1
|
Dunowska M. Avian influenza viruses: are they changing? N Z Vet J 2025:1-5. [PMID: 40261820 DOI: 10.1080/00480169.2025.2485064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Affiliation(s)
- Magdalena Dunowska
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
2
|
Rather MA, Hassan A, Aman M, Gul I, Mir AH, Potdar V, Koul PA, Ahmad SM, Ganai NA, Shah RA, Chikan NA, Abdul-Careem MF, Shabir N. Molecular and ecological determinants of mammalian adaptability in avian influenza virus. Infection 2025:10.1007/s15010-025-02529-5. [PMID: 40257536 DOI: 10.1007/s15010-025-02529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/25/2025] [Indexed: 04/22/2025]
Abstract
The avian influenza virus (AIV) primarily affects birds and poses an increasing concern due to its growing adaptability to other hosts, heightening zoonotic risks. The adaptability is a key factor in AIV to infect multiple non-avian species, including humans, companion animals, aquatic mammals, carnivores, and other mammals. The virus is evolving through genetic mutations and reassortments, leading to the emergence of AIV strains with enhanced virulence and adaptability in mammals. This highlights the critical need to understand the genetic factors of AIV, including mutations in polymerase proteins, surface antigens, and other regulatory proteins, as well as the dynamics of AIV-host interactions and environmental factors such as temperature, humidity, water salinity, and pH that govern the cross-species adaptability of the virus. This review provides comprehensive insights into the molecular/genetic changes AIV undergoes to adapt in mammalian hosts including bovines, swine, equines, canines, and felines. The adaptive mutations in viral polymerase proteins, such as PB2-E627K, and receptor specificity shift facilitate the virus adaptability in mammals. Since AIVs interact with specific receptors on host cells, therefore the type and distribution of receptors are crucial in determining the host range of the virus and its adaptability by facilitating attachment and entry of the virus. This review examines sialic acid receptor distribution and binding patterns in various mammalian hosts, emphasizing how the presence and structure of specific receptors influence viral interaction, adaptation, and transmission. The review concludes that the differential distribution and expression of SA receptors are vital in the mammalian adaptability and tissue tropism of viral strains. Notably, during the adaptation to mammals, AIVs show a shift in preference from α-2,3 to α-2,6 receptors. This review further emphasizes the role of ecological determinants in the adaptation of viruses to mammalian hosts. Low temperatures, high humidity, and neutral to slightly acidic pH levels enhance virus stability, facilitating its persistence in the environment and spread among susceptible hosts. Overall, AIV remains a global health threat, necessitating coordinated efforts in research, surveillance, and public health strategies.
Collapse
Affiliation(s)
- Muzamil Ahmad Rather
- Laboratory of Vaccine Biotechnology, Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E- Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Amreena Hassan
- Laboratory of Vaccine Biotechnology, Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E- Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Muttahir Aman
- Laboratory of Vaccine Biotechnology, Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E- Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Irfan Gul
- Laboratory of Vaccine Biotechnology, Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E- Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Ashaq Hussain Mir
- Laboratory of Vaccine Biotechnology, Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E- Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Varsha Potdar
- Scientist E & Head, National Influenza Centre, ICMR-National Institute of Virology, Pune, 411001, Maharashtra, India
| | - Parvaiz A Koul
- Internal and Pulmonary Medicine Department, Sheri Kashmir Institute of Medical Sciences, Srinagar, 190006, Jammu and Kashmir, India
| | - Syed Mudasir Ahmad
- Laboratory of Vaccine Biotechnology, Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E- Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Nazir Ahmad Ganai
- Laboratory of Vaccine Biotechnology, Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E- Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Riaz Ahmad Shah
- Laboratory of Vaccine Biotechnology, Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E- Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Naveed Anjum Chikan
- Division of Computational Biology, Daskdan Innovations, PVT Ltd. Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Mohamed Faizal Abdul-Careem
- Health Research Innovation Centre, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Nadeem Shabir
- Laboratory of Vaccine Biotechnology, Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E- Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, 190006, Jammu and Kashmir, India.
- Health Research Innovation Centre, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
3
|
Aranda AJ, Aguilar-Tipacamú G, Perez DR, Bañuelos-Hernandez B, Girgis G, Hernandez-Velasco X, Escorcia-Martinez SM, Castellanos-Huerta I, Petrone-Garcia VM. Emergence, migration and spreading of the high pathogenicity avian influenza virus H5NX of the Gs/Gd lineage into America. J Gen Virol 2025; 106. [PMID: 40279164 DOI: 10.1099/jgv.0.002081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025] Open
Abstract
The high pathogenicity avian influenza virus H5N1, which first emerged in the winter of 2021, has resulted in multiple outbreaks across the American continent through the summer of 2023 and they continue based on early 2025 records, presenting significant challenges for global health and food security. The viruses causing the outbreaks belong to clade 2.3.4.4b, which are descendants of the lineage A/Goose/Guangdong/1/1996 (Gs/Gd) through genetic reassortments with several low pathogenicity avian influenza viruses present in populations of Anseriformes and Charadriiformes orders. This review addresses these issues by thoroughly analysing available epidemiological databases and specialized literature reviews. This project explores the mechanisms behind the resurgence of the H5N1 virus. It provides a comprehensive overview of the origin, timeline and factors contributing to its prevalence among wild bird populations on the American continent.
Collapse
Affiliation(s)
- Alejandro J Aranda
- Maestría en Salud y Producción Animal Sustentable, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Gabriela Aguilar-Tipacamú
- Maestría en Salud y Producción Animal Sustentable, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Mexico
- Licenciatura en Medicina Veterinaria y Zootecnia, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, México
| | - Daniel R Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Bernardo Bañuelos-Hernandez
- Facultad de Veterinaria, Universidad De La Salle Bajío, Avenida Universidad 602, Lomas del Campestre, León, México
| | - George Girgis
- Nevysta Laboratory, Iowa State University Research Park, Ames, Lowa, USA
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México (UNAM), Cd. de México, México
| | - Socorro M Escorcia-Martinez
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México (UNAM), Cd. de México, México
| | | | - Victor M Petrone-Garcia
- Departamento de Ciencias Pecuarias, Facultad de Estudios Superiores de Cuautitlán (FESC), Universidad Nacional Autónoma de México (UNAM), Cuautitlán, Mexico
| |
Collapse
|
4
|
Mahmoud SH, Khattab MS, Yehia N, Zanaty A, Arafa AES, Khalil AA. Pathogenicity of Highly Pathogenic Avian Influenza A/H5Nx Viruses in Avian and Murine Models. Pathogens 2025; 14:149. [PMID: 40005526 PMCID: PMC11858509 DOI: 10.3390/pathogens14020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
The evolution and adaptation of highly pathogenic avian influenza (HPAI) viruses pose ongoing challenges for animal and public health. We investigated the pathogenic characteristics of the newly emerged H5N1/2022 and H5N8/2022 of clade 2.3.4.4b compared to the previously circulating H5N1/2016 of clade 2.2.1.2 in Egypt using both avian and murine models. All strains demonstrated a 100% mortality in chickens after intranasal inoculation (106 EID50), while the H5N8/2022 strain showing significantly higher viral shedding (8.34 ± 0.55 log10 EID50). Contact transmission rates varied between strains (50% for the 2.3.4.4b clade and 100% for the 2.2.1.2 clade). In the mouse model, H5N1/2016 infection resulted in an 80% mortality rate with significant weight loss and virus replication in organs. In contrast, H5N8/2022 and H5N1/2022 had 60% and 40% mortality rates, respectively. An histopathological analysis revealed pronounced lesions in the tissues of the infected mice, with the most severe lesions found in the H5N1/2016 group. These findings suggest the decreased pathogenicity of the newer H5Nx strains in mammalian models, emphasizing the need for continued surveillance and adaptive control strategies.
Collapse
Affiliation(s)
- Sara H. Mahmoud
- Center of Scientific Excellence for Influenza Viruses (CSEIV), National Research Centre (NRC), Dokki, Giza 12622, Egypt;
- Texas Biomedical Research Institute, San Antonio, TX 78245-0549, USA
| | - Marwa S. Khattab
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Nahed Yehia
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Ali Zanaty
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Abd El Sattar Arafa
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Ahmed A. Khalil
- Veterinary Serum and Vaccine Research Institute (VSVRI), Agriculture Research Center (ARC), Cairo 11381, Egypt
| |
Collapse
|
5
|
Wood CL. Parasites in a Changing World: Troublesome or in Trouble? Annu Rev Anim Biosci 2025; 13:303-323. [PMID: 39527716 DOI: 10.1146/annurev-animal-111523-102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
There are plenty of reasons to believe that parasite populations will respond to biodiversity loss, warming, pollution, and other forms of global change. But will global change enhance transmission, increasing the incidence of troublesome parasites that put people, livestock, and wildlife at risk? Or will parasite species decline in abundance-or even become extinct-suggesting trouble on the horizon for parasite biodiversity? Here, I explain why answers have thus far eluded us and suggest new lines of research that would advance the field. Data collected to date suggest that parasites can respond to global change with increases or decreases in abundance, depending on the driver and the parasite. The future will certainly bring outbreaks of some parasites, and these should be addressed to protect human and ecosystem health. But troublesome parasites should not consume all of our research effort, because this changing world contains many parasite species that are in trouble.
Collapse
Affiliation(s)
- Chelsea L Wood
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
6
|
Takekawa JY, Choi CY, Prosser DJ, Sullivan JD, Batbayar N, Xiao X. Perpetuation of Avian Influenza from Molt to Fall Migration in Wild Swan Geese ( Anser cygnoides): An Agent-Based Modeling Approach. Viruses 2025; 17:196. [PMID: 40006951 PMCID: PMC11861497 DOI: 10.3390/v17020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/13/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Wild waterfowl are considered to be the reservoir of avian influenza, but their distinct annual life cycle stages and their contribution to disease dynamics are not well understood. Studies of the highly pathogenic avian influenza (HPAI) virus have primarily focused on wintering grounds, where human and poultry densities are high year-round, compared with breeding grounds, where migratory waterfowl are more isolated. Few if any studies of avian influenza have focused on the molting stage where wild waterfowl congregate in a few selected wetlands and undergo the simultaneous molt of wing and tail feathers during a vulnerable flightless period. The molting stage may be one of the most important periods for the perpetuation of the disease in waterfowl, since during this stage, immunologically naïve young birds and adults freely intermix prior to the fall migration. Our study incorporated empirical data from virological field samplings and markings of Swan Geese (Anser cygnoides) on their breeding grounds in Mongolia in an integrated agent-based model (ABM) that included susceptible-exposed-infectious-recovered (SEIR) states. Our ABM results provided unique insights and indicated that individual movements between different molting wetlands and the transmission rate were the key predictors of HPAI perpetuation. While wetland extent was not a significant predictor of HPAI perpetuation, it had a large effect on the number of infections and associated death toll. Our results indicate that conserving undisturbed habitats for wild waterfowl during the molting stage of the breeding season could reduce the risk of HPAI transmission.
Collapse
Affiliation(s)
- John Y. Takekawa
- U.S. Geological Survey, Western Ecological Research Center, Vallejo, CA 94592, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA;
| | - Chang-Yong Choi
- U.S. Geological Survey, Western Ecological Research Center, Vallejo, CA 94592, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA;
- Department of Forest Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Diann J. Prosser
- U.S. Geological Survey, Eastern Ecological Science Center, Laurel, MD 20708, USA; (D.J.P.); (J.D.S.)
| | - Jeffery D. Sullivan
- U.S. Geological Survey, Eastern Ecological Science Center, Laurel, MD 20708, USA; (D.J.P.); (J.D.S.)
| | | | - Xiangming Xiao
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA;
| |
Collapse
|
7
|
Sun R, Feng X, Huang J, Zheng F, Xie R, Zhang C, Zhang H, Xue Y, Liu A, Huang X, Yuan L, Zhao L. Characterization of novel highly pathogenic avian influenza A(H5N6) clade 2.3.4.4b virus in wild birds, East China, 2024. Virol Sin 2025:S1995-820X(25)00002-1. [PMID: 39848601 DOI: 10.1016/j.virs.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/17/2025] [Indexed: 01/25/2025] Open
Affiliation(s)
- Renjie Sun
- Zhejiang Provincial Center for Animal Disease Control and Prevention, Hangzhou 311199, China
| | - Xiaoxiao Feng
- Zhejiang Provincial Center for Animal Disease Control and Prevention, Hangzhou 311199, China
| | - Jing Huang
- Zhejiang Provincial Center for Animal Disease Control and Prevention, Hangzhou 311199, China
| | - Fangyu Zheng
- Zhejiang Provincial Center for Animal Disease Control and Prevention, Hangzhou 311199, China
| | - Ronghui Xie
- Zhejiang Provincial Center for Animal Disease Control and Prevention, Hangzhou 311199, China
| | - Chuanliang Zhang
- Zhejiang Provincial Center for Animal Disease Control and Prevention, Hangzhou 311199, China
| | - Hongli Zhang
- Zhejiang Provincial Center for Animal Disease Control and Prevention, Hangzhou 311199, China
| | - Yin Xue
- Zhejiang Provincial Center for Animal Disease Control and Prevention, Hangzhou 311199, China
| | - Aijun Liu
- Zhejiang Provincial Center for Animal Disease Control and Prevention, Hangzhou 311199, China
| | - Xiaobing Huang
- Zhejiang Provincial Center for Animal Disease Control and Prevention, Hangzhou 311199, China
| | - Lin Yuan
- Beijing Sino-science Gene Technology Co., Ltd., Beijing 102200, China
| | - Lingyan Zhao
- Zhejiang Provincial Center for Animal Disease Control and Prevention, Hangzhou 311199, China.
| |
Collapse
|
8
|
Greco F, Ravenswater HM, Ruiz-Raya F, D'Avino C, Newell MA, Hewitt J, Taylor E, Benninghaus E, Daunt F, Goodman G, Steel D, Park J, Philip E, Thomas SS, Slomka MJ, Falchieri M, Reid SM, James J, Banyard AC, Burthe SJ, Cunningham EJA. Asymptomatic infection and antibody prevalence to co-occurring avian influenza viruses vary substantially between sympatric seabird species following H5N1 outbreaks. Sci Rep 2025; 15:1435. [PMID: 39789128 PMCID: PMC11718005 DOI: 10.1038/s41598-025-85152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025] Open
Abstract
Emerging infectious diseases are of major concern to animal and human health. Recent emergence of high pathogenicity avian influenza virus (HPAIV) (H5N1 clade 2.3.4.4b) led to substantial global mortality across a range of host species. Co-occurring species showed marked differences in mortality, generating an urgent need for better epidemiological understanding within affected populations. We therefore tested for antibodies, indicative of previous exposure and recovery, and for active viral infection in apparently healthy individuals (n = 350) across five co-occurring seabird species on the Isle of May, Scotland, during 2023, following H5N1 HPAIV associated mortality in the preceding summer. Antibody prevalence to AIV subtypes varied substantially between species, ranging from 1.1% in European shags (Gulosus aristotelis) (to H5) to 78.7% in black-legged kittiwakes (Rissa tridactyla) (to H16 or both H13 and H16), and between 31 and 41% for three auk species (H5, H16 or both). At least 20.4% of auks had antibodies to an as yet unidentified subtype, suggesting further subtypes circulating in the population. We found low levels of active, but asymptomatic, AIV infection in individuals (1.6-4.5%), but excluded this as H5N1. Our results emphasise the importance of testing healthy individuals to understand the prevalence of co-circulating AIV subtypes in wild populations, and the potential for future reassortment events which could alter virus behaviour and impact.
