1
|
Van Dyke MN, Kraft NJB. Changes in flowering phenology with altered rainfall and the potential community impacts in an annual grassland. AMERICAN JOURNAL OF BOTANY 2025; 112:e70000. [PMID: 39907183 DOI: 10.1002/ajb2.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 02/06/2025]
Abstract
PREMISE Shifts in the timing of life history events, or phenology, have been recorded across many taxa and biomes in response to global change. These phenological changes are often studied in a single species context, but considering the community context is essential for anticipating the cascading effects on biotic interactions that are likely to occur. Focusing on an annual grassland plant community, we examined how experimental changes in precipitation affect flowering phenology in a community context and explore the implications of these shifts for competitive interactions and species coexistence. METHODS We experimentally manipulated rainfall with rainout shelters and recorded detailed flowering phenology data for seven annual species including two grasses and five forbs. We assessed how their first and peak flowering days were affected by changes in rainfall and explored how flowering overlap between competing species changed. RESULTS Changes in rainfall shifted flowering phenology of some species, but sensitivity differed among neighboring species. Four of the seven species studied started and/or peaked flowering earlier in response to reduced water availability. The idiosyncratic shifts in flowering phenology have the potential to alter existing temporal dynamics that may be maintaining coexistence, such as temporal separation of resource-use among neighbors. CONCLUSIONS Our results show how species-specific phenological consequences of global change can impact community dynamics and competition between neighboring plants and warrant future research.
Collapse
Affiliation(s)
- Mary N Van Dyke
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, USA
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nathan J B Kraft
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
2
|
Hjermann TKS, Rivrud IM, Meisingset EL, Mysterud A. Multiple drivers of spring migration timing for red deer over the past 16 years in northern Europe. Proc Biol Sci 2025; 292:20240842. [PMID: 39772963 PMCID: PMC11706655 DOI: 10.1098/rspb.2024.0842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/10/2024] [Accepted: 11/15/2024] [Indexed: 01/11/2025] Open
Abstract
The timing of migration is fundamental for species exploiting seasonally variable environments. For ungulates, earlier spring migration is expected with earlier vegetation green-up. However, other drivers, such as access to agricultural farmland and variation in local conditions, are also known to affect migration. We investigated the timing of spring migration for 96 male and 201 female red deer (Cervus elaphus) using a long-term dataset (2005-2020). Overall, the timing of migration was mainly characterized by large individual variability between and within years (95% range 6 April to 18 June). The spring migration timing was, as expected, later with colder winter and spring conditions (North Atlantic Oscillation (NAO) winter and April indices) and later peak vegetation green-up (NDVI), with a five-day delay in green-up causing a migration delay of 1.2 days. Timing was also influenced by local conditions in summer and winter home ranges. Red deer with greater access to farmland and a more variable topography (hence variable plant phenology) in winter delayed migration. Similarly, individuals with higher-elevation summer ranges (with delayed onset of plant growth) also delayed migration. Our analyses highlight that the timing of red deer migration is determined by multiple drivers affecting foraging conditions in the landscape, indicative of considerable phenotypic plasticity.
Collapse
Affiliation(s)
- Tilde Katrina Slotte Hjermann
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, P.O. Box 1066 Blindern, NO-0316, Oslo, Norway
| | - Inger Maren Rivrud
- Norwegian Institute for Nature Research (NINA), Sognsveien 68, NO-0855, Oslo, Norway
| | - Erling L. Meisingset
- Department of Forestry and Forestry Resources, Norwegian Institute of Bioeconomy Research, Tingvoll gard, NO-6630, Tingvoll, Norway
| | - Atle Mysterud
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, P.O. Box 1066 Blindern, NO-0316, Oslo, Norway
- Norwegian Institute for Nature Research (NINA), P. O. Box 5685 Torgarden, NO-7485, Trondheim, Norway
| |
Collapse
|
3
|
Kolanowska M, Scaccabarozzi D. Does Climate Change Pose a Threat to the Guild Mimicry System of Australian Orchids? Ecol Evol 2024; 14:e70633. [PMID: 39659729 PMCID: PMC11628745 DOI: 10.1002/ece3.70633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/08/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
Global warming is one of the biggest threats to global biodiversity causing not only changes in the patterns of precipitation and temperature but also disturbing ecological interactions. The aim of our study was to forecast the effect of climate change on the distribution of food-deceptive orchid species whose pollination strategy relies on a strict association with pollinators and co-occurring rewarding Faboideae plants. We used the ecological niche modeling approach to evaluate future overlap of the suitable niches of studied orchid species with the predicted distribution of their ecological partners. Models were made based on two different global circulation models (FIO, CNRM). CNRM projections predict expansion of orchids' geographical range. In contrast, FIO prediction is less optimistic, forecasting species range contraction. The studied Faboideae species showed different responses to predicted global warming with no consistent patterns in how their suitable niches might change. Most climate change projections and scenarios of the future modifications of temperature and precipitation patterns do not predict significant loss of suitable niches of Trichocolletes bees (Colletidae) pollinating Diuris species. However, global warming has the potential to disrupt interactions between the studied orchids and their co-occurring pea plants by altering the overlap of their geographical ranges which can further disturb pollination success. CNRM projections predict an overall loss of Faboideae within the potential geographical range of Diuris brumalis. Conversely, FIO projections suggest a less extensive predicted divergence. Our simulations offer suggestions for conservation strategies of orchids and potentially for other species that have a similar pollination strategy. The areas indicated here as suitable in the future for the occurrence of all ecological partners can be important climate refugia to consider in local conservation plans. The approach used in our study can serve as a model for understanding the potential effects of climate change on the strength of the pollination system via food deception.
Collapse
Affiliation(s)
- Marta Kolanowska
- Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental ProtectionUniversity of LodzLodzPoland
| | - Daniela Scaccabarozzi
- Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| |
Collapse
|
4
|
Cerezini MT, Rattis L, Furini PR, Pereira RAS. Contrasting Phenological Patterns and Reproductive Strategies in Closely Related Monoecious Fig Tree Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:1889. [PMID: 39065415 PMCID: PMC11280309 DOI: 10.3390/plants13141889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Understanding the ecological and evolutionary aspects of mutualistic interactions is essential for predicting species responses to environmental changes. This study aimed to investigate the phenological patterns and reproductive strategies in two closely related fig tree species, Ficus citrifolia and Ficus eximia. We monitored 99 F. citrifolia and 21 F. eximia trees weekly from January 2006 to April 2011 in an area close to the southern edge of the tropical region in Brazil. Our results revealed contrasting phenological patterns between the two species, with F. citrifolia displaying an annual flowering pattern (1.4 episodes per tree per year) and F. eximia a supra-annual pattern (0.5 episodes per tree per year). We also found significant differences in reproductive strategies, with F. eximia producing more pistillate flowers and, consequently, more seeds and pollinating wasps per fig than F. citrifolia, likely as an adaptation to overcome limitations of low population density by maximizing the gene flow. As the shorter-lived organism, the fig wasp was found to influence critical processes associated with the success and stability of mutualism, such as fig development and ripening. Our findings emphasize the importance of understanding the intricate interactions between mutualistic partners and their adaptive responses to environmental conditions in shaping fig tree populations' reproductive strategies and genetic structure.
Collapse
Affiliation(s)
- Monise T. Cerezini
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira 13484-350, SP, Brazil;
| | - Ludmila Rattis
- Woodwell Climate Research Center, Tropics Program, Falmouth, MA 02540-1644, USA;
- Instituto de Pesquisa Ambiental da Amazônia, Brasília 70863-520, DF, Brazil
| | - Paulo R. Furini
- Pós-Graduação em Biologia Comparada, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-130, SP, Brazil;
| | - Rodrigo A. S. Pereira
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-130, SP, Brazil
| |
Collapse
|
5
|
Paterno J, Korner‐Nievergelt F, Gubler S, Anderwald P, Amrhein V. Alpine songbirds at higher elevations are only raised with a slight delay and therefore under harsher environmental conditions. Ecol Evol 2024; 14:e70049. [PMID: 39071796 PMCID: PMC11272606 DOI: 10.1002/ece3.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024] Open
Abstract
The breeding phenology of birds is often timed to coincide with a peak in food availability. However, the shortening of the vegetation period with increasing elevation may force bird species at high elevations to breed earlier in relation to optimal environmental conditions due to time constraints. We investigated differences in fledging dates in five Alpine woodland songbird species along an elevational gradient from 1500 to 2200 m in Switzerland. We estimated fledging dates from a nationwide citizen science bird monitoring dataset and used the date when the proportion of observations of 'fledged young' reached 50% among all observations indicating breeding behaviour. This measure had the advantage that we could estimate average timing of the broods across a wide geographic range and over many years without the need to search for individual nests. We then compared differences in timing of the broods with climatic conditions and larch budburst across different elevational bands. The daily mean air temperature of 10-15°C was reached 34-38 days later at 2200 m compared to 1500 m, which is a similar delay as found in previous reports on snow melt-out date. The average delay in larch budburst was 19.2 days at 2200 m compared to 1500 m. In comparison, the average timing of the birds' broods was only 5.4 days later in coal tits and 0.5 days later in Alpine tits at 2200 compared to 1500 m (the two species for which we had the narrowest interval estimates). Also, the estimated delay at higher elevations in the broods of song thrushes, mistle thrushes and Eurasian chaffinches was relatively small. Rather than postponing breeding dates to better environmental conditions later in the season that would match the earlier conditions at low elevation, songbirds breeding at higher elevations may thus have evolved adaptations to cope with the harsher conditions.
Collapse
Affiliation(s)
- Julia Paterno
- Department of Environmental SciencesUniversity of BaselBaselSwitzerland
- Department of Research and MonitoringSwiss National ParkZernezSwitzerland
| | - Fränzi Korner‐Nievergelt
- Department of Environmental SciencesUniversity of BaselBaselSwitzerland
- Swiss Ornithological InstituteSempachSwitzerland
| | | | - Pia Anderwald
- Department of Research and MonitoringSwiss National ParkZernezSwitzerland
| | - Valentin Amrhein
- Department of Environmental SciencesUniversity of BaselBaselSwitzerland
- Swiss Ornithological InstituteSempachSwitzerland
| |
Collapse
|
6
|
Weir JC, Phillimore AB. Buffering and phenological mismatch: A change of perspective. GLOBAL CHANGE BIOLOGY 2024; 30:e17294. [PMID: 38738554 DOI: 10.1111/gcb.17294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 05/14/2024]
Abstract
The potential for climate change to disrupt phenology-mediated interactions in interaction networks has attracted considerable attention in recent decades. Frequently, studies emphasize the fragility of ephemeral seasonal interactions, and the risks posed by phenological asynchrony. Here, we argue that the fitness consequences of asynchrony in phenological interactions may often be more buffered than is typically acknowledged. We identify three main forms that buffering may take: (i) mechanisms that reduce asynchrony between consumer and resource; (ii) mechanisms that reduce the costs of being asynchronous; and (iii) mechanisms that dampen interannual variance in performance across higher organizational units. Using synchrony between the hatching of winter moth caterpillars and the leafing of their host-plants as a case study, we identify a wide variety of buffers that reduce the detrimental consequences of phenological asynchrony on caterpillar individuals, populations, and meta-populations. We follow this by drawing on examples across a breadth of taxa, and demonstrate that these buffering mechanisms may be quite general. We conclude by identifying key gaps in our knowledge of the fitness and demographic consequences of buffering, in the context of phenological mismatch. Buffering has the potential to substantially alter our understanding of the biotic impacts of future climate change-a greater recognition of the contribution of these mechanisms may reveal that many trophic interactions are surprisingly resilient, and also serve to shift research emphasis to those systems with fewer buffers and towards identifying the limits of those buffers.
