1
|
Liu Q, Parsons RJ, Wiehe K, Edwards RJ, Saunders KO, Zhang P, Miao H, Tilahun K, Jones J, Chen Y, Hora B, Williams WB, Easterhoff D, Huang X, Janowska K, Mansouri K, Haynes BF, Acharya P, Lusso P. Acquisition of quaternary trimer interaction as a key step in the lineage maturation of a broad and potent HIV-1 neutralizing antibody. Structure 2025:S0969-2126(25)00176-5. [PMID: 40412376 DOI: 10.1016/j.str.2025.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/18/2025] [Accepted: 04/30/2025] [Indexed: 05/27/2025]
Abstract
Although most broadly neutralizing antibodies (bNAbs) specific for the CD4-binding site (CD4-BS) of HIV-1 interact with a single gp120 protomer, a few mimic the quaternary binding mode of CD4, making contact with a second protomer through elongated heavy chain framework 3 (FRH3) or complementarity-determining region 1 (CDRH1) loops. Here, we show that a CDRH3-dominated anti-CD4-BS bNAb, CH103, establishes quaternary interaction despite regular-length FRH3 and CDRH1. This quaternary interaction is critical for neutralization and is primarily mediated by two FRH3 acidic residues that were sequentially acquired and subjected to strong positive selection during CH103 maturation. Cryoelectron microscopy (cryo-EM) structures confirmed the role of the two FRH3 acidic residues in mediating quaternary contact and demonstrated that CH103 reaches the adjacent gp120 protomer by virtue of its unique angle of approach. Thus, the acquisition of quaternary interaction may constitute a key step in the lineage maturation of a broad and potent HIV-1 neutralizing antibody.
Collapse
Affiliation(s)
- Qingbo Liu
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Ruth J Parsons
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Biochemistry , Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Peng Zhang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huiyi Miao
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kedamawit Tilahun
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Julia Jones
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yue Chen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Bhavna Hora
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Wilton B Williams
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - David Easterhoff
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiao Huang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Katarzyna Janowska
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Biochemistry , Duke University School of Medicine, Durham, NC 27710, USA; Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Paolo Lusso
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Rao VN, Coelho CH. Public antibodies: convergent signatures in human humoral immunity against pathogens. mBio 2025; 16:e0224724. [PMID: 40237455 PMCID: PMC12077206 DOI: 10.1128/mbio.02247-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
The human humoral immune system has evolved to recognize a vast array of pathogenic threats. This ability is primarily driven by the immense diversity of antibodies generated by gene rearrangement during B cell development. However, different people often produce strikingly similar antibodies when exposed to the same antigen-known as public antibodies. Public antibodies not only reflect the immune system's ability to consistently select for optimal B cells but can also serve as signatures of the humoral responses triggered by infection and vaccination. In this Minireview, we examine and compare public antibody identification methods, including the identification criteria used based on V(D)J gene usage and similarity in the complementarity-determining region three sequences, and explore the molecular features of public antibodies elicited against common pathogens, including viruses, protozoa, and bacteria. Finally, we discuss the evolutionary significance and potential applications of public antibodies in informing the design of germline-targeting vaccines, predicting escape mutations in emerging viruses, and providing insights into the process of affinity maturation. The ongoing discovery of public antibodies in response to emerging pathogens holds the potential to improve pandemic preparedness, accelerate vaccine design efforts, and deepen our understanding of human B cell biology.
Collapse
Affiliation(s)
- Vishal N. Rao
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Camila H. Coelho
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
3
|
Zhang P, Singh M, Becker VA, Croft J, Tsybovsky Y, Gopan V, Seo Y, Liu Q, Rogers D, Miao H, Lin Y, Rogan D, Shields C, Elbashir SM, Calabrese S, Renzi I, Preznyak V, Narayanan E, Stewart-Jones G, Himansu S, Connors M, Lee K, Carfi A, Lusso P. Inclusion of a retroviral protease enhances the immunogenicity of VLP-forming mRNA vaccines against HIV-1 or SARS-CoV-2 in mice. Sci Transl Med 2025; 17:eadt9576. [PMID: 40305570 DOI: 10.1126/scitranslmed.adt9576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/06/2025] [Accepted: 03/26/2025] [Indexed: 05/02/2025]
Abstract
Messenger RNA (mRNA) has emerged as a highly effective and versatile platform for vaccine delivery. We previously designed a virus-like particle (VLP)-forming env-gag mRNA vaccine against human immunodeficiency virus-1 (HIV-1) that elicited envelope-specific neutralizing antibodies and protection from heterologous simian-human immunodeficiency virus (SHIV) infection in rhesus macaques. Here, we introduce a key technological advance to this platform by inclusion of mRNA encoding a retroviral protease to process Gag and produce mature VLPs. Appropriately dosed and timed expression of the protease was achieved using a full-length gag-pol mRNA transcript. Addition of gag-pol mRNA to an HIV-1 env-gag mRNA vaccine resulted in enhanced titers of envelope trimer-binding and neutralizing antibodies in a mouse model. Analogous results were obtained with a hybrid Gag-based, VLP-forming severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccine expressing an engineered spike protein. Thus, inclusion of a retroviral protease can increase the immunogenicity of Gag-based, VLP-forming mRNA vaccines against human pathogens.
Collapse
Affiliation(s)
- Peng Zhang
- Laboratory of Immunoregulation and Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Mamta Singh
- Laboratory of Immunoregulation and Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Vada A Becker
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Jacob Croft
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Vinay Gopan
- Laboratory of Immunoregulation and Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Yuna Seo
- Laboratory of Immunoregulation and Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Qingbo Liu
- Laboratory of Immunoregulation and Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Denise Rogers
- Laboratory of Immunoregulation and Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Huiyi Miao
- Laboratory of Immunoregulation and Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Yin Lin
- Laboratory of Immunoregulation and Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Daniel Rogan
- Laboratory of Immunoregulation and Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Courtney Shields
- Laboratory of Immunoregulation and Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | - Mark Connors
- Laboratory of Immunoregulation and Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Kelly Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | | | - Paolo Lusso
- Laboratory of Immunoregulation and Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Maillie CA, Golden K, Wilson IA, Ward AB, Mravic M. Ab initio prediction of specific phospholipid complexes and membrane association of HIV-1 MPER antibodies by multi-scale simulations. eLife 2025; 12:RP90139. [PMID: 40192122 PMCID: PMC11975376 DOI: 10.7554/elife.90139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
A potent class of HIV-1 broadly neutralizing antibodies (bnAbs) targets the envelope glycoprotein's membrane proximal exposed region (MPER) through a proposed mechanism where hypervariable loops embed into lipid bilayers and engage headgroup moieties alongside the epitope. We address the feasibility and determinant molecular features of this mechanism using multi-scale modeling. All-atom simulations of 4E10, PGZL1, 10E8, and LN01 docked onto HIV-like membranes consistently form phospholipid complexes at key complementarity-determining region loop sites, solidifying that stable and specific lipid interactions anchor bnAbs to membrane surfaces. Ancillary protein-lipid contacts reveal surprising contributions from antibody framework regions. Coarse-grained simulations effectively capture antibodies embedding into membranes. Simulations estimating protein-membrane interaction strength for PGZL1 variants along an inferred maturation pathway show bilayer affinity is evolved and correlates with neutralization potency. The modeling demonstrated here uncovers insights into lipid participation in antibodies' recognition of membrane proteins and highlights antibody features to prioritize in vaccine design.
Collapse
Affiliation(s)
- Colleen A Maillie
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Kiana Golden
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Marco Mravic
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| |
Collapse
|
5
|
Agrawal P, Khechaduri A, Salladay KR, MacCamy A, Ralph DK, Riker A, Stuart AB, Siddaramaiah LK, Shen X, Matsen FA, Montefiori D, Stamatatos L. Increased immunogen valency improves the maturation of vaccine-elicited HIV-1 VRC01-class antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.13.642975. [PMID: 40161829 PMCID: PMC11952507 DOI: 10.1101/2025.03.13.642975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Antibodies belonging to the VRC01-class display broad and potent neutralizing activities and have been isolated from several people living with HIV (PLWH). A member of that class, monoclonal antibody VRC01, was shown to reduce HIV-acquisition in two phase 2b efficacy trials. VRC01-class antibodies are therefore expected to be a key component of an effective HIV-1 vaccine. In contrast to the VRC01-class antibodies that are highly mutated, their unmutated forms do not engage HIV-1 envelope (Env) and do not display neutralizing activities. Hence, specifically modified Env-derived proteins have been designed to engage the unmutated forms of VRC01-class antibodies, and to activate the corresponding naïve B cells. Selected heterologous Env must then be used as boost immunogens to guide the proper maturation of these elicited VRC01-class antibodies. Here we examined whether and how the valency of the prime and boost immunogens influences VRC01-class antibody-maturation. Our findings indicate that, indeed the valency of the immunogen affects the maturation of elicited antibody responses by preferentially selecting VRC01-class antibodies that have accumulated somatic mutations present in broadly neutralizing VRC01-class antibodies isolated from PLWH. As a result, antibodies isolated from animals immunized with the higher valency immunogens display broader Env cross-binding properties and improved neutralizing potentials than those isolated from animals immunized with the lower valency immunogens. Our results are relevant to current and upcoming phase 1 clinical trials that evaluate the ability of novel immunogens aiming to elicit cross-reactive VRC01-class antibody responses.
Collapse
Affiliation(s)
- Parul Agrawal
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Arineh Khechaduri
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kelsey R. Salladay
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Anna MacCamy
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Duncan K. Ralph
- Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Andrew Riker
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Andrew B. Stuart
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Xiaoying Shen
- Division of Surgical Sciences, Duke University Medical Center, Durham, NC, USA
| | - Frederick A. Matsen
- Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Statistics, University of Washington, Seattle, WA, USA
| | - David Montefiori
- Division of Surgical Sciences, Duke University Medical Center, Durham, NC, USA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Pollock KM, Cheeseman HM, McFarlane LR, Day S, Tolazzi M, Turner HL, Joypooranachandran J, Shramko K, Dispinseri S, Mundsperger P, Bontjer I, Lemm NM, Coelho S, Tanaka M, Cole T, Korber B, Katinger D, Sattentau QJ, Ward AB, Scarlatti G, Sanders RW, Shattock RJ. Experimental medicine study with stabilised native-like HIV-1 Env immunogens drives long-term antibody responses, but lacks neutralising breadth. EBioMedicine 2025; 112:105544. [PMID: 39753033 PMCID: PMC11753977 DOI: 10.1016/j.ebiom.2024.105544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/19/2024] [Accepted: 12/19/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND We report findings from an experimental medicine study of rationally designed prefusion stabilised native-like HIV envelope glycoprotein (Env) immunogens, representative of global circulating strains, delivered by sequential intramuscular injection. METHODS Healthy adult volunteers were enrolled into one of five groups (A to E) each receiving a different schedule of one of two consensus Env immunogens (ConM SOSIP, ConS UFO, either unmodified or stabilised by chemical cross-linking, followed by a boost with two mosaic Env immunogens (Mos3.1 and Mos3.2). All immunogens were co-formulated with liposomal Monophosphoryl-Lipid A (MPLA) adjuvant, and volunteers were followed up for 28 days post final Mosaic booster injection. Participants gave written informed consent to join the study. The study is registered on ClinicalTrials.gov ID NCT03816137. FINDINGS Fifty-one participants (men n = 23 and women n = 28) aged 18-55 were enrolled. The seroconversion rate against Env was 100% with all participants having measurable anti-Env IgG antibodies after their second injection and throughout the study. Neutralisation was detected against the ConM pseudovirus in sera of those who had received both ConM and ConS immunogens. However, this activity was limited in breadth and was neither boosted nor broadened in those receiving the Mos3.1 and Mos3.2 immunogens. Neutralising antibody function correlated with binding to V1/V3 and V5 epitopes and peaked after the third injection. INTERPRETATION Rationally designed prefusion-stabilised native-like Env trimers are robustly immunogenic in a prime-boost schedule. When given alone they are insufficient to induce neutralising antibody titres of significant breadth, but they represent potentially valuable polishing immunogens after germline-targeting. FUNDING European Aids Vaccine initiative (EAVI2020) received funding from EU Horizon 2020, grant number 681137. Structural studies were supported by the Bill and Melinda Gates Foundation (INV-002916).
