1
|
Lin Y, Liu G, Liu P, Chen Q, Guo X, Lu X, Cai Z, Sun L, Liu J, Chen K, Liu G, Tian J, Liang C. Border-like cell formation mediated by SgPG1 confers aluminum resistance in Stylosanthes guianensis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1605-1624. [PMID: 39453443 DOI: 10.1111/tpj.17073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
Stylosanthes is an important forage legume in tropical areas with strong resistance to aluminum (Al) toxicity, though knowledge of mechanisms underlying this resistance remains fragmentary. We found that border-like cells (BLCs) were constitutively produced surrounding the root tips of all 54 examined Stylosanthes guianensis genotypes, but not the Stylosanthes viscose genotype TF0140. In genotypic comparisons under Al conditions, the S. guianensis genotype RY#2 retained significantly more Al in BLCs and thereby showed higher relative root growth than TF0140. Formation of BLCs accompanied changes in cell wall pectin epitopes and differential expression of genes involved in pectin metabolism, including a polygalacturonase (SgPG1). The expression pattern of SgPG1 was consistent with the formation of BLCs in both RY#2 and TF0140. SgPG1 was localized in cell walls and exhibited high activities mediating demethyl-esterified homogalacturonan degradation. Overexpressing SgPG1 changed cell wall pectin epitopes, enhanced BLCs production, and Al resistance in both Arabidopsis and Stylosanthes hairy roots. Furthermore, combining protein-DNA binding assays in vitro and in vivo, a bHLH transcription factor SgbHLH19 was demonstrated to be the upstream regulator of SgPG1. Our study demonstrates that S. guianensis Al resistance mainly relies on BLCs, whose formation involves cell wall pectin epitope modification by SgPG1.
Collapse
Affiliation(s)
- Yan Lin
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Guoxuan Liu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Pandao Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agriculture Sciences, Haikou, 571101, P. R. China
| | - Qianqian Chen
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Xueqiong Guo
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Xing Lu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Zefei Cai
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Lili Sun
- Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Jiping Liu
- Robert Holley Center, US Department of Agriculture, Agricultural Research Service, Cornell University, Ithaca, New York, 14853, USA
| | - Kang Chen
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Guodao Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agriculture Sciences, Haikou, 571101, P. R. China
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| |
Collapse
|
2
|
He S, Li L, Lv M, Wang R, Wang L, Yu S, Gao Z, Li X. PGPR: Key to Enhancing Crop Productivity and Achieving Sustainable Agriculture. Curr Microbiol 2024; 81:377. [PMID: 39325205 DOI: 10.1007/s00284-024-03893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
Due to the burgeoning global population and the advancement of economies, coupled with human activities leading to the degradation of soil ecosystems and the depletion of non-renewable resources, concerns have arisen regarding food security and human survival. In order to address these adverse impacts, the spotlight has been cast upon plant growth-promoting rhizobacteria (PGPR), driven by a strong environmental consciousness. PGPR possesses the capability to foster plant growth and amplify crop yield through both direct and indirect mechanisms. By expediting plant growth, augmenting nutrient assimilation, heightening crop yield and caliber, and fortifying stress resilience, the application of PGPR can mitigate reliance on chemical fertilizers and pesticides while diminishing ecological perils. This exposition delves into the function of PGPR in modulating plant hormones, fostering nutrient solubilization, and fortifying plant resistance against biotic and abiotic stressors. This review offers valuable insights into the intricate interplay between PGPR and plants, elucidating uncertainties ripe for further investigation. Profound comprehension and judicious utilization of PGPR are indispensable for attaining sustainable agricultural progression, making substantial contributions to resolving the conundrums of global food security and environmental conservation.
Collapse
Affiliation(s)
- Shidong He
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Lingli Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Minghao Lv
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Rongxin Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Lujun Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Shaowei Yu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Zheng Gao
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiang Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
3
|
Xun W, Liu Y, Ma A, Yan H, Miao Y, Shao J, Zhang N, Xu Z, Shen Q, Zhang R. Dissection of rhizosphere microbiome and exploiting strategies for sustainable agriculture. THE NEW PHYTOLOGIST 2024; 242:2401-2410. [PMID: 38494698 DOI: 10.1111/nph.19697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
The rhizosphere microbiome plays critical roles in plant growth and provides promising solutions for sustainable agriculture. While the rhizosphere microbiome frequently fluctuates with the soil environment, recent studies have demonstrated that a small proportion of the microbiome is consistently assembled in the rhizosphere of a specific plant genotype regardless of the soil condition, which is determined by host genetics. Based on these breakthroughs, which involved exploiting the plant-beneficial function of the rhizosphere microbiome, we propose to divide the rhizosphere microbiome into environment-dominated and plant genetic-dominated components based on their different assembly mechanisms. Subsequently, two strategies to explore the different rhizosphere microbiome components for agricultural production are suggested, that is, the precise management of the environment-dominated rhizosphere microbiome by agronomic practices, and the elucidation of the plant genetic basis of the plant genetic-dominated rhizosphere microbiome for breeding microbiome-assisted crop varieties. We finally present the major challenges that need to be overcome to implement strategies for modulating these two components of the rhizosphere microbiome.
Collapse
Affiliation(s)
- Weibing Xun
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Aiyuan Ma
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - He Yan
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Youzhi Miao
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiahui Shao
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nan Zhang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
4
|
Zhuang Y, Wang H, Tan F, Wu B, Liu L, Qin H, Yang Z, He M. Rhizosphere metabolic cross-talk from plant-soil-microbe tapping into agricultural sustainability: Current advance and perspectives. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108619. [PMID: 38604013 DOI: 10.1016/j.plaphy.2024.108619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Rhizosphere interactions from plant-soil-microbiome occur dynamically all the time in the "black microzone" underground, where we can't see intuitively. Rhizosphere metabolites including root exudates and microbial metabolites act as various chemical signalings involving in rhizosphere interactions, and play vital roles on plant growth, development, disease suppression and resistance to stress conditions as well as proper soil health. Although rhizosphere metabolites are a mixture from plant roots and soil microbes, they often are discussed alone. As a rapid appearance of various omics platforms and analytical methods, it offers possibilities and opportunities for exploring rhizosphere interactions in unprecedented breadth and depth. However, our comprehensive understanding about the fine-tuning mechanisms of rhizosphere interactions mediated by these chemical compounds still remain clear. Thus, this review summarizes recent advances systemically including the features of rhizosphere metabolites and their effects on rhizosphere ecosystem, and looks forward to the future research perspectives, which contributes to facilitating better understanding of biochemical communications belowground and helping identify novel rhizosphere metabolites. We also address challenges for promoting the understanding about the roles of rhizosphere metabolites in different environmental stresses.
Collapse
Affiliation(s)
- Yong Zhuang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China.
| | - Hao Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China
| | - Furong Tan
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China
| | - Bo Wu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China
| | - Linpei Liu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China
| | - Han Qin
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China
| | - ZhiJuan Yang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China
| | - Mingxiong He
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China.
| |
Collapse
|
5
|
Cisse EHM, Jiang BH, Yin LY, Miao LF, Li DD, Zhou JJ, Yang F. Physio-biochemical and metabolomic responses of the woody plant Dalbergia odorifera to salinity and waterlogging. BMC PLANT BIOLOGY 2024; 24:49. [PMID: 38216904 PMCID: PMC10787392 DOI: 10.1186/s12870-024-04721-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/01/2024] [Indexed: 01/14/2024]
Abstract
BACKGROUND Trees have developed a broad spectrum of molecular mechanisms to counteract oxidative stress. Secondary metabolites via phenolic compounds emblematized the hidden bridge among plant kingdom, human health, and oxidative stress. Although studies have demonstrated that abiotic stresses can increase the production of medicinal compounds in plants, research comparing the efficiency of these stresses still needs to be explored. Thus, the present research paper provided an exhaustive comparative metabolomic study in Dalbergia odorifera under salinity (ST) and waterlogging (WL). RESULTS High ST reduced D. odorifera's fresh biomass compared to WL. While WL only slightly affected leaf and vein size, ST had a significant negative impact. ST also caused more significant damage to water status and leaflet anatomy than WL. As a result, WL-treated seedlings exhibited better photosynthesis and an up-regulation of nonenzymatic pathways involved in scavenging reactive oxygen species. The metabolomic and physiological responses of D. odorifera under WL and salinity ST stress revealed an accumulation of secondary metabolites by the less aggressive stress (WL) to counterbalance the oxidative stress. Under WL, more metabolites were more regulated compared to ST. ST significantly altered the metabolite profile in D. odorifera leaflets, indicating its sensitivity to salinity. WL synthesized more metabolites involved in phenylpropanoid, flavone, flavonol, flavonoid, and isoflavonoid pathways than ST. Moreover, the down-regulation of L-phenylalanine correlated with increased p-coumarate, caffeate, and ferulate associated with better cell homeostasis and leaf anatomical indexes under WL. CONCLUSIONS From a pharmacological and medicinal perspective, WL improved larger phenolics with therapeutic values compared to ST. Therefore, the data showed evidence of the crucial role of medical tree species' adaptability on ROS detoxification under environmental stresses that led to a significant accumulation of secondary metabolites with therapeutic value.
Collapse
Affiliation(s)
- El- Hadji Malick Cisse
- School of Ecological and Environmental Sciences, Hainan University, Haikou, 570228, China
- School of Life Sciences, Hainan University, Haikou, 570228, China
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environmental Restoration Engineering of Hainan Province, Haikou, 570228, China
| | | | - Li-Yan Yin
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Ling-Feng Miao
- School of Ecological and Environmental Sciences, Hainan University, Haikou, 570228, China
- School of Plant Protection, Hainan University, Haikou, 570228, China
| | - Da-Dong Li
- School of Ecological and Environmental Sciences, Hainan University, Haikou, 570228, China
- School of Life Sciences, Hainan University, Haikou, 570228, China
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environmental Restoration Engineering of Hainan Province, Haikou, 570228, China
| | - Jing-Jing Zhou
- School of Ecological and Environmental Sciences, Hainan University, Haikou, 570228, China
| | - Fan Yang
- School of Ecological and Environmental Sciences, Hainan University, Haikou, 570228, China.
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environmental Restoration Engineering of Hainan Province, Haikou, 570228, China.
| |
Collapse
|
6
|
Bhattacharyya A, Mavrodi O, Bhowmik N, Weller D, Thomashow L, Mavrodi D. Bacterial biofilms as an essential component of rhizosphere plant-microbe interactions. METHODS IN MICROBIOLOGY 2023; 53:3-48. [PMID: 38415193 PMCID: PMC10898258 DOI: 10.1016/bs.mim.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Affiliation(s)
- Ankita Bhattacharyya
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Olga Mavrodi
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Niladri Bhowmik
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - David Weller
- USDA-ARS Wheat Health, Genetics and Quality Research Unit, Pullman, WA, United States
| | - Linda Thomashow
- USDA-ARS Wheat Health, Genetics and Quality Research Unit, Pullman, WA, United States
| | - Dmitri Mavrodi
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
7
|
Zhang NN, Suo BY, Yao LL, Ding YX, Zhang JH, Wei GH, Shangguan ZP, Chen J. H 2 S works synergistically with rhizobia to modify photosynthetic carbon assimilation and metabolism in nitrogen-deficient soybeans. PLANT, CELL & ENVIRONMENT 2023. [PMID: 37303272 DOI: 10.1111/pce.14643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
Hydrogen sulfide (H2 S) performs a crucial role in plant development and abiotic stress responses by interacting with other signalling molecules. However, the synergistic involvement of H2 S and rhizobia in photosynthetic carbon (C) metabolism in soybean (Glycine max) under nitrogen (N) deficiency has been largely overlooked. Therefore, we scrutinised how H2 S drives photosynthetic C fixation, utilisation, and accumulation in soybean-rhizobia symbiotic systems. When soybeans encountered N deficiency, organ growth, grain output, and nodule N-fixation performance were considerably improved owing to H2 S and rhizobia. Furthermore, H2 S collaborated with rhizobia to actively govern assimilation product generation and transport, modulating C allocation, utilisation, and accumulation. Additionally, H2 S and rhizobia profoundly affected critical enzyme activities and coding gene expressions implicated in C fixation, transport, and metabolism. Furthermore, we observed substantial effects of H2 S and rhizobia on primary metabolism and C-N coupled metabolic networks in essential organs via C metabolic regulation. Consequently, H2 S synergy with rhizobia inspired complex primary metabolism and C-N coupled metabolic pathways by directing the expression of key enzymes and related coding genes involved in C metabolism, stimulating effective C fixation, transport, and distribution, and ultimately improving N fixation, growth, and grain yield in soybeans.