Collapse
Affiliation(s)
- Jamie C Weir
- Institute for Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
7
|
van Dis NE, Salis L, Visser ME. Temperature has an overriding role compared to photoperiod in regulating the seasonal timing of winter moth egg hatching. Oecologia 2024; 204:743-750. [PMID: 38521882 PMCID: PMC11062991 DOI: 10.1007/s00442-024-05535-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/25/2024] [Indexed: 03/25/2024]
Abstract
To accurately predict species' phenology under climate change, we need to gain a detailed mechanistic understanding of how different environmental cues interact to produce the seasonal timing response. In the winter moth (Operophtera brumata), seasonal timing of egg hatching is strongly affected by ambient temperature and has been under strong climate change-induced selection over the past 25 years. However, it is unclear whether photoperiod received at the egg stage also influences timing of egg hatching. Here, we investigated the relative contribution of photoperiod and temperature in regulating winter moth egg development using two split-brood experiments. We experimentally shifted the photoperiod eggs received by 2-4 weeks compared to the actual calendar date and measured the timing of egg hatching, both at a constant temperature and in combination with two naturally changing temperature treatments - mimicking a cold and a warm year. We found an eight-fold larger effect of temperature compared to photoperiod on egg development time. Moreover, the very small photoperiod effects we found were outweighed by both between- and within-clutch variation in egg development time. Thus, we conclude that photoperiod received at the egg stage does likely not play a substantial role in regulating the seasonal timing of egg hatching in the winter moth. These insights into the regulatory mechanism of seasonal timing could have important implications for predicting insect climate change adaptation, as we might expect different targets of selection depending on the relative contribution of different environmental cues.
Collapse
Affiliation(s)
- Natalie E van Dis
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands.
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG, Groningen, The Netherlands.
- Helsinki Institute of Life Science, University of Helsinki, P.O. Box 4, 00014, Helsinki, Finland.
| | - Lucia Salis
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
8
|
Granato C, Campera M, Bulbert M. Sensitivity of Vanessa cardui to Temperature Variations: A Cost-Effective Experiment for Environmental Education. INSECTS 2024; 15:221. [PMID: 38667351 PMCID: PMC11050276 DOI: 10.3390/insects15040221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
Temperature increases mediated through climate change threaten the survival of species. It is of foremost importance to engage citizens and future generations in understanding the mechanisms through which temperatures impose their effects. For educators, this is not straightforward, as tools for examining the impact of temperature over the lifetime of an animal are prohibitively expensive. At the same time, environmental educators need guidance on the appropriate study systems to use with a balance between the species having an obvious response and ensuring the outcomes are ethical and sustainable. In our study, we created and tested a cost-effective experiment meant to be used for environmental education purposes. More specifically, we tested the sensitivity of the painted lady butterfly Vanessa cardui to temperature variations using a homemade incubator. We describe the design of this experiment and report findings on survival rate, morphological variations, development time of various stages and wingspan of adults across a range of biologically relevant temperatures. The information provided gives educators options for testing a variety of hypotheses with regards to the impacts of temperature using an affordable and flexible set-up. Furthermore, the findings can be used by students to develop an understanding of the ramifications of the butterflies' responses in an ecological context.
Collapse
Affiliation(s)
| | - Marco Campera
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (C.G.); (M.B.)
| | | |
Collapse
|
9
|
Robertson EP, La Sorte FA, Mays JD, Taillie PJ, Robinson OJ, Ansley RJ, O’Connell TJ, Davis CA, Loss SR. Decoupling of bird migration from the changing phenology of spring green-up. Proc Natl Acad Sci U S A 2024; 121:e2308433121. [PMID: 38437528 PMCID: PMC10963019 DOI: 10.1073/pnas.2308433121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 01/09/2024] [Indexed: 03/06/2024] Open
Abstract
The green-up of vegetation in spring brings a pulse of food resources that many animals track during migration. However, green-up phenology is changing with climate change, posing an immense challenge for species that time their migrations to coincide with these resource pulses. We evaluated changes in green-up phenology from 2002 to 2021 in relation to the migrations of 150 Western-Hemisphere bird species using eBird citizen science data. We found that green-up phenology has changed within bird migration routes, and yet the migrations of most species align more closely with long-term averages of green-up than with current conditions. Changing green-up strongly influenced phenological mismatches, especially for longer-distance migrants. These results reveal that bird migration may have limited flexibility to adjust to changing vegetation phenology and emphasize the mounting challenge migratory animals face in following en route resources in a changing climate.
Collapse
Affiliation(s)
- Ellen P. Robertson
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK74078
- South Central Climate Adaptation Science Center, Norman, OK73019
| | - Frank A. La Sorte
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT06511
- Center for Biodiversity and Global Change, Yale University, New Haven, CT06511
| | - Jonathan D. Mays
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Gainesville, FL32611
| | - Paul J. Taillie
- Department of Geography and Environment, University of North Carolina at Chapel Hill, Chapel Hill, NC27514
| | | | - Robert J. Ansley
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK74078
| | - Timothy J. O’Connell
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK74078
| | - Craig A. Davis
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK74078
| | - Scott R. Loss
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK74078
| |
Collapse
|
10
|
Briedis M, Hahn S, Bauer S. Duration and variability of spring green-up mediate population consequences of climate change. Ecol Lett 2024; 27:e14380. [PMID: 38348625 DOI: 10.1111/ele.14380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/15/2024]
Abstract
Single phenological measures, like the average rate of phenological advancement, may be insufficient to explain how climate change is driving trends in animal populations. Here, we develop a multifactorial concept of spring phenology-including the onset of spring, spring duration, interannual variability, and their temporal changes-as a driver for population dynamics of migratory terrestrial species in seasonal environments. Using this conceptual model, we found that effects of advancing spring phenology on animal populations may be buffered or amplified depending on the duration and interannual variability of spring green-up, and those effects are modified by evolutionary and plastic adaptations of species. Furthermore, we compared our modelling results with empirical data on normalized difference vegetation index-based spring green-up phenology and population trends of 106 European landbird finding similar associations. We conclude how phenological changes are expected to affect migratory bird populations across Europe and identify regions that are particularly prone to suffer population declines.
Collapse
Affiliation(s)
- Martins Briedis
- Swiss Ornithological Institute, Sempach, Switzerland
- Lab of Ornithology, Institute of Biology, University of Latvia, Riga, Latvia
| | - Steffen Hahn
- Swiss Ornithological Institute, Sempach, Switzerland
| | - Silke Bauer
- Swiss Ornithological Institute, Sempach, Switzerland
- Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- Department of Environmental Systems Science, Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| |
Collapse
|
11
|
Powell KE, Oliver TH, González‐Suárez M, Botham MS, Harrower CA, Comont RF, Middlebrook I, Roy DB. Asynchrony in terrestrial insect abundance corresponds with species traits. Ecol Evol 2024; 14:e10910. [PMID: 38304266 PMCID: PMC10830349 DOI: 10.1002/ece3.10910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
Asynchrony in population abundance can buffer the effects of environmental change leading to greater community and ecosystem stability. Both environmental (abiotic) drivers and species functional (biotic) traits can influence population dynamics leading to asynchrony. However, empirical evidence linking dissimilarity in species traits to abundance asynchrony is limited, especially for understudied taxa such as insects. To fill this knowledge gap, we explored the relationship between pairwise species trait dissimilarity and asynchrony in interannual abundance change between pairs of species for 422 moth, butterfly, and bumblebee species in Great Britain. We also explored patterns differentiating traits that we assumed to capture 'sensitivity to environmental variables' (such as body mass), and traits that may reflect 'diversity in exposure' to environmental conditions and lead to niche partitioning (for example, habitat uses, and intra-annual emergence periods). As expected, species trait dissimilarity calculated overall and for many individual traits representing response and exposure was positively correlated with asynchrony in all three insect groups. We found that 'exposure' traits, especially those relating to the phenology of species, had the strongest relationship with abundance asynchrony from all tested traits. Positive relationships were not simply due to shared evolutionary history leading to similar life-history strategies: detected effects remained significant for most traits after accounting for phylogenetic relationships within models. Our results provide empirical support that dissimilarity in traits linked to species exposure and sensitivity to the environment could be important for temporal dissimilarity in insect abundance. Hence, we suggest that general trait diversity, but especially diversity in 'exposure' traits, could play a significant role in the resilience of insect communities to short-term environmental perturbations through driving asynchrony between species abundances.
Collapse
Affiliation(s)
- Kathryn E. Powell
- UK Centre for Ecology and HydrologyWallingfordOxfordshireUK
- School of Biological SciencesUniversity of ReadingReadingUK
| | - Tom H. Oliver
- School of Biological SciencesUniversity of ReadingReadingUK
| | | | - Marc S. Botham
- UK Centre for Ecology and HydrologyWallingfordOxfordshireUK
| | | | | | | | - David B. Roy
- UK Centre for Ecology and HydrologyWallingfordOxfordshireUK
| |
Collapse
|
12
|
Uphus L, Uhler J, Tobisch C, Rojas-Botero S, Lüpke M, Benjamin C, Englmeier J, Fricke U, Ganuza C, Haensel M, Redlich S, Zhang J, Müller J, Menzel A. Earlier and more uniform spring green-up linked to lower insect richness and biomass in temperate forests. Commun Biol 2023; 6:1052. [PMID: 37935790 PMCID: PMC10630471 DOI: 10.1038/s42003-023-05422-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 10/05/2023] [Indexed: 11/09/2023] Open
Abstract
Urbanization and agricultural intensification are considered the main causes of recent insect decline in temperate Europe, while direct climate warming effects are still ambiguous. Nonetheless, higher temperatures advance spring leaf emergence, which in turn may directly or indirectly affect insects. We therefore investigated how Sentinel-2-derived start of season (SOS) and its spatial variability (SV-SOS) are affected by spring temperature and whether these green-up variables can explain insect biomass and richness across a climate and land-use gradient in southern Germany. We found that the effects of both spring green-up variables on insect biomass and richness differed between land-use types, but were strongest in forests. Here, insect richness and biomass were higher with later green-up (SOS) and higher SV-SOS. In turn, higher spring temperatures advanced SOS, while SV-SOS was lower at warmer sites. We conclude that with a warming climate, insect biomass and richness in forests may be affected negatively due to earlier and more uniform green-up. Promising adaptation strategies should therefore focus on spatial variability in green-up in forests, thus plant species and structural diversity.