Collapse
Grants
- NE/S007407/1 Natural Environment Research Council
- NE/L002558/1 Natural Environment Research Council
- NE/V001779/1 Natural Environment Research Council
- NE/V001779/1 Natural Environment Research Council
- NE/R016429/1 Natural Environment Research Council
- NE/R016429/1 Natural Environment Research Council
- NE/R016429/1 Natural Environment Research Council
- NE/R016429/1 Natural Environment Research Council
- NE/R016429/1 Natural Environment Research Council
- NE/R016429/1 Natural Environment Research Council
- NE/V001779/1 Natural Environment Research Council
- SE2213 Department for Environment, Food and Rural Affairs, UK Government and the devolved Scottish and Welsh governments, United Kingdom
- SE2213 Department for Environment, Food and Rural Affairs, UK Government and the devolved Scottish and Welsh governments, United Kingdom
- SE2213 Department for Environment, Food and Rural Affairs, UK Government and the devolved Scottish and Welsh governments, United Kingdom
- SE2213 Department for Environment, Food and Rural Affairs, UK Government and the devolved Scottish and Welsh governments, United Kingdom
- SE2213 Department for Environment, Food and Rural Affairs, UK Government and the devolved Scottish and Welsh governments, United Kingdom
- SE2213 Department for Environment, Food and Rural Affairs, UK Government and the devolved Scottish and Welsh governments, United Kingdom
- BB/X006204/1 Biotechnology and Biological Sciences Research Council
- BB/X006204/1 Biotechnology and Biological Sciences Research Council
- BB/X006204/1 Biotechnology and Biological Sciences Research Council
Collapse
Affiliation(s)
- Fiona Greco
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK.
| | - Hannah M Ravenswater
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Francisco Ruiz-Raya
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Chiara D'Avino
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Mark A Newell
- UK Centre for Ecology and Hydrology, Bush Estate, Penicuik, EH26 0QB, Scotland, UK
| | - Josie Hewitt
- UK Centre for Ecology and Hydrology, Bush Estate, Penicuik, EH26 0QB, Scotland, UK
| | - Erin Taylor
- UK Centre for Ecology and Hydrology, Bush Estate, Penicuik, EH26 0QB, Scotland, UK
| | - Ella Benninghaus
- UK Centre for Ecology and Hydrology, Bush Estate, Penicuik, EH26 0QB, Scotland, UK
| | - Francis Daunt
- UK Centre for Ecology and Hydrology, Bush Estate, Penicuik, EH26 0QB, Scotland, UK
| | - Gidona Goodman
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH26 9RG, UK
| | - David Steel
- NatureScot, Great Glen House, Inverness, IV3 8NW, UK
| | - Jenny Park
- NatureScot, Great Glen House, Inverness, IV3 8NW, UK
| | - Emma Philip
- NatureScot, Great Glen House, Inverness, IV3 8NW, UK
| | - Saumya S Thomas
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Marek J Slomka
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Marco Falchieri
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Scott M Reid
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Joe James
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Ashley C Banyard
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Sarah J Burthe
- UK Centre for Ecology and Hydrology, Bush Estate, Penicuik, EH26 0QB, Scotland, UK
| | - Emma J A Cunningham
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| |
Collapse
|
9
|
Sakuma S, Mine J, Uchida Y, Kumagai A, Takadate Y, Tsunekuni R, Nishiura H, Miyazawa K. Long-term immune responses induced by low-dose infection with high pathogenicity avian influenza viruses can protect mallards from reinfection with a heterologous strain. Arch Virol 2025; 170:33. [PMID: 39779578 PMCID: PMC11711648 DOI: 10.1007/s00705-024-06209-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
Migratory water birds are considered to be carriers of high pathogenicity avian influenza viruses (HPAIVs). In Japan, mallards are often observed during winter, and HPAIV-infected mallards often shed viruses asymptomatically. In this study, we focused on mallards as potential carriers of HPAIVs and investigated whether individual wild mallards are repeatedly infected with HPAIVs and act as HPAIV carriers multiple times within a season. Mallards were experimentally infected with H5N1 and H5N8 HPAIVs that were isolated recently in Japan and phylogenetically belong to different hemagglutinin groups (G2a, G2b, and G2d). All of these strains are more infectious to mallards than to chickens, and the infected mallards shed enough virus to infect others, regardless of whether they exhibited clinical signs. Serum antibodies to the homologous antigen, induced by a single infection with a low virus dose (10 times the 50% mallard infectious dose), were maintained at detectable levels for 84 days. Immunity at 84 days post-inoculation fully protected the mallards from a challenge with the homologous strain, as demonstrated by a lack of viral shedding, and antibody levels did not increase significantly in most of these birds. Protection against heterologous challenge was also observed despite undetectable levels of antibodies to the challenge strain. Our findings suggest that repeated infections with homologous and heterologous HPAIV strains do not occur frequently in individual wild mallards within a season, particularly at low viral doses, and the frequency with which they act as carriers may be limited.
Collapse
Affiliation(s)
- Saki Sakuma
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Junki Mine
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Yuko Uchida
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Asuka Kumagai
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Yoshihiro Takadate
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Ryota Tsunekuni
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Hayate Nishiura
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Kohtaro Miyazawa
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.
| |
Collapse
|
10
|
Ge Y, Liu J, Li Y, Peng P, Zhou Y, Yu J, Huo M, Liang X, Gao Y, Yao Q. Geographical distribution and evolutionary dynamics of H4Nx avian influenza viruses. Front Microbiol 2025; 15:1505203. [PMID: 39839111 PMCID: PMC11747629 DOI: 10.3389/fmicb.2024.1505203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
H4Nx avian influenza viruses (AIVs) have been isolated from wild birds and poultry and can also cross the species barrier to infect mammals (pigs and muskrats). The widespread presence of these viruses in wild birds and poultry and their ability to be transmitted interspecies make them an undeniable hazard to the poultry farming industry. In the present study, we collected fecal and swab samples from wild birds and poultry in Guangdong Province from January 2019 to March 2024, and various subtypes of AIVs were isolated, including 19 strains of H4 subtype AIVs. Further analysis was conducted on the internal genes of the 19 strains. These strains clustered together with high homology to highly pathogenic avian influenza virus (HPAIV), suggesting that H4Nx AIV may be reassorted from HPAIV. Two H4N8 strains are phylogenetically related to the porcine H4N8 AIV. Molecular characterization revealed that all viruses in this study were less pathogenic but had potential mammalian-adapted mutations. The transmission dynamics of H4Nx AIVs revealed that Europe and Asia, especially the Netherlands and Bangladesh, may be the centers of transmission. This may be linked to the migration of wild birds. The high migration rates from Russia to the Netherlands and from Russia to Bangladesh may also play a role. Therefore, continuous and systematic monitoring of wild birds to clarify the spatial and temporal distribution and prevalence of influenza viruses in wild birds is significant for early warning of avian influenza outbreaks in poultry and for risk assessment for public health and safety.
Collapse
Affiliation(s)
- Ye Ge
- Guangdong Ocean University, Zhanjiang, China
| | - Jing Liu
- Guangdong Ocean University, Zhanjiang, China
| | - Yuanguo Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Peng Peng
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland, Shenyang, China
| | - Yan Zhou
- Guangdong Ocean University, Zhanjiang, China
| | - Jiantao Yu
- Guangdong Ocean University, Zhanjiang, China
| | | | - Xiaodong Liang
- Forestry Administration of Guangdong Province, Guangzhou, China
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | | |
Collapse
|
11
|
Luczo JM, Spackman E. Molecular Evolution of the H5 and H7 Highly Pathogenic Avian Influenza Virus Haemagglutinin Cleavage Site Motif. Rev Med Virol 2025; 35:e70012. [PMID: 39730318 DOI: 10.1002/rmv.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/29/2024]
Abstract
Avian influenza viruses are ubiquitous in the Anatinae subfamily of aquatic birds and occasionally spill over to poultry. Infection with low pathogenicity avian influenza viruses generally leads to subclinical or mild clinical disease. In contrast, highly pathogenic avian influenza viruses emerge from low pathogenic forms and can cause severe disease associated with extraordinarily high mortality rates. Here, we describe the natural history of avian influenza virus, with a focus on H5Nx and H7Nx subtypes, and the emergence of highly pathogenic forms; we review the biology of AIV; we examine cleavage of haemagglutinin by host cell enzymes with a particular emphasis on the biochemical properties of the proprotein convertases, and trypsin and trypsin-like proteases; we describe mechanisms implicated in the functional evolution of the haemagglutinin cleavage site motif that leads to emergence of HPAIVs; and finally, we discuss the diversity of H5 and H7 haemagglutinin cleavage site sequence motifs. It is crucial to understand the molecular attributes that drive the emergence and evolution of HPAIVs with pandemic potential to inform risk assessments and mitigate the threat of HPAIVs to poultry and human populations.
Collapse
Affiliation(s)
- Jasmina M Luczo
- Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, East Geelong, Australia
- United States Department of Agriculture, Exotic & Emerging Avian Viral Diseases Research, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, Athens, Georgia, USA
| | - Erica Spackman
- United States Department of Agriculture, Exotic & Emerging Avian Viral Diseases Research, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, Athens, Georgia, USA
| |
Collapse
|
12
|
Zong Y, Li H, Chang Y, Li J, He L, Shi W, Guo J. Global research trends in the relationship between influenza and CD4 + T/CD8 + T cells: A bibliometric analysis. Hum Vaccin Immunother 2024; 20:2435644. [PMID: 39680034 DOI: 10.1080/21645515.2024.2435644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
Influenza pathogens cause many illnesses and deaths yearly, posing a serious threat to global public health. As a result, most studies are increasingly focusing on the role of specific CD4+ T/CD8+ T cells in combating influenza. This study examines the key themes and trends in this field using bibliometric analysis. Literature on influenza and CD4+ T/CD8+ T cells were searched (from 1985 to 2023) in the Web of Science Core Collection (WoSCC) database. Eligible articles were screened according to the inclusion and exclusion criteria for bibliometric analysis using VOSviewer, CiteSpace, and the R package "bibliometrix." A total of 1,071 publications from 47 countries or regions and 1,148 institutions associated with 5,728 authors in the disciplines of immunology, virology, biochemistry, and molecular biology were included. The findings indicate a yearly increase in publications related to influenza and CD4+ T/CD8+ T cells, with the United States, Australia, and China leading in publication volume. The University of Melbourne had the highest volume of publications. Only a few researchers collaborated, and the collaborations were mostly concentrated in the same countries/regions. Professor Katherine Kedzierska, associated with The Peter Doherty Institute for Infection and Immunity, was the most productive academic in this field. According to the analysis of highly cited literature and keywords, the application of cellular immunity in formulating pioneering influenza vaccines is a key direction for future research.The role of CD4+ T/CD8+ T cells in combating the influenza virus has emerged as a significant focus within influenza research literature. This article summarizes the research institutions, authors, journals, hotspots, and application trends of CD4+ T/CD8+ T cells in influenza.
Collapse
Affiliation(s)
- Yanping Zong
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Hui Li
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Yonglong Chang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiajie Li
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Lei He
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Weibing Shi
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Jinchen Guo
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
13
|
Bhatia B, Sonar S, Khan S, Bhattacharya J. Pandemic-Proofing: Intercepting Zoonotic Spillover Events. Pathogens 2024; 13:1067. [PMID: 39770327 PMCID: PMC11728701 DOI: 10.3390/pathogens13121067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 01/12/2025] Open
Abstract
Zoonotic spillover events pose a significant and growing threat to global health. By focusing on preventing these cross-species transmissions, we can significantly mitigate pandemic risks. This review aims to analyze the mechanisms of zoonotic spillover events, identify key risk factors, and propose evidence-based prevention strategies to reduce future pandemic threats. Through a comprehensive literature review and analysis of major databases including PubMed, Web of Science, and Scopus from 1960-2024, we examined documented spillover events, their outcomes, and intervention strategies. This article emphasizes that targeting the root cause-the spillover event itself-is key to averting future pandemics. By analyzing historical and contemporary outbreaks, we extract crucial insights into the dynamics of zoonotic transmission. Factors underlying these events include increased human-animal contact due to habitat encroachment, agricultural intensification, and wildlife trade. Climate change, global travel, and inadequate healthcare infrastructure exacerbate risks. The diversity of potential viral reservoirs and rapid viral evolution present major challenges for prediction and prevention. Solutions include enhancing surveillance of wildlife populations, improving biosecurity measures, investing in diagnostic capabilities, and promoting sustainable wildlife management. A "One Health" approach integrating human, animal, and environmental health is crucial. Predictive modelling, international cooperation, and public education are key strategies. Developing pre-exposure prophylactics and post-exposure treatments is essential for mitigating outbreaks. While obstacles remain, advances in genomics and ecological modelling offer hope. A proactive, comprehensive approach addressing the root causes of spillover events is vital for safeguarding global health against future pandemics.
Collapse
Affiliation(s)
- Bharti Bhatia
- Molecular and Translational Virology, Centre for Virus Research, Vaccines and Therapeutics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Sudipta Sonar
- Molecular and Translational Virology, Centre for Virus Research, Vaccines and Therapeutics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Seema Khan
- Molecular and Translational Virology, Centre for Virus Research, Vaccines and Therapeutics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Jayanta Bhattacharya
- Molecular and Translational Virology, Centre for Virus Research, Vaccines and Therapeutics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
- Antibody Translational Research Program, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| |
Collapse
|
14
|
Aldhaeefi M, Rungkitwattanakul D, Saltani I, Muirhead A, Ruehman AJ, Hawkins WA, Daftary MN. Update and narrative review of avian influenza (H5N1) infection in adult patients. Pharmacotherapy 2024; 44:870-879. [PMID: 39548738 DOI: 10.1002/phar.4621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 11/18/2024]
Abstract
The avian influenza is a serious infection caused by influenza virus that is native to birds. Avian influenza remains a global challenge due to high transmission and mortality rates. The highly pathogenic strain of H5N1 resulted in significant outbreaks and deaths globally since the late 1800s. The most recent outbreaks in wild birds, domestic birds, and cows with some genetic variations and mutations among H5N1 strains has raised major concerns about potential transmission and public health risks. Symptoms range from asymptomatic to mild flu-like illness to severe illness that requires hospitalization. There are multiple vaccines in development for humans to protect against avian influenza, specifically the H5N1 virus. This includes a cell-based vaccine approved by the FDA for people aged 6 months and older who are at higher risk of exposure to the H5N1 virus called Audenz. Chemoprophylaxis against avian influenza following a suspected exposure should be started as soon as possible or no later than 48 h, and it is recommended to be continued for 7 days. The majority of avian influenza viruses are susceptible to neuraminidase inhibitors and cap-dependent endonuclease inhibitor. Neuraminidase inhibitors are the mainstay of the avian influenza treatment and includes oseltamivir, peramivir, and zanamivir. Baloxavir marboxil is a cap-dependent endonuclease inhibitor. This clinical review aims to highlight the background, epidemiology, clinical presentation, complications and current treatment and prevention strategies for avian influenza H5N1.