Collapse
Affiliation(s)
- Ni-Na Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
| | - Bing-Yu Suo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Lin-Lin Yao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu-Xin Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Jian-Hua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Ge-Hong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhou-Ping Shangguan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
| | - Juan Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
8
|
Amin N, Ahmad N, Khalifa MAS, Du Y, Mandozai A, Khattak AN, Piwu W. Identification and Molecular Characterization of RWP-RK Transcription Factors in Soybean. Genes (Basel) 2023; 14:369. [PMID: 36833296 PMCID: PMC9956977 DOI: 10.3390/genes14020369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
The RWP-RK is a small family of plant-specific transcription factors that are mainly involved in nitrate starvation responses, gametogenesis, and root nodulation. To date, the molecular mechanisms underpinning nitrate-regulated gene expression in many plant species have been extensively studied. However, the regulation of nodulation-specific NIN proteins during nodulation and rhizobial infection under nitrogen starvation in soybean still remain unclear. Here, we investigated the genome-wide identification of RWP-RK transcription factors and their essential role in nitrate-inducible and stress-responsive gene expression in soybean. In total, 28 RWP-RK genes were identified from the soybean genome, which were unevenly distributed on 20 chromosomes from 5 distinct groups during phylogeny classification. The conserved topology of RWP-RK protein motifs, cis-acting elements, and functional annotation has led to their potential as key regulators during plant growth, development, and diverse stress responses. The RNA-seq data revealed that the up-regulation of GmRWP-RK genes in the nodules indicated that these genes might play crucial roles during root nodulation in soybean. Furthermore, qRT-PCR analysis revealed that most GmRWP-RK genes under Phytophthora sojae infection and diverse environmental conditions (such as heat, nitrogen, and salt) were significantly induced, thus opening a new window of possibilities into their regulatory roles in adaptation mechanisms that allow soybean to tolerate biotic and abiotic stress. In addition, the dual luciferase assay indicated that GmRWP-RK1 and GmRWP-RK2 efficiently bind to the promoters of GmYUC2, GmSPL9, and GmNIN, highlighting their possible involvement in nodule formation. Together, our findings provide novel insights into the functional role of the RWP-RK family during defense responses and root nodulation in soybean.
Collapse
Affiliation(s)
- Nooral Amin
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mohamed A. S. Khalifa
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
- Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Yeyao Du
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Ajmal Mandozai
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Aimal Nawaz Khattak
- Institute of Crop Science Chinese Academy of Agriculture Sciences, Beijing 100000, China
| | - Wang Piwu
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
9
|
Ghatak A, Chaturvedi P, Waldherr S, Subbarao GV, Weckwerth W. PANOMICS at the interface of root-soil microbiome and BNI. TRENDS IN PLANT SCIENCE 2023; 28:106-122. [PMID: 36229336 DOI: 10.1016/j.tplants.2022.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Nitrification and denitrification are soil biological processes responsible for large nitrogen losses from agricultural soils and generation of the greenhouse gas (GHG) N2O. Increased use of nitrogen fertilizer and the resulting decline in nitrogen use efficiency (NUE) are a major concern in agroecosystems. This nitrogen cycle in the rhizosphere is influenced by an intimate soil microbiome-root exudate interaction and biological nitrification inhibition (BNI). A PANOMICS approach can dissect these processes. We review breakthroughs in this area, including identification and characterization of root exudates by metabolomics and proteomics, which facilitate better understanding of belowground chemical communications and help identify new biological nitrification inhibitors (BNIs). We also address challenges for advancing the understanding of the role root exudates play in biotic and abiotic stresses.
Collapse
Affiliation(s)
- Arindam Ghatak
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Palak Chaturvedi
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
| | - Steffen Waldherr
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Guntur Venkata Subbarao
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Ibaraki 305-8686, Japan
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
| |
Collapse
|
10
|
Iven H, Walker TWN, Anthony M. Biotic Interactions in Soil are Underestimated Drivers of Microbial Carbon Use Efficiency. Curr Microbiol 2022; 80:13. [PMID: 36459292 PMCID: PMC9718865 DOI: 10.1007/s00284-022-02979-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 04/05/2022] [Indexed: 12/05/2022]
Abstract
Microbial carbon use efficiency (CUE)-the balance between microbial growth and respiration-strongly impacts microbial mediated soil carbon storage and is sensitive to many well-studied abiotic environmental factors. However, surprisingly, little work has examined how biotic interactions in soil may impact CUE. Here, we review the theoretical and empirical lines of evidence exploring how biotic interactions affect CUE through the lens of life history strategies. Fundamentally, the CUE of a microbial population is constrained by population density and carrying capacity, which, when reached, causes species to grow more quickly and less efficiently. When microbes engage in interspecific competition, they accelerate growth rates to acquire limited resources and release secondary chemicals toxic to competitors. Such processes are not anabolic and thus constrain CUE. In turn, antagonists may activate one of a number of stress responses that also do not involve biomass production, potentially further reducing CUE. In contrast, facilitation can increase CUE by expanding species realized niches, mitigating environmental stress and reducing production costs of extracellular enzymes. Microbial interactions at higher trophic levels also influence CUE. For instance, predation on microbes can positively or negatively impact CUE by changing microbial density and the outcomes of interspecific competition. Finally, we discuss how plants select for more or less efficient microbes under different contexts. In short, this review demonstrates the potential for biotic interactions to be a strong regulator of microbial CUE and additionally provides a blueprint for future research to address key knowledge gaps of ecological and applied importance for carbon sequestration.
Collapse
Affiliation(s)
- Hélène Iven
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zurich, 8006, Zurich, Switzerland.
| | - Tom W N Walker
- Institute of Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, 8006, Zurich, Switzerland
| | - Mark Anthony
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, 8006, Zurich, Switzerland
| |
Collapse
|
11
|
Yan D, Tajima H, Cline LC, Fong RY, Ottaviani JI, Shapiro H, Blumwald E. Genetic modification of flavone biosynthesis in rice enhances biofilm formation of soil diazotrophic bacteria and biological nitrogen fixation. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2135-2148. [PMID: 35869808 PMCID: PMC9616522 DOI: 10.1111/pbi.13894] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 05/06/2023]
Abstract
Improving biological nitrogen fixation (BNF) in cereal crops is a long-sought objective; however, no successful modification of cereal crops showing increased BNF has been reported. Here, we described a novel approach in which rice plants were modified to increase the production of compounds that stimulated biofilm formation in soil diazotrophic bacteria, promoted bacterial colonization of plant tissues and improved BNF with increased grain yield at limiting soil nitrogen contents. We first used a chemical screening to identify plant-produced compounds that induced biofilm formation in nitrogen-fixing bacteria and demonstrated that apigenin and other flavones induced BNF. We then used CRISPR-based gene editing targeting apigenin breakdown in rice, increasing plant apigenin contents and apigenin root exudation. When grown at limiting soil nitrogen conditions, modified rice plants displayed increased grain yield. Biofilm production also modified the root microbiome structure, favouring the enrichment of diazotrophic bacteria recruitment. Our results support the manipulation of the flavone biosynthetic pathway as a feasible strategy for the induction of biological nitrogen fixation in cereals and a reduction in the use of inorganic nitrogen fertilizers.
Collapse
Affiliation(s)
- Dawei Yan
- Department of Plant SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | - Hiromi Tajima
- Department of Plant SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | | | - Reedmond Y. Fong
- Department of NutritionUniversity of CaliforniaDavisCaliforniaUSA
| | - Javier I. Ottaviani
- Department of NutritionUniversity of CaliforniaDavisCaliforniaUSA
- Mars Inc.McLeanVirginiaUSA
| | | | - Eduardo Blumwald
- Department of Plant SciencesUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
12
|
Ganesh A, Shukla V, Mohapatra A, George AP, Bhukya DPN, Das KK, Kola VSR, Suresh A, Ramireddy E. Root Cap to Soil Interface: A Driving Force Toward Plant Adaptation and Development. PLANT & CELL PHYSIOLOGY 2022; 63:1038-1051. [PMID: 35662353 DOI: 10.1093/pcp/pcac078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/05/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Land plants have developed robust roots to grow in diverse soil ecosystems. The distal end of the root tip has a specialized organ called the 'root cap'. The root cap assists the roots in penetrating the ground, absorbing water and minerals, avoiding heavy metals and regulating the rhizosphere microbiota. Furthermore, root-cap-derived auxin governs the lateral root patterning and directs root growth under varying soil conditions. The root cap formation is hypothesized as one of the key innovations during root evolution. Morphologically diversified root caps in early land plant lineage and later in angiosperms aid in improving the adaptation of roots and, thereby, plants in diverse soil environments. This review article presents a retrospective view of the root cap's important morphological and physiological characteristics for the root-soil interaction and their response toward various abiotic and biotic stimuli. Recent single-cell RNAseq data shed light on root cap cell-type-enriched genes. We compiled root cap cell-type-enriched genes from Arabidopsis, rice, maize and tomato and analyzed their transcription factor (TF) binding site enrichment. Further, the putative gene regulatory networks derived from root-cap-enriched genes and their TF regulators highlight the species-specific biological functions of root cap genes across the four plant species.
Collapse
Affiliation(s)
- Alagarasan Ganesh
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Vishnu Shukla
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Ankita Mohapatra
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Abin Panackal George
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Durga Prasad Naik Bhukya
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Krishna Kodappully Das
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Vijaya Sudhakara Rao Kola
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Aparna Suresh
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Eswarayya Ramireddy
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| |
Collapse
|
13
|
Zhao Y, Cartabia A, Lalaymia I, Declerck S. Arbuscular mycorrhizal fungi and production of secondary metabolites in medicinal plants. MYCORRHIZA 2022; 32:221-256. [PMID: 35556179 PMCID: PMC9184413 DOI: 10.1007/s00572-022-01079-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/28/2022] [Indexed: 05/27/2023]
Abstract
Medicinal plants are an important source of therapeutic compounds used in the treatment of many diseases since ancient times. Interestingly, they form associations with numerous microorganisms developing as endophytes or symbionts in different parts of the plants. Within the soil, arbuscular mycorrhizal fungi (AMF) are the most prevalent symbiotic microorganisms forming associations with more than 70% of vascular plants. In the last decade, a number of studies have reported the positive effects of AMF on improving the production and accumulation of important active compounds in medicinal plants.In this work, we reviewed the literature on the effects of AMF on the production of secondary metabolites in medicinal plants. The major findings are as follows: AMF impact the production of secondary metabolites either directly by increasing plant biomass or indirectly by stimulating secondary metabolite biosynthetic pathways. The magnitude of the impact differs depending on the plant genotype, the AMF strain, and the environmental context (e.g., light, time of harvesting). Different methods of cultivation are used for the production of secondary metabolites by medicinal plants (e.g., greenhouse, aeroponics, hydroponics, in vitro and hairy root cultures) which also are compatible with AMF. In conclusion, the inoculation of medicinal plants with AMF is a real avenue for increasing the quantity and quality of secondary metabolites of pharmacological, medical, and cosmetic interest.