Collapse
Affiliation(s)
- Lars Uphus
- Ecoclimatology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
| | - Johannes Uhler
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Julius-Maximilians-Universität Würzburg, Rauhenebrach, Germany
| | - Cynthia Tobisch
- Restoration Ecology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Institute of Ecology and Landscape, Weihenstephan-Triesdorf University of Applied Sciences, Freising, Germany
| | - Sandra Rojas-Botero
- Restoration Ecology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Marvin Lüpke
- Ecoclimatology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Caryl Benjamin
- Ecoclimatology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Jana Englmeier
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Julius-Maximilians-Universität Würzburg, Rauhenebrach, Germany
| | - Ute Fricke
- Department of Animal Ecology and Tropical Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Cristina Ganuza
- Department of Animal Ecology and Tropical Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Maria Haensel
- Professorship of Ecological Services, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Sarah Redlich
- Department of Animal Ecology and Tropical Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Jie Zhang
- Department of Animal Ecology and Tropical Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Jörg Müller
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Julius-Maximilians-Universität Würzburg, Rauhenebrach, Germany
- Bavarian Forest National Park, Grafenau, Germany
| | - Annette Menzel
- Ecoclimatology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| |
Collapse
|
13
|
van Dis NE, Sieperda GJ, Bansal V, van Lith B, Wertheim B, Visser ME. Phenological mismatch affects individual fitness and population growth in the winter moth. Proc Biol Sci 2023; 290:20230414. [PMID: 37608720 PMCID: PMC10445013 DOI: 10.1098/rspb.2023.0414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/17/2023] [Indexed: 08/24/2023] Open
Abstract
Climate change can severely impact species that depend on temporary resources by inducing phenological mismatches between consumer and resource seasonal timing. In the winter moth, warmer winters caused eggs to hatch before their food source, young oak leaves, became available. This phenological mismatch changed the selection on the temperature sensitivity of egg development rate. However, we know little about the fine-scale fitness consequences of phenological mismatch at the individual level and how this mismatch affects population dynamics in the winter moth. To determine the fitness consequences of mistimed egg hatching relative to timing of oak budburst, we quantified survival and pupation weight in a feeding experiment. We found that mismatch greatly increased mortality rates of freshly hatched caterpillars, as well as affecting caterpillar growth and development time. We then investigated whether these individual fitness consequences have population-level impacts by estimating the effect of phenological mismatch on population dynamics, using our long-term data (1994-2021) on relative winter moth population densities at four locations in The Netherlands. We found a significant effect of mismatch on population density with higher population growth rates in years with a smaller phenological mismatch. Our results indicate that climate change-induced phenological mismatch can incur severe individual fitness consequences that can impact population density in the wild.
Collapse
Affiliation(s)
- Natalie E. van Dis
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Geert-Jan Sieperda
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands
| | - Vidisha Bansal
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Bart van Lith
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands
| | - Bregje Wertheim
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Marcel E. Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
14
|
Xia Q, Chen C, Dopman EB, Hahn DA. Divergence in cell cycle progression is associated with shifted phenology in a multivoltine moth: the European corn borer, Ostrinia nubilalis. J Exp Biol 2023; 226:jeb245244. [PMID: 37293992 PMCID: PMC10281267 DOI: 10.1242/jeb.245244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Evolutionary change in diapause timing can be an adaptive response to changing seasonality, and even result in ecological speciation. However, the molecular and cellular mechanisms regulating shifts in diapause timing remain poorly understood. One of the hallmarks of diapause is a massive slowdown in the cell cycle of target organs such as the brain and primordial imaginal structures, and resumption of cell cycle proliferation is an indication of diapause termination and resumption of development. Characterizing cell cycle parameters between lineages differing in diapause life history timing may help identify molecular mechanisms associated with alterations of diapause timing. We tested the extent to which progression of the cell cycle differs across diapause between two genetically distinct European corn borer strains that differ in their seasonal diapause timing. We show the cell cycle slows down during larval diapause with a significant decrease in the proportion of cells in S phase. Brain-subesophageal complex cells slow primarily in G0/G1 phase whereas most wing disc cells are in G2 phase. Diapausing larvae of the earlier emerging, bivoltine E-strain (BE) suppressed cell cycle progression less than the later emerging, univoltine Z-strain (UZ) individuals, with a greater proportion of cells in S phase across both tissues during diapause. Additionally, resumption of cell cycle proliferation occurred earlier in the BE strain than in the UZ strain after exposure to diapause-terminating conditions. We propose that regulation of cell cycle progression rates ultimately drives differences in larval diapause termination, and adult emergence timing, between early- and late-emerging European corn borer strains.
Collapse
Affiliation(s)
- Qinwen Xia
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA
| | - Chao Chen
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA
| | - Erik B. Dopman
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Daniel A. Hahn
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
15
|
Climate, landscape, and life history jointly predict multidecadal community mosquito phenology. Sci Rep 2023; 13:3866. [PMID: 36890171 PMCID: PMC9995322 DOI: 10.1038/s41598-023-30751-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/28/2023] [Indexed: 03/10/2023] Open
Abstract
Phenology of adult host-seeking female mosquitoes is a critical component for understanding potential for vector-borne pathogen maintenance and amplification in the natural environment. Despite this importance, long-term multi-species investigations of mosquito phenologies across environments and differing species' life history traits are rare. Here we leverage long-term mosquito control district monitoring data to characterize annual phenologies of 7 host-seeking female mosquito species over a 20-year time period in suburban Illinois, USA. We also assembled data on landscape context, categorized into low and medium development, climate variables including precipitation, temperature and humidity, and key life history traits, i.e. overwintering stage and Spring-Summer versus Summer-mid-Fallseason fliers. We then fit linear mixed models separately for adult onset, peak abundances, and flight termination with landscape, climate and trait variables as predictors with species as a random effect. Model results supported some expectations, including warmer spring temperatures leading to earlier onset, warmer temperatures and lower humidity leading to earlier peak abundances, and warmer and wetter fall conditions leading to later termination. However, we also found sometimes complex interactions and responses contrary to our predictions. For example, temperature had generally weak support on its own, impacting onset and peak abundance timing; rather temperature has interacting effects with humidity or precipitation. We also found higher spring precipitation, especially in low development contexts, generally delayed adult onset, counter to expectations. These results emphasize the need to consider how traits, landscape and climatic factors all interact to determine mosquito phenology, when planning management strategies for vector control and public health protection.
Collapse
|
16
|
Pfeilsticker TR, Jones RC, Steane DA, Vaillancourt RE, Potts BM. Molecular insights into the dynamics of species invasion by hybridisation in Tasmanian eucalypts. Mol Ecol 2023; 32:2913-2929. [PMID: 36807951 DOI: 10.1111/mec.16892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/26/2022] [Accepted: 01/26/2023] [Indexed: 02/22/2023]
Abstract
In plants where seed dispersal is limited compared with pollen dispersal, hybridisation may enhance gene exchange and species dispersal. We provide genetic evidence of hybridisation contributing to the expansion of the rare Eucalyptus risdonii into the range of the widespread Eucalyptus amygdalina. These closely related tree species are morphologically distinct, and observations suggest that natural hybrids occur along their distribution boundaries and as isolated trees or in small patches within the range of E. amygdalina. Hybrid phenotypes occur outside the range of normal dispersal for E. risdonii seed, yet in some hybrid patches small individuals resembling E. risdonii occur and are hypothesised to be a result of backcrossing. Using 3362 genome-wide SNPs assessed from 97 individuals of E. risdonii and E. amygdalina and 171 hybrid trees, we show that (i) isolated hybrids match the genotypes expected of F1 /F2 hybrids, (ii) there is a continuum in the genetic composition among the isolated hybrid patches from patches dominated by F1 /F2 -like genotypes to those dominated by E. risdonii-backcross genotypes, and (iii) the E. risdonii-like phenotypes in the isolated hybrid patches are most-closely related to proximal larger hybrids. These results suggest that the E. risdonii phenotype has been resurrected in isolated hybrid patches established from pollen dispersal, providing the first steps in its invasion of suitable habitat by long-distance pollen dispersal and complete introgressive displacement of E. amygdalina. Such expansion accords with the population demographics, common garden performance data, and climate modelling which favours E. risdonii and highlights a role of interspecific hybridisation in climate change adaptation and species expansion.
Collapse
Affiliation(s)
- Thais R Pfeilsticker
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Rebecca C Jones
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Dorothy A Steane
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - René E Vaillancourt
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Brad M Potts
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
17
|
Zhou Y, Zhang H, Liu D, Khashaveh A, Li Q, Wyckhuys KA, Wu K. Long-term insect censuses capture progressive loss of ecosystem functioning in East Asia. SCIENCE ADVANCES 2023; 9:eade9341. [PMID: 36735783 PMCID: PMC9897670 DOI: 10.1126/sciadv.ade9341] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/05/2023] [Indexed: 05/13/2023]
Abstract
Insects provide critical ecosystem services such as biological pest control, in which natural enemies (NE) regulate the populations of crop-feeding herbivores (H). While H-NE dynamics are routinely studied at small spatiotemporal scales, multiyear assessments over entire agrolandscapes are rare. Here, we draw on 18-year radar and searchlight trapping datasets (2003-2020) from eastern Asia to (i) assess temporal population trends of 98 airborne insect species and (ii) characterize the associated H-NE interplay. Although NE consistently constrain interseasonal H population growth, their summer abundance declined by 19.3% over time and prominent agricultural pests abandoned their equilibrium state. Within food webs composed of 124 bitrophic couplets, NE abundance annually fell by 0.7% and network connectance dropped markedly. Our research unveils how a progressive decline in insect numbers debilitates H trophic regulation and ecosystem stability at a macroscale, carrying implications for food security and (agro)ecological resilience during times of global environmental change.
Collapse
Affiliation(s)
| | | | - Dazhong Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Qian Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Kris A. G. Wyckhuys
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| |
Collapse
|
18
|
Abstract
Although it is generally more adaptive for insects to produce additional generations than to have longer life cycles, some insects produce one or fewer generations per year (univoltine or semivoltine life cycles, respectively). Some insects with the potential to produce multiple generations per year produce a univoltine life cycle in response to environmental conditions. Obligatory univoltine insects have a single long diapause or multiple diapauses in different seasons. Semivoltine insects have multiple diapauses in different years, a prolonged diapause for more than a year, or diapause controlled by a circannual rhythm. Diapause in these insects greatly varies among species both in the physiological mechanism and in the evolutionary background, and there is no general rule defining it. In this review, we survey the physiological control of univoltine and semivoltine insects' diapause and discuss the adaptive significance of the long life cycles. Although constraints such as slow development are sometimes responsible for these life cycles, the benefits of these life cycles can be explained by bet-hedging in many cases. We also discuss the effect of climate warming on these life cycles as a future area of research.
Collapse
Affiliation(s)
- Hideharu Numata
- Institute for the Future of Human Society, Kyoto University, Kyoto, Japan;
| | - Yoshinori Shintani
- Laboratory of Entomology, Department of Environmental and Horticultural Sciences, Minami Kyushu University, Miyakonojo, Japan;
| |
Collapse
|
19
|
Prather RM, Dalton RM, barr B, Blumstein DT, Boggs CL, Brody AK, Inouye DW, Irwin RE, Martin JGA, Smith RJ, Van Vuren DH, Wells CP, Whiteman HH, Inouye BD, Underwood N. Current and lagged climate affects phenology across diverse taxonomic groups. Proc Biol Sci 2023; 290:20222181. [PMID: 36629105 PMCID: PMC9832555 DOI: 10.1098/rspb.2022.2181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/01/2022] [Indexed: 01/12/2023] Open
Abstract
The timing of life events (phenology) can be influenced by climate. Studies from around the world tell us that climate cues and species' responses can vary greatly. If variation in climate effects on phenology is strong within a single ecosystem, climate change could lead to ecological disruption, but detailed data from diverse taxa within a single ecosystem are rare. We collated first sighting and median activity within a high-elevation environment for plants, insects, birds, mammals and an amphibian across 45 years (1975-2020). We related 10 812 phenological events to climate data to determine the relative importance of climate effects on species' phenologies. We demonstrate significant variation in climate-phenology linkage across taxa in a single ecosystem. Both current and prior climate predicted changes in phenology. Taxa responded to some cues similarly, such as snowmelt date and spring temperatures; other cues affected phenology differently. For example, prior summer precipitation had no effect on most plants, delayed first activity of some insects, but advanced activity of the amphibian, some mammals, and birds. Comparing phenological responses of taxa at a single location, we find that important cues often differ among taxa, suggesting that changes to climate may disrupt synchrony of timing among taxa.
