1
|
Shao LT, Wang MM, Wang YM, Li T, Wang F, Xin JR, Zhang X, Li WG, Wang XJ, Wang SQ. Development and application of a high-titer VSV-based HCoV-NL63 pseudovirus system via C-terminal 14 amino acid truncation of spike. Biochem Biophys Res Commun 2025; 751:151458. [PMID: 39922054 DOI: 10.1016/j.bbrc.2025.151458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/18/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
To provide efficient tools for the development of novel antiviral drugs and vaccines of HCoV-NL63, it is urgently necessary to establish a safe, widely applicable, and high-titer NL63 pseudotyped particles (NL63pp) production system. In this research, we conducted a comparative analysis of several NL63pps, each with a truncated spike (S) protein missing part of its C-terminal amino acids. We discovered that deleting the C-terminal 14 amino acid sequence of the S protein (D14) led to a remarkable approximately 10-fold increase in the infection titer of VSV-based NL63pp. This value is higher than the titers of NL63pp packaged with S proteins having deletions of 18 or 24 amino acids at the C-terminus. Moreover, adding the VSV-G tag to the D14 C-terminus (D14V) resulted in an additional 30 % increase. We then constructed the recent prevalent HCoV-NL63 subgenotype C3 dual-reporter pseudovirus system C3-D14V, and found that C3-D14V had a higher infection efficiency. Utilizing this system, we investigated the susceptibility of several cell lines and observed that cells derived from liver (Huh7.5.1), small intestine (Caco-2) and lung (Calu-3) exhibited higher susceptibility. Furthermore, we applied this system to assess several bis-benzylisoquinoline alkaloids, notably, Cepharanthine demonstrated the highest inhibitory efficiency against NL63pp infection with EC50 0.61 μM. In conclusion, we have identified that S protein with a 14 amino acids deletion at the C-terminus significantly enhances the infection titer of HCoV-NL63 pseudovirus and provides an efficient VSV-based HCoV-NL63 dual-reporter (mCherry and luciferase2) pseudovirus system for various applications such as drug screening and antibody development in the future.
Collapse
Affiliation(s)
- Li-Ting Shao
- Bioinformatics Center of AMMS, Beijing, 100850, China
| | | | - Yi-Ming Wang
- Bioinformatics Center of AMMS, Beijing, 100850, China; College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Tian Li
- Bioinformatics Center of AMMS, Beijing, 100850, China; School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Fei Wang
- Bioinformatics Center of AMMS, Beijing, 100850, China
| | - Jie-Rong Xin
- Bioinformatics Center of AMMS, Beijing, 100850, China
| | - Xin Zhang
- Bioinformatics Center of AMMS, Beijing, 100850, China
| | - Wei-Guo Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| | - Xue-Jun Wang
- Bioinformatics Center of AMMS, Beijing, 100850, China.
| | - Sheng-Qi Wang
- Bioinformatics Center of AMMS, Beijing, 100850, China.
| |
Collapse
|
2
|
Siwak KC, LeBlanc EV, Scott HM, Kim Y, Pellizzari-Delano I, Ball AM, Temperton NJ, Capicciotti CJ, Colpitts CC. Cellular sialoglycans are differentially required for endosomal and cell-surface entry of SARS-CoV-2 in lung cell lines. PLoS Pathog 2024; 20:e1012365. [PMID: 39625989 PMCID: PMC11642992 DOI: 10.1371/journal.ppat.1012365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/13/2024] [Accepted: 11/17/2024] [Indexed: 12/14/2024] Open
Abstract
Cell entry of severe acute respiratory coronavirus-2 (SARS-CoV-2) and other CoVs can occur via two distinct routes. Following receptor binding by the spike glycoprotein, membrane fusion can be triggered by spike cleavage either at the cell surface in a transmembrane serine protease 2 (TMPRSS2)-dependent manner or within endosomes in a cathepsin-dependent manner. Cellular sialoglycans have been proposed to aid in CoV attachment and entry, although their functional contributions to each entry pathway are unknown. In this study, we used genetic and enzymatic approaches to deplete sialic acid from cell surfaces and compared the requirement for sialoglycans during endosomal and cell-surface CoV entry using lentiviral particles pseudotyped with the spike proteins of different sarbecoviruses. We show that entry of SARS-CoV-1, WIV1-CoV and WIV16-CoV, like the SARS-CoV-2 omicron variant, depends on endosomal cathepsins and requires cellular sialoglycans for entry. Ancestral SARS-CoV-2 and the delta variant can use either pathway for entry, but only require sialic acid for endosomal entry in cells lacking TMPRSS2. Binding of SARS-CoV-2 spike protein to cells did not require sialic acid, nor was sialic acid required for SARS-CoV-2 entry in TMRPSS2-expressing cells. These findings suggest that cellular sialoglycans are not strictly required for SARS-CoV-2 attachment, receptor binding or fusion, but rather promote endocytic entry of SARS-CoV-2 and related sarbecoviruses. In contrast, the requirement for sialic acid during entry of MERS-CoV pseudoparticles and authentic HCoV-OC43 was not affected by TMPRSS2 expression, consistent with a described role for sialic acid in merbecovirus and embecovirus cell attachment. Overall, these findings clarify the role of sialoglycans in SARS-CoV-2 entry and suggest that cellular sialoglycans mediate endosomal, but not cell-surface, SARS-CoV-2 entry.
Collapse
Affiliation(s)
- Kimberley C. Siwak
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | - Emmanuelle V. LeBlanc
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | - Heidi M. Scott
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | - Youjin Kim
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | | | - Alice M. Ball
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | - Nigel J. Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich at Medway, Chatham, United Kingdom
| | - Chantelle J. Capicciotti
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
- Department of Chemistry, Queen’s University, Kingston, Canada
- Department of Surgery, Queen’s University, Kingston, Canada
| | - Che C. Colpitts
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| |
Collapse
|
3
|
Si JY, Chen YM, Sun YH, Gu MX, Huang ML, Shi LL, Yu X, Yang X, Xiong Q, Ma CB, Liu P, Shi ZL, Yan H. Sarbecovirus RBD indels and specific residues dictating multi-species ACE2 adaptiveness. Nat Commun 2024; 15:8869. [PMID: 39402048 PMCID: PMC11473667 DOI: 10.1038/s41467-024-53029-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/24/2024] [Indexed: 10/17/2024] Open
Abstract
Our comprehensive understanding of the multi-species ACE2 adaptiveness of sarbecoviruses remains elusive, particularly for those with various receptor binding motif (RBM) insertions/deletions (indels). Here, we analyzed RBM sequences from 268 sarbecoviruses categorized into four RBM indel types. We examined the ability of 20 representative sarbecovirus Spike glycoproteins (S) and derivatives in utilizing ACE2 from various bats and several other mammalian species. We reveal that sarbecoviruses with long RBMs (type-I) can achieve broad ACE2 tropism, whereas viruses with single deletions in Region 1 (type-II) or Region 2 (type-III) exhibit narrower ACE2 tropism. Sarbecoviruses with double region deletions (type-IV) completely lost ACE2 usage, which is restricted by clade-specific residues within and outside RBM. Lastly, we propose the evolution of sarbecovirus RBM indels and illustrate how loop lengths, disulfide, and residue determinants shape multi-species ACE2 adaptiveness. This study provides profound insights into the mechanisms governing ACE2 usage and spillover risks of sarbecoviruses.
Collapse
Affiliation(s)
- Jun-Yu Si
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yuan-Mei Chen
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Ye-Hui Sun
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Meng-Xue Gu
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Mei-Ling Huang
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Lu-Lu Shi
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiao Yu
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiao Yang
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Qing Xiong
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Cheng-Bao Ma
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Peng Liu
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Zheng-Li Shi
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Huan Yan
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Kakish JE, Mehrani Y, Kodeeswaran A, Geronimo K, Clark ME, van Vloten JP, Karimi K, Mallard BA, Meng B, Bridle BW, Knapp JP. Investigating the effect of reduced temperatures on the efficacy of rhabdovirus-based viral vector platforms. J Gen Virol 2024; 105:002010. [PMID: 39172037 PMCID: PMC11340643 DOI: 10.1099/jgv.0.002010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/28/2024] [Indexed: 08/23/2024] Open
Abstract
Rhabdoviral vectors can induce lysis of cancer cells. While studied almost exclusively at 37 °C, viruses are subject to a range of temperatures in vivo, including temperatures ≤31 °C. Despite potential implications, the effect of temperatures <37 °C on the performance of rhabdoviral vectors is unknown. We investigated the effect of low anatomical temperatures on two rhabdoviruses, vesicular stomatitis virus (VSV) and Maraba virus (MG1). Using a metabolic resazurin assay, VSV- and MG1-mediated oncolysis was characterized in a panel of cell lines at 28, 31, 34 and 37 °C. The oncolytic ability of both viruses was hindered at 31 and 28 °C. Cold adaptation of both viruses was attempted as a mitigation strategy. Viruses were serially passaged at decreasing temperatures in an attempt to induce mutations. Unfortunately, the cold-adaptation strategies failed to potentiate the oncolytic activity of the viruses at temperatures <37 °C. Interestingly, we discovered that viral replication was unaffected at low temperatures despite the abrogation of oncolytic activity. In contrast, the proliferation of cancer cells was reduced at low temperatures. Equivalent oncolytic effects could be achieved if cells at low temperatures were treated with viruses for longer times. This suggests that rhabdovirus-mediated oncolysis could be compromised at low temperatures in vivo where therapeutic windows are limited.
Collapse
Affiliation(s)
- Julia E. Kakish
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Yeganeh Mehrani
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Arthane Kodeeswaran
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Katrina Geronimo
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Mary Ellen Clark
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Jacob P. van Vloten
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Khalil Karimi
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Bonnie A. Mallard
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Baozhong Meng
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Byram W. Bridle
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Jason P. Knapp
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
5
|
Kinoshita H, Yamada S, Ogawa T, Nguyen PHA, Harada S, Kawahara M, Ishijima K, Maeda K, Ebihara H, Fukushi S. Development of a vesicular stomatitis virus pseudotyped with herpes B virus glycoproteins and its application in a neutralizing antibody detection assay. mBio 2024; 15:e0109224. [PMID: 38847539 PMCID: PMC11253632 DOI: 10.1128/mbio.01092-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/02/2024] [Indexed: 07/18/2024] Open
Abstract
Herpes B virus (BV) is a zoonotic virus and belongs to the genus Simplexvius, the same genus as human herpes simplex virus (HSV). BV typically establishes asymptomatic infection in its natural hosts, macaque monkeys. However, in humans, BV infection causes serious neurological diseases and death. As such, BV research can only be conducted in a high containment level facility (i.e., biosafety level [BSL] 4), and the mechanisms of BV entry have not been fully elucidated. In this study, we generated a pseudotyped vesicular stomatitis virus (VSV) expressing BV glycoproteins using G-complemented VSV∆G system, which we named VSV/BVpv. We found that four BV glycoproteins (i.e., gB, gD, gH, and gL) were required for the production of a high-titer VSV/BVpv. Moreover, VSV/BVpv cell entry was dependent on the binding of gD to its cellular receptor nectin-1. Pretreatment of Vero cells with endosomal acidification inhibitors did not affect the VSV/BVpv infection. The result indicated that VSV/BVpv entry occurred by direct fusion with the plasma membrane of Vero cells and suggested that the entry pathway was similar to that of native HSV. Furthermore, we developed a VSV/BVpv-based chemiluminescence reduction neutralization test (CRNT), which detected the neutralization antibodies against BV in macaque plasma samples with high sensitivity and specificity. Crucially, the VSV/BVpv generated in this study can be used under BSL-2 condition to study the initial entry process through gD-nectin-1 interaction and the direct fusion of BV with the plasma membrane of Vero cells.IMPORTANCEHerpes B virus (BV) is a highly pathogenic zoonotic virus against humans. BV belongs to the genus Simplexvius, the same genus as human herpes simplex virus (HSV). By contrast to HSV, cell entry mechanisms of BV are not fully understood. The research procedures to manipulate infectious BV should be conducted in biosafety level (BSL)-4 facilities. As pseudotyped viruses provide a safe viral entry model because of their inability to produce infectious progeny virus, we tried to generate a pseudotyped vesicular stomatitis virus bearing BV glycoproteins (VSV/BVpv) by modification of expression constructs of BV glycoproteins, and successfully obtained VSV/BVpv with a high titer. This study has provided novel information for constructing VSV/BVpv and its usefulness to study BV infection.
Collapse
Affiliation(s)
- Hitomi Kinoshita
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Souichi Yamada
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takuma Ogawa
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Phu Hoang Anh Nguyen
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shizuko Harada
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Madoka Kawahara
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keita Ishijima
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Ebihara
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shuetsu Fukushi
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
6
|
Port JR, Riopelle JC, van Tol S, Wickenhagen A, Bohrnsen E, Sturdevant DE, Rosenke R, Lovaglio J, Lack J, Anzick SL, Cordova K, Yinda KC, Hanley PW, Schountz T, Kendall LV, Shaia CI, Saturday G, Martens C, Schwarz B, Munster VJ. Jamaican fruit bat (Artibeus jamaicensis) insusceptibility to mucosal inoculation with SARS-CoV-2 Delta variant is not caused by receptor compatibility. NPJ VIRUSES 2024; 2:26. [PMID: 40295878 PMCID: PMC11721433 DOI: 10.1038/s44298-024-00037-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/01/2024] [Indexed: 04/30/2025]
Abstract
The ancestral sarbecovirus giving rise to SARS-CoV-2 is posited to have originated in bats. While SARS-CoV-2 causes asymptomatic to severe respiratory disease in humans, little is known about the biology, virus tropism, and immunity of SARS-CoV-2-like sarbecoviruses in bats. SARS-CoV-2 has been shown to infect multiple mammalian species, including various rodent species, non-human primates, and Egyptian fruit bats. We show that SARS-CoV-2 can utilize Jamaican fruit bat (Artibeus jamaicensis) ACE2 spike for entry in vitro. Therefore, we investigate the Jamaican fruit bat as a possible in vivo model to study reservoir responses. We find that SARS-CoV-2 Delta does not efficiently replicate in Jamaican fruit bats in vivo. We observe infectious viruses in the lungs of only one animal on day 1 post-inoculation and find no evidence of shedding or seroconversion. This is possibly due to host factors restricting virus egress after aborted replication. Furthermore, we observe no significant immune gene expression changes in the respiratory tract but do observe changes in the intestinal metabolome after inoculation. This suggests that, despite its broad host range, SARS-CoV-2 is unable to infect all bat species, and Jamaican fruit bats are not an appropriate model to study SARS-CoV-2 reservoir infection.