Collapse
Affiliation(s)
- YanYan Zhao
- Université catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Annalisa Cartabia
- Université catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Ismahen Lalaymia
- Université catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Stéphane Declerck
- Université catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
14
|
Zhang C, Yu Z, Zhang M, Li X, Wang M, Li L, Li X, Ding Z, Tian H. Serratia marcescens PLR enhances lateral root formation through supplying PLR-derived auxin and enhancing auxin biosynthesis in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3711-3725. [PMID: 35196372 DOI: 10.1093/jxb/erac074] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Plant growth promoting rhizobacteria (PGPR) refer to bacteria that colonize the rhizosphere and contribute to plant growth or stress tolerance. To further understand the molecular mechanism by which PGPR exhibit symbiosis with plants, we performed a high-throughput single colony screening from the rhizosphere, and uncovered a bacterium (named promoting lateral root, PLR) that significantly promotes Arabidopsis lateral root formation. By 16S rDNA sequencing, PLR was identified as a novel sub-species of Serratia marcescens. RNA-seq analysis of Arabidopsis integrated with phenotypic verification of auxin signalling mutants demonstrated that the promoting effect of PLR on lateral root formation is dependent on auxin signalling. Furthermore, PLR enhanced tryptophan-dependent indole-3-acetic acid (IAA) synthesis by inducing multiple auxin biosynthesis genes in Arabidopsis. Genome-wide sequencing of PLR integrated with the identification of IAA and its precursors in PLR exudates showed that tryptophan treatment significantly enhanced the ability of PLR to produce IAA and its precursors. Interestingly, PLR induced the expression of multiple nutrient (N, P, K, S) transporter genes in Arabidopsis in an auxin-independent manner. This study provides evidence of how PLR enhances plant growth through fine-tuning auxin biosynthesis and signalling in Arabidopsis, implying a potential application of PLR in crop yield improvement through accelerating root development.
Collapse
Affiliation(s)
- Chunlei Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
| | - Zipeng Yu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Mengyue Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiaoxuan Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Mingjing Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Lixin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Xugang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Huiyu Tian
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
15
|
Wang L, Rengel Z, Zhang K, Jin K, Lyu Y, Zhang L, Cheng L, Zhang F, Shen J. Ensuring future food security and resource sustainability: insights into the rhizosphere. iScience 2022; 25:104168. [PMID: 35434553 PMCID: PMC9010633 DOI: 10.1016/j.isci.2022.104168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Feeding the world's growing population requires continuously increasing crop yields with less fertilizers and agrochemicals on limited land. Focusing on plant belowground traits, especially root-soil-microbe interactions, holds a great promise for overcoming this challenge. The belowground root-soil-microbe interactions are complex and involve a range of physical, chemical, and biological processes that influence nutrient-use efficiency, plant growth and health. Understanding, predicting, and manipulating these rhizosphere processes will enable us to harness the relevant interactions to improve plant productivity and nutrient-use efficiency. Here, we review the recent progress and challenges in root-soil-microbe interactions. We also highlight how root-soil-microbe interactions could be manipulated to ensure food security and resource sustainability in a changing global climate, with an emphasis on reducing our dependence on fertilizers and agrochemicals.
Collapse
Affiliation(s)
- Liyang Wang
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, PR China
| | - Zed Rengel
- Soil Science & Plant Nutrition, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- Institute for Adriatic Crops and Karst Reclamation, Split 21000, Croatia
| | - Kai Zhang
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, PR China
| | - Kemo Jin
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, PR China
| | - Yang Lyu
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, PR China
| | - Lin Zhang
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, PR China
| | - Lingyun Cheng
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, PR China
| | - Fusuo Zhang
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, PR China
| | - Jianbo Shen
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
16
|
Rodríguez-Esperón MC, Eastman G, Sandes L, Garabato F, Eastman I, Iriarte A, Fabiano E, Sotelo-Silveira JR, Platero R. Genomics and transcriptomics insights into luteolin effects on the beta-rhizobial strain Cupriavidus necator UYPR2.512. Environ Microbiol 2021; 24:240-264. [PMID: 34811861 DOI: 10.1111/1462-2920.15845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Abstract
Cupriavidus necator UYPR2.512 is a rhizobial strain that belongs to the Beta-subclass of proteobacteria, able to establish successful symbiosis with Mimosoid legumes. The initial steps of rhizobium-legumes symbioses involve the reciprocal recognition by chemical signals, being luteolin one of the molecules involved. However, there is a lack of information on the effect of luteolin in beta-rhizobia. In this work, we used long-read sequencing to complete the genome of UYPR2.512 providing evidence for the existence of four closed circular replicons. We used an RNA-Seq approach to analyse the response of UYPR2.512 to luteolin. One hundred and forty-five genes were differentially expressed, with similar numbers of downregulated and upregulated genes. Most repressed genes were mapped to the main chromosome, while the upregulated genes were overrepresented among pCne512e, containing the symbiotic genes. Induced genes included the nod operon and genes implicated in exopolysaccharides and flagellar biosynthesis. We identified many genes involved in iron, copper and other heavy metals metabolism. Among repressed genes, we identified genes involved in basal carbon and nitrogen metabolism. Our results suggest that in response to luteolin, C. necator strain UYPR2.512 reshapes its metabolism in order to be prepared for the forthcoming symbiotic interaction.
Collapse
Affiliation(s)
- M C Rodríguez-Esperón
- Laboratorio de Microbiología Ambiental, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - G Eastman
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - L Sandes
- Laboratorio de Microbiología Ambiental, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - F Garabato
- Laboratorio de Microbiología Ambiental, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - I Eastman
- Laboratorio de Microbiología Ambiental, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - A Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Instituto de Higiene, Montevideo, Uruguay
| | - E Fabiano
- Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - J R Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - R Platero
- Laboratorio de Microbiología Ambiental, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
17
|
Liu H, Sun H, Bao L, Han S, Hui T, Zhang R, Zhang M, Su C, Qian Y, Jiao F. Secondary Metabolism and Hormone Response Reveal the Molecular Mechanism of Triploid Mulberry ( Morus Alba L.) Trees Against Drought. FRONTIERS IN PLANT SCIENCE 2021; 12:720452. [PMID: 34691101 PMCID: PMC8528201 DOI: 10.3389/fpls.2021.720452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
The improvement of a plant's tolerance to drought is a major endeavor in agriculture. Polyploid plants often exhibit enhanced stress tolerance relative to their diploid progenitor, but the matching stress tolerance is still little understood. Own-rooted stem cuttings of mulberry (Morus alba L.) cultivar Shinichinose (2n = 2x = 28) and Shaansang-305 (2n = 3x = 42) were used in this study, of which the latter (triploid) has more production and application purposes. The responses of triploid Shaansang-305 and diploid progenitor ShinIchinose under drought stress were compared through an investigation of their physiological traits, RNA-seq, and secondary metabolome analysis. The results showed that the triploid exhibited an augmented abscisic acid (ABA) content and a better stress tolerance phenotype under severe drought stress. Further, in the triploid plant some genes (TSPO, NCED3, and LOC21398866) and ATG gene related to ABA signaling showed significantly upregulated expression. Interestingly, the triploid accumulated higher levels of RWC and SOD activity, as well as more wax on the leaf surface, but with less reductive flavonoid than in diploid. Our results suggest triploid plants may better adapt to with drought events. Furthermore, the flavonoid metabolism involved in drought resistance identified here may be of great value to medicinal usage of mulberry. The findings presented here could have substantial implications for future studies of crop breeding.
Collapse
Affiliation(s)
- Hui Liu
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Hongmei Sun
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Lijun Bao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
- Shaanxi Key Laboratory of Sericulture, Ankang University, Ankang, China
| | - Shuhua Han
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Tian Hui
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Rui Zhang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Minjuan Zhang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Chao Su
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Yonghua Qian
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Feng Jiao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| |
Collapse
|
18
|
A Medicago truncatula Metabolite Atlas Enables the Visualization of Differential Accumulation of Metabolites in Root Tissues. Metabolites 2021; 11:metabo11040238. [PMID: 33924579 PMCID: PMC8068785 DOI: 10.3390/metabo11040238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 11/17/2022] Open
Abstract
Plant roots are composed of many differentiated tissue types, with each tissue exhibiting differential quantitative and qualitative accumulation of metabolites. The large-scale nontargeted metabolite profiles of these differentiated tissues are complex, which complicates the interpretation and development of hypotheses relative to the biological roles of differentially localized metabolites. Thus, we created a data visualization tool to aid in the visualization and understanding of differential metabolite accumulations in Medicago truncatula roots. This was achieved through the development of the Medicago truncatula Metabolite Atlas based upon an adaptation of the Arabidopsis Electronic Fluorescent Pictograph (eFP) Browser. Medicago truncatula roots were dissected into border cells, root cap, elongation zone, mature root, and root secretions. Each tissue was then analyzed by UHPLC-QTOF-MS and GC-Q-MS. Data were uploaded into a MySQL database and displayed in the Medicago truncatula Metabolite Atlas. The data revealed unique differential spatial localization of many metabolites, some of which are discussed here. Ultimately, the Medicago truncatula Metabolite Atlas compiles metabolite data into a singular, useful, and publicly available web-based tool that enables the visualization and understanding of differential metabolite accumulation and spatial localization.
Collapse
|
19
|
Nardi P, Laanbroek HJ, Nicol GW, Renella G, Cardinale M, Pietramellara G, Weckwerth W, Trinchera A, Ghatak A, Nannipieri P. Biological nitrification inhibition in the rhizosphere: determining interactions and impact on microbially mediated processes and potential applications. FEMS Microbiol Rev 2021; 44:874-908. [PMID: 32785584 DOI: 10.1093/femsre/fuaa037] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Nitrification is the microbial conversion of reduced forms of nitrogen (N) to nitrate (NO3-), and in fertilized soils it can lead to substantial N losses via NO3- leaching or nitrous oxide (N2O) production. To limit such problems, synthetic nitrification inhibitors have been applied but their performance differs between soils. In recent years, there has been an increasing interest in the occurrence of biological nitrification inhibition (BNI), a natural phenomenon according to which certain plants can inhibit nitrification through the release of active compounds in root exudates. Here, we synthesize the current state of research but also unravel knowledge gaps in the field. The nitrification process is discussed considering recent discoveries in genomics, biochemistry and ecology of nitrifiers. Secondly, we focus on the 'where' and 'how' of BNI. The N transformations and their interconnections as they occur in, and are affected by, the rhizosphere, are also discussed. The NH4+ and NO3- retention pathways alternative to BNI are reviewed as well. We also provide hypotheses on how plant compounds with putative BNI ability can reach their targets inside the cell and inhibit ammonia oxidation. Finally, we discuss a set of techniques that can be successfully applied to solve unresearched questions in BNI studies.
Collapse
Affiliation(s)
- Pierfrancesco Nardi
- Consiglio per la ricerca e l'analisi dell'economia agraria - Research Centre for Agriculture and Environment (CREA-AA), Via della Navicella 2-4, Rome 00184, Italy
| | - Hendrikus J Laanbroek
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Graeme W Nicol
- Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Ecully, 69134, France
| | - Giancarlo Renella
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Massimiliano Cardinale
- Department of Biological and Environmental Sciences and Technologies - DiSTeBA, University of Salento, Centro Ecotekne - via Provinciale Lecce-Monteroni, I-73100, Lecce, Italy
| | - Giacomo Pietramellara
- Department of Agriculture, Food, Environment and Forestry, University of Firenze, P.le delle Cascine 28, Firenze 50144, Italy
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, Vienna, 1090, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, Vienna, 1090, Austria
| | - Alessandra Trinchera
- Consiglio per la ricerca e l'analisi dell'economia agraria - Research Centre for Agriculture and Environment (CREA-AA), Via della Navicella 2-4, Rome 00184, Italy
| | - Arindam Ghatak
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, Vienna, 1090, Austria
| | - Paolo Nannipieri
- Department of Agriculture, Food, Environment and Forestry, University of Firenze, P.le delle Cascine 28, Firenze 50144, Italy
| |
Collapse
|
20
|
Sun CH, Wang JH, Gu KD, Zhang P, Zhang XY, Zheng CS, Hu DG, Ma F. New insights into the role of MADS-box transcription factor gene CmANR1 on root and shoot development in chrysanthemum (Chrysanthemum morifolium). BMC PLANT BIOLOGY 2021; 21:79. [PMID: 33549046 PMCID: PMC7866475 DOI: 10.1186/s12870-021-02860-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND MADS-box transcription factors (TFs) are the key regulators of multiple developmental processes in plants; among them, a chrysanthemum MADS-box TF CmANR1 has been isolated and described as functioning in root development in response to high nitrate concentration signals. However, how CmANR1 affects root and shoot development remains unclear. RESULTS We report that CmANR1 plays a positive role in root system development in chrysanthemum throughout the developmental stages of in vitro tissue cultures. Metabolomics combined with transcriptomics assays show that CmANR1 promotes robust root system development by facilitating nitrate assimilation, and influencing the metabolic pathways of amino acid, glycolysis, and the tricarboxylic acid cycle (TCA) cycle. Also, we found that the expression levels of TFs associated with the nitrate signaling pathways, such as AGL8, AGL21, and LBD29, are significantly up-regulated in CmANR1-transgenic plants relative to the wild-type (WT) control; by contrast, the expression levels of RHD3-LIKE, LBD37, and GATA23 were significantly down-regulated. These results suggest that these nitrate signaling associated TFs are involved in CmANR1-modulated control of root development. In addition, CmANR1 also acts as a positive regulator to control shoot growth and development. CONCLUSIONS These findings provide potential mechanisms of MADS-box TF CmANR1 modulation of root and shoot development, which occurs by regulating a series of nitrate signaling associated TFs, and influencing the metabolic pathways of amino acid and glycolysis, as well as TCA cycle and nitrate assimilation.
