - I Gede Soma
- Primate Research Center, Udayana University, Kampus Bukit, Jimbaran, Badung, Bali, Indonesia
| | - Fany Brotcorne
- Research Unit SPHERES, Department of Biology, Ecology, and Evolution, University of Liege, Belgium
| | - Agustin Fuentes
- Department of Anthropology, Princeton University, 123 Aaron Burr Hall, Princeton NJ 08544, United States
| |
Collapse
|
47
|
Park SL, Huang YJS, Vanlandingham DL. Re-Examining the Importance of Pigs in the Transmission of Japanese Encephalitis Virus. Pathogens 2022; 11:575. [PMID: 35631096 PMCID: PMC9146973 DOI: 10.3390/pathogens11050575] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 01/27/2023] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, is the leading cause of pediatric encephalitis in Southeast Asia. The enzootic transmission of JEV involves two types of amplifying hosts, swine and avian species. The involvement of pigs in the transmission cycle makes JEV a unique pathogen because human Japanese encephalitis cases are frequently linked to the epizootic spillover from pigs, which can not only develop viremia to sustain transmission but also signs of neurotropic and reproductive disease. The existing knowledge of the epidemiology of JEV largely suggests that viremic pigs are a source of infectious viruses for competent mosquito species, especially Culex tritaeniorhynchus in the endemic regions. However, several recently published studies that applied molecular detection techniques to the characterization of JEV pathogenesis in pigs described the shedding of JEV through multiple routes and persistent infection, both of which have not been reported in the past. These findings warrant a re-examination of the role that pigs are playing in the transmission and maintenance of JEV. In this review, we summarize discoveries on the shedding of JEV during the course of infection and analyze the available published evidence to discuss the possible role of the vector-free JEV transmission route among pigs in viral maintenance.
Collapse
Affiliation(s)
- So Lee Park
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, USA; (S.L.P.); (Y.-J.S.H.)
- Biosecurity Research Institute, Kansas State University, Manhattan, KS 66506, USA
| | - Yan-Jang S. Huang
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, USA; (S.L.P.); (Y.-J.S.H.)
- Biosecurity Research Institute, Kansas State University, Manhattan, KS 66506, USA
| | - Dana L. Vanlandingham
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, USA; (S.L.P.); (Y.-J.S.H.)
- Biosecurity Research Institute, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
48
|
Label-free proteomics-based analysis of peripheral nerve injury induced by Japanese encephalitis virus. J Proteomics 2022; 264:104619. [DOI: 10.1016/j.jprot.2022.104619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/08/2022] [Accepted: 05/14/2022] [Indexed: 11/20/2022]
|
49
|
Van den Eynde C, Sohier C, Matthijs S, De Regge N. Japanese Encephalitis Virus Interaction with Mosquitoes: A Review of Vector Competence, Vector Capacity and Mosquito Immunity. Pathogens 2022; 11:317. [PMID: 35335641 PMCID: PMC8953304 DOI: 10.3390/pathogens11030317] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne zoonotic flavivirus and a major cause of human viral encephalitis in Asia. We provide an overview of the knowledge on vector competence, vector capacity, and immunity of mosquitoes in relation to JEV. JEV has so far been detected in more than 30 mosquito species. This does not necessarily mean that these species contribute to JEV transmission under field conditions. Therefore, vector capacity, which considers vector competence, as well as environmental, behavioral, cellular, and biochemical variables, needs to be taken into account. Currently, 17 species can be considered as confirmed vectors for JEV and 10 other species as potential vectors. Culex tritaeniorhynchus and Culex annulirostris are considered primary JEV vectors in endemic regions. Culex pipiens and Aedes japonicus could be considered as potentially important vectors in the case of JEV introduction in new regions. Vector competence is determined by various factors, including vector immunity. The available knowledge on physical and physiological barriers, molecular pathways, antimicrobial peptides, and microbiome is discussed in detail. This review highlights that much remains to be studied about vector immunity against JEV in order to identify novel strategies to reduce JEV transmission by mosquitoes.