Collapse
Affiliation(s)
- Rebecca M. Prather
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| | - Rebecca M. Dalton
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - billy barr
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| | - Daniel T. Blumstein
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Carol L. Boggs
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Alison K. Brody
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - David W. Inouye
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Rebecca E. Irwin
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA
| | - Julien G. A. Martin
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 9A7
| | - Rosemary J. Smith
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
| | - Dirk H. Van Vuren
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Wildlife, Fish, and Conservation Biology, University of California Davis, Davis, CA, USA
| | - Caitlin P. Wells
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Howard H. Whiteman
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Biological Sciences, Murray State University, Murray, KY 42071, USA
| | - Brian D. Inouye
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| | - Nora Underwood
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| |
Collapse
|
20
|
Park JS, Post E. Seasonal timing on a cyclical Earth: Towards a theoretical framework for the evolution of phenology. PLoS Biol 2022; 20:e3001952. [PMID: 36574457 PMCID: PMC9829184 DOI: 10.1371/journal.pbio.3001952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/09/2023] [Indexed: 12/29/2022] Open
Abstract
Phenology refers to the seasonal timing patterns commonly exhibited by life on Earth, from blooming flowers to breeding birds to human agriculture. Climate change is altering abiotic seasonality (e.g., longer summers) and in turn, phenological patterns contained within. However, how phenology should evolve is still an unsolved problem. This problem lies at the crux of predicting future phenological changes that will likely have substantial ecosystem consequences, and more fundamentally, of understanding an undeniably global phenomenon. Most studies have associated proximate environmental variables with phenological responses in case-specific ways, making it difficult to contextualize observations within a general evolutionary framework. We outline the complex but universal ways in which seasonal timing maps onto evolutionary fitness. We borrow lessons from life history theory and evolutionary demography that have benefited from a first principles-based theoretical scaffold. Lastly, we identify key questions for theorists and empiricists to help advance our general understanding of phenology.
Collapse
Affiliation(s)
- John S. Park
- Department of Biology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Eric Post
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
21
|
van Dis NE, Risse JE, Pijl AS, Hut RA, Visser ME, Wertheim B. Transcriptional regulation underlying the temperature response of embryonic development rate in the winter moth. Mol Ecol 2022; 31:5795-5812. [PMID: 36161402 PMCID: PMC9828122 DOI: 10.1111/mec.16705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 01/13/2023]
Abstract
Climate change will strongly affect the developmental timing of insects, as their development rate depends largely on ambient temperature. However, we know little about the genetic mechanisms underlying the temperature sensitivity of embryonic development in insects. We investigated embryonic development rate in the winter moth (Operophtera brumata), a species with egg dormancy which has been under selection due to climate change. We used RNA sequencing to investigate which genes are involved in the regulation of winter moth embryonic development rate in response to temperature. Over the course of development, we sampled eggs before and after an experimental change in ambient temperature, including two early development weeks when the temperature sensitivity of eggs is low and two late development weeks when temperature sensitivity is high. We found temperature-responsive genes that responded in a similar way across development, as well as genes with a temperature response specific to a particular development week. Moreover, we identified genes whose temperature effect size changed around the switch in temperature sensitivity of development rate. Interesting candidate genes for regulating the temperature sensitivity of egg development rate included genes involved in histone modification, hormonal signalling, nervous system development and circadian clock genes. The diverse sets of temperature-responsive genes we found here indicate that there are many potential targets of selection to change the temperature sensitivity of embryonic development rate. Identifying for which of these genes there is genetic variation in wild insect populations will give insight into their adaptive potential in the face of climate change.
Collapse
Affiliation(s)
- Natalie E. van Dis
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands,Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Judith E. Risse
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Agata S. Pijl
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Roelof A. Hut
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Marcel E. Visser
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands,Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Bregje Wertheim
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
22
|
Cao R, Lu G, Zhang T, Li Z, Wu X, Sun S. Invertebrate herbivory accelerates shift towards forbs caused by warming in a sedge‐dominated alpine meadow. Ecosphere 2022. [DOI: 10.1002/ecs2.4230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Rui Cao
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake, Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Huaiyin Normal University Huaian China
- Department of Ecology, School of Life Sciences Nanjing University Nanjing China
| | - Guihua Lu
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake, Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Huaiyin Normal University Huaian China
| | - Tong Zhang
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake, Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Huaiyin Normal University Huaian China
| | - Zhengpeng Li
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake, Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Huaiyin Normal University Huaian China
| | - Xinwei Wu
- Department of Ecology, School of Life Sciences Nanjing University Nanjing China
| | - Shucun Sun
- Department of Ecology, School of Life Sciences Nanjing University Nanjing China
| |
Collapse
|
23
|
Wolkovich EM, Chamberlain CJ, Buonaiuto DM, Ettinger AK, Morales-Castilla I. Integrating experiments to predict interactive cue effects on spring phenology with warming. THE NEW PHYTOLOGIST 2022; 235:1719-1728. [PMID: 35599356 DOI: 10.1111/nph.18269] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Climate change has advanced plant phenology globally 4-6 d °C-1 on average. Such shifts are some of the most reported and predictable biological impacts of rising temperatures. Yet as climate change has marched on, phenological shifts have appeared muted over recent decades - failing to match simple predictions of an advancing spring with continued warming. The main hypothesis for these changing trends is that interactions between spring phenological cues - long-documented in laboratory environments - are playing a greater role in natural environments due to climate change. Here, we argue that accurately linking shifts observed in long-term data to underlying phenological cues is slowed by biases in observational studies and limited integration of insights from laboratory studies. We synthesize seven decades of laboratory experiments to quantify how phenological cue-space has been studied and how treatments compare with shifts caused by climate change. Most studies focus on one cue, limiting our ability to make accurate predictions, but some well-studied forest species offer opportunities to advance forecasting. We outline how greater integration of controlled-environment studies with long-term data could drive a new generation of laboratory experiments, built on physiological insights, that would transform our fundamental understanding of phenology and improve predictions.
Collapse
Affiliation(s)
- E M Wolkovich
- Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Arnold Arboretum of Harvard University, 1300 Centre Street, Boston, MA, 02131, USA
- Organismic & Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - C J Chamberlain
- Arnold Arboretum of Harvard University, 1300 Centre Street, Boston, MA, 02131, USA
- Organismic & Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - D M Buonaiuto
- Arnold Arboretum of Harvard University, 1300 Centre Street, Boston, MA, 02131, USA
- Organismic & Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - A K Ettinger
- The Nature Conservancy, 74 Wall Street, Seattle, WA, 98121, USA
| | - I Morales-Castilla
- Department of Life Sciences, Global Change Ecology and Evolution Group, Universidad de Alcalá, Alcalá de Henares, 28805, Spain
| |
Collapse
|
24
|
Tamian A, Viblanc VA, Dobson FS, Neuhaus P, Hammer TL, Nesterova AP, Raveh S, Skibiel AL, Broussard D, Manno TG, Rajamani N, Saraux C. Integrating microclimatic variation in phenological responses to climate change: A 28‐year study in a hibernating mammal. Ecosphere 2022. [DOI: 10.1002/ecs2.4059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Anouch Tamian
- Département Ecologie, Physiologie et Ethologie Institut Pluridisciplinaire Hubert Curien, CNRS Strasbourg France
| | - Vincent A. Viblanc
- Département Ecologie, Physiologie et Ethologie Institut Pluridisciplinaire Hubert Curien, CNRS Strasbourg France
| | - F. Stephen Dobson
- Département Ecologie, Physiologie et Ethologie Institut Pluridisciplinaire Hubert Curien, CNRS Strasbourg France
- Department of Biological Sciences Auburn University Auburn Alabama USA
| | - Peter Neuhaus
- Department of Biological Sciences University of Calgary Calgary Canada
| | - Tracey L. Hammer
- Département Ecologie, Physiologie et Ethologie Institut Pluridisciplinaire Hubert Curien, CNRS Strasbourg France
- Department of Biological Sciences University of Calgary Calgary Canada
| | | | - Shirley Raveh
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| | - Amy L. Skibiel
- Department of Animal, Veterinary and Food Sciences University of Idaho Moscow Idaho USA
| | - David Broussard
- Department of Biology Lycoming College Williamsport Pennsylvania USA
| | - Theodore G. Manno
- Science Department Catalina Foothills High School Tucson Arizona USA
| | - Nandini Rajamani
- Indian Institute of Science Education and Research Tirupati Andhra Pradesh India
| | - Claire Saraux
- Département Ecologie, Physiologie et Ethologie Institut Pluridisciplinaire Hubert Curien, CNRS Strasbourg France
| |
Collapse
|
25
|
Rudolf VHW. Temperature and nutrient conditions modify the effects of phenological shifts in predator-prey communities. Ecology 2022; 103:e3704. [PMID: 35357008 DOI: 10.1002/ecy.3704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 11/10/2022]
Abstract
While there is mounting evidence indicating that the relative timing of predator and prey phenologies shapes the outcome of trophic interactions, we still lack a comprehensive understanding of how important the environmental context (e.g. abiotic conditions) is for shaping this relationship. Environmental conditions not only frequently drive shifts in phenologies, but they can also affect the very same processes that mediate the effects of phenological shifts on species interactions. Thus, identifying how environmental conditions shape the effects of phenological shifts is key to predict community dynamics across a heterogenous landscape and how they will change with ongoing climate change in the future. Here I tested how environmental conditions shape effects of phenological shifts by experimentally manipulating temperature, nutrient availability, and relative phenologies in two predator-prey freshwater systems (mole salamander- bronze frog vs dragonfly larvae-leopard frog). This allowed me to (1) isolate the effect of phenological shifts and different environmental conditions, (2) determine how they interact, and (3) how consistent these patterns are across different species and environments. I found that delaying prey arrival dramatically increased predation rates, but these effects were contingent on environmental conditions and predator system. While both nutrient addition and warming significantly enhanced the effect of arrival time, their effect was qualitatively different across systems: Nutrient addition enhanced the positive effect of early arrival in the dragonfly-leopard frog system, while warming enhanced the negative effect of arriving late in the salamander-bronze frog system. Predator responses varied qualitatively across predator-prey systems. Only in the system with strong gape-limitation were predators (salamanders) significantly affected by prey arrival time and this effect varied with environmental context. Correlations between predator and prey demographic rates suggest that this was driven by shifts in initial predator-prey size ratios and a positive feedback between size-specific predation rates and predator growth rates. These results highlight the importance of accounting for temporal and spatial correlation of local environmental conditions and gape-limitation in predator-prey systems when predicting the effects of phenological shifts and climate change on predator-prey systems.