Collapse
Affiliation(s)
- Julia R Port
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| | - Jade C Riopelle
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Sarah van Tol
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Arthur Wickenhagen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Eric Bohrnsen
- Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Daniel E Sturdevant
- Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Rebecca Rosenke
- Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Justin Lack
- Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Sarah L Anzick
- Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kathleen Cordova
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kwe Claude Yinda
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Patrick W Hanley
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Lon V Kendall
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Carl I Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Craig Martens
- Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Benjamin Schwarz
- Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Vincent J Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
7
|
Zhu Z, Han Y, Gong M, Sun B, Zhang R, Ding Q. Establishment of replication-competent vesicular stomatitis virus recapitulating SADS-CoV entry. J Virol 2024; 98:e0195723. [PMID: 38557247 PMCID: PMC11092325 DOI: 10.1128/jvi.01957-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Zoonotic coronaviruses pose a continuous threat to human health, with newly identified bat-borne viruses like swine acute diarrhea syndrome coronavirus (SADS-CoV) causing high mortality in piglets. In vitro studies indicate that SADS-CoV can infect cell lines from diverse species, including humans, highlighting its potential risk to human health. However, the lack of tools to study viral entry, along with the absence of vaccines or antiviral therapies, perpetuates this threat. To address this, we engineered an infectious molecular clone of Vesicular Stomatitis Virus (VSV), replacing its native glycoprotein (G) with SADS-CoV spike (S) and inserting a Venus reporter at the 3' leader region to generate a replication-competent rVSV-Venus-SADS S virus. Serial passages of rVSV-Venus-SADS S led to the identification of an 11-amino-acid truncation in the cytoplasmic tail of the S protein, which allowed more efficient viral propagation due to increased cell membrane anchoring of the S protein. The S protein was integrated into rVSV-Venus-SADS SΔ11 particles, susceptible to neutralization by sera from SADS-CoV S1 protein-immunized rabbits. Additionally, we found that TMPRSS2 promotes SADS-CoV spike-mediated cell entry. Furthermore, we assessed the serum-neutralizing ability of mice vaccinated with rVSV-Venus-SADS SΔ11 using a prime-boost immunization strategy, revealing effective neutralizing antibodies against SADS-CoV infection. In conclusion, we have developed a safe and practical tool for studying SADS-CoV entry and exploring the potential of a recombinant VSV-vectored SADS-CoV vaccine.IMPORTANCEZoonotic coronaviruses, like swine acute diarrhea syndrome coronavirus (SADS-CoV), pose a continual threat to human and animal health. To combat this, we engineered a safe and efficient tool by modifying the Vesicular Stomatitis Virus (VSV), creating a replication-competent rVSV-Venus-SADS S virus. Through serial passages, we optimized the virus for enhanced membrane anchoring, a key factor in viral propagation. This modified virus, rVSV-Venus-SADS SΔ11, proved susceptible to neutralization, opening avenues for potential vaccines. Additionally, our study revealed the role of TMPRSS2 in SADS-CoV entry. Mice vaccinated with rVSV-Venus-SADS SΔ11 developed potent neutralizing antibodies against SADS-CoV. In conclusion, our work presents a secure and practical tool for studying SADS-CoV entry and explores the promise of a recombinant VSV-vectored SADS-CoV vaccine.
Collapse
Affiliation(s)
- Zihui Zhu
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Yutong Han
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingli Gong
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Bo Sun
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Rong Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Ding
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
8
|
Liang Z, Tong J, Wu X, Liu S, Wu J, Yu Y, Zhang L, Zhao C, Lu Q, Nie J, Huang W, Wang Y. Development of a SARS-CoV-2 neutralization assay based on a pseudotyped virus using a HIV system. MedComm (Beijing) 2024; 5:e517. [PMID: 38525106 PMCID: PMC10959455 DOI: 10.1002/mco2.517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/06/2024] [Accepted: 02/25/2024] [Indexed: 03/26/2024] Open
Abstract
Regarding the extensive global attention to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that constitutes an international public health emergency, pseudovirus neutralization assays have been widely applied due to their advantages of being able to be conducted in biosafety level 2 laboratories and having a high safety factor. In this study, by adding a blue fluorescent protein (AmCyan) gene to the HIV system pSG3-△env backbone plasmid HpaI and truncating the C-terminal 21 amino acids of the SARS-CoV-2 spike protein (S), high-titer SARS-CoV-2-Sdel21-AmCyan fluorescent pseudovirus was successfully packaged. The fluorescent pseudovirus was used to establish a neutralization assay in a 96-well plate using 293T cells stably transfected with the AF cells. Then, parameters such as the ratio of backbone and membrane plasmid, sensitive cells, inoculation of cells and virus, as well as incubation and detection time were optimized. The pseudovirus neutralization assay demonstrated high accuracy, sensitivity, repeatability, and a strong correlation with the luminescent pseudovirus neutralization assay. Additionally, we scaled up the neutralizing antibody determination method by increasing the plate size from 96 wells to 384 wells. We have established a robust fluorescent pseudotyped virus neutralization assay for SARS-CoV-2 using the HIV system, providing a foundation for serum neutralization antibody detection, monoclonal antibody screening, and vaccine development.
Collapse
Affiliation(s)
- Ziteng Liang
- Chinese Academy of Medical Sciences & Peking Union Medical CollegeDongcheng District, BeijingChina
- Division of HIV/AIDS and Sex‐transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of BiologicalsNHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingChina
| | - Jincheng Tong
- Division of HIV/AIDS and Sex‐transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of BiologicalsNHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingChina
| | - Xi Wu
- Division of HIV/AIDS and Sex‐transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of BiologicalsNHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingChina
| | - Shuo Liu
- Changping LaboratoryChangping District, BeijingChina
| | - Jiajing Wu
- Beijing Yunling Biotechnology Co., Ltd.BeijingChina
| | - Yuanling Yu
- Changping LaboratoryChangping District, BeijingChina
| | - Li Zhang
- Division of HIV/AIDS and Sex‐transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of BiologicalsNHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingChina
| | - Chenyan Zhao
- Division of HIV/AIDS and Sex‐transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of BiologicalsNHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingChina
| | - Qiong Lu
- Division of HIV/AIDS and Sex‐transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of BiologicalsNHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingChina
| | - Jianhui Nie
- Division of HIV/AIDS and Sex‐transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of BiologicalsNHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingChina
| | - Weijin Huang
- Division of HIV/AIDS and Sex‐transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of BiologicalsNHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingChina
| | - Youchun Wang
- Chinese Academy of Medical Sciences & Peking Union Medical CollegeDongcheng District, BeijingChina
- Division of HIV/AIDS and Sex‐transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of BiologicalsNHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingChina
- Changping LaboratoryChangping District, BeijingChina
| |
Collapse
|
9
|
Das PK, Gonzalez PA, Jangra RK, Yin P, Kielian M. A single-point mutation in the rubella virus E1 glycoprotein promotes rescue of recombinant vesicular stomatitis virus. mBio 2024; 15:e0237323. [PMID: 38334805 PMCID: PMC10936182 DOI: 10.1128/mbio.02373-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Rubella virus (RuV) is an enveloped plus-sense RNA virus and a member of the Rubivirus genus. RuV infection in pregnant women can lead to miscarriage or an array of severe birth defects known as congenital rubella syndrome. Novel rubiviruses were recently discovered in various mammals, highlighting the spillover potential of other rubiviruses to humans. Many features of the rubivirus infection cycle remain unexplored. To promote the study of rubivirus biology, here, we generated replication-competent recombinant VSV-RuV (rVSV-RuV) encoding the RuV transmembrane glycoproteins E2 and E1. Sequencing of rVSV-RuV showed that the RuV glycoproteins acquired a single-point mutation W448R in the E1 transmembrane domain. The E1 W448R mutation did not detectably alter the intracellular expression, processing, glycosylation, colocalization, or dimerization of the E2 and E1 glycoproteins. Nonetheless, the mutation enhanced the incorporation of RuV E2/E1 into VSV particles, which bud from the plasma membrane rather than the RuV budding site in the Golgi. Neutralization by E1 antibodies, calcium dependence, and cell tropism were comparable between WT-RuV and either rVSV-RuV or RuV containing the E1 W448R mutation. However, the E1 W448R mutation strongly shifted the threshold for the acid pH-triggered virus fusion reaction, from pH 6.2 for the WT RuV to pH 5.5 for the mutant. These results suggest that the increased resistance of the mutant RuV E1 to acidic pH promotes the ability of viral envelope proteins to generate infectious rVSV and provide insights into the regulation of RuV fusion during virus entry and exit.IMPORTANCERubella virus (RuV) infection in pregnant women can cause miscarriage or severe fetal birth defects. While a highly effective vaccine has been developed, RuV cases are still a significant problem in areas with inadequate vaccine coverage. In addition, related viruses have recently been discovered in mammals, such as bats and mice, leading to concerns about potential virus spillover to humans. To facilitate studies of RuV biology, here, we generated and characterized a replication-competent vesicular stomatitis virus encoding the RuV glycoproteins (rVSV-RuV). Sequence analysis of rVSV-RuV identified a single-point mutation in the transmembrane region of the E1 glycoprotein. While the overall properties of rVSV-RuV are similar to those of WT-RuV, the mutation caused a marked shift in the pH dependence of virus membrane fusion. Together, our studies of rVSV-RuV and the identified W448R mutation expand our understanding of rubivirus biology and provide new tools for its study.
Collapse
Affiliation(s)
- Pratyush Kumar Das
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Rohit K. Jangra
- Department of Microbiology and Immunology, Louisiana State University Health Science Center-Shreveport, Shreveport, Louisiana, USA
| | - Peiqi Yin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
10
|
Port JR, Morris DH, Riopelle JC, Yinda CK, Avanzato VA, Holbrook MG, Bushmaker T, Schulz JE, Saturday TA, Barbian K, Russell CA, Perry-Gottschalk R, Shaia C, Martens C, Lloyd-Smith JO, Fischer RJ, Munster VJ. Host and viral determinants of airborne transmission of SARS-CoV-2 in the Syrian hamster. eLife 2024; 12:RP87094. [PMID: 38416804 PMCID: PMC10942639 DOI: 10.7554/elife.87094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024] Open
Abstract
It remains poorly understood how SARS-CoV-2 infection influences the physiological host factors important for aerosol transmission. We assessed breathing pattern, exhaled droplets, and infectious virus after infection with Alpha and Delta variants of concern (VOC) in the Syrian hamster. Both VOCs displayed a confined window of detectable airborne virus (24-48 hr), shorter than compared to oropharyngeal swabs. The loss of airborne shedding was linked to airway constriction resulting in a decrease of fine aerosols (1-10 µm) produced, which are suspected to be the major driver of airborne transmission. Male sex was associated with increased viral replication and virus shedding in the air. Next, we compared the transmission efficiency of both variants and found no significant differences. Transmission efficiency varied mostly among donors, 0-100% (including a superspreading event), and aerosol transmission over multiple chain links was representative of natural heterogeneity of exposure dose and downstream viral kinetics. Co-infection with VOCs only occurred when both viruses were shed by the same donor during an increased exposure timeframe (24-48 hr). This highlights that assessment of host and virus factors resulting in a differential exhaled particle profile is critical for understanding airborne transmission.
Collapse
Affiliation(s)
- Julia R Port
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Dylan H Morris
- Department of Ecology and Evolutionary Biology, University of California, Los AngelesLos AngelesUnited States
| | - Jade C Riopelle
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Claude Kwe Yinda
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Victoria A Avanzato
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Myndi G Holbrook
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Trenton Bushmaker
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Jonathan E Schulz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Taylor A Saturday
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Kent Barbian
- Rocky Mountain Research and Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Colin A Russell
- Department of Medical Microbiology | Amsterdam University Medical Center, University of AmsterdamAmsterdamNetherlands
| | - Rose Perry-Gottschalk
- Rocky Mountain Visual and Medical Arts Unit, Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Craig Martens
- Rocky Mountain Research and Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - James O Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los AngelesLos AngelesUnited States
| | - Robert J Fischer
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Vincent J Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| |
Collapse
|
11
|
Liang Z, Wu X, Wu J, Liu S, Tong J, Li T, Yu Y, Zhang L, Zhao C, Lu Q, Qin H, Nie J, Huang W, Wang Y. Development of an automated, high-throughput SARS-CoV-2 neutralization assay based on a pseudotyped virus using a vesicular stomatitis virus (VSV) vector. Emerg Microbes Infect 2023; 12:e2261566. [PMID: 37727107 PMCID: PMC10540657 DOI: 10.1080/22221751.2023.2261566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/17/2023] [Indexed: 09/21/2023]
Abstract
ABSTRACTThe global outbreak of COVID-19 has caused a severe threat to human health; therefore, simple, high-throughput neutralization assays are desirable for developing vaccines and drugs against COVID-19. In this study, a high-titre SARS-CoV-2 pseudovirus was successfully packaged by truncating the C-terminus of the SARS-CoV-2 spike protein by 21 amino acids and infecting 293 T cells that had been stably transfected with the angiotensin-converting enzyme 2 (ACE2) receptor and furin (named AF cells), to establish a simple, high-throughput, and automated 384-well plate neutralization assay. The method was optimized for cell amount, virus inoculation, incubation time, and detection time. The automated assay showed good sensitivity, accuracy, reproducibility, Z' factor, and a good correlation with the live virus neutralization assay. The high-throughput approach would make it available for the SARS-CoV-2 neutralization test in large-scale clinical trials and seroepidemiological surveys which would aid the accelerated vaccine development and evaluation.