Collapse
Affiliation(s)
- Mohammed Aldhaeefi
- Clinical and Administrative Pharmacy Sciences, College of Pharmacy, Howard University, Washington, DC, USA
| | - Dhakrit Rungkitwattanakul
- Clinical and Administrative Pharmacy Sciences, College of Pharmacy, Howard University, Washington, DC, USA
| | - Ilyas Saltani
- School of Global Public Health, New York University, New York, New York, USA
| | | | - Alexander J Ruehman
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, Albany, Georgia, USA
| | - W Anthony Hawkins
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, Albany, Georgia, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Albany, Georgia, USA
| | - Monika N Daftary
- Clinical and Administrative Pharmacy Sciences, College of Pharmacy, Howard University, Washington, DC, USA
| |
Collapse
|
15
|
Cueno ME, Kamio N, Imai K. Avian influenza A H5N1 hemagglutinin protein models have distinct structural patterns re-occurring across the 1959-2023 strains. Biosystems 2024; 246:105347. [PMID: 39349133 DOI: 10.1016/j.biosystems.2024.105347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Influenza A H5N1 hemagglutinin (HA) plays a crucial role in viral pathogenesis and changes in the HA receptor binding domain (RBD) have been attributed to alterations in viral pathogenesis. Mutations often occur within the HA which in-turn results in HA structural changes that consequently contribute to protein evolution. However, the possible occurrence of mutations that results to reversion of the HA protein (going back to an ancestral protein conformation) which in-turn creates distinct HA structural patterns across the 1959-2023 H5N1 viral evolution has never been investigated. Here, we generated and verified the quality of the HA models, identified similar HA structural patterns, and elucidated the possible variations in HA RBD structural dynamics. Our results show that there are 7 distinct structural patterns occurring among the 1959-2023 H5N1 HA models which suggests that reversion of the HA protein putatively occurs during viral evolution. Similarly, we found that the HA RBD structural dynamics vary among the 7 distinct structural patterns possibly affecting viral pathogenesis.
Collapse
Affiliation(s)
- Marni E Cueno
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan.
| | - Noriaki Kamio
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan
| | - Kenichi Imai
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan
| |
Collapse
|
16
|
Drobik-Czwarno W, Wolc A, Petal CR, Miedzinska K, Dekkers J, Fulton JE, Smith J. Candidate Genes Associated with Survival Following Highly Pathogenic Avian Influenza Infection in Chickens. Int J Mol Sci 2024; 25:10056. [PMID: 39337540 PMCID: PMC11432379 DOI: 10.3390/ijms251810056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Highly pathogenic strains of avian influenza (HPAI) devastate poultry flocks and result in significant economic losses for farmers due to high mortality, reduced egg production, and mandated euthanization of infected flocks. Within recent years, HPAI outbreaks have affected egg production flocks across the world. The H5N2 outbreak in the US in 2015 resulted in over 99% mortality. Here, we analyze sequence data from chickens that survived (42 cases) along with uninfected controls (28 samples) to find genomic regions that differ between these two groups and that, therefore, may encompass prime candidates that are resistant to HPAI. Blood samples were obtained from survivors of the 2015 HPAI outbreak plus age and genetics-matched non-affected controls. A whole-genome sequence was obtained, and genetic variants were characterized and used in a genome-wide association study to identify regions showing significant association with survival. Regions associated with HPAI resistance were observed on chromosomes 1, 2, 5, 8, 10, 11, 15, 20, and 28, with a number of candidate genes identified. We did not detect a specific locus which could fully explain the difference between survivors and controls. Influenza virus replication depends on multiple components of the host cellular machinery, with many genes involved in the host response.
Collapse
Affiliation(s)
- Wioleta Drobik-Czwarno
- Department of Animal Genetics and Conservation, Institute of Animal Science, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Anna Wolc
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (A.W.); (J.D.)
- Hy-Line International, P.O. Box 310, 2583 240th St., Dallas Center, IA 50063, USA;
| | - Callie R. Petal
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (C.R.P.); (K.M.)
| | - Katarzyna Miedzinska
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (C.R.P.); (K.M.)
| | - Jack Dekkers
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (A.W.); (J.D.)
| | - Janet E. Fulton
- Hy-Line International, P.O. Box 310, 2583 240th St., Dallas Center, IA 50063, USA;
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (C.R.P.); (K.M.)
| |
Collapse
|
17
|
Calhoun VC, Hatcher EL, Yankie L, Nawrocki EP. Influenza sequence validation and annotation using VADR. Database (Oxford) 2024; 2024:baae091. [PMID: 39297389 PMCID: PMC11411204 DOI: 10.1093/database/baae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/25/2024]
Abstract
Tens of thousands of influenza sequences are deposited into the GenBank database each year. The software tool FLu ANnotation tool (FLAN) has been used by GenBank since 2007 to validate and annotate incoming influenza sequence submissions and has been publicly available as a webserver but not as a standalone tool. Viral Annotation DefineR (VADR) is a general sequence validation and annotation software package used by GenBank for norovirus, dengue virus and SARS-CoV-2 virus sequence processing that is available as a standalone tool. We have created VADR influenza models based on the FLAN reference sequences and adapted VADR to accurately annotate influenza sequences. VADR and FLAN show consistent results on the vast majority of influenza sequences, and when they disagree, VADR is usually correct. VADR can also accurately process influenza D sequences as well as influenza A H17, H18, H19, N10 and N11 subtype sequences, which FLAN cannot. VADR 1.6.3 and the associated influenza models are now freely available for users to download and use. Database URL: https://bitbucket.org/nawrockie/vadr-models-flu.
Collapse
Affiliation(s)
- Vincent C Calhoun
- National Center for Biotechnology Information, U.S. National Library of Medicine, National Center for Biotechnology Information, 8600 Rockville Pike, Bethesda, MD 20894, United States
| | - Eneida L Hatcher
- National Center for Biotechnology Information, U.S. National Library of Medicine, National Center for Biotechnology Information, 8600 Rockville Pike, Bethesda, MD 20894, United States
| | - Linda Yankie
- National Center for Biotechnology Information, U.S. National Library of Medicine, National Center for Biotechnology Information, 8600 Rockville Pike, Bethesda, MD 20894, United States
| | - Eric P Nawrocki
- National Center for Biotechnology Information, U.S. National Library of Medicine, National Center for Biotechnology Information, 8600 Rockville Pike, Bethesda, MD 20894, United States
| |
Collapse
|
18
|
Tiwari A, Meriläinen P, Lindh E, Kitajima M, Österlund P, Ikonen N, Savolainen-Kopra C, Pitkänen T. Avian Influenza outbreaks: Human infection risks for beach users - One health concern and environmental surveillance implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173692. [PMID: 38825193 DOI: 10.1016/j.scitotenv.2024.173692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Despite its popularity for water activities, such as swimming, surfing, fishing, and rafting, inland and coastal bathing areas occasionally experience outbreaks of highly pathogenic avian influenza virus (HPAI), including A(H5N1) clade 2.3.4.4b. Asymptomatic infections and symptomatic outbreaks often impact many aquatic birds, which increase chances of spill-over events to mammals and pose concerns for public health. This review examined the existing literature to assess avian influenza virus (AIV) transmission risks to beachgoers and the general population. A comprehensive understanding of factors governing such crossing of the AIV host range is currently lacking. There is limited knowledge on key factors affecting risk, such as species-specific interactions with host cells (including binding, entry, and replication via viral proteins hemagglutinin, neuraminidase, nucleoprotein, and polymerase basic protein 2), overcoming host restrictions, and innate immune response. AIV efficiently transmits between birds and to some extent between marine scavenger mammals in aquatic environments via consumption of infected birds. However, the current literature lacks evidence of zoonotic AIV transmission via contact with the aquatic environment or consumption of contaminated water. The zoonotic transmission risk of the circulating A(H5N1) clade 2.3.4.4b virus to the general population and beachgoers is currently low. Nevertheless, it is recommended to avoid direct contact with sick or dead birds and to refrain from bathing in locations where mass bird mortalities are reported. Increasing reports of AIVs spilling over to non-human mammals have raised valid concerns about possible virus mutations that lead to crossing the species barrier and subsequent risk of human infections and outbreaks.
Collapse
Affiliation(s)
- Ananda Tiwari
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Neulaniementie 4, Kuopio FI-70701, Finland; Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, Helsinki FI-00014, Finland.
| | - Päivi Meriläinen
- Environmental Health Unit, Finnish Institute for Health and Welfare, Neulaniementie 4, Kuopio FI-70701, Finland
| | - Erika Lindh
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, Helsinki FI-00271, Finland
| | - Masaaki Kitajima
- Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Pamela Österlund
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, Helsinki FI-00271, Finland
| | - Niina Ikonen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, Helsinki FI-00271, Finland
| | - Carita Savolainen-Kopra
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, Helsinki FI-00271, Finland
| | - Tarja Pitkänen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Neulaniementie 4, Kuopio FI-70701, Finland; Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, Helsinki FI-00014, Finland
| |
Collapse
|
19
|
Li J, Cui H, Zhang Y, Wang X, Liu H, Mu Y, Wang H, Chen X, Dong T, Zhang C, Chen L. A Rapid Detection Method for H3 Avian Influenza Viruses Based on RT-RAA. Animals (Basel) 2024; 14:2601. [PMID: 39272386 PMCID: PMC11393923 DOI: 10.3390/ani14172601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
The continued evolution of H3 subtype avian influenza virus (AIV)-which crosses the interspecific barrier to infect humans-and the potential risk of genetic recombination with other subtypes pose serious threats to the poultry industry and human health. Therefore, rapid and accurate detection of H3 virus is highly important for preventing its spread. In this study, a method based on real-time reverse transcription recombinase-aided isothermal amplification (RT-RAA) was successfully developed for the rapid detection of H3 AIV. Specific primers and probes were designed to target the hemagglutinin (HA) gene of H3 AIV, ensuring highly specific detection of H3 AIV without cross-reactivity with other important avian respiratory viruses. The results showed that the detection limit of the RT-RAA fluorescence reading method was 224 copies/response within the 95% confidence interval, while the detection limit of the RT-RAA visualization method was 1527 copies/response within the same confidence interval. In addition, 68 clinical samples were examined and the results were compared with those of real-time quantitative PCR (RT-qPCR). The results showed that the real-time fluorescence RT-RAA and RT-qPCR results were completely consistent, and the kappa value reached 1, indicating excellent correlation. For visual detection, the sensitivity was 91.43%, the specificity was 100%, and the kappa value was 0.91, which also indicated good correlation. In addition, the amplified products of RT-RAA can be visualized with a portable blue light instrument, which enables rapid detection of H3 AIV even in resource-constrained environments. The H3 AIV RT-RAA rapid detection method established in this study can meet the requirements of basic laboratories and provide a valuable reference for the early diagnosis of H3 AIV.
Collapse
Affiliation(s)
- Jiaqi Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Huan Cui
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Yuxin Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Xuejing Wang
- The Animal Husbandry and Veterinary Institute of Hebei, Baoding, 071001, China
| | - Huage Liu
- The Animal Husbandry and Veterinary Institute of Hebei, Baoding, 071001, China
| | - Yingli Mu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Hongwei Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Xiaolong Chen
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Tongchao Dong
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Cheng Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Ligong Chen
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
20
|
Hew YL, Hiono T, Monne I, Nabeshima K, Sakuma S, Kumagai A, Okamura S, Soda K, Ito H, Esaki M, Okuya K, Ozawa M, Yabuta T, Takakuwa H, Nguyen LB, Isoda N, Miyazawa K, Onuma M, Sakoda Y. Cocirculation of Genetically Distinct Highly Pathogenic Avian Influenza H5N5 and H5N1 Viruses in Crows, Hokkaido, Japan. Emerg Infect Dis 2024; 30:1912-1917. [PMID: 39106453 PMCID: PMC11346982 DOI: 10.3201/eid3009.240356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024] Open
Abstract
We isolated highly pathogenic avian influenza (HPAI) H5N5 and H5N1 viruses from crows in Hokkaido, Japan, during winter 2023-24. They shared genetic similarity with HPAI H5N5 viruses from northern Europe but differed from those in Asia. Continuous monitoring and rapid information sharing between countries are needed to prevent HPAI virus transmission.
Collapse
|
21
|
Zhang Z, Lei Z. The Alarming Situation of Highly Pathogenic Avian Influenza Viruses in 2019-2023. Glob Med Genet 2024; 11:200-213. [PMID: 38947761 PMCID: PMC11213626 DOI: 10.1055/s-0044-1788039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Avian influenza viruses (AIVs) have the potential to cause severe illness in wild birds, domestic poultry, and humans. The ongoing circulation of highly pathogenic avian influenza viruses (HPAIVs) has presented significant challenges to global poultry industry and public health in recent years. This study aimed to elucidate the circulation of HPAIVs during 2019 to 2023. Specifically, we assess the alarming global spread and continuous evolution of HPAIVs. Moreover, we discuss their transmission and prevention strategies to provide valuable references for future prevention and control measures against AIVs.
Collapse
Affiliation(s)
- Zhiwei Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian Province, People's Republic of China
- Department of Industrial & Systems Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Zhao Lei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| |
Collapse
|
22
|
Takadate Y, Mine J, Tsunekuni R, Sakuma S, Kumagai A, Nishiura H, Miyazawa K, Uchida Y. Genetic diversity of H5N1 and H5N2 high pathogenicity avian influenza viruses isolated from poultry in Japan during the winter of 2022-2023. Virus Res 2024; 347:199425. [PMID: 38906223 PMCID: PMC11250885 DOI: 10.1016/j.virusres.2024.199425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
High pathogenicity avian influenza viruses (HPAIVs) of the H5N1 and H5N2 subtypes were responsible for 84 HPAI outbreaks on poultry premises in Japan during October 2022-April 2023. The number of outbreaks during the winter of 2022-2023 is the largest ever reported in Japan. In this study, we performed phylogenetic analyses using the full genetic sequences of HPAIVs isolated in Japan during 2022-2023 and those obtained from a public database to identify their genetic origin. Based on the hemagglutinin genes, these HPAIVs were classified into the G2 group of clade 2.3.4.4b, whose ancestors were H5 HPAIVs that circulated in Europe in late 2020, and were then further divided into three subgroups (G2b, G2d, and G2c). Approximately one-third of these viruses were classified into the G2b and G2d groups, which also included H5N1 HPAIVs detected in Japan during 2021-2022. In contrast, the remaining two-thirds were classified into the G2c group, which originated from H5N1 HPAIVs isolated in Asian countries and Russia during the winter of 2021-2022. Unlike the G2b and G2d viruses, the G2c viruses were first detected in Japan in the fall of 2022. Importantly, G2c viruses caused the largest number of outbreaks throughout Japan over the longest period during the season. Phylogenetic analyses using eight segment genes revealed that G2b, G2d, and G2c viruses were divided into 2, 4, and 11 genotypes, respectively, because they have various internal genes closely related to those of avian influenza viruses detected in wild birds in recent years in Asia, Russia, and North America, respectively. These results suggest that HPAIVs were disseminated among migratory birds, which may have generated numerous reassortant viruses with various gene constellations, resulting in a considerable number of outbreaks during the winter of 2022-2023.
