1
|
Romiti F, Scicluna MT, Censi F, Micarelli F, Puccica S, Carvelli A, Sala MG, Del Lesto I, Casini R, De Liberato C, Tofani S. Is it time to consider west Nile and Usutu viruses endemic in central Italy? Virus Res 2025; 355:199557. [PMID: 40081763 PMCID: PMC11957532 DOI: 10.1016/j.virusres.2025.199557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
West Nile (WNV) and Usutu (USUV) viruses co-circulated in a region of Central Italy (Lazio) in 2018, as evidenced by the detection of WNV in the nervous tissues of symptomatic horses and USUV in blood donors and mosquito pools. To assess whether these viruses were endemic in the region, we analysed: 1) diapausing Culex pipiens mosquitoes collected during the winter seasons 2022-2023 and 2023-2024, 2) Cx. pipiens mosquitoes collected during the adult activity period from April to November in 2022 and 2023 across 4 provinces, and 3) sera from 52 horses and tissues from 537 birds. Field-collected Cx. pipiens, including both diapausing and non-diapausing individuals, were tested in pools for WNV and USUV using real-time RT-PCR. Serum samples from horses were tested with two WNV ELISA assays, IgM and IgG, while bird tissues were tested for both viruses via real-time RT-PCR. A total of 18,834 Cx. pipiens females were collected, including 9,812 mosquitoes during the winter seasons and 9,022 during the adult activity periods. Mosquitoes were tested in 623 pools, with all pools of diapausing mosquitoes testing negative for both viruses and 12 pools of non-diapausing mosquitoes positive to USUV. The WNV IgG positivity of 7 horse sera, which were negative at the beginning of the study period, was not confirmed by the virus neutralization test. All tissue samples were negative for WNV and USUV. Since WNV and USUV were not detected in diapausing mosquitoes, there was no evidence of the two viruses endemicity in the study area.
Collapse
Affiliation(s)
- Federico Romiti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Via Appia Nuova 1411, 00178, Rome, Italy.
| | - Maria Teresa Scicluna
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Via Appia Nuova 1411, 00178, Rome, Italy
| | - Francesco Censi
- ASL Latina, Sanità Animale e Igiene degli Allevamenti, Via Nettunense, 04011 Aprilia (LT), Italy
| | - Florindo Micarelli
- ASL Latina, Sanità Animale e Igiene degli Allevamenti, Via Nettunense, 04011 Aprilia (LT), Italy
| | - Silvia Puccica
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Via Appia Nuova 1411, 00178, Rome, Italy
| | - Andrea Carvelli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Via Appia Nuova 1411, 00178, Rome, Italy
| | - Marcello Giovanni Sala
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Via Appia Nuova 1411, 00178, Rome, Italy
| | - Irene Del Lesto
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Via Appia Nuova 1411, 00178, Rome, Italy
| | - Riccardo Casini
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Via Appia Nuova 1411, 00178, Rome, Italy
| | - Claudio De Liberato
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Via Appia Nuova 1411, 00178, Rome, Italy
| | - Silvia Tofani
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Via Appia Nuova 1411, 00178, Rome, Italy
| |
Collapse
|
2
|
Siddiquee NH, Joyoti SA, Zaker BB, Eva MA, Nava AI, Mridu NJ, Shawon AA, Rahman S, Chowdhury TJ, Katha SS, Islam MR, Uddin MS. Molecular activity of bioactive phytocompounds for inhibiting host cell attachment and membrane fusion interacting with West Nile Virus envelope glycoprotein. PLoS One 2025; 20:e0321902. [PMID: 40273187 PMCID: PMC12021142 DOI: 10.1371/journal.pone.0321902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/13/2025] [Indexed: 04/26/2025] Open
Abstract
West Nile virus is an arbovirus primarily spread by mosquitoes, which are the principal carriers and belong to the Flaviviridae category. This widespread disease lacks specific treatments despite its potential lethality, urgently demanding novel pharmaceutical research and development aims to prevent severe or long-term complications and improve overall outcomes. Pandemic awareness, increasing global incidence, fatal illness effects, expenses associated with outbreaks, reducing suffering, and other broader implications highlight the study's wider significance. Drug design as a novel treatment approach to reduce the risk of resistance to the virus resulting from overuse of broad-spectrum antiviral therapies for unrelated viral diseases has been evaluated using computational techniques. Initially, molecular docking targeted the envelope glycoprotein of the WNV, utilizing a set of 5375 phytochemicals found in the IMPPAT database. Their binding affinities were -7.464, -5.802, -5.617, and -4.92, kcal/mol for CID: 359 (Phloroglucinol), 9064 (Cianidanol), 25310 (L-Rhamnose), and 492405 (Favipiravir), respectively. The lead compounds and the control ligand both bind at the common active site of the macro-molecule, as evidenced by their interactions with the same amino acid residues at LEU281, ASN47, THR282, SER29, MET48, MET46, and MET45, correspondingly. In post-docking MM-GBSA the negative binding energy of the P-L complex for the compounds CIDs: 359, 9064, 25310, and 492405 (control) were -29.16, -33.45, -32.02, and -3.16 kcal/mol, correspondingly. The selected compounds are secure and efficient since they demonstrate excellent toxicological and Pk characteristics. The compounds were further evaluated to confirm their stability and binding affinity to the target protein by molecular dynamics simulation (RMSD, RMSF, Rg, SASA, H-bond, P-L, and L-P contact). Following this, principal component analysis (PCA) and dynamic cross-correlation matrix (DCCM) studies were conducted using the MD trajectory data. The ligands evaluated in this study demonstrated considerable stability of the proteins' binding site when complexed with CID: 9064 and CID: 25310, respectively, in the MD simulation, which also revealed a high negative binding free energy value, indicating a robust interaction between the target and lead compounds. The three principal components (PC1, PC2, PC3) for the lead compounds corresponding to CID: 9064 (40.37%, 23.02%, and 8.82%) and CID: 25310 (73.04%, 10.06%, and 3.77%), respectively, indicate that their complexes are more stable than the other L-P complexes. Consequently, both the compounds derived from the plants Tamarindus indica and Plantago ovate, respectively, may potentially impede the viral activity of the WNV envelope glycoprotein, indicating the possibility of these compounds as prospective phytochemical therapeutic candidates. This preclinical study can be used in further drug development processes, including in vivo studies and animal trials.
Collapse
Affiliation(s)
- Noimul Hasan Siddiquee
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
| | - Shanjida Akter Joyoti
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
- Department of Fisheries, University of Chittagong, Chittagong, Bangladesh
| | - Bushra Binte Zaker
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
- Department of Biotechnology, BRAC University, Dhaka, Bangladesh
| | - Mansura Akter Eva
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Alif Islam Nava
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
| | - Nusrat Jahan Mridu
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
- Department of Pharmacy, Bangladesh University, Dhaka, Bangladesh
| | - Al Amin Shawon
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
- Department of Biochemistry and Molecular Biology, Noakhali Science and Technology University Noakhali, Noakhali, Bangladesh
| | - Sanjida Rahman
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Tasnuva Jamil Chowdhury
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
- Department of Biochemistry and Molecular Biology, Noakhali Science and Technology University Noakhali, Noakhali, Bangladesh
| | - Susmita Sarkar Katha
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md. Rafiul Islam
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
- Department of Microbiology, University of Chittagong, Chittagong, Bangladesh
| | - Mohammad Sharif Uddin
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
| |
Collapse
|
3
|
Rusenova N, Rusenov A. First Serologic Evidence of West Nile Virus and Usutu Virus Circulation Among Dogs in the Bulgarian Danube Region and Analysis of Some Risk Factors. Vet Sci 2025; 12:373. [PMID: 40284875 PMCID: PMC12031095 DOI: 10.3390/vetsci12040373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/07/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
This study aimed to assess West Nile virus (WNV) and Usutu virus seroprevalence among the dog population in the Danube region, Bulgaria, to confirm the results of ELISA by the virus neutralisation test (VNT), as well as to analyse several risk factors of seropositivity in dogs. To implement this, a total of 201 blood samples were collected from dogs in four districts bordering the Danube River. All the samples were tested for anti-WNV protein E antibodies using competitive ELISA. Neutralising antibodies against WNV and Usutu virus were tested in all the ELISA-positive samples. The results show a WNV seroprevalence of 45.3% (n = 91, CI = 36.45-55.59) by ELISA, whereas the virus neutralisation test indicated a seroprevalence of 21.9% (n = 44, CI = 15.91-29.39). Neutralising antibodies against Usutu virus were detected for the first time in Bulgaria, with a prevalence of 6% (n = 12, CI = 3.09-10.43). Compared to VNT, ELISA demonstrated 100.0% sensitivity and 70.1% specificity. The region (p < 0.0187), the district (p = 0.0258) and the ages of the dogs (p = 0.0180) were identified as statistically significant risk factors associated with WNV seropositivity. This study provides indirect evidence of WNV and Usutu virus circulation among dogs in the Danube region of Bulgaria, highlighting a potential risk for susceptible hosts in the area.
Collapse
Affiliation(s)
- Nikolina Rusenova
- Department of Veterinary Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Anton Rusenov
- Department of Internal Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
| |
Collapse
|
4
|
Micocci M, Pichler V, Serini P, Giammarioli C, Malandruccolo C, Virgillito C, Ballardini M, Lia RP, Arnoldi D, Vettore S, Bonetto D, Martini S, Drago A, della Torre A, Caputo B. Widespread Distribution of chs-1 Mutations Associated with Resistance to Diflubenzuron Larvicide in Culex pipiens Across Italy, Reaching Virtual Fixation in the Venetian Lagoon. INSECTS 2025; 16:204. [PMID: 40003834 PMCID: PMC11856509 DOI: 10.3390/insects16020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025]
Abstract
Control interventions against mosquito larvae are the primary measure to reduce the adult abundance and risk of arbovirus outbreaks in Europe. One of the most commonly used larvicides in Italy is diflubenzuron (DFB), which targets chitin synthase 1 (chs-1), interrupting the normal development of larvae into adults. Recent studies identified high levels of DFB resistance in Culex pipiens populations from Emilia-Romagna (Italy) associated with I1043L/M/F mutations at position 1043 of the chs-1 gene. The aim of the present study was to assess the circulation of 1043 resistance alleles in Cx. pipiens populations across Italy, outside Emilia-Romagna, with a focus on the Veneto region. Overall, 1032 specimens were genotyped. The 1043L allele was found in all examined Italian regions (Trentino-Alto Adige 19-36%; Veneto 0-91%; Piemonte 11%; Liguria 28%; Lazio 0-8%; Puglia 5%). The highest frequencies (up to >90%) were observed in the Venetian lagoon, where 1043M was also detected (6-11%). Overall, the relatively low frequencies of 1043 mutations despite extensive and longstanding use of DFB in Italy suggest a high fitness cost worthy of further investigations, while their extremely high frequencies in coastal touristic sites point to these sites as the most relevant for resistance monitoring and larvicide rotation.
Collapse
Affiliation(s)
- Martina Micocci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (M.M.); (V.P.); (P.S.); (C.V.)
| | - Verena Pichler
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (M.M.); (V.P.); (P.S.); (C.V.)
| | - Paola Serini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (M.M.); (V.P.); (P.S.); (C.V.)
| | - Carola Giammarioli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (M.M.); (V.P.); (P.S.); (C.V.)
| | - Chiara Malandruccolo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (M.M.); (V.P.); (P.S.); (C.V.)
| | - Chiara Virgillito
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (M.M.); (V.P.); (P.S.); (C.V.)
| | - Marco Ballardini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy;
| | - Riccardo Paolo Lia
- Department of Veterinary Medicine, University of Bari “Aldo Moro”, 70121 Valenzano, Italy;
| | - Daniele Arnoldi
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, 38098 Trento, Italy;
| | - Stefano Vettore
- Entostudio Srl, Ponte San Nicolò, 35020 Padova, Italy; (S.V.); (D.B.); (S.M.); (A.D.)
| | - Davide Bonetto
- Entostudio Srl, Ponte San Nicolò, 35020 Padova, Italy; (S.V.); (D.B.); (S.M.); (A.D.)
| | - Simone Martini
- Entostudio Srl, Ponte San Nicolò, 35020 Padova, Italy; (S.V.); (D.B.); (S.M.); (A.D.)
| | - Andrea Drago
- Entostudio Srl, Ponte San Nicolò, 35020 Padova, Italy; (S.V.); (D.B.); (S.M.); (A.D.)
| | - Alessandra della Torre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (M.M.); (V.P.); (P.S.); (C.V.)
| | - Beniamino Caputo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (M.M.); (V.P.); (P.S.); (C.V.)
| |
Collapse
|
5
|
Orru' S, Reissinger A, Filomena A, Heitmann A, Funk MB, Schmidt-Chanasit J, Kreß J, Scheiblauer H, Cadar D, Fiedler SA. Assessment of the effectiveness of West Nile virus screening by analysing suspected positive donations among blood donors, Germany, 2020 to 2023. Euro Surveill 2025; 30:2400373. [PMID: 40017391 PMCID: PMC11869365 DOI: 10.2807/1560-7917.es.2025.30.8.2400373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/19/2024] [Indexed: 03/01/2025] Open
Abstract
BackgroundThe first autochthonous human West Nile virus (WNV)-positive cases in Germany were confirmed in 2019. Risk minimisation measures (RMM) were introduced in 2020; no WNV transfusion-transmitted infections have been reported to date.AimTo analyse German suspected WNV-positive blood donations during annual seasons 2020-23 to review donor testing requirements.MethodsWNV look-back procedures were initiated as per German regulations and additional donor data were collected. Blood samples were analysed by metagenomic next-generation sequencing (mNGS), individual donor nucleic acid amplification technique (ID-NAT)-based testing and antibody (Ab) testing.ResultsSeventy-four cases were followed up after WNV-positive donor mini-pool screening. Forty-five (83%) of 54 samples tested with the cobas WNV assay and 14 (29%) of 49 samples tested with the RealStar WNV assay showed a reactive ID-NAT-based result; the viral load ranged between 70,251 IU/mL and values below quantification limits. Fifteen (23%) of 64 samples serologically tested were reactive with at least one of the three Ab tests performed; the previous WNV-negative donation was nearly always documented > 28 days before. Of 73 samples sequenced, mNGS detected WNV in 26 (36%) and other flaviviruses in 14 (19%) cases.ConclusionIn some suspected cases where a WNV infection was not confirmed, mNGS demonstrated a cross-reaction with other flaviviruses. Ab testing could only detect WNV in late stages of infection. A NAT-based WNV donor screening with a detection limit of at least 120 IU/mL seems to be a sufficiently effective RMM at present. However, a continuous re-evaluation of test strategy is always required.