Collapse
Affiliation(s)
- Katrina M Pollock
- Imperial College London, Department of Infectious Disease, UK; NIHR Imperial Clinical Research Facility and NIHR Imperial Biomedical Research Centre, London, UK
| | | | | | - Suzanne Day
- Imperial College London, Department of Infectious Disease, UK
| | - Monica Tolazzi
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | - Stefania Dispinseri
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Ilja Bontjer
- Department of Medical Microbiology, Academic Medical Centre University of Amsterdam, Amsterdam, the Netherlands
| | - Nana-Marie Lemm
- NIHR Imperial Clinical Research Facility and NIHR Imperial Biomedical Research Centre, London, UK
| | - Sofia Coelho
- NIHR Imperial Clinical Research Facility and NIHR Imperial Biomedical Research Centre, London, UK
| | - Maniola Tanaka
- NIHR Imperial Clinical Research Facility and NIHR Imperial Biomedical Research Centre, London, UK
| | - Tom Cole
- NIHR Imperial Clinical Research Facility and NIHR Imperial Biomedical Research Centre, London, UK
| | | | - Dietmar Katinger
- Polymun Scientific Immunbiologische Forschung GmbH, Klosterneuburg, Austria
| | - Quentin J Sattentau
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, UK
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Centre University of Amsterdam, Amsterdam, the Netherlands
| | | |
Collapse
|
7
|
Parthasarathy D, Pickthorn S, Ahmed S, Mazurov D, Jeffy J, Shukla RK, Sharma A, Herschhorn A. Incompletely closed HIV-1 CH040 envelope glycoproteins resist broadly neutralizing antibodies while mediating efficient HIV-1 entry. NPJ VIRUSES 2025; 3:3. [PMID: 40295863 PMCID: PMC11735869 DOI: 10.1038/s44298-024-00082-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/06/2024] [Indexed: 04/30/2025]
Abstract
HIV-1 envelope glycoproteins (Envs) mediate viral entry and are sole target of neutralizing antibodies. Thus, HIV-1 Envs must maintain a delicate balance between evading neutralizing antibodies while still preserving viral compatibility to mediate entry into target cells. Here, we studied the viral entry effeciency, fitness, and replication of an incompletely closed, transmitted/founder HIV-1 Envs (CH040), which are highly resistant to most bnAbs. CH040 Envs mediated HIV-1 entry to target cells as efficient as other primary Envs, suggesting that antibody resistance and efficient viral entry can develop independently. Expression of CH040 Envs was comparable to other Envs and most CH040 variants that were rationally engineered to increase bnAb resistance showed no significant decrease in their ability to mediate HIV-1 entry. We detected robust in vitro spread of SHIV CH040 in pig-tailed macaque lymphocytes that was comparable to efficient spread of other SHIVs. Our study provides insights into the relationship between bnAb resistance and efficient HIV-1 entry.
Collapse
Affiliation(s)
- Durgadevi Parthasarathy
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stephanie Pickthorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Shamim Ahmed
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Dmitry Mazurov
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jeffy Jeffy
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Rajni Kant Shukla
- Department of Veterinary Biosciences, Department of Microbial Infection & Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - Amit Sharma
- Department of Veterinary Biosciences, Department of Microbial Infection & Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA.
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN, 55455, USA.
- The College of Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, MN, 55455, USA.
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
8
|
Swanson OM, Zhang QE, Van Itallie E, Tian M, Brown AR, Harris C, Kapingidza AB, Rhodes B, Smith LM, Venkatayogi S, Cronin K, Frazier M, Parks R, Bar M, Jiang C, Martin Beem JS, Cheng HL, Davis J, McGovern K, Newman A, Edwards RJ, Cain D, Alam SM, Wiehe K, Saunders KO, Acharya P, Alt F, Haynes BF, Azoitei ML. An engineered immunogen activates diverse HIV broadly neutralizing antibody precursors and promotes acquisition of improbable mutations. Sci Transl Med 2025; 17:eadr2218. [PMID: 39772772 DOI: 10.1126/scitranslmed.adr2218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/24/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Elicitation of HIV broadly neutralizing antibodies (bnAbs) by vaccination first requires the activation of diverse precursors, followed by successive boosts that guide these responses to enhanced breadth through the acquisition of somatic mutations. Because HIV bnAbs contain mutations in their B cell receptors (BCRs) that are rarely generated during conventional B cell maturation, HIV vaccine immunogens must robustly engage and expand B cells with BCRs that contain these improbable mutations. Here, we engineered an immunogen that activates diverse precursors of an HIV V3-glycan bnAb and promotes their acquisition of a functionally critical improbable mutation. This immunogen was validated biochemically, structurally, and in three different humanized immunoglobulin mouse models that were designed to test HIV immunogens. These results provide a blueprint for rationally designing priming immunogens that explicitly target the elicitation of antibodies with functional yet improbable mutations.
Collapse
Affiliation(s)
- Olivia M Swanson
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Qianyi E Zhang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Elizabeth Van Itallie
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ming Tian
- Boston Children's Hospital, Harvard Medical School and HHMI, Boston, MA 02115, USA
| | - Alecia R Brown
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Caitlin Harris
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Brianna Rhodes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lena M Smith
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sravani Venkatayogi
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kenneth Cronin
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - McKenzie Frazier
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rob Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maggie Bar
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chuancang Jiang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joshua S Martin Beem
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hwei-Ling Cheng
- Boston Children's Hospital, Harvard Medical School and HHMI, Boston, MA 02115, USA
| | - Jillian Davis
- Boston Children's Hospital, Harvard Medical School and HHMI, Boston, MA 02115, USA
| | - Kelly McGovern
- Boston Children's Hospital, Harvard Medical School and HHMI, Boston, MA 02115, USA
| | - Amanda Newman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Derek Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - S Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Microbiology and Molecular Genetics, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Fred Alt
- Boston Children's Hospital, Harvard Medical School and HHMI, Boston, MA 02115, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Integrative Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mihai L Azoitei
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
9
|
Hao Q, Li J, Yeap LS. Molecular mechanisms of DNA lesion and repair during antibody somatic hypermutation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2344-2353. [PMID: 39048716 DOI: 10.1007/s11427-024-2615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/08/2024] [Indexed: 07/27/2024]
Abstract
Antibody diversification is essential for an effective immune response, with somatic hypermutation (SHM) serving as a key molecular process in this adaptation. Activation-induced cytidine deaminase (AID) initiates SHM by inducing DNA lesions, which are ultimately resolved into point mutations, as well as small insertions and deletions (indels). These mutational outcomes contribute to antibody affinity maturation. The mechanisms responsible for generating point mutations and indels involve the base excision repair (BER) and mismatch repair (MMR) pathways, which are well coordinated to maintain genomic integrity while allowing for beneficial mutations to occur. In this regard, translesion synthesis (TLS) polymerases contribute to the diversity of mutational outcomes in antibody genes by enabling the bypass of DNA lesions. This review summarizes our current understanding of the distinct molecular mechanisms that generate point mutations and indels during SHM. Understanding these mechanisms is critical for elucidating the development of broadly neutralizing antibodies (bnAbs) and autoantibodies, and has implications for vaccine design and therapeutics.
Collapse
Affiliation(s)
- Qian Hao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinfeng Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Leng-Siew Yeap
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
10
|
Rappuoli R, Alter G, Pulendran B. Transforming vaccinology. Cell 2024; 187:5171-5194. [PMID: 39303685 PMCID: PMC11736809 DOI: 10.1016/j.cell.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 09/22/2024]
Abstract
The COVID-19 pandemic placed the field of vaccinology squarely at the center of global consciousness, emphasizing the vital role of vaccines as transformative public health tools. The impact of vaccines was recently acknowledged by the award of the 2023 Nobel Prize in Physiology or Medicine to Katalin Kariko and Drew Weissman for their seminal contributions to the development of mRNA vaccines. Here, we provide a historic perspective on the key innovations that led to the development of some 27 licensed vaccines over the past two centuries and recent advances that promise to transform vaccines in the future. Technological revolutions such as reverse vaccinology, synthetic biology, and structure-based design transformed decades of vaccine failures into successful vaccines against meningococcus B and respiratory syncytial virus (RSV). Likewise, the speed and flexibility of mRNA vaccines profoundly altered vaccine development, and the advancement of novel adjuvants promises to revolutionize our ability to tune immunity. Here, we highlight exciting new advances in the field of systems immunology that are transforming our mechanistic understanding of the human immune response to vaccines and how to predict and manipulate them. Additionally, we discuss major immunological challenges such as learning how to stimulate durable protective immune response in humans.
Collapse
Affiliation(s)
| | - Galit Alter
- Moderna Therapeutics, Cambridge, MA 02139, USA.
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
11
|
Ahmed S, Herschhorn A. mRNA-based HIV-1 vaccines. Clin Microbiol Rev 2024; 37:e0004124. [PMID: 39016564 PMCID: PMC11391700 DOI: 10.1128/cmr.00041-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
SUMMARYThe success of the Severe Acute Respiratory Syndrome Coronavirus 2 mRNA vaccines to lessen/prevent severe COVID-19 opened new opportunities to develop RNA vaccines to fight other infectious agents. HIV-1 is a lentivirus that integrates into the host cell genome and persists for the lifetime of infected cells. Multiple mechanisms of immune evasion have posed significant obstacles to the development of an effective HIV-1 vaccine over the last four decades since the identification of HIV-1. Recently, attempts to address some of these challenges have led to multiple studies that manufactured, optimized, and tested, in different animal models, mRNA-based HIV-1 vaccines. Several clinical trials have also been initiated or are planned to start soon. Here, we review the current strategies applied to HIV-1 mRNA vaccines, discuss different targeting approaches, summarize the latest findings, and offer insights into the challenges and future of HIV-1 mRNA vaccines.
Collapse
Affiliation(s)
- Shamim Ahmed
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
- The College of Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
12
|
Walimbwa SI, Maly P, Kafkova LR, Raska M. Beyond glycan barriers: non-cognate ligands and protein mimicry approaches to elicit broadly neutralizing antibodies for HIV-1. J Biomed Sci 2024; 31:83. [PMID: 39169357 PMCID: PMC11337606 DOI: 10.1186/s12929-024-01073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) vaccine immunogens capable of inducing broadly neutralizing antibodies (bNAbs) remain obscure. HIV-1 evades immune responses through enormous diversity and hides its conserved vulnerable epitopes on the envelope glycoprotein (Env) by displaying an extensive immunodominant glycan shield. In elite HIV-1 viremic controllers, glycan-dependent bNAbs targeting conserved Env epitopes have been isolated and are utilized as vaccine design templates. However, immunological tolerance mechanisms limit the development of these antibodies in the general population. The well characterized bNAbs monoclonal variants frequently exhibit extensive levels of somatic hypermutation, a long third heavy chain complementary determining region, or a short third light chain complementarity determining region, and some exhibit poly-reactivity to autoantigens. This review elaborates on the obstacles to engaging and manipulating the Env glycoprotein as an effective immunogen and describes an alternative reverse vaccinology approach to develop a novel category of bNAb-epitope-derived non-cognate immunogens for HIV-1 vaccine design.
Collapse
Affiliation(s)
- Stephen Ian Walimbwa
- Department of Immunology, University Hospital Olomouc, Zdravotníků 248/7, 77900, Olomouc, Czech Republic.
| | - Petr Maly
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Leona Raskova Kafkova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 3, 779 00, Olomouc, Czech Republic
| | - Milan Raska
- Department of Immunology, University Hospital Olomouc, Zdravotníků 248/7, 77900, Olomouc, Czech Republic.
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 3, 779 00, Olomouc, Czech Republic.
| |
Collapse
|
13
|
He H, He B, Guan L, Zhao Y, Jiang F, Chen G, Zhu Q, Chen CYC, Li T, Yao J. De novo generation of SARS-CoV-2 antibody CDRH3 with a pre-trained generative large language model. Nat Commun 2024; 15:6867. [PMID: 39127753 PMCID: PMC11316817 DOI: 10.1038/s41467-024-50903-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Artificial Intelligence (AI) techniques have made great advances in assisting antibody design. However, antibody design still heavily relies on isolating antigen-specific antibodies from serum, which is a resource-intensive and time-consuming process. To address this issue, we propose a Pre-trained Antibody generative large Language Model (PALM-H3) for the de novo generation of artificial antibodies heavy chain complementarity-determining region 3 (CDRH3) with desired antigen-binding specificity, reducing the reliance on natural antibodies. We also build a high-precision model antigen-antibody binder (A2binder) that pairs antigen epitope sequences with antibody sequences to predict binding specificity and affinity. PALM-H3-generated antibodies exhibit binding ability to SARS-CoV-2 antigens, including the emerging XBB variant, as confirmed through in-silico analysis and in-vitro assays. The in-vitro assays validate that PALM-H3-generated antibodies achieve high binding affinity and potent neutralization capability against spike proteins of SARS-CoV-2 wild-type, Alpha, Delta, and the emerging XBB variant. Meanwhile, A2binder demonstrates exceptional predictive performance on binding specificity for various epitopes and variants. Furthermore, by incorporating the attention mechanism inherent in the Roformer architecture into the PALM-H3 model, we improve its interpretability, providing crucial insights into the fundamental principles of antibody design.