Collapse
Affiliation(s)
- Cui-Hui Sun
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Jia-Hui Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Kai-Di Gu
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Peng Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xin-Yi Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Cheng-Shu Zheng
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Da-Gang Hu
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Fangfang Ma
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
21
|
Baslam M, Mitsui T, Sueyoshi K, Ohyama T. Recent Advances in Carbon and Nitrogen Metabolism in C3 Plants. Int J Mol Sci 2020; 22:E318. [PMID: 33396811 PMCID: PMC7795015 DOI: 10.3390/ijms22010318] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022] Open
Abstract
C and N are the most important essential elements constituting organic compounds in plants. The shoots and roots depend on each other by exchanging C and N through the xylem and phloem transport systems. Complex mechanisms regulate C and N metabolism to optimize plant growth, agricultural crop production, and maintenance of the agroecosystem. In this paper, we cover the recent advances in understanding C and N metabolism, regulation, and transport in plants, as well as their underlying molecular mechanisms. Special emphasis is given to the mechanisms of starch metabolism in plastids and the changes in responses to environmental stress that were previously overlooked, since these changes provide an essential store of C that fuels plant metabolism and growth. We present general insights into the system biology approaches that have expanded our understanding of core biological questions related to C and N metabolism. Finally, this review synthesizes recent advances in our understanding of the trade-off concept that links C and N status to the plant's response to microorganisms.
Collapse
Affiliation(s)
- Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan; (M.B.); (T.M.)
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan; (M.B.); (T.M.)
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
| | - Kuni Sueyoshi
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
| | - Takuji Ohyama
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
- Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| |
Collapse
|
22
|
Plant Milking Technology-An Innovative and Sustainable Process to Produce Highly Active Extracts from Plant Roots. Molecules 2020; 25:molecules25184162. [PMID: 32932881 PMCID: PMC7570732 DOI: 10.3390/molecules25184162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 11/17/2022] Open
Abstract
We have used an original technology (Plant Milking Technology) based on aeroponic cultivation of plants associated with the gentle recovery of active ingredients from roots. Extraction of bioactive molecules was achieved by soaking the roots, still attached to the living plants, into a nontoxic solvent for a 2 h period. This nondestructive recovery process allows using the same root biomass for successive harvesting dates, in a recyclable way. We have applied this technology to Morus alba L. (mulberry tree), an emblematic tree of the Traditional Chinese Medicine (TCM). Trees were aeroponically grown in large-scale devices (100 m2) and were submitted to nitrogen deprivation to increase the content in active molecules (prenylated flavonoids). The Plant Milking technology applied to Morus alba L. allowed to produce an extract enriched in prenylated compounds (18-fold increase when compared to commercial root extract). Prenylated flavonoids (moracenin A and B, kuwanon C, wittiorumin F, morusin) presented a high affinity for the aged-associated collagenase enzyme, which was confirmed by activity inhibition. In accordance, M. alba extract presents efficient properties to regulate the skin matrisome, which is critical during skin aging. The benefits have been especially confirmed in vivo on wrinkle reduction, in a clinical study that involved aged women. Plant Milking technology is an optimal solution to produce active ingredients from plant roots, including trees, that meet both customer expectations around sustainability, as well as the need for an efficient production system for biotechnologists.
Collapse
|
23
|
Chepel V, Lisun V, Skrypnik L. Changes in the Content of Some Groups of Phenolic Compounds and Biological Activity of Extracts of Various Parts of Heather ( Calluna vulgaris (L.) Hull) at Different Growth Stages. PLANTS (BASEL, SWITZERLAND) 2020; 9:E926. [PMID: 32707963 PMCID: PMC7464374 DOI: 10.3390/plants9080926] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022]
Abstract
Heather (Calluna vulgaris (L.) Hull.) is noted for a diverse chemical composition and a broad range of biological activity. The current study was aimed at monitoring changes in the accumulation of certain groups of phenolic compounds in various organs of heather (leaves, stems, roots, rhizomes, flowers, and seeds) at different growth stages (vegetative, floral budding, flowering, and seed ripening) as well as studying antioxidant (employing the DPPH and FRAP assays) and antibacterial activity of its extracts. The highest total amount of phenolic compounds, tannins, flavonoids, hydroxycinnamic acids, and proanthocyanidins was detected in leaves and roots at all growth stages, except for the flowering stage. At the flowering stage, the highest content of some groups of phenolic compounds (flavonoids, proanthocyanidins, and anthocyanins) was observed in flowers. Highest antioxidant activity was recorded for the flower extracts (about 500 mg of ascorbic acid equivalents per gram according to the DPPH assay) and for the leaf extract at the ripening stage (about 350 mg of ascorbic acid equivalents per gram according to the FRAP assay). Strong correlation was noted between antioxidant activity (DPPH) and the content of anthocyanins (r = 0.75, p ≤ 0.01) as well as between antioxidant activity (FRAP) and the total content of phenolic compounds (r = 0.77, p ≤ 0.01). Leaf extracts and stem extracts turned out to perform antibacterial action against both gram-negative and gram-positive bacteria, whereas root extracts appeared to be active only against B. subtilis, and rhizome extracts against E. coli.
Collapse
Affiliation(s)
- Victoria Chepel
- Laboratory of Natural Antioxidants, Institute of Living Systems, Immanuel Kant Baltic Federal University, Universitetskaya str., 2, 236040 Kaliningrad, Russia;
| | - Valery Lisun
- Laboratory of Microbiology and Biotechnologies, Institute of Living Systems, Immanuel Kant Baltic Federal University, Universitetskaya str., 2, 236040 Kaliningrad, Russia;
| | - Liubov Skrypnik
- Laboratory of Natural Antioxidants, Institute of Living Systems, Immanuel Kant Baltic Federal University, Universitetskaya str., 2, 236040 Kaliningrad, Russia;
| |
Collapse
|
24
|
Muthuramalingam P, Jeyasri R, Selvaraj A, Pandian SK, Ramesh M. Integrated transcriptomic and metabolomic analyses of glutamine metabolism genes unveil key players in Oryza sativa (L.) to ameliorate the unique and combined abiotic stress tolerance. Int J Biol Macromol 2020; 164:222-231. [PMID: 32682969 DOI: 10.1016/j.ijbiomac.2020.07.143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
Abstract
Plants can be considered to biosynthesize the specialized metabolites to adapt to various environmental stressors mainly on abiotic stresses (AbS). Among specialized metabolites, glutamine (Gln) is an essential plant metabolite to achieve sustainable plant growth, yield and food security. In this pilot study, swe employed computational metabolomics genome wide association survey (cmGWAS) of Gln metabolite profiling in Oryza sativa, targeting at the identification of abiotic stress responsible (AbSR) - Gln metabolite producing genes (GlnMPG). Identified 5 AbSR-GlnMPG alter the metabolite levels and play a predominant role in delineating the physiological significance of rice. These genes were systematically analysed for their biological features via OryzaCyc. Spatio-temporal and plant hormonal expression pattern of AbSR-GlnMPG was analysed and their differential expression profiling were noted in 48 different tissues and hormones, respectively. Furthermore, comparative ideogram of these genes revealed the chromosomal synteny with C4 grass genomes. Molecular crosstalks of these proteins, unravelled the various metabolic interaction. The systems expression profiling of AbSR-GlnMPG will lead to unravel the metabolite signaling and putative responses in multiple AbS. On the whole, this holistic study provides deeper insights on biomolecular features of AbSR-GlnMPG, which could be analysed further to decipher their functional metabolisms in AbS dynamism.
Collapse
Affiliation(s)
- Pandiyan Muthuramalingam
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India; Department of Systems Biology, Science Research Centre, Yonsei University, Seoul 03722, South Korea
| | - Rajendran Jeyasri
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Anthonymuthu Selvaraj
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | | | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India.
| |
Collapse
|
25
|
Ma J, Feng X, Yang X, Cao Y, Zhao W, Sun L. The leaf extract of crofton weed ( Eupatorium adenophorum) inhibits primary root growth by inducing cell death in maize root border cells. PLANT DIVERSITY 2020; 42:174-180. [PMID: 32695950 PMCID: PMC7361134 DOI: 10.1016/j.pld.2020.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 05/24/2023]
Abstract
The extract of crofton weed (Eupatorium adenophorum) inhibits seed germination and weed growth; however, the physiological mechanisms underlying the effect of crofton weed extract on the modulation of seedling growth and root system development remain largely unclear. In this study, we investigated the effects of the leaf extract of crofton weed (LECW) on primary root (PR) growth in maize seedlings. Treatment with LECW markedly inhibited seed germination and seedling growth in a dose-dependent manner. Physiological analysis indicated that the LECW induced reactive oxygen species (ROS) accumulation in root tips, thereby leading to cell swelling and deformation both in the root cap and elongation zone of root tips, finally leading to cell death in root border cells (RBCs) and PR growth inhibition. The LECW also inhibited pectin methyl esterase (PME) activity, thereby decreasing the RBC number. Taken together, our results indicated that the LECW inhibited PR growth by inducing ROS accumulation and subsequent cell death in RBCs. The present study provides a better understanding of how the LECW modifies root system development and provides insight for evaluating the toxicity of crofton weed extracts in plants.
Collapse
Affiliation(s)
- Jinhu Ma
- College of Engineering, Shanxi Agricultural University, Taigu, 030801, China
| | - Xinxin Feng
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaohuan Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Yongheng Cao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Weifeng Zhao
- Faculty of Tropical Crops, Yunnan Agricultural University, Puer, 665000, China
| | - Liangliang Sun
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| |
Collapse
|
26
|
Castilleux R, Plancot B, Gügi B, Attard A, Loutelier-Bourhis C, Lefranc B, Nguema-Ona E, Arkoun M, Yvin JC, Driouich A, Vicré M. Extensin arabinosylation is involved in root response to elicitors and limits oomycete colonization. ANNALS OF BOTANY 2020; 125:751-763. [PMID: 31242281 PMCID: PMC7182588 DOI: 10.1093/aob/mcz068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/23/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Extensins are hydroxyproline-rich glycoproteins thought to strengthen the plant cell wall, one of the first barriers against pathogens, through intra- and intermolecular cross-links. The glycan moiety of extensins is believed to confer the correct structural conformation to the glycoprotein, leading to self-assembly within the cell wall that helps limit microbial adherence and invasion. However, this role is not clearly established. METHODS We used Arabidopsis thaliana mutants impaired in extensin arabinosylation to investigate the role of extensin arabinosylation in root-microbe interactions. Mutant and wild-type roots were stimulated to elicit an immune response with flagellin 22 and immunolabelled with a set of anti-extensin antibodies. Roots were also inoculated with a soilborne oomycete, Phytophthora parasitica, to assess the effect of extensin arabinosylation on root colonization. KEY RESULTS A differential distribution of extensin epitopes was observed in wild-type plants in response to elicitation. Elicitation also triggers altered epitope expression in mutant roots compared with wild-type and non-elicited roots. Inoculation with the pathogen P. parasitica resulted in enhanced root colonization for two mutants, specifically xeg113 and rra2. CONCLUSIONS We provide evidence for a link between extensin arabinosylation and root defence, and propose a model to explain the importance of glycosylation in limiting invasion of root cells by pathogenic oomycetes.
