1
|
Fazekas CL, Szabó A, Török B, Bánrévi K, Correia P, Chaves T, Daumas S, Zelena D. A New Player in the Hippocampus: A Review on VGLUT3+ Neurons and Their Role in the Regulation of Hippocampal Activity and Behaviour. Int J Mol Sci 2022; 23:790. [PMID: 35054976 PMCID: PMC8775679 DOI: 10.3390/ijms23020790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 01/05/2023] Open
Abstract
Glutamate is the most abundant excitatory amino acid in the central nervous system. Neurons using glutamate as a neurotransmitter can be characterised by vesicular glutamate transporters (VGLUTs). Among the three subtypes, VGLUT3 is unique, co-localising with other "classical" neurotransmitters, such as the inhibitory GABA. Glutamate, manipulated by VGLUT3, can modulate the packaging as well as the release of other neurotransmitters and serve as a retrograde signal through its release from the somata and dendrites. Its contribution to sensory processes (including seeing, hearing, and mechanosensation) is well characterised. However, its involvement in learning and memory can only be assumed based on its prominent hippocampal presence. Although VGLUT3-expressing neurons are detectable in the hippocampus, most of the hippocampal VGLUT3 positivity can be found on nerve terminals, presumably coming from the median raphe. This hippocampal glutamatergic network plays a pivotal role in several important processes (e.g., learning and memory, emotions, epilepsy, cardiovascular regulation). Indirect information from anatomical studies and KO mice strains suggests the contribution of local VGLUT3-positive hippocampal neurons as well as afferentations in these events. However, further studies making use of more specific tools (e.g., Cre-mice, opto- and chemogenetics) are needed to confirm these assumptions.
Collapse
Affiliation(s)
- Csilla Lea Fazekas
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS) INSERM, Sorbonne Université, CNRS, 75005 Paris, France;
| | - Adrienn Szabó
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Bibiána Török
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Krisztina Bánrévi
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
| | - Pedro Correia
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Tiago Chaves
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Stéphanie Daumas
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS) INSERM, Sorbonne Université, CNRS, 75005 Paris, France;
| | - Dóra Zelena
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
2
|
Couasnay G, Madel MB, Lim J, Lee B, Elefteriou F. Sites of Cre-recombinase activity in mouse lines targeting skeletal cells. J Bone Miner Res 2021; 36:1661-1679. [PMID: 34278610 DOI: 10.1002/jbmr.4415] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022]
Abstract
The Cre/Lox system is a powerful tool in the biologist's toolbox, allowing loss-of-function and gain-of-function studies, as well as lineage tracing, through gene recombination in a tissue-specific and inducible manner. Evidence indicates, however, that Cre transgenic lines have a far more nuanced and broader pattern of Cre activity than initially thought, exhibiting "off-target" activity in tissues/cells other than the ones they were originally designed to target. With the goal of facilitating the comparison and selection of optimal Cre lines to be used for the study of gene function, we have summarized in a single manuscript the major sites and timing of Cre activity of the main Cre lines available to target bone mesenchymal stem cells, chondrocytes, osteoblasts, osteocytes, tenocytes, and osteoclasts, along with their reported sites of "off-target" Cre activity. We also discuss characteristics, advantages, and limitations of these Cre lines for users to avoid common risks related to overinterpretation or misinterpretation based on the assumption of strict cell-type specificity or unaccounted effect of the Cre transgene or Cre inducers. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Greig Couasnay
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
| | | | - Joohyun Lim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Florent Elefteriou
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
3
|
Zhang J, Chen L, Zhang J, Wang Y. Drug Inducible CRISPR/Cas Systems. Comput Struct Biotechnol J 2019; 17:1171-1177. [PMID: 31462973 PMCID: PMC6709367 DOI: 10.1016/j.csbj.2019.07.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 06/18/2019] [Accepted: 07/26/2019] [Indexed: 11/24/2022] Open
Abstract
Clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems have been employed as a powerful versatile technology for programmable gene editing, transcriptional modulation, epigenetic modulation, and genome labeling, etc. Yet better control of their activity is important to accomplish greater precision and to reduce undesired outcomes such as off-target events. The use of small molecules to control CRISPR/Cas activity represents a promising direction. Here, we provide an updated review on multiple drug inducible CRISPR/Cas systems and discuss their distinct properties. We arbitrarily divided the emerging drug inducible CRISPR/Cas systems into two categories based on whether at transcription or protein level does chemical control occurs. The first category includes Tet-On/Off system and Cre-dependent system. The second category includes chemically induced proximity systems, intein splicing system, 4-Hydroxytamoxifen-Estrogen Receptor based nuclear localization systems, allosterically regulated Cas9 system, and destabilizing domain mediated protein degradation systems. Finally, the advantages and limitations of each system were summarized.
Collapse
Key Words
- 4-OHT, 4-Hydroxytamoxifen
- ABA, abscisic acid
- ADs, activation domains
- CIP, chemically induced proximity
- CRISPR, clustered, regularly interspaced, short palindromic repeats
- Cas, CRISPR-associated protein
- CrRNA, CRISPR RNA
- DD, destabilizing domain
- DHFR, dihydrofolate reductase
- ER, Estrogen Receptor
- FKBP, FK506-binding protein
- FRB, FKBP-rapamycin-binding domain
- GA, gibberellin
- HIT, Hybrid drug Inducible CRISPR/Cas9 Technologies
- Hsp90, heat shock protein 90
- LBD, ligand binding domain
- LSL, loxP-stop-loxP
- MST, multiplex single transcript
- NES, nuclear export sequence
- NLS, nuclear localization sequence
- Ptet, tetO-containing promoter
- Sa, Staphylococcus areus
- Sp, Streptococcus pyogenes
- TMP, trimethoprim
- TRE, tetracycline response element
- TRE3G, Tet-On 3G protein
- TetO, tet operator
- TetR, Tet repressor protein
- VPR, VP64-P65-Rta
- arC9, allosterically regulated Cas9
- dCas9, dead Cas9
- dCpf1, dead Cpf1
- dLbCpf1, Lachnospiraceae bacterium dCpf1
- dox, doxycycline
- iPSCs, induced pluripotent stem cells
- rtTA, reverse-tTA
- sgRNA, single guide RNA
Collapse
Affiliation(s)
- Jingfang Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Li Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ju Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
4
|
Herb M, Gluschko A, Wiegmann K, Farid A, Wolf A, Utermöhlen O, Krut O, Krönke M, Schramm M. Mitochondrial reactive oxygen species enable proinflammatory signaling through disulfide linkage of NEMO. Sci Signal 2019; 12:12/568/eaar5926. [PMID: 30755476 DOI: 10.1126/scisignal.aar5926] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A major function of macrophages during infection is initiation of the proinflammatory response, leading to the secretion of cytokines that help to orchestrate the immune response. Here, we identify reactive oxygen species (ROS) as crucial mediators of proinflammatory signaling leading to cytokine secretion in Listeria monocytogenes-infected macrophages. ROS produced by NADPH oxidases (Noxes), such as Nox2, are key components of the macrophage response to invading pathogens; however, our data show that the ROS that mediated proinflammatory signaling were produced by mitochondria (mtROS). We identified the inhibitor of κB (IκB) kinase (IKK) complex regulatory subunit NEMO [nuclear factor κB (NF-κB) essential modulator] as a target for mtROS. Specifically, mtROS induced intermolecular covalent linkage of NEMO through disulfide bonds formed by Cys54 and Cys347, which was essential for activation of the IKK complex and subsequent signaling through the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and NF-κB pathways that eventually led to the secretion of proinflammatory cytokines. We thus identify mtROS-dependent disulfide linkage of NEMO as an essential regulatory step of the proinflammatory response of macrophages to bacterial infection.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
| | - Alexander Gluschko
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
| | - Katja Wiegmann
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
| | - Alina Farid
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
| | - Anne Wolf
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Olaf Utermöhlen
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany.,Center of Molecular Medicine Cologne, 50931 Cologne, Germany.,German Center for Infection Research (DZIF), 50931 Cologne, Germany
| | - Oleg Krut
- Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Martin Krönke
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany.,Center of Molecular Medicine Cologne, 50931 Cologne, Germany.,German Center for Infection Research (DZIF), 50931 Cologne, Germany.,Cologne Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), 50931 Cologne, Germany
| | - Michael Schramm
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany.
| |
Collapse
|
5
|
Abstract
Tumor suppressor genes play critical roles orchestrating anti-cancer programs that are both context dependent and mechanistically diverse. Beyond canonical tumor suppressive programs that control cell division, cell death, and genome stability, unexpected tumor suppressor gene activities that regulate metabolism, immune surveillance, the epigenetic landscape, and others have recently emerged. This diversity underscores the important roles these genes play in maintaining cellular homeostasis to suppress cancer initiation and progression, but also highlights a tremendous challenge in discerning precise context-specific programs of tumor suppression controlled by a given tumor suppressor. Fortunately, the rapid sophistication of genetically engineered mouse models of cancer has begun to shed light on these context-dependent tumor suppressor activities. By using techniques that not only toggle "off" tumor suppressor genes in nascent tumors, but also facilitate the timely restoration of gene function "back-on again" in disease specific contexts, precise mechanisms of tumor suppression can be revealed in an unbiased manner. This review discusses the development and implementation of genetic systems designed to toggle tumor suppressor genes off and back-on again and their potential to uncover the tumor suppressor's tale.