Collapse
Affiliation(s)
- Stefano Orru'
- Division of Safety of Biomedicines and Diagnostics, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Angela Filomena
- Testing Laboratory for In Vitro Diagnostics, Paul-Ehrlich-Institut, Langen, Germany
| | - Anna Heitmann
- Department of Arbovirology and Entomology, National Reference Center for Tropical Infectious Pathogens, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Markus Benedikt Funk
- Division of Safety of Biomedicines and Diagnostics, Paul-Ehrlich-Institut, Langen, Germany
| | - Jonas Schmidt-Chanasit
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Germany
- Department of Arbovirology and Entomology, National Reference Center for Tropical Infectious Pathogens, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Julia Kreß
- Section of Molecular Virology, Paul-Ehrlich-Institut, Langen, Germany
| | - Heinrich Scheiblauer
- Testing Laboratory for In Vitro Diagnostics, Paul-Ehrlich-Institut, Langen, Germany
| | - Dániel Cadar
- Department of Arbovirology and Entomology, National Reference Center for Tropical Infectious Pathogens, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sarah Anna Fiedler
- Division of Safety of Biomedicines and Diagnostics, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
6
|
Vignjević G, Bušić N, Turić N, Varga Z, Zana B, Ábrahám Á, Kurucz K, Vrućina I, Merdić E. First Detection of West Nile Virus Lineage 2 in Culex pipiens Vectors in Croatia. Pathogens 2024; 13:1131. [PMID: 39770390 PMCID: PMC11676261 DOI: 10.3390/pathogens13121131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
The West Nile virus (WNV) has recently become more widespread, posing a threat to both human and animal health. In Western Europe, most outbreaks have been caused by WNV lineage 1, while in Eastern Europe, WNV lineage 2 has led to human and bird mortality. The ability to appropriately manage this threat is dependent on integrated surveillance and early detection. This study aimed to quantify the prevalence of WNV infection in mosquitoes and to identify the circulating viral lineage in eastern Croatia. Mosquito traps were set up in rural and urban areas during the 2021-2023 seasons, and the collected specimens were identified morphologically. Mosquito species Culex pipiens and Aedes albopictus were tested for Flaviviruses using conventional PCR in a heminested system. The positive samples were then subjected to a specific real-time PCR designed to detect WNV. A total of 385 mosquito pools were tested, and positive pools were found in samples from Osijek-Baranja and Vukovar-Srijem, both of which contained Cx. pipiens mosquitoes. Sequencing of amplicons revealed WNV lineage 2 partial NS5 gene sequences. Phylogenetic analysis suggests the Hungarian origin of strain, which complements birds' migratory routes. These findings indicate the first detection of WNV in mosquitoes in Croatia. This suggests that human cases in this region are likely due to infections with lineage 2 transmitted by local Culex mosquitoes.
Collapse
Affiliation(s)
- Goran Vignjević
- Department of Biology, University Josip Juraj Strossmayer of Osijek, 31000 Osijek, Croatia; (G.V.); (I.V.); (E.M.)
| | - Nataša Bušić
- Department of Biology, University Josip Juraj Strossmayer of Osijek, 31000 Osijek, Croatia; (G.V.); (I.V.); (E.M.)
| | - Nataša Turić
- Department of Biology, University Josip Juraj Strossmayer of Osijek, 31000 Osijek, Croatia; (G.V.); (I.V.); (E.M.)
- Teaching Institute of Public Health of Osijek-Baranja County, 31000 Osijek, Croatia
| | - Zsaklin Varga
- National Laboratory of Virology, Szentagothai Research Centre, University of Pécs, 7600 Pécs, Hungary; (Z.V.); (B.Z.); (Á.Á.); (K.K.)
- Institute of Biology, Faculty of Sciences, University of Pécs, 7600 Pécs, Hungary
| | - Brigitta Zana
- National Laboratory of Virology, Szentagothai Research Centre, University of Pécs, 7600 Pécs, Hungary; (Z.V.); (B.Z.); (Á.Á.); (K.K.)
| | - Ágota Ábrahám
- National Laboratory of Virology, Szentagothai Research Centre, University of Pécs, 7600 Pécs, Hungary; (Z.V.); (B.Z.); (Á.Á.); (K.K.)
| | - Kornélia Kurucz
- National Laboratory of Virology, Szentagothai Research Centre, University of Pécs, 7600 Pécs, Hungary; (Z.V.); (B.Z.); (Á.Á.); (K.K.)
- Institute of Biology, Faculty of Sciences, University of Pécs, 7600 Pécs, Hungary
| | - Ivana Vrućina
- Department of Biology, University Josip Juraj Strossmayer of Osijek, 31000 Osijek, Croatia; (G.V.); (I.V.); (E.M.)
| | - Enrih Merdić
- Department of Biology, University Josip Juraj Strossmayer of Osijek, 31000 Osijek, Croatia; (G.V.); (I.V.); (E.M.)
| |
Collapse
|
7
|
Silverj A, Mencattelli G, Monaco F, Iapaolo F, Teodori L, Leone A, Polci A, Curini V, Di Domenico M, Secondini B, Di Lollo V, Ancora M, Di Gennaro A, Morelli D, Perrotta MG, Marini G, Rosà R, Segata N, Rota-Stabelli O, Rizzoli A, Savini G, West Nile Virus Working Group. Origin and evolution of West Nile virus lineage 1 in Italy. Epidemiol Infect 2024; 152:e150. [PMID: 39620707 PMCID: PMC11626449 DOI: 10.1017/s0950268824001420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/10/2024] [Accepted: 09/03/2024] [Indexed: 12/11/2024] Open
Abstract
West Nile virus (WNV) is a mosquito-borne pathogen that can infect humans, equids, and many bird species, posing a threat to their health. It consists of eight lineages, with Lineage 1 (L1) and Lineage 2 (L2) being the most prevalent and pathogenic. Italy is one of the hardest-hit European nations, with 330 neurological cases and 37 fatalities in humans in the 2021-2022 season, in which the L1 re-emerged after several years of low circulation. We assembled a database comprising all publicly available WNV genomes, along with 31 new Italian strains of WNV L1 sequenced in this study, to trace their evolutionary history using phylodynamics and phylogeography. Our analysis suggests that WNV L1 may have initially entered Italy from Northern Africa around 1985 and indicates a connection between European and Western Mediterranean countries, with two distinct strains circulating within Italy. Furthermore, we identified new genetic mutations that are typical of the Italian strains and that can be tested in future studies to assess their pathogenicity. Our research clarifies the dynamics of WNV L1 in Italy, provides a comprehensive dataset of genome sequences for future reference, and underscores the critical need for continuous and coordinated surveillance efforts between Europe and Africa.
Collapse
Affiliation(s)
- Andrea Silverj
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Department CIBIO, University of Trento, Trento, Italy
| | - Giulia Mencattelli
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Federica Monaco
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Federica Iapaolo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Liana Teodori
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Alessandra Leone
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Andrea Polci
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Valentina Curini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Marco Di Domenico
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Barbara Secondini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Valeria Di Lollo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Massimo Ancora
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Annapia Di Gennaro
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Daniela Morelli
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | | | - Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Roberto Rosà
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Omar Rota-Stabelli
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Department CIBIO, University of Trento, Trento, Italy
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - West Nile Virus Working Group
- The members of the West Nile virus working group are listed in the group authorship list, located in supplementary materials
| |
Collapse
|
8
|
Gupta S, Kaur R, Sohal JS, Singh SV, Das K, Sharma MK, Singh J, Sharma S, Dhama K. Countering Zoonotic Diseases: Current Scenario and Advances in Diagnostics, Monitoring, Prophylaxis and Therapeutic Strategies. Arch Med Res 2024; 55:103037. [PMID: 38981342 DOI: 10.1016/j.arcmed.2024.103037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/24/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
Human life and health have interacted reciprocally with the surrounding environment and animal fauna for ages. This relationship is evident in developing nations, where human life depends more on the animal population for food, transportation, clothing, draft power, and fuel sources, among others. This inseparable link is a potent source of public health issues, especially in outbreaks of zoonotic diseases transmitted from animals to humans. Zoonotic diseases are referred to as diseases that are naturally transmitted between vertebrate animals and humans. Among the globally emerging diseases in the last decade, 75% are of animal origin, most of which are life-threatening. Since most of them are caused by potent new pathogens capable of long-distance transmission, the impact is widespread and has serious public health and economic consequences. Various other factors also contribute to the transmission, spread, and outbreak of zoonotic diseases, among which industrialization-led globalization followed by ecological disruption and climate change play a critical role. In this regard, all the possible strategies, including advances in rapid and confirmatory disease diagnosis and surveillance/monitoring, immunization/vaccination, therapeutic approaches, appropriate prevention and control measures to be adapted, and awareness programs, need to be adopted collaboratively among different health sectors in medical, veterinary, and concerned departments to implement the necessary interventions for the effective restriction, minimization, and timely control of zoonotic threats. The present review focuses on the current scenario of zoonotic diseases and their counteracting approaches to safeguard their health impact on humans.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Chaumuhan, Uttar Pradesh, India.
| | - Rasanpreet Kaur
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Chaumuhan, Uttar Pradesh, India
| | - Jagdip Singh Sohal
- Centre for Vaccine and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Shoor Vir Singh
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Chaumuhan, Uttar Pradesh, India
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, West Bengal, India
| | - Manish Kumar Sharma
- Department of Biotechnology, Dr. Rammanohar Lohia Avadh University, Uttar Pradesh, India
| | - Jitendra Singh
- Department of Translational Medicine, All India Institute of Medical Sciences, Saket Nagar, Madhya Pradesh, India
| | - Shalini Sharma
- Department of Veterinary Physiology and Biochemistry, LUVAS, Hisar, Haryana, India; Division of Veterinary Physiology and Biochemistry, SKUAST-J, Jammu, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| |
Collapse
|
9
|
Naveed A, Eertink LG, Wang D, Li F. Lessons Learned from West Nile Virus Infection:Vaccinations in Equines and Their Implications for One Health Approaches. Viruses 2024; 16:781. [PMID: 38793662 PMCID: PMC11125849 DOI: 10.3390/v16050781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Humans and equines are two dead-end hosts of the mosquito-borne West Nile virus (WNV) with similar susceptibility and pathogenesis. Since the introduction of WNV vaccines into equine populations of the United States of America (USA) in late 2002, there have been only sporadic cases of WNV infection in equines. These cases are generally attributed to unvaccinated and under-vaccinated equines. In contrast, due to the lack of a human WNV vaccine, WNV cases in humans have remained steadily high. An average of 115 deaths have been reported per year in the USA since the first reported case in 1999. Therefore, the characterization of protective immune responses to WNV and the identification of immune correlates of protection in vaccinated equines will provide new fundamental information about the successful development and evaluation of WNV vaccines in humans. This review discusses the comparative epidemiology, transmission, susceptibility to infection and disease, clinical manifestation and pathogenesis, and immune responses of WNV in humans and equines. Furthermore, prophylactic and therapeutic strategies that are currently available and under development are described. In addition, the successful vaccination of equines against WNV and the potential lessons for human vaccine development are discussed.
Collapse
Affiliation(s)
| | | | | | - Feng Li
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA; (A.N.); (L.G.E.); (D.W.)
| |
Collapse
|
10
|
de Freitas Costa E, Streng K, Avelino de Souza Santos M, Counotte MJ. The effect of temperature on the boundary conditions of West Nile virus circulation in Europe. PLoS Negl Trop Dis 2024; 18:e0012162. [PMID: 38709836 PMCID: PMC11098507 DOI: 10.1371/journal.pntd.0012162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/16/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024] Open
Abstract
West Nile virus (WNV) is a vector-borne flavivirus that causes an increasing number of human and equine West Nile fever cases in Europe. While the virus has been present in the Mediterranean basin and the Balkans since the 1960s, recent years have witnessed its northward expansion, with the first human cases reported in Germany in 2018 and the Netherlands in 2020. WNV transmission and amplification within mosquitoes are temperature-dependent. This study applies a mathematical modelling approach to assess the conditions under which WNV circulation occurs based on the proportion of mosquito bites on WNV-competent birds (dilution), vector-host ratios, mosquito season length and the observed daily temperature data. We modelled five distinct European regions where previous WNV circulation has been observed within the Netherlands, Germany, Spain, Italy, and Greece. We observed that the number of days in which the basic reproduction number (R0) is above one, increased over the last 40 years in all five regions. In the Netherlands, the number of days in which the R0 is above one, is 70% lower than in Spain. The temperature in Greece, Spain and Italy allowed for circulation under low vector-host ratios, and at a high dilution. On the other hand in the Netherlands and Germany, given the observed daily temperature, the thresholds for circulation requires a lower dilution and higher vector-host ratios. For the Netherlands, a short window of introductions between late May and mid-June would result in detectable outbreaks. Our findings revealed that the temperate maritime climate of the Netherlands allows WNV circulation primarily during warmer summers, and only under high vector-host ratios. This research contributes valuable insights into the dynamic relationship between temperature, vector properties, and WNV transmission, offering guidance for proactive strategies in addressing this emerging health threat in Europe.