Collapse
Affiliation(s)
- Haohuai He
- AI Lab, Tencent, Shenzhen, 518052, China
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Bing He
- AI Lab, Tencent, Shenzhen, 518052, China.
| | - Lei Guan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Xi'an, China
| | - Yu Zhao
- AI Lab, Tencent, Shenzhen, 518052, China
| | - Feng Jiang
- AI Lab, Tencent, Shenzhen, 518052, China
| | - Guanxing Chen
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Qingge Zhu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Xi'an, China
| | - Calvin Yu-Chian Chen
- AI for Science (AI4S)-Preferred Program, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 41354, Taiwan.
- Guangdong L-Med Biotechnology Co. Ltd, Meizhou, 514699, Guangdong, China.
| | - Ting Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Xi'an, China.
| | | |
Collapse
|
14
|
Ortiz Y, Anasti K, Pane AK, Cronin K, Alam SM, Reth M. The CH1 domain influences the expression and antigen sensing of the HIV-specific CH31 IgM-BCR and IgG-BCR. Proc Natl Acad Sci U S A 2024; 121:e2404728121. [PMID: 39042672 PMCID: PMC11295018 DOI: 10.1073/pnas.2404728121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
How different classes of the B cell antigen receptor (BCR) sense viral antigens used in vaccination protocols is poorly understood. Here, we study antigen binding and sensing of human Ramos B cells expressing a BCR of either the IgM or IgG1 class with specificity for the CD4-binding-site of the envelope (Env) protein of the HIV-1. Both BCRs carry an identical antigen binding site derived from the broad neutralizing antibody (bnAb) CH31. We find a five times higher expression of the IgG1-BCR in comparison to the IgM-BCR on the surface of transfected Ramos B cells. The two BCR classes also differ from each other in their interaction with cognate HIV Env antigens in that the IgG1-BCR and IgM-BCR bind preferentially to polyvalent and monovalent antigens, respectively. By generating an IgM/IgG1 chimeric BCR, we found that the class-specific BCR expression and antigen-sensing behavior can be transferred with the CH1γ domain from the IgG1-BCR to the IgM-BCR. Thus, the class of CH1 domain has an impact on BCR assembly and expression as well as on antigen sensing.
Collapse
Affiliation(s)
- Yaneth Ortiz
- Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg79104, Germany
- Faculty of Biology, Signalling Research Centers Centre for Integrative Biological Signalling Studies and Centre for Biological Signalling Studies, University of Freiburg, Freiburg79104, Germany
| | - Kara Anasti
- Department of Medicine & Pathology, Human Vaccine Institute, Duke University, Durham, NC27703
| | - Advaiti K. Pane
- Department of Medicine & Pathology, Human Vaccine Institute, Duke University, Durham, NC27703
| | - Kenneth Cronin
- Department of Medicine & Pathology, Human Vaccine Institute, Duke University, Durham, NC27703
| | - S. Munir Alam
- Department of Medicine & Pathology, Human Vaccine Institute, Duke University, Durham, NC27703
- Deparment of Medicine and Pathology, Duke University, DurhamNC27703
| | - Michael Reth
- Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg79104, Germany
- Faculty of Biology, Signalling Research Centers Centre for Integrative Biological Signalling Studies and Centre for Biological Signalling Studies, University of Freiburg, Freiburg79104, Germany
| |
Collapse
|
15
|
Funk MA, Leitner J, Gerner MC, Hammerler JM, Salzer B, Lehner M, Battin C, Gumpelmair S, Stiasny K, Grabmeier-Pfistershammer K, Steinberger P. Interrogating ligand-receptor interactions using highly sensitive cellular biosensors. Nat Commun 2023; 14:7804. [PMID: 38016944 PMCID: PMC10684770 DOI: 10.1038/s41467-023-43589-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
Interactions of membrane-resident proteins are important targets for therapeutic interventions but most methods to study them are either costly, laborious or fail to reflect the physiologic interaction of membrane resident proteins in trans. Here we describe highly sensitive cellular biosensors as a tool to study receptor-ligand pairs. They consist of fluorescent reporter cells that express chimeric receptors harboring ectodomains of cell surface molecules and intracellular signaling domains. We show that a broad range of molecules can be integrated into this platform and we demonstrate its applicability to highly relevant research areas, including the characterization of immune checkpoints and the probing of cells for the presence of receptors or ligands. The platform is suitable to evaluate the interactions of viral proteins with host receptors and to test for neutralization capability of drugs or biological samples. Our results indicate that cellular biosensors have broad utility as a tool to study protein-interactions.
Collapse
Affiliation(s)
- Maximilian A Funk
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division for Immune Receptors and T cell activation, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division for Immune Receptors and T cell activation, Medical University of Vienna, Vienna, Austria.
| | - Marlene C Gerner
- Division of Biomedical Science, University of Applied Sciences FH Campus Wien, Vienna, Austria
| | - Jasmin M Hammerler
- Division of Biomedical Science, University of Applied Sciences FH Campus Wien, Vienna, Austria
| | - Benjamin Salzer
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- Christian Doppler Laboratory for Next Generation CAR T Cells, Vienna, Austria
| | - Manfred Lehner
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- Christian Doppler Laboratory for Next Generation CAR T Cells, Vienna, Austria
| | - Claire Battin
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division for Immune Receptors and T cell activation, Medical University of Vienna, Vienna, Austria
| | - Simon Gumpelmair
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division for Immune Receptors and T cell activation, Medical University of Vienna, Vienna, Austria
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | - Peter Steinberger
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division for Immune Receptors and T cell activation, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
16
|
Nettere D, Unnithan S, Rodgers N, Nohara J, Cray P, Berry M, Jones C, Armand L, Li SH, Berendam SJ, Fouda GG, Cain DW, Spence TN, Granek JA, Davenport CA, Edwards RJ, Wiehe K, Van Rompay KKA, Moody MA, Permar SR, Pollara J. Conjugation of HIV-1 envelope to hepatitis B surface antigen alters vaccine responses in rhesus macaques. NPJ Vaccines 2023; 8:183. [PMID: 38001122 PMCID: PMC10673864 DOI: 10.1038/s41541-023-00775-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
An effective HIV-1 vaccine remains a critical unmet need for ending the AIDS epidemic. Vaccine trials conducted to date have suggested the need to increase the durability and functionality of vaccine-elicited antibodies to improve efficacy. We hypothesized that a conjugate vaccine based on the learned response to immunization with hepatitis B virus could be utilized to expand T cell help and improve antibody production against HIV-1. To test this, we developed an innovative conjugate vaccine regimen that used a modified vaccinia virus Ankara (MVA) co-expressing HIV-1 envelope (Env) and the hepatitis B virus surface antigen (HBsAg) as a prime, followed by two Env-HBsAg conjugate protein boosts. We compared the immunogenicity of this conjugate regimen to matched HIV-1 Env-only vaccines in two groups of 5 juvenile rhesus macaques previously immunized with hepatitis B vaccines in infancy. We found expansion of both HIV-1 and HBsAg-specific circulating T follicular helper cells and elevated serum levels of CXCL13, a marker for germinal center activity, after boosting with HBsAg-Env conjugate antigens in comparison to Env alone. The conjugate vaccine elicited higher levels of antibodies binding to select HIV Env antigens, but we did not observe significant improvement in antibody functionality, durability, maturation, or B cell clonal expansion. These data suggests that conjugate vaccination can engage both HIV-1 Env and HBsAg specific T cell help and modify antibody responses at early time points, but more research is needed to understand how to leverage this strategy to improve the durability and efficacy of next-generation HIV vaccines.
Collapse
Affiliation(s)
- Danielle Nettere
- Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Shakthi Unnithan
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Nicole Rodgers
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Junsuke Nohara
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Paul Cray
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Madison Berry
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Caroline Jones
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Lawrence Armand
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Shuk Hang Li
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stella J Berendam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- GSK Rockville Center for Vaccines Research, Rockville, MD, USA
| | - Genevieve G Fouda
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Taylor N Spence
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Joshua A Granek
- Quantitative Sciences Core, Duke University Center for AIDS Research, Duke University School of Medicine, Durham, NC, USA
| | - Clemontina A Davenport
- Quantitative Sciences Core, Duke University Center for AIDS Research, Duke University School of Medicine, Durham, NC, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, CA, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Justin Pollara
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA.
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
17
|
Banach BB, Pletnev S, Olia AS, Xu K, Zhang B, Rawi R, Bylund T, Doria-Rose NA, Nguyen TD, Fahad AS, Lee M, Lin BC, Liu T, Louder MK, Madan B, McKee K, O'Dell S, Sastry M, Schön A, Bui N, Shen CH, Wolfe JR, Chuang GY, Mascola JR, Kwong PD, DeKosky BJ. Antibody-directed evolution reveals a mechanism for enhanced neutralization at the HIV-1 fusion peptide site. Nat Commun 2023; 14:7593. [PMID: 37989731 PMCID: PMC10663459 DOI: 10.1038/s41467-023-42098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 09/25/2023] [Indexed: 11/23/2023] Open
Abstract
The HIV-1 fusion peptide (FP) represents a promising vaccine target, but global FP sequence diversity among circulating strains has limited anti-FP antibodies to ~60% neutralization breadth. Here we evolve the FP-targeting antibody VRC34.01 in vitro to enhance FP-neutralization using site saturation mutagenesis and yeast display. Successive rounds of directed evolution by iterative selection of antibodies for binding to resistant HIV-1 strains establish a variant, VRC34.01_mm28, as a best-in-class antibody with 10-fold enhanced potency compared to the template antibody and ~80% breadth on a cross-clade 208-strain neutralization panel. Structural analyses demonstrate that the improved paratope expands the FP binding groove to accommodate diverse FP sequences of different lengths while also recognizing the HIV-1 Env backbone. These data reveal critical antibody features for enhanced neutralization breadth and potency against the FP site of vulnerability and accelerate clinical development of broad HIV-1 FP-targeting vaccines and therapeutics.
Collapse
Affiliation(s)
- Bailey B Banach
- Bioengineering Graduate Program, The University of Kansas, Lawrence, KS, 66045, USA
| | - Sergei Pletnev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Kai Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Thuy Duong Nguyen
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66045, USA
| | - Ahmed S Fahad
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66045, USA
| | - Myungjin Lee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Bharat Madan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66045, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Mallika Sastry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Arne Schön
- Department of Biology, John Hopkins University, Baltimore, MD, 21218, USA
| | - Natalie Bui
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66045, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Jacy R Wolfe
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66045, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA.
| | - Brandon J DeKosky
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66045, USA.
- Department of Chemical Engineering, The University of Kansas, Lawrence, KS, 66045, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA.
| |
Collapse
|
18
|
Stamatatos L. 'Immunization during ART and ATI for HIV-1 vaccine discovery/development'. Curr Opin HIV AIDS 2023; 18:309-314. [PMID: 37712859 PMCID: PMC10552831 DOI: 10.1097/coh.0000000000000817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
PURPOSE OF REVIEW Explore whether immunization with germline-targeting Env immunogens during ART, followed by ATI, leads to the identification of viral envelope glycoproteins (Envs) that promote and guide the full maturation of broadly neutralizing antibody responses. RECENT FINDINGS The HIV-1 envelope glycoprotein (Env) does not efficiently engage the germline precursors of broadly neutralizing antibodies (bnAbs). However, Env-derived proteins specifically designed to precisely do that, have been recently developed. These 'germline-targeting' Env immunogens activate naïve B cells that express the germline precursors of bnAbs but by themselves cannot guide their maturation towards their broadly neutralizing forms. This requires sequential immunizations with heterologous sets of Envs. These 'booster' Envs are currently unknown. SUMMARY Combining germline-targeting Env immunization approaches during ART with ATI could lead to the identification of natural Envs that are responsible for the maturation of broadly neutralizing antibody responses during infection. Such Envs could then serve as booster immunogens to guide the maturation of glBCRs that have become activated by germline-targeting immunogens in uninfected subjects.