Collapse
Affiliation(s)
- Jonuelle Acosta
- Biomedical Graduate Studies Program in Cellular and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd., 751 BRB II/III, Philadelphia, PA, 19104-6160, USA
| | - Walter Wang
- Vagelos Scholars Program, School of Arts and Sciences, University of Pennsylvania, 421 Curie Blvd., 751 BRB II/III, Philadelphia, PA, 19104-6160, USA
| | - David M Feldser
- Biomedical Graduate Studies Program in Cellular and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd., 751 BRB II/III, Philadelphia, PA, 19104-6160, USA. .,Department of Cancer Biology, University of Pennsylvania, 421 Curie Blvd., 751 BRB II/III, Philadelphia, PA, 19104-6160, USA. .,Abramson Family Cancer Research Institute, University of Pennsylvania, 421 Curie Blvd., 751 BRB II/III, Philadelphia, PA, 19104-6160, USA.
| |
Collapse
|
6
|
Sjulson L, Cassataro D, DasGupta S, Miesenböck G. Cell-Specific Targeting of Genetically Encoded Tools for Neuroscience. Annu Rev Genet 2016; 50:571-594. [PMID: 27732792 DOI: 10.1146/annurev-genet-120215-035011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetically encoded tools for visualizing and manipulating neurons in vivo have led to significant advances in neuroscience, in large part because of the ability to target expression to specific cell populations of interest. Current methods enable targeting based on marker gene expression, development, anatomical projection pattern, synaptic connectivity, and recent activity as well as combinations of these factors. Here, we review these methods, focusing on issues of practical implementation as well as areas for future improvement.
Collapse
Affiliation(s)
- Lucas Sjulson
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016; .,Department of Neuroscience and Physiology, Smilow Neuroscience Program, and New York University Neuroscience Institute, New York, NY 10016
| | - Daniela Cassataro
- Department of Neuroscience and Physiology, Smilow Neuroscience Program, and New York University Neuroscience Institute, New York, NY 10016
| | - Shamik DasGupta
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, OX1 3SR, United Kingdom; .,Present address: Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Gero Miesenböck
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, OX1 3SR, United Kingdom;
| |
Collapse
|
7
|
Poulou M, Mandalos NP, Karnavas T, Saridaki M, McKay RDG, Remboutsika E. A "Hit and Run" Approach to Inducible Direct Reprogramming of Astrocytes to Neural Stem Cells. Front Physiol 2016; 7:127. [PMID: 27148066 PMCID: PMC4828628 DOI: 10.3389/fphys.2016.00127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/22/2016] [Indexed: 01/12/2023] Open
Abstract
Temporal and spatial control of gene expression can be achieved using an inducible system as a fundamental tool for regulated transcription in basic, applied and eventually in clinical research. We describe a novel “hit and run” inducible direct reprogramming approach. In a single step, 2 days post-transfection, transiently transfected Sox2FLAG under the Leu3p-αIPM inducible control (iSox2) triggers the activation of endogenous Sox2, redirecting primary astrocytes into abundant distinct nestin-positive radial glia cells. This technique introduces a unique novel tool for safe, rapid and efficient reprogramming amendable to regenerative medicine.
Collapse
Affiliation(s)
- Maria Poulou
- Stem Cell Biology Laboratory, Biomedical Sciences Research Centre "Alexander Fleming," Vari-Attica, Greece
| | - Nikolaos P Mandalos
- Stem Cell Biology Laboratory, Biomedical Sciences Research Centre "Alexander Fleming,"Vari-Attica, Greece; Choremio Laboratory, Department of Pediatrics, National University of Athens Medical SchoolAthens, Greece
| | - Theodoros Karnavas
- Stem Cell Biology Laboratory, Biomedical Sciences Research Centre "Alexander Fleming,"Vari-Attica, Greece; Choremio Laboratory, Department of Pediatrics, National University of Athens Medical SchoolAthens, Greece
| | - Marannia Saridaki
- Stem Cell Biology Laboratory, Biomedical Sciences Research Centre "Alexander Fleming," Vari-Attica, Greece
| | - Ronald D G McKay
- Basic Sciences Division, The Lieber Institute for Brain Development Baltimore, MD, USA
| | - Eumorphia Remboutsika
- Stem Cell Biology Laboratory, Biomedical Sciences Research Centre "Alexander Fleming,"Vari-Attica, Greece; Choremio Laboratory, Department of Pediatrics, National University of Athens Medical SchoolAthens, Greece; Basic Sciences Division, The Lieber Institute for Brain DevelopmentBaltimore, MD, USA
| |
Collapse
|
8
|
Candlish M, Angelis RD, Götz V, Boehm U. Gene Targeting in Neuroendocrinology. Compr Physiol 2015; 5:1645-76. [DOI: 10.1002/cphy.c140079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Walters BJ, Zuo J. A Sox10(rtTA/+) Mouse Line Allows for Inducible Gene Expression in the Auditory and Balance Organs of the Inner Ear. J Assoc Res Otolaryngol 2015; 16:331-45. [PMID: 25895579 DOI: 10.1007/s10162-015-0517-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 04/02/2015] [Indexed: 11/25/2022] Open
Abstract
Genetic mouse models provide invaluable tools for discerning gene function in vivo. Tetracycline-inducible systems (Tet-On/Off) provide temporal and cell-type specific control of gene expression, offering an alternative or even complementary approach to existing Cre/LoxP systems. Here we characterized a Sox10(rtTA/+) knock-in mouse line which demonstrates inducible reverse tetracycline trans-activator (rtTA) activity and Tet-On transgene expression in the inner ear following induction with the tetracycline derivative doxycycline (Dox). These Sox10(rtTA/+) mice do not exhibit any readily observable developmental or hearing phenotypes, and actively drive Tet-On transgene expression in Sox10 expressing cells in the inner ear. Sox10(rtTA/+) activity was revealed by multiple Tet-On reporters to be nearly ubiquitous throughout the membranous labyrinth of the developing inner ear, and notably absent from hair cells, tympanic border cells, and ganglion neurons following postnatal Dox inductions. Interestingly, Dox-induced Sox10(rtTA/+) activity declined with induction age, where Tet-On reporters became uninducible in adult cochlear epithelium. Co-administration of the loop diuretic furosemide was able to rescue Dox-induced reporter expression, though this method also caused significant cochlear hair cell loss. Surprisingly, Sox10(rtTA/+) driven reporter expression in the cochlea persists for at least 54 days after cessation of neonatal induction, presumably due to the persistence of Dox within inner ear tissues. These findings highlight the utility of the Sox10(rtTA/+) mouse line as a powerful tool for functional genetic studies of the auditory and balance organs in vivo, but also reveal some important considerations that must be adequately controlled for in future studies that rely upon Tet-On/Off systems.
Collapse
Affiliation(s)
- Bradley J Walters
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA,
| | | |
Collapse
|
10
|
Haeger SM, Thompson JJ, Kalra S, Cleaver TG, Merrick D, Wang XJ, Malkoski SP. Smad4 loss promotes lung cancer formation but increases sensitivity to DNA topoisomerase inhibitors. Oncogene 2015; 35:577-586. [PMID: 25893305 PMCID: PMC4615192 DOI: 10.1038/onc.2015.112] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 02/21/2015] [Accepted: 03/09/2015] [Indexed: 01/03/2023]
Abstract
Non-small cell lung cancer (NSCLC) is a common malignancy with a poor prognosis. Despite progress targeting oncogenic drivers, there are no therapies targeting tumor suppressor loss. Smad4 is an established tumor suppressor in pancreatic and colon cancer, however, the consequences of Smad4 loss in lung cancer are largely unknown. We evaluated Smad4 expression in human NSCLC samples and examined Smad4 alterations in large NSCLC datasets and found that reduced Smad4 expression is common in human NSCLC and occurs through a variety of mechanisms including mutation, homozygous deletion, and heterozygous loss. We modeled Smad4 loss in lung cancer by deleting Smad4 in airway epithelial cells and found that Smad4 deletion both initiates and promotes lung tumor development. Interestingly, both Smad4−/− mouse tumors and human NSCLC samples with reduced Smad4 expression demonstrated increased DNA damage while Smad4 knockdown in lung cancer cells reduced DNA repair and increased apoptosis after DNA damage. In addition, Smad4 deficient NSCLC cells demonstrated increased sensitivity to both chemotherapeutics that inhibit DNA topoisomerase and drugs that block double strand DNA break repair by non-homologous end joining. In sum, these studies establish Smad4 as a lung tumor suppressor and suggest that the defective DNA repair phenotype of Smad4 deficient tumors can be exploited by specific therapeutic strategies.