Collapse
Affiliation(s)
- Ziteng Liang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People’s Republic of China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Xi Wu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People’s Republic of China
| | - Jiajing Wu
- Beijing Yunling Biotechnology Co., Ltd., Beijing, People’s Republic of China
| | - Shuo Liu
- Changping Laboratory, Beijing, People’s Republic of China
| | - Jincheng Tong
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People’s Republic of China
| | - Tao Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People’s Republic of China
| | - Yuanling Yu
- Changping Laboratory, Beijing, People’s Republic of China
| | - Li Zhang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People’s Republic of China
| | - Chenyan Zhao
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People’s Republic of China
| | - Qiong Lu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People’s Republic of China
| | - Haiyang Qin
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People’s Republic of China
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People’s Republic of China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People’s Republic of China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People’s Republic of China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Changping Laboratory, Beijing, People’s Republic of China
| |
Collapse
|
12
|
Port JR, Morris DH, Riopelle JC, Yinda CK, Avanzato VA, Holbrook MG, Bushmaker T, Schulz JE, Saturday TA, Barbian K, Russell CA, Perry-Gottschalk R, Shaia CI, Martens C, Lloyd-Smith JO, Fischer RJ, Munster VJ. Host and viral determinants of airborne transmission of SARS-CoV-2 in the Syrian hamster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.08.15.504010. [PMID: 36032963 PMCID: PMC9413705 DOI: 10.1101/2022.08.15.504010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
It remains poorly understood how SARS-CoV-2 infection influences the physiological host factors important for aerosol transmission. We assessed breathing pattern, exhaled droplets, and infectious virus after infection with Alpha and Delta variants of concern (VOC) in the Syrian hamster. Both VOCs displayed a confined window of detectable airborne virus (24-48 h), shorter than compared to oropharyngeal swabs. The loss of airborne shedding was linked to airway constriction resulting in a decrease of fine aerosols (1-10μm) produced, which are suspected to be the major driver of airborne transmission. Male sex was associated with increased viral replication and virus shedding in the air. Next, we compared the transmission efficiency of both variants and found no significant differences. Transmission efficiency varied mostly among donors, 0-100% (including a superspreading event), and aerosol transmission over multiple chain links was representative of natural heterogeneity of exposure dose and downstream viral kinetics. Co-infection with VOCs only occurred when both viruses were shed by the same donor during an increased exposure timeframe (24-48 h). This highlights that assessment of host and virus factors resulting in a differential exhaled particle profile is critical for understanding airborne transmission.
Collapse
Affiliation(s)
- Julia R. Port
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Dylan H. Morris
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Jade C. Riopelle
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Claude Kwe Yinda
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Victoria A. Avanzato
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Myndi G. Holbrook
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Trenton Bushmaker
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jonathan E. Schulz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Taylor A. Saturday
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kent Barbian
- Rocky Mountain Research and Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Colin A. Russell
- Department of Medical Microbiology | Amsterdam University Medical Center, University of Amsterdam
| | - Rose Perry-Gottschalk
- Rocky Mountain Visual and Medical Arts Unit, Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Carl I. Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Craig Martens
- Rocky Mountain Research and Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - James O. Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Robert J. Fischer
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Vincent J. Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
13
|
Luo H, Lv L, Yi J, Zhou Y, Liu C. Establishment of Replication Deficient Vesicular Stomatitis Virus for Studies of PEDV Spike-Mediated Cell Entry and Its Inhibition. Microorganisms 2023; 11:2075. [PMID: 37630636 PMCID: PMC10457912 DOI: 10.3390/microorganisms11082075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The porcine epidemic diarrhea virus (PEDV) is a highly contagious and virulent enteric coronavirus that causes severe enteric disease in pigs worldwide. PEDV infection causes profound diarrhea, vomiting, and dehydration in pigs of all ages, resulting in high mortality rates, particularly among neonatal piglets. The spike glycoprotein (S) of PEDV plays a crucial role in binding to the host cell receptor and facilitating fusion between the viral and host membranes. Pseudotyped viral particles featuring the PEDV S protein are valuable tools for investigating virus entry, identifying neutralizing antibodies, and developing small molecules to impede virus replication. In this study, we used a codon-optimized PEDV S protein to generate recombinant pseudotyped vesicular stomatitis virus (VSV) particles (rVSV-ΔG-EGFP-S). The full-length S protein was efficiently incorporated into VSV particles. The S protein pseudotyped VSV exhibited infectivity towards permissive cell lines of PEDV. Moreover, we identified a new permissive cell line, JHH7, which showed robust support for PEDV replication. In contrast to the SARS-CoV-2 spike protein, the removal of amino acids from the cytoplasmic tail resulted in reduced efficiency of viral pseudotyping. Furthermore, we demonstrated that 25-hydroxycholesterol inhibited rVSV-ΔG-EGFP-S entry, while human APN facilitated rVSV-ΔG-EGFP-S entry through the use of ANPEP knockout Huh7 cells. Finally, by transducing swine intestinal organoids with the rVSV-ΔG-EGFP-S virus, we observed efficient infection of the swine intestinal organoids by the PEDV spike-pseudotyped VSV. Our work offers valuable tools for studying the cellular entry of PEDV and developing interventions to curb its transmission.
Collapse
Affiliation(s)
- Huaye Luo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.L.); (L.L.); (J.Y.); (Y.Z.)
| | - Lilei Lv
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.L.); (L.L.); (J.Y.); (Y.Z.)
| | - Jingxuan Yi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.L.); (L.L.); (J.Y.); (Y.Z.)
| | - Yanjun Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.L.); (L.L.); (J.Y.); (Y.Z.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Changlong Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.L.); (L.L.); (J.Y.); (Y.Z.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
14
|
Arieta CM, Xie YJ, Rothenberg DA, Diao H, Harjanto D, Meda S, Marquart K, Koenitzer B, Sciuto TE, Lobo A, Zuiani A, Krumm SA, Cadima Couto CI, Hein S, Heinen AP, Ziegenhals T, Liu-Lupo Y, Vogel AB, Srouji JR, Fesser S, Thanki K, Walzer K, Addona TA, Türeci Ö, Şahin U, Gaynor RB, Poran A. The T-cell-directed vaccine BNT162b4 encoding conserved non-spike antigens protects animals from severe SARS-CoV-2 infection. Cell 2023; 186:2392-2409.e21. [PMID: 37164012 PMCID: PMC10099181 DOI: 10.1016/j.cell.2023.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/12/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
T cell responses play an important role in protection against beta-coronavirus infections, including SARS-CoV-2, where they associate with decreased COVID-19 disease severity and duration. To enhance T cell immunity across epitopes infrequently altered in SARS-CoV-2 variants, we designed BNT162b4, an mRNA vaccine component that is intended to be combined with BNT162b2, the spike-protein-encoding vaccine. BNT162b4 encodes variant-conserved, immunogenic segments of the SARS-CoV-2 nucleocapsid, membrane, and ORF1ab proteins, targeting diverse HLA alleles. BNT162b4 elicits polyfunctional CD4+ and CD8+ T cell responses to diverse epitopes in animal models, alone or when co-administered with BNT162b2 while preserving spike-specific immunity. Importantly, we demonstrate that BNT162b4 protects hamsters from severe disease and reduces viral titers following challenge with viral variants. These data suggest that a combination of BNT162b2 and BNT162b4 could reduce COVID-19 disease severity and duration caused by circulating or future variants. BNT162b4 is currently being clinically evaluated in combination with the BA.4/BA.5 Omicron-updated bivalent BNT162b2 (NCT05541861).
Collapse
Affiliation(s)
| | - Yushu Joy Xie
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | - Huitian Diao
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | - Dewi Harjanto
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | - Shirisha Meda
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | | | | | | | - Adam Zuiani
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | - John R Srouji
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | | | | | | | - Özlem Türeci
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany; HI-TRON - Helmholtz Institute for Translational Oncology Mainz by DKFZ, Obere Zahlbacherstr. 63, 55131 Mainz, Germany
| | - Uğur Şahin
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany; TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstraße 12, 55131 Mainz, Germany
| | | | - Asaf Poran
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA.
| |
Collapse
|
15
|
Xiao Z, Xu H, Qu ZY, Ma XY, Huang BX, Sun MS, Wang BQ, Wang GY. Active Ingredients of Reduning Injection Maintain High Potency against SARS-CoV-2 Variants. Chin J Integr Med 2023; 29:205-212. [PMID: 36374439 PMCID: PMC9661462 DOI: 10.1007/s11655-022-3686-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To investigate the anti-coronavirus potential and the corresponding mechanisms of the two ingredients of Reduning Injection: quercetin and luteolin. METHODS A pseudovirus system was designed to test the efficacy of quercetin and luteolin to inhibit SARS-CoV-2 infection and the corresponding cellular toxicity. Luteolin was tested for its activities against the pseudoviruses of SARS-CoV-2 and its variants. Virtual screening was performed to predict the binding sites by Autodock Vina 1.1.230 and PyMol. To validate docking results, surface plasmon resonance (SPR) was used to measure the binding affinity of the compounds with various proteins of the coronaviruses. Quercetin and luteolin were further tested for their inhibitory effects on other coronaviruses by indirect immunofluorescence assay on rhabdomyosarcoma cells infected with HCoV-OC43. RESULTS The inhibition of SARS-CoV-2 pseudovirus by luteolin and quercetin were strongly dose-dependent, with concentration for 50% of maximal effect (EC50) of 8.817 and 52.98 µmol/L, respectively. Their cytotoxicity to BHK21-hACE2 were 177.6 and 405.1 µmol/L, respectively. In addition, luetolin significantly blocked the entry of 4 pseudoviruses of SARS-CoV-2 variants, with EC50 lower than 7 µmol/L. Virtual screening and SPR confirmed that luteolin binds to the S-proteins and quercetin binds to the active center of the 3CLpro, PLpro, and helicase proteins. Quercetin and luteolin showed over 99% inhibition against HCoV-OC43. CONCLUSIONS The mechanisms were revealed of quercetin and luteolin inhibiting the infection of SARS-CoV-2 and its variants. Reduning Injection is a promising drug for COVID-19.
Collapse
Affiliation(s)
- Zhen Xiao
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.,Guangdong Provincial Key Laboratory of Computational Science and Material Design, Shenzhen, Guangdong Province, 518055, China
| | - Huan Xu
- Institute of Chemical Biology, Shenzhen Bay Laboratories, Shenzhen, Guangdong Province, 518132, China
| | - Ze-Yang Qu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.,Guangdong Provincial Key Laboratory of Computational Science and Material Design, Shenzhen, Guangdong Province, 518055, China
| | - Xin-Yuan Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Bo-Xuan Huang
- Guangdong Provincial Key Laboratory of Computational Science and Material Design, Shenzhen, Guangdong Province, 518055, China.,Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong Province, 518052, China
| | - Meng-Si Sun
- Institute of Chemical Biology, Shenzhen Bay Laboratories, Shenzhen, Guangdong Province, 518132, China
| | - Bu-Qing Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, 214122, China
| | - Guan-Yu Wang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China. .,Guangdong Provincial Key Laboratory of Computational Science and Material Design, Shenzhen, Guangdong Province, 518055, China. .,School of Medicine Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, Guangdong Province, 518172, China. .,Center for Endocrinology and Metabolic Diseases, Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, Guangdong Province, 518172, China.
| |
Collapse
|
16
|
Production and characterization of lentivirus vector-based SARS-CoV-2 pseudoviruses with dual reporters: Evaluation of anti-SARS-CoV-2 viral effect of Korean Red Ginseng. J Ginseng Res 2023; 47:123-132. [PMID: 35855181 PMCID: PMC9283196 DOI: 10.1016/j.jgr.2022.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 01/09/2023] Open
Abstract
Background Pseudotyped virus systems that incorporate viral proteins have been widely employed for the rapid determination of the effectiveness and neutralizing activity of drug and vaccine candidates in biosafety level 2 facilities. We report an efficient method for producing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus with dual luciferase and fluorescent protein reporters. Moreover, using the established method, we also aimed to investigate whether Korean Red Ginseng (KRG), a valuable Korean herbal medicine, can attenuate infectivity of the pseudotyped virus. Methods A pseudovirus of SARS-CoV-2 (SARS-2pv) was constructed and efficiently produced using lentivirus vector systems available in the public domain by the introduction of critical mutations in the cytoplasmic tail of the spike protein. KRG extract was dose-dependently treated to Calu-3 cells during SARS2-pv treatment to evaluate the protective activity against SARS-CoV-2. Results The use of Calu-3 cells or the expression of angiotensin-converting enzyme 2 (ACE2) in HEK293T cells enabled SARS-2pv infection of host cells. Coexpression of transmembrane protease serine subtype 2 (TMPRSS2), which is the activator of spike protein, with ACE2 dramatically elevated luciferase activity, confirming the importance of the TMPRSS2-mediated pathway during SARS-CoV-2 entry. Our pseudovirus assay also revealed that KRG elicited resistance to SARS-CoV-2 infection in lung cells, suggesting its beneficial health effect. Conclusion The method demonstrated the production of SARS-2pv for the analysis of vaccine or drug candidates. When KRG was assessed by the method, it protected host cells from coronavirus infection. Further studies will be followed for demonstrating this potential benefit.
Collapse
|
17
|
Alipoor R, Ranjbar R. Small-molecule metabolites in SARS-CoV-2 treatment: a comprehensive review. Biol Chem 2022; 404:569-584. [PMID: 36490203 DOI: 10.1515/hsz-2022-0323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022]
Abstract
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has quickly spread all over the world. In this respect, traditional medicinal chemistry, repurposing, and computational approaches have been exploited to develop novel medicines for treating this condition. The effectiveness of chemicals and testing methods in the identification of new promising therapies, and the extent of preparedness for future pandemics, have been further highly advantaged by recent breakthroughs in introducing noble small compounds for clinical testing purposes. Currently, numerous studies are developing small-molecule (SM) therapeutic products for inhibiting SARS-CoV-2 infection and replication, as well as managing the disease-related outcomes. Transmembrane serine protease (TMPRSS2)-inhibiting medicinal products can thus prevent the entry of the SARS-CoV-2 into the cells, and constrain its spreading along with the morbidity and mortality due to the coronavirus disease 2019 (COVID-19), particularly when co-administered with inhibitors such as chloroquine (CQ) and dihydroorotate dehydrogenase (DHODH). The present review demonstrates that the clinical-stage therapeutic agents, targeting additional viral proteins, might improve the effectiveness of COVID-19 treatment if applied as an adjuvant therapy side-by-side with RNA-dependent RNA polymerase (RdRp) inhibitors.
Collapse
Affiliation(s)
- Reza Alipoor
- Student Research Committee , Hormozgan University of Medical Sciences , Bandar Abbas , Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute , Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
18
|
Adney DR, Lovaglio J, Schulz JE, Yinda CK, Avanzato VA, Haddock E, Port JR, Holbrook MG, Hanley PW, Saturday G, Scott D, Shaia C, Nelson AM, Spengler JR, Tansey C, Cossaboom CM, Wendling NM, Martens C, Easley J, Yap SW, Seifert SN, Munster VJ. Severe acute respiratory disease in American mink experimentally infected with SARS-CoV-2. JCI Insight 2022; 7:e159573. [PMID: 36509288 PMCID: PMC9746805 DOI: 10.1172/jci.insight.159573] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/11/2022] [Indexed: 11/22/2022] Open
Abstract
An animal model that fully recapitulates severe COVID-19 presentation in humans has been a top priority since the discovery of SARS-CoV-2 in 2019. Although multiple animal models are available for mild to moderate clinical disease, models that develop severe disease are still needed. Mink experimentally infected with SARS-CoV-2 developed severe acute respiratory disease, as evident by clinical respiratory disease, radiological, and histological changes. Virus was detected in nasal, oral, rectal, and fur swabs. Deep sequencing of SARS-CoV-2 from oral swabs and lung tissue samples showed repeated enrichment for a mutation in the gene encoding nonstructural protein 6 in open reading frame 1ab. Together, these data indicate that American mink develop clinical features characteristic of severe COVID-19 and, as such, are uniquely suited to test viral countermeasures.