Collapse
Affiliation(s)
- Romain Castilleux
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche ‘Normandie Végétal’ FED, Rouen, France
| | - Barbara Plancot
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche ‘Normandie Végétal’ FED, Rouen, France
| | - Bruno Gügi
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche ‘Normandie Végétal’ FED, Rouen, France
| | | | - Corinne Loutelier-Bourhis
- IRCOF COBRA, UMR6014 and FR3038, CNRS, Université de Rouen Normandie, Mont-Saint-Aignan Cedex, France
| | - Benjamin Lefranc
- INSERM U1239, Différenciation et Communication Neuronale et Neuroendocrine, Normandie Université, Rouen, France
| | - Eric Nguema-Ona
- Centre Mondial de l’Innovation, Groupe Roullier, Saint Malo Cédex, France
| | - Mustapha Arkoun
- Centre Mondial de l’Innovation, Groupe Roullier, Saint Malo Cédex, France
| | - Jean-Claude Yvin
- Centre Mondial de l’Innovation, Groupe Roullier, Saint Malo Cédex, France
| | - Azeddine Driouich
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche ‘Normandie Végétal’ FED, Rouen, France
| | - Maïté Vicré
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche ‘Normandie Végétal’ FED, Rouen, France
- For correspondence. E-mail
| |
Collapse
|
27
|
Tian T, Reverdy A, She Q, Sun B, Chai Y. The role of rhizodeposits in shaping rhizomicrobiome. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:160-172. [PMID: 31858707 DOI: 10.1111/1758-2229.12816] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 05/22/2023]
Abstract
Rhizomicrobiome, the communities of microorganisms surrounding the root of the plant, plays a vital role in promoting plant growth and health. The composition of rhizomicrobiome is dynamic both temporally and spatially, and is influenced greatly by the plant host and environmental factors. One of the key influencing factors is rhizodeposits, composed of root-released tissue cells, exudates, lysates, volatile compounds, etc. Rhizodeposits are rich in carbon and nitrogen elements, and able to select and fuel the growth of rhizomicrobiome. In this minireview, we overview the generation, composition and dynamics of rhizodeposits, and discuss recent work describing the general and specific impacts of rhizodeposits on rhizomicrobiome. We focus further on root exudates, the most dynamic component of rhizodeposits, and review recent progresses about the influence of specific root exudates in promoting bacterial root colonization, inducing biofilm development, acting as plant defence and shaping the rhizomicrobiome.
Collapse
Affiliation(s)
- Tao Tian
- Tianjin Academy of Agricultural Sciences, Institute of Plant Protection, Tianjin, China
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Alicyn Reverdy
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Qianxuan She
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Bingbing Sun
- Tianjin Academy of Agricultural Sciences, Institute of Plant Protection, Tianjin, China
| | - Yunrong Chai
- Department of Biology, Northeastern University, Boston, MA, USA
| |
Collapse
|
28
|
Kumar N, Iyer-Pascuzzi AS. Shedding the Last Layer: Mechanisms of Root Cap Cell Release. PLANTS 2020; 9:plants9030308. [PMID: 32121604 PMCID: PMC7154840 DOI: 10.3390/plants9030308] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 01/06/2023]
Abstract
The root cap, a small tissue at the tip of the root, protects the root from environmental stress and functions in gravity perception. To perform its functions, the position and size of the root cap remains stable throughout root growth. This occurs due to constant root cap cell turnover, in which the last layer of the root cap is released, and new root cap cells are produced. Cells in the last root cap layer are known as border cells or border-like cells, and have important functions in root protection against bacterial and fungal pathogens. Despite the importance of root cap cell release to root health and plant growth, the mechanisms regulating this phenomenon are not well understood. Recent work identified several factors including transcription factors, auxin, and small peptides with roles in the production and release of root cap cells. Here, we review the involvement of the known players in root cap cell release, compare the release of border-like cells and border cells, and discuss the importance of root cap cell release to root health and survival.
Collapse
|
29
|
Vincent D, Rafiqi M, Job D. The Multiple Facets of Plant-Fungal Interactions Revealed Through Plant and Fungal Secretomics. FRONTIERS IN PLANT SCIENCE 2020; 10:1626. [PMID: 31969889 PMCID: PMC6960344 DOI: 10.3389/fpls.2019.01626] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/19/2019] [Indexed: 05/14/2023]
Abstract
The plant secretome is usually considered in the frame of proteomics, aiming at characterizing extracellular proteins, their biological roles and the mechanisms accounting for their secretion in the extracellular space. In this review, we aim to highlight recent results pertaining to secretion through the conventional and unconventional protein secretion pathways notably those involving plant exosomes or extracellular vesicles. Furthermore, plants are well known to actively secrete a large array of different molecules from polymers (e.g. extracellular RNA and DNA) to small compounds (e.g. ATP, phytochemicals, secondary metabolites, phytohormones). All of these play pivotal roles in plant-fungi (or oomycetes) interactions, both for beneficial (mycorrhizal fungi) and deleterious outcomes (pathogens) for the plant. For instance, recent work reveals that such secretion of small molecules by roots is of paramount importance to sculpt the rhizospheric microbiota. Our aim in this review is to extend the definition of the plant and fungal secretomes to a broader sense to better understand the functioning of the plant/microorganisms holobiont. Fundamental perspectives will be brought to light along with the novel tools that should support establishing an environment-friendly and sustainable agriculture.
Collapse
Affiliation(s)
- Delphine Vincent
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Maryam Rafiqi
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Dominique Job
- CNRS/Université Claude Bernard Lyon 1/Institut National des Sciences Appliquées/Bayer CropScience Joint Laboratory (UMR 5240), Bayer CropScience, Lyon, France
| |
Collapse
|
30
|
Carreras A, Bernard S, Durambur G, Gügi B, Loutelier C, Pawlak B, Boulogne I, Vicré M, Driouich A, Goffner D, Follet-Gueye ML. In vitro characterization of root extracellular trap and exudates of three Sahelian woody plant species. PLANTA 2019; 251:19. [PMID: 31781905 DOI: 10.1007/s00425-019-03302-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
Arabinogalactan protein content in both root extracellular trap and root exudates varies in three Sahelian woody plant species that are differentially tolerant to drought. At the root tip, mature root cap cells, mainly border cells (BCs)/border-like cells (BLCs) and their associated mucilage, form a web-like structure known as the "Root Extracellular Trap" (RET). Although the RET along with the entire suite of root exudates are known to influence rhizosphere function, their features in woody species is poorly documented. Here, RET and root exudates were analyzed from three Sahelian woody species with contrasted sensitivity to drought stress (Balanites aegyptiaca, Acacia raddiana and Tamarindus indica) and that have been selected for reforestation along the African Great Green Wall in northern Senegal. Optical and transmission electron microscopy show that Balanites aegyptiaca, the most drought-tolerant species, produces only BC, whereas Acacia raddiana and Tamarindus indica release both BCs and BLCs. Biochemical analyses reveal that RET and root exudates of Balanites aegyptiaca and Acacia raddiana contain significantly more abundant arabinogalactan proteins (AGPs) compared to Tamarindus indica, the most drought-sensitive species. Root exudates of the three woody species also differentially impact the plant soil beneficial bacteria Azospirillum brasilense growth. These results highlight the importance of root secretions for woody species survival under dry conditions.
Collapse
Affiliation(s)
- Alexis Carreras
- Normandie Univ, UNIROUEN, Glyco-MEV EA4358, SFR NORVEGE FED 4277, 76821, Mont Saint-Aignan, France
- Fédération de Recherche « Normandie-Végétal » , FED 4277, 76821, Mont-Saint-Aignan, France
| | - Sophie Bernard
- Normandie Univ, UNIROUEN, Glyco-MEV EA4358, SFR NORVEGE FED 4277, 76821, Mont Saint-Aignan, France
- Fédération de Recherche « Normandie-Végétal » , FED 4277, 76821, Mont-Saint-Aignan, France
- Normandie Univ, UNIROUEN, PRIMACEN, IRIB, 76821, Mont-Saint-Aignan, France
| | - Gaëlle Durambur
- Normandie Univ, UNIROUEN, Glyco-MEV EA4358, SFR NORVEGE FED 4277, 76821, Mont Saint-Aignan, France
- Fédération de Recherche « Normandie-Végétal » , FED 4277, 76821, Mont-Saint-Aignan, France
| | - Bruno Gügi
- Normandie Univ, UNIROUEN, Glyco-MEV EA4358, SFR NORVEGE FED 4277, 76821, Mont Saint-Aignan, France
- Fédération de Recherche « Normandie-Végétal » , FED 4277, 76821, Mont-Saint-Aignan, France
| | - Corinne Loutelier
- Normandie Univ, UNIROUEN, COBRA CNRS UMR 6014, 76821, Mont-Saint-Aignan, France
| | - Barbara Pawlak
- Normandie Univ, UNIROUEN, Glyco-MEV EA4358, SFR NORVEGE FED 4277, 76821, Mont Saint-Aignan, France
- Fédération de Recherche « Normandie-Végétal » , FED 4277, 76821, Mont-Saint-Aignan, France
| | - Isabelle Boulogne
- Normandie Univ, UNIROUEN, Glyco-MEV EA4358, SFR NORVEGE FED 4277, 76821, Mont Saint-Aignan, France
- Fédération de Recherche « Normandie-Végétal » , FED 4277, 76821, Mont-Saint-Aignan, France
| | - Maite Vicré
- Normandie Univ, UNIROUEN, Glyco-MEV EA4358, SFR NORVEGE FED 4277, 76821, Mont Saint-Aignan, France
- Fédération de Recherche « Normandie-Végétal » , FED 4277, 76821, Mont-Saint-Aignan, France
| | - Azeddine Driouich
- Normandie Univ, UNIROUEN, Glyco-MEV EA4358, SFR NORVEGE FED 4277, 76821, Mont Saint-Aignan, France
- Fédération de Recherche « Normandie-Végétal » , FED 4277, 76821, Mont-Saint-Aignan, France
| | - Deborah Goffner
- CNRS UMI 3189 ESS, Pôle France, 13344, Marseille Cedex 15, France
| | - Marie-Laure Follet-Gueye
- Normandie Univ, UNIROUEN, Glyco-MEV EA4358, SFR NORVEGE FED 4277, 76821, Mont Saint-Aignan, France.
- Fédération de Recherche « Normandie-Végétal » , FED 4277, 76821, Mont-Saint-Aignan, France.
- Normandie Univ, UNIROUEN, PRIMACEN, IRIB, 76821, Mont-Saint-Aignan, France.
| |
Collapse
|
31
|
Characterization and variation of the rhizosphere fungal community structure of cultivated tetraploid cotton. PLoS One 2019; 14:e0207903. [PMID: 31626665 PMCID: PMC6799950 DOI: 10.1371/journal.pone.0207903] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 10/03/2019] [Indexed: 01/22/2023] Open
Abstract
Rhizosphere fungal communities exert important influencing forces on plant growth and health. However, information on the dynamics of the rhizosphere fungal community structure of the worldwide economic crop cotton (Gossypium spp.) is limited. In the present study, next-generation sequencing of nuclear ribosomal internal transcribed spacer-1 (ITS1) was performed to characterize the rhizosphere fungal communities of G. hirsutum cv. TM-1 (upland cotton) and G. barbadense cv. Hai 7124 (island cotton). The plants were grown in field soil (FS) that had been continuously cropped with cotton and nutrient-rich soil (NS) that had not been cropped. The fungal species richness, diversity, and community composition were analyzed and compared among the soil resources, cotton genotypes, and developmental stages. We found that the fungal community structures were different between the rhizosphere and bulk soil and the difference were significantly varied between FS and NS. Our results suggested that cotton rhizosphere fungal community structure variation may have been primarily influenced by the interaction of cotton roots with different soil resources. We also found that the community composition of the cotton rhizosphere fungi varied significantly during different developmental stages. In addition, we observed fungi that was enriched or depleted at certain developmental stages and genotypes in FS and NS, and these insights can lay a foundation for deep research into the dynamics of pathogenic fungi and nutrient absorption of cotton roots. This research illustrates the characteristics of the cotton rhizosphere fungal communities and provides important information for understanding the potential influences of rhizosphere fungal communities on cotton growth and health.