Collapse
Affiliation(s)
- Yoshihiro Takadate
- Emerging Virus Group, Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki 305856, Japan
| | - Junki Mine
- Emerging Virus Group, Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki 305856, Japan
| | - Ryota Tsunekuni
- Emerging Virus Group, Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki 305856, Japan
| | - Saki Sakuma
- Emerging Virus Group, Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki 305856, Japan
| | - Asuka Kumagai
- Emerging Virus Group, Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki 305856, Japan
| | - Hayate Nishiura
- Emerging Virus Group, Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki 305856, Japan
| | - Kohtaro Miyazawa
- Emerging Virus Group, Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki 305856, Japan
| | - Yuko Uchida
- Emerging Virus Group, Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki 305856, Japan.
| |
Collapse
|
23
|
Yin S, Xu C, Zhang Y, de Boer WF, Mundkur T, Artois J, Velkers FC, Takekawa JY, Si Y, Tian H, Han GZ, Chen Y, Chai H, Cui L, Huang ZYX. Strong and consistent effects of waterbird composition on HPAI H5 occurrences across Europe. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e3010. [PMID: 38978282 DOI: 10.1002/eap.3010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/01/2024] [Accepted: 04/22/2024] [Indexed: 07/10/2024]
Abstract
Since 2014, highly pathogenic avian influenza (HPAI) H5 viruses of clade 2.3.4.4 have been dominating the outbreaks across Europe, causing massive deaths among poultry and wild birds. However, the factors shaping these broad-scale outbreak patterns, especially those related to waterbird community composition, remain unclear. In particular, we do not know whether these risk factors differ from those of other H5 clades. Addressing this knowledge gap is important for predicting and preventing future HPAI outbreaks. Using extensive waterbird survey datasets from about 6883 sites, we here explored the effect of waterbird community composition on HPAI H5Nx (clade 2.3.4.4) spatial patterns in the 2016/2017 and 2020/2021 epidemics in Europe, and compared it with the 2005/2006 HPAI H5N1 (clade 2.2) epidemic. We showed that HPAI H5 occurrences in wild birds in the three epidemics were strongly associated with very similar waterbird community attributes, which suggested that, in nature, similar interspecific transmission processes operate between the HPAI H5 subtypes or clades. Importantly, community phylogenetic diversity consistently showed a negative association with H5 occurrence in all three epidemics, suggesting a dilution effect of phylogenetic diversity. In contrast, waterbird community variables showed much weaker associations with HPAI H5Nx occurrence in poultry. Our results demonstrate that models based on previous epidemics can predict future HPAI H5 patterns in wild birds, implying that it is important to include waterbird community factors in future HPAI studies to predict outbreaks and improve surveillance activities.
Collapse
Affiliation(s)
- Shenglai Yin
- Department of Zoology, School of Life Sciences, Nanjing Forestry University, Nanjing, China
- Department of Ecology, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chi Xu
- Department of Ecology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yong Zhang
- Department of Zoology, School of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Willem F de Boer
- Wildlife Ecology and Conservation Group, Wageningen University, Wageningen, The Netherlands
| | | | - Jean Artois
- Spatial Epidemiology Lab, Université Libre de Bruxelles, Brussels, Belgium
| | - Francisca C Velkers
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Yali Si
- Department of Environmental Biology, Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing, China
| | - Guan-Zhu Han
- Department of Ecology, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuyang Chen
- State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing, China
| | - Hongliang Chai
- Department of Wildlife Conservation and Management, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Lijuan Cui
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Zheng Y X Huang
- Department of Ecology, School of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
24
|
Giacinti JA, Signore AV, Jones MEB, Bourque L, Lair S, Jardine C, Stevens B, Bollinger T, Goldsmith D, Pybus M, Stasiak I, Davis R, Pople N, Nituch L, Brook RW, Ojkic D, Massé A, Dimitri-Masson G, Parsons GJ, Baker M, Yason C, Harms J, Jutha N, Neely J, Berhane Y, Lung O, French SK, Myers L, Provencher JF, Avery-Gomm S, Robertson GJ, Barychka T, Gurney KEB, Wight J, Rahman I, Hargan K, Lang AS, Montevecchi WA, Burt TV, Brown MGC, Pekarik C, Thompson T, McLaughlin A, Willie M, Wilson L, Flemming SA, Ross MV, Leafloor J, Baldwin F, Sharp C, Lewis H, Beaumont M, Hanson A, Ronconi RA, Reed E, Campbell M, Saunders M, Soos C. Avian influenza viruses in wild birds in Canada following incursions of highly pathogenic H5N1 virus from Eurasia in 2021-2022. mBio 2024; 15:e0320323. [PMID: 39012149 PMCID: PMC11323545 DOI: 10.1128/mbio.03203-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/24/2024] [Indexed: 07/17/2024] Open
Abstract
Following the detection of novel highly pathogenic avian influenza virus (HPAIV) H5N1 clade 2.3.4.4b in Newfoundland, Canada, in late 2021, avian influenza virus (AIV) surveillance in wild birds was scaled up across Canada. Herein, we present the results of Canada's Interagency Surveillance Program for Avian Influenza in Wild Birds during the first year (November 2021-November 2022) following the incursions of HPAIV from Eurasia. The key objectives of the surveillance program were to (i) identify the presence, distribution, and spread of HPAIV and other AIVs; (ii) identify wild bird morbidity and mortality associated with HPAIV; (iii) identify the range of wild bird species infected by HPAIV; and (iv) genetically characterize detected AIV. A total of 6,246 sick and dead wild birds were tested, of which 27.4% were HPAIV positive across 12 taxonomic orders and 80 species. Geographically, HPAIV detections occurred in all Canadian provinces and territories, with the highest numbers in the Atlantic and Central Flyways. Temporally, peak detections differed across flyways, though the national peak occurred in April 2022. In an additional 11,295 asymptomatic harvested or live-captured wild birds, 5.2% were HPAIV positive across 3 taxonomic orders and 19 species. Whole-genome sequencing identified HPAIV of Eurasian origin as most prevalent in the Atlantic Flyway, along with multiple reassortants of mixed Eurasian and North American origins distributed across Canada, with moderate structuring at the flyway scale. Wild birds were victims and reservoirs of HPAIV H5N1 2.3.4.4b, underscoring the importance of surveillance encompassing samples from sick and dead, as well as live and harvested birds, to provide insights into the dynamics and potential impacts of the HPAIV H5N1 outbreak. This dramatic shift in the presence and distribution of HPAIV in wild birds in Canada highlights a need for sustained investment in wild bird surveillance and collaboration across interagency partners. IMPORTANCE We present the results of Canada's Interagency Surveillance Program for Avian Influenza in Wild Birds in the year following the first detection of highly pathogenic avian influenza virus (HPAIV) H5N1 on the continent. The surveillance program tested over 17,000 wild birds, both sick and apparently healthy, which revealed spatiotemporal and taxonomic patterns in HPAIV prevalence and mortality across Canada. The significant shift in the presence and distribution of HPAIV in Canada's wild birds underscores the need for sustained investment in wild bird surveillance and collaboration across One Health partners.
Collapse
Affiliation(s)
- Jolene A. Giacinti
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Government of Canada, Winnipeg, Manitoba, Canada
| | - Anthony V. Signore
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment and Climate Change Canada, Government of Canada, Ottawa, Ontario, Canada
| | - Megan E. B. Jones
- Canadian Wildlife Health Cooperative, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Laura Bourque
- Canadian Wildlife Health Cooperative, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Stéphane Lair
- Canadian Wildlife Health Cooperative, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Claire Jardine
- Canadian Wildlife Health Cooperative, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Brian Stevens
- Canadian Wildlife Health Cooperative, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Trent Bollinger
- Canadian Wildlife Health Cooperative, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Dayna Goldsmith
- Canadian Wildlife Health Cooperative, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Margo Pybus
- Alberta Environment and Parks, Edmonton, Alberta, Canada
| | - Iga Stasiak
- Saskatchewan Ministry of Environment, Saskatoon, Saskatchewan, Canada
| | - Richard Davis
- Manitoba Department of Natural Resources and Northern Development, Wildlife Branch, Dauphin, Manitoba, Canada
| | - Neil Pople
- Veterinary Diagnostic Services, Manitoba Department of Agriculture, Winnipeg, Manitoba, Canada
| | - Larissa Nituch
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Peterborough, Ontario, Canada
| | - Rodney W. Brook
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Peterborough, Ontario, Canada
| | - Davor Ojkic
- Animal Health Laboratory, University of Guelph, Guelph, Ontario, Canada
| | - Ariane Massé
- Ministère de l’Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs du Québec, Québec City, Québec, Canada
| | - Gabrielle Dimitri-Masson
- Ministère de l’Agriculture, des Pêcheries et de l’Alimentation du Québec, Québec City, Québec, Canada
| | - Glen J. Parsons
- Wildlife Division, Nova Scotia Department of Natural Resources and Renewables, Kentville, Nova Scotia, Canada
| | - Meghan Baker
- Animal Health Division, Department of Fisheries, Forestry and Agriculture, Government of Newfoundland and Labrador, St. John’s, Newfoundland and Labrador, Canada
| | - Carmencita Yason
- AVC Diagnostic Services, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Jane Harms
- Animal Health Unit, Environment Yukon, Government of Yukon, Whitehorse, Yukon, Canada
| | - Naima Jutha
- Wildlife Management Division, Department of Environment and Climate Change, Government of the Northwest Territories, Yellowknife, Northwest Territories, Canada
| | - Jon Neely
- Wildlife Operations Division, Department of Environment, Government of Nunavut, Iqaluit, Nunavut, Canada
| | - Yohannes Berhane
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment and Climate Change Canada, Government of Canada, Ottawa, Ontario, Canada
| | - Oliver Lung
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment and Climate Change Canada, Government of Canada, Ottawa, Ontario, Canada
| | - Shannon K. French
- Animal Health Strategic Planning and Research, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Lawrna Myers
- Animal Health Strategic Planning and Research, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Jennifer F. Provencher
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Government of Canada, Winnipeg, Manitoba, Canada
| | - Stephanie Avery-Gomm
- Wildlife Research Division, Science and Technology Branch, Environment and Climate Change Canada, Government of Canada, Mount Pearl, Newfoundland and Labrador, Canada
| | - Gregory J. Robertson
- Wildlife Research Division, Science and Technology Branch, Environment and Climate Change Canada, Government of Canada, Mount Pearl, Newfoundland and Labrador, Canada
| | - Tatsiana Barychka
- Wildlife Research Division, Science and Technology Branch, Environment and Climate Change Canada, Government of Canada, Mount Pearl, Newfoundland and Labrador, Canada
| | - Kirsty E. B. Gurney
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment and Climate Change Canada, Government of Canada, Saskatoon, Saskatchewan, Canada
| | - Jordan Wight
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Ishraq Rahman
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Kathryn Hargan
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Andrew S. Lang
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - William A. Montevecchi
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
- Department of Psychology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Tori V. Burt
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
- Department of Psychology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Michael G. C. Brown
- Wildlife Management and Regulatory Affairs Division, Canadian Wildlife Service, Environment and Climate Change Canada, Government of Canada, Gatineau, Québec, Canada
| | - Cynthia Pekarik
- Wildlife Management and Regulatory Affairs Division, Canadian Wildlife Service, Environment and Climate Change Canada, Government of Canada, Gatineau, Québec, Canada
| | - Trevor Thompson
- Wildlife Management and Regulatory Affairs Division, Canadian Wildlife Service, Environment and Climate Change Canada, Government of Canada, Gatineau, Québec, Canada
| | - Angela McLaughlin
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Government of Canada, Winnipeg, Manitoba, Canada
- Bioinformatics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan Willie
- Pacific Region Wildlife and Habitat Assessment Section, Canadian Wildlife Service, Environment and Climate Change Canada, Government of Canada, Delta, British Columbia, Canada
| | - Laurie Wilson
- Pacific Region Wildlife and Habitat Assessment Section, Canadian Wildlife Service, Environment and Climate Change Canada, Government of Canada, Delta, British Columbia, Canada
| | - Scott A. Flemming
- Pacific Region Wildlife and Habitat Assessment Section, Canadian Wildlife Service, Environment and Climate Change Canada, Government of Canada, Delta, British Columbia, Canada
| | - Megan V. Ross
- Pacific Region Wildlife and Habitat Assessment Section, Canadian Wildlife Service, Environment and Climate Change Canada, Government of Canada, Delta, British Columbia, Canada
| | - Jim Leafloor
- Prairie Region Wildlife and Habitat Assessment Section, Canadian Wildlife Service, Environment and Climate Change Canada, Government of Canada, Winnipeg, Manitoba, Canada
| | - Frank Baldwin
- Prairie Region Wildlife and Habitat Assessment Section, Canadian Wildlife Service, Environment and Climate Change Canada, Government of Canada, Winnipeg, Manitoba, Canada
| | - Chris Sharp
- Ontario Region Wildlife and Habitat Assessment Section, Canadian Wildlife Service, Environment and Climate Change Canada, Government of Canada, Ottawa, Ontario, Canada
| | - Hannah Lewis
- Ontario Region Wildlife and Habitat Assessment Section, Canadian Wildlife Service, Environment and Climate Change Canada, Government of Canada, Ottawa, Ontario, Canada
| | - Matthieu Beaumont
- Quebec Region Wildlife and Habitat Assessment Section, Canadian Wildlife Service, Environment and Climate Change Canada, Government of Canada, Québec, Québec, Canada
| | - Al Hanson
- Atlantic Region Wildlife and Habitat Assessment Section, Canadian Wildlife Service, Environment and Climate Change Canada, Government of Canada, Sackville, New Brunswick, Canada
| | - Robert A. Ronconi
- Atlantic Region Wildlife and Habitat Assessment Section, Canadian Wildlife Service, Environment and Climate Change Canada, Government of Canada, Sackville, New Brunswick, Canada
| | - Eric Reed
- Northern Region Wildlife and Habitat Assessment Section, Canadian Wildlife Service, Environment and Climate Change Canada, Government of Canada, Yellowknife, Northwest Territories, Canada
| | - Margaret Campbell
- Northern Region Wildlife and Habitat Assessment Section, Canadian Wildlife Service, Environment and Climate Change Canada, Government of Canada, Whitehorse, Yukon, Canada
| | - Michelle Saunders
- Department of Lands and Natural Resources, Nunatsiavut Government, Nain, Newfoundland and Labrador, Canada
| | - Catherine Soos
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment and Climate Change Canada, Government of Canada, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
25
|
Graziosi G, Lupini C, Favera FD, Martini G, Dosa G, Trevisani G, Garavini G, Mannelli A, Catelli E. Characterizing the domestic-wild bird interface through camera traps in an area at risk for avian influenza introduction in Northern Italy. Poult Sci 2024; 103:103892. [PMID: 38865769 PMCID: PMC11223120 DOI: 10.1016/j.psj.2024.103892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Direct or indirect interactions between sympatric wildlife and poultry can lead to interspecies disease transmission. Particularly, avian influenza (AI) is a viral epidemic disease for which the poultry-wild bird interface shapes the risks of new viral introductions into poultry holdings. Given this background, the study hereby presented aimed to identify wild bird species in poultry house surroundings and characterize the spatiotemporal patterns of these visits. Eight camera traps were deployed for a year (January to December 2021) in 3 commercial chicken layer farms, including free-range and barn-type setups, located in a densely populated poultry area in Northern Italy at high risk for AI introduction via wild birds. Camera traps' positions were chosen based on wildlife signs identified during preliminary visits to the establishments studied. Various methods, including time series analysis, correspondence analysis, and generalized linear models, were employed to analyze the daily wild bird visits. A total of 1,958 camera trap days yielded 5,978 videos of wild birds from 27 different species and 16 taxonomic families. The animals were predominantly engaged in foraging activities nearby poultry houses. Eurasian magpies (Pica pica), ring-necked pheasants (Phasianus colchicus), and Eurasian collared doves (Streptopelia decaocto) were the most frequent visitors. Mallards (Anas platyrhynchos), an AI reservoir species, were observed only in a farm located next to a fishing sport lake. Time series analysis indicated that wild bird visits increased during spring and winter. Farm and camera trap location also influenced visit frequencies. Overall, the results highlighted specific species that could be prioritized for future AI epidemiological surveys. However, further research is required to assess their susceptibility and infectivity to currently circulating AI viruses, essential for identifying novel bridge hosts.