Collapse
Affiliation(s)
- Danielle R. Adney
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
- Lovelace Biomedical Research Institute, Department of Comparative Medicine, Albuquerque, New Mexico, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Jonathan E. Schulz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Claude Kwe Yinda
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Victoria A. Avanzato
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Elaine Haddock
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Julia R. Port
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Myndi G. Holbrook
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Patrick W. Hanley
- Lovelace Biomedical Research Institute, Department of Comparative Medicine, Albuquerque, New Mexico, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Dana Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Andrew M. Nelson
- Lovelace Biomedical Research Institute, Department of Comparative Medicine, Albuquerque, New Mexico, USA
| | | | - Cassandra Tansey
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | - Craig Martens
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - John Easley
- Mink Veterinary Consulting and Research Service, Glenbeulah, Wisconsin, USA
| | - Seng Wai Yap
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Stephanie N. Seifert
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Vincent J. Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
19
|
van Doremalen N, Singh M, Saturday TA, Yinda CK, Perez-Perez L, Bohler WF, Weishampel ZA, Lewis M, Schulz JE, Williamson BN, Meade-White K, Gallogly S, Okumura A, Feldmann F, Lovaglio J, Hanley PW, Shaia C, Feldmann H, de Wit E, Munster VJ, Rosenke K. SARS-CoV-2 Omicron BA.1 and BA.2 are attenuated in rhesus macaques as compared to Delta. SCIENCE ADVANCES 2022; 8:eade1860. [PMID: 36399566 PMCID: PMC9674298 DOI: 10.1126/sciadv.ade1860] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/21/2022] [Indexed: 05/29/2023]
Abstract
Since the emergence of SARS-CoV-2, five different variants of concern (VOCs) have been identified: Alpha, Beta, Gamma, Delta, and Omicron. Because of confounding factors in the human population, such as preexisting immunity, comparing severity of disease caused by different VOCs is challenging. Here, we investigate disease progression in the rhesus macaque model upon inoculation with the Delta, Omicron BA.1, and Omicron BA.2 VOCs. Disease severity in rhesus macaques inoculated with Omicron BA.1 or BA.2 was lower than those inoculated with Delta and resulted in significantly lower viral loads in nasal swabs, bronchial cytology brush samples, and lung tissue in rhesus macaques. Cytokines and chemokines were up-regulated in nasosorption samples of Delta animals compared to Omicron BA.1 and BA.2 animals. Overall, these data suggest that, in rhesus macaques, Omicron replicates to lower levels than the Delta VOC, resulting in reduced clinical disease.
Collapse
Affiliation(s)
- Neeltje van Doremalen
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Manmeet Singh
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Taylor A. Saturday
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Claude Kwe Yinda
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Lizzette Perez-Perez
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - W. Forrest Bohler
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Zachary A. Weishampel
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Matthew Lewis
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jonathan E. Schulz
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Brandi N. Williamson
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kimberly Meade-White
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Shane Gallogly
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Atsushi Okumura
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Patrick W. Hanley
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Heinz Feldmann
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Emmie de Wit
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Vincent J. Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kyle Rosenke
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
20
|
Zareei S, Pourmand S, Amanlou M. Design of novel disturbing peptides against ACE2 SARS-CoV-2 spike-binding region by computational approaches. Front Pharmacol 2022; 13:996005. [PMID: 36438825 PMCID: PMC9692113 DOI: 10.3389/fphar.2022.996005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/24/2022] [Indexed: 10/12/2023] Open
Abstract
The SARS-CoV-2, the virus which is responsible for COVID-19 disease, employs its spike protein to recognize its receptor, angiotensin-converting enzyme 2 (ACE2), and subsequently enters the host cell. In this process, the receptor-binding domain (RBD) of the spike has an interface with the α1-helix of the peptidase domain (PD) of ACE2. This study focuses on the disruption of the protein-protein interaction (PPI) of RBD-ACE2. Among the residues in the template (which was extracted from the ACE2), those with unfavorable energies were selected for substitution by mutagenesis. As a result, a library of 140 peptide candidates was constructed and the binding affinity of each candidate was evaluated by molecular docking and molecular dynamics simulations against the α1-helix of ACE2. Finally, the most potent peptides P23 (GFNNYFPHQSYGFMPTNGVGY), P28 (GFNQYFPHQSYGFPPTNGVGY), and P31 (GFNRYFPHQSYGFCPTNGVGY) were selected and their dynamic behaviors were studied. The results showed peptide inhibitors increased the radius, surface accessible area, and overall mobility of residues of the protein. However, no significant alteration was seen in the key residues in the active site. Meanwhile, they can be proposed as promising agents against COVID-19 by suppressing the viral attachment and curbing the infection at its early stage. The designed peptides showed potency against beta, gamma, delta, and omicron variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Sara Zareei
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Saeed Pourmand
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
van Doremalen N, Singh M, Saturday TA, Yinda CK, Perez-Perez L, Bohler WF, Weishampel ZA, Lewis M, Schulz JE, Williamson BN, Meade-White K, Gallogly S, Okumura A, Feldmann F, Lovaglio J, Hanley PW, Shaia C, Feldmann H, de Wit E, Munster VJ, Rosenke K. SARS-CoV-2 Omicron BA.1 and BA.2 are attenuated in rhesus macaques as compared to Delta. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.08.01.502390. [PMID: 35971544 PMCID: PMC9377356 DOI: 10.1101/2022.08.01.502390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Since the emergence of SARS-CoV-2, five different variants of concern (VOCs) have been identified: Alpha, Beta, Gamma, Delta, and Omicron. Due to confounding factors in the human population, such as pre-existing immunity, comparing severity of disease caused by different VOCs is challenging. Here, we investigate disease progression in the rhesus macaque model upon inoculation with the Delta, Omicron BA.1, and Omicron BA.2 VOCs. Disease severity in rhesus macaques inoculated with Omicron BA.1 or BA.2 was lower than those inoculated with Delta and resulted in significantly lower viral loads in nasal swabs, bronchial cytology brush samples, and lung tissue in rhesus macaques. Cytokines and chemokines were upregulated in nasosorption samples of Delta animals compared to Omicron BA.1 and BA.2 animals. Overall, these data suggests that in rhesus macaques, Omicron replicates to lower levels than the Delta VOC, resulting in reduced clinical disease.
Collapse
Affiliation(s)
- Neeltje van Doremalen
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Manmeet Singh
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Taylor A. Saturday
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Claude Kwe Yinda
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Lizzette Perez-Perez
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - W. Forrest Bohler
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Zachary A. Weishampel
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Matthew Lewis
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jonathan E. Schulz
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Brandi N. Williamson
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kimberly Meade-White
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Shane Gallogly
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Atsushi Okumura
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Patrick W. Hanley
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Heinz Feldmann
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Emmie de Wit
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Vincent J. Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kyle Rosenke
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
22
|
Port JR, Yinda CK, Riopelle JC, Weishampel ZA, Saturday TA, Avanzato VA, Schulz JE, Holbrook MG, Barbian K, Perry-Gottschalk R, Haddock E, Martens C, Shaia CI, Lambe T, Gilbert SC, van Doremalen N, Munster VJ. Infection- or vaccine mediated immunity reduces SARS-CoV-2 transmission, but increases competitiveness of Omicron in hamsters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.07.29.502072. [PMID: 35982658 PMCID: PMC9387121 DOI: 10.1101/2022.07.29.502072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Omicron has demonstrated a competitive advantage over Delta in vaccinated people. To understand this, we designed a transmission chain experiment using naïve, intranasally (IN) or intramuscularly (IM) vaccinated, and previously infected (PI) hamsters. Vaccination and previous infection protected animals from disease and virus replication after Delta and Omicron dual challenge. A gradient in transmission blockage was observed: IM vaccination displayed moderate transmission blockage potential over three airborne chains (approx. 70%), whereas, IN vaccination and PI blocked airborne transmission in >90%. In naïve hamsters, Delta completely outcompeted Omicron within and between hosts after dual infection in onward transmission. Although Delta also outcompeted Omicron in the vaccinated and PI transmission chains, an increase in Omicron competitiveness was observed in these groups. This correlated with the increase in the strength of the humoral response against Delta, with the strongest response seen in PI animals. These data highlight the continuous need to assess the emergence and spread of novel variants in populations with pre-existing immunity and address the additional evolutionary pressure this may exert on the virus.
Collapse
Affiliation(s)
- Julia R. Port
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Claude Kwe Yinda
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jade C. Riopelle
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Zachary A. Weishampel
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Taylor A. Saturday
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Victoria A. Avanzato
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jonathan E. Schulz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Myndi G. Holbrook
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kent Barbian
- Genomics Research Section, Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Rose Perry-Gottschalk
- Rocky Mountain Visual and Medical Arts Unit, Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Elaine Haddock
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Craig Martens
- Genomics Research Section, Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Carl. I. Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Teresa Lambe
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah C. Gilbert
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Neeltje van Doremalen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Vincent J. Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
23
|
Saso W, Yamasaki M, Nakakita SI, Fukushi S, Tsuchimoto K, Watanabe N, Sriwilaijaroen N, Kanie O, Muramatsu M, Takahashi Y, Matano T, Takeda M, Suzuki Y, Watashi K. Significant role of host sialylated glycans in the infection and spread of severe acute respiratory syndrome coronavirus 2. PLoS Pathog 2022; 18:e1010590. [PMID: 35700214 PMCID: PMC9197039 DOI: 10.1371/journal.ppat.1010590] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 05/13/2022] [Indexed: 12/23/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been transmitted across all over the world, in contrast to the limited epidemic of genetically- and virologically-related SARS-CoV. However, the molecular basis explaining the difference in the virological characteristics among SARS-CoV-2 and SARS-CoV has been poorly defined. Here we identified that host sialoglycans play a significant role in the efficient spread of SARS-CoV-2 infection, while this was not the case with SARS-CoV. SARS-CoV-2 infection was significantly inhibited by α2-6-linked sialic acid-containing compounds, but not by α2–3 analog, in VeroE6/TMPRSS2 cells. The α2-6-linked compound bound to SARS-CoV-2 spike S1 subunit to competitively inhibit SARS-CoV-2 attachment to cells. Enzymatic removal of cell surface sialic acids impaired the interaction between SARS-CoV-2 spike and angiotensin-converting enzyme 2 (ACE2), and suppressed the efficient spread of SARS-CoV-2 infection over time, in contrast to its least effect on SARS-CoV spread. Our study provides a novel molecular basis of SARS-CoV-2 infection which illustrates the distinctive characteristics from SARS-CoV. SARS-CoV-2, which has been highly transmissible and rapidly spreading worldwide, has caused approximately 458 million confirmed cases of COVID-19 with more than 6 million deaths by March 2022. Here we found that SARS-CoV-2 infection was significantly inhibited by α2-6-linked sialic acid-containing compounds and by depletion of cell surface sialic acid with only a minor effect on SARS-CoV infection. We identified that SARS-CoV-2 spike S1 subunit directly binds to α2-6-linked sialoglycans for efficient attachment to host cell surface. Our finding indicated that host sialoglycans play a significant role in the efficient infection of SARS-CoV-2, which provides a novel understanding of the molecular basis explaining the rapid spread of SARS-CoV-2 over SARS-CoV.
Collapse
Affiliation(s)
- Wakana Saso
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masako Yamasaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Sciences, Tokyo University of Science, Noda, Japan
| | - Shin-ichi Nakakita
- Department of Functional Glycomics, Life Science Research Center, Kagawa University, Kagawa, Japan
| | - Shuetsu Fukushi
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kana Tsuchimoto
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noriyuki Watanabe
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Nongluk Sriwilaijaroen
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Osamu Kanie
- Micro/Nano Technology Center and Department of Applied Biochemistry, Tokai University, Kanagawa, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuro Matano
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Takeda
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasuo Suzuki
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
- * E-mail: (Y.S); (K.W)
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Sciences, Tokyo University of Science, Noda, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- MIRAI, JST, Saitama, Japan
- * E-mail: (Y.S); (K.W)
| |
Collapse
|
24
|
Port JR, Yinda CK, Avanzato VA, Schulz JE, Holbrook MG, van Doremalen N, Shaia C, Fischer RJ, Munster VJ. Increased small particle aerosol transmission of B.1.1.7 compared with SARS-CoV-2 lineage A in vivo. Nat Microbiol 2022; 7:213-223. [PMID: 35017676 PMCID: PMC11218742 DOI: 10.1038/s41564-021-01047-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022]
Abstract
The major transmission route for SARS-CoV-2 is airborne. However, previous studies could not elucidate the contribution between large droplets and aerosol transmission of SARS-CoV-2 and its variants. Here, we designed and validated an optimized transmission caging setup, which allows for the assessment of aerosol transmission efficiency at various distances. At a distance of 2 m, only particles of <5 μm traversed between cages. Using this setup, we investigated the relative efficiency of aerosol transmission between the SARS-CoV-2 Alpha variant (B.1.1.7) and lineage A in Syrian hamsters. Aerosol transmission of both variants was confirmed in all sentinels after 24 h of exposure as demonstrated by respiratory virus shedding and seroconversion. Productive transmission also occurred after 1 h of exposure, highlighting the efficiency of this transmission route. Interestingly, after donors were infected with a mix of both variants, the Alpha variant outcompeted the lineage A variant in an airborne transmission chain. Overall, these data indicate that a lower infectious dose of the Alpha variant, compared to lineage A, could be sufficient for successful transmission. This highlights the continuous need to assess emerging variants and the development for pre-emptive transmission mitigation strategies.