Collapse
|
32
|
Man Ha C, Fine D, Bhatia A, Rao X, Martin MZ, Engle NL, Wherritt DJ, Tschaplinski TJ, Sumner LW, Dixon RA. Ectopic Defense Gene Expression Is Associated with Growth Defects in Medicago truncatula Lignin Pathway Mutants. PLANT PHYSIOLOGY 2019; 181:63-84. [PMID: 31289215 PMCID: PMC6716239 DOI: 10.1104/pp.19.00533] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/26/2019] [Indexed: 05/04/2023]
Abstract
Lignin provides essential mechanical support for plant cell walls but decreases the digestibility of forage crops and increases the recalcitrance of biofuel crops. Attempts to modify lignin content and/or composition by genetic modification often result in negative growth effects. Although several studies have attempted to address the basis for such effects in individual transgenic lines, no common mechanism linking lignin modification with perturbations in plant growth and development has yet been identified. To address whether a common mechanism exists, we have analyzed transposon insertion mutants resulting in independent loss of function of five enzymes of the monolignol pathway, as well as one double mutant, in the model legume Medicago truncatula These plants exhibit growth phenotypes from essentially wild type to severely retarded. Extensive phenotypic, transcriptomic, and metabolomics analyses, including structural characterization of differentially expressed compounds, revealed diverse phenotypic consequences of lignin pathway perturbation that were perceived early in plant development but were not predicted by lignin content or composition alone. Notable phenotypes among the mutants with severe growth impairment were increased trichome numbers, accumulation of a variety of triterpene saponins, and extensive but differential ectopic expression of defense response genes. No currently proposed model explains the observed phenotypes across all lines. We propose that reallocation of resources into defense pathways is linked to the severity of the final growth phenotype in monolignol pathway mutants of M. truncatula, although it remains unclear whether this is a cause or an effect of the growth impairment.
Collapse
Affiliation(s)
- Chan Man Ha
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76201
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Dennis Fine
- Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Anil Bhatia
- Department of Biochemistry and MU Metabolomics Center, University of Missouri, Columbia, Missouri 65201
| | - Xiaolan Rao
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76201
- Bioenergy Sciences Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Madhavi Z Martin
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
- Bioenergy Sciences Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
- BioSciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Nancy L Engle
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
- Bioenergy Sciences Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
- BioSciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Daniel J Wherritt
- Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
- University of Texas at San Antonio, San Antonio, Texas 78249
| | - Timothy J Tschaplinski
- Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
- University of Texas at San Antonio, San Antonio, Texas 78249
| | - Lloyd W Sumner
- Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
- Department of Biochemistry and MU Metabolomics Center, University of Missouri, Columbia, Missouri 65201
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76201
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
- Bioenergy Sciences Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| |
Collapse
|
33
|
Rahnamaie-Tajadod R, Goh HH, Mohd Noor N. Methyl jasmonate-induced compositional changes of volatile organic compounds in Polygonum minus leaves. JOURNAL OF PLANT PHYSIOLOGY 2019; 240:152994. [PMID: 31226543 DOI: 10.1016/j.jplph.2019.152994] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 05/19/2023]
Abstract
Polygonum minus Huds. is a medicinal aromatic plant rich in terpenes, aldehydes, and phenolic compounds. Methyl jasmonate (MeJA) is a plant signaling molecule commonly applied to elicit stress responses to produce plant secondary metabolites. In this study, the effects of exogenous MeJA treatment on the composition of volatile organic compounds (VOCs) in P. minus leaves were investigated by using a metabolomic approach. Time-course changes in the leaf composition of VOCs on days 1, 3, and 5 after MeJA treatment were analyzed through solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS). The VOCs found in MeJA-elicited leaves were similar to those found in mock-treated leaves but varied in quantity at different time points. We focused our analysis on the content and composition of monoterpenes, sesquiterpenes, and green leaf volatiles (GLVs) within the leaf samples. Our results suggest that MeJA enhances the activity of biosynthetic pathways for aldehydes and terpenes in P. minus. Hence, the production of aromatic compounds in this medicinal herb can be increased by MeJA elicitation. Furthermore, the relationship between MeJA elicitation and terpene biosynthesis in P. minus was shown through SPME-GC-MS analysis of VOCs combined with transcriptomic analysis of MeJA-elicited P. minus leaves from our previous study.
Collapse
Affiliation(s)
| | - Hoe-Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia.
| | - Normah Mohd Noor
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
34
|
Rathi D, Pareek A, Zhang T, Pang Q, Chen S, Chakraborty S, Chakraborty N. Metabolite signatures of grasspea suspension-cultured cells illustrate the complexity of dehydration response. PLANTA 2019; 250:857-871. [PMID: 31203447 DOI: 10.1007/s00425-019-03211-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
This represents the first report deciphering the dehydration response of suspension-cultured cells of a crop species, highlighting unique and shared pathways, and adaptive mechanisms via profiling of 330 metabolites. Grasspea, being a hardy legume, is an ideal model system to study stress tolerance mechanisms in plants. In this study, we investigated the dehydration-responsive metabolome in grasspea suspension-cultured cells (SCCs) to identify the unique and shared metabolites crucial in imparting dehydration tolerance. To reveal the dehydration-induced metabolite signatures, SCCs of grasspea were exposed to 10% PEG, followed by metabolomic profiling. Chromatographic separation by HPLC coupled with MRM-MS led to the identification of 330 metabolites, designated dehydration-responsive metabolites (DRMs), which belonged to 28 varied functional classes. The metabolome was found to be constituted by carboxylic acids (17%), amino acids (13.5%), flavonoids (10.9%) and plant growth regulators (10%), among others. Pathway enrichment analysis revealed predominance of metabolites involved in phytohormone biosynthesis, secondary metabolism and osmotic adjustment. Exogenous application of DRMs, arbutin and acetylcholine, displayed improved physiological status in stress-resilient grasspea as well as hypersensitive pea, while administration of lauric acid imparted detrimental effects. This represents the first report on stress-induced metabolomic landscape of a crop species via a suspension culture system, which would provide new insights into the molecular mechanism of stress responses and adaptation in crop species.
Collapse
Affiliation(s)
- Divya Rathi
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Akanksha Pareek
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Tong Zhang
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA
| | - Qiuying Pang
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA
- Proteomics and Mass Spectrometry Facility, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
35
|
Liu X, Jin M, Zhang M, Li T, Sun S, Zhang J, Dai J, Wang Y. The application of combined 1H NMR-based metabolomics and transcriptomics techniques to explore phenolic acid biosynthesis in Salvia miltiorrhiza Bunge. J Pharm Biomed Anal 2019; 172:126-138. [PMID: 31035094 DOI: 10.1016/j.jpba.2019.04.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022]
Abstract
Salvia miltiorrhiza Bunge is a traditional Chinese medicine, and its water-soluble phenolic acid active compounds have very important medicinal value; however, the synthesis pathways of the main active ingredients remain unknown. Here, we employed nuclear magnetic resonance (NMR)-based metabolomics and transcriptomics techniques to study the biosynthesis mechanism of salvianolic acids. High-performance liquid chromatography (HPLC) combined with NMR showed an improvement over traditional techniques, and 54 metabolites were detected. The results of the multivariate statistical analysis showed that salvianolic acid B (SAB), rosmarinic acid (RA), caffeic acid, succinate, and citrate were among the multiple compounds that were increased in the methyl jasmonate (MeJA)-elicited group; the levels of sucrose, fructose, glutamine, and tyrosine were decreased. Combined with the differentially expressed genes (DEGs) found by transcriptome sequencing, we speculate that the synthesis of RA after MeJA treatment mostly occurred through caffeic acid and bypassed 4-hydroxyphenyllactic acid. This provides useful information for the study of salvianolic acids synthesis.
Collapse
Affiliation(s)
- Xia Liu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, Beijing, BJ, China
| | - Mengxia Jin
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, Beijing, BJ, China
| | - Min Zhang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, Beijing, BJ, China
| | - Tianqi Li
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, Beijing, BJ, China
| | - Shanshan Sun
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, Beijing, BJ, China
| | - Jinyue Zhang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, Beijing, BJ, China
| | - Jungui Dai
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, Beijing, BJ, China
| | - Yinghong Wang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, Beijing, BJ, China.
| |
Collapse
|
36
|
Nagayama T, Nakamura A, Yamaji N, Satoh S, Furukawa J, Iwai H. Changes in the Distribution of Pectin in Root Border Cells Under Aluminum Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:1216. [PMID: 31632431 PMCID: PMC6783878 DOI: 10.3389/fpls.2019.01216] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/04/2019] [Indexed: 05/16/2023]
Abstract
Root border cells (RBCs) surround the root apices in most plant species and are involved in the production of root exudates. We tested the relationship between pectin content in root tips and aluminum (Al) tolerance by comparing these parameters in wild-type (WT) and sensitive-to-Al-rhizotoxicity (star1) mutant rice plants. Staining for demethylesterified pectin decreased after Al treatment in the WT. A high level of pectin was observed in RBCs of the root tips. The level of total pectin was increased by about 50% compared with the control. In the Al-sensitive star1 mutant, Al treatment decreased root elongation and pectin content, especially in RBCs. In addition, almost no Al accumulation was observed in the control, whereas more Al was accumulated in the RBCs of STAR1 roots. These results show that the amount of pectin influences Al tolerance; that Al accumulation in rice roots is reduced by the distribution of pectin in root-tip RBCs; and that these reactions occur in the field around the RBCs, including the surrounding mucilage. Al accumulation in rice roots is reduced by the distribution of pectin in root tips, and pectin in the root cell walls contributes to the acquisition of Al tolerance in rice by regulating its distribution. The release of Al-binding mucilage by RBCs could play a role in protecting root tips from Al-induced cellular damage.
Collapse
Affiliation(s)
- Teruki Nagayama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Atsuko Nakamura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Naoki Yamaji
- Research Institute for Bioresources, Okayama University, Chuo, Kurashiki, Japan
| | - Shinobu Satoh
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Jun Furukawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- *Correspondence: Jun Furukawa, ; Hiroaki Iwai, iwai.hiroaki.gb.@u.tsukuba.ac.jp
| | - Hiroaki Iwai
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- *Correspondence: Jun Furukawa, ; Hiroaki Iwai, iwai.hiroaki.gb.@u.tsukuba.ac.jp
| |
Collapse
|
37
|
Gargallo-Garriga A, Preece C, Sardans J, Oravec M, Urban O, Peñuelas J. Root exudate metabolomes change under drought and show limited capacity for recovery. Sci Rep 2018; 8:12696. [PMID: 30140025 PMCID: PMC6107494 DOI: 10.1038/s41598-018-30150-0] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/10/2018] [Indexed: 11/10/2022] Open
Abstract
Root exudates comprise a large variety of compounds released by plants into the rhizosphere, including low-molecular-weight primary metabolites (particularly saccharides, amino acids and organic acids) and secondary metabolites (phenolics, flavonoids and terpenoids). Changes in exudate composition could have impacts on the plant itself, on other plants, on soil properties (e.g. amount of soil organic matter), and on soil organisms. The effects of drought on the composition of root exudates, however, have been rarely studied. We used an ecometabolomics approach to identify the compounds in the exudates of Quercus ilex (holm oak) under an experimental drought gradient and subsequent recovery. Increasing drought stress strongly affected the composition of the exudate metabolome. Plant exudates under drought consisted mainly of secondary metabolites (71% of total metabolites) associated with plant responses to drought stress, whereas the metabolite composition under recovery shifted towards a dominance of primary metabolites (81% of total metabolites). These results strongly suggested that roots exude the most abundant root metabolites. The exudates were changed irreversibly by the lack of water under extreme drought conditions, and the plants could not recover.
Collapse
Affiliation(s)
- Albert Gargallo-Garriga
- CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, 08193, Catalonia, Spain.
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain.