Collapse
Affiliation(s)
- V H W Rudolf
- BioSciences, Rice University, Houston, Texas, USA
| |
Collapse
|
26
|
Katal N, Rzanny M, Mäder P, Wäldchen J. Deep Learning in Plant Phenological Research: A Systematic Literature Review. FRONTIERS IN PLANT SCIENCE 2022; 13:805738. [PMID: 35371160 PMCID: PMC8969581 DOI: 10.3389/fpls.2022.805738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Climate change represents one of the most critical threats to biodiversity with far-reaching consequences for species interactions, the functioning of ecosystems, or the assembly of biotic communities. Plant phenology research has gained increasing attention as the timing of periodic events in plants is strongly affected by seasonal and interannual climate variation. Recent technological development allowed us to gather invaluable data at a variety of spatial and ecological scales. The feasibility of phenological monitoring today and in the future depends heavily on developing tools capable of efficiently analyzing these enormous amounts of data. Deep Neural Networks learn representations from data with impressive accuracy and lead to significant breakthroughs in, e.g., image processing. This article is the first systematic literature review aiming to thoroughly analyze all primary studies on deep learning approaches in plant phenology research. In a multi-stage process, we selected 24 peer-reviewed studies published in the last five years (2016-2021). After carefully analyzing these studies, we describe the applied methods categorized according to the studied phenological stages, vegetation type, spatial scale, data acquisition- and deep learning methods. Furthermore, we identify and discuss research trends and highlight promising future directions. We present a systematic overview of previously applied methods on different tasks that can guide this emerging complex research field.
Collapse
Affiliation(s)
- Negin Katal
- Max Planck Institute for Biogeochemistry, Jena, Germany
| | | | - Patrick Mäder
- Data-Intensive Systems and Visualisation, Technische Universität Ilmenau, Ilmenau, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Jana Wäldchen
- Max Planck Institute for Biogeochemistry, Jena, Germany
| |
Collapse
|
27
|
Banko PC, Peck RW, Yelenik SG, Paxton EH, Bonaccorso F, Montoya‐Aiona K, Hughes RF, Perakis S. Hypotheses and lessons from a native moth outbreak in a low‐diversity, tropical rainforest. Ecosphere 2022. [DOI: 10.1002/ecs2.3926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Paul C. Banko
- Pacific Island Ecosystems Research Center U.S. Geological Survey Hawai‘i National Park Hawai'i USA
| | - Robert W. Peck
- Hawai‘i Cooperative Studies Unit University of Hawai‘i at Hilo Hawai‘i National Park Hawai'i USA
| | - Stephanie G. Yelenik
- Pacific Island Ecosystems Research Center U.S. Geological Survey Hawai‘i National Park Hawai'i USA
- Rocky Mountain Research Center U.S. Forest Service Reno Nevada USA
| | - Eben H. Paxton
- Pacific Island Ecosystems Research Center U.S. Geological Survey Hawai‘i National Park Hawai'i USA
| | - Frank Bonaccorso
- Pacific Island Ecosystems Research Center U.S. Geological Survey Hawai‘i National Park Hawai'i USA
| | - Kristina Montoya‐Aiona
- Pacific Island Ecosystems Research Center U.S. Geological Survey Hawai‘i National Park Hawai'i USA
| | - R. Flint Hughes
- Institute for Pacific Island Forestry U.S. Forest Service Hilo Hawai'i USA
| | - Steven Perakis
- Forest and Rangeland Ecosystem Science Center U.S. Geological Survey Corvallis Oregon USA
| |
Collapse
|
28
|
Shoemaker LG, Hallett LM, Zhao L, Reuman DC, Wang S, Cottingham KL, Hobbs RJ, Castorani MCN, Downing AL, Dudney JC, Fey SB, Gherardi LA, Lany N, Portales-Reyes C, Rypel AL, Sheppard LW, Walter JA, Suding KN. The long and the short of it: Mechanisms of synchronous and compensatory dynamics across temporal scales. Ecology 2022; 103:e3650. [PMID: 35112356 PMCID: PMC9285558 DOI: 10.1002/ecy.3650] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/23/2021] [Indexed: 11/07/2022]
Abstract
Synchronous dynamics (fluctuations that occur in unison) are universal phenomena with widespread implications for ecological stability. Synchronous dynamics can amplify the destabilizing effect of environmental variability on ecosystem functions such as productivity, whereas the inverse, compensatory dynamics, can stabilize function. Here we combine simulation and empirical analyses to elucidate mechanisms that underlie patterns of synchronous versus compensatory dynamics. In both simulated and empirical communities, we show that synchronous and compensatory dynamics are not mutually exclusive but instead can vary by timescale. Our simulations identify multiple mechanisms that can generate timescale‐specific patterns, including different environmental drivers, diverse life histories, dispersal, and non‐stationary dynamics. We find that traditional metrics for quantifying synchronous dynamics are often biased toward long‐term drivers and may miss the importance of short‐term drivers. Our findings indicate key mechanisms to consider when assessing synchronous versus compensatory dynamics and our approach provides a pathway for disentangling these dynamics in natural systems.
Collapse
Affiliation(s)
| | - Lauren M Hallett
- Environmental Studies Program and Department of Biology, University of Oregon, Eugene, Oregon, USA
| | - Lei Zhao
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Daniel C Reuman
- Department of Ecology and Evolutionary Biology and Kansas Biological Survey, University of Kansas, Higuchi Hall, 2101 Constant Ave, Lawrence, Kansas, USA
| | - Shaopeng Wang
- Department of Ecology, College of Urban and Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Kathryn L Cottingham
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Richard J Hobbs
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Max C N Castorani
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Amy L Downing
- Department of Zoology, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Joan C Dudney
- Department of Plant Sciences, UC Davis, Davis, California, United States.,Department of Environmental Science Policy and Management, University of California at Berkeley, Berkeley, California, USA
| | - Samuel B Fey
- Department of Biology, Reed College, Portland, Oregon, USA
| | - Laureano A Gherardi
- Global Drylands Center and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Nina Lany
- Department of Forestry, Michigan State University, East Lansing, Michigan, USA
| | - Cristina Portales-Reyes
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, USA
| | - Andrew L Rypel
- Department of Fish, Wildlife & Conservation Biology, and Center for Watershed Sciences, University of California, Davis, California, USA
| | - Lawrence W Sheppard
- Department of Ecology and Evolutionary Biology and Kansas Biological Survey, University of Kansas, Higuchi Hall, 2101 Constant Ave, Lawrence, Kansas, USA
| | - Jonathan A Walter
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA.,Ronin Institute for Independent Scholarship, Montclair, New Jersey, United States
| | - Katharine N Suding
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
29
|
Chik HYJ, Estrada C, Wang Y, Tank P, Lord A, Schroeder J. Individual variation in reaction norms but no directional selection in reproductive plasticity of a wild passerine population. Ecol Evol 2022; 12:e8582. [PMID: 35222960 PMCID: PMC8844119 DOI: 10.1002/ece3.8582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 11/08/2022] Open
Abstract
In the plant-insect-insectivorous bird food chain, directional changes in climate can result in mismatched phenology, potentially affecting selection pressures. Phenotypic plasticity in the timing of breeding, characterized by reaction norm slopes, can help maximize fitness when faced with earlier prey emergence. In temperate passerines, the timing of tree budburst influences food availability for chicks through caterpillar phenology and the resulting food abundance patterns. Thus, the timing of tree budburst might serve as a more direct proxy for the cue to time egg-laying. The evolutionary potential of breeding plasticity relies on heritable variation, which is based upon individual variation, yet studies on individual variation in plasticity are few. Here, we tested for the laying date-budburst date and the clutch size-laying date reaction norms, and examined 1) the among-individual variance in reaction norm intercepts and slopes; and 2) the selection differentials and gradients on these intercepts and slopes. Using long-term data of oak (genus Quercus) budburst and blue tit (Cyanistes caeruleus) reproduction, we applied within-subject centering to detect reaction norms, followed by bivariate random regression to quantify among-individual variance in reaction norm properties and their covariance with fitness. Individuals significantly differed in intercepts and slopes of both laying date-budburst date and clutch size-laying date reaction norms, and directional selection was present for an earlier laying date and a larger clutch size (intercepts), but not on plasticity (slopes). We found that individuals have their own regimes for adjusting egg-laying and clutch size. This study provides further support of individual variation of phenotypic plasticity in birds.
Collapse
Affiliation(s)
| | | | - Yiqing Wang
- Department of Life SciencesImperial College LondonAscotUK
| | - Priyesha Tank
- Department of Life SciencesImperial College LondonAscotUK
| | - Alex Lord
- Department of Life SciencesImperial College LondonAscotUK
| | | |
Collapse
|
30
|
Visser ME, Lindner M, Gienapp P, Long MC, Jenouvrier S. Recent natural variability in global warming weakened phenological mismatch and selection on seasonal timing in great tits ( Parus major). Proc Biol Sci 2021; 288:20211337. [PMID: 34814747 PMCID: PMC8611334 DOI: 10.1098/rspb.2021.1337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/29/2021] [Indexed: 11/12/2022] Open
Abstract
Climate change has led to phenological shifts in many species, but with large variation in magnitude among species and trophic levels. The poster child example of the resulting phenological mismatches between the phenology of predators and their prey is the great tit (Parus major), where this mismatch led to directional selection for earlier seasonal breeding. Natural climate variability can obscure the impacts of climate change over certain periods, weakening phenological mismatching and selection. Here, we show that selection on seasonal timing indeed weakened significantly over the past two decades as increases in late spring temperatures have slowed down. Consequently, there has been no further advancement in the date of peak caterpillar food abundance, while great tit phenology has continued to advance, thereby weakening the phenological mismatch. We thus show that the relationships between temperature, phenologies of prey and predator, and selection on predator phenology are robust, also in times of a slowdown of warming. Using projected temperatures from a large ensemble of climate simulations that take natural climate variability into account, we show that prey phenology is again projected to advance faster than great tit phenology in the coming decades, and therefore that long-term global warming will intensify phenological mismatches.
Collapse
Affiliation(s)
- Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Melanie Lindner
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Phillip Gienapp
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands
- Michael-Otto-Institut im NABU, Research and Education Centre for Avian and Wetland Conservation, Goosstroot 1, 24861 Bergenhusen, Germany
| | - Matthew C Long
- Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000, USA
| | | |
Collapse
|
31
|
Ekholm A, Faticov M, Tack AJM, Berger J, Stone GN, Vesterinen E, Roslin T. Community phenology of insects on oak: local differentiation along a climatic gradient. Ecosphere 2021. [DOI: 10.1002/ecs2.3785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Adam Ekholm
- Department of Ecology Swedish University of Agricultural Sciences Box 7044 Uppsala SE‐750 07 Sweden
| | - Maria Faticov
- Department of Ecology, Environment and Plant Sciences Stockholm University Svante Arrhenius väg 20A Stockholm Sweden
| | - Ayco J. M. Tack
- Department of Ecology, Environment and Plant Sciences Stockholm University Svante Arrhenius väg 20A Stockholm Sweden
| | - Josef Berger
- Department of Biology Biodiversity Unit Lund University Sölvegatan 37 Lund 22362 Sweden
| | - Graham N. Stone
- Institute of Evolutionary Biology University of Edinburgh Edinburgh EH9 3FL United Kingdom
| | - Eero Vesterinen
- Department of Ecology Swedish University of Agricultural Sciences Box 7044 Uppsala SE‐750 07 Sweden
- Department of Biology University of Turku Vesilinnantie 5 Turku FI‐20014 Finland
| | - Tomas Roslin
- Department of Ecology Swedish University of Agricultural Sciences Box 7044 Uppsala SE‐750 07 Sweden
| |
Collapse
|
32
|
Bariles JB, Cocucci AA, Soteras F. Pollination and fitness of a hawkmoth-pollinated plant are related to light pollution and tree cover. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abstract
Urbanization results in biodiversity-damaging land use change since it is normally associated with reduced vegetation cover and installation of artificial lights. Light pollution raises illumination levels of night skies and affects the behaviour of hawkmoths and their interactions with plants. In addition to feeding on flowers, adult hawkmoths require adequate daytime resting sites and specific host plants on which their caterpillars can feed. In this study, we assessed the relationships of light pollution and tree cover with pollen load and plant fitness of Erythrostemon gilliesii, a legume native to Argentina which exclusively depends on pollination by long-proboscid hawkmoths. We determined stigmatic pollen load, and seed and fruit set at six sites in Central Argentina. Plants growing in sites with highest light pollution and lowest tree cover received the least pollen loads on their stigmas. Where tree cover was lowest, germinated pollen load and plant fitness were lowest, even where light pollution was low. We found that light pollution together with tree cover may affect pollination, thus indirectly influencing the fitness of nocturnally pollinated plants. However, the indirect influence of light pollution on plant fitness may be dependent on the conservation status of neighbouring natural habitats, since in low light-polluted sites, tree cover seems to be the major factor influencing plant fitness.