Collapse
Affiliation(s)
- Julia R Port
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Claude Kwe Yinda
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Victoria A Avanzato
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jonathan E Schulz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Myndi G Holbrook
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Carl Shaia
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Robert J Fischer
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Vincent J Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
25
|
Hudák A, Veres G, Letoha A, Szilák L, Letoha T. Syndecan-4 Is a Key Facilitator of the SARS-CoV-2 Delta Variant's Superior Transmission. Int J Mol Sci 2022; 23:796. [PMID: 35054983 PMCID: PMC8775852 DOI: 10.3390/ijms23020796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/07/2023] Open
Abstract
Emerging SARS-CoV-2 variants pose threats to vaccination campaigns against COVID-19. Being more transmissible than the original virus, the SARS-CoV-2 B.1.617 lineage, named the Delta variant, swept through the world in 2021. The mutations in the Delta's spike protein shift the protein towards a net positive electrostatic potential. To understand the key molecular drivers of the Delta infection, we investigate the cellular uptake of the Delta spike protein and Delta spike-bearing SARS-CoV-2 pseudoviruses. Specific in vitro modification of ACE2 and syndecan expression enabled us to demonstrate that syndecan-4, the syndecan isoform abundant in the lung, enhances the transmission of the Delta variant by attaching its mutated spike glycoprotein and facilitating its cellular entry. Compared to the wild-type spike, the Delta one shows a higher affinity towards heparan sulfate proteoglycans than towards ACE2. In addition to attachment to the polyanionic heparan sulfate chains, the Delta spike's molecular interactions with syndecan-4 also involve syndecan-4's cell-binding domain that mediates cell-to-cell adhesion. Regardless of the complexity of these interactions, exogenously added heparin blocks Delta's cellular entry as efficiently as syndecan-4 knockdown. Therefore, a profound understanding of the molecular mechanisms underlying Delta infections enables the development of molecularly targeted yet simple strategies to reduce the Delta variant's spread.
Collapse
Affiliation(s)
- Anett Hudák
- Pharmacoidea Ltd., 6726 Szeged, Hungary; (A.H.); (G.V.); (L.S.)
| | - Gábor Veres
- Pharmacoidea Ltd., 6726 Szeged, Hungary; (A.H.); (G.V.); (L.S.)
| | - Annamária Letoha
- Albert Szent-Györgyi Clinical Center, Department of Medicine, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary;
| | - László Szilák
- Pharmacoidea Ltd., 6726 Szeged, Hungary; (A.H.); (G.V.); (L.S.)
| | - Tamás Letoha
- Pharmacoidea Ltd., 6726 Szeged, Hungary; (A.H.); (G.V.); (L.S.)
| |
Collapse
|
26
|
Grau-Expósito J, Perea D, Suppi M, Massana N, Vergara A, Soler MJ, Trinite B, Blanco J, García-Pérez J, Alcamí J, Serrano-Mollar A, Rosado J, Falcó V, Genescà M, Buzon MJ. Evaluation of SARS-CoV-2 entry, inflammation and new therapeutics in human lung tissue cells. PLoS Pathog 2022; 18:e1010171. [PMID: 35025963 PMCID: PMC8791477 DOI: 10.1371/journal.ppat.1010171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/26/2022] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
The development of physiological models that reproduce SARS-CoV-2 infection in primary human cells will be instrumental to identify host-pathogen interactions and potential therapeutics. Here, using cell suspensions directly from primary human lung tissues (HLT), we have developed a rapid platform for the identification of viral targets and the expression of viral entry factors, as well as for the screening of viral entry inhibitors and anti-inflammatory compounds. The direct use of HLT cells, without long-term cell culture and in vitro differentiation approaches, preserves main immune and structural cell populations, including the most susceptible cell targets for SARS-CoV-2; alveolar type II (AT-II) cells, while maintaining the expression of proteins involved in viral infection, such as ACE2, TMPRSS2, CD147 and AXL. Further, antiviral testing of 39 drug candidates reveals a highly reproducible method, suitable for different SARS-CoV-2 variants, and provides the identification of new compounds missed by conventional systems, such as VeroE6. Using this method, we also show that interferons do not modulate ACE2 expression, and that stimulation of local inflammatory responses can be modulated by different compounds with antiviral activity. Overall, we present a relevant and rapid method for the study of SARS-CoV-2.
Collapse
Affiliation(s)
- Judith Grau-Expósito
- Infectious Diseases Department, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, VHIR Task Force COVID-19, Barcelona, Spain
| | - David Perea
- Infectious Diseases Department, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, VHIR Task Force COVID-19, Barcelona, Spain
| | - Marina Suppi
- Infectious Diseases Department, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, VHIR Task Force COVID-19, Barcelona, Spain
| | - Núria Massana
- Infectious Diseases Department, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, VHIR Task Force COVID-19, Barcelona, Spain
| | - Ander Vergara
- Nephrology Research Department, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, VHIR Task Force COVID-19, Barcelona, Spain
| | - Maria José Soler
- Nephrology Research Department, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, VHIR Task Force COVID-19, Barcelona, Spain
| | - Benjamin Trinite
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Autonomous University of Barcelona (UAB), Badalona, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Autonomous University of Barcelona (UAB), Badalona, Spain
- University of Vic–Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Javier García-Pérez
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - José Alcamí
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Clinic HIV Unit, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Anna Serrano-Mollar
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Joel Rosado
- Thoracic Surgery and Lung Transplantation Department, Vall d’Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d’Hebron, VHIR Task Force COVID-19, Barcelona, Spain
| | - Vicenç Falcó
- Infectious Diseases Department, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, VHIR Task Force COVID-19, Barcelona, Spain
| | - Meritxell Genescà
- Infectious Diseases Department, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, VHIR Task Force COVID-19, Barcelona, Spain
| | - Maria J. Buzon
- Infectious Diseases Department, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, VHIR Task Force COVID-19, Barcelona, Spain
| |
Collapse
|
27
|
Warner BM, Santry LA, Leacy A, Chan M, Pham PH, Vendramelli R, Pei Y, Tailor N, Valcourt E, Leung A, He S, Griffin BD, Audet J, Willman M, Tierney K, Albietz A, Frost KL, Yates JG, Mould RC, Chan L, Mehrani Y, Knapp JP, Minott JA, Banadyga L, Safronetz D, Wood H, Booth S, Major PP, Bridle BW, Susta L, Kobasa D, Wootton SK. Intranasal vaccination with a Newcastle disease virus-vectored vaccine protects hamsters from SARS-CoV-2 infection and disease. iScience 2021; 24:103219. [PMID: 34632328 PMCID: PMC8492382 DOI: 10.1016/j.isci.2021.103219] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/24/2021] [Accepted: 09/30/2021] [Indexed: 02/08/2023] Open
Abstract
The pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19). Worldwide efforts are being made to develop vaccines to mitigate this pandemic. We engineered two recombinant Newcastle disease virus (NDV) vectors expressing either the full-length SARS-CoV-2 spike protein (NDV-FLS) or a version with a 19 amino acid deletion at the carboxy terminus (NDV-Δ19S). Hamsters receiving two doses (prime-boost) of NDV-FLS developed a robust SARS-CoV-2-neutralizing antibody response, with elimination of infectious virus in the lungs and minimal lung pathology at five days post-challenge. Single-dose vaccination with NDV-FLS significantly reduced SARS-CoV-2 replication in the lungs but only mildly decreased lung inflammation. NDV-Δ19S-treated hamsters had a moderate decrease in SARS-CoV-2 titers in lungs and presented with severe microscopic lesions, suggesting that truncation of the spike protein was a less effective strategy. In summary, NDV-vectored vaccines represent a viable option for protection against COVID-19.
Collapse
Affiliation(s)
- Bryce M. Warner
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Lisa A. Santry
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Alexander Leacy
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Mable Chan
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Phuc H. Pham
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Robert Vendramelli
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Nikesh Tailor
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Emelissa Valcourt
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Anders Leung
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Shihua He
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Bryan D. Griffin
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Jonathan Audet
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Marnie Willman
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Kevin Tierney
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Alixandra Albietz
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Kathy L. Frost
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Jacob G.E. Yates
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Robert C. Mould
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Lily Chan
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Yeganeh Mehrani
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Jason P. Knapp
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | | | - Logan Banadyga
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - David Safronetz
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Heidi Wood
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Stephanie Booth
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Pierre P. Major
- Juravinski Cancer Centre, 699 Concession Street, Hamilton, ON L8V 5C2, Canada
| | - Byram W. Bridle
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Leonardo Susta
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Darwyn Kobasa
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Sarah K. Wootton
- Department of Pathobiology, University of Guelph, Guelph, Canada
| |
Collapse
|
28
|
Urano E, Okamura T, Ono C, Ueno S, Nagata S, Kamada H, Higuchi M, Furukawa M, Kamitani W, Matsuura Y, Kawaoka Y, Yasutomi Y. COVID-19 cynomolgus macaque model reflecting human COVID-19 pathological conditions. Proc Natl Acad Sci U S A 2021; 118:e2104847118. [PMID: 34625475 PMCID: PMC8639365 DOI: 10.1073/pnas.2104847118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 01/10/2023] Open
Abstract
The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global threat to human health and life. A useful pathological animal model accurately reflecting human pathology is needed to overcome the COVID-19 crisis. In the present study, COVID-19 cynomolgus monkey models including monkeys with underlying diseases causing severe pathogenicity such as metabolic disease and elderly monkeys were examined. Cynomolgus macaques with various clinical conditions were intranasally and/or intratracheally inoculated with SARS-CoV-2. Infection with SARS-CoV-2 was found in mucosal swab samples, and a higher level and longer period of viral RNA was detected in elderly monkeys than in young monkeys. Pneumonia was confirmed in all of the monkeys by computed tomography images. When monkeys were readministrated SARS-CoV-2 at 56 d or later after initial infection all of the animals showed inflammatory responses without virus detection in swab samples. Surprisingly, in elderly monkeys reinfection showed transient severe pneumonia with increased levels of various serum cytokines and chemokines compared with those in primary infection. The results of this study indicated that the COVID-19 cynomolgus monkey model reflects the pathophysiology of humans and would be useful for elucidating the pathophysiology and developing therapeutic agents and vaccines.
Collapse
Affiliation(s)
- Emiko Urano
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba 305-0843, Japan
| | - Tomotaka Okamura
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba 305-0843, Japan
| | - Chikako Ono
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Shiori Ueno
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan
| | - Satoshi Nagata
- Laboratory of Antibody Design, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Haruhiko Kamada
- Laboratory of Biopharmaceutical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Mahoko Higuchi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba 305-0843, Japan
| | - Mugi Furukawa
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba 305-0843, Japan
| | - Wataru Kamitani
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706
- Department of Special Pathogens, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba 305-0843, Japan;
- Division of Immunoregulation, Department of Molecular and Experimental Medicine, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| |
Collapse
|
29
|
Munster VJ, Flagg M, Singh M, Yinda CK, Williamson BN, Feldmann F, Pérez-Pérez L, Schulz J, Brumbaugh B, Holbrook MG, Adney DR, Okumura A, Hanley PW, Smith BJ, Lovaglio J, Anzick SL, Martens C, van Doremalen N, Saturday G, de Wit E. Subtle differences in the pathogenicity of SARS-CoV-2 variants of concern B.1.1.7 and B.1.351 in rhesus macaques. SCIENCE ADVANCES 2021; 7:eabj3627. [PMID: 34678071 PMCID: PMC8535829 DOI: 10.1126/sciadv.abj3627] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/01/2021] [Indexed: 05/27/2023]
Abstract
The emergence of several SARS-CoV-2 variants has caused global concerns about increased transmissibility, increased pathogenicity, and decreased efficacy of medical countermeasures. Animal models can be used to assess phenotypical changes in the absence of confounding factors. Here, we compared variants of concern (VOC) B.1.1.7 and B.1.351 to a recent B.1 SARS-CoV-2 isolate containing the D614G spike substitution in the rhesus macaque model. B.1.1.7 behaved similarly to D614G with respect to clinical disease and replication in the respiratory tract. Inoculation with B.1.351 resulted in lower clinical scores, lower lung virus titers, and less severe lung lesions. In bronchoalveolar lavages, cytokines and chemokines were up-regulated on day 4 in animals inoculated with D614G and B.1.1.7 but not with B.1.351. In nasal samples, cytokines and chemokines were up-regulated only in the B.1.1.7-inoculated animals. Together, our study suggests that circulation under diverse evolutionary pressures favors transmissibility and immune evasion rather than increased pathogenicity.
Collapse
Affiliation(s)
- Vincent J. Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Meaghan Flagg
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Manmeet Singh
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Claude Kwe Yinda
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Brandi N. Williamson
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Lizzette Pérez-Pérez
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jonathan Schulz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Beniah Brumbaugh
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Myndi G. Holbrook
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Danielle R. Adney
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Atsushi Okumura
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Patrick W. Hanley
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Brian J. Smith
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Sarah L. Anzick
- Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Craig Martens
- Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
30
|
Li J, Xu D, Wang L, Zhang M, Zhang G, Li E, He S. Glycyrrhizic Acid Inhibits SARS-CoV-2 Infection by Blocking Spike Protein-Mediated Cell Attachment. Molecules 2021; 26:6090. [PMID: 34684671 PMCID: PMC8539771 DOI: 10.3390/molecules26206090] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 01/09/2023] Open
Abstract
Glycyrrhizic acid (GA), also known as glycyrrhizin, is a triterpene glycoside isolated from plants of Glycyrrhiza species (licorice). GA possesses a wide range of pharmacological and antiviral activities against enveloped viruses including severe acute respiratory syndrome (SARS) virus. Since the S protein (S) mediates SARS coronavirus 2 (SARS-CoV-2) cell attachment and cell entry, we assayed the GA effect on SARS-CoV-2 infection using an S protein-pseudotyped lentivirus (Lenti-S). GA treatment dose-dependently blocked Lenti-S infection. We showed that incubation of Lenti-S virus, but not the host cells with GA prior to the infection, reduced Lenti-S infection, indicating that GA targeted the virus for infection. Surface plasmon resonance measurement showed that GA interacted with a recombinant S protein and blocked S protein binding to host cells. Autodocking analysis revealed that the S protein has several GA-binding pockets including one at the interaction interface to the receptor angiotensin-converting enzyme 2 (ACE2) and another at the inner side of the receptor-binding domain (RBD) which might impact the close-to-open conformation change of the S protein required for ACE2 interaction. In addition to identifying GA antiviral activity against SARS-CoV-2, the study linked GA antiviral activity to its effect on virus cell binding.
Collapse
Affiliation(s)
- Jingjing Li
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China; (J.L.); (D.X.); (L.W.); (M.Z.)
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Topcel Biological Technology Co., Ltd., Nanjing 210093, China
| | - Dongge Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China; (J.L.); (D.X.); (L.W.); (M.Z.)
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
- Yancheng Medical Research Centre, Medical School, Nanjing University, Yancheng 224000, China
| | - Lingling Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China; (J.L.); (D.X.); (L.W.); (M.Z.)