Collapse
Affiliation(s)
- Giulia Graziosi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy.
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Francesco Dalla Favera
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Gabriella Martini
- Veterinary Services, Local Health Unit of Imola (A.U.S.L. di Imola), Imola, Bologna 40026, Italy
| | - Geremia Dosa
- Veterinary Services, Local Health Unit of Imola (A.U.S.L. di Imola), Imola, Bologna 40026, Italy
| | | | - Gloria Garavini
- Veterinary Services of Eurovo Group, Imola, Bologna 40026, Italy
| | - Alessandro Mannelli
- Department of Veterinary Sciences, University of Torino, Grugliasco, Turin 10095, Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| |
Collapse
|
26
|
Wu Q, Wang W, Zhang X, Li D, Mei M. Effectively Evaluating a Novel Consensus Subunit Vaccine Candidate to Prevent the H9N2 Avian Influenza Virus. Vaccines (Basel) 2024; 12:849. [PMID: 39203975 PMCID: PMC11359011 DOI: 10.3390/vaccines12080849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
The enormous effects of avian influenza on poultry production and the possible health risks to humans have drawn much attention to this disease. The H9N2 subtype of avian influenza virus is widely prevalent among poultry, posing a direct threat to humans through infection or by contributing internal genes to various zoonotic strains of avian influenza. Despite the widespread use of H9N2 subtype vaccines, outbreaks of the virus persist due to the rapid antigenic drift and shifts in the influenza virus. As a result, it is critical to develop a broader spectrum of H9N2 subtype avian influenza vaccines and evaluate their effectiveness. In this study, a recombinant baculovirus expressing the broad-spectrum HA protein was obtained via bioinformatics analysis and a baculovirus expression system (BES). This recombinant hemagglutinin (HA) protein displayed cross-reactivity to positive sera against several subbranch H9 subtype AIVs. An adjuvant and purified HA protein were then used to create an rHA vaccine candidate. Evaluation of the vaccine demonstrated that subcutaneous immunization of the neck with the rHA vaccine candidate stimulated a robust immune response, providing complete clinical protection against various H9N2 virus challenges. Additionally, virus shedding was more effectively inhibited by rHA than by the commercial vaccine. Thus, our findings illustrate the efficacy of the rHA vaccine candidate in shielding chickens against the H9N2 virus challenge, underscoring its potential as an alternative to conventional vaccines.
Collapse
Affiliation(s)
- Qi Wu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.W.); (W.W.); (X.Z.); (D.L.)
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Key Laboratory of Food and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Weihua Wang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.W.); (W.W.); (X.Z.); (D.L.)
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Xuehua Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.W.); (W.W.); (X.Z.); (D.L.)
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Key Laboratory of Food and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Ding Li
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.W.); (W.W.); (X.Z.); (D.L.)
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Key Laboratory of Food and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Mei Mei
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.W.); (W.W.); (X.Z.); (D.L.)
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Key Laboratory of Food and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| |
Collapse
|
27
|
McMenamy MJ, McKenna R, Bailie VB, Cunningham B, Jeffers A, McCullough K, Forsythe C, Cuartero LG, Flynn O, Byrne C, Connaghan E, Moriarty J, Fanning J, Ronan S, Barrett D, Fusaro A, Monne I, Terregino C, James J, Byrne AMP, Lean FZX, Núñez A, Reid SM, Hansen R, Brown IH, Banyard AC, Lemon K. Evaluating the Impact of Low-Pathogenicity Avian Influenza H6N1 Outbreaks in United Kingdom and Republic of Ireland Poultry Farms during 2020. Viruses 2024; 16:1147. [PMID: 39066308 PMCID: PMC11281592 DOI: 10.3390/v16071147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
In January 2020, increased mortality was reported in a small broiler breeder flock in County Fermanagh, Northern Ireland. Gross pathological findings included coelomitis, oophoritis, salpingitis, visceral gout, splenomegaly, and renomegaly. Clinical presentation included inappetence, pronounced diarrhoea, and increased egg deformation. These signs, in combination with increased mortality, triggered a notifiable avian disease investigation. High pathogenicity avian influenza virus (HPAIV) was not suspected, as mortality levels and clinical signs were not consistent with HPAIV. Laboratory investigation demonstrated the causative agent to be a low-pathogenicity avian influenza virus (LPAIV), subtype H6N1, resulting in an outbreak that affected 15 premises in Northern Ireland. The H6N1 virus was also associated with infection on 13 premises in the Republic of Ireland and six in Great Britain. The close genetic relationship between the viruses in Ireland and Northern Ireland suggested a direct causal link whereas those in Great Britain were associated with exposure to a common ancestral virus. Overall, this rapidly spreading outbreak required the culling of over 2 million birds across the United Kingdom and the Republic of Ireland to stamp out the incursion. This report demonstrates the importance of investigating LPAIV outbreaks promptly, given their substantial economic impacts.
Collapse
Affiliation(s)
- Michael J. McMenamy
- Virological Molecular Diagnostics Laboratory, Virology Branch, Agri-Food and Bioscience Institute, Stoney Road, Stormont, Belfast BT4 3SD, UK
| | - Robyn McKenna
- Virological Molecular Diagnostics Laboratory, Virology Branch, Agri-Food and Bioscience Institute, Stoney Road, Stormont, Belfast BT4 3SD, UK
| | - Valerie B. Bailie
- Virological Molecular Diagnostics Laboratory, Virology Branch, Agri-Food and Bioscience Institute, Stoney Road, Stormont, Belfast BT4 3SD, UK
| | - Ben Cunningham
- Virological Molecular Diagnostics Laboratory, Virology Branch, Agri-Food and Bioscience Institute, Stoney Road, Stormont, Belfast BT4 3SD, UK
| | - Adam Jeffers
- Virological Molecular Diagnostics Laboratory, Virology Branch, Agri-Food and Bioscience Institute, Stoney Road, Stormont, Belfast BT4 3SD, UK
| | - Kelly McCullough
- Virological Molecular Diagnostics Laboratory, Virology Branch, Agri-Food and Bioscience Institute, Stoney Road, Stormont, Belfast BT4 3SD, UK
| | - Catherine Forsythe
- Disease Surveillance & Investigation Branch, Agri-Food and Bioscience Institute, Stoney Road, Stormont, Belfast BT4 3SD, UK
| | - Laura Garza Cuartero
- Central Veterinary Research Laboratory, DAFM, Backweston Campus, Stacummy Lane, W23 X3PH Celbridge, Ireland
| | - Orla Flynn
- Central Veterinary Research Laboratory, DAFM, Backweston Campus, Stacummy Lane, W23 X3PH Celbridge, Ireland
| | - Christina Byrne
- Central Veterinary Research Laboratory, DAFM, Backweston Campus, Stacummy Lane, W23 X3PH Celbridge, Ireland
| | - Emily Connaghan
- Central Veterinary Research Laboratory, DAFM, Backweston Campus, Stacummy Lane, W23 X3PH Celbridge, Ireland
| | - John Moriarty
- Central Veterinary Research Laboratory, DAFM, Backweston Campus, Stacummy Lane, W23 X3PH Celbridge, Ireland
| | - June Fanning
- National Disease Control Centre, Department of Agriculture, Food and the Marine, Agriculture House, Kildare Street, D02 WK12 Dublin, Ireland
| | - Stephanie Ronan
- National Disease Control Centre, Department of Agriculture, Food and the Marine, Agriculture House, Kildare Street, D02 WK12 Dublin, Ireland
| | - Damien Barrett
- National Disease Control Centre, Department of Agriculture, Food and the Marine, Agriculture House, Kildare Street, D02 WK12 Dublin, Ireland
| | - Alice Fusaro
- European Union Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Padua, Italy
| | - Isabella Monne
- European Union Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Padua, Italy
| | - Calogero Terregino
- European Union Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Padua, Italy
| | - Joe James
- Department of Virology, Animal and Plant Health Agency—Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, UK
| | - Alexander M. P. Byrne
- Department of Virology, Animal and Plant Health Agency—Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, UK
| | - Fabian Z. X. Lean
- Pathology and Animal Sciences Department, Animal and Plant Health Agency—Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, UK
| | - Alejandro Núñez
- Pathology and Animal Sciences Department, Animal and Plant Health Agency—Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, UK
| | - Scott M. Reid
- Department of Virology, Animal and Plant Health Agency—Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, UK
| | - Rowena Hansen
- Department of Virology, Animal and Plant Health Agency—Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, UK
| | - Ian H. Brown
- Department of Virology, Animal and Plant Health Agency—Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, UK
- Now the Pirbright Institute, Ash Road, Woking GU24 0NF, UK
| | - Ashley C. Banyard
- Department of Virology, Animal and Plant Health Agency—Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, UK
| | - Ken Lemon
- Virological Molecular Diagnostics Laboratory, Virology Branch, Agri-Food and Bioscience Institute, Stoney Road, Stormont, Belfast BT4 3SD, UK
| |
Collapse
|
28
|
Barnes AP, Sparks N, Helgesen IS, Soliman T. Financial impacts of a housing order on commercial free range egg layers in response to highly pathogenic avian influenza. Prev Vet Med 2024; 228:106209. [PMID: 38714017 DOI: 10.1016/j.prevetmed.2024.106209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 05/09/2024]
Abstract
Recent annual outbreaks of Highly Pathogenic Avian Influenza (HPAI) have led to mandatory housing orders on commercial free-range flocks. Indefinite periods of housing, after poultry have had access to range, could have production and financial consequences for free range egg producers. The impact of these housing orders on the performance of commercial flocks is seldom explored at a business level, predominantly due to the paucity of commercially sensitive data. The aim of this paper is to assess the financial and production impacts of a housing order on commercial free-range egg layers. We use a unique data set showing week by week performance of layers gathered from 9 UK based farms over the period 2020-2022. These data cover an average of 100,000 laying hens and include two imposed housing orders, in 2020/2021 and in 2021/22. We applied a random intercept linear regression to assess impacts on physical outputs and inputs, bird mortality and the impacts on revenue, feed costs and margin over feed cost. Feed use and feed costs per bird increased during the housing order which is a consequence of increased control over diet intake in housed compared to ranged birds. An increase in revenue was also found, ostensibly due to a higher proportion of large eggs produced, leading to a higher margin over feed cost. Overall, these large commercial poultry sheds were able to mitigate some of the potential adverse economic effects of housing orders. Potential negative impacts may occur dependant on the duration of the housing order and those farms with less control over their input costs.
Collapse
Affiliation(s)
- Andrew P Barnes
- Department of Rural Economy, Environment and Society, SRUC, West Mains Road, Edinburgh, Scotland EH9 3JG, UK.
| | - Nick Sparks
- Department of Rural Economy, Environment and Society, SRUC, West Mains Road, Edinburgh, Scotland EH9 3JG, UK
| | - Irmelin S Helgesen
- Department of Economics, NTNU, Postboks 8900, Trondheim, Torgarden 7491, Norway
| | - Tarek Soliman
- Department of Rural Economy, Environment and Society, SRUC, West Mains Road, Edinburgh, Scotland EH9 3JG, UK
| |
Collapse
|
29
|
Barber MF, Fitzgerald JR. Mechanisms of host adaptation by bacterial pathogens. FEMS Microbiol Rev 2024; 48:fuae019. [PMID: 39003250 PMCID: PMC11308195 DOI: 10.1093/femsre/fuae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 07/15/2024] Open
Abstract
The emergence of new infectious diseases poses a major threat to humans, animals, and broader ecosystems. Defining factors that govern the ability of pathogens to adapt to new host species is therefore a crucial research imperative. Pathogenic bacteria are of particular concern, given dwindling treatment options amid the continued expansion of antimicrobial resistance. In this review, we summarize recent advancements in the understanding of bacterial host species adaptation, with an emphasis on pathogens of humans and related mammals. We focus particularly on molecular mechanisms underlying key steps of bacterial host adaptation including colonization, nutrient acquisition, and immune evasion, as well as suggest key areas for future investigation. By developing a greater understanding of the mechanisms of host adaptation in pathogenic bacteria, we may uncover new strategies to target these microbes for the treatment and prevention of infectious diseases in humans, animals, and the broader environment.
Collapse
Affiliation(s)
- Matthew F Barber
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, United States
- Department of Biology, University of Oregon, Eugene, OR 97403, United States
| | - J Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| |
Collapse
|
30
|
Islam A, Rahman MZ, Hassan MM, Epstein JH, Klaassen M. Farm biosecurity practices affecting avian influenza virus circulation in commercial chicken farms in Bangladesh. One Health 2024; 18:100681. [PMID: 39010948 PMCID: PMC11247270 DOI: 10.1016/j.onehlt.2024.100681] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/17/2024] [Indexed: 07/17/2024] Open
Abstract
Avian influenza virus (AIV) is of major concern to livestock, wildlife, and human health. In many countries in the world, including Bangladesh, AIV is endemic in poultry, requiring improving biosecurity. In Bangladesh, we investigated how variation in biosecurity practices in commercial chicken farms affected their AIV infection status to help guide AIV mitigation strategies. We collected pooled fecal swabs from 225 farms and tested the samples for the AIV matrix gene followed by H5, H7, and H9 subtyping using rRT-PCR. We found that 39.6% of chicken farms were AIV positive, with 13% and 14% being positive for subtypes H5 and H9, respectively. Using a generalized linear mixed effects model, we identified as many as 12 significant AIV risk factors. Two major factors promoting AIV risk that cannot be easily addressed in the short term were farm size and the proximity of the farm to a live bird market. However, the other ten significant determinants of AIV risk can be more readily addressed, of which the most important ones were limiting access by visitors (reducing predicted AIV risk from 42 to 6%), isolation and treatment of sick birds (42 to 7%), prohibiting access of vehicles to poultry sheds (38 to 8%), improving hand hygiene (from 42 to 9%), not sharing farm workers across farms (37 to 8%), and limiting access by wild birds to poultry sheds (37 to 8%). Our findings can be applied to developing practical and cost-effective measures that significantly decrease the prevalence of AIV in chicken farms. Notably, in settings with limited resources, such as Bangladesh, these measures can help governments strengthen biosecurity practices in their poultry industry to limit and possibly prevent the spread of AIV.