Collapse
Affiliation(s)
- Julieta Belén Bariles
- Laboratorio de Ecología Evolutiva y Biología Floral, IMBIV, CONICET and Universidad Nacional de Córdoba, Casilla de Correo 495, X5000ZAA Córdoba, Argentina
| | - Andrea A Cocucci
- Laboratorio de Ecología Evolutiva y Biología Floral, IMBIV, CONICET and Universidad Nacional de Córdoba, Casilla de Correo 495, X5000ZAA Córdoba, Argentina
| | - Florencia Soteras
- Laboratorio de Ecología Evolutiva y Biología Floral, IMBIV, CONICET and Universidad Nacional de Córdoba, Casilla de Correo 495, X5000ZAA Córdoba, Argentina
| |
Collapse
|
33
|
Meger J, Ulaszewski B, Burczyk J. Genomic signatures of natural selection at phenology-related genes in a widely distributed tree species Fagus sylvatica L. BMC Genomics 2021; 22:583. [PMID: 34332553 PMCID: PMC8325806 DOI: 10.1186/s12864-021-07907-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Diversity among phenology-related genes is predicted to be a contributing factor in local adaptations seen in widely distributed plant species that grow in climatically variable geographic areas, such as forest trees. European beech (Fagus sylvatica L.) is widespread, and is one of the most important broadleaved tree species in Europe; however, its potential for adaptation to climate change is a matter of uncertainty, and little is known about the molecular basis of climate change-relevant traits like bud burst. RESULTS We explored single nucleotide polymorphisms (SNP) at candidate genes related to bud burst in beech individuals sampled across 47 populations from Europe. SNP diversity was monitored for 380 candidate genes using a sequence capture approach, providing 2909 unlinked SNP loci. We used two complementary analytical methods to find loci significantly associated with geographic variables, climatic variables (expressed as principal components), or phenotypic variables (spring and autumn phenology, height, survival). Redundancy analysis (RDA) was used to detect candidate markers across two spatial scales (entire study area and within subregions). We revealed 201 candidate SNPs at the broadest scale, 53.2% of which were associated with phenotypic variables. Additive polygenic scores, which provide a measure of the cumulative signal across significant candidate SNPs, were correlated with a climate variable (first principal component, PC1) related to temperature and precipitation availability, and spring phenology. However, different genotype-environment associations were identified within Southeastern Europe as compared to the entire geographic range of European beech. CONCLUSIONS Environmental conditions play important roles as drivers of genetic diversity of phenology-related genes that could influence local adaptation in European beech. Selection in beech favors genotypes with earlier bud burst under warmer and wetter habitats within its range; however, selection pressures may differ across spatial scales.
Collapse
Affiliation(s)
- Joanna Meger
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Bartosz Ulaszewski
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Jaroslaw Burczyk
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064, Bydgoszcz, Poland.
| |
Collapse
|
34
|
Warner E, Marteinsdóttir B, Helmutsdóttir VF, Ehrlén J, Robinson SI, O'Gorman EJ. Impacts of soil temperature, phenology and plant community composition on invertebrate herbivory in a natural warming experiment. OIKOS 2021. [DOI: 10.1111/oik.08046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Emily Warner
- Imperial College London, Silwood Park Campus Berkshire UK
- Dept of Plant Sciences, Univ. of Oxford Oxford UK
| | - Bryndís Marteinsdóttir
- Soil Conservation Service of Iceland Hella Iceland
- Inst. of Life and Environmental Sciences, Univ. of Iceland Reykjavík Iceland
| | | | - Johan Ehrlén
- Dept of Ecology, Environment and Plant Sciences, Stockholm Univ. Stockholm Sweden
| | - Sinikka I. Robinson
- Faculty of Biological and Environmental Sciences, Univ. of Helsinki Lahti Finland
| | - Eoin J. O'Gorman
- School of Life Sciences, Univ. of Essex Wivenhoe Park Colchester UK
| |
Collapse
|
35
|
Andersen JC, Havill NP, Caccone A, Elkinton JS. Four times out of Europe: Serial invasions of the winter moth, Operophtera brumata, to North America. Mol Ecol 2021; 30:3439-3452. [PMID: 34033202 DOI: 10.1111/mec.15983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/30/2022]
Abstract
Reconstructing the geographic origins of non-native species is important for studying the factors that influence invasion success, however; these analyses can be constrained by the amount of diversity present in the native and invaded regions, and by changes in the genetic background of the invading population following bottlenecks and/or hybridization events. Here we explore the geographical origins of the invasive winter moth (Operopthera brumata L.) that has caused widespread defoliation to forests, orchards, and crops in Nova Scotia, British Columbia, Oregon, and the northeastern United States. It is not known whether these represent independent introductions to North America, or a "stepping stone" spread among regions. Using a combination of Bayesian assignment and approximate Bayesian computation methods, we analysed a population genetic data set of 24 microsatellite loci. We estimate that winter moth was introduced to North America on at least four occasions, with the Nova Scotian and British Columbian populations probably being introduced from France and Sweden, respectively; the Oregonian population probably being introduced from either the British Isles or northern Fennoscandia; and the population in the northeastern United States probably being introduced from somewhere in Central Europe. We discuss the impact of genetic bottlenecks on analyses meant to determine region of origin.
Collapse
Affiliation(s)
- Jeremy C Andersen
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA, USA
| | - Nathan P Havill
- Northern Research Station, USDA Forest Service, Hamden, CT, USA
| | - Adalgisa Caccone
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Joseph S Elkinton
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
36
|
Meineke EK, Davis CC, Davies TJ. Phenological sensitivity to temperature mediates herbivory. GLOBAL CHANGE BIOLOGY 2021; 27:2315-2327. [PMID: 33735502 DOI: 10.1111/gcb.15600] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/18/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Species interactions drive ecosystem processes and are a major focus of global change research. Among the most consequential interactions expected to shift with climate change are those between insect herbivores and plants, both of which are highly sensitive to temperature. Insect herbivores and their host plants display varying levels of synchrony that could be disrupted or enhanced by climate change, yet empirical data on changes in synchrony are lacking. Using evidence of herbivory on herbarium specimens collected from the northeastern United States and France from 1900 to 2015, we provide evidence that plant species with temperature-sensitive phenologies experience higher levels of insect damage in warmer years, while less temperature-sensitive, co-occurring species do not. While herbivory might be mediated by interactions between warming and phenology through multiple pathways, we suggest that warming might lengthen growing seasons for phenologically sensitive plant species, exposing their leaves to herbivores for longer periods of time in warm years. We propose that elevated herbivory in warm years may represent a previously underappreciated cost to phenological tracking of climate change over longer timescales.
Collapse
Affiliation(s)
- Emily K Meineke
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, USA
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Cambridge, MA, USA
| | - T Jonathan Davies
- Departments of Botany, Forest & Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
- African Centre for DNA Barcoding, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
37
|
Villagomez GN, Nürnberger F, Requier F, Schiele S, Steffan‐Dewenter I. Effects of temperature and photoperiod on the seasonal timing of Western honey bee colonies and an early spring flowering plant. Ecol Evol 2021; 11:7834-7849. [PMID: 34188855 PMCID: PMC8216905 DOI: 10.1002/ece3.7616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
Temperature and photoperiod are important Zeitgebers for plants and pollinators to synchronize growth and reproduction with suitable environmental conditions and their mutualistic interaction partners. Global warming can disturb this temporal synchronization since interacting species may respond differently to new combinations of photoperiod and temperature under future climates, but experimental studies on the potential phenological responses of plants and pollinators are lacking. We simulated current and future combinations of temperature and photoperiod to assess effects on the overwintering and spring phenology of an early flowering plant species (Crocus sieberi) and the Western honey bee (Apis mellifera). We could show that increased mean temperatures in winter and early spring advanced the flowering phenology of C. sieberi and intensified brood rearing activity of A. mellifera but did not advance their brood rearing activity. Flowering phenology of C. sieberi also relied on photoperiod, while brood rearing activity of A. mellifera did not. The results confirm that increases in temperature can induce changes in phenological responses and suggest that photoperiod can also play a critical role in these responses, with currently unknown consequences for real-world ecosystems in a warming climate.
Collapse
Affiliation(s)
- Gemma N. Villagomez
- Department of Animal Ecology and Tropical BiologyBiocenterUniversity of WürzburgWürzburgGermany
| | - Fabian Nürnberger
- Department of Animal Ecology and Tropical BiologyBiocenterUniversity of WürzburgWürzburgGermany
| | - Fabrice Requier
- Department of Animal Ecology and Tropical BiologyBiocenterUniversity of WürzburgWürzburgGermany
- CNRSIRDUMR Évolution, Génomes, Comportement et ÉcologieUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Susanne Schiele
- Department of Animal Ecology and Tropical BiologyBiocenterUniversity of WürzburgWürzburgGermany
| | - Ingolf Steffan‐Dewenter
- Department of Animal Ecology and Tropical BiologyBiocenterUniversity of WürzburgWürzburgGermany
| |
Collapse
|
38
|
Assessment of Chilling Requirement and Threshold Temperature of a Low Chill Pear (Pyrus communis L.) Germplasm in the Mediterranean Area. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7030045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In temperate climates, bud break and shoot and flower emission of deciduous fruit tree species are regulated by precise chilling and heating requirements. To investigate this aspect, sixty-one accessions of European pear (Pyrus communis L.) collected in Sicily were phenotyped for three consecutive years for harvest date, bud sprouting and blooming to determine both the chilling requirements and the threshold temperature using the Chill Days model. The whole germplasm collection was grown in two different experimental fields located at 10 and 850 m above sea level representing two Mediterranean-type climates in which pear is commonly cultivated. Results revealed a mean threshold temperature of 6.70 and 8.10 °C for the two experimental fields, respectively, with a mean chilling requirement ranging from −103 and −120 days. Through this approach, novel insights were gained on the differences in chilling requirement for early flowering cultivars to overcome dormancy. Furthermore, to better dissect differences in chilling requirement between accessions, the sprouting bud rate of six cultivars was assessed on excised twigs stored at 4 ± 0.1 °C from 300 to 900 h followed by a period at 25 ± 0.1 °C varying from seven to twenty-eight days. Results of both experiments highlighted that Sicilian pear germplasm is characterized by a low chilling requirement compared to other pear germplasm, making Sicilian local accessions valuable candidates to be used for selecting novel cultivars, coupling their low chilling requirements with other traits of agronomical interest.