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
- Institute of Medical Virology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, China
| | - Mengyu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China; (J.L.); (D.X.); (L.W.); (M.Z.)
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
- Yancheng Medical Research Centre, Medical School, Nanjing University, Yancheng 224000, China
| | - Guohai Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541006, China;
| | - Erguang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China; (J.L.); (D.X.); (L.W.); (M.Z.)
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
- Shenzhen Institute of Nanjing University, Shenzhen 518000, China
| | - Susu He
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China; (J.L.); (D.X.); (L.W.); (M.Z.)
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
- Yancheng Medical Research Centre, Medical School, Nanjing University, Yancheng 224000, China
| |
Collapse
|
31
|
Mekkaoui L, Bentley EM, Ferrari M, Lamb K, Ward K, Karattil R, Akbar Z, Bughda R, Sillibourne J, Onuoha S, Mattiuzzo G, Takeuchi Y, Pule M. Optimised Method for the Production and Titration of Lentiviral Vectors Pseudotyped with the SARS-CoV-2 Spike. Bio Protoc 2021; 11:e4194. [PMID: 34541054 PMCID: PMC8413559 DOI: 10.21769/bioprotoc.4194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/12/2021] [Accepted: 05/19/2021] [Indexed: 11/02/2022] Open
Abstract
The use of recombinant lentivirus pseudotyped with the coronavirus Spike protein of SARS-CoV-2 would circumvent the requirement of biosafety-level 3 (BSL-3) containment facilities for the handling of SARS-CoV-2 viruses. Herein, we describe a fast and reliable protocol for the transient production of lentiviruses pseudotyped with SARS-CoV-2 Spike (CoV-2 S) proteins and green fluorescent protein (GFP) reporters. The virus titer is determined by the GFP reporter (fluorescent) expression with a flow cytometer. High titers (>1.00 E+06 infectious units/ml) are produced using codon-optimized CoV-2 S, harbouring the prevalent D614G mutation and lacking its ER retention signal. Enhanced and consistent cell entry is achieved by using permissive HEK293T/17 cells that were genetically engineered to stably express the SARS-CoV-2 human receptor ACE2 along with the cell surface protease TMPRSS2 required for efficient fusion. For the widespread use of this protocol, its reagents have been made publicly available. Graphic abstract: Production and quantification of lentiviral vectors pseudotyped with the SARS-CoV-2 Spike glycoprotein.
Collapse
Affiliation(s)
- Leila Mekkaoui
- Autolus Limited, The MediaWorks, 191 Wood Lane, London, W12 7FP, United Kingdom
| | - Emma M. Bentley
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, EN6 3QC, United Kingdom
| | - Mathieu Ferrari
- Autolus Limited, The MediaWorks, 191 Wood Lane, London, W12 7FP, United Kingdom
| | - Katarina Lamb
- Autolus Limited, The MediaWorks, 191 Wood Lane, London, W12 7FP, United Kingdom
| | - Katarzyna Ward
- Autolus Limited, The MediaWorks, 191 Wood Lane, London, W12 7FP, United Kingdom
| | - Rajeev Karattil
- Autolus Limited, The MediaWorks, 191 Wood Lane, London, W12 7FP, United Kingdom
| | - Zulaikha Akbar
- Autolus Limited, The MediaWorks, 191 Wood Lane, London, W12 7FP, United Kingdom
| | - Reyisa Bughda
- Autolus Limited, The MediaWorks, 191 Wood Lane, London, W12 7FP, United Kingdom
| | - James Sillibourne
- Autolus Limited, The MediaWorks, 191 Wood Lane, London, W12 7FP, United Kingdom
| | - Shimobi Onuoha
- Autolus Limited, The MediaWorks, 191 Wood Lane, London, W12 7FP, United Kingdom
| | - Giada Mattiuzzo
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, EN6 3QC, United Kingdom
| | - Yasuhiro Takeuchi
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, EN6 3QC, United Kingdom
- Division of Infection and Immunity, University College London, Cruciform Building, Gower Street, WC1E 6BT, United Kingdom
| | - Martin Pule
- Autolus Limited, The MediaWorks, 191 Wood Lane, London, W12 7FP, United Kingdom
| |
Collapse
|
32
|
Port J, Yinda CK, Avanzato V, Schulz J, Holbrook M, van Doremalen N, Shaia C, Fischer R, Munster V. Increased aerosol transmission for B.1.1.7 (alpha variant) over lineage A variant of SARS-CoV-2. RESEARCH SQUARE 2021:rs.3.rs-753550. [PMID: 34401871 PMCID: PMC8366800 DOI: 10.21203/rs.3.rs-753550/v1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Airborne transmission, a term combining both large droplet and aerosol transmission, is thought to be the main transmission route of SARS-CoV-2. Here we investigated the relative efficiency of aerosol transmission of two variants of SARS-CoV-2, B.1.1.7 (alpha) and lineage A, in the Syrian hamster. A novel transmission caging setup was designed and validated, which allowed the assessment of transmission efficiency at various distances. At 2 meters distance, only particles <5 µm traversed between cages. In this setup, aerosol transmission was confirmed in 8 out of 8 (N = 4 for each variant) sentinels after 24 hours of exposure as demonstrated by respiratory shedding and seroconversion. Successful transmission occurred even when exposure time was limited to one hour, highlighting the efficiency of this transmission route. Interestingly, the B.1.1.7 variant outcompeted the lineage A variant in an airborne transmission chain after mixed infection of donors. Combined, this data indicates that the infectious dose of B.1.1.7 required for successful transmission may be lower than that of lineage A virus. The experimental proof for true aerosol transmission and the increase in the aerosol transmission potential of B.1.1.7 underscore the continuous need for assessment of novel variants and the development or preemptive transmission mitigation strategies.
Collapse
Affiliation(s)
- Julia Port
- National Institute of Allergy and Infectious Diseases
| | | | | | | | | | | | - Carl Shaia
- National Institute of Allergy and Infectious Diseases
| | | | | |
Collapse
|
33
|
Port JR, Yinda CK, Avanzato VA, Schulz JE, Holbrook MG, van Doremalen N, Shaia C, Fischer RJ, Munster VJ. Increased aerosol transmission for B.1.1.7 (alpha variant) over lineage A variant of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.07.26.453518. [PMID: 34341792 PMCID: PMC8328059 DOI: 10.1101/2021.07.26.453518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Airborne transmission, a term combining both large droplet and aerosol transmission, is thought to be the main transmission route of SARS-CoV-2. Here we investigated the relative efficiency of aerosol transmission of two variants of SARS-CoV-2, B.1.1.7 (alpha) and lineage A, in the Syrian hamster. A novel transmission caging setup was designed and validated, which allowed the assessment of transmission efficiency at various distances. At 2 meters distance, only particles <5 µm traversed between cages. In this setup, aerosol transmission was confirmed in 8 out of 8 (N = 4 for each variant) sentinels after 24 hours of exposure as demonstrated by respiratory shedding and seroconversion. Successful transmission occurred even when exposure time was limited to one hour, highlighting the efficiency of this transmission route. Interestingly, the B.1.1.7 variant outcompeted the lineage A variant in an airborne transmission chain after mixed infection of donors. Combined, this data indicates that the infectious dose of B.1.1.7 required for successful transmission may be lower than that of lineage A virus. The experimental proof for true aerosol transmission and the increase in the aerosol transmission potential of B.1.1.7 underscore the continuous need for assessment of novel variants and the development or preemptive transmission mitigation strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Vincent J. Munster
- Materials and Correspondence: All material requests should be sent to Vincent J. Munster,
| |
Collapse
|
34
|
Iida S, Arashiro T, Suzuki T. Insights into Pathology and Pathogenesis of Coronavirus Disease 2019 from a Histopathological and Immunological Perspective. JMA J 2021; 4:179-186. [PMID: 34414310 PMCID: PMC8355722 DOI: 10.31662/jmaj.2021-0041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/13/2021] [Indexed: 12/27/2022] Open
Abstract
Since the first case of COVID-19 was reported in Wuhan, China, in December 2019, the SARS-CoV-2 epidemic has spread all over the world and has become a significant public health issue. The development of treatments for COVID-19 is currently in progress; however, their effects remain limited, and the development of more effective therapeutics is desired. Thus, sufficient understanding of the pathophysiology of COVID-19 is essential to develop effective therapeutics for this disease. Pathological analyses in particular play an important role to demonstrate the causal link between an infectious disease and the pathogen and elucidate the mechanism of pathogenesis. As per pathological analyses to date, respiratory organs are identified as the major affected organs in most COVID-19 cases; also, various lesions were noted in other organs. Further, there have been increasing reports that show that the immune responses of the host contribute to the deterioration of the pathological condition of COVID-19, and a novel concept of MIS-C/MIS-A is also being established. Thus, in this article, we have provided an overview of the pathology of COVID-19 from a histopathological and immunological perspective focusing on the mechanisms of COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Shun Iida
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takeshi Arashiro
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
35
|
Ilmjärv S, Abdul F, Acosta-Gutiérrez S, Estarellas C, Galdadas I, Casimir M, Alessandrini M, Gervasio FL, Krause KH. Concurrent mutations in RNA-dependent RNA polymerase and spike protein emerged as the epidemiologically most successful SARS-CoV-2 variant. Sci Rep 2021; 11:13705. [PMID: 34210996 PMCID: PMC8249556 DOI: 10.1038/s41598-021-91662-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/25/2021] [Indexed: 01/18/2023] Open
Abstract
The D614G mutation in the Spike protein of the SARS-CoV-2 has effectively replaced the early pandemic-causing variant. Using pseudotyped lentivectors, we confirmed that the aspartate replacement by glycine in position 614 is markedly more infectious. Molecular modelling suggests that the G614 mutation facilitates transition towards an open state of the Spike protein. To explain the epidemiological success of D614G, we analysed the evolution of 27,086 high-quality SARS-CoV-2 genome sequences from GISAID. We observed striking coevolution of D614G with the P323L mutation in the viral polymerase. Importantly, the exclusive presence of G614 or L323 did not become epidemiologically relevant. In contrast, the combination of the two mutations gave rise to a viral G/L variant that has all but replaced the initial D/P variant. Our results suggest that the P323L mutation, located in the interface domain of the RNA-dependent RNA polymerase, is a necessary alteration that led to the epidemiological success of the present variant of SARS-CoV-2. However, we did not observe a significant correlation between reported COVID-19 mortality in different countries and the prevalence of the Wuhan versus G/L variant. Nevertheless, when comparing the speed of emergence and the ultimate predominance in individual countries, it is clear that the G/L variant displays major epidemiological supremacy over the original variant.
Collapse
Affiliation(s)
- Sten Ilmjärv
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Fabien Abdul
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Silvia Acosta-Gutiérrez
- Department of Chemistry, University College London, London, UK.,Institute for the Physics of Living Systems, University College London, London, UK.,Institute of Structural and Molecular Biology, University College London, London, UK
| | | | | | | | - Marco Alessandrini
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Francesco Luigi Gervasio
- Department of Chemistry, University College London, London, UK.,Institute of Structural and Molecular Biology, University College London, London, UK.,School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland. .,Division of Infectious Disease and Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland.
| |
Collapse
|
36
|
Chan CEZ, Seah SGK, Chye DH, Massey S, Torres M, Lim APC, Wong SKK, Neo JJY, Wong PS, Lim JH, Loh GSL, Wang D, Boyd-Kirkup JD, Guan S, Thakkar D, Teo GH, Purushotorman K, Hutchinson PE, Young BE, Low JG, MacAry PA, Hentze H, Prativadibhayankara VS, Ethirajulu K, Comer JE, Tseng CTK, Barrett ADT, Ingram PJ, Brasel T, Hanson BJ. The Fc-mediated effector functions of a potent SARS-CoV-2 neutralizing antibody, SC31, isolated from an early convalescent COVID-19 patient, are essential for the optimal therapeutic efficacy of the antibody. PLoS One 2021; 16:e0253487. [PMID: 34161386 PMCID: PMC8221499 DOI: 10.1371/journal.pone.0253487] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
Although SARS-CoV-2-neutralizing antibodies are promising therapeutics against COVID-19, little is known about their mechanism(s) of action or effective dosing windows. We report the generation and development of SC31, a potent SARS-CoV-2 neutralizing antibody, isolated from a convalescent patient. Antibody-mediated neutralization occurs via an epitope within the receptor-binding domain of the SARS-CoV-2 Spike protein. SC31 exhibited potent anti-SARS-CoV-2 activities in multiple animal models. In SARS-CoV-2 infected K18-human ACE2 transgenic mice, treatment with SC31 greatly reduced viral loads and attenuated pro-inflammatory responses linked to the severity of COVID-19. Importantly, a comparison of the efficacies of SC31 and its Fc-null LALA variant revealed that the optimal therapeutic efficacy of SC31 requires Fc-mediated effector functions that promote IFNγ-driven anti-viral immune responses, in addition to its neutralization ability. A dose-dependent efficacy of SC31 was observed down to 5mg/kg when administered before viral-induced lung inflammatory responses. In addition, antibody-dependent enhancement was not observed even when infected mice were treated with SC31 at sub-therapeutic doses. In SARS-CoV-2-infected hamsters, SC31 treatment significantly prevented weight loss, reduced viral loads, and attenuated the histopathology of the lungs. In rhesus macaques, the therapeutic potential of SC31 was evidenced through the reduction of viral loads in both upper and lower respiratory tracts to undetectable levels. Together, the results of our preclinical studies demonstrated the therapeutic efficacy of SC31 in three different models and its potential as a COVID-19 therapeutic candidate.