Collapse
Affiliation(s)
- Sarah M Haeger
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Joshua J Thompson
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Sean Kalra
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Timothy G Cleaver
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Daniel Merrick
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Stephen P Malkoski
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO.,Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
11
|
Deussing JM. Targeted mutagenesis tools for modelling psychiatric disorders. Cell Tissue Res 2013; 354:9-25. [PMID: 24078022 DOI: 10.1007/s00441-013-1708-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/16/2013] [Indexed: 12/15/2022]
Abstract
In the 1980s, the basic principles of gene targeting were discovered and forged into sharp tools for efficient and precise engineering of the mouse genome. Since then, genetic mouse models have substantially contributed to our understanding of major neurobiological concepts and are of utmost importance for our comprehension of neuropsychiatric disorders. The "domestication" of site-specific recombinases and the continuous creative technological developments involving the implementation of previously identified biological principles such as transcriptional and posttranslational control now enable conditional mutagenesis with high spatial and temporal resolution. The initiation and successful accomplishment of large-scale efforts to annotate functionally the entire mouse genome and to build strategic resources for the research community have significantly accelerated the rapid proliferation and broad propagation of mouse genetic tools. Addressing neurobiological processes with the assistance of genetic mouse models is a routine procedure in psychiatric research and will be further extended in order to improve our understanding of disease mechanisms. In light of the highly complex nature of psychiatric disorders and the current lack of strong causal genetic variants, a major future challenge is to model of psychiatric disorders more appropriately. Humanized mice, and the recently developed toolbox of site-specific nucleases for more efficient and simplified tailoring of the genome, offer the perspective of significantly improved models. Ultimately, these tools will push the limits of gene targeting beyond the mouse to allow genome engineering in any model organism of interest.
Collapse
Affiliation(s)
- Jan M Deussing
- Max Planck Institute of Psychiatry, Molecular Neurogenetics, Kraepelinstrasse 2-10, 80804, Munich, Germany,
| |
Collapse
|
12
|
Tone Y, Kawahara M, Hayashi J, Nagamune T. Cell fate conversion by conditionally switching the signal-transducing domain of signalobodies. Biotechnol Bioeng 2013; 110:3219-26. [PMID: 23794462 DOI: 10.1002/bit.24985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/25/2013] [Accepted: 06/14/2013] [Indexed: 01/08/2023]
Abstract
Conditionally and strictly controlling cell fates is important for biomedical applications including cell therapies. Although previous studies have been based on regulating the expression or activation of signaling molecules, the techniques therein require improvement in terms of reducing leakiness and complexity. In this study, we propose a novel cell fate converting system using our previously developed antibody/receptor chimeras named "signalobodies" in combination with a Cre/loxP recombination system. We designed a "switch vector" where a growth signalobody gene was flanked by two loxP sites and a death signalobody gene was placed downstream of the floxed cassette. Cells transduced with the switch vector showed superior growth activity in the presence of a specific antigen. Subsequent expression of Cre induced the death signalobody, leading to conditional cell death. This technology could be applicable for other cell fate conversion systems including differentiation and migration, by using appropriate signal-transducing domains.
Collapse
Affiliation(s)
- Yuichiro Tone
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | | | | | | |
Collapse
|
13
|
Malkoski SP, Cleaver TG, Thompson JJ, Sutton WP, Haeger SM, Rodriguez KJ, Lu SL, Merrick D, Wang XJ. Role of PTEN in basal cell derived lung carcinogenesis. Mol Carcinog 2013; 53:841-6. [PMID: 23625632 DOI: 10.1002/mc.22030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 03/07/2013] [Accepted: 03/12/2013] [Indexed: 11/07/2022]
Abstract
Lung adenocarcinoma (AdC) and lung squamous cell carcinoma (SCC) are the most common non-small cell lung cancer (NSCLC) subtypes, however, most genetic mouse models of lung cancer produce predominantly, if not exclusively, AdC. Whether this is secondary to targeting mutations to the distal airway cells or to the use of activating Kras mutations that drive AdC formation is unknown. We previously showed that targeting Kras(G12D) activation and transforming growth factor β receptor type II (TGFβRII) deletion to airway basal cells via a keratin promoter induced formation of both lung AdC and SCC. In this study we assessed if targeting phosphatase and tensin homologue (PTEN) deletion to airway basal cells could initiate lung tumor formation or increase lung SCC formation. We found that PTEN deletion is capable of initiating both lung AdC and SCC formation when targeted to basal cells and although PTEN deletion is a weaker tumor initiator than Kras(G12D) with low tumor multiplicity and long latency, tumors initiated by PTEN deletion were larger and displayed more malignant conversion than Kras(G12D) initiated tumors. That PTEN deletion did not increase lung SCC formation compared to Kras(G12D) activation, suggests that the initiating genetic event does not dictate tumor histology when genetic alterations are targeted to a specific cell. These studies also confirm that basal cells of the conducting airway are capable of giving rise to multiple NSCLC tumor types.
Collapse
Affiliation(s)
- Stephen P Malkoski
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado; Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Generation and characterization of transgenic mice are important elements of biomedical research. In recent years, transgenic technology has become more versatile and sophisticated, mainly because of the incorporation of recombinase-mediated conditional expression and targeted insertion, site-specific endonuclease-mediated genome editing, siRNA-mediated gene knockdown, various inducible gene expression systems, and fluorescent protein marking and tracking techniques. Site-specific recombinases (such as PhiC31) and engineered endonucleases (such as ZFN and Talen) have significantly enhanced our ability to target transgenes into specific genomic loci, but currently a great majority of transgenic mouse lines are continuingly being created using the conventional random insertion method. A major challenge for using this conventional method is that the genomic environment at the integration site has a substantial influence on the expression of the transgene. Although our understanding of such chromosomal position effects and our means to combat them are still primitive, adhering to some general guidelines can significantly increase the odds of successful transgene expression. This chapter first discusses the major problems associated with transgene expression, and then describes some of the principles for using plasmid and bacterial artificial chromosomes (BACs) for generating transgenic constructs. Finally, the strategies for conducting each of the major types of transgenic research are discussed, including gene overexpression, promoter characterization, cell-lineage tracing, mutant complementation, expression of double or multiple transgenes, siRNA knockdown, and conditional and inducible systems.
Collapse
Affiliation(s)
- Lita A. Freeman
- grid.279885.90000000122934638Pulmonary & Vascular Medicine Branch, National Institutes of Health (NIH) National Heart, Lung & Blood Institute, Bethesda, Maryland USA
| |
Collapse
|
15
|
Cox BC, Liu Z, Lagarde MMM, Zuo J. Conditional gene expression in the mouse inner ear using Cre-loxP. J Assoc Res Otolaryngol 2012; 13:295-322. [PMID: 22526732 PMCID: PMC3346893 DOI: 10.1007/s10162-012-0324-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 03/19/2012] [Indexed: 10/28/2022] Open
Abstract
In recent years, there has been significant progress in the use of Cre-loxP technology for conditional gene expression in the inner ear. Here, we introduce the basic concepts of this powerful technology, emphasizing the differences between Cre and CreER. We describe the creation and Cre expression pattern of each Cre and CreER mouse line that has been reported to have expression in auditory and vestibular organs. We compare the Cre expression patterns between Atoh1-CreER(TM) and Atoh1-CreER(T2) and report a new line, Fgfr3-iCreER(T2), which displays inducible Cre activity in cochlear supporting cells. We also explain how results can vary when transgenic vs. knock-in Cre/CreER alleles are used to alter gene expression. We discuss practical issues that arise when using the Cre-loxP system, such as the use of proper controls, Cre efficiency, reporter expression efficiency, and Cre leakiness. Finally, we introduce other methods for conditional gene expression, including Flp recombinase and the tetracycline-inducible system, which can be combined with Cre-loxP mouse models to investigate conditional expression of more than one gene.
Collapse
Affiliation(s)
- Brandon C. Cox
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 USA
| | - Zhiyong Liu
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 USA
| | - Marcia M. Mellado Lagarde
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 USA
| | - Jian Zuo
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 USA
| |
Collapse
|
16
|
Malkoski SP, Haeger SM, Cleaver TG, Rodriguez KJ, Li H, Lu SL, Feser WJ, Barón AE, Merrick D, Lighthall JG, Ijichi H, Franklin W, Wang XJ. Loss of transforming growth factor beta type II receptor increases aggressive tumor behavior and reduces survival in lung adenocarcinoma and squamous cell carcinoma. Clin Cancer Res 2012; 18:2173-83. [PMID: 22399565 DOI: 10.1158/1078-0432.ccr-11-2557] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Lung adenocarcinoma and lung squamous cell carcinoma (SCC) are the most common non-small cell lung cancer (NSCLC) subtypes. This study was designed to determine whether reduced expression of TGFβ type II receptor (TGFβRII) promotes lung adenocarcinoma and SCC carcinogenesis. EXPERIMENTAL DESIGN We examined TGFβRII expression at the protein and mRNA levels in human NSCLC samples and assessed the relationship between TGFβRII expression and clinicopathologic parameters. To determine whether sporadic TGFβRII deletion in airway epithelial cells induces NSCLC formation, we targeted TGFβRII deletion alone and in combination with oncogenic Kras(G12D) to murine airways using a keratin 5 (K5) promoter and inducible Cre recombinase. RESULTS Reduced TGFβRII expression in human NSCLC is associated with male gender, smoking, SCC histology, reduced differentiation, increased tumor stage, increased nodal metastasis, and reduced survival. Homozygous or heterozygous TGFβRII deletion in mouse airway epithelia increases the size and number of Kras(G12D)-initiated adenocarcinoma and SCC. TGFβRII deletion increases proliferation, local inflammation, and TGFβ ligand elaboration; TGFβRII knockdown in airway epithelial cells increases migration and invasion. CONCLUSIONS Reduced TGFβRII expression in human NSCLC is associated with more aggressive tumor behavior and inflammation that is, at least partially, mediated by increased TGFβ1 expression. TGFβRII deletion in mouse airway epithelial cells promotes adenocarcinoma and SCC formation, indicating that TGFβRII loss plays a causal role in lung carcinogenesis. That TGFβRII shows haploid insufficiency suggests that a 50% TGFβRII protein reduction would negatively impact lung cancer prognosis.