Collapse
Affiliation(s)
- Eduardo de Freitas Costa
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, the Netherlands
| | - Kiki Streng
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, the Netherlands
| | | | - Michel Jacques Counotte
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, the Netherlands
| |
Collapse
|
11
|
Genc AC, Karabay O, Güçlü E, Çalıca Utku A, Vatan A, Tuna N, Budak G, Şimşek A, Uzun C, Alan S, Okan HD, Genc FT, Öğütlü A. New Prognostic Parameter of West Nile Virus: Platelet Distribution Width. Vector Borne Zoonotic Dis 2024; 24:166-171. [PMID: 37824783 DOI: 10.1089/vbz.2023.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Background: West Nile virus (WNV) infection is a viral disease caused by arboviruses. It can cause epidemics of febrile diseases and meningoencephalitis, especially at the end of the summer season. In this study, we aimed to determine the risk factors of WNV encephalitis with a case-control study of the patients followed in our clinic. Materials and Methods: Among the patients who applied to our hospital with sudden onset fever, headache, myalgia, nausea, vomiting, maculopapular rash, viral meningitis, or encephalitis findings in late summer and early autumn, those diagnosed with positive WNV PCR and antibody tests were defined as WNV cases. In the same date range, patients with clinically compatible but negative serological and PCR tests for WNV in our hospital were considered as the control group. Results: WNV infection was diagnosed in 26 of 48 patients who were examined with a preliminary diagnosis of WNV infection, and the other 22 patients were considered as the control group. A statistically significant difference was found between the two groups in C-reactive protein, procalcitonin, 1-h erythrocyte sedimentation rate, alkaline phosphatase, platelet, and platelet distribution width (PDW). PDW >17.85% indicated WNV infection with 82% sensitivity and 91% specificity. PDW percentage >17.85 increased the risk of WNV infection by 6.1 times. The power of the study was calculated as 83%. Conclusion: The most common findings in WNV cases were fever and confusion. WNV infection should be considered in the differential diagnosis in patients with fever and confusion in September and October in settlements on the migration route of birds. The percentage of PDW in whole blood examination can guide the differential diagnosis of WNV cases.
Collapse
Affiliation(s)
- Ahmed Cihad Genc
- Department of Internal Medicine, Hendek State Hospital, Sakarya, Turkey
| | - Oğuz Karabay
- Department of Infectious Diseases and Clinical Microbiology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | - Ertuğrul Güçlü
- Department of Infectious Diseases and Clinical Microbiology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | - Aylin Çalıca Utku
- Department of Infectious Diseases and Clinical Microbiology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | - Aslı Vatan
- Department of Infectious Diseases and Clinical Microbiology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | - Nazan Tuna
- Department of Infectious Diseases and Clinical Microbiology, Namık Kemal University Faculty of Medicine, Tekirdağ, Turkey
| | - Gökçen Budak
- Department of Infectious Diseases and Clinical Microbiology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | - Adem Şimşek
- Department of Infectious Diseases and Clinical Microbiology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | - Cem Uzun
- Department of Infectious Diseases and Clinical Microbiology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | - Sevgi Alan
- Department of Infectious Diseases and Clinical Microbiology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | - Hüseyin Doğuş Okan
- Department of Infectious Diseases and Clinical Microbiology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | | | - Aziz Öğütlü
- Department of Infectious Diseases and Clinical Microbiology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| |
Collapse
|
12
|
Ben-Mostafa KK, Savini G, Di Gennaro A, Teodori L, Leone A, Monaco F, Alaoqib MMA, Rayes AA, Dayhum A, Eldaghayes I. Evidence of West Nile Virus Circulation in Horses and Dogs in Libya. Pathogens 2023; 13:41. [PMID: 38251348 PMCID: PMC10820222 DOI: 10.3390/pathogens13010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
West Nile virus (WNV) is a globally significant mosquito-borne Flavivirus that causes West Nile disease (WND). In Libya, evidence of WNV circulation has been reported in humans but never in animals. The aim of this study was to determine the seroprevalence of WNV infection in horses and dogs in Libya. In total, 574 and 63 serum samples were collected from apparently healthy, unvaccinated horses and dogs, respectively, between 2016 and 2019. A commercially available competitive enzyme-linked immunosorbent assay (c-ELISA) kit was initially used to test the collected samples for the presence of WNV Ig-G antibodies. Positive and doubtful sera were also tested using a more specific virus neutralisation assay to confirm whether the ELISA-positive results were due to WNV or other Flavivirus antibodies. The seroprevalence of WNV IgG antibodies according to ELISA was 13.2% out of 574 of total horses' samples and 30.2% out of 63 of total dogs' samples. The virus neutralisation test (VNT) confirmed that 10.8% (62/574) and 27% (17/63) were positive for WNV-neutralising titres ranging from 1:10 to 1:640. Univariable analysis using chi-square tests was conducted to measure the statistical significance of the association between the hypothesized risk factors including city, sex, breed, and age group and were then analyzed using the subsequent multivariable logistic regression model for horse samples. Age group was found to be the only significant risk factor in this study. The results of the present study provide new evidence about WNV circulation in Libya.
Collapse
Affiliation(s)
- Kholoud Khalid Ben-Mostafa
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli P.O. Box 13662, Libya
- National Center for Animal Health, Tripoli P.O. Box 83252, Libya
| | - Giovanni Savini
- Department of Virology and Tissue Culture, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G.Caporale”, 64100 Teramo, Italy
| | - Annapia Di Gennaro
- Department of Virology and Tissue Culture, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G.Caporale”, 64100 Teramo, Italy
| | - Liana Teodori
- Department of Virology and Tissue Culture, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G.Caporale”, 64100 Teramo, Italy
| | - Alessandra Leone
- Department of Virology and Tissue Culture, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G.Caporale”, 64100 Teramo, Italy
| | - Federica Monaco
- Department of Virology and Tissue Culture, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G.Caporale”, 64100 Teramo, Italy
| | - Mohammed Masoud A. Alaoqib
- Department of Internal and Infectious Diseases, Faculty of Veterinary Medicine, Omar Al-Mukhtar University, Albaida P.O. Box 919, Libya
| | - Abdunnabi A. Rayes
- Department of Internal Medicine, Faculty of Medicine, University of Tripoli, Tripoli P.O. Box 13932, Libya
| | - Abdunaser Dayhum
- Department of Preventive Medicine, Faculty of Veterinary Medicine, University of Tripoli, Tripoli P.O. Box 13662, Libya
| | - Ibrahim Eldaghayes
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli P.O. Box 13662, Libya
| |
Collapse
|
13
|
Park H, Kwon N, Park G, Jang M, Kwon Y, Yoon Y, An J, Min J, Lee T. Fast-response electrochemical biosensor based on a truncated aptamer and MXene heterolayer for West Nile virus detection in human serum. Bioelectrochemistry 2023; 154:108540. [PMID: 37556929 DOI: 10.1016/j.bioelechem.2023.108540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus that can cause West Nile fever, meningitis, encephalitis, and polio. Early detection of WNV is important to prevent infection spread on the field. To commercialize the electrochemical biosensor for WNV, rapid target detection with the cheap manufacture cost is essential. Here, we developed a fast-response electrochemical biosensor consisting of a truncated WNV aptamer/MXene (Ti3C2Tx) bilayer on round-type micro gap. To reduce the target binding time, the application of the alternating current electrothermal flow (ACEF) technology reduced the target detection time to within 10 min, providing a rapid biosensor platform. The MXene nanosheet improved electrochemical signal amplification, and the aptamer produced through systematic evolution of ligands by exponential enrichment process eliminated unnecessary base sequences via truncation and lowered the manufacturing cost. Under optimized conditions, the WNV limit of detection (LOD) and selectivity were measured using electrochemical measurement methods, including cyclic voltammetry and square wave voltammetry. The LOD was 2.57 pM for WNV diluted in deionized water and 1.06 pM for WNV diluted in 10% human serum. The fabricated electrochemical biosensor has high selectivity and allows rapid detection, suggesting the possibility of future application in the diagnosis of flaviviridae virus.
Collapse
Affiliation(s)
- Hanbin Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Nayeon Kwon
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Goeun Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Moonbong Jang
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Yein Kwon
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Yejin Yoon
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Jeongyun An
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Junhong Min
- School of Integrative Engineering Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea.
| |
Collapse
|
14
|
Ferraccioli F, Riccetti N, Fasano A, Mourelatos S, Kioutsioukis I, Stilianakis NI. Effects of climatic and environmental factors on mosquito population inferred from West Nile virus surveillance in Greece. Sci Rep 2023; 13:18803. [PMID: 37914706 PMCID: PMC10620416 DOI: 10.1038/s41598-023-45666-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023] Open
Abstract
Mosquito-borne diseases' impact on human health is among the most prominent of all communicable diseases. With limited pool of tools to contrast these diseases, public health focus remains preventing mosquito-human contacts. Applying a hierarchical spatio-temporal Bayesian model on West Nile virus (WNV) surveillance data from Greece, we aimed to investigate the impact of climatic and environmental factors on Culex mosquitoes' population. Our spatio-temporal analysis confirmed climatic factors as major drivers of WNV-transmitting-Culex mosquitoes population dynamics, with temperature and long periods of moderate-to-warm climate having the strongest positive effect on mosquito abundance. Conversely, rainfall, high humidity, and wind showed a negative impact. The results suggest the presence of statistically significant differences in the effect of regional and seasonal characteristics, highlighting the complex interplay between climatic, geographical and environmental factors in the dynamics of mosquito populations. This study may represent a relevant tool to inform public health policymakers in planning preventive measures.
Collapse
Affiliation(s)
- Federico Ferraccioli
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027, Ispra, VA, Italy
- Department of Statistical Sciences, University of Padova, Via C. Battisti 241, 35121, Padua, PD, Italy
| | - Nicola Riccetti
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027, Ispra, VA, Italy
| | - Augusto Fasano
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027, Ispra, VA, Italy
- Department of Statistics, Catholic University of the Sacred Heart, Largo A. Gemelli, 20123, Milan, MI, Italy
| | | | | | - Nikolaos I Stilianakis
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027, Ispra, VA, Italy
- Department of Biometry and Epidemiology, University of Erlangen-Nuremberg, Waldstraße 6, 91054, Erlangen, Germany
| |
Collapse
|
15
|
Riccetti N, Ferraccioli F, Fasano A, Stilianakis NI. Demographic characteristics associated with West Nile virus neuroinvasive disease - A retrospective study on the wider European area 2006-2021. PLoS One 2023; 18:e0292187. [PMID: 37768957 PMCID: PMC10538693 DOI: 10.1371/journal.pone.0292187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND With a case-fatality-risk ranging from 3.0 to >20.0% and life-long sequelae, West Nile neuroinvasive disease (WNND) is the most dangerous outcome of West Nile virus (WNV) infection in humans. As no specific prophylaxis nor therapy is available for these infections, focus is on preventive strategies. We aimed to find variables associated with WNND diagnosis, hospitalisation or death, to identify high-risk sub-groups of the population, on whom to concentrate these strategies. METHODS We used data from The European Surveillance System-TESSy, provided by National Public Health Authorities, and released by the European Centre for Disease Prevention and Control (ECDC). In two Firth-penalised logistic regression models, we considered age, sex, clinical criteria, epidemiological link to other cases (epi-link), calendar year, and season as potential associated variables. In one model we considered also the rural/urban classification of the place of infection (RUC), while in the other the specific reporting country. FINDINGS Among confirmed West Nile Virus cases, 2,916 WNND cases were registered, of which 2,081 (71.4%), and 383 (13.1%) resulted in the hospitalisation and death of the patient, respectively. Calendar year, RUC/country, age, sex, clinical criteria, and epi-link were associated with WNND diagnosis. Hospitalisation was associated with calendar year and RUC/country; whereas death was associated with age, sex and country. INTERPRETATION Our results support previous findings on WNND associated variables (most notably age and sex); while by observing the whole population of WNND cases in the considered area and period, they also allow for stronger generalizations, conversely to the majority of previous studies, which used sample populations.
Collapse
Affiliation(s)
- Nicola Riccetti
- European Commission, Joint Research Centre (JRC), Ispra (VA), Italy
| | | | - Augusto Fasano
- European Commission, Joint Research Centre (JRC), Ispra (VA), Italy
| | - Nikolaos I. Stilianakis
- European Commission, Joint Research Centre (JRC), Ispra (VA), Italy
- Department of Biometry and Epidemiology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
16
|
Riccò M, Baldassarre A, Corrado S, Bottazzoli M, Marchesi F. Seroprevalence of Crimean Congo Hemorrhagic Fever Virus in Occupational Settings: Systematic Review and Meta-Analysis. Trop Med Infect Dis 2023; 8:452. [PMID: 37755913 PMCID: PMC10538165 DOI: 10.3390/tropicalmed8090452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023] Open
Abstract
Crimean Congo Hemorrhagic Fever (CCHF) Virus can cause a serious human disease, with the case fatality ratio previously estimated to be 30-40%. Our study summarized seroprevalence data from occupational settings, focusing on the following occupational groups: animal handlers, abattoir workers, farmers, healthcare workers, veterinarians, rangers, and hunters. Systematic research was performed on three databases (PubMed, EMBASE, MedRxiv), and all studies reporting seroprevalence rates (IgG-positive status) for CCHF virus were retrieved and their results were reported, summarized, and compared. We identified a total of 33 articles, including a total of 20,195 samples, i.e., 13,197 workers from index occupational groups and 6998 individuals from the general population. Pooled seroprevalence rates ranged from 4.751% (95% confidence intervals (95% CI) 1.834 to 11.702) among animal handlers, to 3.403% (95% CI 2.44 to 3.932) for farmers, 2.737% (95% CI 0.896 to 8.054) among rangers and hunters, 1.900% (95% CI 0.738 to 4.808) for abattoir workers, and 0.644% (95% CI 0.223-1.849) for healthcare workers, with the lowest estimate found in veterinarians (0.283%, 95% CI 0.040-1.977). Seroprevalence rates for abattoir workers (odds ratio (OR) 4.198, 95% CI 1.060-16.464), animal handlers (OR 2.399, 95% CI 1.318-4.369), and farmers (OR 2.280, 95% CI 1.419 to 3.662) largely exceeded the official notification rates for CCHF in the general population. CCHF is reasonably underreported, and pooled estimates stress the importance of improving the adherence to personal protective equipment use and appropriate preventive habits.