Collapse
Affiliation(s)
- Conrad E. Z. Chan
- Biological Defence Programme, DSO National Laboratories, Singapore, Singapore
| | - Shirley G. K. Seah
- Biological Defence Programme, DSO National Laboratories, Singapore, Singapore
| | - De Hoe Chye
- Biological Defence Programme, DSO National Laboratories, Singapore, Singapore
| | - Shane Massey
- Department of Microbiology & Immunology and Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Maricela Torres
- Department of Microbiology & Immunology and Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Angeline P. C. Lim
- Biological Defence Programme, DSO National Laboratories, Singapore, Singapore
| | - Steven K. K. Wong
- Biological Defence Programme, DSO National Laboratories, Singapore, Singapore
| | - Jacklyn J. Y. Neo
- Biological Defence Programme, DSO National Laboratories, Singapore, Singapore
| | - Pui San Wong
- Biological Defence Programme, DSO National Laboratories, Singapore, Singapore
| | - Jie Hui Lim
- Biological Defence Programme, DSO National Laboratories, Singapore, Singapore
| | - Gary S. L. Loh
- Biological Defence Programme, DSO National Laboratories, Singapore, Singapore
| | - Dongling Wang
- Biological Defence Programme, DSO National Laboratories, Singapore, Singapore
| | | | - Siyu Guan
- Hummingbird Bioscience, Singapore, Singapore
| | | | - Guo Hui Teo
- Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Kiren Purushotorman
- Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Paul E. Hutchinson
- Life Science Institute, National University of Singapore, Singapore, Singapore
| | | | - Jenny G. Low
- Singapore General Hospital, Singapore, Singapore
- Programme in Emerging Infectious Disease, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Paul A. MacAry
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hannes Hentze
- Experimental Drug Development Centre, Therapeutics Development, A*STAR Research Entities (ARES), Singapore, Singapore
| | | | - Kantharaj Ethirajulu
- Experimental Drug Development Centre, Therapeutics Development, A*STAR Research Entities (ARES), Singapore, Singapore
| | - Jason E. Comer
- Department of Microbiology & Immunology and Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Chien-Te K. Tseng
- Department of Microbiology & Immunology and Center of Biodefense and Emerging Disease, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Alan D. T. Barrett
- Department of Pathology and Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States of America
| | | | - Trevor Brasel
- Department of Microbiology & Immunology and Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Brendon John Hanson
- Biological Defence Programme, DSO National Laboratories, Singapore, Singapore
| |
Collapse
|
37
|
ACE2 receptor usage reveals variation in susceptibility to SARS-CoV and SARS-CoV-2 infection among bat species. Nat Ecol Evol 2021; 5:600-608. [PMID: 33649547 DOI: 10.1038/s41559-021-01407-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/29/2021] [Indexed: 01/31/2023]
Abstract
Bats are the suggested natural hosts for severe acute respiratory syndrome coronavirus (SARS-CoV) and the causal agent of the coronavirus disease 2019 (COVID-19) pandemic, SARS-CoV-2. The interaction of viral spike proteins with their host receptor angiotensin-converting enzyme 2 (ACE2) is a critical determinant of potential hosts and cross-species transmission. Here we use virus-host receptor binding and infection assays to examine 46 ACE2 orthologues from phylogenetically diverse bat species, including those in close and distant contact with humans. We found that 24, 21 and 16 of them failed to support infection by SARS-CoV, SARS-CoV-2 or both viruses, respectively. Furthermore, we confirmed that infection assays in human cells were consistent with those in two bat cell lines. Additionally, we used genetic and functional analyses to identify critical residues in bat ACE2 receptors associated with viral entry restrictions. Our results suggest that many bat species may not be the potential hosts of one or both viruses and that no correlation was identified between proximity to humans and probability of being natural hosts of SARS-CoV or SARS-CoV-2. This study demonstrates dramatic variation in susceptibility to SARS-CoV and SARS-CoV-2 infection among bat species and adds knowledge towards a better understanding of coronavirus-bat interaction.
Collapse
|
38
|
Shionoya K, Yamasaki M, Iwanami S, Ito Y, Fukushi S, Ohashi H, Saso W, Tanaka T, Aoki S, Kuramochi K, Iwami S, Takahashi Y, Suzuki T, Muramatsu M, Takeda M, Wakita T, Watashi K. Mefloquine, a Potent Anti-severe Acute Respiratory Syndrome-Related Coronavirus 2 (SARS-CoV-2) Drug as an Entry Inhibitor in vitro. Front Microbiol 2021; 12:651403. [PMID: 33995308 PMCID: PMC8119653 DOI: 10.3389/fmicb.2021.651403] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/06/2021] [Indexed: 12/30/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has caused serious public health, social, and economic damage worldwide and effective drugs that prevent or cure COVID-19 are urgently needed. Approved drugs including Hydroxychloroquine, Remdesivir or Interferon were reported to inhibit the infection or propagation of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), however, their clinical efficacies have not yet been well demonstrated. To identify drugs with higher antiviral potency, we screened approved anti-parasitic/anti-protozoal drugs and identified an anti-malarial drug, Mefloquine, which showed the highest anti-SARS-CoV-2 activity among the tested compounds. Mefloquine showed higher anti-SARS-CoV-2 activity than Hydroxychloroquine in VeroE6/TMPRSS2 and Calu-3 cells, with IC50 = 1.28 μM, IC90 = 2.31 μM, and IC99 = 4.39 μM in VeroE6/TMPRSS2 cells. Mefloquine inhibited viral entry after viral attachment to the target cell. Combined treatment with Mefloquine and Nelfinavir, a replication inhibitor, showed synergistic antiviral activity. Our mathematical modeling based on the drug concentration in the lung predicted that Mefloquine administration at a standard treatment dosage could decline viral dynamics in patients, reduce cumulative viral load to 7% and shorten the time until virus elimination by 6.1 days. These data cumulatively underscore Mefloquine as an anti-SARS-CoV-2 entry inhibitor.
Collapse
Affiliation(s)
- Kaho Shionoya
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Applied Biological Science, Tokyo University of Science, Tokyo, Japan
| | - Masako Yamasaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Applied Biological Science, Tokyo University of Science, Tokyo, Japan
| | - Shoya Iwanami
- Interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan.,Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Ito
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Shuetsu Fukushi
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hirofumi Ohashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Applied Biological Science, Tokyo University of Science, Tokyo, Japan
| | - Wakana Saso
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomohiro Tanaka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Shin Aoki
- Research Institute for Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Kouji Kuramochi
- Department of Applied Biological Science, Tokyo University of Science, Tokyo, Japan
| | - Shingo Iwami
- Interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan.,Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan.,MIRAI, JST, Saitama, Japan.,Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,Science Groove Inc., Fukuoka, Japan
| | - Yoshimasa Takahashi
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan.,Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Takeda
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Applied Biological Science, Tokyo University of Science, Tokyo, Japan.,MIRAI, JST, Saitama, Japan.,Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan.,Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
39
|
Hilterbrand AT, Daly RE, Heldwein EE. Contributions of the Four Essential Entry Glycoproteins to HSV-1 Tropism and the Selection of Entry Routes. mBio 2021; 12:e00143-21. [PMID: 33653890 PMCID: PMC8092210 DOI: 10.1128/mbio.00143-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 01/02/2023] Open
Abstract
Herpes simplex viruses (HSV-1 and HSV-2) encode up to 16 envelope proteins, four of which are essential for entry. However, whether these four proteins alone are sufficient to dictate the broad cellular tropism of HSV-1 and the selection of different cell type-dependent entry routes is unknown. To begin addressing this, we previously pseudotyped vesicular stomatitis virus (VSV), lacking its native glycoprotein G, with only the four essential entry glycoproteins of HSV-1: gB, gH, gL, and gD. This novel VSVΔG-BHLD pseudotype recapitulated several important features of HSV-1 entry: the requirement for gB, gH, gL, gD, and a cellular receptor and sensitivity to anti-gB and anti-gH/gL neutralizing antibodies. However, due to the use of a single cell type in that study, the tropism of the VSVΔG-BHLD pseudotype was not investigated. Here, we show that the cellular tropism of the pseudotype is severely limited compared to that of wild-type HSV-1 and that its entry pathways differ from the native HSV-1 entry pathways. To test the hypothesis that other HSV-1 envelope proteins may contribute to HSV-1 tropism, we generated a derivative pseudotype containing the HSV-1 glycoprotein C (VSVΔG-BHLD-gC) and observed a gC-dependent increase in entry efficiency in two cell types. We propose that the pseudotyping platform developed here has the potential to uncover functional contributions of HSV-1 envelope proteins to entry in a gain-of-function manner.IMPORTANCE Herpes simplex viruses (HSV-1 and HSV-2) contain up to 16 different proteins in their envelopes. Four of these, glycoproteins gB, gD, gH, and gL, are termed essential with regard to entry, whereas the rest are typically referred to as nonessential based on the entry phenotypes of the respective single genetic deletions. However, the single-gene deletion approach, which relies on robust loss-of-function phenotypes, may be confounded by functional redundancies among the many HSV-1 envelope proteins. We have developed a pseudotyping platform in which the essential four entry glycoproteins are isolated from the rest, which can be added back individually for systematic gain-of-function entry experiments. Here, we show the utility of this platform for dissecting the contributions of HSV envelope proteins, both the essential four and the remaining dozen (using gC as an example), to HSV entry.
Collapse
Affiliation(s)
- Adam T Hilterbrand
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Raecliffe E Daly
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Cellular, Molecular, and Developmental Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ekaterina E Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Cellular, Molecular, and Developmental Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Xu H, Liu B, Xiao Z, Zhou M, Ge L, Jia F, Liu Y, Jin H, Zhu X, Gao J, Akhtar J, Xiang B, Tan K, Wang G. Computational and Experimental Studies Reveal That Thymoquinone Blocks the Entry of Coronaviruses Into In Vitro Cells. Infect Dis Ther 2021; 10:483-494. [PMID: 33532909 PMCID: PMC7853165 DOI: 10.1007/s40121-021-00400-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/09/2021] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Since December 2019, severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) has caused the coronavirus disease 2019 (COVID-19) pandemic in China and worldwide. New drugs for the treatment of COVID-19 are in urgent need. Considering the long development time for new drugs, the identification of promising inhibitors from FDA-approved drugs is an imperative and valuable strategy. Recent studies have shown that the S1 and S2 subunits of the spike protein of SARS-CoV-2 utilize human angiotensin-converting enzyme 2 (hACE2) as the receptor to infect human cells. METHODS We combined molecular docking and surface plasmon resonance (SPR) to identify potential inhibitors for ACE2 from available commercial medicines. We also designed coronavirus pseudoparticles that contain the spike protein assembled onto green fluorescent protein or luciferase reporter gene-carrying vesicular stomatitis virus core particles. RESULTS We found that thymoquinone, a phytochemical compound obtained from the plant Nigella sativa, is a potential drug candidate. SPR analysis confirmed the binding of thymoquinone to ACE2. We found that thymoquinone can inhibit SARS-CoV-2, SARS-CoV, and NL63 pseudoparticles infecting HEK293-ACE2 cells, with half-maximal inhibitory concentrations of 4.999, 7.598, and 6.019 μM, respectively. The SARS-CoV-2 pseudoparticle inhibition had half-maximal cytotoxic concentration of 35.100 μM and selection index = 7.020. CONCLUSION Thymoquinone is a potential broad-spectrum inhibitor for the treatment of coronavirus infections.
Collapse
Affiliation(s)
- Huan Xu
- New Drug R&D Center, North China Pharmaceutical Corporation, Shijiazhuang, 050015, China.,Shenzhen Bay Laboratories, Institute of Chemical Biology, Shenzhen, 518132, China
| | - Bing Liu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Zhen Xiao
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.,Guangdong Provincial Key Laboratory of Computational Science and Material Design, Shenzhen, 518055, Guangdong, China
| | - Meiling Zhou
- New Drug R&D Center, North China Pharmaceutical Corporation, Shijiazhuang, 050015, China
| | - Lin Ge
- New Drug R&D Center, North China Pharmaceutical Corporation, Shijiazhuang, 050015, China
| | - Fan Jia
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen, 518055, China.,Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanling Liu
- New Drug R&D Center, North China Pharmaceutical Corporation, Shijiazhuang, 050015, China
| | - Hongshan Jin
- Nanjing Gemni Biotechnology Co., Ltd, Nanjing, 210023, China
| | - Xiuliang Zhu
- New Drug R&D Center, North China Pharmaceutical Corporation, Shijiazhuang, 050015, China
| | - Jian Gao
- New Drug R&D Center, North China Pharmaceutical Corporation, Shijiazhuang, 050015, China
| | - Javed Akhtar
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.,Guangdong Provincial Key Laboratory of Computational Science and Material Design, Shenzhen, 518055, Guangdong, China
| | - Bai Xiang
- School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Ke Tan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China.
| | - Guanyu Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China. .,Guangdong Provincial Key Laboratory of Computational Science and Material Design, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
41
|
A single-dose live-attenuated YF17D-vectored SARS-CoV-2 vaccine candidate. Nature 2021; 590:320-325. [PMID: 33260195 DOI: 10.1038/s41586-020-3035-9] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/24/2020] [Indexed: 01/29/2023]
Abstract
The expanding pandemic of coronavirus disease 2019 (COVID-19) requires the development of safe, efficacious and fast-acting vaccines. Several vaccine platforms are being leveraged for a rapid emergency response1. Here we describe the development of a candidate vaccine (YF-S0) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that uses live-attenuated yellow fever 17D (YF17D) vaccine as a vector to express a noncleavable prefusion form of the SARS-CoV-2 spike antigen. We assess vaccine safety, immunogenicity and efficacy in several animal models. YF-S0 has an excellent safety profile and induces high levels of SARS-CoV-2 neutralizing antibodies in hamsters (Mesocricetus auratus), mice (Mus musculus) and cynomolgus macaques (Macaca fascicularis), and-concomitantly-protective immunity against yellow fever virus. Humoral immunity is complemented by a cellular immune response with favourable T helper 1 polarization, as profiled in mice. In a hamster model2 and in macaques, YF-S0 prevents infection with SARS-CoV-2. Moreover, a single dose conferred protection from lung disease in most of the vaccinated hamsters within as little as 10 days. Taken together, the quality of the immune responses triggered and the rapid kinetics by which protective immunity can be attained after a single dose warrant further development of this potent SARS-CoV-2 vaccine candidate.
Collapse
|
42
|
Jackson CB, Zhang L, Farzan M, Choe H. Functional importance of the D614G mutation in the SARS-CoV-2 spike protein. Biochem Biophys Res Commun 2021; 538:108-115. [PMID: 33220921 PMCID: PMC7664360 DOI: 10.1016/j.bbrc.2020.11.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped virus which binds its cellular receptor angiotensin-converting enzyme 2 (ACE2) and enters hosts cells through the action of its spike (S) glycoprotein displayed on the surface of the virion. Compared to the reference strain of SARS-CoV-2, the majority of currently circulating isolates possess an S protein variant characterized by an aspartic acid-to-glycine substitution at amino acid position 614 (D614G). Residue 614 lies outside the receptor binding domain (RBD) and the mutation does not alter the affinity of monomeric S protein for ACE2. However, S(G614), compared to S(D614), mediates more efficient ACE2-mediated transduction of cells by S-pseudotyped vectors and more efficient infection of cells and animals by live SARS-CoV-2. This review summarizes and synthesizes the epidemiological and functional observations of the D614G spike mutation, with focus on the biochemical and cell-biological impact of this mutation and its consequences for S protein function. We further discuss the significance of these recent findings in the context of the current global pandemic.