Collapse
Affiliation(s)
- Stephen P Malkoski
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Pathology, Colorado School of Public Health, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Heyer MP, Feliciano C, Peca J, Feng G. Elucidating Gene Function through use of Genetically Engineered Mice. Genomics 2010. [DOI: 10.1002/9780470711675.ch10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Chen MR, Liu SW, Wu TC, Kao VY, Yu HC, Chen FH, Hsu CH, Chen CT, Lin KM. RU486-inducible recombination in the salivary glands of lactoferrin promoter-driven green fluorescent Cre transgenic mice. Genesis 2010; 48:585-95. [DOI: 10.1002/dvg.20666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Poulou M, Bell D, Bozonelos K, Alexiou M, Gavalas A, Lovell-Badge R, Remboutsika E. Development of a Chromosomally Integrated Metabolite-Inducible Leu3p-α-IPM “Off-On” Gene Switch. PLoS One 2010; 5:e12488. [PMID: 20824215 PMCID: PMC2930855 DOI: 10.1371/journal.pone.0012488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 08/06/2010] [Indexed: 11/19/2022] Open
Affiliation(s)
- Maria Poulou
- Stem Cell Biology Laboratory, Institute of Molecular Biology and Genetics, Biomedical Sciences Research Center “Alexander Fleming,” Attica, Greece
| | - Donald Bell
- Division of Stem Cell Biology and Developmental Genetics, MRC National Institute for Medical Research, London, United Kingdom
| | - Kostas Bozonelos
- Transgenics Unit, Institute of Immunology, Biomedical Sciences Research Center “Alexander Fleming,” Attica, Greece
| | - Maria Alexiou
- Transgenics Unit, Institute of Immunology, Biomedical Sciences Research Center “Alexander Fleming,” Attica, Greece
| | - Anthony Gavalas
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, London, United Kingdom
| | - Robin Lovell-Badge
- Division of Stem Cell Biology and Developmental Genetics, MRC National Institute for Medical Research, London, United Kingdom
| | - Eumorphia Remboutsika
- Stem Cell Biology Laboratory, Institute of Molecular Biology and Genetics, Biomedical Sciences Research Center “Alexander Fleming,” Attica, Greece
- Division of Stem Cell Biology and Developmental Genetics, MRC National Institute for Medical Research, London, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Malkoski SP, Cleaver TG, Lu SL, Lighthall JG, Wang XJ. Keratin promoter based gene manipulation in the murine conducting airway. Int J Biol Sci 2010; 6:68-79. [PMID: 20140084 PMCID: PMC2815352 DOI: 10.7150/ijbs.6.68] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 01/15/2010] [Indexed: 01/06/2023] Open
Abstract
Systems capable of targeting genetic manipulations to keratin-positive airway basal cells are more poorly developed than systems targeting other airway epithelial cell populations and this has likely hindered development of animal models of diseases such as lung squamous cell carcinoma. Although keratin promoter driven-Cre recombinase constructs are potentially useful for targeting these cells, these constructs have substantially higher activity in the skin and oral epithelium than in the airways. We developed a method for delivering RU486, the conditional activator of Cre recombinase progesterone receptor (CrePR) fusion proteins to the lung and then examined the activity of three keratin-driven CrePR constructs in the conducting airways. We also developed a technique for survival bronchioalveolar lavage on non-ventilated animals to examine the effects of the acetone/oil vehicle required to deliver RU486 to the lung. K5CrePR1 and K14CrePR1 constructs differ only in the keratin promoter used to target CrePR1 expression while K5Cre*PR contains a truncated progesterone receptor designed to reduce RU486-independent Cre activity. While all three constructs demonstrate RU486-inducible Cre activity in the conducting airways, both construct activity and tightness of regulation vary considerably. K5Cre*PR is the most tightly regulated Cre driver making it ideal for targeting somatic mutations to the airway epithelia while K5CrePR1 and K14CrePR1 may be better suited to studying diseases of the conducting airways where gene targeting of keratin expressing cells and their derivatives is desired.
Collapse
Affiliation(s)
- Stephen P Malkoski
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Health Sciences Center, Aurora, CO, USA.
| | | | | | | | | |
Collapse
|
21
|
Rose MF, Ahmad KA, Thaller C, Zoghbi HY. Excitatory neurons of the proprioceptive, interoceptive, and arousal hindbrain networks share a developmental requirement for Math1. Proc Natl Acad Sci U S A 2009; 106:22462-7. [PMID: 20080794 PMCID: PMC2799716 DOI: 10.1073/pnas.0911579106] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Indexed: 11/18/2022] Open
Abstract
Hindbrain networks important for sensation and arousal contain diverse neuronal populations with distinct projections, yet share specific characteristics such as neurotransmitter expression. The relationship between the function of these neurons, their developmental origin, and the timing of their migration remains unclear. Mice lacking the proneural transcription factor Math1 (Atoh1) lose neurons essential for hearing, balance, and unconscious proprioception. By using a new, inducible Math1(Cre*PR) allele, we found that Math1 is also required for the conscious proprioceptive system, including excitatory projection neurons of the dorsal column nuclei and for vital components of the interoceptive system, such as Barrington's nucleus, that is closely associated with arousal. In addition to specific networks, Math1 lineages shared specific neurotransmitter expression, including glutamate, acetylcholine, somatostatin, corticotropin releasing hormone, and nitric oxide. These findings identify twenty novel Math1 lineages and indicate that the Math1 network functions partly as an interface for conscious (early-born) and unconscious (late-born) proprioceptive inputs to the cortex and cerebellum, respectively. In addition, these data provide previously unsuspected genetic and developmental links between proprioception, interoception, hearing, and arousal.
Collapse
Affiliation(s)
| | | | | | - Huda Y. Zoghbi
- Program in Developmental Biology
- Departments of Pediatrics
- Molecular and Human Genetics, and
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
22
|
Anastassiadis K, Fu J, Patsch C, Hu S, Weidlich S, Duerschke K, Buchholz F, Edenhofer F, Stewart AF. Dre recombinase, like Cre, is a highly efficient site-specific recombinase in E. coli, mammalian cells and mice. Dis Model Mech 2009; 2:508-15. [PMID: 19692579 DOI: 10.1242/dmm.003087] [Citation(s) in RCA: 233] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Tyrosine site-specific recombinases (SSRs) including Cre and FLP are essential tools for DNA and genome engineering. Cre has long been recognized as the best SSR for genome engineering, particularly in mice. Obtaining another SSR that is as good as Cre will be a valuable addition to the genomic toolbox. To this end, we have developed and validated reagents for the Dre-rox system. These include an Escherichia coli-inducible expression vector based on the temperature-sensitive pSC101 plasmid, a mammalian expression vector based on the CAGGs promoter, a rox-lacZ reporter embryonic stem (ES) cell line based on targeting at the Rosa26 locus, the accompanying Rosa26-rox reporter mouse line, and a CAGGs-Dre deleter mouse line. We also show that a Dre-progesterone receptor shows good ligand-responsive induction properties. Furthermore, we show that there is no crossover recombination between Cre-rox or Dre-loxP. Hence, we add another set of efficient tools to the genomic toolbox, which will enable the development of more sophisticated mouse models for the analysis of gene function and disease.
Collapse
Affiliation(s)
- Konstantinos Anastassiadis
- Center for Regenerative Therapies Dresden, BioInnovationsZentrum Technische Universitaet Dresden, Am Tatzberg 47, 01307 Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Iwai N, Zhou Z, Roop DR, Behringer RR. Horizontal basal cells are multipotent progenitors in normal and injured adult olfactory epithelium. Stem Cells 2008; 26:1298-306. [PMID: 18308944 DOI: 10.1634/stemcells.2007-0891] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mammalian olfactory neuroepithelium provides a unique system for understanding the regulation of neurogenesis by adult neural stem cells. Recently, mouse horizontal basal cells (HBCs) were identified as stem cells that regenerate olfactory receptor neurons (ORNs) and non-neuronal cell types only after extensive injury of the olfactory epithelium (OE). Here we report a broader spectrum of action for these cells. We show that even during normal neuronal turnover, HBCs actively generate neuronal and non-neuronal cells throughout adulthood. This occurs in a temporally controlled manner: an initial wave of HBC-derived neurogenesis was observed soon after birth, and a second wave of neurogenesis was observed at 4 months of age. Moreover, upon selective depletion of mature ORNs by olfactory bulbectomy, HBCs give rise to more neurons. Our findings demonstrate a crucial role for HBCs as multipotent progenitors in the adult OE, acting during normal neuronal turnover as well as in acute regeneration upon injury.