Collapse
Affiliation(s)
- Matteo Riccò
- AUSL–IRCCS di Reggio Emilia, Servizio di Prevenzione e Sicurezza Negli Ambienti di Lavoro (SPSAL), Local Health Unit of Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Antonio Baldassarre
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
| | - Silvia Corrado
- ASST Rhodense, Dipartimento della donna e Area Materno-Infantile, UOC Pediatria, 20024 Garbagnate Milanese, Italy;
| | - Marco Bottazzoli
- Department of Otorhinolaryngology, APSS Trento, 38122 Trento, Italy;
| | - Federico Marchesi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| |
Collapse
|
17
|
Isibor PO, Onwaeze OO, Kayode-Edwards II, Agbontaen DO, Ifebem-Ezima IAM, Bilewu O, Onuselogu C, Akinniyi AP, Obafemi YD, Oniha MI. Investigating and combatting the key drivers of viral zoonoses in Africa: an analysis of eight epidemics. BRAZ J BIOL 2023; 84:e270857. [PMID: 37531478 DOI: 10.1590/1519-6984.270857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/02/2023] [Indexed: 08/04/2023] Open
Abstract
Investigating the interplay of factors that result in a viral zoonotic outbreak is difficult, though it is increasingly important. As anthropogenic influences shift the delicate balance of ecosystems, new zoonoses emerge in humans. Sub-Saharan Africa is a notable hotspot for zoonotic disease due to abundant competent mammalian reservoir hosts. Furthermore, poverty, corruption, and an overreliance on natural resources play considerable roles in depleting biological resources, exacerbating the population's susceptibility. Unsurprisingly, viral zoonoses have emerged in Africa, including HIV/AIDS, Ebola, Avian influenza, Lassa fever, Zika, and Monkeypox. These diseases are among the principal causes of death in endemic areas. Though typically distinct in their manifestations, viral zoonoses are connected by underlying, definitive factors. This review summarises vital findings on viral zoonoses in Africa using nine notable case studies as a benchmark for future studies. We discuss the importance of ecological recuperation and protection as a central strategy to control zoonotic diseases. Emphasis was made on moderating key drivers of zoonotic diseases to forestall future pandemics. This is in conjunction with attempts to redirect efforts from reactive to pre-emptive through a multidisciplinary "one health" approach.
Collapse
Affiliation(s)
- P O Isibor
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - O O Onwaeze
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - I I Kayode-Edwards
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - D O Agbontaen
- University of South Wales, Department of Public Health, Pontypridd, United Kingdom
| | - I-A M Ifebem-Ezima
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - O Bilewu
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - C Onuselogu
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - A P Akinniyi
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - Y D Obafemi
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - M I Oniha
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| |
Collapse
|
18
|
Banda A, Gandiwa E, Muposhi VK, Muboko N. Ecological interactions, local people awareness and practices on rodent-borne diseases in Africa: A review. Acta Trop 2023; 238:106743. [PMID: 36343664 DOI: 10.1016/j.actatropica.2022.106743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
Several anthropogenic activities exposure humans to the risk of rodent-borne diseases. These activities are but not limited to logging, clearing land for crop cultivation, and consuming rodents. Rodents are a highly diverse mammalian group and harbor many zoonotic diseases. This review focuses on dominant rodent-flea species, rodent-borne zoonotic diseases and awareness and management practices against rodent-borne diseases in Africa. Relevant academic literature spanning from 1974 to 2021 was analysed. Dominant rodent species reported in Africa included:- Mastomys natalensis and Rattus rattus, while dominant flea species included Xenopsylla brasiliensis and Xenopsylla cheopis. Rodents were reported as hosts to a wide range of parasites which can be passed to humans. Rodents were also reported as hosts to some protozoans, trematodes, cestodes, nematodes, bacteria and viruses which are transmissible to humans. Some studies conducted in West Africa revealed good knowledge and practices on plague and Lassa fever diseases among respondents, whereas other studies reported poor practices on Lassa fever management. In part of Southern Africa, some studies reported poor knowledge and practices on plague disease. Further research on rodent-borne disease awareness and management strategies in African countries is desirable.
Collapse
Affiliation(s)
- Annabel Banda
- Department of Crop Science, Gwanda State University, P.O. Box 30, Filabusi, Zimbabwe; School of Wildlife and Environmental Sciences, Chinhoyi University of Technology, Private Bag 7724, Chinhoyi, Zimbabwe.
| | - Edson Gandiwa
- Zimbabwe Parks and Wildlife Management Authority, P.O. Box CY 140, Causeway, Harare, Zimbabwe
| | - Victor K Muposhi
- School of Wildlife and Environmental Sciences, Chinhoyi University of Technology, Private Bag 7724, Chinhoyi, Zimbabwe; Department of Wildlife and Aquatic Resources, Botswana University of Agriculture and Natural Resources, Gaborone, Botswana
| | - Never Muboko
- School of Wildlife and Environmental Sciences, Chinhoyi University of Technology, Private Bag 7724, Chinhoyi, Zimbabwe; Zimbabwe Parks and Wildlife Management Authority, P.O. Box CY 140, Causeway, Harare, Zimbabwe
| |
Collapse
|
19
|
Adepoju OA, Afinowi OA, Tauheed AM, Danazumi AU, Dibba LBS, Balogun JB, Flore G, Saidu U, Ibrahim B, Balogun OO, Balogun EO. Multisectoral Perspectives on Global Warming and Vector-borne Diseases: a Focus on Southern Europe. CURRENT TROPICAL MEDICINE REPORTS 2023; 10:47-70. [PMID: 36742193 PMCID: PMC9883833 DOI: 10.1007/s40475-023-00283-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 01/30/2023]
Abstract
Purpose of Review The climate change (CC) or global warming (GW) modifies environment that favors vectors' abundance, growth, and reproduction, and consequently, the rate of development of pathogens within the vectors. This review highlights the threats of GW-induced vector-borne diseases (VBDs) in Southern Europe (SE) and the need for mitigation efforts to prevent potential global health catastrophe. Recent Findings Reports showed astronomical surges in the incidences of CC-induced VBDs in the SE. The recently (2022) reported first cases of African swine fever in Northern Italy and West Nile fever in SE are linked to the CC-modified environmental conditions that support vectors and pathogens' growth and development, and disease transmission. Summary VBDs endemic to the tropics are increasingly becoming a major health challenge in the SE, a temperate region, due to the favorable environmental conditions caused by CC/GW that support vectors and pathogens' biology in the previously non-endemic temperate regions.
Collapse
Affiliation(s)
- Oluwafemi A. Adepoju
- Department of Biochemistry, Ahmadu Bello University, Zaria, 2222 Kaduna State Nigeria
| | | | - Abdullah M. Tauheed
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, 2222 Kaduna State Nigeria
| | - Ammar U. Danazumi
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Lamin B. S. Dibba
- Department of Physical and Natural Sciences, School of Arts and Sciences, University of the Gambia, Serrekunda, The Gambia
| | - Joshua B. Balogun
- Department of Biological Sciences, Federal University Dutse, Jigawa State Dutse, Nigeria
| | - Gouegni Flore
- Department of Biochemistry, Ahmadu Bello University, Zaria, 2222 Kaduna State Nigeria
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Ahmadu Bello University, Zaria, 2222 Kaduna State Nigeria
| | - Umar Saidu
- Department of Biochemistry, Ahmadu Bello University, Zaria, 2222 Kaduna State Nigeria
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Ahmadu Bello University, Zaria, 2222 Kaduna State Nigeria
| | - Bashiru Ibrahim
- Department of Biochemistry, Ahmadu Bello University, Zaria, 2222 Kaduna State Nigeria
| | - Olukunmi O. Balogun
- Department of Health Policy, National Center for Child Health and Development, Tokyo, Japan
| | - Emmanuel O. Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria, 2222 Kaduna State Nigeria
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Ahmadu Bello University, Zaria, 2222 Kaduna State Nigeria
| |
Collapse
|
20
|
Giakountis A, Stylianidou Z, Zaka A, Pappa S, Papa A, Hadjichristodoulou C, Mathiopoulos KD. Development of Toehold Switches as a Novel Ribodiagnostic Method for West Nile Virus. Genes (Basel) 2023; 14:237. [PMID: 36672977 PMCID: PMC9859090 DOI: 10.3390/genes14010237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
West Nile virus (WNV) is an emerging neurotropic RNA virus and a member of the genus Flavivirus. Naturally, the virus is maintained in an enzootic cycle involving mosquitoes as vectors and birds that are the principal amplifying virus hosts. In humans, the incubation period for WNV disease ranges from 3 to 14 days, with an estimated 80% of infected persons being asymptomatic, around 19% developing a mild febrile infection and less than 1% developing neuroinvasive disease. Laboratory diagnosis of WNV infection is generally accomplished by cross-reacting serological methods or highly sensitive yet expensive molecular approaches. Therefore, current diagnostic tools hinder widespread surveillance of WNV in birds and mosquitoes that serve as viral reservoirs for infecting secondary hosts, such as humans and equines. We have developed a synthetic biology-based method for sensitive and low-cost detection of WNV. This method relies on toehold riboswitches designed to detect WNV genomic RNA as transcriptional input and process it to GFP fluorescence as translational output. Our methodology offers a non-invasive tool with reduced operating cost and high diagnostic value that can be used for field surveillance of WNV in humans as well as in bird and mosquito populations.
Collapse
Affiliation(s)
- Antonis Giakountis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis-Mezourlo, 41500 Larissa, Greece
| | - Zoe Stylianidou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis-Mezourlo, 41500 Larissa, Greece
| | - Anxhela Zaka
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis-Mezourlo, 41500 Larissa, Greece
| | - Styliani Pappa
- Department of Microbiology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anna Papa
- Department of Microbiology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Kostas D. Mathiopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis-Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
21
|
CRIVEI LA, MOUTAILLER S, GONZALEZ G, LOWENSKI S, CRIVEI IC, POREA D, ANITA DC, RATOI IA, ZIENTARA S, OSLOBANU LE, TOMAZATOS A, SAVUTA G, LECOLLINET S. Detection of West Nile Virus Lineage 2 in Eastern Romania and First Identification of Sindbis Virus RNA in Mosquitoes Analyzed using High-Throughput Microfluidic Real-Time PCR. Viruses 2023; 15:186. [PMID: 36680227 PMCID: PMC9860827 DOI: 10.3390/v15010186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The impact of mosquito-borne diseases on human and veterinary health is being exacerbated by rapid environmental changes caused mainly by changing climatic patterns and globalization. To gain insight into mosquito-borne virus circulation from two counties in eastern and southeastern Romania, we have used a combination of sampling methods in natural, urban and peri-urban sites. The presence of 37 mosquito-borne viruses in 16,827 pooled mosquitoes was analyzed using a high-throughput microfluidic real-time PCR assay. West Nile virus (WNV) was detected in 10/365 pools of Culex pipiens (n = 8), Culex modestus (n = 1) and Aedes vexans (n = 1) from both studied counties. We also report the first molecular detection of Sindbis virus (SINV) RNA in the country in one pool of Culex modestus. WNV infection was confirmed by real-time RT-PCR (10/10) and virus isolation on Vero or C6/36 cells (four samples). For the SINV-positive pool, no cytopathic effectwas observed after infection of Vero or C6/36 cells, but no amplification was obtained in conventional SINV RT-PCR. Phylogenetic analysis of WNV partial NS5 sequences revealed that WNV lineage 2 of theCentral-Southeast European clade, has a wider circulation in Romania than previously known.
Collapse
Affiliation(s)
- Luciana Alexandra CRIVEI
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, Iași University of Life Sciences, 700490 Iași, Romania
| | - Sara MOUTAILLER
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Gaëlle GONZALEZ
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Steeve LOWENSKI
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Ioana Cristina CRIVEI
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, Iași University of Life Sciences, 700490 Iași, Romania
| | - Daniela POREA
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, Iași University of Life Sciences, 700490 Iași, Romania
| | - Dragoș Constantin ANITA
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, Iași University of Life Sciences, 700490 Iași, Romania
| | - Ioana Alexandra RATOI
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, Iași University of Life Sciences, 700490 Iași, Romania
| | - Stéphan ZIENTARA
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Luanda Elena OSLOBANU
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, Iași University of Life Sciences, 700490 Iași, Romania
| | - Alexandru TOMAZATOS
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Gheorghe SAVUTA
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, Iași University of Life Sciences, 700490 Iași, Romania
| | - Sylvie LECOLLINET
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| |
Collapse
|
22
|
Hoffman T, Olsen B, Lundkvist Å. The Biological and Ecological Features of Northbound Migratory Birds, Ticks, and Tick-Borne Microorganisms in the African-Western Palearctic. Microorganisms 2023; 11:microorganisms11010158. [PMID: 36677450 PMCID: PMC9866947 DOI: 10.3390/microorganisms11010158] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Identifying the species that act as hosts, vectors, and vehicles of vector-borne pathogens is vital for revealing the transmission cycles, dispersal mechanisms, and establishment of vector-borne pathogens in nature. Ticks are common vectors for pathogens causing human and animal diseases, and they transmit a greater variety of pathogenic agents than any other arthropod vector group. Ticks depend on the movements by their vertebrate hosts for their dispersal, and tick species with long feeding periods are more likely to be transported over long distances. Wild birds are commonly parasitized by ticks, and their migration patterns enable the long-distance range expansion of ticks. The African-Palearctic migration system is one of the world's largest migrations systems. African-Western Palearctic birds create natural links between the African, European, and Asian continents when they migrate biannually between breeding grounds in the Palearctic and wintering grounds in Africa and thereby connect different biomes. Climate is an important geographical determinant of ticks, and with global warming, the distribution range and abundance of ticks in the Western Palearctic may increase. The introduction of exotic ticks and their microorganisms into the Western Palearctic via avian vehicles might therefore pose a greater risk for the public and animal health in the future.
Collapse
Affiliation(s)
- Tove Hoffman
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
- Correspondence:
| |
Collapse
|
23
|
Entomological Surveillance Activities in Regions in Greece: Data on Mosquito Species Abundance and West Nile Virus Detection in Culex pipiens Pools (2019-2020). Trop Med Infect Dis 2022; 8:tropicalmed8010001. [PMID: 36668908 PMCID: PMC9865208 DOI: 10.3390/tropicalmed8010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Human cases of West Nile virus (WNV) infections have been recorded in Greece since 2010, with seasonal outbreaks (summer-autumn) on an almost annual basis, caused mainly by the WNV lineage 2 strain (Nea Santa-Greece-2010). National Public Health Organization (NPHO) in Greece is annually implementing enhanced surveillance of human WNV infection, in order to promptly identify human cases of WNV infection and monitor distribution in terms of time and place. Entomological surveillance activities were carried out on a national basis in 2019 and 2020, under NPHO coordination and the collaboration of several private subcontractors, along with the Unit of Medical Entomology, Laboratory for Surveillance of Infectious Diseases (LSID). The aim was to monitor mosquito species composition, abundance, and WNV circulation in mosquito pools of Culex pipiens s.l. species. Adult mosquito traps were placed in selected sites; collected samples were morphologically characterized and pooled by date of collection, location, and species types. Female Culex pipiens s.l. pools were tested for WNV and WNV infection rates (MIR and MLE) were estimated. Highest mean number of female Culex pipiens s.l. species was recorded in Central Macedonia both for 2019 and 2020. Six hundred and fifty-nine mosquito pools (147 in 2019 and 512 in 2020) of female Culex pipiens s.l. were examined for WNV presence. The highest MLE was detected in Western Macedonia in 2019 and in Thessaly in 2020. Here, we present data on the mosquito species composition in the studied areas and WNV detection in mosquitoes from areas in Greece where the specific national mosquito surveillance program was implemented, for two years, 2019 and 2020.