Collapse
Affiliation(s)
- Ariful Islam
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
- EcoHealth Alliance, New York, NY 10018, USA
| | - Mohammed Ziaur Rahman
- One Health Laboratory, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Bangladesh
| | - Mohammad Mahmudul Hassan
- Queensland Alliance for One Health Sciences, School of Veterinary Science, University of Queensland, Gatton, QLD 4343, Australia
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | | | - Marcel Klaassen
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
31
|
Wang R, Liu C, Ma K. Reconstruction of Population-Level Migration Trajectories of Black-Faced Spoonbill ( Platalea minor) Based on Citizen Science Data. Animals (Basel) 2024; 14:1663. [PMID: 38891710 PMCID: PMC11171159 DOI: 10.3390/ani14111663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Migration is a critical ecological process for birds. Understanding avian migratory routes is essential for identifying important stopover sites and key foraging areas to ensure high-quality stopovers for birds. The Black-faced Spoonbill (Platalea minor), a national Grade I protected wild animal in China, is classified as endangered on the IUCN Red List of Threatened Species. Studying the migratory routes of the Black-faced Spoonbill and identifying critical stopover sites across different life histories is vital for its conservation. However, research on the migratory routes of this species has been very limited. This study, utilizing citizen science data and the Level-order-Minimum-cost-Traversal (LoMcT) algorithm, reconstructs the migratory trajectories of the Black-faced Spoonbill from 2018 to 2022. The results show that Wenzhou, Xiamen, Shantou, Shanwei, Hsinchu, Chiayi, and Tainan are significant stopovers for this species. The Black-faced Spoonbill is actively migratory during the migration season across the southeastern coastal region of China. The simulation results of this study reveal the migratory routes and activity patterns of the Black-faced Spoonbill, providing critical support for its conservation.
Collapse
Affiliation(s)
- Ruilin Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (R.W.); (C.L.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (R.W.); (C.L.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keming Ma
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (R.W.); (C.L.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Chernyshova AI, Zhirnov OP. Two Phylogenetic Cohorts of the Nucleocapsid Protein NP and Their Correlation with the Host Range of Influenza A Viruses. DOKL BIOCHEM BIOPHYS 2024; 516:93-97. [PMID: 38539009 DOI: 10.1134/s1607672924700789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 05/26/2024]
Abstract
Influenza A virus has a wide natural areal among birds, mammals, and humans. One of the main regulatory adaptors of the virus host range is the major NP protein of the viral nucleocapsid. Phylogenetic analysis of the NP protein of different viruses has revealed the existence of two phylogenetic cohorts in human influenza virus population. Cohort I includes classical human viruses that caused epidemics in 1957, 1968, 1977. Cohort II includes the H1N1/2009pdm virus, which had a mixed avian-swine origin but caused global human pandemic. Also, the highly virulent H5N1 avian influenza virus emerged in 2021 and caused outbreaks of lethal infections in mammals including humans, appeared to have the NP gene of the second phylogenetic cohort and, therefore, by the type of adaptation to human is similar to the H1N1/2009pdm virus and seems to possess a high epidemic potential for humans. The data obtained shed light on pathways and dynamics of adaptation of avian influenza viruses to humans and propose phylogenetic algorithm for systemic monitoring of dangerous virus strains to predict epidemic harbingers and take immediate preventive measures.
Collapse
Affiliation(s)
- A I Chernyshova
- Ivanovsky Institute of Virology, Gamaleya Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - O P Zhirnov
- Ivanovsky Institute of Virology, Gamaleya Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.
- Russian-German Academy of Medico-Social and Biotechnological Sciences, Skolkovo Innovation Center, Moscow, Russia.
| |
Collapse
|
33
|
Zhang M, Zeng Y, Wang F, Feng H, Liu Q, Li F, Zhao S, Zhao J, Liu Z, Zheng F, Liu H. Effects of the Nonstructural Protein-Nucleolar and Coiled-Body Phosphoprotein 1 Protein Interaction on rRNA Synthesis Through Telomeric Repeat-Binding Factor 2 Regulation Under Nucleolar Stress. AIDS Res Hum Retroviruses 2024; 40:408-416. [PMID: 38062753 DOI: 10.1089/aid.2023.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024] Open
Abstract
To investigate the effects and underlying molecular mechanisms of the interaction between the non-structural protein 1 (NS1) and nucleolar and coiled-body phosphoprotein 1 (NOLC1) on rRNA synthesis through nucleolar telomeric repeat-binding factor 2 (TRF2) under nucleolar stress in avian influenza A virus infection. The analysis of TRF2 ties into the exploration of ribosomal protein L11 (RPL11) and mouse double minute 2 (MDM2) because TRF2 has been found to interact with NOLC1, and the RPL11-MDM2 pathway plays an important role in nucleolar regulation and cellular processes. Both human embryonic kidney 293T cells and human lung adenocarcinoma A549 cells were transfected with the plasmids pCAGGS-HA and pCAGGS-HA-NS1, respectively. In addition, A549 cells were transfected with the plasmids pEGFP-N1, pEGFP-N1-NS1, and pDsRed2-N1-TRF2. The cell cycle was detected by flow cytometry, and coimmunoprecipitation was applied to examine the interactions between different proteins. The effect of NS1 on TRF2 was detected by immunoprecipitation, and the colocalization of NOLC1 and TRF2 or NS1 and TRF2 was visualized by immunofluorescence. Quantitative real-time PCR was conducted to detect the expression of the TRF2 and p21. There is a strong interaction between NOLC1 and TRF2, and the colocalization of NOLC1 and TRF2 in the nucleus. The protein expression of NOLC1 in A549-HA-NS1 cells was lower than that in A549-HA cells, which was accompanied by the upregulated protein expression of p53 in A549-HA-NS1 cells (all p < .05). TRF2 was scattered throughout the nucleus without clear nucleolar aggregation. RPL11 specifically interacted with MDM2 in the NS1 group, and expression of the p21 gene was significantly increased in the HA-NS1 group compared with the HA group (p < .01). NS1 protein can lead to the reduced aggregation of TRF2 in the nucleolus, inhibition of rRNA expression, and cell cycle blockade by interfering with the NOLC1 protein and generating nucleolar stress.
Collapse
Affiliation(s)
- Man Zhang
- School of Life Science, Liaoning University, Shenyang, China
| | - Yingyue Zeng
- School of Life Science, Liaoning University, Shenyang, China
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning, Shenyang, China
- Shenyang Key Laboratory of Computational Simulation and Information Processing of Biological Macromolecules, Shenyang, China
| | - Fengchao Wang
- School of Life Science, Liaoning University, Shenyang, China
| | - Huawei Feng
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning, Shenyang, China
- Shenyang Key Laboratory of Computational Simulation and Information Processing of Biological Macromolecules, Shenyang, China
- School of Pharmacy, Liaoning University, Shenyang, China
- Liaoning Provincial Engineering Laboratory of Molecular Modeling and Design for Drug, Shenyang, China
| | - Qingqing Liu
- School of Life Science, Liaoning University, Shenyang, China
| | - Feng Li
- School of Life Science, Liaoning University, Shenyang, China
| | - Shan Zhao
- School of Life Science, Liaoning University, Shenyang, China
| | - Jian Zhao
- School of Life Science, Liaoning University, Shenyang, China
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning, Shenyang, China
- Shenyang Key Laboratory of Computational Simulation and Information Processing of Biological Macromolecules, Shenyang, China
- School of Pharmacy, Liaoning University, Shenyang, China
- Liaoning Provincial Engineering Laboratory of Molecular Modeling and Design for Drug, Shenyang, China
| | - Zhikui Liu
- Liaoning Huikang Testing and Evaluation Technology Co., Shenyang, China
| | - Fangliang Zheng
- School of Life Science, Liaoning University, Shenyang, China
| | - Hongsheng Liu
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning, Shenyang, China
- Shenyang Key Laboratory of Computational Simulation and Information Processing of Biological Macromolecules, Shenyang, China
- School of Pharmacy, Liaoning University, Shenyang, China
- Liaoning Provincial Engineering Laboratory of Molecular Modeling and Design for Drug, Shenyang, China
| |
Collapse
|
34
|
Azat C, Alvarado-Rybak M, Aguilera JF, Benavides JA. Spatio-temporal dynamics and drivers of highly pathogenic avian influenza H5N1 in Chile. Front Vet Sci 2024; 11:1387040. [PMID: 38756514 PMCID: PMC11096463 DOI: 10.3389/fvets.2024.1387040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/28/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Highly pathogenic avian influenza A H5N1 clade 2.3.4.4b (hereafter H5N1) is causing vast impacts on biodiversity and poultry around the globe. In Chile, lethal H5N1 cases have been reported in a wide range of wild bird species, marine mammals, backyard and industrial poultry, and humans. This study describes the spatio-temporal patterns of the current epizootic of H5N1 in Chile and test drivers that could be associated with outbreak occurrence. Methods We used H5N1 cases reported by the Chilean National Animal Health Authority from 5 December 2022 to 5 April 2023. These included wild bird cases confirmed through an avian influenza-specific real-time reverse transcription PCR assay (RT-qPCR), obtained from passive and active surveillance. Data were analyzed to detect the presence of H5N1 clusters under space-time permutation probability modeling, the association of H5N1 with distance and days since the first outbreak through linear regression, and the correlation of H5N1 presence with a number of ecological and anthropogenic variables using general linear modeling. Results From 445 H5N1 identified outbreaks involving 613 individual cases in wild birds, a consistent wave-like spread of H5N1 from north to south was identified, which may help predict hotspots of outbreak risk. For instance, seven statistically significant clusters were identified in central and northern Chile, where poultry production and wildlife mortality are concentrated. The presence of outbreaks was correlated with landscape-scale variables, notably temperature range, bird richness, and human footprint. Discussion In less than a year, H5N1 has been associated with the unusual mortality of >100,000 individuals of wild animals in Chile, mainly coastal birds and marine mammals. It is urgent that scientists, the poultry sector, local communities, and national health authorities co-design and implement science-based measures from a One Health perspective to avoid further H5N1 spillover from wildlife to domestic animals and humans, including rapid removal and proper disposal of wild dead animals and the closure of public areas (e.g., beaches) reporting high wildlife mortalities.
Collapse
Affiliation(s)
- Claudio Azat
- Sustainability Research Center & PhD in Conservation Medicine, Life Science Faculty, Universidad Andrés Bello, Santiago, Chile
| | - Mario Alvarado-Rybak
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Santiago, Chile
| | - José F. Aguilera
- Sustainability Research Center & PhD in Conservation Medicine, Life Science Faculty, Universidad Andrés Bello, Santiago, Chile
| | - Julio A. Benavides
- Sustainability Research Center & PhD in Conservation Medicine, Life Science Faculty, Universidad Andrés Bello, Santiago, Chile
- MIVEGEC, Institut de Recherche pour le Développement, CNRS, Université de Montpellier, Montpellier, France
| |
Collapse
|
35
|
Ahrens AK, Jónsson SR, Svansson V, Brugger B, Beer M, Harder TC, Pohlmann A. Iceland: an underestimated hub for the spread of high-pathogenicity avian influenza viruses in the North Atlantic. J Gen Virol 2024; 105:001985. [PMID: 38695722 PMCID: PMC11170123 DOI: 10.1099/jgv.0.001985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/22/2024] [Indexed: 06/15/2024] Open
Abstract
High-pathogenicity avian influenza viruses (HPAIVs) of the goose/Guangdong lineage are enzootically circulating in wild bird populations worldwide. This increases the risk of entry into poultry production and spill-over to mammalian species, including humans. Better understanding of the ecological and epizootiological networks of these viruses is essential to optimize mitigation measures. Based on full genome sequences of 26 HPAIV samples from Iceland, which were collected between spring and autumn 2022, as well as 1 sample from the 2023 summer period, we show that 3 different genotypes of HPAIV H5N1 clade 2.3.4.4b were circulating within the wild bird population in Iceland in 2022. Furthermore, in 2023 we observed a novel introduction of HPAIV H5N5 of the same clade to Iceland. The data support the role of Iceland as an utmost northwestern distribution area in Europe that might act also as a potential bridging point for intercontinental spread of HPAIV across the North Atlantic.
Collapse
Affiliation(s)
- Ann Kathrin Ahrens
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald –Isle of Riems, Germany
| | - Stefán Ragnar Jónsson
- The Institute for Experimental Pathology at Keldur, University of Iceland, Reykjavík, Iceland
| | - Vilhjálmur Svansson
- The Institute for Experimental Pathology at Keldur, University of Iceland, Reykjavík, Iceland
| | - Brigitte Brugger
- The Icelandic Food and Veterinary Authority (MAST), Austurvegi 64, Selfossi, Iceland
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald –Isle of Riems, Germany
| | - Timm C. Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald –Isle of Riems, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald –Isle of Riems, Germany
| |
Collapse
|
36
|
Mao Q, Li Z, Li Y, Zhang Y, Liu S, Yin X, Peng C, Ma R, Li J, Hou G, Jiang W, Liu H. H5N1 high pathogenicity avian influenza virus in migratory birds exhibiting low pathogenicity in mallards increases its risk of transmission and spread in poultry. Vet Microbiol 2024; 292:110038. [PMID: 38458047 DOI: 10.1016/j.vetmic.2024.110038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
In 2020, an H5N1 avian influenza virus of clade 2.3.4.4b was detected in Europe for the first time and was spread throughout the world by wild migratory birds, resulting in the culling of an unprecedented number of wild birds and poultry due to the epidemic. In February 2023, we isolated and identified a strain of H5N1 high pathogenicity avian influenza virus from a swab sample from a grey crane in Ningxia, China. Phylogenetic analysis of the Hemagglutinin (HA) gene showed that the virus belonged to clade 2.3.4.4b, and several gene segments were closely related to H5N1 viruses infecting humans in China. Analysis of key amino acid sites revealed that the virus contained multiple amino acid substitutions that facilitate enhanced viral replication and mammalian pathogenicity. The results of animal challenge experiments showed that the virus is highly pathogenic to chickens, moderately pathogenic to BALB/c mice, and highly infectious but not lethal to mallards. Moreover, the virus exhibited minor antigenic drift compared with the H5-Re14 vaccine strain. To this end, we need to pay more attention to the monitoring of wild birds to prevent further spread of viruses to poultry and mammals, including humans.
Collapse
Affiliation(s)
- Qiuyan Mao
- Avian Diseases Surveillance Laboratory, China Animal Health and Epidemiology Center, Qingdao 266032, PR China; College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, PR China
| | - Zhixin Li
- Ningxia Hui Autonomous Region Animal Disease Prevention and Control Center, Yinchuan 750001, PR China
| | - Yuecheng Li
- Monitoring Center for Terrestrial Wildlife Epidemic Diseases, Yinchuan 750001, PR China
| | - Yaxin Zhang
- Avian Diseases Surveillance Laboratory, China Animal Health and Epidemiology Center, Qingdao 266032, PR China; College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Shuo Liu
- Avian Diseases Surveillance Laboratory, China Animal Health and Epidemiology Center, Qingdao 266032, PR China
| | - Xin Yin
- Avian Diseases Surveillance Laboratory, China Animal Health and Epidemiology Center, Qingdao 266032, PR China
| | - Cheng Peng
- Avian Diseases Surveillance Laboratory, China Animal Health and Epidemiology Center, Qingdao 266032, PR China
| | - Rui Ma
- Monitoring Center for Terrestrial Wildlife Epidemic Diseases, Yinchuan 750001, PR China
| | - Jinping Li
- Avian Diseases Surveillance Laboratory, China Animal Health and Epidemiology Center, Qingdao 266032, PR China
| | - Guangyu Hou
- Avian Diseases Surveillance Laboratory, China Animal Health and Epidemiology Center, Qingdao 266032, PR China
| | - Wenming Jiang
- Avian Diseases Surveillance Laboratory, China Animal Health and Epidemiology Center, Qingdao 266032, PR China.
| | - Hualei Liu
- Avian Diseases Surveillance Laboratory, China Animal Health and Epidemiology Center, Qingdao 266032, PR China.
| |
Collapse
|
37
|
Fang K, Song W, Zhang Y, Zheng Y, You C, Hu J, Liu L, Feng L, Zhao Z, Zhao Y, Wang J, Wang X, Zhu L, Chen T. Comparative analysis and prediction of avian influenza in Shangrao city, China from 2016 to 2022. Virology 2024; 592:109995. [PMID: 38290415 DOI: 10.1016/j.virol.2024.109995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024]
Abstract
The aim of this study was to investigate the effects of vaccination, COVID-19 pandemic and migration of migratory birds on the avian influenza positivity rate in Shangrao City and to predict the future avian influenza positivity rate. Real-time reverse transcription polymerase chain reaction (RT-PCR) was used to detect nucleic acids of avian influenza A viruses. 1795 samples were collected between 2016 and 2022, of which 1086 were positive. In addition, there were seven human cases of avian influenza. The results showed that the positivity rate of H9 subtype in Shangrao City was higher than usual during the COVID-19 pandemic and migratory birds. Predictions suggest that the H9 subtype positivity rate in Shangrao City will be on the rise in the future. In recent years, the H5 positivity rate has gradually increased. Migratory birds and the COVID-19 pandemic have led to an increase in H9 subtype positivity. Therefore, the prevention and control of them should be strengthened.