Collapse
Affiliation(s)
- Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center and University of Washington, Department of Global Health, Seattle, WA, USA
| |
Collapse
|
19
|
Martin TM, Robinson ST, Huang Y. Discovery medicine - the HVTN's iterative approach to developing an HIV-1 broadly neutralizing vaccine. Curr Opin HIV AIDS 2023; 18:290-299. [PMID: 37712873 PMCID: PMC10552837 DOI: 10.1097/coh.0000000000000821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
PURPOSE OF REVIEW In the past two decades, there has been an explosion in the discovery of HIV-1 broadly neutralizing antibodies (bnAbs) and associated vaccine strategies to induce them. This abundance of approaches necessitates a system that accurately and expeditiously identifies the most promising regimens. We herein briefly review the background science of bnAbs, provide a description of the first round of phase 1 discovery medicine studies, and suggest an approach to integrate these into a comprehensive HIV-1-neutralizing vaccine. RECENT FINDINGS With recent preclinical success including induction of early stage bnAbs in mouse knockin models and rhesus macaques, successful priming of VRC01-class bnAbs with eOD-GT8 in a recent study in humans, and proof-of-concept that intravenous infusion of VRC01 prevents sexual transmission of virus in humans, the stage is set for a broad and comprehensive bnAb vaccine program. Leveraging significant advances in protein nanoparticle science, mRNA technology, adjuvant development, and B-cell and antibody analyses, the HVTN has reconfigured its HIV-1 vaccine strategy by developing the Discovery Medicine Program to test promising vaccine candidates targeting six key epitopes. SUMMARY The HVTN Discovery Medicine program is testing multiple HIV-1-neutralizing vaccine candidates.
Collapse
Affiliation(s)
- Troy M Martin
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | | |
Collapse
|
20
|
Wan M, Yang X, Sun J, Giorgi EE, Ding X, Zhou Y, Zhang Y, Su W, Jiang C, Shan Y, Gao F. Enhancement of Neutralization Responses through Sequential Immunization of Stable Env Trimers Based on Consensus Sequences from Select Time Points by Mimicking Natural Infection. Int J Mol Sci 2023; 24:12642. [PMID: 37628824 PMCID: PMC10454455 DOI: 10.3390/ijms241612642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
HIV-1 vaccines have been challenging to develop, partly due to the high level of genetic variation in its genome. Thus, a vaccine that can induce cross-reactive neutralization activities will be needed. Studies on the co-evolution of antibodies and viruses indicate that mimicking the natural infection is likely to induce broadly neutralizing antibodies (bnAbs). We generated the consensus Env sequence for each time point in subject CH505, who developed broad neutralization activities, and selected five critical time points before broad neutralization was detected. These consensus sequences were designed to express stable Env trimers. Priming with the transmitted/founder Env timer and sequential boosting with these consensus Env trimers from different time points induced broader and more potent neutralizing activities than the BG505 Env trimer in guinea pigs. Analysis of the neutralization profiles showed that sequential immunization of Env trimers favored nAbs with gp120/gp41 interface specificity while the BG505 Env trimer favored nAbs with V2 specificity. The unique features such as consensus sequences, stable Env trimers and the sequential immunization to mimic natural infection likely has allowed the induction of improved neutralization responses.
Collapse
Affiliation(s)
- Mingming Wan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (M.W.); (X.Y.); (J.S.); (X.D.); (Y.Z.); (Y.Z.); (W.S.); (C.J.)
| | - Xiao Yang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (M.W.); (X.Y.); (J.S.); (X.D.); (Y.Z.); (Y.Z.); (W.S.); (C.J.)
| | - Jie Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (M.W.); (X.Y.); (J.S.); (X.D.); (Y.Z.); (Y.Z.); (W.S.); (C.J.)
| | - Elena E. Giorgi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA;
| | - Xue Ding
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (M.W.); (X.Y.); (J.S.); (X.D.); (Y.Z.); (Y.Z.); (W.S.); (C.J.)
| | - Yan Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (M.W.); (X.Y.); (J.S.); (X.D.); (Y.Z.); (Y.Z.); (W.S.); (C.J.)
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (M.W.); (X.Y.); (J.S.); (X.D.); (Y.Z.); (Y.Z.); (W.S.); (C.J.)
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Weiheng Su
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (M.W.); (X.Y.); (J.S.); (X.D.); (Y.Z.); (Y.Z.); (W.S.); (C.J.)
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (M.W.); (X.Y.); (J.S.); (X.D.); (Y.Z.); (Y.Z.); (W.S.); (C.J.)
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (M.W.); (X.Y.); (J.S.); (X.D.); (Y.Z.); (Y.Z.); (W.S.); (C.J.)
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (M.W.); (X.Y.); (J.S.); (X.D.); (Y.Z.); (Y.Z.); (W.S.); (C.J.)
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
- Institute of Molecular and Medical Virology, School of Medicine, Jinan University, Guangzhou 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| |
Collapse
|
21
|
Buck AM, Deveau TM, Henrich TJ, Deitchman AN. Challenges in HIV-1 Latent Reservoir and Target Cell Quantification in CAR-T Cell and Other Lentiviral Gene Modifying HIV Cure Strategies. Viruses 2023; 15:1126. [PMID: 37243212 PMCID: PMC10222761 DOI: 10.3390/v15051126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Gene-modification therapies are at the forefront of HIV-1 cure strategies. Chimeric antigen receptor (CAR)-T cells pose a potential approach to target infected cells during antiretroviral therapy or following analytical treatment interruption (ATI). However, there are technical challenges in the quantification of HIV-1-infected and CAR-T cells in the setting of lentiviral CAR gene delivery and also in the identification of cells expressing target antigens. First, there is a lack of validated techniques to identify and characterize cells expressing the hypervariable HIV gp120 in both ART-suppressed and viremic individuals. Second, close sequence homology between lentiviral-based CAR-T gene modification vectors and conserved regions of HIV-1 creates quantification challenges of HIV-1 and lentiviral vector levels. Consideration needs to be taken into standardizing HIV-1 DNA/RNA assays in the setting of CAR-T cell and other lentiviral vector-based therapies to avoid these confounding interactions. Lastly, with the introduction of HIV-1 resistance genes in CAR-T cells, there is a need for assays with single-cell resolution to determine the competence of the gene inserts to prevent CAR-T cells from becoming infected in vivo. As novel therapies continue to arise in the HIV-1 cure field, resolving these challenges in CAR-T-cell therapy will be crucial.
Collapse
Affiliation(s)
- Amanda M. Buck
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Tyler-Marie Deveau
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Timothy J. Henrich
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Amelia N. Deitchman
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, CA 94110, USA
| |
Collapse
|
22
|
Hao Q, Zhan C, Lian C, Luo S, Cao W, Wang B, Xie X, Ye X, Gui T, Voena C, Pighi C, Wang Y, Tian Y, Wang X, Dai P, Cai Y, Liu X, Ouyang S, Sun S, Hu Q, Liu J, Ye Y, Zhao J, Lu A, Wang JY, Huang C, Su B, Meng FL, Chiarle R, Pan-Hammarström Q, Yeap LS. DNA repair mechanisms that promote insertion-deletion events during immunoglobulin gene diversification. Sci Immunol 2023; 8:eade1167. [PMID: 36961908 PMCID: PMC10351598 DOI: 10.1126/sciimmunol.ade1167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/01/2023] [Indexed: 03/26/2023]
Abstract
Insertions and deletions (indels) are low-frequency deleterious genomic DNA alterations. Despite their rarity, indels are common, and insertions leading to long complementarity-determining region 3 (CDR3) are vital for antigen-binding functions in broadly neutralizing and polyreactive antibodies targeting viruses. Because of challenges in detecting indels, the mechanism that generates indels during immunoglobulin diversification processes remains poorly understood. We carried out ultra-deep profiling of indels and systematically dissected the underlying mechanisms using passenger-immunoglobulin mouse models. We found that activation-induced cytidine deaminase-dependent ±1-base pair (bp) indels are the most prevalent indel events, biasing deleterious outcomes, whereas longer in-frame indels, especially insertions that can extend the CDR3 length, are rare outcomes. The ±1-bp indels are channeled by base excision repair, but longer indels require additional DNA-processing factors. Ectopic expression of a DNA exonuclease or perturbation of the balance of DNA polymerases can increase the frequency of longer indels, thus paving the way for models that can generate antibodies with long CDR3. Our study reveals the mechanisms that generate beneficial and deleterious indels during the process of antibody somatic hypermutation and has implications in understanding the detrimental genomic alterations in various conditions, including tumorigenesis.
Collapse
Affiliation(s)
- Qian Hao
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Chuanzong Zhan
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Chaoyang Lian
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Simin Luo
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Wenyi Cao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Binbin Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Xia Xie
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Xiaofei Ye
- Department of Biosciences and Nutrition, Karolinska Institutet; SE141-83, Huddinge, Stockholm, Sweden
- Present address: Kindstar Global Precision Medicine Institute, Wuhan, China and Kindstar Biotech, Wuhan, China
| | - Tuantuan Gui
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, University of Torino; 10126 Torino, Italy
| | - Chiara Pighi
- Department of Molecular Biotechnology and Health Sciences, University of Torino; 10126 Torino, Italy
- Department of Pathology, Boston Children’s Hospital, and Harvard Medical School; Boston, MA 02115, USA
| | - Yanyan Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Ying Tian
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Xin Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Pengfei Dai
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Yanni Cai
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Xiaojing Liu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Shengqun Ouyang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Shiqi Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Qianwen Hu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Jun Liu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Youqiong Ye
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Jingkun Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Aiguo Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chuanxin Huang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Departments of Endocrinology and Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025
| | - Fei-Long Meng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, University of Torino; 10126 Torino, Italy
- Department of Pathology, Boston Children’s Hospital, and Harvard Medical School; Boston, MA 02115, USA
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet; SE141-83, Huddinge, Stockholm, Sweden
| | - Leng-Siew Yeap
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| |
Collapse
|
23
|
Samsel J, Boswell KL, Watkins T, Ambrozak DR, Mason R, Yamamoto T, Ko S, Yang Y, Zhou T, Doria-Rose NA, Foulds KE, Roederer M, Mascola JR, Kwong PD, Gama L, Koup RA. Rhesus macaque Bcl-6/Bcl-xL B cell immortalization: Discovery of HIV-1 neutralizing antibodies from lymph node. J Immunol Methods 2023; 516:113445. [PMID: 36848985 DOI: 10.1016/j.jim.2023.113445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Many HIV-1 vaccines are designed to elicit neutralizing antibodies, and pre-clinical testing is often carried out in rhesus macaques (RMs). We have therefore adapted a method of B cell immortalization for use with RM B cells. In this system, RM B cells are activated with CD40 ligand and RM IL-21 before transduction with a retroviral vector encoding Bcl-6, Bcl-xL, and green fluorescent protein. Importantly, RM B cells from lymph nodes are more effectively immortalized by this method than B cells from PBMC, a difference not seen in humans. We suggest the discrepancy between these two tissues is due to increased expression of CD40 on RM lymph node B cells. Immortalized RM B cells expand long-term, undergo minimal somatic hypermutation, express surface B cell receptor, and secrete antibodies into culture. This allows for the identification of cells based on antigen specificity and/or functional assays. Here, we show the characterization of this system and its application for the isolation of HIV-1 neutralizing antibodies from a SHIV.CH505-infected animal, both with and without antigen probe. Taken together, we show that Bcl-6/xL immortalization is a valuable and flexible tool for antibody discovery in RMs, but with important distinctions from application of the system in human cells.