Collapse
Affiliation(s)
- Naomi Iwai
- Department of Molecular Genetics, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
24
|
Ito M, Yang Z, Andl T, Cui C, Kim N, Millar SE, Cotsarelis G. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 2007; 447:316-20. [PMID: 17507982 DOI: 10.1038/nature05766] [Citation(s) in RCA: 785] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 03/20/2007] [Indexed: 12/17/2022]
Abstract
The mammalian hair follicle is a complex 'mini-organ' thought to form only during development; loss of an adult follicle is considered permanent. However, the possibility that hair follicles develop de novo following wounding was raised in studies on rabbits, mice and even humans fifty years ago. Subsequently, these observations were generally discounted because definitive evidence for follicular neogenesis was not presented. Here we show that, after wounding, hair follicles form de novo in genetically normal adult mice. The regenerated hair follicles establish a stem cell population, express known molecular markers of follicle differentiation, produce a hair shaft and progress through all stages of the hair follicle cycle. Lineage analysis demonstrated that the nascent follicles arise from epithelial cells outside of the hair follicle stem cell niche, suggesting that epidermal cells in the wound assume a hair follicle stem cell phenotype. Inhibition of Wnt signalling after re-epithelialization completely abrogates this wounding-induced folliculogenesis, whereas overexpression of Wnt ligand in the epidermis increases the number of regenerated hair follicles. These remarkable regenerative capabilities of the adult support the notion that wounding induces an embryonic phenotype in skin, and that this provides a window for manipulation of hair follicle neogenesis by Wnt proteins. These findings suggest treatments for wounds, hair loss and other degenerative skin disorders.
Collapse
Affiliation(s)
- Mayumi Ito
- Department of Dermatology, Kligman Laboratories, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Seidi A, Mie M, Kobatake E. Novel recombination system using Cre recombinase alpha complementation. Biotechnol Lett 2007; 29:1315-22. [PMID: 17530179 DOI: 10.1007/s10529-007-9406-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 04/23/2007] [Accepted: 04/24/2007] [Indexed: 10/23/2022]
Abstract
A major limitation for the use of Cre recombinase is its toxicity and a lack of temporal control over its activity. We have developed a new recombination system using Cre recombinase alpha-complementation. Cre recombinase was divided and one fragment (beta) was introduced into cells between two loxP sites with a CMV promoter in the upstream. The gene of interest (EGFP) was positioned just downstream of this construct. Cre recombinase activity was recovered by adding the other part of the molecule (alpha) to cells as a protein fragment, as evidenced by the expression of EGFP under the control of the CMV promoter. The activity of fragmented cre reached 68% of that of the wild type enzyme at 1 microM alpha-protein.
Collapse
Affiliation(s)
- Azadeh Seidi
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | | | | |
Collapse
|
26
|
Hameyer D, Loonstra A, Eshkind L, Schmitt S, Antunes C, Groen A, Bindels E, Jonkers J, Krimpenfort P, Meuwissen R, Rijswijk L, Bex A, Berns A, Bockamp E. Toxicity of ligand-dependent Cre recombinases and generation of a conditional Cre deleter mouse allowing mosaic recombination in peripheral tissues. Physiol Genomics 2007; 31:32-41. [PMID: 17456738 DOI: 10.1152/physiolgenomics.00019.2007] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Ligand-activated Cre recombinases are widely used for studying gene function in vitro and in conditional mouse models. To compare ligand-dependent Cre recombinases, different Cre estrogen receptor fusions were introduced into the ROSA26 locus of embryonic stem (ES) cells and assayed for genotoxicity and recombination efficiency. Of the tested recombinases, the CreERT2 variant showed no toxicity and was highly responsive to ligand induction. To constitutively express CreERT2 in mice and also to clarify whether the CreERT2 system displays background activity, we generated a knock-in mouse line harboring the CreERT2 coding region under the control of the ROSA26 locus. Analysis of this ROSA26-CreERT2 deleter mouse with different reporter strains revealed ubiquitous recombination in the embryo and partial recombination in peripheral and hematopoietic tissues but no effective CreERT2 expression in the brain. Furthermore, using flow cytometry, we found low-level background recombination in noninduced bitransgenic ROSA26-CreERT2/EGFP reporter mice. To determine whether background activity poses a general problem for conducting conditional in vivo experiments with the ROSA26-CreERT2 deleter, we used a sensitive conditional skin cancer model. In this assay, cancer induction was completely restricted to induced bitransgenic CreERT2/K-Ras(V12) mice, whereas noninduced control animals did not show any sign of cancer, indicating the usefulness of the ROSA-CreERT2 system for regulating conditional gene expression in vivo. The ROSA26-CreERT2 deleter strain will be a convenient experimental tool for studying gene function under circumstances requiring partial induction of recombination in peripheral tissues and will be useful for uncovering previously unknown or unsuspected phenotypes.
Collapse
Affiliation(s)
- Dorothe Hameyer
- Institute of Toxicology/Mouse Genetics, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The ability to generate genetically manipulated mice has revolutionized the study of development, cell biology, immunobiology and transplantation. Conventional gene targeting approaches lead to inactivation of the target gene in all tissues. This approach often has unintended consequences, such as embryonic lethality, which preclude studying the originally intended tissue. Newer approaches allowing conditional gene expression in a tissue-specific or temporally controlled fashion have the advantage of normal development with gene deletion only in the desired tissues. While nuances to these techniques continue to be developed, the underlying concepts remain consistent. This minireview focuses on the use of conditional gene targeting in mice using the Cre-loxP system and drug inducible gene expression using the tetracycline system.
Collapse
Affiliation(s)
- J S Maltzman
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | | |
Collapse
|
28
|
Abstract
In the last decade, site-specific recombinases (SSRs), such as Cre and Flp, have emerged as indispensable tools for the precise in vivo manipulation of the mouse genome. It is now feasible to control, in space and time, the onset of gene knockouts in almost any tissue of the mouse, thus greatly facilitating the creation of sophisticated animal models for human disease and drug development. This review describes the basic principles and current status of the SSR technology, with a focus on strategies for conditional somatic mutagenesis using the Cre/lox system and ligand-activated Cre recombinases. Practical hints for generating and analysing conditional mouse mutants will be given and exciting novel applications of the SSR technology will be discussed, such as cell fate mapping and the combined use of Cre, Flp and other biotechnological tools. It will be shown how genetic manipulation of the mouse by site-specific recombination can provide new solutions to old problems in the analysis of human physiology and pathophysiology and how it can be employed for drug discovery and development.
Collapse
Affiliation(s)
- R Feil
- Interfakultäres Institut für Biochemie, Universität Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany.
| |
Collapse
|
29
|
Wamhoff BR, Sinha S, Owens GK. Conditional mouse models to study developmental and pathophysiological gene function in muscle. Handb Exp Pharmacol 2007:441-68. [PMID: 17203666 DOI: 10.1007/978-3-540-35109-2_18] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This chapter will review conditional mouse model systems that have been developed to study gene function in skeletal, cardiac, and vascular smooth muscle cells in vivo with an emphasis on the utility of these models for investigating developmental and pathophysiological gene function in muscle. In general, these systems have utilized muscle-specific/selective promoter-enhancers in conjunction with site-specific DNA recombinases, e.g., Cre-loxP, and fusion proteins with these recombinases that confer temporal control, such as tamoxifen-inducible CreER systems. A major focus of this chapter will be to discuss unique challenges of studying Cre-mediated mutagenesis/gene targeting in these muscle types during development and in the adult animal, some of which are inherent of the muscle cell type being studied. For example, unlike cardiac and skeletal muscle cells, the vascular SMC is extremely plastic and able to undergo rapid phenotypic modulation to various environmental cues in vivo. Thus, employing SMC marker gene promoter enhancers for conditional gene targeting in SMCs must take into account the possibility and/or certainty that the particular SMC promoter enhancers used may or may not be transcriptionally active in SMCs of a vessel wall under normal and some pathophysiological conditions. Moreover, individual floxed loci within the same muscle cell type and tissue have different degrees of sensitivity to Cre, most likely dependent on the chromatin state of that particular gene, i.e., closed/condensed state or open/active state. Thus, Cre recombination may be ineffective for specific floxed gene DNA. Lastly, rigorous efforts must be made to confirm the degree of recombination in a tissue, taking into full account the multicellularity of the tissue, to understand the extent of the physiological effect in that organ.
Collapse
Affiliation(s)
- B R Wamhoff
- Molecular Physiology and Biological Physics, The Robert M. Berne Cardiovascular Research Center, The University of Virginia, 415 Lane Road, Medical Research Building 5, Room 1226, P.O. Box 801394, Charlottesville VA 22908, USA
| | | | | |
Collapse
|
30
|
Nolden L, Edenhofer F, Peitz M, Brüstle O. Stem cell engineering using transducible Cre recombinase. METHODS IN MOLECULAR MEDICINE 2007; 140:17-32. [PMID: 18085201 DOI: 10.1007/978-1-59745-443-8_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Embryonic stem (ES) cells have become a major focus of scientific interest both as a potential donor source for regenerative medicine and as a model system for tissue development and pathobiology. Tight and efficient methods for genetic engineering are required to exploit ES cells as disease models and to generate specific somatic phenotypes by lineage selection or instruction. In 1990s, the application of site-specific recombinases (SSRs) such as Cre has revolutionized mammalian genetics by providing a reliable and efficient means to delete, insert, invert, or exchange chromosomal DNA in a conditional manner. Despite these significant advances, the available technology still suffers from limitations, including unwanted side effects elicited by the random integration of Cre expression vectors and leak activity of inducible or presumptive cell type-specific Cre expression systems. These challenges can be met by combining the Cre/loxP recombination system with direct intracellular delivery of Cre by protein transduction, thus enabling rapid and highly efficient conditional mutagenesis in ES cells and ES cell-derived somatic progeny. Modified recombinant variants of Cre protein induce recombination in virtually 100% of human ES (hES) and mouse ES (mES) cells. Here, we present methods for generating purified transducible Cre protein from Escherichia coli and its transduction into ES cells and their neural progeny.