Collapse
Affiliation(s)
- Kang Fang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, China
| | - Wentao Song
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, China
| | - Yanyan Zhang
- Shangrao Center for Disease Control and Prevention, Shangrao City, Jiangxi Province, China
| | - Yiyang Zheng
- Shangrao Center for Disease Control and Prevention, Shangrao City, Jiangxi Province, China
| | - Chen You
- Shangrao Center for Disease Control and Prevention, Shangrao City, Jiangxi Province, China
| | - Jianhai Hu
- Shangrao Center for Disease Control and Prevention, Shangrao City, Jiangxi Province, China
| | - Li Liu
- Shangrao Center for Disease Control and Prevention, Shangrao City, Jiangxi Province, China
| | - Lei Feng
- Shangrao Center for Disease Control and Prevention, Shangrao City, Jiangxi Province, China
| | - Zeyu Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, China
| | - Yunkang Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, China
| | - Jiayi Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, China
| | - Xiaolan Wang
- Shangrao Center for Disease Control and Prevention, Shangrao City, Jiangxi Province, China; Shangrao People's Hospital, Shangrao City, Jiangxi Province, China.
| | - Lin Zhu
- Shangrao Center for Disease Control and Prevention, Shangrao City, Jiangxi Province, China.
| | - Tianmu Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, China.
| |
Collapse
|
38
|
Calhoun VC, Hatcher EL, Yankie L, Nawrocki EP. Influenza sequence validation and annotation using VADR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.585980. [PMID: 38712272 PMCID: PMC11071281 DOI: 10.1101/2024.03.21.585980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Tens of thousands of influenza sequences are deposited into the GenBank database each year. The software tool FLAN has been used by GenBank since 2007 to validate and annotate incoming influenza sequence submissions, and has been publicly available as a webserver but not as a standalone tool. VADR is a general sequence validation and annotation software package used by GenBank for Norovirus, Dengue virus and SARS-CoV-2 virus sequence processing that is available as a standalone tool. We have created VADR influenza models based on the FLAN reference sequences and adapted VADR to accurately annotate influenza sequences. VADR and FLAN show consistent results on the vast majority of influenza sequences, and when they disagree VADR is usually correct. VADR can also accurately process influenza D sequences as well as influenza A H17, H18, H19, N10 and N11 subtype sequences, which FLAN cannot. VADR 1.6.3 and the associated influenza models are now freely available for users to download and use.
Collapse
Affiliation(s)
- Vincent C. Calhoun
- National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, United States
| | - Eneida L. Hatcher
- National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, United States
| | - Linda Yankie
- National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, United States
| | - Eric P. Nawrocki
- National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, United States
| |
Collapse
|
39
|
Zeng J, Du F, Xiao L, Sun H, Lu L, Lei W, Zheng J, Wang L, Shu S, Li Y, Zhang Q, Tang K, Sun Q, Zhang C, Long H, Qiu Z, Zhai K, Li Z, Zhang G, Sun Y, Wang D, Zhang Z, Lycett SJ, Gao GF, Shu Y, Liu J, Du X, Pu J. Spatiotemporal genotype replacement of H5N8 avian influenza viruses contributed to H5N1 emergence in 2021/2022 panzootic. J Virol 2024; 98:e0140123. [PMID: 38358287 PMCID: PMC10949427 DOI: 10.1128/jvi.01401-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Since 2020, clade 2.3.4.4b highly pathogenic avian influenza H5N8 and H5N1 viruses have swept through continents, posing serious threats to the world. Through comprehensive analyses of epidemiological, genetic, and bird migration data, we found that the dominant genotype replacement of the H5N8 viruses in 2020 contributed to the H5N1 outbreak in the 2021/2022 wave. The 2020 outbreak of the H5N8 G1 genotype instead of the G0 genotype produced reassortment opportunities and led to the emergence of a new H5N1 virus with G1's HA and MP genes. Despite extensive reassortments in the 2021/2022 wave, the H5N1 virus retained the HA and MP genes, causing a significant outbreak in Europe and North America. Furtherly, through the wild bird migration flyways investigation, we found that the temporal-spatial coincidence between the outbreak of the H5N8 G1 virus and the bird autumn migration may have expanded the H5 viral spread, which may be one of the main drivers of the emergence of the 2020-2022 H5 panzootic.IMPORTANCESince 2020, highly pathogenic avian influenza (HPAI) H5 subtype variants of clade 2.3.4.4b have spread across continents, posing unprecedented threats globally. However, the factors promoting the genesis and spread of H5 HPAI viruses remain unclear. Here, we found that the spatiotemporal genotype replacement of H5N8 HPAI viruses contributed to the emergence of the H5N1 variant that caused the 2021/2022 panzootic, and the viral evolution in poultry of Egypt and surrounding area and autumn bird migration from the Russia-Kazakhstan region to Europe are important drivers of the emergence of the 2020-2022 H5 panzootic. These findings provide important targets for early warning and could help control the current and future HPAI epidemics.
Collapse
Affiliation(s)
- Jinfeng Zeng
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Fanshu Du
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Linna Xiao
- Key Laboratory for Biodiversity Science and Ecological Engineering, Demonstration Center for Experimental Life Sciences & Biotechnology Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Honglei Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lu Lu
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Weipan Lei
- Key Laboratory for Biodiversity Science and Ecological Engineering, Demonstration Center for Experimental Life Sciences & Biotechnology Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jialu Zheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Lu Wang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Sicheng Shu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yudong Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qiang Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Kang Tang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Qianru Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Chi Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Haoyu Long
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zekai Qiu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ke Zhai
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zhichao Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Geli Zhang
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Yipeng Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhengwang Zhang
- Key Laboratory for Biodiversity Science and Ecological Engineering, Demonstration Center for Experimental Life Sciences & Biotechnology Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Samantha J. Lycett
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - George F. Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- National Health Commission Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology of Chinese Academy of Medical Science (CAMS)/Peking Union Medical College (PUMC), Beijing, China
| | - Jinhua Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiangjun Du
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Juan Pu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
40
|
Islam A, Islam M, Dutta P, Rahman MA, Al Mamun A, Khan AKMD, Samad MA, Hassan MM, Rahman MZ, Shirin T. Association of biosecurity and hygiene practices with avian influenza A/H5 and A/H9 virus infections in turkey farms. Front Vet Sci 2024; 11:1319618. [PMID: 38550782 PMCID: PMC10976562 DOI: 10.3389/fvets.2024.1319618] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/19/2024] [Indexed: 11/12/2024] Open
Abstract
High pathogenicity avian influenza (HPAI) H5N1 outbreaks pose a significant threat to the health of livestock, wildlife, and humans. Avian influenza viruses (AIVs) are enzootic in poultry in many countries, including Bangladesh, necessitating improved farm biosecurity measures. However, the comprehension of biosecurity and hygiene practices, as well as the infection of AIV in turkey farms, are poorly understood in Bangladesh. Therefore, we conducted this study to determine the prevalence of AIV subtypes and their association with biosecurity and hygiene practices in turkey farms. We collected oropharyngeal and cloacal swabs from individual turkeys from 197 farms across 9 districts in Bangladesh from March to August 2019. We tested the swab samples for the AIV matrix gene (M gene) followed by H5, H7, and H9 subtypes using real-time reverse transcriptase-polymerase chain reaction (rRT-PCR). We found 24.68% (95% CI:21.54-28.04) of turkey samples were AIV positive, followed by 5.95% (95% CI: 4.33-7.97) for H5, 6.81% (95% CI: 5.06-8.93) for H9 subtype and no A/H7 was found. Using a generalized linear mixed model, we determined 10 significant risk factors associated with AIV circulation in turkey farms. We found that the absence of sick turkeys, the presence of footbaths, the absence of nearby poultry farms, concrete flooring, and the avoidance of mixing newly purchased turkeys with existing stock can substantially reduce the risk of AIV circulation in turkey farms (odds ratio ranging from 0.02 to 0.08). Furthermore, the absence of nearby live bird markets, limiting wild bird access, no visitor access, improved floor cleaning frequency, and equipment disinfection practices also had a substantial impact on lowering the AIV risk in the farms (odds ratio ranging from 0.10 to 0.13). The results of our study underscore the importance of implementing feasible and cost-effective biosecurity measures aimed at reducing AIV transmission in turkey farms. Particularly in resource-constrained environments such as Bangladesh, such findings might assist governmental entities in enhancing biosecurity protocols within their poultry sector, hence mitigating and potentially averting the transmission of AIV and spillover to humans.
Collapse
Affiliation(s)
- Ariful Islam
- EcoHealth Alliance, New York, NY, United States
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Monjurul Islam
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Pronesh Dutta
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Md Ashiqur Rahman
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - AKM Dawlat Khan
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Mohammed Abdus Samad
- National Reference Laboratory for Avian Influenza, Bangladesh Livestock Research Institute (BLRI), Savar, Bangladesh
| | - Mohammad Mahmudul Hassan
- Queensland Alliance for One Health Sciences, School of Veterinary Science, University of Queensland, Gatton, QLD, Australia
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Mohammed Ziaur Rahman
- One Health Laboratory, International Centre for Diarrheal Diseases Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| |
Collapse
|
41
|
Malik S, Asghar M, Waheed Y. Outlining recent updates on influenza therapeutics and vaccines: A comprehensive review. Vaccine X 2024; 17:100452. [PMID: 38328274 PMCID: PMC10848012 DOI: 10.1016/j.jvacx.2024.100452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/27/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
Influenza virus has presented a considerable healthcare challenge during the past years, particularly in vulnerable groups with compromised immune systems. Therapeutics and vaccination have always been in research annals since the spread of influenza. Efforts have been going on to develop an antiviral therapeutic approach that could assist in better disease management and reduce the overall disease complexity, resistance development, and fatality rates. On the other hand, vaccination presents a chance for effective, long-term, cost-benefit, and preventive response against the morbidity and mortality associated with the influenza. However, the issues of resistance development, strain mutation, antigenic variability, and inability to cure wide-spectrum and large-scale strains of the virus by available vaccines remain there. The article gathers the updated data for the therapeutics and available influenza vaccines, their mechanism of action, shortcomings, and trials under clinical experimentation. A methodological approach has been adopted to identify the prospective therapeutics and available vaccines approved and within the clinical trials against the influenza virus. Review contains influenza therapeutics, including traditional and novel antiviral drugs and inhibitor therapies against influenza virus as well as research trials based on newer drug combinations and latest technologies such as nanotechnology and organic and plant-based natural products. Most recent development of influenza vaccine has been discussed including some updates on traditional vaccination protocols and discussion on next-generation and upgraded novel technologies. This review will help the readers to understand the righteous approach for dealing with influenza virus infection and for deducing futuristic approaches for novel therapeutic and vaccine trials against Influenza.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi, Punjab 46000, Pakistan
| | - Muhammad Asghar
- Department of Biology, Lund University, Sweden
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Yasir Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| |
Collapse
|
42
|
Li Y, An Q, Sun Z, Gao X, Wang H. Multifaceted analysis of temporal and spatial distribution and risk factors of global poultry HPAI-H5N1, 2005-2023. Animal 2024; 18:101085. [PMID: 38364655 DOI: 10.1016/j.animal.2024.101085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/18/2024] Open
Abstract
The purpose of this study was to analyze the characteristics of occurrence and spread of highly pathogenic avian influenza H5N1 (HPAI-H5N1) globally, understand its spatiotemporal characteristics, investigate the risk factors influencing outbreaks, and identify high-risk areas for disease occurrence. We collected the data on global poultry HPAI-H5N1 outbreaks from January 2005 to April 2023, and conducted a thorough analysis of the spatial and temporal characteristics of the disease through time series decomposition and directional distribution analysis. Additionally, an ecological niche model was established to explore the major factors influencing the occurrence of HPAI-H5N1 and to pinpoint high-risk areas. Our findings revealed that HPAI-H5N1 outbreaks were cyclical, and seasonal, exhibiting a rising trend, with a predominant northwest-southeast transmission direction. The ecological niche model highlighted that species factors and economic trade factors are critical in influencing the outbreak of HPAI-H5N1. Variables such as chicken and duck density, population density, isothermality, and road density, contributed to importantly risk of outbreaks. High-risk areas for HPAI-H5N1 occurrence were primarily identified in Europe, West Africa, Southeast Asia, and Southeast China. This study provided valuable insights into the spatial and temporal distribution characteristics and risk factors of global poultry HPAI-H5N1 outbreaks. The identification of high-risk areas provides essential information that can be used to develop more effective prevention and control policies.
Collapse
Affiliation(s)
- Yuepeng Li
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Qi An
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Zhuo Sun
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xiang Gao
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Hongbin Wang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China.
| |
Collapse
|
43
|
Lee YJ, Park JY, Shang K, Zhang JF, Choi YR, Kim SW, Cha SY, Kang M, Wei B, Jang HK. Genetic Characterization of Avian Paramyxovirus Isolated from Wild Waterfowl in Korea between 2015 and 2021. Animals (Basel) 2024; 14:780. [PMID: 38473165 DOI: 10.3390/ani14050780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Avian paramyxoviruses (APMVs) are often carried by wild waterfowl, and the wild waterfowl may play an important role in the maintenance and spread of these viruses. In this study, we investigated APMVs in the population of migratory wild waterfowl from 2015 to 2021 in Korea and analyzed their genetic characteristics. Fourteen viruses were isolated and subsequently identified as APMV-1 (n = 13) and APMV-13 (n = 1). Phylogenetic analysis of the full fusion gene of 13 APMV-1 isolates showed that 10 APMV-1 isolates belonged to the class II sub-genotype I.2, which was epidemiologically linked to viruses from the Eurasian continent, and 3 viruses belonged to class I, which linked to viruses from the USA. The APMV-13 isolates from wild geese in this study were highly homology to the virus isolated from China. Sequence analysis of 14 isolates showed that all isolates had a typical lentogenic motif at the cleavage site. In summary, we identified the wild species likely to be infected with APMV and our data suggest possible intercontinental transmission of APMV by wild waterfowl. Our current study also provides the first evidence for the presence of class I of APMV-1 and APMV-13 in wild waterfowl surveyed in Korea.