Collapse
|
39
|
Rytteri S, Kuussaari M, Saastamoinen M. Microclimatic variability buffers butterfly populations against increased mortality caused by phenological asynchrony between larvae and their host plants. OIKOS 2021. [DOI: 10.1111/oik.07653] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Susu Rytteri
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, Univ. of Helsinki Helsinki Finland
| | - Mikko Kuussaari
- Finnish Environment Inst. (SYKE), Biodiversity Centre Helsinki Finland
| | - Marjo Saastamoinen
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, Univ. of Helsinki
- Helsinki Inst. of Life Science, Univ. of Helsinki Helsinki Finland
| |
Collapse
|
40
|
Hamann E, Blevins C, Franks SJ, Jameel MI, Anderson JT. Climate change alters plant-herbivore interactions. THE NEW PHYTOLOGIST 2021; 229:1894-1910. [PMID: 33111316 DOI: 10.1111/nph.17036] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Plant-herbivore interactions have evolved in response to coevolutionary dynamics, along with selection driven by abiotic conditions. We examine how abiotic factors influence trait expression in both plants and herbivores to evaluate how climate change will alter this long-standing interaction. The paleontological record documents increased herbivory during periods of global warming in the deep past. In phylogenetically corrected meta-analyses, we find that elevated temperatures, CO2 concentrations, drought stress and nutrient conditions directly and indirectly induce greater food consumption by herbivores. Additionally, elevated CO2 delays herbivore development, but increased temperatures accelerate development. For annual plants, higher temperatures, CO2 and drought stress increase foliar herbivory. Our meta-analysis also suggests that greater temperatures and drought may heighten florivory in perennials. Human actions are causing concurrent shifts in CO2 , temperature, precipitation regimes and nitrogen deposition, yet few studies evaluate interactions among these changing conditions. We call for additional multifactorial studies that simultaneously manipulate multiple climatic factors, which will enable us to generate more robust predictions of how climate change could disrupt plant-herbivore interactions. Finally, we consider how shifts in insect and plant phenology and distribution patterns could lead to ecological mismatches, and how these changes may drive future adaptation and coevolution between interacting species.
Collapse
Affiliation(s)
- Elena Hamann
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
- Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| | - Cameron Blevins
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| | - Steven J Franks
- Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| | - M Inam Jameel
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| | - Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
41
|
Samplonius JM, Atkinson A, Hassall C, Keogan K, Thackeray SJ, Assmann JJ, Burgess MD, Johansson J, Macphie KH, Pearce-Higgins JW, Simmonds EG, Varpe Ø, Weir JC, Childs DZ, Cole EF, Daunt F, Hart T, Lewis OT, Pettorelli N, Sheldon BC, Phillimore AB. Strengthening the evidence base for temperature-mediated phenological asynchrony and its impacts. Nat Ecol Evol 2020; 5:155-164. [PMID: 33318690 DOI: 10.1038/s41559-020-01357-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/23/2020] [Indexed: 11/10/2022]
Abstract
Climate warming has caused the seasonal timing of many components of ecological food chains to advance. In the context of trophic interactions, the match-mismatch hypothesis postulates that differential shifts can lead to phenological asynchrony with negative impacts for consumers. However, at present there has been no consistent analysis of the links between temperature change, phenological asynchrony and individual-to-population-level impacts across taxa, trophic levels and biomes at a global scale. Here, we propose five criteria that all need to be met to demonstrate that temperature-mediated trophic asynchrony poses a growing risk to consumers. We conduct a literature review of 109 papers studying 129 taxa, and find that all five criteria are assessed for only two taxa, with the majority of taxa only having one or two criteria assessed. Crucially, nearly every study was conducted in Europe or North America, and most studies were on terrestrial secondary consumers. We thus lack a robust evidence base from which to draw general conclusions about the risk that climate-mediated trophic asynchrony may pose to populations worldwide.
Collapse
Affiliation(s)
- Jelmer M Samplonius
- Institute for Evolutionary Biology, The University of Edinburgh, Edinburgh, UK.
| | | | - Christopher Hassall
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Katharine Keogan
- Institute for Evolutionary Biology, The University of Edinburgh, Edinburgh, UK.,Marine Scotland Science, Marine Laboratory, Aberdeen, UK
| | | | | | - Malcolm D Burgess
- RSPB Centre for Conservation Science, Sandy, UK.,Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | | | - Kirsty H Macphie
- Institute for Evolutionary Biology, The University of Edinburgh, Edinburgh, UK
| | - James W Pearce-Higgins
- British Trust for Ornithology, Thetford, UK.,Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Emily G Simmonds
- Department of Mathematical Sciences and Centre for Biodiversity Dynamics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Øystein Varpe
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Norwegian Institute for Nature Research, Bergen, Norway
| | - Jamie C Weir
- Institute for Evolutionary Biology, The University of Edinburgh, Edinburgh, UK
| | - Dylan Z Childs
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Ella F Cole
- Department of Zoology, University of Oxford, Oxford, UK
| | | | - Tom Hart
- Department of Zoology, University of Oxford, Oxford, UK
| | - Owen T Lewis
- Department of Zoology, University of Oxford, Oxford, UK
| | | | - Ben C Sheldon
- Department of Zoology, University of Oxford, Oxford, UK
| | - Albert B Phillimore
- Institute for Evolutionary Biology, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
42
|
Benning JW, Moeller DA. Plant-soil interactions limit lifetime fitness outside a native plant's geographic range margin. Ecology 2020; 102:e03254. [PMID: 33231288 DOI: 10.1002/ecy.3254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/31/2020] [Accepted: 09/14/2020] [Indexed: 11/08/2022]
Abstract
Plant species' distributions are often thought to overwhelmingly reflect their climatic niches. However, climate represents only a fraction of the n-dimensional environment to which plant populations adapt, and studies are increasingly uncovering strong effects of nonclimatic factors on species' distributions. We used a manipulative, factorial field experiment to quantify the effects of soil environment and precipitation (the putatively overriding climatic factor) on plant lifetime fitness outside the geographic range boundary of a native California annual plant. We grew plants outside the range edge in large mesocosms filled with soil from either within or outside the range, and plants were subjected to either a low (ambient) or high (supplemental) spring precipitation treatment. Soil environment had large effects on plant lifetime fitness that were similar in magnitude to the effects of precipitation. Moreover, mean fitness of plants grown with within-range soil in the low precipitation treatment approximated that of plants grown with beyond-range soil in the high precipitation treatment. The positive effects of within-range soil persisted in the second, wetter year of the experiment, though the magnitude of the soil effect was smaller than in the first, drier year. These results are the first we know of to quantify the effects of edaphic variation on plant lifetime fitness outside a geographic range limit and highlight the need to include factors other than climate in models of species' distributions.
Collapse
Affiliation(s)
- John W Benning
- Department of Plant and Microbial Biology, University of Minnesota, 140 Gortner Labs, 1479 Gortner Avenue, Saint Paul, Minnesota, 55108, USA
| | - David A Moeller
- Department of Plant and Microbial Biology, University of Minnesota, 140 Gortner Labs, 1479 Gortner Avenue, Saint Paul, Minnesota, 55108, USA
| |
Collapse
|
43
|
Cunningham GD, While GM, Olsson M, Ljungström G, Wapstra E. Degrees of change: between and within population variation in thermal reaction norms of phenology in a viviparous lizard. Ecology 2020; 101:e03136. [PMID: 32691871 DOI: 10.1002/ecy.3136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/30/2020] [Accepted: 06/08/2020] [Indexed: 11/05/2022]
Abstract
As the earth warms, populations will be faced with novel environments to which they may not be adapted. In the short term, populations can be buffered against the negative effects, or maximize the beneficial effects, of such environmental change via phenotypic plasticity and, in the longer term, via adaptive evolution. However, the extent and direction of these population-level responses will be dependent on the degree to which responses vary among the individuals within them (i.e., within population variation in plasticity), which is, itself, likely to vary among populations. Despite this, we have estimates of among-individual variation in plastic responses across multiple populations for only a few systems. This lack of data limits our ability to predict the consequences of environmental change for population and species persistence accurately. Here, we utilized a 16-yr data set from climatically distinct populations of the viviparous skink Niveoscincus ocellatus tracking over 1,200 litters from more than 600 females from each population to examine inter- and intrapopulation variability in the response of parturition date to environmental temperature. We found that these populations share a common population-mean reaction norm but differ in the degree to which reaction norms vary among individuals. These results suggest that even where populations share a common mean-level response, we cannot assume that they will be affected similarly by altered environmental conditions. If we are to assess how changing climates will impact species and populations accurately, we require estimates of how plastic responses vary both among and within populations.
Collapse
Affiliation(s)
- George D Cunningham
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Geoffrey M While
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Mats Olsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Box 463, SE 405 30, Sweden.,School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Gabriella Ljungström
- Department of Biology, University of Bergen, Bergen, Postboks 7803, NO- 5020, Norway
| | - Erik Wapstra
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia
| |
Collapse
|
44
|
Verhagen I, Tomotani BM, Gienapp P, Visser ME. Temperature has a causal and plastic effect on timing of breeding in a small songbird. J Exp Biol 2020; 223:jeb218784. [PMID: 32205357 DOI: 10.1242/jeb.218784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/17/2020] [Indexed: 12/21/2022]
Abstract
Phenotypic plasticity is an important mechanism by which an individual can adapt its seasonal timing to predictable, short-term environmental changes by using predictive cues. Identification of these cues is crucial to forecast the response of species to long-term environmental change and to study their potential to adapt. Individual great tits (Parus major) start reproduction early under warmer conditions in the wild, but whether this effect is causal is not well known. We housed 36 pairs of great tits in climate-controlled aviaries and 40 pairs in outdoor aviaries, where they bred under artificial contrasting temperature treatments or in semi-natural conditions, respectively, for two consecutive years, using birds from lines selected for early and late egg laying. We thus obtained laying dates in two different thermal environments for each female. Females bred earlier under warmer conditions in climate-controlled aviaries, but not in outdoor aviaries. The latter was inconsistent with laying dates from our wild population. Further, early selection line females initiated egg laying consistently ∼9 days earlier than late selection line females in outdoor aviaries, but we found no difference in the degree of plasticity (i.e. the sensitivity to temperature) in laying date between selection lines. Because we found that temperature causally affects laying date, climate change will lead to earlier laying. This advancement is, however, unlikely to be sufficient, thereby leading to selection for earlier laying. Our results suggest that natural selection may lead to a change in mean phenotype, but not to a change in the sensitivity of laying dates to temperature.