Collapse
|
24
|
Riccò M, Zaniboni A, Satta E, Ranzieri S, Cerviere MP, Marchesi F, Peruzzi S. West Nile Virus Infection: A Cross-Sectional Study on Italian Medical Professionals during Summer Season 2022. Trop Med Infect Dis 2022; 7:tropicalmed7120404. [PMID: 36548659 PMCID: PMC9786547 DOI: 10.3390/tropicalmed7120404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
West Nile virus (WNV) has progressively endemized in large areas of continental Europe, and particularly in Northern Italy, in the Po River Valley. During summer season 2022, Italy experienced an unprecedented surge in incidence cases of WNV infections, including its main complications (West Nile fever (WNF) and West Nile neuroinvasive disease (WNND)). As knowledge, attitudes, and practices (KAP) of medical professionals may be instrumental in guaranteeing a prompt diagnosis and an accurate management of incident cases, we performed a cross-sectional study specifically on a sample of Italian medical professionals (1 August 2022-10 September 2022; around 8800 potential recipients). From a total of 332 questionnaires (response rate of 3.8%), 254 participating medical professionals were eventually included in the analyses. Knowledge status of participants was unsatisfying, as most of them exhibited knowledge gaps on the actual epidemiology of WNV, with similar uncertainties on the clinical features of WNF and WNND. Moreover, most of participants substantially overlooked WNV as a human pathogen when compared to SARS-CoV-2, TB, and even HIV. Interestingly, only 65.4% of respondents were either favorable or highly favorable towards a hypothetical WNV vaccine. Overall, acknowledging a higher risk perception on WNV was associated with individual factors such as reporting a seniority ≥ 10 years (adjusted odds ratio [aOR] 2.39, 95% Confidence interval [95%CI] 1.34 to 4.28), reporting a better knowledge score (aOR 2.92, 95%CI 1.60 to 5.30), having previously managed cases of WNV infections (aOR 3.65, 95%CI 1.14 to 14.20), being favorable towards a hypothetic vaccine (aOR 2.16, 95%CI 1.15 to 4.04), and perceiving WNV infections as potentially affecting daily activities (aOR 2.57, 95%CI 1.22 to 5.42). In summary, substantial knowledge gaps and the erratic risk perception collectively enlighten the importance and the urgency for appropriate information campaigns among medical professionals, and particularly among frontline personnel.
Collapse
Affiliation(s)
- Matteo Riccò
- Occupational Health and Safety Service on the Workplace/Servizio di Prevenzione e Sicurezza Ambienti di Lavoro (SPSAL), Department of Public Health, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
- Correspondence: or ; Tel.: +39-339-2994343 or +39-522-837587
| | | | - Elia Satta
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Silvia Ranzieri
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | | - Federico Marchesi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Simona Peruzzi
- Laboratorio Analisi Chimico Cliniche e Microbiologiche, Ospedale Civile di Guastalla, AUSL-IRCCS di Reggio Emilia, 42016 Guastalla, Italy
| |
Collapse
|
25
|
Atama NC, Chestakova IV, de Bruin E, van den Berg TJ, Munger E, Reusken C, Oude Munnink BB, van der Jeugd H, van den Brand JM, Koopmans MP, Sikkema RS. Evaluation of the use of alternative sample types for mosquito-borne flavivirus surveillance: Using Usutu virus as a model. One Health 2022; 15:100456. [DOI: 10.1016/j.onehlt.2022.100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/14/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022] Open
|
26
|
Abstract
Purpose of Review West Nile virus (WNV) is an arbovirus transmitted by mosquitos of the genus Culex. Manifestations of WNV infection range from asymptomatic to devastating neuroinvasive disease leading to flaccid paralysis and death. This review examines WNV epidemiology and ecology, with an emphasis on travel-associated infection. Recent Findings WNV is widespread, including North America and Europe, where its range has expanded in the past decade. Rising temperatures in temperate regions are predicted to lead to an increased abundance of Culex mosquitoes and an increase in their ability to transmit WNV. Although the epidemiologic patterns of WNV appear variable, its geographic distribution most certainly will continue to increase. Travelers are at risk for WNV infection and its complications. Literature review identified 39 cases of documented travel-related WNV disease, the majority of which resulted in adverse outcomes, such as neuroinvasive disease, prolonged recovery period, or death. Summary The prediction of WNV risk is challenging due to the complex interactions of vector, pathogen, host, and environment. Travelers planning to visit endemic areas should be advised regarding WNV risk and mosquito bite prevention. Evaluation of ill travelers with compatible symptoms should consider the diagnosis of WNV for those visiting in endemic areas as well as for those returning from destinations with known WNV circulation.
Collapse
|
27
|
Srichawla BS. Neuroinvasive West Nile Virus (WNV) Encephalitis With Anton Syndrome: Epidemiology and Pathophysiology Review. Cureus 2022; 14:e26264. [PMID: 35911357 PMCID: PMC9312882 DOI: 10.7759/cureus.26264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
The West Nile virus (WNV) belongs to the genus of flaviviruses and is known to cause irreversible neurologic deficits. Neuroinvasive WNV cases continue to be rare and have a higher prevalence in South America, Africa, and Asia. Here we report a 55-year-old female from North America who presented with acute-onset encephalopathy, fever, myalgias, and Anton syndrome. Neuroradiographic findings included diffuse white matter abnormalities of both cortical and subcortical structures and the patient was diagnosed with posterior reversible encephalopathy syndrome (PRES). Further workup revealed WNV antibodies in both cerebrospinal fluid (CSF) and serum. Management of WNV encephalitis continues to be poor and thus the patient was referred to a long-term care facility. Furthermore, Anton syndrome is a rare focal neurologic deficit that has never been previously associated with the WNV. This case aims to highlight the epidemiology of WNV in the United States, the mechanisms of WNV encephalitis, and an overview of Anton syndrome.
Collapse
|
28
|
Zhang D, Yang Y, Li M, Lu Y, Liu Y, Jiang J, Liu R, Liu J, Huang X, Li G, Qu J. Ecological Barrier Deterioration Driven by Human Activities Poses Fatal Threats to Public Health due to Emerging Infectious Diseases. ENGINEERING (BEIJING, CHINA) 2022; 10:155-166. [PMID: 33903827 PMCID: PMC8060651 DOI: 10.1016/j.eng.2020.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 05/24/2023]
Abstract
The coronavirus disease 2019 (COVID-19) and concerns about several other pandemics in the 21st century have attracted extensive global attention. These emerging infectious diseases threaten global public health and raise urgent studies on unraveling the underlying mechanisms of their transmission from animals to humans. Although numerous works have intensively discussed the cross-species and endemic barriers to the occurrence and spread of emerging infectious diseases, both types of barriers play synergistic roles in wildlife habitats. Thus far, there is still a lack of a complete understanding of viral diffusion, migration, and transmission in ecosystems from a macro perspective. In this review, we conceptualize the ecological barrier that represents the combined effects of cross-species and endemic barriers for either the natural or intermediate hosts of viruses. We comprehensively discuss the key influential factors affecting the ecological barrier against viral transmission from virus hosts in their natural habitats into human society, including transmission routes, contact probability, contact frequency, and viral characteristics. Considering the significant impacts of human activities and global industrialization on the strength of the ecological barrier, ecological barrier deterioration driven by human activities is critically analyzed for potential mechanisms. Global climate change can trigger and expand the range of emerging infectious diseases, and human disturbances promote higher contact frequency and greater transmission possibility. In addition, globalization drives more transmission routes and produces new high-risk regions in city areas. This review aims to provide a new concept for and comprehensive evidence of the ecological barrier blocking the transmission and spread of emerging infectious diseases. It also offers new insights into potential strategies to protect the ecological barrier and reduce the wide-ranging risks of emerging infectious diseases to public health.
Collapse
Affiliation(s)
- Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yunfeng Yang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Miao Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yun Lu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yi Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jingkun Jiang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiping Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianguo Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- School of Environment, Tsinghua University, Beijing 100084, China
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
29
|
Plant-Derived Recombinant Vaccines against Zoonotic Viruses. Life (Basel) 2022; 12:life12020156. [PMID: 35207444 PMCID: PMC8878793 DOI: 10.3390/life12020156] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Emerging and re-emerging zoonotic diseases cause serious illness with billions of cases, and millions of deaths. The most effective way to restrict the spread of zoonotic viruses among humans and animals and prevent disease is vaccination. Recombinant proteins produced in plants offer an alternative approach for the development of safe, effective, inexpensive candidate vaccines. Current strategies are focused on the production of highly immunogenic structural proteins, which mimic the organizations of the native virion but lack the viral genetic material. These include chimeric viral peptides, subunit virus proteins, and virus-like particles (VLPs). The latter, with their ability to self-assemble and thus resemble the form of virus particles, are gaining traction among plant-based candidate vaccines against many infectious diseases. In this review, we summarized the main zoonotic diseases and followed the progress in using plant expression systems for the production of recombinant proteins and VLPs used in the development of plant-based vaccines against zoonotic viruses.
Collapse
|
30
|
de Vos CJ, Hennen WHGJ, van Roermund HJW, Dhollander S, Fischer EAJ, de Koeijer AA. Assessing the introduction risk of vector-borne animal diseases for the Netherlands using MINTRISK: A Model for INTegrated RISK assessment. PLoS One 2021; 16:e0259466. [PMID: 34727138 PMCID: PMC8562800 DOI: 10.1371/journal.pone.0259466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/19/2021] [Indexed: 11/18/2022] Open
Abstract
To evaluate and compare the risk of emerging vector-borne diseases (VBDs), a Model for INTegrated RISK assessment, MINTRISK, was developed to assess the introduction risk of VBDs for new regions in an objective, transparent and repeatable manner. MINTRISK is a web-based calculation tool, that provides semi-quantitative risk scores that can be used for prioritization purposes. Input into MINTRISK is entered by answering questions regarding entry, transmission, establishment, spread, persistence and impact of a selected VBD. Answers can be chosen from qualitative answer categories with accompanying quantitative explanation to ensure consistent answering. The quantitative information is subsequently used as input for the model calculations to estimate the risk for each individual step in the model and for the summarizing output values (rate of introduction; epidemic size; overall risk). The risk assessor can indicate his uncertainty on each answer, and this is accounted for by Monte Carlo simulation. MINTRISK was used to assess the risk of four VBDs (African horse sickness, epizootic haemorrhagic disease, Rift Valley fever, and West Nile fever) for the Netherlands with the aim to prioritise these diseases for preparedness. Results indicated that the overall risk estimate was very high for all evaluated diseases but epizootic haemorrhagic disease. Uncertainty intervals were, however, wide limiting the options for ranking of the diseases. Risk profiles of the VBDs differed. Whereas all diseases were estimated to have a very high economic impact once introduced, the estimated introduction rates differed from low for Rift Valley fever and epizootic haemorrhagic disease to moderate for African horse sickness and very high for West Nile fever. Entry of infected mosquitoes on board of aircraft was deemed the most likely route of introduction for West Nile fever into the Netherlands, followed by entry of infected migratory birds.
Collapse
Affiliation(s)
- Clazien J. de Vos
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| | - Wil H. G. J. Hennen
- Wageningen Economic Research, Wageningen University & Research, Den Haag, The Netherlands
| | | | | | - Egil A. J. Fischer
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| | - Aline A. de Koeijer
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| |
Collapse
|
31
|
Voss S, Nitsche C. Targeting the protease of West Nile virus. RSC Med Chem 2021; 12:1262-1272. [PMID: 34458734 PMCID: PMC8372202 DOI: 10.1039/d1md00080b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/17/2021] [Indexed: 01/04/2023] Open
Abstract
West Nile virus infections can cause severe neurological symptoms. During the last 25 years, cases have been reported in Asia, North America, Africa, Europe and Australia (Kunjin). No West Nile virus vaccines or specific antiviral therapies are available to date. Various viral proteins and host-cell factors have been evaluated as potential drug targets. The viral protease NS2B-NS3 is among the most promising viral targets. It releases viral proteins from a non-functional polyprotein precursor, making it a critical factor of viral replication. Despite strong efforts, no protease inhibitors have reached clinical trials yet. Substrate-derived peptidomimetics have facilitated structural elucidations of the active protease state, while alternative compounds with increased drug-likeness have recently expanded drug discovery efforts beyond the active site.
Collapse
Affiliation(s)
- Saan Voss
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
32
|
Spanoudis CG, Pappas CS, Savopoulou-Soultani M, Andreadis SS. Composition, seasonal abundance, and public health importance of mosquito species in the regional unit of Thessaloniki, Northern Greece. Parasitol Res 2021; 120:3083-3090. [PMID: 34338859 DOI: 10.1007/s00436-021-07264-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/21/2021] [Indexed: 11/25/2022]
Abstract
Mosquitoes (Diptera: Culicidae) are the largest group of blood-feeding insects that disturb not only humans but also other mammals and birds. This study reports the presence of native mosquito species in the regional unit of Thessaloniki and the monitoring of their population. In total, 13 mosquito species belonging to four genera were identified. The most dominant species was Culex pipiens, followed by Aedes caspius. In the present study, we report for the first time the presence of Ae. vittatus in Greece and of Anopheles plumbeus in the regional unit of Thessaloniki. Regarding the seasonal variation, species of the genus Aedes were the ones that first appeared in late March, followed by Culex species at the end of April and finally species of the genus Anopheles in July. Species of the Aedes genus were found to be the most abundant in the first quarter of the year (late March to early April). Population of Cx. pipiens remained at high levels from late April to late September. Species of the genus Anopheles were found in high densities from early August to October. The current study contributes to the knowledge of the mosquito species composition and their relative abundance in an area where West Nile virus caused severe epidemic outbreaks.