Collapse
Affiliation(s)
- Jakob Samsel
- Immunology Laboratory, Vaccine Research Center (VRC), NIAID, NIH, Bethesda, MD, United States of America; Institute for Biomedical Sciences, George Washington University, Washington, D.C., United States of America.
| | - Kristin L Boswell
- Immunology Laboratory, Vaccine Research Center (VRC), NIAID, NIH, Bethesda, MD, United States of America
| | - Timothy Watkins
- Immunology Laboratory, Vaccine Research Center (VRC), NIAID, NIH, Bethesda, MD, United States of America
| | - David R Ambrozak
- Immunology Laboratory, Vaccine Research Center (VRC), NIAID, NIH, Bethesda, MD, United States of America
| | - Rosemarie Mason
- ImmunoTechnology Section, VRC; Humoral Immunology Section, VRC
| | - Takuya Yamamoto
- Immunology Laboratory, Vaccine Research Center (VRC), NIAID, NIH, Bethesda, MD, United States of America
| | | | | | | | | | | | | | | | | | - Lucio Gama
- Immunology Laboratory, Vaccine Research Center (VRC), NIAID, NIH, Bethesda, MD, United States of America
| | - Richard A Koup
- Immunology Laboratory, Vaccine Research Center (VRC), NIAID, NIH, Bethesda, MD, United States of America
| |
Collapse
|
24
|
Matarazzo L, Bettencourt PJG. mRNA vaccines: a new opportunity for malaria, tuberculosis and HIV. Front Immunol 2023; 14:1172691. [PMID: 37168860 PMCID: PMC10166207 DOI: 10.3389/fimmu.2023.1172691] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
The success of the first licensed mRNA-based vaccines against COVID-19 has created a widespread interest on mRNA technology for vaccinology. As expected, the number of mRNA vaccines in preclinical and clinical development increased exponentially since 2020, including numerous improvements in mRNA formulation design, delivery methods and manufacturing processes. However, the technology faces challenges such as the cost of raw materials, the lack of standardization, and delivery optimization. MRNA technology may provide a solution to some of the emerging infectious diseases as well as the deadliest hard-to-treat infectious diseases malaria, tuberculosis, and human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS), for which an effective vaccine, easily deployable to endemic areas is urgently needed. In this review, we discuss the functional structure, design, manufacturing processes and delivery methods of mRNA vaccines. We provide an up-to-date overview of the preclinical and clinical development of mRNA vaccines against infectious diseases, and discuss the immunogenicity, efficacy and correlates of protection of mRNA vaccines, with particular focus on research and development of mRNA vaccines against malaria, tuberculosis and HIV.
Collapse
Affiliation(s)
- Laura Matarazzo
- Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Lisboa, Portugal
- Faculty of Medicine, Universidade Católica Portuguesa, Rio de Mouro, Portugal
| | - Paulo J. G. Bettencourt
- Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Lisboa, Portugal
- Faculty of Medicine, Universidade Católica Portuguesa, Rio de Mouro, Portugal
- *Correspondence: Paulo J. G. Bettencourt,
| |
Collapse
|
25
|
Affiliation(s)
- Paolo Lusso
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| |
Collapse
|
26
|
Knudsen ML, Agrawal P, MacCamy A, Parks KR, Gray MD, Takushi BN, Khechaduri A, Salladay KR, Coler RN, LaBranche CC, Montefiori D, Stamatatos L. Adjuvants influence the maturation of VRC01-like antibodies during immunization. iScience 2022; 25:105473. [PMID: 36405776 PMCID: PMC9667313 DOI: 10.1016/j.isci.2022.105473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/26/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Once naive B cells expressing germline VRC01-class B cell receptors become activated by germline-targeting immunogens, they enter germinal centers and undergo affinity maturation. Booster immunizations with heterologous Envs are required for the full maturation of VRC01-class antibodies. Here, we examined whether and how three adjuvants, Poly(I:C), GLA-LSQ, or Rehydragel, that activate different pathways of the innate immune system, influence the rate and type of somatic mutations accumulated by VRC01-class BCRs that become activated by the germline-targeting 426c.Mod.Core immunogen and the heterologous HxB2.WT.Core booster immunogen. We report that although the adjuvant used had no influence on the durability of plasma antibody responses after the prime, it influenced the plasma VRC01 antibody titers after the boost and the accumulation of somatic mutations on the elicited VRC01 antibodies.
Collapse
Affiliation(s)
- Maria L. Knudsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Parul Agrawal
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Anna MacCamy
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - K. Rachael Parks
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - Matthew D. Gray
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Brittany N. Takushi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Arineh Khechaduri
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kelsey R. Salladay
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Rhea N. Coler
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | | | - David Montefiori
- Division of Surgical Sciences, Duke University, Durham, NC 27710, USA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
27
|
Li X, Liao D, Li Z, Li J, Diaz M, Verkoczy L, Gao F. Autoreactivity and broad neutralization of antibodies against HIV-1 are governed by distinct mutations: Implications for vaccine design strategies. Front Immunol 2022; 13:977630. [PMID: 36479128 PMCID: PMC9720396 DOI: 10.3389/fimmu.2022.977630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022] Open
Abstract
Many of the best HIV-1 broadly neutralizing antibodies (bnAbs) known have poly-/autoreactive features that disfavor normal B cell development and maturation, posing a major hurdle in developing an effective HIV-1 vaccine. Key to resolving this problem is to understand if, and to what extent, neutralization breadth-conferring mutations acquired by bnAbs contribute to their autoreactivity. Here, we back-mutated all known changes made by a prototype CD4 binding site-directed bnAb lineage, CH103-106, during its later maturation steps. Strikingly, of 29 mutations examined, only four were crucial for increased autoreactivity, with minimal or no impact on neutralization. Furthermore, three of these residues were clustered in the heavy chain complementarity-determining region 2 (HCDR2). Our results demonstrate that broad neutralization activity and autoreactivity in the CH103-106 bnAb lineage can be governed by a few, distinct mutations during maturation. This provides strong rationale for developing immunogens that favor bnAb lineages bearing "neutralization-only" mutations into current HIV-1 vaccine designs.
Collapse
Affiliation(s)
- Xiaojun Li
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Dongmei Liao
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Zhengyang Li
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jixi Li
- School of Life Sciences, Fudan University, Shanghai, China
| | - Marilyn Diaz
- Applied Biomedical Science Institute, San Diego, CA, United States
| | - Laurent Verkoczy
- Applied Biomedical Science Institute, San Diego, CA, United States
| | - Feng Gao
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Institute of Molecular and Medical Virology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, Guangdongg, China
| |
Collapse
|
28
|
Zacharopoulou P, Ansari MA, Frater J. A calculated risk: Evaluating HIV resistance to the broadly neutralising antibodies10-1074 and 3BNC117. Curr Opin HIV AIDS 2022; 17:352-358. [PMID: 36178770 PMCID: PMC9594129 DOI: 10.1097/coh.0000000000000764] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF THIS REVIEW Broadly neutralising antibodies (bNAbs) are a promising new therapy for the treatment of HIV infection. However, the effective use of bNAbs is impacted by the presence of preexisting virological resistance and the potential to develop new resistance during treatment. With several bNAb clinical trials underway, sensitive and scalable assays are needed to screen for resistance. This review summarises the data on resistance from published clinical trials using the bNAbs 10-1074 and 3BNC117 and evaluates current approaches for detecting bNAb sensitivity as well as their limitations. RECENT FINDINGS Analyses of samples from clinical trials of 10-1074 and 3BNC117 reveal viral mutations that emerge on therapy which may result in bNAb resistance. These mutations are also found in some potential study participants prior to bNAb exposure. These clinical data are further informed by ex-vivo neutralisation assays which offer an alternative measure of resistance and allow more detailed interrogation of specific viral mutations. However, the limited amount of publicly available data and the need for better understanding of other viral features that may affect bNAb binding mean there is no widely accepted approach to measuring bNAb resistance. SUMMARY Resistance to the bNAbs 10-1074 and 3BNC117 may significantly impact clinical outcome following their therapeutic administration. Predicting bNAb resistance may help to lower the risk of treatment failure and therefore a robust methodology to screen for bNAb sensitivity is needed.
Collapse
Affiliation(s)
- Panagiota Zacharopoulou
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford
| | - M. Azim Ansari
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
29
|
Yang S, Hiotis G, Wang Y, Chen J, Wang JH, Kim M, Reinherz EL, Walz T. Dynamic HIV-1 spike motion creates vulnerability for its membrane-bound tripod to antibody attack. Nat Commun 2022; 13:6393. [PMID: 36302771 PMCID: PMC9610346 DOI: 10.1038/s41467-022-34008-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/06/2022] [Indexed: 12/25/2022] Open
Abstract
Vaccines targeting HIV-1's gp160 spike protein are stymied by high viral mutation rates and structural chicanery. gp160's membrane-proximal external region (MPER) is the target of naturally arising broadly neutralizing antibodies (bnAbs), yet MPER-based vaccines fail to generate bnAbs. Here, nanodisc-embedded spike protein was investigated by cryo-electron microscopy and molecular-dynamics simulations, revealing spontaneous ectodomain tilting that creates vulnerability for HIV-1. While each MPER protomer radiates centrally towards the three-fold axis contributing to a membrane-associated tripod structure that is occluded in the upright spike, tilting provides access to the opposing MPER. Structures of spike proteins with bound 4E10 bnAb Fabs reveal that the antibody binds exposed MPER, thereby altering MPER dynamics, modifying average ectodomain tilt, and imposing strain on the viral membrane and the spike's transmembrane segments, resulting in the abrogation of membrane fusion and informing future vaccine development.
Collapse
Affiliation(s)
- Shuang Yang
- grid.134907.80000 0001 2166 1519Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY USA
| | - Giorgos Hiotis
- grid.134907.80000 0001 2166 1519Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY USA ,grid.134907.80000 0001 2166 1519Tri-Institutional PhD Program in Chemical Biology, The Rockefeller University, New York, NY USA
| | - Yi Wang
- grid.65499.370000 0001 2106 9910Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Medicine, Harvard Medical School, Boston, MA USA
| | - Junjian Chen
- grid.65499.370000 0001 2106 9910Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Medicine, Harvard Medical School, Boston, MA USA
| | - Jia-huai Wang
- grid.65499.370000 0001 2106 9910Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA USA ,grid.65499.370000 0001 2106 9910Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA USA
| | - Mikyung Kim
- grid.65499.370000 0001 2106 9910Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Dermatology, Harvard Medical School, Boston, MA USA
| | - Ellis L. Reinherz
- grid.65499.370000 0001 2106 9910Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Medicine, Harvard Medical School, Boston, MA USA
| | - Thomas Walz
- grid.134907.80000 0001 2166 1519Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY USA
| |
Collapse
|
30
|
Wang E, Chakraborty AK. Design of immunogens for eliciting antibody responses that may protect against SARS-CoV-2 variants. PLoS Comput Biol 2022; 18:e1010563. [PMID: 36156540 PMCID: PMC9536555 DOI: 10.1371/journal.pcbi.1010563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 10/06/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
The rise of SARS-CoV-2 variants and the history of outbreaks caused by zoonotic coronaviruses point to the need for next-generation vaccines that confer protection against variant strains. Here, we combined analyses of diverse sequences and structures of coronavirus spikes with data from deep mutational scanning to design SARS-CoV-2 variant antigens containing the most significant mutations that may emerge. We trained a neural network to predict RBD expression and ACE2 binding from sequence, which allowed us to determine that these antigens are stable and bind to ACE2. Thus, they represent viable variants. We then used a computational model of affinity maturation (AM) to study the antibody response to immunization with different combinations of the designed antigens. The results suggest that immunization with a cocktail of the antigens is likely to promote evolution of higher titers of antibodies that target SARS-CoV-2 variants than immunization or infection with the wildtype virus alone. Finally, our analysis of 12 coronaviruses from different genera identified the S2’ cleavage site and fusion peptide as potential pan-coronavirus vaccine targets. SARS-CoV-2 variants have already emerged and future variants may pose greater threats to the efficacy of current vaccines. Rather than using a reactive approach to vaccine development that would lag behind the evolution of the virus, such as updating the sequence in the vaccine with a current variant, we sought to use a proactive approach that predicts some of the mutations that could arise that could evade current immune responses. Then, by including these mutations in a new vaccine antigen, we might be able to protect against those potential variants before they appear. Toward this end, we used various computational methods including sequence analysis and machine learning to design such antigens. We then used simulations of antibody development, and the results suggest that immunization with our designed antigens is likely to result in an antibody response that is better able to target SARS-CoV-2 variants than current vaccines. We also leveraged our sequence analysis to suggest that a particular site on the spike protein could serve as a useful target for a pan-coronavirus vaccine.
Collapse
Affiliation(s)
- Eric Wang
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Arup K. Chakraborty
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
31
|
Contribution of rare mutational outcomes to broadly neutralizing antibodies. Acta Biochim Biophys Sin (Shanghai) 2022; 54:820-827. [PMID: 35713319 PMCID: PMC9828561 DOI: 10.3724/abbs.2022065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Antibodies are important immune molecules that are elicited by B cells to protect our bodies during viral infections or vaccinations. In humans, the antibody repertoire is diversified by programmed DNA lesion processes to ensure specific and high affinity binding to various antigens. Broadly neutralizing antibodies (bnAbs) are antibodies that have strong neutralizing activities against different variants of a virus. bnAbs such as anti-HIV bnAbs often have special characteristics including insertions and deletions, long complementarity determining region 3 (CDR3), and high frequencies of mutations, often at improbable sites of the variable regions. These unique features are rare mutational outcomes that are acquired during antibody diversification processes. In this review, we will discuss possible mechanisms that generate these rare antibody mutational outcomes. The understanding of the mechanisms that generate these rare mutational outcomes during antibody diversification will have implications in vaccine design strategies to elicit bnAbs.