Collapse
Affiliation(s)
- Irene Verhagen
- Department of Animal Ecology, Netherland Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
| | - Barbara M Tomotani
- Department of Animal Ecology, Netherland Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
| | - Phillip Gienapp
- Department of Animal Ecology, Netherland Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
| | - Marcel E Visser
- Department of Animal Ecology, Netherland Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
| |
Collapse
|
45
|
Teder T. Phenological responses to climate warming in temperate moths and butterflies: species traits predict future changes in voltinism. OIKOS 2020. [DOI: 10.1111/oik.07119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Tiit Teder
- Dept of Zoology, Inst. of Ecology and Earth Sciences, Univ. of Tartu Vanemuise 46 EE‐51003 Tartu Estonia
- Faculty of Environmental Sciences, Czech Univ. of Life Sciences Prague Kamýcká 129 Praha – Suchdol 165 00 Czech Republic
| |
Collapse
|
46
|
Marshall MM, Remington DL, Lacey EP. Two reproductive traits show contrasting genetic architectures in Plantago lanceolata. Mol Ecol 2019; 29:272-291. [PMID: 31793079 DOI: 10.1111/mec.15320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/25/2022]
Abstract
In many species, temperature-sensitive phenotypic plasticity (i.e., an individual's phenotypic response to temperature) displays a positive correlation with latitude, a pattern presumed to reflect local adaptation. This geographical pattern raises two general questions: (a) Do a few large-effect genes contribute to latitudinal variation in a trait? (b) Is the thermal plasticity of different traits regulated pleiotropically? To address the questions, we crossed individuals of Plantago lanceolata derived from northern and southern European populations. Individuals naturally exhibited high and low thermal plasticity in floral reflectance and flowering time. We grew parents and offspring in controlled cool- and warm-temperature environments, mimicking what plants would encounter in nature. We obtained genetic markers via genotype-by-sequencing, produced the first recombination map for this ecologically important nonmodel species, and performed quantitative trait locus (QTL) mapping of thermal plasticity and single-environment values for both traits. We identified a large-effect QTL that largely explained the reflectance plasticity differences between northern and southern populations. We identified multiple smaller-effect QTLs affecting aspects of flowering time, one of which affected flowering time plasticity. The results indicate that the genetic architecture of thermal plasticity in flowering is more complex than for reflectance. One flowering time QTL showed strong cytonuclear interactions under cool temperatures. Reflectance and flowering plasticity QTLs did not colocalize, suggesting little pleiotropic genetic control and freedom for independent trait evolution. Such genetic information about the architecture of plasticity is environmentally important because it informs us about the potential for plasticity to offset negative effects of climate change.
Collapse
Affiliation(s)
- Matthew M Marshall
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - David L Remington
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Elizabeth P Lacey
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| |
Collapse
|
47
|
Andersen JC, Havill NP, Mannai Y, Ezzine O, Dhahri S, Ben Jamâa ML, Caccone A, Elkinton JS. Identification of winter moth ( Operophtera brumata) refugia in North Africa and the Italian Peninsula during the last glacial maximum. Ecol Evol 2019; 9:13931-13941. [PMID: 31938492 PMCID: PMC6953680 DOI: 10.1002/ece3.5830] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/14/2019] [Indexed: 11/21/2022] Open
Abstract
Numerous studies have shown that the genetic diversity of species inhabiting temperate regions has been shaped by changes in their distributions during the Quaternary climatic oscillations. For some species, the genetic distinctness of isolated populations is maintained during secondary contact, while for others, admixture is frequently observed. For the winter moth (Operophtera brumata), an important defoliator of oak forests across Europe and northern Africa, we previously determined that contemporary populations correspond to genetic diversity obtained during the last glacial maximum (LGM) through the use of refugia in the Iberian and Aegean peninsulas, and to a lesser extent the Caucasus region. Missing from this sampling were populations from the Italian peninsula and from North Africa, both regions known to have played important roles as glacial refugia for other species. Therefore, we genotyped field-collected winter moth individuals from southern Italy and northwestern Tunisia-the latter a region where severe oak forest defoliation by winter moth has recently been reported-using polymorphic microsatellite. We reconstructed the genetic relationships of these populations in comparison to moths previously sampled from the Iberian and Aegean peninsulas, the Caucasus region, and western Europe using genetic distance, Bayesian clustering, and approximate Bayesian computation (ABC) methods. Our results indicate that both the southern Italian and the Tunisian populations are genetically distinct from other sampled populations, and likely originated in their respective refugium during the LGM after diverging from a population that eventually settled in the Iberian refugium. These suggest that winter moth populations persisted in at least five Mediterranean LGM refugia. Finally, we comment that outbreaks by winter moth in northwestern Tunisia are not the result of a recent introduction of a nonnative species, but rather are most likely due to land use or environmental changes.
Collapse
Affiliation(s)
- Jeremy C. Andersen
- Department of Environmental ConservationUniversity of Massachusetts AmherstAmherstMAUSA
| | | | - Yaussra Mannai
- LR161INRGREF01 Laboratory of Management and Valorization of Forest ResourcesNational Institute for Research in Rural Engineering Water and Forest (INRGREF)University of CarthageArianaTunisia
| | - Olfa Ezzine
- LR161INRGREF03 Laboratory of Forest EcologyNational Institute for Research in Rural Engineering Water and Forest (INRGREF)University of CarthageArianaTunisia
| | - Samir Dhahri
- LR161INRGREF01 Laboratory of Management and Valorization of Forest ResourcesNational Institute for Research in Rural Engineering Water and Forest (INRGREF)University of CarthageArianaTunisia
| | - Mohamed Lahbib Ben Jamâa
- LR161INRGREF01 Laboratory of Management and Valorization of Forest ResourcesNational Institute for Research in Rural Engineering Water and Forest (INRGREF)University of CarthageArianaTunisia
| | - Adalgisa Caccone
- Department of Ecology & Evolutionary BiologyYale UniversityNew HavenCTUSA
| | - Joseph S. Elkinton
- Department of Environmental ConservationUniversity of Massachusetts AmherstAmherstMAUSA
| |
Collapse
|
48
|
Nechita C, Macovei I, Popa I, Badea ON, Apostol EN, Eggertsson Ó. Radial growth-based assessment of sites effects on pedunculate and greyish oak in southern Romania. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133709. [PMID: 31394332 DOI: 10.1016/j.scitotenv.2019.133709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
This study focuses on the climate growth drivers of Quercus robur L. (pedunculate oak) and Q. robur subsp. pedunculiflora K. Koch. (greyish oak), occurring in the biodiversity of three sites in southern Romania. We determined the degree of tolerance of the greyish oak, between the tardive and praecox varieties, to environmental stress, between 1951 and 2016. Total tree ring-width (RW), and earlywood (EW) and latewood (LW) measurements were subject of periodical and monthly climate-growth analysis. Our results revealed a moderate relationship between climate and tree-growth. A significant and positive relationship was observed between RW and previous growing season precipitation. Mean and minimum temperatures affected both positive and negative tree-rings during the growing season. We also observed that winter and spring represent key seasons for differentiating tardive from praecox varieties, affecting the intra-annual variability of ring-width, and EW and LW parameters. The correlation between the tree-ring measurements and daily climate data shows a clear offset of the starting growth between greyish oak varieties. A weak influence of stressors on tree-growth at the sites was observed through pointer year and resilience components analysis.
Collapse
Affiliation(s)
- Constantin Nechita
- National Institute for Research and Development in Forestry "Marin Drăcea", Calea Bucovinei, 73 bis, 725100, Câmpulung Moldovenesc, Romania; Department of Geography, Universității 13, 720229, Ștefan cel Mare University of Suceava, Romania
| | - Irina Macovei
- Department of Pharmacognosy, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 16 Universitatii Str., 700115, Iasi, Romania
| | - Ionel Popa
- National Institute for Research and Development in Forestry "Marin Drăcea", Calea Bucovinei, 73 bis, 725100, Câmpulung Moldovenesc, Romania; INCE- Mountain Economy Center CE-MONT, Vatra Dornei, Romania.
| | - Ovidiu Nicolae Badea
- National Institute for Research and Development in Forestry "Marin Drăcea", Calea Bucovinei, 73 bis, 725100, Câmpulung Moldovenesc, Romania
| | - Ecaterina Nicoleta Apostol
- National Institute for Research and Development in Forestry "Marin Drăcea", Calea Bucovinei, 73 bis, 725100, Câmpulung Moldovenesc, Romania
| | | |
Collapse
|
49
|
Donelan SC, Hellmann JK, Bell AM, Luttbeg B, Orrock JL, Sheriff MJ, Sih A. Transgenerational Plasticity in Human-Altered Environments. Trends Ecol Evol 2019; 35:115-124. [PMID: 31706627 DOI: 10.1016/j.tree.2019.09.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 01/04/2023]
Abstract
Our ability to predict how species will respond to human-induced rapid environmental change (HIREC) may depend upon our understanding of transgenerational plasticity (TGP), which occurs when environments experienced by previous generations influence phenotypes of subsequent generations. TGP evolved to help organisms cope with environmental stressors when parental environments are highly predictive of offspring environments. HIREC can alter conditions that favored TGP in historical environments by reducing parents' ability to detect environmental conditions, disrupting previous correlations between parental and offspring environments, and interfering with the transmission of parental cues to offspring. Because of the propensity to produce errors in these processes, TGP will likely generate negative fitness outcomes in response to HIREC, though beneficial fitness outcomes may occur in some cases.
Collapse
Affiliation(s)
- Sarah C Donelan
- Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037, USA
| | - Jennifer K Hellmann
- Department of Evolution, Ecology and Behavior, Carl R. Woese Institute for Genomic Biology, Program in Neuroscience, Program in Ecology, Evolution and Conservation, University of Illinois, Urbana Champaign, 505 South Goodwin Avenue, Urbana, IL 61801, USA.
| | - Alison M Bell
- Department of Evolution, Ecology and Behavior, Carl R. Woese Institute for Genomic Biology, Program in Neuroscience, Program in Ecology, Evolution and Conservation, University of Illinois, Urbana Champaign, 505 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Barney Luttbeg
- Department of Integrative Biology, 501 Life Sciences West, Oklahoma State University, Stillwater, OK 74078, USA
| | - John L Orrock
- Department of Integrative Biology, 145 Noland Hall, 250 North Mills Street, University of Wisconsin, Madison, WI 53706, USA
| | - Michael J Sheriff
- Biology Department, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
50
|
Low M, Arlt D, Knape J, Pärt T, Öberg M. Factors influencing plasticity in the arrival-breeding interval in a migratory species reacting to climate change. Ecol Evol 2019; 9:12291-12301. [PMID: 31832160 PMCID: PMC6854385 DOI: 10.1002/ece3.5716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/23/2019] [Accepted: 09/13/2019] [Indexed: 11/21/2022] Open
Abstract
Climate change is profoundly affecting the phenology of many species. In migratory birds, there is evidence for advances in their arrival time at the breeding ground and their timing of breeding, yet empirical studies examining the interdependence between arrival and breeding time are lacking. Hence, evidence is scarce regarding how breeding time may be adjusted via the arrival-breeding interval to help local populations adapt to local conditions or climate change. We used long-term data from an intensively monitored population of the northern wheatear (Oenanthe oenanthe) to examine the factors related to the length of 734 separate arrival-to-breeding events from 549 individual females. From 1993 to 2017, the mean arrival and egg-laying dates advanced by approximately the same amount (~5-6 days), with considerable between-individual variation in the arrival-breeding interval. The arrival-breeding interval was shorter for: (a) individuals that arrived later in the season compared to early-arriving birds, (b) for experienced females compared to first-year breeders, (c) as spring progressed, and (d) in later years compared to earlier ones. The influence of these factors was much larger for birds arriving earlier in the season compared to later arriving birds, with most effects on variation in the arrival-breeding interval being absent in late-arriving birds. Thus, in this population it appears that the timing of breeding is not constrained by arrival for early- to midarriving birds, but instead is dependent on local conditions after arrival. For late-arriving birds, however, the timing of breeding appears to be influenced by arrival constraints. Hence, impacts of climate change on arrival dates and local conditions are expected to vary for different parts of the population, with potential negative impacts associated with these factors likely to differ for early- versus late-arriving birds.
Collapse
Affiliation(s)
- Matthew Low
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Debora Arlt
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Jonas Knape
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Tomas Pärt
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Meit Öberg
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
- WSP Sverige ABUppsalaSweden
| |
Collapse
|