- Global Change Research Institute, The Czech Academy of Sciences, Belidla 986/4a, CZ-60300, Brno, Czech Republic.
| | - Catherine Preece
- CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, 08193, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, 08193, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| | - Michal Oravec
- Global Change Research Institute, The Czech Academy of Sciences, Belidla 986/4a, CZ-60300, Brno, Czech Republic
| | - Otmar Urban
- Global Change Research Institute, The Czech Academy of Sciences, Belidla 986/4a, CZ-60300, Brno, Czech Republic
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, 08193, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| |
Collapse
|
38
|
Global analysis of threonine metabolism genes unravel key players in rice to improve the abiotic stress tolerance. Sci Rep 2018; 8:9270. [PMID: 29915249 PMCID: PMC6006157 DOI: 10.1038/s41598-018-27703-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/08/2018] [Indexed: 12/13/2022] Open
Abstract
The diversity in plant metabolites with improved phytonutrients is essential to achieve global food security and sustainable crop yield. Our study using computational metabolomics genome wide association study (cmGWAS) reports on a comprehensive profiling of threonine (Thr) metabolite in rice. Sixteen abiotic stress responsive (AbSR) – Thr metabolite producing genes (ThrMPG), modulate metabolite levels and play a significant role determining both physiological and nutritional importance of rice. These AbSR-ThrMPG were computationally analysed for their protein properties using OryzaCyc through plant metabolic network analyser. A total of 1373 and 1028 SNPs were involved in complex traits and genomic variations. Comparative mapping of AbSR-ThrMPG revealed the chromosomal colinearity with C4 grass species. Further, computational expression pattern of these genes predicted a differential expression profiling in diverse developmental tissues. Protein interaction of protein coding gene sequences revealed that the abiotic stresses (AbS) are multigenic in nature. In silico expression of AbSR-ThrMPG determined the putative involvement in response to individual AbS. This is the first comprehensive genome wide study reporting on AbSR –ThrMPG analysis in rice. The results of this study provide a pivotal resource for further functional investigation of these key genes in the vital areas of manipulating AbS signaling in rice improvement.
Collapse
|
39
|
Kohlen W, Ng JLP, Deinum EE, Mathesius U. Auxin transport, metabolism, and signalling during nodule initiation: indeterminate and determinate nodules. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:229-244. [PMID: 28992078 DOI: 10.1093/jxb/erx308] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Most legumes can form a unique type of lateral organ on their roots: root nodules. These structures host symbiotic nitrogen-fixing bacteria called rhizobia. Several different types of nodules can be found in nature, but the two best-studied types are called indeterminate and determinate nodules. These two types differ with respect to the presence or absence of a persistent nodule meristem, which consistently correlates with the cortical cell layers giving rise to the nodule primordia. Similar to other plant developmental processes, auxin signalling overlaps with the site of organ initiation and meristem activity. Here, we review how auxin contributes to early nodule development. We focus on changes in auxin transport, signalling, and metabolism during nodule initiation, describing both experimental evidence and computer modelling. We discuss how indeterminate and determinate nodules may differ in their mechanisms for generating localized auxin response maxima and highlight outstanding questions for future research.
Collapse
Affiliation(s)
- Wouter Kohlen
- Laboratory for Molecular Biology, Wageningen University & Research, The Netherlands
| | - Jason Liang Pin Ng
- Division of Plant Science, Research School of Biology, The Australian National University, Australia
| | - Eva E Deinum
- Mathematical and Statistical Methods, Wageningen University & Research, The Netherlands
| | - Ulrike Mathesius
- Division of Plant Science, Research School of Biology, The Australian National University, Australia
| |
Collapse
|
40
|
Karve RA, Iyer-Pascuzzi AS. Further insights into the role of NIN-LIKE PROTEIN 7 (NLP7) in root cap cell release. PLANT SIGNALING & BEHAVIOR 2018; 13:e1414122. [PMID: 29215953 PMCID: PMC5790402 DOI: 10.1080/15592324.2017.1414122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/04/2017] [Indexed: 05/31/2023]
Abstract
The root cap protects the root from environmental stress and senses gravity. Cells of the last layer of the root cap are shed in a developmentally programmed process. We previously showed that the transcription factor NIN-LIKE PROTEIN7 (NLP7) regulates root cap cell release likely through regulation of CELLULASE5 (CEL5). Here we provide a supplement to that work. We hypothesized that the nlp7 mutant has defects in additional root cap functions. We find that neither gravity sensing nor expression of a root cap cell identity marker is altered in nlp7 but that expression of another cellulase, CEL3, is upregulated. We conclude that NLP7 control of root cap cell release is largely independent of gravity sensing and root cap cell identity.
Collapse
Affiliation(s)
- Rucha A. Karve
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Anjali S. Iyer-Pascuzzi
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
41
|
Sasse J, Martinoia E, Northen T. Feed Your Friends: Do Plant Exudates Shape the Root Microbiome? TRENDS IN PLANT SCIENCE 2018; 23:25-41. [PMID: 29050989 DOI: 10.1016/j.tplants.2017.09.003] [Citation(s) in RCA: 841] [Impact Index Per Article: 120.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/25/2017] [Accepted: 09/07/2017] [Indexed: 05/18/2023]
Abstract
Plant health in natural environments depends on interactions with complex and dynamic communities comprising macro- and microorganisms. While many studies have provided insights into the composition of rhizosphere microbiomes (rhizobiomes), little is known about whether plants shape their rhizobiomes. Here, we discuss physiological factors of plants that may govern plant-microbe interactions, focusing on root physiology and the role of root exudates. Given that only a few plant transport proteins are known to be involved in root metabolite export, we suggest novel families putatively involved in this process. Finally, building off of the features discussed in this review, and in analogy to well-known symbioses, we elaborate on a possible sequence of events governing rhizobiome assembly.
Collapse
Affiliation(s)
- Joelle Sasse
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Enrico Martinoia
- Department of Plant and Microbial Biology, University of Zurich, Zurich 8008, Switzerland
| | - Trent Northen
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Joint Genome Institute, Walnut Creek, CA 94958, USA.
| |
Collapse
|
42
|
Libault M, Pingault L, Zogli P, Schiefelbein J. Plant Systems Biology at the Single-Cell Level. TRENDS IN PLANT SCIENCE 2017; 22:949-960. [PMID: 28970001 DOI: 10.1016/j.tplants.2017.08.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/14/2017] [Accepted: 08/21/2017] [Indexed: 05/19/2023]
Abstract
Our understanding of plant biology is increasingly being built upon studies using 'omics and system biology approaches performed at the level of the entire plant, organ, or tissue. Although these approaches open new avenues to better understand plant biology, they suffer from the cellular complexity of the analyzed sample. Recent methodological advances now allow plant scientists to overcome this limitation and enable biological analyses of single-cells or single-cell-types. Coupled with the development of bioinformatics and functional genomics resources, these studies provide opportunities for high-resolution systems analyses of plant phenomena. In this review, we describe the recent advances, current challenges, and future directions in exploring the biology of single-cells and single-cell-types to enhance our understanding of plant biology as a system.
Collapse
Affiliation(s)
- Marc Libault
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.
| | - Lise Pingault
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Prince Zogli
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - John Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
43
|
Salas ME, Lozano MJ, López JL, Draghi WO, Serrania J, Torres Tejerizo GA, Albicoro FJ, Nilsson JF, Pistorio M, Del Papa MF, Parisi G, Becker A, Lagares A. Specificity traits consistent with legume-rhizobia coevolution displayed by Ensifer meliloti rhizosphere colonization. Environ Microbiol 2017; 19:3423-3438. [PMID: 28618121 DOI: 10.1111/1462-2920.13820] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 11/29/2022]
Abstract
Rhizobia are α- and ß-proteobacteria that associate with legumes in symbiosis to fix atmospheric nitrogen. The chemical communication between roots and rhizobia begins in the rhizosphere. Using signature-tagged-Tn5 mutagenesis (STM) we performed a genome-wide screening for Ensifer meliloti genes that participate in colonizing the rhizospheres of alfalfa and other legumes. The analysis of ca. 6,000 mutants indicated that genes relevant for rhizosphere colonization account for nearly 2% of the rhizobial genome and that most (ca. 80%) are chromosomally located, pointing to the relevance and ancestral origin of the bacterial ability to colonize plant roots. The identified genes were related to metabolic functions, transcription, signal transduction, and motility/chemotaxis among other categories; with several ORFs of yet-unknown function. Most remarkably, we identified a subset of genes that impacted more severely the colonization of the roots of alfalfa than of pea. Further analyses using other plant species revealed that such early differential phenotype could be extended to other members of the Trifoliae tribe (Trigonella, Trifolium), but not the Fabeae and Phaseoleae tribes. The results suggest that consolidation of E. meliloti into its current symbiotic state should have occurred in a rhizobacterium that had already been adapted to rhizospheres of the Trifoliae tribe.
Collapse
Affiliation(s)
- María Eugenia Salas
- Instituto de Biotecnología y Biología Molecular-CONICET CCT-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mauricio Javier Lozano
- Instituto de Biotecnología y Biología Molecular-CONICET CCT-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - José Luis López
- Instituto de Biotecnología y Biología Molecular-CONICET CCT-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Walter Omar Draghi
- Instituto de Biotecnología y Biología Molecular-CONICET CCT-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Javier Serrania
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps University, Marburg, Germany
| | - Gonzalo Arturo Torres Tejerizo
- Instituto de Biotecnología y Biología Molecular-CONICET CCT-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Francisco Javier Albicoro
- Instituto de Biotecnología y Biología Molecular-CONICET CCT-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Juliet Fernanda Nilsson
- Instituto de Biotecnología y Biología Molecular-CONICET CCT-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mariano Pistorio
- Instituto de Biotecnología y Biología Molecular-CONICET CCT-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Florencia Del Papa
- Instituto de Biotecnología y Biología Molecular-CONICET CCT-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Gustavo Parisi
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Anke Becker
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps University, Marburg, Germany
| | - Antonio Lagares
- Instituto de Biotecnología y Biología Molecular-CONICET CCT-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
44
|
Cai F, Watson BS, Meek D, Huhman DV, Wherritt DJ, Ben C, Gentzbittel L, Driscoll BT, Sumner LW, Bede JC. Medicago truncatula Oleanolic-Derived Saponins Are Correlated with Caterpillar Deterrence. J Chem Ecol 2017; 43:712-724. [PMID: 28744732 DOI: 10.1007/s10886-017-0863-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/06/2017] [Accepted: 06/21/2017] [Indexed: 11/24/2022]
Abstract
Plant resistance mechanisms to insect herbivory can potentially be bred into crops as an important strategy for integrated pest management. Medicago truncatula ecotypes inoculated with the rhizobium Ensifer medicae (Sinorhizobium medica) WSM419 were screened for resistance to herbivory by caterpillars of the beet armyworm, Spodoptera exigua, through leaf and whole plant choice studies; TN1.11 and F83005.5 are identified as the least and most deterrent ecotypes, respectively. In response to caterpillar herbivory, both ecotypes mount a robust burst of plant defensive jasmonate phytohormones. Restriction of caterpillars to either of these ecotypes does not adversely affect pest performance. This argues for an antixenosis (deterrence) resistance mechanism associated with the F83005.5 ecotype. Unbiased metabolomic profiling identified strong ecotype-specific differences in metabolite profile, particularly in the content of oleanolic-derived saponins that may act as antifeedants. Compared to the more susceptible ecotype, F83005.5 has higher levels of oleanolic-type zanhic acid- and medicagenic acid-derived compounds. Together, these data support saponin-mediated deterrence as a resistance mechanism of the F83005.5 ecotype and implicates these compounds as potential antifeedants that could be used in agricultural sustainable pest management strategies.
Collapse
Affiliation(s)
- Fanping Cai
- Department of Plant Science, McGill University, 21,111 Lakeshore, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Bonnie S Watson
- The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - David Meek
- Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - David V Huhman
- The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Daniel J Wherritt
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Cecile Ben
- EcoLab, Université de Toulouse, Centre National de Recherche Scientifique, Institute National Polytechnique de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Laurent Gentzbittel
- EcoLab, Université de Toulouse, Centre National de Recherche Scientifique, Institute National Polytechnique de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Brian T Driscoll
- Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Lloyd W Sumner
- The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA.,Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Jacqueline C Bede
- Department of Plant Science, McGill University, 21,111 Lakeshore, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
45
|
Shackira AM, Puthur JT. Enhanced phytostabilization of cadmium by a halophyte-Acanthus ilicifolius L. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:319-326. [PMID: 27593613 DOI: 10.1080/15226514.2016.1225284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Heavy metal pollution in mangrove wetlands has become a growing matter of concern as it serves as sink and source for toxic heavy metals including cadmium (Cd). The present study evaluates the phytostabilization potential of a halophyte, Acanthus ilicifolius L., toward Cd under hydroponic culture conditions. Accumulation, translocation, and effects of Cd on the antioxidant system of A. ilicifolius were studied. Results indicated that A. ilicifolius accumulated Cd mainly in roots (96.4%) as compared to stem (1.4%) and leaves (0.6%) and the accumulated Cd is retained in root rather than being translocated to shoots as indicated by TF < 0.26. Moreover, malondialdehyde (MDA) content increased upon Cd treatment, which is further detoxified by the enzymatic and nonenzymatic antioxidant mechanism. Antioxidants like proline, ascorbate, and amino acid recorded an increased accumulation in the Cd-treated plants followed by the upregulation of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX), and ascorbate peroxidase (APX). Therefore, the rate of sugar accumulation was found to be decreased in plants treated with Cd as compared to the control plants. Thus, having relatively high BCFroot (69.3) and low TFshoot (0.26) values, A. ilicifolius can be suggested as a potential candidate for phytostabilization of Cd in mangrove wetlands.