Collapse
Affiliation(s)
- Christos G Spanoudis
- Laboratory of Applied Zoology and Parasitology, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Christos S Pappas
- Laboratory of Applied Zoology and Parasitology, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Matilda Savopoulou-Soultani
- Laboratory of Applied Zoology and Parasitology, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Stefanos S Andreadis
- Hellenic Agricultural Organization Dimitra, Institute of Plant Breeding and Genetic Resources, 57001, Thermi, Greece.
| |
Collapse
|
33
|
Emerging Trends in the West Nile Virus Epidemiology in Croatia in the 'One Health' Context, 2011-2020. Trop Med Infect Dis 2021; 6:tropicalmed6030140. [PMID: 34449731 PMCID: PMC8396195 DOI: 10.3390/tropicalmed6030140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 11/28/2022] Open
Abstract
West Nile virus (WNV) is one of the most widely distributed (re-)emerging arboviruses. In Croatia, acute WNV infections as well as seropositivity were detected in humans, horses, birds and poultry. Although serologic evidence of WNV human infections dates back to the 1970s, no clinical cases were reported until 2012. WNV outbreaks, as well as sporadic infections, were continuously recorded in continental Croatian counties from 2012 to 2018. In addition, acute asymptomatic infections (IgM antibodies) in horses have been regularly notified in continental regions since 2012, while seropositive horses (seroprevalence rates 3.7–21.4%) were detected in both continental and coastal regions. Moreover, WNV seropositivity in poultry (1.8–22.9%) was reported from 2013 to 2020. During the largest WNV outbreak in 2018, WNV RNA was detected for the first time in two dead goshawks (Accipiter gentilis) from the same aviary in North-West Croatia, while WNV antibodies were found in one buzzard (Butteo butteo) from the same region. In addition, WNV RNA was detected in a dead blackbird (Turdus merula) at the Croatian littoral. The phylogenetic analysis of 11 strains detected in urine samples of patients with neuroinvasive disease and 1 strain detected in a goshawk showed circulation of WNV lineage 2. Thus far, WNV has not been detected in mosquitoes in Croatia.
Collapse
|
34
|
Maliyoni M. Probability of Disease Extinction or Outbreak in a Stochastic Epidemic Model for West Nile Virus Dynamics in Birds. Acta Biotheor 2021; 69:91-116. [PMID: 32889647 DOI: 10.1007/s10441-020-09391-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/17/2020] [Indexed: 11/24/2022]
Abstract
Thresholds for disease extinction provide essential information for the prevention and control of diseases. In this paper, a stochastic epidemic model, a continuous-time Markov chain, for the transmission dynamics of West Nile virus in birds is developed based on the assumptions of its analogous deterministic model. The branching process is applied to derive the extinction threshold for the stochastic model and conditions for disease extinction or persistence. The probability of disease extinction computed from the branching process is shown to be in good agreement with the probability approximated from numerical simulations. The disease dynamics of both models are compared to ascertain the effect of demographic stochasticity on West Nile virus dynamics. Analytical and numerical results show differences in model predictions and asymptotic dynamics between stochastic and deterministic models that are crucial for the prevention of disease outbreaks. It is found that there is a high probability of disease extinction if the disease emerges from exposed mosquitoes unlike if it emerges from infectious mosquitoes and birds. Finite-time to disease extinction is estimated using sample paths and it is shown that the epidemic duration is shortest if the disease is introduced by exposed mosquitoes.
Collapse
Affiliation(s)
- Milliward Maliyoni
- Mathematical Sciences Department, University of Malawi, Chancellor College, P. O. Box 280, Zomba, Malawi.
| |
Collapse
|
35
|
Schiuma M, Pezzati L, Ballone E, Borghi B, Osio M, Mattavelli D, Galimberti L, Corbellino M, Mileto D, Zanchetta N, Antinori S. Case Report: A Fatal Case of West Nile Virus Meningoencephalomyelitis in a Woman with Systemic Lupus Erythematosus Initially Misdiagnosed as SARS-CoV-2 Infection. Am J Trop Med Hyg 2021; 104:1716-1718. [PMID: 33782207 PMCID: PMC8103457 DOI: 10.4269/ajtmh.21-0041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/08/2021] [Indexed: 11/07/2022] Open
Abstract
We present a fatal case of West Nile virus meningoencephalomyelitis initially misdiagnosed as COVID-19 in a 63-year-old Egyptian woman with a previous diagnosis of systemic lupus erythematosus. The patient's medical history and immunosuppressive therapy, as well as the COVID-19 pandemic, substantially broadened the differential diagnosis of her encephalitis.
Collapse
Affiliation(s)
- Marco Schiuma
- III Division of Infectious Diseases, Luigi Sacco Hospital, Milan, Italy;,Department of Biomedical and Clinical Sciences “Luigi Sacco”, Università degli Studi di Milano, Milano, Italy
| | - Laura Pezzati
- III Division of Infectious Diseases, Luigi Sacco Hospital, Milan, Italy;,Department of Biomedical and Clinical Sciences “Luigi Sacco”, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | - Laura Galimberti
- III Division of Infectious Diseases, Luigi Sacco Hospital, Milan, Italy
| | - Mario Corbellino
- III Division of Infectious Diseases, Luigi Sacco Hospital, Milan, Italy
| | - Davide Mileto
- Laboratory of Clinical Microbiology, Virology and Bioemergencies, Luigi Sacco Hospital, Milan, Italy
| | - Nadia Zanchetta
- Laboratory of Clinical Microbiology, Virology and Bioemergencies, Luigi Sacco Hospital, Milan, Italy
| | - Spinello Antinori
- III Division of Infectious Diseases, Luigi Sacco Hospital, Milan, Italy;,Department of Biomedical and Clinical Sciences “Luigi Sacco”, Università degli Studi di Milano, Milano, Italy;,Address correspondence to Spinello Antinori, Department of Biomedical and Clinical Sciences “Luigi Sacco,” Università degli Studi di Milano, Via GB Grassi 74, Milano 20157, Italy. E-mail:
| |
Collapse
|
36
|
Bianchini J, Simons X, Faes C, Nicolas G, Vilain A, Hendrickx G, Saegerman C. Assessing the use of animal health platforms: User's needs, preferences and constraints. Transbound Emerg Dis 2021; 69:501-515. [PMID: 33527726 DOI: 10.1111/tbed.14008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 11/27/2022]
Abstract
Animal health information systems or risk analysis tools are indispensable not only for animal health surveillance, but also to observe the evolution and risk of disease incursion into a disease-free area. Given the various information that can be derived from these both animal information systems and risk analysis tools, different international and national organizations have customized or created their own systems/tools to provide specific information for use by the respective countries. Moreover, with the increase of technology and data storage, they have become more accessible and widely used by professionals in animal and human health sciences. This study aimed to establish user's preferences, needs and constraints in respect of these animal information systems and risk analysis tools. An online survey was conducted and answered by 213 respondents from 132 countries. The respondents were animal health or public health professionals in different employment sectors (mostly in government, research and university institutions) and various fields of competency (highest for animal and public health). The majority of respondents used the animal health information systems frequently and on a weekly basis, with prevention measures of diseases being regarded as the most useful information. Descriptive epidemiology was more used/needed than analytical epidemiology. Risk analysis was performed by the majority of the respondents (70%), using a qualitative approach more than a quantitative or semi-qualitative. The primary objectives were to produce risk assessment and preparedness in areas involving origin and spread of animal diseases. The features most sought after in risk analysis tools were pathways of introduction and spread assessment. The level of satisfaction was higher for the platform which is most used by the respondents. Overall, these results could be taken into consideration when improving an already available platform, or when creating a new efficient tool.
Collapse
Affiliation(s)
- Juana Bianchini
- Faculty of Veterinary Medicine, Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiege), Fundamental and Applied Research for Animals & Health, FARAH) Centre, Liege University, Liege, Belgium
| | - Xavier Simons
- Veterinary Epidemiology, Sciensano, Brussels, Belgium
| | - Christel Faes
- I-BioStat, Data Science Institute, Hasselt University, Hasselt, Belgium
| | | | - Aline Vilain
- Veterinary Epidemiology, Sciensano, Brussels, Belgium
| | | | - Claude Saegerman
- Faculty of Veterinary Medicine, Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiege), Fundamental and Applied Research for Animals & Health, FARAH) Centre, Liege University, Liege, Belgium
| |
Collapse
|
37
|
Bertram FM, Thompson PN, Venter M. Epidemiology and Clinical Presentation of West Nile Virus Infection in Horses in South Africa, 2016-2017. Pathogens 2020; 10:pathogens10010020. [PMID: 33396935 PMCID: PMC7823741 DOI: 10.3390/pathogens10010020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 01/30/2023] Open
Abstract
Although West Nile virus (WNV) is endemic to South Africa (RSA), it has only become recognized as a significant cause of neurological disease in humans and horses locally in the past 2 decades, as it emerged globally. This article describes the epidemiological and clinical presentation of WNV in horses across RSA during 2016–2017. In total, 54 WNV-positive cases were identified by passive surveillance in horses with febrile and/or neurological signs at the Centre for Viral Zoonoses, University of Pretoria. They were followed up and compared to 120 randomly selected WNV-negative controls with the same case definition and during the same time period. Of the WNV-positive cases, 52% had fever, 92% displayed neurological signs, and 39% experienced mortality. Cases occurred mostly in WNV-unvaccinated horses <5 years old, during late summer and autumn after heavy rain, in the temperate to warm eastern parts of RSA. WNV-positive cases that had only neurological signs without fever were more likely to die. In the multivariable analysis, the odds of WNV infection were associated with season (late summer), higher altitude, more highly purebred animals, younger age, and failure to vaccinate against WNV. Vaccination is currently the most effective prophylactic measure to reduce WNV morbidity and mortality in horses.
Collapse
Affiliation(s)
- Freude-Marié Bertram
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa; (F.-M.B.); (P.N.T.)
| | - Peter N. Thompson
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa; (F.-M.B.); (P.N.T.)
| | - Marietjie Venter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
- Correspondence: ; Tel.: +27-12-319-2638
| |
Collapse
|
38
|
Pervanidou D, Vakali A, Georgakopoulou T, Panagiotopoulos T, Patsoula E, Koliopoulos G, Politis C, Stamoulis K, Gavana E, Pappa S, Mavrouli M, Emmanouil M, Sourvinos G, Mentis A, Tsakris A, Hadjichristodoulou C, Tsiodras S, Papa A. West Nile virus in humans, Greece, 2018: the largest seasonal number of cases, 9 years after its emergence in the country. ACTA ACUST UNITED AC 2020; 25. [PMID: 32794446 PMCID: PMC7427301 DOI: 10.2807/1560-7917.es.2020.25.32.1900543] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Human cases of West Nile virus (WNV) infection are recorded since 2010 in Greece, with seasonal outbreaks occurring almost annually. Enhanced surveillance has been implemented since 2010, to promptly characterise cases’ temporal and geographical distribution and inform authorities for implementation of appropriate measures (mosquito control, health education, blood safety). Aim We describe the epidemiology of WNV human infections in Greece focusing on the 2018 season. Methods The National Public Health Organization advised physicians to test all suspect WNV infection cases and refer samples to reference laboratories. Laboratories notified diagnosed cases on a daily basis. Treating physicians, patients, and infected blood donors were interviewed within 48 hours after diagnosis and the probable infection location was identified. Hospitalised cases were followed up until discharge. Results A total of 317 autochthonous WNV infection cases were diagnosed in 2018. Among them, 243 cases had neuroinvasive disease (WNND), representing a 23% increase of WNND cases compared with 2010, the previous most intense season. There were 51 deaths. Cases started occurring from week 22, earlier than usual. Both rural and urban areas were affected, with 86 (26% of the total) municipalities belonging to seven (54% of the total) regions recording cases. Two major epicentres were identified in Attica and Central Macedonia regions. Conclusions The largest number of human cases of WNV infection ever recorded in Greece occurred in 2018, with a wide geographical distribution, suggesting intense virus circulation. Enhanced surveillance is vital for the early detection of human cases and the prompt implementation of response measures.
Collapse
Affiliation(s)
- Danai Pervanidou
- Hellenic National Public Health Organization/former Hellenic Center for Disease Control & Prevention, Athens, Greece
| | - Annita Vakali
- Hellenic National Public Health Organization/former Hellenic Center for Disease Control & Prevention, Athens, Greece
| | - Theano Georgakopoulou
- Hellenic National Public Health Organization/former Hellenic Center for Disease Control & Prevention, Athens, Greece
| | - Takis Panagiotopoulos
- School of Public Health, Faculty of Public Health Policy, University of West Attica, Athens, Greece
| | - Eleni Patsoula
- School of Public Health, Faculty of Public Health Policy, University of West Attica, Athens, Greece
| | | | - Constantina Politis
- Hellenic National Public Health Organization/former Hellenic Center for Disease Control & Prevention, Athens, Greece
| | | | - Elpida Gavana
- National Reference Center for Arboviruses and Haemorrhagic Fever Viruses, Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Styliani Pappa
- National Reference Center for Arboviruses and Haemorrhagic Fever Viruses, Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Mavrouli
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Emmanouil
- Diagnostic Services Laboratory, Public Health Laboratories, Hellenic Pasteur Institute, Athens, Greece
| | - George Sourvinos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Andreas Mentis
- Diagnostic Services Laboratory, Public Health Laboratories, Hellenic Pasteur Institute, Athens, Greece
| | - Athanassios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Sotirios Tsiodras
- National and Kapodistrian University of Athens, Athens, Greece.,Hellenic National Public Health Organization/former Hellenic Center for Disease Control & Prevention, Athens, Greece
| | - Anna Papa
- National Reference Center for Arboviruses and Haemorrhagic Fever Viruses, Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
39
|
Ferraguti M, Heesterbeek H, Martínez-de la Puente J, Jiménez-Clavero MÁ, Vázquez A, Ruiz S, Llorente F, Roiz D, Vernooij H, Soriguer R, Figuerola J. The role of different Culex mosquito species in the transmission of West Nile virus and avian malaria parasites in Mediterranean areas. Transbound Emerg Dis 2020; 68:920-930. [PMID: 32748497 DOI: 10.1111/tbed.13760] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/07/2020] [Accepted: 07/26/2020] [Indexed: 12/23/2022]
Abstract
Vector-borne diseases, especially those transmitted by mosquitoes, have severe impacts on public health and economy. West Nile virus (WNV) and avian malaria parasites of the genus Plasmodium are mosquito-borne pathogens that may produce severe disease and illness in humans and birds, respectively, and circulate in an endemic form in southern Europe. Here, we used field-collected data to identify the impact of Culex pipiens, Cx. perexiguus and Cx. modestus, on the circulation of both WNV and Plasmodium in Andalusia (SW Spain) using mathematical modelling of the basic reproduction number (R0 ). Models were calibrated with field-collected data on WNV seroprevalence and Plasmodium infection in wild house sparrows, presence of WNV and Plasmodium in mosquito pools, and mosquito blood-feeding patterns. This approach allowed us to determine the contribution of each vector species to pathogen amplification. Overall, 0.7% and 29.6% of house sparrows were positive to WNV antibodies and Plasmodium infection, respectively. In addition, the prevalence of Plasmodium was higher in Cx. pipiens (2.0%), followed by Cx. perexiguus (1.8%) and Cx. modestus (0.7%). Three pools of Cx. perexiguus were positive to WVN. Models identified Cx. perexiguus as the most important species contributing to the amplification of WNV in southern Spain. For Plasmodium models, R0 values were higher when Cx. pipiens was present in the population, either alone or in combination with the other mosquito species. These results suggest that the transmission of these vector-borne pathogens depends on different Culex species, and consequently, their transmission niches will present different spatial and temporal patterns. For WNV, targeted surveillance and control of Cx. perexiguus populations appear as the most effective measure to reduce WNV amplification. Also, preventing Culex populations near human settlements, or reducing the abundance of these species, are potential strategies to reduce WNV spillover into human populations in southern Spain.