Collapse
|
32
|
Tsuji I, Vang F, Dominguez D, Karwal L, Sanjali A, Livengood JA, Davidson E, Fouch ME, Doranz BJ, Das SC, Dean HJ. Somatic Hypermutation and Framework Mutations of Variable Region Contribute to Anti-Zika Virus-Specific Monoclonal Antibody Binding and Function. J Virol 2022; 96:e0007122. [PMID: 35575481 PMCID: PMC9175631 DOI: 10.1128/jvi.00071-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
Zika virus (ZIKV) is a global public health concern due to its ability to cause congenital Zika syndrome and lack of approved vaccine, therapeutic, or other control measures. We discovered eight novel rabbit monoclonal antibodies (MAbs) that bind to distinct ZIKV envelope protein epitopes. The majority of the MAbs were ZIKV specific and targeted the lateral ridge of the envelope (E) protein domain III, while the MAb with the highest neutralizing activity recognized a putative quaternary epitope spanning E protein domains I and III. One of the non-neutralizing MAbs specifically recognized ZIKV precursor membrane protein (prM). Somatic hypermutation of immunoglobulin variable regions increases antibody affinity maturation and triggers antibody class switching. Negative correlations were observed between the somatic hypermutation rate of the immunoglobulin heavy-chain variable region and antibody binding parameters such as equilibrium dissociation constant, dissociation constant, and half-maximal effective concentration value of MAb binding to ZIKV virus-like particles. Complementarity-determining regions recognize the antigen epitopes and are scaffolded by canonical framework regions. Reversion of framework region amino acids to the rabbit germ line sequence decreased anti-ZIKV MAb binding activity of some MAbs. Thus, antibody affinity maturation, including somatic hypermutation and framework region mutations, contributed to the binding and function of these anti-ZIKV MAbs. IMPORTANCE ZIKV is a global health concern against which no vaccine or therapeutics are available. We characterized eight novel rabbit monoclonal antibodies recognizing ZIKV envelope and prM proteins and studied the relationship between somatic hypermutation of complementarity-determining regions, framework regions, mutations, antibody specificity, binding, and neutralizing activity. The results contribute to understanding structural features and somatic mutation pathways by which potent Zika virus-neutralizing antibodies can evolve, including the role of antibody framework regions.
Collapse
Affiliation(s)
- Isamu Tsuji
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | - Fue Vang
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | - David Dominguez
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | - Lovkesh Karwal
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | - Ankita Sanjali
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | - Jill A. Livengood
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | | | | | | | - Subash C. Das
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | - Hansi J. Dean
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| |
Collapse
|
33
|
Noailly B, Yaugel-Novoa M, Werquin J, Jospin F, Drocourt D, Bourlet T, Rochereau N, Paul S. Antiviral Activities of HIV-1-Specific Human Broadly Neutralizing Antibodies Are Isotype-Dependent. Vaccines (Basel) 2022; 10:vaccines10060903. [PMID: 35746511 PMCID: PMC9227833 DOI: 10.3390/vaccines10060903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
Broadly neutralizing antibodies (bNAbs) offer promising opportunities for preventing HIV-1 infection. The protection mechanisms of bNAbs involve the Fc domain, as well as their Fab counterpart. Here, different bNAb isotypes including IgG1, IgA1, IgA2, and IgA122 (IgA2 with the hinge of IgA1) were generated and then produced in CHO cells. Their ability to neutralize pseudovirus and primary HIV-1 isolates were measured, as well as their potential ADCC-like activity using a newly developed assay. In our work, gp41-specific IgA seems to be more efficient than IgG1 in inducing ADCC-like activity, but not in its virus neutralization effect. We show that either gp120-specific IgA or IgG1 isotypes are both efficient in neutralizing different viral strains. In contrast, gp120-specific IgG1 was a better ADCC-like inducer than IgA isotypes. These results provide new insights into the neutralization and ADCC-like activity of different bNAbs that might be taken into consideration when searching for new treatments or antibody-based vaccines.
Collapse
Affiliation(s)
- Blandine Noailly
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, 42023 Saint-Etienne, France; (B.N.); (M.Y.-N.); (J.W.); (F.J.); (T.B.); (N.R.)
| | - Melyssa Yaugel-Novoa
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, 42023 Saint-Etienne, France; (B.N.); (M.Y.-N.); (J.W.); (F.J.); (T.B.); (N.R.)
| | - Justine Werquin
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, 42023 Saint-Etienne, France; (B.N.); (M.Y.-N.); (J.W.); (F.J.); (T.B.); (N.R.)
| | - Fabienne Jospin
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, 42023 Saint-Etienne, France; (B.N.); (M.Y.-N.); (J.W.); (F.J.); (T.B.); (N.R.)
| | | | - Thomas Bourlet
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, 42023 Saint-Etienne, France; (B.N.); (M.Y.-N.); (J.W.); (F.J.); (T.B.); (N.R.)
| | - Nicolas Rochereau
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, 42023 Saint-Etienne, France; (B.N.); (M.Y.-N.); (J.W.); (F.J.); (T.B.); (N.R.)
| | - Stéphane Paul
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, 42023 Saint-Etienne, France; (B.N.); (M.Y.-N.); (J.W.); (F.J.); (T.B.); (N.R.)
- Correspondence:
| |
Collapse
|
34
|
Lupo C, Spisak N, Walczak AM, Mora T. Learning the statistics and landscape of somatic mutation-induced insertions and deletions in antibodies. PLoS Comput Biol 2022; 18:e1010167. [PMID: 35653375 PMCID: PMC9197026 DOI: 10.1371/journal.pcbi.1010167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/14/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Affinity maturation is crucial for improving the binding affinity of antibodies to antigens. This process is mainly driven by point substitutions caused by somatic hypermutations of the immunoglobulin gene. It also includes deletions and insertions of genomic material known as indels. While the landscape of point substitutions has been extensively studied, a detailed statistical description of indels is still lacking. Here we present a probabilistic inference tool to learn the statistics of indels from repertoire sequencing data, which overcomes the pitfalls and biases of standard annotation methods. The model includes antibody-specific maturation ages to account for variable mutational loads in the repertoire. After validation on synthetic data, we applied our tool to a large dataset of human immunoglobulin heavy chains. The inferred model allows us to identify universal statistical features of indels in heavy chains. We report distinct insertion and deletion hotspots, and show that the distribution of lengths of indels follows a geometric distribution, which puts constraints on future mechanistic models of the hypermutation process. Affinity maturation of B cell receptors is an important mechanism by which our body designs neutralizing antibodies to defend us against pathogens, including broadly neutralizing antibodies, which target a wide range of variants of the same pathogen. Such antibodies often contain key insertions and deletions to the germline gene, or “indels”, which are caused by somatic hypermutations. However, the mechanism, frequency and role of these indels are still elusive. We designed a computational method based on a probabilistic framework to infer the characteristics of this mutational process from high-throughput antibody sequencing experiments. Applied to human data, our approach provides a comprehensive quantitative description of insertions and deletions, opening avenues for better understanding the process of affinity maturation and the design of vaccines for eliciting a broad antibody response.
Collapse
Affiliation(s)
- Cosimo Lupo
- Laboratoire de physique de l’École normale supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France
| | - Natanael Spisak
- Laboratoire de physique de l’École normale supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France
| | - Aleksandra M. Walczak
- Laboratoire de physique de l’École normale supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France
- * E-mail: (AMW); (TM)
| | - Thierry Mora
- Laboratoire de physique de l’École normale supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France
- * E-mail: (AMW); (TM)
| |
Collapse
|
35
|
Welles HC, King HAD, Nettey L, Cavett N, Gorman J, Zhou T, Tsybovsky Y, Du R, Song K, Nguyen R, Ambrozak D, Ransier A, Schramm CA, Doria-Rose NA, Swanstrom AE, Hoxie JA, LaBranche C, Montefiori DC, Douek DC, Kwong PD, Mascola JR, Roederer M, Mason RD. Broad coverage of neutralization-resistant SIV strains by second-generation SIV-specific antibodies targeting the region involved in binding CD4. PLoS Pathog 2022; 18:e1010574. [PMID: 35709309 PMCID: PMC9242510 DOI: 10.1371/journal.ppat.1010574] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/29/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022] Open
Abstract
Both SIV and SHIV are powerful tools for evaluating antibody-mediated prevention and treatment of HIV-1. However, owing to a lack of rhesus-derived SIV broadly neutralizing antibodies (bnAbs), testing of bnAbs for HIV-1 prevention or treatment has thus far been performed exclusively in the SHIV NHP model using bnAbs from HIV-1-infected individuals. Here we describe the isolation and characterization of multiple rhesus-derived SIV bnAbs capable of neutralizing most isolates of SIV. Eight antibodies belonging to two clonal families, ITS102 and ITS103, which target unique epitopes in the CD4 binding site (CD4bs) region, were found to be broadly neutralizing and together neutralized all SIV strains tested. A rare feature of these bnAbs and two additional antibody families, ITS92 and ITS101, which mediate strain-specific neutralizing activity against SIV from sooty mangabeys (SIVsm), was their ability to achieve near complete (i.e. 100%) neutralization of moderately and highly neutralization-resistant SIV. Overall, these newly identified SIV bnAbs highlight the potential for evaluating HIV-1 prophylactic and therapeutic interventions using fully simian, rhesus-derived bnAbs in the SIV NHP model, thereby circumventing issues related to rapid antibody clearance of human-derived antibodies, Fc mismatch and limited genetic diversity of SHIV compared to SIV.
Collapse
Affiliation(s)
- Hugh C. Welles
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hannah A. D. King
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Leonard Nettey
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nicole Cavett
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jason Gorman
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tongqing Zhou
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Renguang Du
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kaimei Song
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard Nguyen
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David Ambrozak
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Amy Ransier
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chaim A. Schramm
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nicole A. Doria-Rose
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Adrienne E. Swanstrom
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - James A. Hoxie
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Daniel C. Douek
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mario Roederer
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rosemarie D. Mason
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
36
|
Jing Z, McCarron MJ, Dustin ML, Fooksman DR. Germinal center expansion but not plasmablast differentiation is proportional to peptide-MHCII density via CD40-CD40L signaling strength. Cell Rep 2022; 39:110763. [PMID: 35508132 PMCID: PMC9178878 DOI: 10.1016/j.celrep.2022.110763] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/19/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
T follicular helper (TFH) cells promote expansion of germinal center (GC) B cells and plasma cell differentiation. Whether cognate peptide-MHCII (pMHCII) density instructs selection and cell fate decisions in a quantitative manner remains unclear. Using αDEC205-OVA to differentially deliver OVA peptides to GC B cells on the basis of DEC205 allelic copy number, we find DEC205+/+ B cells take up 2-fold more antigen than DEC205+/- cells, leading to proportional TFH cell help and B cell expansion. To validate these results, we establish a caged OVA peptide, which is readily detected by OVA-specific TFH cells after photo-uncaging. In situ uncaging of peptides leads to multiple serial B-T contacts and cell activation. Differential CD40 signaling, is both necessary and sufficient to mediate 2-fold differences in B cell expansion. While plasmablast numbers are increased, pMHCII density does not directly control the output or quality of plasma cells. Thus, we distinguish the roles TFH cells play in expansion versus differentiation.
Collapse
Affiliation(s)
- Zhixin Jing
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mark J McCarron
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3-7FY, UK
| | - David R Fooksman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
37
|
Abstract
The HIV Env glycoprotein is the surface glycoprotein responsible for viral entry into CD4+ immune cells. During infection, Env also serves as a primary target for antibody responses, which are robust but unable to control virus replication. Immune evasion by HIV-1 Env appears to employ complex mechanisms to regulate what antigenic states are presented to the immune system. Immunodominant features appear to be distinct from epitopes that interfere with Env functions in mediating infection. Further, cell-cell transmission studies indicate that vulnerable conformational states are additionally hidden from recognition on infected cells, even though the presence of Env at the cell surface is required for viral infection through the virological synapse. Cell-cell infection studies support that Env on infected cells is presented in distinct conformations from that on virus particles. Here we review data regarding the regulation of conformational states of Env and assess how regulated sorting of Env within the infected cell may underlie mechanisms to distinguish Env on the surface of virus particles versus Env on the surface of infected cells. These mechanisms may allow infected cells to avoid opsonization, providing cell-to-cell infection by HIV with a selective advantage during evolution within an infected individual. Understanding how distinct Env conformations are presented on cells versus viruses may be essential to designing effective vaccine approaches and therapeutic strategies to clear infected cell reservoirs.