Collapse
Affiliation(s)
- Lars Nolden
- Institute of Reconstructive Neurobiology, University of Bonn-Life & Brain Center and Hertie Foundation, Germany
| | | | | | | |
Collapse
|
31
|
Haupt S, Edenhofer F, Peitz M, Leinhaas A, Brüstle O. Stage-specific conditional mutagenesis in mouse embryonic stem cell-derived neural cells and postmitotic neurons by direct delivery of biologically active Cre recombinase. Stem Cells 2006; 25:181-8. [PMID: 16960133 DOI: 10.1634/stemcells.2006-0371] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Conditional mutagenesis using Cre/loxP recombination is a powerful tool to investigate genes involved in neural development and function. However, the efficient delivery of biologically active Cre recombinase to neural cells, particularly to postmitotic neurons, represents a limiting factor. In this study, we devised a protocol enabling highly efficient conditional mutagenesis in ESC-derived neural progeny. Using a stepwise in vitro differentiation paradigm, we demonstrate that recombinant cell-permeable Cre protein can be used to efficiently induce recombination at defined stages of neural differentiation. Recombination rates of more than 90% were achieved in multipotent pan-neural and glial precursors derived from the Z/EG reporter mouse ESC line, in which Cre recombination activates enhanced green fluorescent proteinexpression. Recombined precursor cells displayed a normal phenotype and were able to differentiate into neurons and/or glial cells, indicating that Cre treatment has no overt side effects on proliferation and neural differentiation. Our data further demonstrate that recombination via Cre protein transduction is not restricted to dividing cells but can even be applied to postmitotic neurons. The ability to conduct Cre/loxP recombination at defined stages of stem cell differentiation in an expression-independent manner provides new prospects for studying the role of individual genes under stringent temporal control.
Collapse
Affiliation(s)
- Simone Haupt
- Institute of Reconstructive Neurobiology, Life & Brain Center and Hertie Foundation, University of Bonn, Bonn, Germany
| | | | | | | | | |
Collapse
|
32
|
Nolden L, Edenhofer F, Haupt S, Koch P, Wunderlich FT, Siemen H, Brüstle O. Site-specific recombination in human embryonic stem cells induced by cell-permeant Cre recombinase. Nat Methods 2006; 3:461-7. [PMID: 16721380 DOI: 10.1038/nmeth884] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 04/21/2006] [Indexed: 01/29/2023]
Abstract
The biomedical application of human embryonic stem (hES) cells will increasingly depend on the availability of technologies for highly controlled genetic modification. In mouse genetics, conditional mutagenesis using site-specific recombinases has become an invaluable tool for gain- and loss-of-function studies. Here we report highly efficient Cre-mediated recombination of a chromosomally integrated loxP-modified allele in hES cells and hES cell-derived neural precursors by protein transduction. Recombinant modified Cre recombinase protein translocates into the cytoplasm and nucleus of hES cells and subsequently induces recombination in virtually 100% of the cells. Cre-transduced hES cells maintain the expression of pluripotency markers as well as the capability of differentiating into derivatives of all three germ layers in vitro and in vivo. We expect this technology to provide an important technical basis for analyzing complex genetic networks underlying human development as well as generating highly purified, transplantable hES cell-derived cells for regenerative medicine.
Collapse
Affiliation(s)
- Lars Nolden
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn and Hertie Foundation, Sigmund Freud Street 25, 53105 Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Schnütgen F, Stewart AF, von Melchner H, Anastassiadis K. Engineering embryonic stem cells with recombinase systems. Methods Enzymol 2006; 420:100-36. [PMID: 17161696 DOI: 10.1016/s0076-6879(06)20007-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The combined use of site-specific recombination and gene targeting or trapping in embryonic stem cells (ESCs) has resulted in the emergence of technologies that enable the induction of mouse mutations in a prespecified temporal and spatially restricted manner. Their large-scale implementation by several international mouse mutagenesis programs will lead to the assembly of a library of ES cell lines harboring conditional mutations in every single gene of the mouse genome. In anticipation of this unprecedented resource, this chapter will focus on site-specific recombination strategies and issues pertinent to ESCs and mice. The upcoming ESC resource and the increasing sophistication of site-specific recombination technologies will greatly assist the functional annotation of the human genome and the animal modeling of human disease.
Collapse
Affiliation(s)
- Frank Schnütgen
- Department for Molecular Hematology, University of Frankfurt Medical School, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
34
|
Furuta Y, Behringer RR. Recent innovations in tissue-specific gene modifications in the mouse. ACTA ACUST UNITED AC 2005; 75:43-57. [PMID: 15838923 DOI: 10.1002/bdrc.20036] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Annotating the functions of individual genes in in vivo contexts has become the primary task of mouse genetics in the post-genome era. In addition to conventional approaches using transgenic technologies and gene targeting, the recent development of conditional gene modification techniques has opened novel opportunities for elucidating gene function at the level of the whole mouse to individual tissues or cell types. Tissue-specific gene modifications in the mouse have been made possible using site-specific DNA recombinases and conditional alleles. Recent innovations in this basic technology have facilitated new types of experiments, revealing novel insights into mammalian embryology. In this review, we focus on these recent innovations and new technical issues that impact the success of these conditional gene modification approaches.
Collapse
Affiliation(s)
- Yasuhide Furuta
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
35
|
Cobellis G, Nicolaus G, Iovino M, Romito A, Marra E, Barbarisi M, Sardiello M, Di Giorgio FP, Iovino N, Zollo M, Ballabio A, Cortese R. Tagging genes with cassette-exchange sites. Nucleic Acids Res 2005; 33:e44. [PMID: 15741177 PMCID: PMC552971 DOI: 10.1093/nar/gni045] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In an effort to make transgenesis more flexible and reproducible, we developed a system based on novel 5′ and 3′ ‘gene trap’ vectors containing heterospecific Flp recognition target sites and the corresponding ‘exchange’ vectors allowing the insertion of any DNA sequence of interest into the trapped locus. Flp-recombinase-mediated cassette exchange was demonstrated to be highly efficient in our system, even in the absence of locus-specific selection. The feasibility of constructing a library of ES cell clones using our gene trap vectors was tested and a thousand insertion sites were characterized, following electroporation in ES cells, by RACE–PCR and sequencing. We validated the system in vivo for two trapped loci in transgenic mice and demonstrated that the reporter transgenes inserted into the trapped loci have an expression pattern identical to the endogenous genes. We believe that this system will facilitate in vivo studies of gene function and large-scale generation of mouse models of human diseases, caused by not only loss but also gain of function alleles.
Collapse
Affiliation(s)
- Gilda Cobellis
- Telethon Institute of Genetics and Medicine, Via P. Castellino111, 80131 Naples, Italy
| | - Giancarlo Nicolaus
- Istituto di Ricerche di Biologia Molecolare P. AngelettiVia Pontina km 30,600, 00040 Pomezia, Rome, Italy
| | - Mariangela Iovino
- Istituto di Ricerche di Biologia Molecolare P. AngelettiVia Pontina km 30,600, 00040 Pomezia, Rome, Italy
| | - Antonio Romito
- Telethon Institute of Genetics and Medicine, Via P. Castellino111, 80131 Naples, Italy
| | - Emanuele Marra
- Istituto di Ricerche di Biologia Molecolare P. AngelettiVia Pontina km 30,600, 00040 Pomezia, Rome, Italy
| | - Manlio Barbarisi
- Telethon Institute of Genetics and Medicine, Via P. Castellino111, 80131 Naples, Italy
| | - Marco Sardiello
- Telethon Institute of Genetics and Medicine, Via P. Castellino111, 80131 Naples, Italy
| | - Francesco P. Di Giorgio
- Istituto di Ricerche di Biologia Molecolare P. AngelettiVia Pontina km 30,600, 00040 Pomezia, Rome, Italy
| | - Nicola Iovino
- Istituto di Ricerche di Biologia Molecolare P. AngelettiVia Pontina km 30,600, 00040 Pomezia, Rome, Italy
| | - Massimo Zollo
- Telethon Institute of Genetics and Medicine, Via P. Castellino111, 80131 Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Via P. Castellino111, 80131 Naples, Italy
- Medical Genetics, Department of Pediatrics, Federico II UniversityVia S. Pansini, 5, 80131 Naples, Italy
- To whom correspondence should be addressed. Tel: +39 081 6132207; Fax: +39 081 5790919;
| | - Riccardo Cortese
- Istituto di Ricerche di Biologia Molecolare P. AngelettiVia Pontina km 30,600, 00040 Pomezia, Rome, Italy
| |
Collapse
|
36
|
Heine HL, Leong HS, Rossi FMV, McManus BM, Podor TJ. Strategies of Conditional Gene Expression in Myocardium. MOLECULAR CARDIOLOGY 2005; 112:109-54. [PMID: 16010014 DOI: 10.1007/978-1-59259-879-3_8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The use of specialized reporter genes to monitor real-time, tissue-specific transgene expression in animal models offers an opportunity to circumvent current limitations associated with the establishment of transgenic mouse models. The Cre-loxP and the tetracycline (Tet)-inducible systems are useful methods of conditional gene expression that allow spatial (cell-type-specific) and temporal (inducer-dependent) control. Most often, the alpha-myosin heavy chain (alpha-MHC) promoter is used in these inducible systems to restrict expression of reporter genes and transgenes to the myocardium. An overview of each inducible system is described, along with suggested reporter genes for real-time, noninvasive imaging in the myocardium. Effective gene delivery of the inducible gene expression system is carried out by lentiviral vectors, which offer high transduction efficiency, long-term transgene expression, and low immunogenicity. This chapter outlines the packaging of myocardium-specific inducible expression systems into lentiviral vectors, in which a transgene and a reporter gene are transduced into cardiomyocytes. In doing so, transgene and reporter expression can be monitored/tracked with bioluminescence imaging (BLI) and positron emission tomography (PET).