Collapse
Affiliation(s)
| | - Hans Heesterbeek
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Josué Martínez-de la Puente
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain.,Centro de Investigacion Biomedica en Red de Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigacion Biomedica en Red de Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain.,Centro de Investigación en Sanidad Animal - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Valdeolmos, Spain
| | - Ana Vázquez
- Centro de Investigacion Biomedica en Red de Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain.,Laboratorio de Arbovirus y Enfermedades Víricas Importadas, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Santiago Ruiz
- Centro de Investigacion Biomedica en Red de Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain.,Servicio de Control de Mosquitos, Área de Medio Ambiente, Huelva, Spain
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Valdeolmos, Spain
| | - David Roiz
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Hans Vernooij
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ramón Soriguer
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain.,Centro de Investigacion Biomedica en Red de Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Jordi Figuerola
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain.,Centro de Investigacion Biomedica en Red de Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
40
|
Long-term, West Nile virus-induced neurological changes: A comparison of patients and rodent models. Brain Behav Immun Health 2020; 7:100105. [PMID: 34589866 PMCID: PMC8474605 DOI: 10.1016/j.bbih.2020.100105] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 02/06/2023] Open
Abstract
West Nile virus (WNV) is a mosquito-borne virus that can cause severe neurological disease in those infected. Those surviving infection often present with long-lasting neurological changes that can severely impede their lives. The most common reported symptoms are depression, memory loss, and motor dysfunction. These sequelae can persist for the rest of the patients’ lives. The pathogenesis behind these changes is still being determined. Here, we summarize current findings in human cases and rodent models, and discuss how these findings indicate that WNV induces a state in the brain similar neurodegenerative diseases. Rodent models have shown that infection leads to persistent virus and inflammation. Initial infection in the hippocampus leads to neuronal dysfunction, synapse elimination, and astrocytosis, all of which contribute to memory loss, mimicking findings in neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). WNV infection acts on pathways, such as ubiquitin-signaled protein degradation, and induces the production of molecules, including IL-1β, IFN-γ, and α-synuclein, that are associated with neurodegenerative diseases. These findings indicate that WNV induces neurological damage through similar mechanisms as neurodegenerative diseases, and that pursuing research into the similarities will help advance our understanding of the pathogenesis of WNV-induced neurological sequelae. In patients with and without diagnosed WNND, there are long-lasting neurological sequelae that can mimic neurodegenerative diseases. Some rodent models of WNV reproduce some of these changes with mechanisms similar to neurodegenerative diseases. There is significant overlap between WNV and ND pathogenesis and this has been understudied. Further research needs to be done to determine accuracy of animal models compared to human patients.
Collapse
|
41
|
Eshetu D, Kifle T, Agaje BG, Hirigo AT. Seropositivity of West Nile Virus Among Acute Febrile Patients in Southern Ethiopia. Infect Drug Resist 2020; 13:1491-1497. [PMID: 32547118 PMCID: PMC7246317 DOI: 10.2147/idr.s245518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/09/2020] [Indexed: 01/10/2023] Open
Abstract
Background West Nile virus (WNV) is one of the widely distributed arboviruses in the world, and it is a pathogen of both humans and animals. The evidence that supports the prevalence of the WNV infection in Ethiopia is very scarce. Hence, this study aimed to assess the seropositivity of WNV among patients with acute febrile illness. Methods This health institution-based descriptive cross-sectional study was conducted on 532 acute febrile patients from May to August 2016 in Arba Minch Zuria district selected public health facilities, Southern Ethiopia. A pre-structured questionnaire was used to collect socio-demographic and clinical related information of the participants through convenient sampling techniques. In addition, trained nurses who were working in the health centers were responsible for interviewing acute febrile patients. About 5 mL of venous blood was collected aseptically from each of the study participants for the screening of the WNV immunoglobulin G (IgG) and immunoglobulin M (IgM) antibodies using indirect immunofluorescence technique (IIFT) as per manufacturer’s protocol. Data analysis was done using statistical package for social sciences (SPSS) version 20 software and the results were presented by frequency and percentage using tables. Results A total number of 529 acute febrile patients (42.7% males and 57.3% females) were enrolled in the study with a response rate of 99.4%. The overall 7.4% of acute febrile patients were seropositive for WNV-specific IgG and the rate was higher in males (9.7%) when compared to females (5.6%). While the overall 4.5% were seropositive for WNV-specific IgM and the rate was 6.6% in males and 3.0% in females. Conclusion The finding of this study is an important alarm for clinicians/physicians to diagnose febrile patients in the divergent direction including with the diagnosis of flaviviruses. In addition, the finding will further contribute to understanding the epidemiology of WNV fever in Ethiopia and it will play a role in the delivery of public health measures to decrease the risk of WNV exposure in the areas.
Collapse
Affiliation(s)
- Daniel Eshetu
- Yirgalem Hospital Medical College, Department of Microbiology, Yirgalem Town, Southern Ethiopia
| | - Tigist Kifle
- Hawassa University, College of Medicine and Health Science, Comprehensive Specialized Hospital, Hawassa City, Southern Ethiopia
| | - Bekalu Getahun Agaje
- Hawassa University, College of Medicine and Health Science, Department of Optometry, Hawassa City, Southern Ethiopia
| | - Agete Tadewos Hirigo
- Hawassa University, College of Medicine and Health Science, School of Medical Laboratory Sciences, Hawassa City, Southern Ethiopia
| |
Collapse
|
42
|
Calzolari M, Angelini P, Bolzoni L, Bonilauri P, Cagarelli R, Canziani S, Cereda D, Cerioli MP, Chiari M, Galletti G, Moirano G, Tamba M, Torri D, Trogu T, Albieri A, Bellini R, Lelli D. Enhanced West Nile Virus Circulation in the Emilia-Romagna and Lombardy Regions (Northern Italy) in 2018 Detected by Entomological Surveillance. Front Vet Sci 2020; 7:243. [PMID: 32432132 PMCID: PMC7214930 DOI: 10.3389/fvets.2020.00243] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 04/09/2020] [Indexed: 02/02/2023] Open
Abstract
With several human cases reported annually since 2008 and the unapparent risk of infection of blood donors, the West Nile virus (WNV) is emerging as an important health issue in Europe. Italy, as well as other European countries, experienced a recrudescence of the virus circulation in 2018, which led to an increased number of human cases. An integrated surveillance plan was activated in the Emilia-Romagna and Lombardy regions (Northern Italy) since 2008 in order to monitor the intensity and timing of WNV circulation. A fundamental part of this plan consists in entomological surveillance. In 2018, the surveillance plan made it possible to collect 385,293 mosquitoes in 163 stations in the two Regions. In total 269,147 Culex mosquitoes were grouped into 2,337 pools and tested for WNV, which was detected in 232 pools. Circulation started in the central part of the Emilia-Romagna region in the middle of June, about one month before the previous seasons. Circulation suddenly expanded to the rest of the region and reached the Lombardy region in the middle of July. WNV circulated more intensively in the eastern part of the surveyed area, as confirmed by the highest number of human cases. A relationship between the number of mosquitoes collected and the virus incidence emerged, but the data obtained highlighted that the probability of detecting the virus in a given site was less than expected with a higher number of collected mosquitoes. A significant relationship was observed between the temperature recorded one week before the sampling and the number of collected mosquitoes, as well as between the estimated number of WNV-positive mosquitoes and the temperature recorded two weeks before the sampling. The two weeks delay in the influence of temperature on the positive mosquitoes is in line with the time of the virus extrinsic incubation in the mosquito. This finding confirms that temperature is one of the principal drivers in WNV mosquito infection. The surveillance system demonstrated the ability to detect the virus circulation early, particularly in areas where circulation was more intense. This allowed evaluating the effect of mosquito abundance and weather factors on virus circulation.
Collapse
Affiliation(s)
- Mattia Calzolari
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna, B. Ubertini, Brescia, Italy
| | - Paola Angelini
- Regional Health Authority of Emilia-Romagna, Bologna, Italy
| | - Luca Bolzoni
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna, B. Ubertini, Brescia, Italy
| | - Paolo Bonilauri
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna, B. Ubertini, Brescia, Italy
| | | | - Sabrina Canziani
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna, B. Ubertini, Brescia, Italy
| | | | - Monica Pierangela Cerioli
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna, B. Ubertini, Brescia, Italy
| | - Mario Chiari
- Regional Health Authority of Lombardy, Milan, Italy
| | - Giorgio Galletti
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna, B. Ubertini, Brescia, Italy
| | - Giovenale Moirano
- Cancer Epidemiology Unit-CERMS, Department of Medical Sciences, University of Turin and CPO-Piemonte, Turin, Italy
| | - Marco Tamba
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna, B. Ubertini, Brescia, Italy
| | - Deborah Torri
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna, B. Ubertini, Brescia, Italy
| | - Tiziana Trogu
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna, B. Ubertini, Brescia, Italy
| | | | - Romeo Bellini
- Centro Agricoltura Ambiente "G. Nicoli", Crevalcore, Italy
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna, B. Ubertini, Brescia, Italy
| |
Collapse
|
43
|
Christova I, Papa A, Trifonova I, Panayotova E, Pappa S, Mikov O. West Nile virus lineage 2 in humans and mosquitoes in Bulgaria, 2018-2019. J Clin Virol 2020; 127:104365. [PMID: 32305885 DOI: 10.1016/j.jcv.2020.104365] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/29/2020] [Accepted: 04/05/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND West Nile virus (WNV) lineage 2, and especially the Hungarian clade, predominates in Europe. Most of the Hungarian clade strains cluster into 2 groups: Central/South-West European and Balkan. OBJECTIVES Since there was not any study on WNV in mosquitoes in Bulgaria, the present study was designed to test Culex spp. mosquitoes in areas near the Danube river. The aim of the study was to gain an insight into the recent molecular epidemiology of WNV in Bulgaria. STUDY DESIGN A total of 1871 Culex pipiens mosquitoes collected in 2018 and clinical samples from 23 patients with West Nile neuroinavsive disease observed in 2018 and 2019 were tested by TaqMan RT-PCR and RT-nested PCR and PCR products were sequenced. RESULTS WNV RNA was detected in clinical samples from 10 patients and in five (12.2 %) of 41 pools of Cx. pipiens mosquitos by realtime RT-PCR, resulting in a minimum infection rate of mosquitoes of 0.27 %. Phylogenetic analysis based on partial NS3 gene sequences from one clinical sample and four mosquito pools showed that all sequences clustered into the Hungarian clade of WNV lineage 2 and all but one were identical to respective sequences from Romania. Whole genome sequences of one mosquito pool belong to the Hungarian group of WNV lineage 2 and cluster in a separate subclade from the Bulgarian strain from 2015, suggesting that at least two different introductions occurred in Bulgaria. CONCLUSIONS The current study provides insights into the geographic distribution of WNV in Bulgaria.
Collapse
Affiliation(s)
- Iva Christova
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria.
| | - Anna Papa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Iva Trifonova
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - E Panayotova
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Styliani Pappa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ognyan Mikov
- Department of Parasitology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| |
Collapse
|
44
|
Bianchini J, Humblet M, Cargnel M, Van der Stede Y, Koenen F, de Clercq K, Saegerman C. Prioritization of livestock transboundary diseases in Belgium using a multicriteria decision analysis tool based on drivers of emergence. Transbound Emerg Dis 2020; 67:344-376. [PMID: 31520577 PMCID: PMC7168563 DOI: 10.1111/tbed.13356] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/27/2019] [Accepted: 09/11/2019] [Indexed: 11/30/2022]
Abstract
During the past decade, livestock diseases have (re-)emerged in areas where they had been previously eradicated or never been recorded before. Drivers (i.e. factors of (re-)emergence) have been identified. Livestock diseases spread irrespective of borders, and therefore, reliable methods are required to help decision-makers to identify potential threats and try stopping their (re-)emergence. Ranking methods and multicriteria approaches are cost-effective tools for such purpose and were applied to prioritize a list of selected diseases (N = 29 including 6 zoonoses) based on the opinion of 62 experts in accordance with 50 drivers-related criteria. Diseases appearing in the upper ranking were porcine epidemic diarrhoea, foot-and-mouth disease, low pathogenic avian influenza, African horse sickness and highly pathogenic avian influenza. The tool proposed uses a multicriteria decision analysis approach to prioritize pathogens according to drivers and can be applied to other countries or diseases.