Collapse
Affiliation(s)
- Yea-Jin Lee
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Jong-Yeol Park
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Ke Shang
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Jun-Feng Zhang
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Yu-Ri Choi
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Sang-Won Kim
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Se-Yeoun Cha
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Min Kang
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea
- Bio Disease Control (BIOD) Co., Ltd., Iksan 54596, Republic of Korea
| | - Bai Wei
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Hyung-Kwan Jang
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea
- Bio Disease Control (BIOD) Co., Ltd., Iksan 54596, Republic of Korea
| |
Collapse
|
44
|
Yamaguchi E, Hayama Y, Murato Y, Sawai K, Kondo S, Yamamoto T. A case-control study of the infection risk of H5N8 highly pathogenic avian influenza in Japan during the winter of 2020-2021. Res Vet Sci 2024; 168:105149. [PMID: 38218062 DOI: 10.1016/j.rvsc.2024.105149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/21/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
In Japan, outbreaks of H5N8 highly pathogenic avian influenza (HPAI) were reported between November 2020 and March 2021 in 52 poultry farms. Understanding HPAI epidemiology would help poultry industries improve their awareness of the disease and enhance the immediate implementation of biosecurity measures. This study was a simulation-based matched case-control study to elucidate the risk factors associated with HPAI outbreaks in chicken farms in Japan. Data were collected from 42 HPAI-affected farms and 463 control farms that were within a 5-km radius of each case farm but remained uninfected. When infected farms were detected as clusters, one farm was randomly selected from each cluster, considering the possibility that the cluster was formed by farm-to-farm transmission within an epidemic area. For each case farm, up to three control farms were selected within a 5-km radius. Overall, 26 case farms (16 layer and 10 broiler farms) and 75 control farms (45 layer and 30 broiler farms) were resampled 1000 times for the conditional logistic regression model with explanatory variables comprising geographical factors and farm flock size. A larger flock size and shorter distance to water bodies from the farm were found to increase infection risk in layer farms. Similarly, in broiler farms, a shorter distance to water bodies increased infection risk. On larger farms, frequent access of farm staff and instrument carriages to premises could lead to increased infection risk. Waterfowl visiting water bodies around farms may also be associated with infection risk.
Collapse
Affiliation(s)
- Emi Yamaguchi
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Yoko Hayama
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Yoshinori Murato
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Kotaro Sawai
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Sonoko Kondo
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Takehisa Yamamoto
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture Research Organization, Tsukuba, Ibaraki 305-0856, Japan.
| |
Collapse
|
45
|
Mine J, Takadate Y, Kumagai A, Sakuma S, Tsunekuni R, Miyazawa K, Uchida Y. Genetics of H5N1 and H5N8 High-Pathogenicity Avian Influenza Viruses Isolated in Japan in Winter 2021-2022. Viruses 2024; 16:358. [PMID: 38543724 PMCID: PMC10975693 DOI: 10.3390/v16030358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 05/23/2024] Open
Abstract
In winter 2021-2022, H5N1 and H5N8 high-pathogenicity avian influenza (HPAI) viruses (HPAIVs) caused serious outbreaks in Japan: 25 outbreaks of HPAI at poultry farms and 107 cases in wild birds or in the environment. Phylogenetic analyses divided H5 HPAIVs isolated in Japan in the winter of 2021-2022 into three groups-G2a, G2b, and G2d-which were disseminated at different locations and times. Full-genome sequencing analyses of these HPAIVs revealed a strong relationship of multiple genes between Japan and Siberia, suggesting that they arose from reassortment events with avian influenza viruses (AIVs) in Siberia. The results emphasize the complex of dissemination and reassortment events with the movement of migratory birds, and the importance of continual monitoring of AIVs in Japan and Siberia for early alerts to the intrusion of HPAIVs.
Collapse
Affiliation(s)
- Junki Mine
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba 305-0856, Ibaraki, Japan (A.K.); (S.S.); (R.T.); (K.M.); (Y.U.)
| | | | | | | | | | | | | |
Collapse
|
46
|
Soto I, Balzani P, Oficialdegui FJ, Molinero C, Kouba A, Ahmed DA, Turbelin AJ, Hudgins EJ, Bodey TW, Gojery SA, Courchamp F, Cuthbert RN, Haubrock PJ. The wild cost of invasive feral animals worldwide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169281. [PMID: 38101642 DOI: 10.1016/j.scitotenv.2023.169281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Invasive non-native species are a growing burden to economies worldwide. While domesticated animals (i.e. livestock, beasts of burden or pets) have enabled our ways of life and provide sustenance for countless individuals, they may cause substantial impacts when they escape or are released (i.e. become feral) and then become invasive with impacts. We used the InvaCost database to evaluate monetary impacts from species in the Domestic Animal Diversity Information System database. We found a total cost of $141.95 billion from only 18 invasive feral species. Invasive feral livestock incurred the highest costs at $90.03 billion, with pets contributing $50.93 billion and beasts of burden having much lower costs at $0.98 billion. Agriculture was the most affected sector at $80.79 billion, followed by the Environment ($43.44 billion), and Authorities-Stakeholders sectors ($5.52 billion). Damage costs comprised the majority ($124.94 billion), with management and mixed damage-management costs making up the rest ($9.62 and $7.38 billion, respectively). These economic impacts were observed globally, where Oceania, North America and Europe were the most impacted regions. Islands recorded a higher economic burden than continental areas, with livestock species dominating costs more on islands than mainlands compared to other feral species. The costs of invasive feral animals were on average twice higher than those of wild species. The management of invasive feral populations requires higher investment, updated regulations, and comprehensive risk assessments. These are especially complex when considering the potential conflicts arising from interventions with species that have close ties to humans. Effective communication to raise public awareness of the impacts of feral populations and appropriate legislation to prevent or control such invasive feral populations will substantially contribute to minimizing their socioeconomic and environmental impacts.
Collapse
Affiliation(s)
- Ismael Soto
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic.
| | - Paride Balzani
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Francisco J Oficialdegui
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | | | - Antonín Kouba
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Danish A Ahmed
- Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, Kuwait
| | - Anna J Turbelin
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91190, Gif-sur-Yvette, France
| | - Emma J Hudgins
- Department of Biology, Carleton University, Ottawa K1S 5B6, Canada; School of Agriculture, Food, and Ecosystem Sciences, University of Melbourne, Parkville 3010, Australia
| | - Thomas W Bodey
- School of Biological Sciences, King's College, University of Aberdeen, Aberdeen AB24 3FX, UK
| | | | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91190, Gif-sur-Yvette, France
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Phillip J Haubrock
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic; Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, Kuwait; Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Gelnhausen, Germany
| |
Collapse
|
47
|
Leong SL, Gras S, Grant EJ. Fighting flu: novel CD8 + T-cell targets are required for future influenza vaccines. Clin Transl Immunology 2024; 13:e1491. [PMID: 38362528 PMCID: PMC10867544 DOI: 10.1002/cti2.1491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Seasonal influenza viruses continue to cause severe medical and financial complications annually. Although there are many licenced influenza vaccines, there are billions of cases of influenza infection every year, resulting in the death of over half a million individuals. Furthermore, these figures can rise in the event of a pandemic, as seen throughout history, like the 1918 Spanish influenza pandemic (50 million deaths) and the 1968 Hong Kong influenza pandemic (~4 million deaths). In this review, we have summarised many of the currently licenced influenza vaccines available across the world and current vaccines in clinical trials. We then briefly discuss the important role of CD8+ T cells during influenza infection and why future influenza vaccines should consider targeting CD8+ T cells. Finally, we assess the current landscape of known immunogenic CD8+ T-cell epitopes and highlight the knowledge gaps required to be filled for the design of rational future influenza vaccines that incorporate CD8+ T cells.
Collapse
Affiliation(s)
- Samuel Liwei Leong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
| | - Stephanie Gras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Emma J Grant
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| |
Collapse
|
48
|
Grace D, Knight-Jones TJD, Melaku A, Alders R, Jemberu WT. The Public Health Importance and Management of Infectious Poultry Diseases in Smallholder Systems in Africa. Foods 2024; 13:411. [PMID: 38338547 PMCID: PMC10855203 DOI: 10.3390/foods13030411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/29/2023] [Accepted: 12/20/2023] [Indexed: 02/12/2024] Open
Abstract
Poultry diseases pose major constraints on smallholder production in Africa, causing high flock mortality and economic hardship. Infectious diseases, especially viral diseases like Newcastle disease and highly pathogenic avian influenza (HPAI) and bacterial diseases, especially colibacillosis and salmonellosis, are responsible for most chicken losses, with downstream effects on human nutrition and health. Beyond production impacts, poultry diseases directly harm public health if zoonotic, can give rise to epidemics and pandemics, and facilitate antimicrobial resistance through treatment attempts. HPAI, campylobacteriosis, and salmonellosis are the priority zoonoses. Sustainable solutions for poultry health remain elusive despite recognition of the problem. This review summarises current knowledge on major poultry diseases in smallholder systems, their impacts, and options for prevention and control. We find biosecurity, vaccination, good husbandry, and disease-resistant breeds can reduce disease burden, but practical limitations exist in implementing these measures across smallholder systems. Treatment is often inefficient for viral diseases, and treatment for bacterial diseases risks antimicrobial resistance. Ethnoveterinary practices offer accessible alternatives but require more rigorous evaluation. Multisectoral collaboration and policies that reach smallholder poultry keepers are essential to alleviate disease constraints. Successful control will improve livelihoods, nutrition, and gender equity for millions of rural families. This review concludes that sustainable, scalable solutions for smallholder poultry disease control remain a critical unmet need in Africa.
Collapse
Affiliation(s)
- Delia Grace
- Natural Resources Institute (NRI), Chatham ME4 4TB, UK
- International Livestock Research Institute (ILRI), Nairobi P.O. Box 30709, Kenya
| | | | - Achenef Melaku
- Department of Veterinary Pharmacy, University of Gondar, Gondar P.O. Box 196, Ethiopia;
| | - Robyn Alders
- Development Policy Centre, Australian National University, Acton, Canberra 2601, Australia;
| | - Wudu T. Jemberu
- International Livestock Research Institute (ILRI), Addis Ababa P.O. Box 5689, Ethiopia or (W.T.J.)
- Department of Veterinary Epidemiology and Public Health, University of Gondar, Gondar P.O. Box 196, Ethiopia
| |
Collapse
|
49
|
Funk M, Spronken MI, Bestebroer TM, de Bruin AC, Gultyaev AP, Fouchier RA, te Velthuis AJ, Richard M. Transient RNA structures underlie highly pathogenic avian influenza virus genesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.574333. [PMID: 38370829 PMCID: PMC10871305 DOI: 10.1101/2024.01.11.574333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) cause severe disease and high fatality in poultry1. They emerge exclusively from H5 and H7 low pathogenic avian influenza viruses (LPAIVs)2. Although insertion of a furin-cleavable multibasic cleavage site (MBCS) in the hemagglutinin gene was identified decades ago as the genetic basis for LPAIV-to-HPAIV transition3,4, the exact mechanisms underlying said insertion have remained unknown. Here we used an innovative combination of bioinformatic models to predict RNA structures forming around the influenza virus RNA polymerase during replication, and circular sequencing5 to reliably detect nucleotide insertions. We show that transient H5 hemagglutinin RNA structures predicted to trap the polymerase on purine-rich sequences drive nucleotide insertions characteristic of MBCSs, providing the first strong empirical evidence of RNA structure involvement in MBCS acquisition. Insertion frequencies at the H5 cleavage site were strongly affected by substitutions in flanking genomic regions altering predicted transient RNA structures. Introduction of H5-like cleavage site sequences and structures into an H6 hemagglutinin resulted in MBCS-yielding insertions never observed before in H6 viruses. Our results demonstrate that nucleotide insertions that underlie H5 HPAIV emergence result from a previously unknown RNA-structure-driven diversity-generating mechanism, which could be shared with other RNA viruses.
Collapse
Affiliation(s)
- Mathis Funk
- Department of Viroscience; Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Monique I. Spronken
- Department of Viroscience; Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Theo M. Bestebroer
- Department of Viroscience; Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Anja C.M. de Bruin
- Department of Viroscience; Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Alexander P. Gultyaev
- Department of Viroscience; Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
- Group Imaging and Bioinformatics, Leiden Institute of Advanced Computer Science (LIACS); Leiden University, 2300 RA Leiden, The Netherlands
| | - Ron A.M. Fouchier
- Department of Viroscience; Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Aartjan J.W. te Velthuis
- Lewis Thomas Laboratory, Department of Molecular Biology; Princeton University, 08544 New Jersey, United States
| | - Mathilde Richard
- Department of Viroscience; Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
50
|
Yang S, Fan Z, Lu X, Liu H, Zhou Z, Qi H, Zeng J, Zheng M, Zou X, Fang S, Zhang G. Response of Human Retinal Microvascular Endothelial Cells to Influenza A (H1N1) Infection and the Underlying Molecular Mechanism. Invest Ophthalmol Vis Sci 2024; 65:38. [PMID: 38252524 PMCID: PMC10810132 DOI: 10.1167/iovs.65.1.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Purpose Whether H1N1 infection-associated ocular manifestations result from direct viral infections or systemic complications remains unclear. This study aimed to comprehensively elucidate the underlying causes and mechanism. Method TCID50 assays was performed at 24, 48, and 72 hours to verify the infection of H1N1 in human retinal microvascular endothelial cells (HRMECs). The changes in gene expression profiles of HRMECs at 24, 48, and 72 hours were characterized using RNA sequencing technology. Differentially expressed genes (DEGs) were validated using real-time quantitative polymerase chain reaction and Western blotting. CCK-8 assay and scratch assay were performed to evaluate whether there was a potential improvement of proliferation and migration in H1N1-infected cells after oseltamivir intervention. Results H1N1 can infect and replicate within HRMECs, leading to cell rounding and detachment. After H1N1 infection of HRMECs, 2562 DEGs were identified, including 1748 upregulated ones and 814 downregulated ones. These DEGs primarily involved in processes such as inflammation and immune response, cytokine-cytokine receptor interaction, signal transduction regulation, and cell adhesion. The elevated expression levels of CXCL10, CXCL11, CCL5, TLR3, C3, IFNB1, IFNG, STAT1, HLA, and TNFSF10 after H1N1 infection were reduced by oseltamivir intervention, reaching levels comparable to those in the uninfected group. The impaired cell proliferation and migration after H1N1 infection was improved by oseltamivir intervention. Conclusions This study confirmed that H1N1 can infect HRMECs, leading to the upregulation of chemokines, which may cause inflammation and destruction of the blood-retina barrier. Moreover, early oseltamivir administration may reduce retinal inflammation and hemorrhage in patients infected with H1N1.
Collapse
Affiliation(s)
- Shuo Yang
- Jinzhou Medical University, Jinzhou, Liaoning, China
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, China
| | - Zixin Fan
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, China
| | - Xiaofeng Lu
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, China
| | - Hui Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Ziying Zhou
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, China
| | - Hui Qi
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, China
| | - Jian Zeng
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, China
| | - Mianying Zheng
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, China
| | - Xuan Zou
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Shisong Fang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Guoming Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, China
| |
Collapse
|