Collapse
Affiliation(s)
- Heather L Heine
- The James Hogg iCAPTURE Center for Cardiovascular and Pulmonary Research/MRL, University of British Columbia, St. Paul's Hospital, Vancouver, Canada
| | | | | | | | | |
Collapse
|
37
|
Caulin C, Nguyen T, Longley MA, Zhou Z, Wang XJ, Roop DR. Inducible activation of oncogenic K-ras results in tumor formation in the oral cavity. Cancer Res 2004; 64:5054-8. [PMID: 15289303 DOI: 10.1158/0008-5472.can-04-1488] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mouse models for cancer represent powerful tools to analyze the causal role of genetic alterations in cancer development. We have developed a novel mouse model that allows the focal activation of mutations in stratified epithelia. Using this system, we demonstrate that activation of an oncogenic K-rasG12D allele in the oral cavity of the mouse induces oral tumor formation. The lesions that develop in these mice are classified as benign squamous papillomas. Interestingly, these tumors exhibit changes in the expression pattern of keratins similar to those observed in human premalignant oral tumors, which are reflective of early stages of tumorigenesis. These results demonstrate a causal role for oncogenic K-ras in oral tumor development. The inducible nature of this model also makes it an ideal system to study cooperative interactions between mutations in oncogenes and/or tumor suppressor genes that are similar to those observed in human tumors. To our knowledge, this is the first reported inducible mouse model for oral cancer.
Collapse
Affiliation(s)
- Carlos Caulin
- Departments of Molecular and Cellular Biology and Dermatology, Baylor College of Medicine, Room T 713, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Boldogköi Z, Sík A, Dénes A, Reichart A, Toldi J, Gerendai I, Kovács KJ, Palkovits M. Novel tracing paradigms--genetically engineered herpesviruses as tools for mapping functional circuits within the CNS: present status and future prospects. Prog Neurobiol 2004; 72:417-45. [PMID: 15177785 DOI: 10.1016/j.pneurobio.2004.03.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2003] [Accepted: 03/29/2004] [Indexed: 11/17/2022]
Abstract
The mammalian CNS is composed of an extremely complex meshwork of highly ordered interconnections among billions of neurons. To understand the diverse functions of this neuronal network we need to differentiate between functionally related and nonrelated elements. A powerful labeling method for defining intricate neural circuits is based on the utilization of neurotropic herpesviruses, including pseudorabies virus and herpes simplex virus type 1. The recent development of genetically engineered tracing viruses can open the way toward the conception of novel tract-tracing paradigms. These new-generation tracing viruses may facilitate the clarification of problems, which were inaccessible to earlier approaches. This article first presents a concise review of the general aspects of neuroanatomical tracing protocols. Subsequently, it discusses the molecular biology of alpha-herpesviruses, and the genetic manipulation and gene expression techniques that are utilized for the construction of virus-based tracers. Finally, it describes the current utilization of genetically modified herpesviruses for circuit analysis, and the future directions in their potential applications.
Collapse
Affiliation(s)
- Zsolt Boldogköi
- Laboratory of Neuromorphology, Department of Anatomy, Faculty of Medicine, Semmelweis University and Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Branda CS, Dymecki SM. Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. Dev Cell 2004; 6:7-28. [PMID: 14723844 DOI: 10.1016/s1534-5807(03)00399-x] [Citation(s) in RCA: 660] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Site-specific recombinase systems (Cre-loxP, Flp-FRT, and phi C31-att) are transforming both forward and reverse genetics in mice. By enabling high-fidelity DNA modifications to be induced in vitro or in vivo, these systems have incited a wave of new biology, advancing our understanding of gene function, genetic relationships, development, and disease.
Collapse
Affiliation(s)
- Catherine S Branda
- Harvard Medical School, Department of Genetics, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
40
|
Ouvrard-Pascaud A, Puttini S, Sainte-Marie Y, Athman R, Fontaine V, Cluzeaud F, Farman N, Rafestin-Oblin ME, Blot-Chabaud M, Jaisser F. Conditional gene expression in renal collecting duct epithelial cells: use of the inducible Cre-lox system. Am J Physiol Renal Physiol 2004; 286:F180-7. [PMID: 12928315 DOI: 10.1152/ajprenal.00301.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renal collecting duct plays a key role in control of ion and fluid homeostasis. Genes encoding for ion transporters, hormone receptors, or regulatory proteins specifically expressed in the collecting duct are mutated in several genetic diseases with altered blood pressure. Suitable cellular models expressing genes in a conditional way should represent attractive systems for structure-function analyses and generation of appropriate physiopathological models of related diseases. However, generation of such systems remains laborious and quite inefficient. We adapted and improved a conditional Cre-lox-inducible system in the highly differentiated aldosterone-sensitive rat cortical collecting duct (RCCD2) cell line. The inducible MerCreMer recombinase allowed tight control and high levels of transgene expression, whereas flanking a selection marker with two loxP sites strongly improved the selection procedure. We have used this system to conditionally express an enhanced green fluorescent protein-tagged human mineralocorticoid receptor. In the future, this will allow structure-function analyses as well as mineralocorticoid receptor trafficking studies in these epithelial cells, which retain the features of the native collecting duct. Improvements in the conditional Cre-lox expression system have potentially wide applications in other epithelial or nonepithelial cell lines.
Collapse
Affiliation(s)
- Antoine Ouvrard-Pascaud
- INSERM U478, Federative Institute of Research 02, Bichat Medical School, 75870 Paris Cedex 18, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Magin TM, Hesse M, Meier-Bornheim R, Reichelt J. Developing Mouse Models to Study Intermediate Filament Function. Methods Cell Biol 2004; 78:65-94. [PMID: 15646616 DOI: 10.1016/s0091-679x(04)78004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- Thomas M Magin
- Institut für Physiologische Chemie, Abteilung für Zellbiochemie, Bonner Forum Biomedizin and LIMES, Universitätsklinikum Bonn, 53115 Bonn, Germany
| | | | | | | |
Collapse
|
42
|
Jullien N, Sampieri F, Enjalbert A, Herman JP. Regulation of Cre recombinase by ligand-induced complementation of inactive fragments. Nucleic Acids Res 2003; 31:e131. [PMID: 14576331 PMCID: PMC275488 DOI: 10.1093/nar/gng131] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cre recombinase is extensively used to engineer the genome of experimental animals. However, its usefulness is still limited by the lack of an efficient temporal control over its activity. To overcome this, we have developed DiCre, a regulatable fragment complementation system for Cre. The enzyme was split into two moieties that were fused to FKBP12 (FK506-binding protein) and FRB (binding domain of the FKBP12-rapamycin-associated protein), respectively. These can be efficiently heterodimerized by rapamycin. Several variants, based on splitting Cre at different sites and using different linker peptides, were tested in an indicator cell line. The fusion proteins, taken separately, had no recombinase activity. Stable transformants, co-expressing complementing fragments based on splitting Cre between Asn59 and Asn60, displayed low background activity affecting 0.05-0.4% of the cells. Rapamycin induced a rapid recombination, reaching 100% by 48-72 h, with an EC50 of 0.02 nM. Thus, ligand-induced dimerization can efficiently regulate Cre, and should be useful to achieve a tight temporal control of its activity, such as in the case of the creation of conditional knock-out animals.
Collapse
Affiliation(s)
- Nicolas Jullien
- ICNE-UMR 6544, CNRS-Université de la Méditerranée, IFR Jean-Roche, Faculté de Médecine Nord, 13916 Marseille Cedex 20, France
| | | | | | | |
Collapse
|
43
|
Kaczmarczyk SJ, Green JE. Induction of cre recombinase activity using modified androgen receptor ligand binding domains: a sensitive assay for ligand-receptor interactions. Nucleic Acids Res 2003; 31:e86. [PMID: 12888538 PMCID: PMC169976 DOI: 10.1093/nar/gng087] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Novel systems of inducible gene expression are presented in which CRE-M, an altered form of cre recombinase (cre), is fused to and activated by ligand binding to two forms of the androgen receptor (AR) ligand binding domain (LBD). Selective activation or inactivation of gene transcription is induced upon the addition of appropriate ligand. The coupling of this cre-LBD system with our previously reported highly sensitive assay to measure cre activity in vitro using a dual fluorescent gene switch reporter provides a novel, high-throughput assay system for identifying compounds that bind to and activate various forms of the LBD of androgen receptor. This method can similarly be applied to screen compounds for their activating properties on other steroid hormone LBDs. Three different forms of the AR-LBD were fused to CRE-M, including the wild-type AR-LBD (wt), a non-ligand binding truncated form, LBD (T), and a mutated form (Thr-->Ala substitution) identified in the LNCaP prostate cancer cell line, LBD (LNCaP). We demonstrate a 10-fold induction of cre activity by the addition of androgen agonists to the CRE-M-AR-LBD(wt) fusion protein, but not in the presence of the anti-androgen, flutamide. However, cre activity can be induced by flutamide with the CRE-M-AR-LBD(LNCaP) fusion protein. Similar activation properties were obtained when these fusion proteins were expressed using adenoviral vectors. When combined with our previously reported cre-lox gene switch system, the CRE-M-AR-LBD system can be utilized in gene therapy systems in which a therapeutic product may be initially expressed, replaced by a second product, or turned-off following exposure to ligand. This provides an important, additional level of regulation to gene therapy systems.