Collapse
Affiliation(s)
- Cody B Jackson
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.
| | - Lizhou Zhang
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Michael Farzan
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Hyeryun Choe
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| |
Collapse
|
43
|
A stable platform for the production of virus-like particles pseudotyped with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein. Virus Res 2021; 295:198305. [PMID: 33482242 PMCID: PMC7817443 DOI: 10.1016/j.virusres.2021.198305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/31/2022]
Abstract
In this study, we showed that a codon optimized version of the spike (S) protein of SARS-CoV-2 can migrate to the cell membrane. However, efficient production of Moloney murine leukemia (MLV) infectious viral particles was only achieved with stable expression of a shorter S version in C-terminal (ΔS) in MLV Gag-pol expressing cells. As compared to transient transfections, this platform generated viruses with a 1000-fold higher titer. ΔS was 15-times more efficiently incorporated into VLPs as compared to S, and that was not due to steric interference between the cytoplasmic tail and the MLV capsid, as similar differences were also observed with extracellular vesicles. The amount of ΔS incorporated into VLPs released from producer cells was high and estimated at 1.25 μg/mL S2 equivalent (S is comprised of S1 and S2). The resulting VLPs could potentially be used alone or as a boost of other immunization strategies for COVID-19.
Collapse
|
44
|
Condor Capcha JM, Lambert G, Dykxhoorn DM, Salerno AG, Hare JM, Whitt MA, Pahwa S, Jayaweera DT, Shehadeh LA. Generation of SARS-CoV-2 Spike Pseudotyped Virus for Viral Entry and Neutralization Assays: A 1-Week Protocol. Front Cardiovasc Med 2021; 7:618651. [PMID: 33521067 PMCID: PMC7843445 DOI: 10.3389/fcvm.2020.618651] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022] Open
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 coronavirus requires reliable assays for studying viral entry mechanisms which remains poorly understood. This knowledge is important for the development of therapeutic approaches to control SARS-CoV-2 infection by permitting the screening for neutralizing antibodies and other agents that can block infection. This is particularly important for patients who are at high risk for severe outcomes related to COVID-19. The production of pseudotyped viral particles may seem like a daunting task for a non-virology laboratory without experience in the two most commonly used pseudotyping systems, namely retro/lentiviruses and vesicular stomatitis virus (VSV) which lacks the VSV envelope glycoprotein (VSVΔG). By incorporating the most up-to-date knowledge, we have developed a detailed, easy-to-follow novel protocol for producing SARS-CoV-2 spike-bearing pseudovirus using the VSV-ΔG system. We describe the infection assay which uses GFP fluorescence as a measure of infection in a 24-well live imaging system. We present results of our optimization of the system to enhance viral infection levels through the over-expression of human ACE2 receptor and the overexpression of at least one of two proteases - TMPRSS2 or Furin, as well as, supplementation with Poloxamer 407 (P407) and Prostaglandin E2 (PGE2) as adjuvants. We show that the system works efficiently in three unrelated, clinically relevant cell lines: human 293T (renal epithelial) cells, human Calu-3 (lung epithelial) cells, and the non-human primate (African Green Monkey) cell line, Vero-E6 (renal epithelial) cells. In addition, we have used this system to show infection of human induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs). This system is efficient (virus generation, titration, and infection assays can be performed in 1 week), quantitative, inexpensive, and readily scalable for application in drug development and therapeutic screening approaches.
Collapse
Affiliation(s)
- Jose Manuel Condor Capcha
- Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Guerline Lambert
- Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Derek M Dykxhoorn
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Alessandro G Salerno
- Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Joshua M Hare
- Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Michael A Whitt
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Savita Pahwa
- Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Dushyantha T Jayaweera
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Division of Infectious Disease, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Lina A Shehadeh
- Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Peggy and Harold Katz Family Drug Discovery Center, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
45
|
Tsukamoto T, Nakajima N, Sakurai A, Nakajima M, Sakurai E, Sato Y, Takahashi K, Kanno T, Kataoka M, Katano H, Iwata M, Doi Y, Suzuki T. Lung Pathology of Mutually Exclusive Co-infection with SARS-CoV-2 and Streptococcus pneumoniae. Emerg Infect Dis 2021; 27:919-923. [PMID: 33443011 PMCID: PMC7920656 DOI: 10.3201/eid2703.204024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Postmortem lung pathology of a patient in Japan with severe acute respiratory syndrome coronavirus 2 infection showed diffuse alveolar damage as well as bronchopneumonia caused by Streptococcus pneumoniae infection. The distribution of each pathogen and the accompanying histopathology suggested the infections progressed in a mutually exclusive manner within the lung, resulting in fatal respiratory failure.
Collapse
|
46
|
Tani H, Kimura M, Tan L, Yoshida Y, Ozawa T, Kishi H, Fukushi S, Saijo M, Sano K, Suzuki T, Kawasuji H, Ueno A, Miyajima Y, Fukui Y, Sakamaki I, Yamamoto Y, Morinaga Y. Evaluation of SARS-CoV-2 neutralizing antibodies using a vesicular stomatitis virus possessing SARS-CoV-2 spike protein. Virol J 2021; 18:16. [PMID: 33435994 PMCID: PMC7801864 DOI: 10.1186/s12985-021-01490-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/06/2021] [Indexed: 12/21/2022] Open
Abstract
Background SARS-CoV-2 is a novel coronavirus that emerged in 2019 and is now classified in the genus Coronavirus with closely related SARS-CoV. SARS-CoV-2 is highly pathogenic in humans and is classified as a biosafety level (BSL)-3 pathogen, which makes manipulating it relatively difficult due to its infectious nature. Methods To circumvent the need for BSL-3 laboratories, an alternative assay was developed that avoids live virus and instead uses a recombinant VSV expressing luciferase and possesses the full length or truncated spike proteins of SARS-CoV-2. Furthermore, to measure SARS-CoV-2 neutralizing antibodies under BSL2 conditions, a chemiluminescence reduction neutralization test (CRNT) for SARS-CoV-2 was developed. The neutralization values of the serum samples collected from hospitalized patients with COVID-19 or SARS-CoV-2 PCR-negative donors against the pseudotyped virus infection evaluated by the CRNT were compared with antibody titers determined from an enzyme-linked immunosorbent assay (ELISA) or an immunofluorescence assay (IFA). Results The CRNT, which used whole blood collected from hospitalized patients with COVID-19, was also examined. As a result, the inhibition of pseudotyped virus infection was specifically observed in both serum and whole blood and was also correlated with the results of the IFA. Conclusions In conclusion, the CRNT for COVID-19 is a convenient assay system that can be performed in a BSL-2 laboratory with high specificity and sensitivity for evaluating the occurrence of neutralizing antibodies against SARS-CoV-2.
Collapse
Affiliation(s)
- Hideki Tani
- Department of Microbiology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan. .,Department of Virology, Toyama Institute of Health, Toyama, Japan.
| | - Miyuki Kimura
- Department of Microbiology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Long Tan
- Department of Microbiology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Yoshihiro Yoshida
- Department of Microbiology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Tatsuhiko Ozawa
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Shuetsu Fukushi
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kaori Sano
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hitoshi Kawasuji
- Department of Clinical Infectious Diseases, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Akitoshi Ueno
- Department of Clinical Infectious Diseases, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Yuki Miyajima
- Department of Clinical Infectious Diseases, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Yasutaka Fukui
- Department of Clinical Infectious Diseases, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Ippei Sakamaki
- Department of Clinical Infectious Diseases, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Yoshihiro Yamamoto
- Department of Clinical Infectious Diseases, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Yoshitomo Morinaga
- Department of Microbiology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| |
Collapse
|
47
|
Alagawany M, Attia YA, Farag MR, Elnesr SS, Nagadi SA, Shafi ME, Khafaga AF, Ohran H, Alaqil AA, Abd El-Hack ME. The Strategy of Boosting the Immune System Under the COVID-19 Pandemic. Front Vet Sci 2021; 7:570748. [PMID: 33490124 PMCID: PMC7820179 DOI: 10.3389/fvets.2020.570748] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/24/2020] [Indexed: 01/07/2023] Open
Abstract
The novel coronavirus (SARS-CoV-2) infection (COVID-19) has raised considerable concern on the entire planet. On March 11, 2020, COVID-19 was categorized by the World Health Organization (WHO) as a pandemic infection, and by March 18, 2020, it has spread to 146 countries. The first internal defense line against numerous diseases is personalized immunity. Although it cannot be claimed that personalized nutrition will have an immediate impact on a global pandemic, as the nutritional interventions required a long time to induce beneficial outcomes on immunity development, nutritional strategies are still able to clarify and have a beneficial influence on the interplay between physiology and diet, which could make a positive contribution to the condition in the next period. As such, a specific goal for every practitioner is to evaluate different tests to perceive the status of the patient, such as markers of inflammation, insulin regulation, and nutrient status, and to detect possible imbalances or deficiencies. During the process of disease development, the supplementation and addition of different nutrients and nutraceuticals can influence not only the viral replication but also the cellular mechanisms. It is essential to understand that every patient has its individual needs. Even though many nutrients, nutraceuticals, and drugs have beneficial effects on the immune response and can prevent or ameliorate viral infections, it is essential to detect at what stage in COVID-19 progression the patient is at the moment and decide what kind of nutrition intervention is necessary. Furthermore, understanding the pathogenesis of coronavirus infection is critical to make proper recommendations.
Collapse
Affiliation(s)
- Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Youssef A. Attia
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- The Strategic Center to Kingdom Vision Realization, King Abdulaziz University, Jeddah, Saudi Arabia
- Animal and Poultry Production Department, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Shaaban S. Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Sameer A. Nagadi
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Manal E. Shafi
- Department of Biological Sciences, Zoology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asmaa F. Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Husein Ohran
- Department of Physiology, Veterinary Faculty, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Abdulaziz A. Alaqil
- Department of Animal and Fish Production, King Faisal University, Al-Hufof, Saudi Arabia
| | | |
Collapse
|
48
|
Mekkaoui L, Bentley E, Ferrari M, Lamb K, Ward K, Karattil R, Akbar Z, Bughda R, Sillibourne J, Onuoha S, Mattiuzzo G, Takeuchi Y, Pule M. Optimised Method for the Production and Titration of Lentiviral Vectors Pseudotyped with the SARS-CoV-2 Spike. Bio Protoc 2021. [DOI: 10.21769/bioprotoc.4034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
49
|
A single dose of recombinant VSV-∆G-spike vaccine provides protection against SARS-CoV-2 challenge. Nat Commun 2020; 11:6402. [PMID: 33328475 PMCID: PMC7745033 DOI: 10.1038/s41467-020-20228-7] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 imposes an urgent need for rapid development of an efficient and cost-effective vaccine, suitable for mass immunization. Here, we show the development of a replication competent recombinant VSV-∆G-spike vaccine, in which the glycoprotein of VSV is replaced by the spike protein of SARS-CoV-2. In-vitro characterization of this vaccine indicates the expression and presentation of the spike protein on the viral membrane with antigenic similarity to SARS-CoV-2. A golden Syrian hamster in-vivo model for COVID-19 is implemented. We show that a single-dose vaccination results in a rapid and potent induction of SARS-CoV-2 neutralizing antibodies. Importantly, vaccination protects hamsters against SARS-CoV-2 challenge, as demonstrated by the abrogation of body weight loss, and alleviation of the extensive tissue damage and viral loads in lungs and nasal turbinates. Taken together, we suggest the recombinant VSV-∆G-spike as a safe, efficacious and protective vaccine against SARS-CoV-2. Here, the authors generate a replication-competent VSV based vaccine expressing SARS-CoV-2 spike protein and show protection in the hamster model with one dose. Analysis of the antibody response in mice shows induction of neutralizing antibodies and suggests a desirable Th1-biased response to the vaccine.
Collapse
|
50
|
Xiong HL, Wu YT, Cao JL, Yang R, Liu YX, Ma J, Qiao XY, Yao XY, Zhang BH, Zhang YL, Hou WH, Shi Y, Xu JJ, Zhang L, Wang SJ, Fu BR, Yang T, Ge SX, Zhang J, Yuan Q, Huang BY, Li ZY, Zhang TY, Xia NS. Robust neutralization assay based on SARS-CoV-2 S-protein-bearing vesicular stomatitis virus (VSV) pseudovirus and ACE2-overexpressing BHK21 cells. Emerg Microbes Infect 2020; 9:2105-2113. [PMID: 32893735 PMCID: PMC7534347 DOI: 10.1080/22221751.2020.1815589] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022]
Abstract
The global pandemic of coronavirus disease 2019 (COVID-19) is a disaster for human society. A convenient and reliable neutralization assay is very important for the development of vaccines and novel drugs. In this study, a G protein-deficient vesicular stomatitis virus (VSVdG) bearing a truncated spike protein (S with C-terminal 18 amino acid truncation) was compared to that bearing the full-length spike protein of SARS-CoV-2 and showed much higher efficiency. A neutralization assay was established based on VSV-SARS-CoV-2-Sdel18 pseudovirus and hACE2-overexpressing BHK21 cells (BHK21-hACE2 cells). The experimental results can be obtained by automatically counting the number of EGFP-positive cells at 12 h after infection, making the assay convenient and high-throughput. The serum neutralizing titer measured by the VSV-SARS-CoV-2-Sdel18 pseudovirus assay has a good correlation with that measured by the wild type SARS-CoV-2 assay. Seven neutralizing monoclonal antibodies targeting the receptor binding domain (RBD) of the SARS-CoV-2 S protein were obtained. This efficient and reliable pseudovirus assay model could facilitate the development of new drugs and vaccines.
Collapse
Affiliation(s)
- Hua-Long Xiong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Yang-Tao Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Jia-Li Cao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Ren Yang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, People’s Republic of China
| | - Ying-Xia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Jian Ma
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Xiao-Yang Qiao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Xiang-Yang Yao
- The First Hospital of Xiamen University, Xiamen, People’s Republic of China
| | - Bao-Hui Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Ya-Li Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Wang-Heng Hou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Yang Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Jing-Jing Xu
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fuzhou, People’s Republic of China
| | - Liang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Shao-Juan Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Bao-Rong Fu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Ting Yang
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fuzhou, People’s Republic of China
| | - Sheng-Xiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Bao-Ying Huang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, People’s Republic of China
| | - Zhi-Yong Li
- The First Hospital of Xiamen University, Xiamen, People’s Republic of China
| | - Tian-Ying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| |
Collapse
|