Collapse
Affiliation(s)
- Claudia Van den Eynde
- Exotic Viruses and Particular Diseases, Sciensano, Groeselenberg 99, 1180 Brussels, Belgium; (C.S.); (N.D.R.)
| | - Charlotte Sohier
- Exotic Viruses and Particular Diseases, Sciensano, Groeselenberg 99, 1180 Brussels, Belgium; (C.S.); (N.D.R.)
| | - Severine Matthijs
- Enzootic, Vector-Borne and Bee Diseases, Sciensano, Groeselenberg 99, 1180 Brussels, Belgium;
| | - Nick De Regge
- Exotic Viruses and Particular Diseases, Sciensano, Groeselenberg 99, 1180 Brussels, Belgium; (C.S.); (N.D.R.)
| |
Collapse
|
50
|
Franklinos LHV, Redding DW, Lucas TCD, Gibb R, Abubakar I, Jones KE. Joint spatiotemporal modelling reveals seasonally dynamic patterns of Japanese encephalitis vector abundance across India. PLoS Negl Trop Dis 2022; 16:e0010218. [PMID: 35192626 PMCID: PMC8896663 DOI: 10.1371/journal.pntd.0010218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 03/04/2022] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Predicting vector abundance and seasonality, key components of mosquito-borne disease (MBD) hazard, is essential to determine hotspots of MBD risk and target interventions effectively. Japanese encephalitis (JE), an important MBD, is a leading cause of viral encephalopathy in Asia with 100,000 cases estimated annually, but data on the principal vector Culex tritaeniorhynchus is lacking. We developed a Bayesian joint-likelihood model that combined information from available vector occurrence and abundance data to predict seasonal vector abundance for C. tritaeniorhynchus (a constituent of JE hazard) across India, as well as examining the environmental drivers of these patterns. Using data collated from 57 locations from 24 studies, we find distinct seasonal and spatial patterns of JE vector abundance influenced by climatic and land use factors. Lagged precipitation, temperature and land use intensity metrics for rice crop cultivation were the main drivers of vector abundance, independent of seasonal, or spatial variation. The inclusion of environmental factors and a seasonal term improved model prediction accuracy (mean absolute error [MAE] for random cross validation = 0.48) compared to a baseline model representative of static hazard predictions (MAE = 0.95), signalling the importance of seasonal environmental conditions in predicting JE vector abundance. Vector abundance varied widely across India with high abundance predicted in northern, north-eastern, eastern, and southern regions, although this ranged from seasonal (e.g., Uttar Pradesh, West Bengal) to perennial (e.g., Assam, Tamil Nadu). One-month lagged predicted vector abundance was a significant predictor of JE outbreaks (odds ratio 2.45, 95% confidence interval: 1.52–4.08), highlighting the possible development of vector abundance as a proxy for JE hazard. We demonstrate a novel approach that leverages information from sparse vector surveillance data to predict seasonal vector abundance–a key component of JE hazard–over large spatial scales, providing decision-makers with better guidance for targeting vector surveillance and control efforts. Japanese encephalitis (JE) is the leading cause of viral encephalopathy in Asia with an estimated 100,000 annual cases and 25,000 deaths. However, insufficient data on the predominant mosquito vector Culex tritaeniorhynchus–a key component of JE hazard–precludes hazard estimation required to target public health interventions. Previous studies have provided limited estimates of JE hazard, often predicting geographic distributions of potential vector occurrence without accounting for vector abundance, seasonality, or uncertainty in predictions. This study details a novel approach to predict spatiotemporal patterns in JE vector abundance using a joint-likelihood modelling technique that leverages information from sparse vector surveillance data. We showed that patterns in JE vector abundance were driven by seasonality and environmental factors and so demonstrated the limitations of previously available static vector distribution maps in estimating the vector population component of JE hazard. One-month lagged vector abundance predictions showed a positive relationship with JE outbreaks, signalling the potential use of vector abundance as a proxy for JE hazard. While vector surveillance data are limited, joint-likelihood models offer a useful approach to inform vector abundance predictions. This study provides decision-makers with a more complete picture of the distribution of JE vector abundance and can be used to target vector surveillance and control efforts and enhance the allocation of resources.
Collapse
Affiliation(s)
- Lydia H. V. Franklinos
- Centre for Biodiversity and Environment Research, University College London, London, United Kingdom
- Institute for Global Health, University College London, London, United Kingdom
- * E-mail:
| | - David W. Redding
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Tim C. D. Lucas
- School of Public Health, Imperial College London, London, United Kingdom
| | - Rory Gibb
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ibrahim Abubakar
- Institute for Global Health, University College London, London, United Kingdom
| | - Kate E. Jones
- Centre for Biodiversity and Environment Research, University College London, London, United Kingdom
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| |
Collapse
|