Collapse
Affiliation(s)
- A M Shackira
- a Plant Physiology and Biochemistry Division, Department of Botany , University of Calicut , Kerala , India
| | - Jos T Puthur
- a Plant Physiology and Biochemistry Division, Department of Botany , University of Calicut , Kerala , India
| |
Collapse
|
46
|
Geng S, Misra BB, de Armas E, Huhman DV, Alborn HT, Sumner LW, Chen S. Jasmonate-mediated stomatal closure under elevated CO 2 revealed by time-resolved metabolomics. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:947-962. [PMID: 27500669 DOI: 10.1111/tpj.13296] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/01/2016] [Indexed: 05/18/2023]
Abstract
Foliar stomatal movements are critical for regulating plant water loss and gas exchange. Elevated carbon dioxide (CO2 ) levels are known to induce stomatal closure. However, the current knowledge on CO2 signal transduction in stomatal guard cells is limited. Here we report metabolomic responses of Brassica napus guard cells to elevated CO2 using three hyphenated metabolomics platforms: gas chromatography-mass spectrometry (MS); liquid chromatography (LC)-multiple reaction monitoring-MS; and ultra-high-performance LC-quadrupole time-of-flight-MS. A total of 358 metabolites from guard cells were quantified in a time-course response to elevated CO2 level. Most metabolites increased under elevated CO2 , showing the most significant differences at 10 min. In addition, reactive oxygen species production increased and stomatal aperture decreased with time. Major alterations in flavonoid, organic acid, sugar, fatty acid, phenylpropanoid and amino acid metabolic pathways indicated changes in both primary and specialized metabolic pathways in guard cells. Most interestingly, the jasmonic acid (JA) biosynthesis pathway was significantly altered in the course of elevated CO2 treatment. Together with results obtained from JA biosynthesis and signaling mutants as well as CO2 signaling mutants, we discovered that CO2 -induced stomatal closure is mediated by JA signaling.
Collapse
Affiliation(s)
- Sisi Geng
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Biswapriya B Misra
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Evaldo de Armas
- Thermo Fisher Scientific, 1400 Northpoint Parkway, West Palm Beach, FL, 33407, USA
| | - David V Huhman
- Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Hans T Alborn
- Chemistry Research Unit, Agricultural Research Service, United States Department of Agriculture, Gainesville, FL, 32608, USA
| | - Lloyd W Sumner
- Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Sixue Chen
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
47
|
Agarrwal R, Padmakumari AP, Bentur JS, Nair S. Metabolic and transcriptomic changes induced in host during hypersensitive response mediated resistance in rice against the Asian rice gall midge. RICE (NEW YORK, N.Y.) 2016; 9:5. [PMID: 26892000 PMCID: PMC4759115 DOI: 10.1186/s12284-016-0077-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 02/12/2016] [Indexed: 05/29/2023]
Abstract
BACKGROUND An incompatible interaction between rice (Oryza sativa) and the Asian rice gall midge (AGM, Orseolia oryzae Wood-Mason), that is usually manifested through a hypersensitive response (HR), represents an intricate relationship between the resistant host and its avirulent pest. We investigated changes in the transcriptome and metabolome of the host (indica rice variety: RP2068-18-3-5, RP), showing HR when attacked by an avirulent gall midge biotype (GMB1), to deduce molecular and biochemical bases of such a complex interaction. Till now, such an integrated analysis of host transcriptome and metabolome has not been reported for any rice-insect interaction. RESULTS Transcript and metabolic profiling data revealed more than 7000 differentially expressed genes and 80 differentially accumulated metabolites, respectively, in the resistant host. Microarray data revealed deregulation of carbon (C) and nitrogen (N) metabolism causing a C/N shift; up-regulation of tetrapyrrole synthesis and down-regulation of chlorophyll synthesis and photosynthesis. Integrated results revealed that genes involved in lipid peroxidation (LPO) were up-regulated and a marker metabolite for LPO (azelaic acid) accumulated during HR. This coincided with a greater accumulation of GABA (neurotransmitter and an insect antifeedant) at the feeding site. Validation of microarray results by semi-quantitative RT-PCR revealed temporal variation in gene expression profiles. CONCLUSIONS The study revealed extensive reprogramming of the transcriptome and metabolome of RP upon GMB1 infestation leading to an HR that was induced by the generation and release of reactive oxygen species i.e. singlet oxygen and resulted in LPO-mediated cell death. RP thus used HR as a means to limit nutrient supply to the feeding maggots and simultaneously accumulated GABA, strategies that could have led to maggot mortality. The integrated results of transcript and metabolic profiling, for the first time, provided insights into an HR+ type of resistance in rice against gall midge.
Collapse
Affiliation(s)
- Ruchi Agarrwal
- />International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Ayyagari Phani Padmakumari
- />Indian Institute of Rice Research (formerly Directorate of Rice Research), Rajendranagar, Hyderabad, 500030 India
| | - Jagadish S. Bentur
- />Indian Institute of Rice Research (formerly Directorate of Rice Research), Rajendranagar, Hyderabad, 500030 India
- />Present address: AgriBiotech Foundation, Rajendranagar, Hyderabad, 500030 India
| | - Suresh Nair
- />International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
48
|
Koroney AS, Plasson C, Pawlak B, Sidikou R, Driouich A, Menu-Bouaouiche L, Vicré-Gibouin M. Root exudate of Solanum tuberosum is enriched in galactose-containing molecules and impacts the growth of Pectobacterium atrosepticum. ANNALS OF BOTANY 2016; 118:797-808. [PMID: 27390353 PMCID: PMC5055634 DOI: 10.1093/aob/mcw128] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/06/2016] [Accepted: 05/16/2016] [Indexed: 05/21/2023]
Abstract
Background and aims Potato (Solanum tuberosum) is an important food crop and is grown worldwide. It is, however, significantly sensitive to a number of soil-borne pathogens that affect roots and tubers, causing considerable economic losses. So far, most research on potato has been dedicated to tubers and hence little attention has been paid to root structure and function. Methods In the present study we characterized root border cells using histochemical staining, immunofluorescence labelling of cell wall polysaccharides epitopes and observation using laser confocal microscopy. The monosaccharide composition of the secreted exudates was determined by gas chromatography of trimethylsilyl methylglycoside derivatives. The effects of root exudates and secreted arabinogalactan proteins on bacterial growth were investigated using in vitro bioassays. Key Results Root exudate from S. tuberosum was highly enriched in galactose-containing molecules including arabinogalactan proteins as major components. Treatment of the root with an elicitor derived from Pectobacterium atrosepticum, a soil-borne pathogen of potato, altered the composition of the exudates and arabinogalactan proteins. We found that the growth of the bacterium in vitro was differentially affected by exudates from elicited and non-elicited roots (i.e. inhibition versus stimulation). Conclusions Taken together, these findings indicate that galactose-containing polymers of potato root exudates play a central role in root-microbe interactions.
Collapse
Affiliation(s)
- Abdoul Salam Koroney
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (EA 4358), Grand Réseau de Recherche VASI ‘Végétal-Agronomie-Sol et Innovations’ et Plate-Forme d’Imagerie Cellulaire (PRIMACEN) de Haute-Normandie, Normandie Université, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Carole Plasson
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (EA 4358), Grand Réseau de Recherche VASI ‘Végétal-Agronomie-Sol et Innovations’ et Plate-Forme d’Imagerie Cellulaire (PRIMACEN) de Haute-Normandie, Normandie Université, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Barbara Pawlak
- Laboratoire de Microbiologie Signaux Microenvironnement EA 4312, Normandie Université, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Ramatou Sidikou
- Faculté des Sciences, Université A.M. de Niamey, B.P. 12022 Niamey, Niger
| | - Azeddine Driouich
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (EA 4358), Grand Réseau de Recherche VASI ‘Végétal-Agronomie-Sol et Innovations’ et Plate-Forme d’Imagerie Cellulaire (PRIMACEN) de Haute-Normandie, Normandie Université, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Laurence Menu-Bouaouiche
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (EA 4358), Grand Réseau de Recherche VASI ‘Végétal-Agronomie-Sol et Innovations’ et Plate-Forme d’Imagerie Cellulaire (PRIMACEN) de Haute-Normandie, Normandie Université, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Maïté Vicré-Gibouin
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (EA 4358), Grand Réseau de Recherche VASI ‘Végétal-Agronomie-Sol et Innovations’ et Plate-Forme d’Imagerie Cellulaire (PRIMACEN) de Haute-Normandie, Normandie Université, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
- *For correspondence. E-mail
| |
Collapse
|
49
|
Hawes M, Allen C, Turgeon BG, Curlango-Rivera G, Minh Tran T, Huskey DA, Xiong Z. Root Border Cells and Their Role in Plant Defense. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:143-161. [PMID: 27215971 DOI: 10.1146/annurev-phyto-080615-100140] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Root border cells separate from plant root tips and disperse into the soil environment. In most species, each root tip can produce thousands of metabolically active cells daily, with specialized patterns of gene expression. Their function has been an enduring mystery. Recent studies suggest that border cells operate in a manner similar to mammalian neutrophils: Both cell types export a complex of extracellular DNA (exDNA) and antimicrobial proteins that neutralize threats by trapping pathogens and thereby preventing invasion of host tissues. Extracellular DNases (exDNases) of pathogens promote virulence and systemic spread of the microbes. In plants, adding DNase I to root tips eliminates border cell extracellular traps and abolishes root tip resistance to infection. Mutation of genes encoding exDNase activity in plant-pathogenic bacteria (Ralstonia solanacearum) and fungi (Cochliobolus heterostrophus) results in reduced virulence. The study of exDNase activities in plant pathogens may yield new targets for disease control.
Collapse
Affiliation(s)
- Martha Hawes
- Department of Soil, Water and Environmental Sciences, Bio5 Institute, University of Arizona, Tucson, Arizona 85721; , ,
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706; ,
| | - B Gillian Turgeon
- School of Integrative Plant Science, Plant Pathology & Plant-Microbe Biology Section, Cornell University, Ithaca, New York 14853;
| | - Gilberto Curlango-Rivera
- Department of Soil, Water and Environmental Sciences, Bio5 Institute, University of Arizona, Tucson, Arizona 85721; , ,
| | - Tuan Minh Tran
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706; ,
| | - David A Huskey
- Department of Soil, Water and Environmental Sciences, Bio5 Institute, University of Arizona, Tucson, Arizona 85721; , ,
| | - Zhongguo Xiong
- School of Plant Science, Bio5 Institute, University of Arizona, Tucson, Arizona 85721;
| |
Collapse
|
50
|
Nakabayashi R, Saito K. Ultrahigh resolution metabolomics for S-containing metabolites. Curr Opin Biotechnol 2016; 43:8-16. [PMID: 27459328 DOI: 10.1016/j.copbio.2016.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 06/30/2016] [Accepted: 07/06/2016] [Indexed: 01/09/2023]
Abstract
The advent of the genome-editing era greatly increases the opportunities for synthetic biology research that aims to enhance production of potentially useful bioactive metabolites in heterologous hosts. A wide variety of sulfur (S)-containing metabolites (S-metabolites) are known to possess bioactivities and health-promoting properties, but finding them and their chemical assignment using mass spectrometry-based metabolomics has been difficult. In this review, we highlight recent advances on the targeted metabolomic analysis of S-metabolites (S-omics) in plants using ultrahigh resolution mass spectrometry. The use of exact mass and signal intensity differences between 32S-containing monoisotopic ions and counterpart 34S isotopic ions exploits an entirely new method to characterize S-metabolites. Finally, we discuss the availability of S-omics for synthetic biology.
Collapse
Affiliation(s)
- Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|