Collapse
Affiliation(s)
- Connie Zhao
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hongru Li
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Talia H. Swartz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin K. Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
38
|
Cale EM, Driscoll JI, Lee M, Gorman J, Zhou T, Lu M, Geng H, Lai YT, Chuang GY, Doria-Rose NA, Mothes W, Kwong PD, Mascola JR. Antigenic analysis of the HIV-1 envelope trimer implies small differences between structural states 1 and 2. J Biol Chem 2022; 298:101819. [PMID: 35283191 PMCID: PMC9006658 DOI: 10.1016/j.jbc.2022.101819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/20/2022] Open
Abstract
The conformationally dynamic HIV-1 envelope trimer (Env) is the target of broadly neutralizing antibodies (bnAbs) that block viral entry. Single-molecule Förster resonance energy transfer (smFRET) has revealed that HIV-1 Env exists in at least three conformational states on the virion. Prior to complete host-receptor engagement (State 3), Env resides most prevalently in the smFRET-defined State 1, which is preferentially recognized by most bnAbs that are elicited by natural infection. smFRET has also revealed that soluble trimers containing prefusion-stabilizing disulfide and isoleucine-to-proline substitutions reside primarily in State 2, which is a required intermediate between States 1 and 3. While high-resolution Env structures have been determined for States 2 and 3, the structure of these trimers in State 1 is unknown. To provide insight into the State 1 structure, here we characterized antigenic differences between smFRET-defined states and then correlated these differences with known structural differences between States 2 and 3. We found that cell surface-expressed Env was enriched in each state using state-enriching antibody fragments or small-molecule virus entry inhibitors and then assessed binding to HIV-1 bnAbs preferentially binding different states. We observed small but consistent differences in binding between Env enriched in States 1 and 2, and a more than 10-fold difference in binding to Env enriched in these states versus Env enriched in State 3. We conclude that structural differences between HIV-1 Env States 1 and 3 are likely more than 10-fold greater than those between States 1 and 2, providing important insight into State 1.
Collapse
Affiliation(s)
- Evan M Cale
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jefferson I Driscoll
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Myungjin Lee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Maolin Lu
- Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Cellular and Molecular Biology, University of Texas Health Science Center, Tyler, Texas, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yen-Ting Lai
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
39
|
Cook JD, Khondker A, Lee JE. Conformational plasticity of the HIV-1 gp41 immunodominant region is recognized by multiple non-neutralizing antibodies. Commun Biol 2022; 5:291. [PMID: 35361878 PMCID: PMC8971491 DOI: 10.1038/s42003-022-03235-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/08/2022] [Indexed: 12/17/2022] Open
Abstract
The early humoral immune response to acute HIV-1 infection is largely non-neutralizing. The principal target of these antibodies is the primary immunodominant region (PID) on the gp41 fusion protein. The PID is a highly conserved 15-residue region displayed on the surface of HIV-1 virions. In this study, we analyzed the humoral determinants of HIV-1 gp41 PID binding using biophysical, structural, and computational methods. In complex with a patient-derived near-germline antibody fragment, the PID motif adopts an elongated random coil, whereas the PID bound to affinity-matured Fab adopts a strand-turn-helix conformation. Molecular dynamics simulations showed that the PID is structurally plastic suggesting that the PID can form an ensemble of structural states recognized by various non-neutralizing antibodies, facilitating HIV-1 immunodominance observed in acute and chronic HIV-1 infections. An improved understanding of how the HIV-1 gp41 PID misdirects the early humoral response should guide the development of an effective HIV-1 vaccine. The 15-amino-acid primary immunodominant (PID) region on HIV-1 gp41 adopts an ensemble of conformational states. This conformational plasticity is suggested to misdirect the early humoral immune response.
Collapse
Affiliation(s)
- Jonathan D Cook
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Adree Khondker
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jeffrey E Lee
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
40
|
Jiang S, Tuzikov A, Andrianov A. Small-molecule HIV-1 entry inhibitors targeting the epitopes of broadly neutralizing antibodies. Cell Chem Biol 2022; 29:757-773. [PMID: 35353988 DOI: 10.1016/j.chembiol.2022.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/27/2022] [Accepted: 03/10/2022] [Indexed: 11/20/2022]
Abstract
Highly active antiretroviral therapy currently used for HIV/AIDS has significantly increased the life expectancy of HIV-infected individuals. It has also improved the quality of life, reduced mortality, and decreased the incidence of AIDS and HIV-related conditions. Currently, however, affected individuals are typically on a lifetime course of several therapeutic drugs, all with the potential for associated toxicity and emergence of resistance. This calls for development of novel, potent, and broad anti-HIV agents able to stop the spread of HIV/AIDS. Significant progress has been made toward identification of anti-HIV-1 broadly neutralizing antibodies (bNAbs). However, antibody-based drugs are costly to produce and store. Administration (by injection only) and other obstacles limit clinical use. In recent years, several highly promising small-molecule HIV-1 entry inhibitors targeting the epitopes of bNAbs have been developed. These newly developed compounds are the focus of the present article.
Collapse
Affiliation(s)
- Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 200032, China.
| | - Alexander Tuzikov
- United Institute of Informatics Problems, National Academy of Sciences of Belarus, 220012 Minsk, Republic of Belarus
| | - Alexander Andrianov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Republic of Belarus.
| |
Collapse
|
41
|
Walker LM, Shiakolas AR, Venkat R, Liu ZA, Wall S, Raju N, Pilewski KA, Setliff I, Murji AA, Gillespie R, Makoah NA, Kanekiyo M, Connors M, Morris L, Georgiev IS. High-Throughput B Cell Epitope Determination by Next-Generation Sequencing. Front Immunol 2022; 13:855772. [PMID: 35401559 PMCID: PMC8984479 DOI: 10.3389/fimmu.2022.855772] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/14/2022] [Indexed: 01/12/2023] Open
Abstract
Development of novel technologies for the discovery of human monoclonal antibodies has proven invaluable in the fight against infectious diseases. Among the diverse antibody repertoires elicited by infection or vaccination, often only rare antibodies targeting specific epitopes of interest are of potential therapeutic value. Current antibody discovery efforts are capable of identifying B cells specific for a given antigen; however, epitope specificity information is usually only obtained after subsequent monoclonal antibody production and characterization. Here we describe LIBRA-seq with epitope mapping, a next-generation sequencing technology that enables residue-level epitope determination for thousands of single B cells simultaneously. By utilizing an antigen panel of point mutants within the HIV-1 Env glycoprotein, we identified and confirmed antibodies targeting multiple sites of vulnerability on Env, including the CD4-binding site and the V3-glycan site. LIBRA-seq with epitope mapping is an efficient tool for high-throughput identification of antibodies against epitopes of interest on a given antigen target.
Collapse
Affiliation(s)
- Lauren M. Walker
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Andrea R. Shiakolas
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Rohit Venkat
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Zhaojing Ariel Liu
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Steven Wall
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Nagarajan Raju
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kelsey A. Pilewski
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ian Setliff
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Amyn A. Murji
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Rebecca Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Nigel A. Makoah
- Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Mark Connors
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Lynn Morris
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Ivelin S. Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
- Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
42
|
Chernyshev M, Kaduk M, Corcoran M, Karlsson Hedestam GB. VDJ Gene Usage in IgM Repertoires of Rhesus and Cynomolgus Macaques. Front Immunol 2022; 12:815680. [PMID: 35087534 PMCID: PMC8786739 DOI: 10.3389/fimmu.2021.815680] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/09/2021] [Indexed: 12/30/2022] Open
Abstract
Macaques are frequently used to evaluate candidate vaccines and to study infection-induced antibody responses, requiring an improved understanding of their naïve immunoglobulin (IG) repertoires. Baseline gene usage frequencies contextualize studies of antigen-specific immune responses, providing information about how easily one may stimulate a response with a particular VDJ recombination. Studies of human IgM repertoires have shown that IG VDJ gene frequencies vary several orders of magnitude between the most and least utilized genes in a manner that is consistent across many individuals but to date similar analyses are lacking for macaque IgM repertoires. Here, we quantified VDJ gene usage levels in unmutated IgM repertoires of 45 macaques, belonging to two species and four commonly used subgroups: Indian and Chinese origin rhesus macaques and Indonesian and Mauritian origin cynomolgus macaques. We show that VDJ gene frequencies differed greatly between the most and least used genes, with similar overall patterns observed in macaque subgroups and individuals. However, there were also clear differences affecting the use of specific V, D and J genes. Furthermore, in contrast to humans, macaques of both species utilized IGHV4 family genes to a much higher extent and showed evidence of evolutionary expansion of genes of this family. Finally, we used the results to inform the analysis of a broadly neutralizing HIV-1 antibody elicited in SHIV-infected rhesus macaques, RHA1.V2.01, which binds the apex of the Env trimer in a manner that mimics the binding mode of PGT145. We discuss the likelihood that similar antibodies could be elicited in different macaque subgroups.
Collapse
|
43
|
Ou T, He W, Quinlan BD, Guo Y, Tran MH, Karunadharma P, Park H, Davis-Gardner ME, Yin Y, Zhang X, Wang H, Zhong G, Farzan M. Reprogramming of the heavy-chain CDR3 regions of a human antibody repertoire. Mol Ther 2022; 30:184-197. [PMID: 34740791 PMCID: PMC8753427 DOI: 10.1016/j.ymthe.2021.10.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/09/2021] [Accepted: 10/27/2021] [Indexed: 01/07/2023] Open
Abstract
B cells have been engineered ex vivo to express an HIV-1 broadly neutralizing antibody (bNAb). B cell reprograming may be scientifically and therapeutically useful, but current approaches limit B cell repertoire diversity and disrupt the organization of the heavy-chain locus. A more diverse and physiologic B cell repertoire targeting a key HIV-1 epitope could facilitate evaluation of vaccines designed to elicit bNAbs, help identify more potent and bioavailable bNAb variants, or directly enhance viral control in vivo. Here we address the challenges of generating such a repertoire by replacing the heavy-chain CDR3 (HCDR3) regions of primary human B cells. To do so, we identified and utilized an uncharacterized Cas12a ortholog that recognizes PAM motifs present in human JH genes. We also optimized the design of 200 nucleotide homology-directed repair templates (HDRT) by minimizing the required 3'-5' deletion of the HDRT-complementary strand. Using these techniques, we edited primary human B cells to express a hemagglutinin epitope tag and the HCDR3 regions of the bNAbs PG9 and PG16. Those edited with bNAb HCDR3 efficiently bound trimeric HIV-1 antigens, implying they could affinity mature in vivo in response to the same antigens. This approach generates diverse B cell repertoires recognizing a key HIV-1 neutralizing epitope.
Collapse
Affiliation(s)
- Tianling Ou
- Department of Microbiology and Immunology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Wenhui He
- Department of Microbiology and Immunology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Brian D Quinlan
- Department of Microbiology and Immunology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Yan Guo
- Department of Microbiology and Immunology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Mai H Tran
- Department of Microbiology and Immunology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Hajeung Park
- X-ray Crystallography Core, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Yiming Yin
- Department of Microbiology and Immunology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Xia Zhang
- Department of Microbiology and Immunology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Haimin Wang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Guocai Zhong
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China; School of Biology and Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Michael Farzan
- Department of Microbiology and Immunology, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
44
|
Singh AA, Pillay P, Kwezi L, Tsekoa TL. A plant-biotechnology approach for producing highly potent anti-HIV antibodies for antiretroviral therapy consideration. JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2021; 19:180. [PMID: 34878628 PMCID: PMC8655037 DOI: 10.1186/s43141-021-00279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022]
Abstract
Despite a reduction in global HIV prevalence the development of a pipeline of new therapeutics or pre-exposure prophylaxis to control the HIV/AIDS epidemic are of high priority. Antibody-based therapies offer several advantages and have been shown to prevent HIV-infection. Plant-based production is efficient for several biologics, including antibodies. We provide a short review on the work by Singh et al., 2020 who demonstrated the transient production of potent CAP256-VRC26 broadly neutralizing antibodies. These antibodies have engineered posttranslational modifications, namely N-glycosylation in the fragment crystallizable region and O-sulfation of tyrosine residues in the complementary-determining region H3 loop. The glycoengineered Nicotiana benthamiana mutant (ΔXTFT) was used, with glycosylating structures lacking β1,2-xylose and/or α1,3-fucose residues, which is critical for enhanced effector activity. The CAP256-VRC26 antibody lineage targets the first and second variable region of the HIV-1 gp120 envelope glycoprotein. The high potency of this lineage is mediated by a protruding O-sulfated tyrosine in the CDR H3 loop. Nicotiana benthamiana lacks human tyrosyl protein sulfotransferase 1, the enzyme responsible for tyrosine O-sulfation. The transient coexpression of the CAP256-VRC26 antibodies with tyrosyl protein sulfotransferase 1 in planta had restored the efficacy of these antibodies through the incorporation of the O-sulfation modification. This approach demonstrates the strategic incorporation of posttranslational modifications in production systems, which may have not been previously considered. These plant-produced CAP256-VRC26 antibodies have therapeutic as well as topical and systemic pre-exposure prophylaxis potential in enabling the empowerment of young girls and women given that gender inequalities remain a major driver of the epidemic.