Collapse
Affiliation(s)
- Juana Bianchini
- Faculty of Veterinary MedicineResearch Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR‐ULiege)Fundamental and Applied Research for Animals & Health (FARAH)Centre, Liege UniversityLiegeBelgium
| | - Marie‐France Humblet
- Department of Occupational Safety and HygieneBiosafety and Biosecurity UnitLiege UniversityLiegeBelgium
| | - Mickaël Cargnel
- Faculty of Veterinary MedicineResearch Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR‐ULiege)Fundamental and Applied Research for Animals & Health (FARAH)Centre, Liege UniversityLiegeBelgium
- SciensanoBrusselsBelgium
| | | | | | | | - Claude Saegerman
- Faculty of Veterinary MedicineResearch Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR‐ULiege)Fundamental and Applied Research for Animals & Health (FARAH)Centre, Liege UniversityLiegeBelgium
| |
Collapse
|
45
|
Domanović D, Gossner CM, Lieshout-Krikke R, Mayr W, Baroti-Toth K, Dobrota AM, Escoval MA, Henseler O, Jungbauer C, Liumbruno G, Oyonarte S, Politis C, Sandid I, Vidović MS, Young JJ, Ushiro-Lumb I, Nowotny N. West Nile and Usutu Virus Infections and Challenges to Blood Safety in the European Union. Emerg Infect Dis 2019; 25:1050-1057. [PMID: 31107223 PMCID: PMC6537739 DOI: 10.3201/eid2506.181755] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
West Nile virus (WNV) and Usutu virus (USUV) circulate in several European Union (EU) countries. The risk of transfusion-transmitted West Nile virus (TT-WNV) has been recognized, and preventive blood safety measures have been implemented. We summarized the applied interventions in the EU countries and assessed the safety of the blood supply by compiling data on WNV positivity among blood donors and on reported TT-WNV cases. The paucity of reported TT-WNV infections and the screening results suggest that blood safety interventions are effective. However, limited circulation of WNV in the EU and presumed underrecognition or underreporting of TT-WNV cases contribute to the present situation. Because of cross-reactivity between genetically related flaviviruses in the automated nucleic acid test systems, USUV-positive blood donations are found during routine WNV screening. The clinical relevance of USUV infection in humans and the risk of USUV to blood safety are unknown.
Collapse
|
46
|
Tomazatos A, Jansen S, Pfister S, Török E, Maranda I, Horváth C, Keresztes L, Spînu M, Tannich E, Jöst H, Schmidt-Chanasit J, Cadar D, Lühken R. Ecology of West Nile Virus in the Danube Delta, Romania: Phylogeography, Xenosurveillance and Mosquito Host-Feeding Patterns. Viruses 2019; 11:v11121159. [PMID: 31847345 PMCID: PMC6950446 DOI: 10.3390/v11121159] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/07/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022] Open
Abstract
The ecology of West Nile virus (WNV) in the Danube Delta Biosphere Reserve (Romania) was investigated by combining studies on the virus genetics, phylogeography, xenosurveillance and host-feeding patterns of mosquitoes. Between 2014 and 2016, 655,667 unfed and 3842 engorged mosquito females were collected from four sampling sites. Blood-fed mosquitoes were negative for WNV-RNA, but two pools of unfed Culex pipiens s.l./torrentium collected in 2014 were tested positive. Our results suggest that Romania experienced at least two separate WNV lineage 2 introductions: from Africa into Danube Delta and from Greece into south-eastern Romania in the 1990s and early 2000s, respectively. The genetic diversity of WNV in Romania is primarily shaped by in situ evolution. WNV-specific antibodies were detected for 19 blood-meals from dogs and horses, but not from birds or humans. The hosts of mosquitoes were dominated by non-human mammals (19 species), followed by human and birds (23 species). Thereby, the catholic host-feeding pattern of Culex pipiens s.l./torrentium with a relatively high proportion of birds indicates the species’ importance as a potential bridge vector. The low virus prevalence in combination with WNV-specific antibodies indicate continuous, but low activity of WNV in the Danube Delta during the study period.
Collapse
Affiliation(s)
- Alexandru Tomazatos
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (S.J.); (I.M.); (E.T.); (H.J.)
| | - Stephanie Jansen
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (S.J.); (I.M.); (E.T.); (H.J.)
| | | | - Edina Török
- “Lendület” Landscape and Conservation Ecology, Institute of Ecology and Botany, MTA Centre for Ecological Research, 2163 Vácrátót, Hungary;
| | - Iulia Maranda
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (S.J.); (I.M.); (E.T.); (H.J.)
| | - Cintia Horváth
- Department of Clinical Sciences-Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania (M.S.)
| | - Lujza Keresztes
- Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babeș-Bolyai University, 400372 Cluj Napoca, Romania;
| | - Marina Spînu
- Department of Clinical Sciences-Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania (M.S.)
| | - Egbert Tannich
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (S.J.); (I.M.); (E.T.); (H.J.)
- German Centre for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel-Riems, 20359 Hamburg, Germany
| | - Hanna Jöst
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (S.J.); (I.M.); (E.T.); (H.J.)
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (S.J.); (I.M.); (E.T.); (H.J.)
- Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20148 Hamburg, Germany
| | - Daniel Cadar
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (S.J.); (I.M.); (E.T.); (H.J.)
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (S.J.); (I.M.); (E.T.); (H.J.)
- Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20148 Hamburg, Germany
- Correspondence:
| |
Collapse
|
47
|
Haussig JM, Young JJ, Gossner CM, Mezei E, Bella A, Sirbu A, Pervanidou D, Drakulovic MB, Sudre B. Early start of the West Nile fever transmission season 2018 in Europe. ACTA ACUST UNITED AC 2019; 23. [PMID: 30107869 PMCID: PMC6092913 DOI: 10.2807/1560-7917.es.2018.23.32.1800428] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Europe, surveillance indicates that the 2018 West Nile fever transmission season started earlier than in previous years and with a steeper increase of locally-acquired human infections. Between 2014 and 2017, European Union/European Economic Area (EU/EEA) and EU enlargement countries notified five to 25 cases in weeks 25 to 31 compared with 168 cases in 2018. Clinicians and public health authorities should be alerted to ensure timely implementation of prevention measures including blood safety measures.
Collapse
Affiliation(s)
- Joana M Haussig
- These authors contributed equally to this article and share first authorship.,European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Johanna J Young
- These authors contributed equally to this article and share first authorship.,European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Céline M Gossner
- European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | | | - Antonino Bella
- Department of Infectious Diseases, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Anca Sirbu
- National Institute of Public Health, Bucharest, Romania
| | - Danai Pervanidou
- Hellenic Center for Disease Control & Prevention, Marousi, Greece
| | - Mitra B Drakulovic
- National Institute of Public Health "Dr Milan Jovanovic-Batut", Belgrade, Serbia
| | - Bertrand Sudre
- European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| |
Collapse
|
48
|
Baymakova M, Christova I, Panayotova E, Trifonova I, Chobanov A, Daskalov I, Popov GT, Plochev K. WEST NILE VIRUS INFECTION WITH NEUROLOGICAL DISORDERS: A CASE REPORT AND A BRIEF REVIEW OF THE SITUATION IN BULGARIA. Acta Clin Croat 2019; 58:546-549. [PMID: 31969770 PMCID: PMC6971811 DOI: 10.20471/acc.2019.58.03.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A case of a 66-year-old man with West Nile neuroinvassive disease manifested with fever, weakness, fatigue, consciousness disorders and underlying diabetes mellitus type 2 and cardiovascular diseases is presented. Laboratory data showed elevated erythrocyte sedimentation rate and fibrinogen. Serological tests revealed West Nile virus specific antibodies of class IgM and IgG in serum. West Nile virus RNA was detected in urine sample. Supportive therapy was applied.
Collapse
Affiliation(s)
| | - Iva Christova
- 1Department of Infectious Diseases, Military Medical Academy, Sofia, Bulgaria; 2Department of Microbiology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria; 3Emergency Center, Military Medical Academy, Sofia, Bulgaria
| | - Elitsa Panayotova
- 1Department of Infectious Diseases, Military Medical Academy, Sofia, Bulgaria; 2Department of Microbiology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria; 3Emergency Center, Military Medical Academy, Sofia, Bulgaria
| | - Iva Trifonova
- 1Department of Infectious Diseases, Military Medical Academy, Sofia, Bulgaria; 2Department of Microbiology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria; 3Emergency Center, Military Medical Academy, Sofia, Bulgaria
| | - Aleksandar Chobanov
- 1Department of Infectious Diseases, Military Medical Academy, Sofia, Bulgaria; 2Department of Microbiology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria; 3Emergency Center, Military Medical Academy, Sofia, Bulgaria
| | - Ivaylo Daskalov
- 1Department of Infectious Diseases, Military Medical Academy, Sofia, Bulgaria; 2Department of Microbiology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria; 3Emergency Center, Military Medical Academy, Sofia, Bulgaria
| | - Georgi T Popov
- 1Department of Infectious Diseases, Military Medical Academy, Sofia, Bulgaria; 2Department of Microbiology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria; 3Emergency Center, Military Medical Academy, Sofia, Bulgaria
| | - Kamen Plochev
- 1Department of Infectious Diseases, Military Medical Academy, Sofia, Bulgaria; 2Department of Microbiology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria; 3Emergency Center, Military Medical Academy, Sofia, Bulgaria
| |
Collapse
|
49
|
Chesnut M, Muñoz LS, Harris G, Freeman D, Gama L, Pardo CA, Pamies D. In vitro and in silico Models to Study Mosquito-Borne Flavivirus Neuropathogenesis, Prevention, and Treatment. Front Cell Infect Microbiol 2019; 9:223. [PMID: 31338335 PMCID: PMC6629778 DOI: 10.3389/fcimb.2019.00223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/11/2019] [Indexed: 01/07/2023] Open
Abstract
Mosquito-borne flaviviruses can cause disease in the nervous system, resulting in a significant burden of morbidity and mortality. Disease models are necessary to understand neuropathogenesis and identify potential therapeutics and vaccines. Non-human primates have been used extensively but present major challenges. Advances have also been made toward the development of humanized mouse models, but these models still do not fully represent human pathophysiology. Recent developments in stem cell technology and cell culture techniques have allowed the development of more physiologically relevant human cell-based models. In silico modeling has also allowed researchers to identify and predict transmission patterns and discover potential vaccine and therapeutic candidates. This review summarizes the research on in vitro and in silico models used to study three mosquito-borne flaviviruses that cause neurological disease in humans: West Nile, Dengue, and Zika. We also propose a roadmap for 21st century research on mosquito-borne flavivirus neuropathogenesis, prevention, and treatment.
Collapse
Affiliation(s)
- Megan Chesnut
- Center for Alternatives to Animal Testing, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Laura S. Muñoz
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Neuroviruses Emerging in the Americas Study, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Georgina Harris
- Center for Alternatives to Animal Testing, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Dana Freeman
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Lucio Gama
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Carlos A. Pardo
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Neuroviruses Emerging in the Americas Study, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David Pamies
- Center for Alternatives to Animal Testing, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
50
|
Ballardini M, Ferretti S, Chiaranz G, Pautasso A, Riina MV, Triglia G, Verna F, Bellavia V, Radaelli MC, Berio E, Accorsi A, De Camilli M, Cardellino U, Fiorino N, Acutis PL, Casalone C, Mignone W. First report of the invasive mosquito Aedes koreicus (Diptera: Culicidae) and of its establishment in Liguria, northwest Italy. Parasit Vectors 2019; 12:334. [PMID: 31277680 PMCID: PMC6610922 DOI: 10.1186/s13071-019-3589-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/27/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Invasive mosquito species (IMS) of the genus Aedes are a cause of increasing concern in Europe owing to their ability to vector important human viral diseases. Entomological surveillance to early detect alien mosquito and flavivirus circulation in Liguria, northwest Italy, has been carried out since 2011. RESULTS The invasive species Aedes koreicus was first detected in Genoa in September 2015, when a male specimen was caught near the international airport; species identity was confirmed by genetic analysis. Over the next three years, 86 more adult specimens were trapped at sites throughout the city, accounting for 0.50% of all mosquitoes and 1.04% of Aedes sp. mosquitoes trapped in Genova in the four-year period 2015-2018. So far, no other monitored sites in Liguria have revealed the presence of this species. Ovitraps at two sites became positive for the species in July-August 2017. All female Ae. koreicus pools analysed were negative in biomolecular assays for Flavivirus. CONCLUSIONS Our findings of Ae. koreicus in Genoa constitute, to the best of our knowledge, the first report of the species in northwest Italy and in a Mediterranean port city. The species appears to be established; trapping and climatic data support survival of Ae. koreicus in the area through three consecutive winters. Monitoring of adult mosquitoes detected the species two years before its discovery with ovitraps; trapping for adult specimens appears to be a more effective tool for the early detection of IMS. The airport (located near the commercial port area) and the flower market are the most probable sites of introduction; however, the exact time and place of arrival of this IMS in Liguria remain unknown. Based on morphological and genetic data, a common origin for most of the Ae. koreicus populations established in Europe is suspected. So far, no control measures have been adopted in Genoa and the species will probably colonize an even wider area in the next few years.
Collapse
Affiliation(s)
- Marco Ballardini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle dʼAosta (IZSPLV), Turin, Italy
| | | | | | - Alessandra Pautasso
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle dʼAosta (IZSPLV), Turin, Italy
| | - Maria Vittoria Riina
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle dʼAosta (IZSPLV), Turin, Italy
| | - Giorgia Triglia
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta (IZSPLV), Imperia, Italy
| | - Federica Verna
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle dʼAosta (IZSPLV), Turin, Italy
| | - Veronica Bellavia
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle dʼAosta (IZSPLV), Turin, Italy
| | - Maria Cristina Radaelli
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle dʼAosta (IZSPLV), Turin, Italy
| | - Enrica Berio
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta (IZSPLV), Imperia, Italy
| | - Annalisa Accorsi
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta (IZSPLV), Imperia, Italy
| | | | | | | | - Pier Luigi Acutis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle dʼAosta (IZSPLV), Turin, Italy
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle dʼAosta (IZSPLV), Turin, Italy
| | - Walter Mignone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta (IZSPLV), Imperia, Italy
| |
Collapse
|