Collapse
Affiliation(s)
- Stanislaw J Kaczmarczyk
- Transgenic Oncogenesis Group, Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Bethesda, MD 20892, USA
| | | |
Collapse
|
44
|
Abstract
The prospect of specifically controlling gene activities in vivo has become a defining hallmark of many model organisms of biological research. Where once the aim was to gain control over gene activities using endogenous control elements, new technologies have emerged that owe their remarkable specificity to heterologous components derived from evolutionarily distant species. This review highlights inducible transcriptional systems and site-specific recombination. Their quantitative and qualitative characteristics are discussed, with examples of how recent developments have expanded the spectrum of cells and organisms that are now accessible to genetic dissection of unprecedented precision. Transgenesis has already converted the mouse into a prime model for mammalian genetics. Combined with the new approaches of conditional activation or inactivation of genes, this model has opened up new horizons for the analysis of gene function in mammals.
Collapse
Affiliation(s)
- Manfred Gossen
- Max Delbrück Centrum, Robert-Rössle-Strasse 10, D-13125 Berlin, Germany.
| | | |
Collapse
|
45
|
Hédou G, Mansuy IM. Inducible molecular switches for the study of long-term potentiation. Philos Trans R Soc Lond B Biol Sci 2003; 358:797-804. [PMID: 12740126 PMCID: PMC1693167 DOI: 10.1098/rstb.2002.1245] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This article reviews technical and conceptual advances in unravelling the molecular bases of long-term potentiation (LTP), learning and memory using genetic approaches. We focus on studies aimed at testing a model suggesting that protein kinases and protein phosphatases balance each other to control synaptic strength and plasticity. We describe how gene 'knock-out' technology was initially exploited to disrupt the Ca(2+)/calmodulin-dependent protein kinase IIalpha (CaMKIIalpha) gene and how refined knock-in techniques later allowed an analysis of the role of distinct phosphorylation sites in CaMKII. Further to gene recombination, regulated gene expression using the tetracycline-controlled transactivator and reverse tetracycline-controlled transactivator systems, a powerful new means for modulating the activity of specific molecules, has been applied to CaMKIIalpha and the opposing protein phosphatase calcineurin. Together with electro-physiological and behavioural evaluation of the engineered mutant animals, these genetic methodologies have helped gain insight into the molecular mechanisms of plasticity and memory. Further technical developments are, however, awaited for an even higher level of finesse.
Collapse
Affiliation(s)
- Gaël Hédou
- Institute of Cell Biology, Swiss Federal Institute of Technology, ETH Hönggerberg CH-8093, Zürich, Switzerland
| | | |
Collapse
|
46
|
Bockamp E, Maringer M, Spangenberg C, Fees S, Fraser S, Eshkind L, Oesch F, Zabel B. Of mice and models: improved animal models for biomedical research. Physiol Genomics 2002; 11:115-32. [PMID: 12464688 DOI: 10.1152/physiolgenomics.00067.2002] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The ability to engineer the mouse genome has profoundly transformed biomedical research. During the last decade, conventional transgenic and gene knockout technologies have become invaluable experimental tools for modeling genetic disorders, assigning functions to genes, evaluating drugs and toxins, and by and large helping to answer fundamental questions in basic and applied research. In addition, the growing demand for more sophisticated murine models has also become increasingly evident. Good state-of-principle knowledge about the enormous potential of second-generation conditional mouse technology will be beneficial for any researcher interested in using these experimental tools. In this review we will focus on practice, pivotal principles, and progress in the rapidly expanding area of conditional mouse technology. The review will also present an internet compilation of available tetracycline-inducible mouse models as tools for biomedical research (http://www.zmg.uni-mainz.de/tetmouse/).
Collapse
Affiliation(s)
- Ernesto Bockamp
- Laboratory of Molecular Mouse Genetics, Institute of Toxicology, Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Tronche F, Casanova E, Turiault M, Sahly I, Kellendonk C. When reverse genetics meets physiology: the use of site-specific recombinases in mice. FEBS Lett 2002; 529:116-21. [PMID: 12354622 DOI: 10.1016/s0014-5793(02)03266-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The use of site-specific recombinases enables the precise introduction of defined genetic mutations into the mouse genome. In theory, any deletion, point mutation, inversion or translocation can be modeled in mice. Because gene targeting is controlled both spatially and temporally, the function of a given gene can be studied in the desired cell types and at a specific time point. This 'genetic dissection' allows to define gene function in development, physiology or behavior. In this review, we focus on the technical possibilities of Cre and other site-specific recombinases but also discuss their limitations.
Collapse
Affiliation(s)
- François Tronche
- CNRS FRE2401, Molecular Genetics, Neurophysiology and Behavior, Institute of Biology, Collège de France, 11 place Marcelin Berthelot, 75231 Cedex 5, Paris, France.
| | | | | | | | | |
Collapse
|
48
|
Abstract
Gene control systems that provide temporal and spatial regulation of transgene expression in response to orally delivered drugs are needed for advances in functional genomics, models of human disease and gene therapy. A regulation system based on the altered binding and activation properties of a truncated ligand-binding domain derived from the progesterone receptor has been shown to be effective in providing tissue-specific, antiprogestin-controllable gene expression in transgenic mice, transgenic fruit flies and animals that have been administered viral-based or plasmid-based gene therapy vectors.
Collapse
|
49
|
Abstract
Transgenic animals have been used for years to study gene function and to create models for the study of human diseases. This approach has become still more justified after the complete sequencing of several genomes. Transgenic animals are ready to become industrial bioreactors for the preparation of pharmaceuticals in milk and probably in the future in egg white. Improvement of animal production by transgenesis is still in infancy. Despite its intensive use, animal transgenesis is still suffering from technical limitations. The generation of transgenics has recently become easier or possible for different species thanks to the use of transposons or retrovirus, to incubation of sperm which DNA followed by fertilization by intracellular sperm injection or not and to the use of the cloning technique using somatic cells in which genes have been added or inactivated. The Cre-LoxP system is more and more used to withdraw a given sequence from the genome or to target the integration of a foreign DNA. The tetracycline system has been improved and can more and more frequently be used to obtain faithful expression of transgenes. Several tools: RNA forming a triple helix with DNA, antisense RNA including double strand RNA inducing RNA interference and ribozymes, and also expression of proteins having a negative transdominant effect, are tentatively being improved to inhibit specifically the expression of host or viral genes.All these techniques are expected to offer experimenters new and more precise models to study gene function even in large animals. Improvement of breeding by transgenesis has become more plausible including through the precise allele replacement in farm animals.
Collapse
Affiliation(s)
- Louis-Marie Houdebine
- Biologie du Développement et Biotechnologies, Institut National de la Recherche Agronomique, 78352 Jouy en JosasCedex, France.
| |
Collapse
|
50
|
Peitz M, Pfannkuche K, Rajewsky K, Edenhofer F. Ability of the hydrophobic FGF and basic TAT peptides to promote cellular uptake of recombinant Cre recombinase: a tool for efficient genetic engineering of mammalian genomes. Proc Natl Acad Sci U S A 2002; 99:4489-94. [PMID: 11904364 PMCID: PMC123675 DOI: 10.1073/pnas.032068699] [Citation(s) in RCA: 267] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2002] [Indexed: 01/12/2023] Open
Abstract
Conditional mutagenesis is a powerful tool to analyze gene functions in mammalian cells. The site-specific recombinase Cre can be used to recombine loxP-modified alleles under temporal and spatial control. However, the efficient delivery of biologically active Cre recombinase to living cells represents a limiting factor. In this study we compared the potential of a hydrophobic peptide modified from Kaposi fibroblast growth factor with a basic peptide derived from HIV-TAT to promote cellular uptake of recombinant Cre. We present the production and characterization of a Cre protein that enters mammalian cells and subsequently performs recombination with high efficiency in a time- and concentration-dependent manner. Histidine-tagged Cre recombinase transduced inefficiently unless fused to a nuclear localization signal (NLS). Fusion of NLS-Cre to the fibroblast growth factor transduction peptide did not improve the transducibility, whereas fusion with the TAT peptide significantly enhanced cellular uptake and subsequent recombination. More than 95% recombination efficiency in fibroblast cells, as well as murine embryonic stem cells, was achieved after His-TAT-NLS-Cre transduction. Efficient recombination could also be obtained in primary splenocytes ex vivo. We expect that application of His-TAT-NLS-Cre, which can be produced readily in large quantities from a bacterial source, will expand our abilities to manipulate mammalian genomes.
Collapse
Affiliation(s)
- Michael Peitz
- Institute for Genetics, University of Cologne, Weyertal 121, 50931 Cologne, Germany
| | | | | | | |
Collapse
|