Collapse
Affiliation(s)
- Advaita Acarya Singh
- Council for Scientific and Industrial Research, Future Production: Chemicals Cluster, P.O. Box 395, Pretoria, 0001, South Africa
| | - Priyen Pillay
- Council for Scientific and Industrial Research, Future Production: Chemicals Cluster, P.O. Box 395, Pretoria, 0001, South Africa
| | - Lusisizwe Kwezi
- Council for Scientific and Industrial Research, Future Production: Chemicals Cluster, P.O. Box 395, Pretoria, 0001, South Africa
| | - Tsepo Lebiletsa Tsekoa
- Council for Scientific and Industrial Research, Future Production: Chemicals Cluster, P.O. Box 395, Pretoria, 0001, South Africa.
| |
Collapse
|
45
|
Zhang P, Narayanan E, Liu Q, Tsybovsky Y, Boswell K, Ding S, Hu Z, Follmann D, Lin Y, Miao H, Schmeisser H, Rogers D, Falcone S, Elbashir SM, Presnyak V, Bahl K, Prabhakaran M, Chen X, Sarfo EK, Ambrozak DR, Gautam R, Martin MA, Swerczek J, Herbert R, Weiss D, Misamore J, Ciaramella G, Himansu S, Stewart-Jones G, McDermott A, Koup RA, Mascola JR, Finzi A, Carfi A, Fauci AS, Lusso P. A multiclade env-gag VLP mRNA vaccine elicits tier-2 HIV-1-neutralizing antibodies and reduces the risk of heterologous SHIV infection in macaques. Nat Med 2021; 27:2234-2245. [PMID: 34887575 DOI: 10.1038/s41591-021-01574-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/06/2021] [Indexed: 12/16/2022]
Abstract
The development of a protective vaccine remains a top priority for the control of the HIV/AIDS pandemic. Here, we show that a messenger RNA (mRNA) vaccine co-expressing membrane-anchored HIV-1 envelope (Env) and simian immunodeficiency virus (SIV) Gag proteins to generate virus-like particles (VLPs) induces antibodies capable of broad neutralization and reduces the risk of infection in rhesus macaques. In mice, immunization with co-formulated env and gag mRNAs was superior to env mRNA alone in inducing neutralizing antibodies. Macaques were primed with a transmitted-founder clade-B env mRNA lacking the N276 glycan, followed by multiple booster immunizations with glycan-repaired autologous and subsequently bivalent heterologous envs (clades A and C). This regimen was highly immunogenic and elicited neutralizing antibodies against the most prevalent (tier-2) HIV-1 strains accompanied by robust anti-Env CD4+ T cell responses. Vaccinated animals had a 79% per-exposure risk reduction upon repeated low-dose mucosal challenges with heterologous tier-2 simian-human immunodeficiency virus (SHIV AD8). Thus, the multiclade env-gag VLP mRNA platform represents a promising approach for the development of an HIV-1 vaccine.
Collapse
Affiliation(s)
- Peng Zhang
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | | | - Qingbo Liu
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Yaroslav Tsybovsky
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Shilei Ding
- Université de Montreal, Montreal, Quebec, Canada
| | - Zonghui Hu
- Biostatistics Research Branch, NIAID, NIH, Bethesda, MD, USA
| | - Dean Follmann
- Biostatistics Research Branch, NIAID, NIH, Bethesda, MD, USA
| | - Yin Lin
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Huiyi Miao
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Hana Schmeisser
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Denise Rogers
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | | | | | | | | | | | - Xuejun Chen
- Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | | | | | - Rajeev Gautam
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Malcom A Martin
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Joanna Swerczek
- Experimental Primate Virology Section, NIAID, Poolesville, MD, USA
| | - Richard Herbert
- Experimental Primate Virology Section, NIAID, Poolesville, MD, USA
| | | | | | | | | | | | | | | | | | - Andrés Finzi
- Université de Montreal, Montreal, Quebec, Canada
| | | | - Anthony S Fauci
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Paolo Lusso
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA.
| |
Collapse
|
46
|
Siracusano G, Finardi A, Pastori C, Martinelli V, Furlan R, Lopalco L. HIV-1 Env Does Not Enable the Development of Protective Broadly Neutralizing Antibodies in an Experimental Autoimmune Encephalomyelitis Mouse Model. Front Immunol 2021; 12:771359. [PMID: 34795677 PMCID: PMC8593332 DOI: 10.3389/fimmu.2021.771359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/14/2021] [Indexed: 12/03/2022] Open
Abstract
Recent studies showed that immunological tolerance may restrict the development of Env-specific autoreactive broadly neutralizing antibodies. This evidence is consistent with the finding that Env immunization of a systemic lupus erythematosus (SLE) murine model produced antibodies that neutralize tier 2 HIV-1 strains. In this study, we address the possibility of eliciting neutralizing anti-Env antibodies in other autoimmune diseases such as multiple sclerosis (MS). While, as reported for SLE, we showed for the first time that a small number of HIV-1 negative, relapsing remitting MS patients exhibited antibodies with neutralizing properties, our attempts at inducing those antibodies in a EAE mouse model of MS failed. The success in eliciting Env-specific neutralizing antibodies might be related to the specific characteristics of the autoimmune disease, or it might rely in improving the vaccination design. Studies using mouse models are useful to gain insight in how HIV-specific neutralizing antibody responses are regulated in order to develop a protective HIV-1 vaccine.
Collapse
Affiliation(s)
- Gabriel Siracusano
- Immunobiology of HIV, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Pastori
- Immunobiology of HIV, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | | | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Lopalco
- Immunobiology of HIV, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
47
|
Distinct mechanisms of long-term virologic control in two HIV-infected individuals after treatment interruption of anti-retroviral therapy. Nat Med 2021; 27:1893-1898. [PMID: 34711975 DOI: 10.1038/s41591-021-01503-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/13/2021] [Indexed: 01/02/2023]
Abstract
Certain infected individuals suppress human immunodeficiency virus (HIV) in the absence of anti-retroviral therapy (ART). Elucidating the underlying mechanism(s) is of high interest. Here we present two contrasting case reports of HIV-infected individuals who controlled plasma viremia for extended periods after undergoing analytical treatment interruption (ATI). In Participant 04, who experienced viral blips and initiated undisclosed self-administration of suboptimal ART detected shortly before day 1,250, phylogenetic analyses of plasma HIV env sequences suggested continuous viral evolution and/or reactivation of pre-existing viral reservoirs over time. Antiviral CD8+ T cell activities were higher in Participant 04 than in Participant 30. In contrast, Participant 30 exhibited potent plasma-IgG-mediated neutralization activity against autologous virus that became ineffective when he experienced sudden plasma viral rebound 1,434 d after ATI due to HIV superinfection. Our data provide insight into distinct mechanisms of post-treatment interruption control and highlight the importance of frequent monitoring of undisclosed use of ART and superinfection during the ATI phase.
Collapse
|
48
|
Chikaev AN, Chikaev AN, Rudometov AP, Merkulyeva YA, Karpenko LI. Phage display as a tool for identifying HIV-1 broadly neutralizing antibodies. Vavilovskii Zhurnal Genet Selektsii 2021; 25:562-572. [PMID: 34595378 PMCID: PMC8453360 DOI: 10.18699/vj21.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/14/2021] [Accepted: 03/22/2021] [Indexed: 11/19/2022] Open
Abstract
Combinatorial biology methods offer a good solution for targeting interactions of specif ic molecules
by a high-throughput screening and are widely used for drug development, diagnostics, identif ication of novel
monoclonal antibodies, search for linear peptide mimetics of discontinuous epitopes for the development of
immunogens or vaccine components. Among all currently available techniques, phage display remains one of
the most popular approaches. Despite being a fairly old method, phage display is still widely used for studying
protein-protein, peptide-protein and DNA-protein interactions due to its relative simplicity and versatility. Phage
display allows highly representative libraries of peptides, proteins or their fragments to be created. Each phage
particle in a library displays peptides or proteins fused to its coat protein and simultaneously carries the DNA
sequence encoding the displayed peptide/protein in its genome. The biopanning procedure allows isolation of
specif ic clones for almost any target, and due to the physical link between the genotype and the phenotype of
recombinant phage particles it is possible to determine the structure of selected molecules. Phage display technology
continues to play an important role in HIV research. A major obstacle to the development of an effective
HIV vaccine is an extensive genetic and antigenic variability of the virus. According to recent data, in order to provide
protection against HIV infection, the so-called broadly neutralizing antibodies that are cross-reactive against
multiple viral strains of HIV must be induced, which makes the identif ication of such antibodies a key area of HIV
vaccinology. In this review, we discuss the use of phage display as a tool for identif ication of HIV-specif ic antibodies
with broad neutralizing activity. We provide an outline of phage display technology, brief ly describe the
design of antibody phage libraries and the affinity selection procedure, and discuss the biology of HIV-1-specif ic
broadly neutralizing antibodies. Finally, we summarize the studies aimed at identif ication of broadly neutralizing
antibodies using various types of phage libraries.
Collapse
Affiliation(s)
| | - A N Chikaev
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A P Rudometov
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| | - Yu A Merkulyeva
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| | - L I Karpenko
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| |
Collapse
|
49
|
Sobia P, Archary D. Preventive HIV Vaccines-Leveraging on Lessons from the Past to Pave the Way Forward. Vaccines (Basel) 2021; 9:vaccines9091001. [PMID: 34579238 PMCID: PMC8472969 DOI: 10.3390/vaccines9091001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/05/2022] Open
Abstract
Almost four decades on, since the 1980’s, with hundreds of HIV vaccine candidates tested in both non-human primates and humans, and several HIV vaccines trials later, an efficacious HIV vaccine continues to evade us. The enormous worldwide genetic diversity of HIV, combined with HIV’s inherent recombination and high mutation rates, has hampered the development of an effective vaccine. Despite the advent of antiretrovirals as pre-exposure prophylaxis and preventative treatment, which have shown to be effective, HIV infections continue to proliferate, highlighting the great need for a vaccine. Here, we provide a brief history for the HIV vaccine field, with the most recent disappointments and advancements. We also provide an update on current passive immunity trials, testing proof of the concept of the most clinically advanced broadly neutralizing monoclonal antibodies for HIV prevention. Finally, we include mucosal immunity, the importance of vaccine-elicited immune responses and the challenges thereof in the most vulnerable environment–the female genital tract and the rectal surfaces of the gastrointestinal tract for heterosexual and men who have sex with men transmissions, respectively.
Collapse
Affiliation(s)
- Parveen Sobia
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa;
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa;
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban 4001, South Africa
- Correspondence: ; Tel.: +27-(0)-31-655-0540
| |
Collapse
|
50
|
Mishra N, Kumar S, Singh S, Bansal T, Jain N, Saluja S, Kumar R, Bhattacharyya S, Palanichamy JK, Mir RA, Sinha S, Luthra K. Cross-neutralization of SARS-CoV-2 by HIV-1 specific broadly neutralizing antibodies and polyclonal plasma. PLoS Pathog 2021; 17:e1009958. [PMID: 34559854 PMCID: PMC8494312 DOI: 10.1371/journal.ppat.1009958] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/06/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022] Open
Abstract
Cross-reactive epitopes (CREs) are similar epitopes on viruses that are recognized or neutralized by same antibodies. The S protein of SARS-CoV-2, similar to type I fusion proteins of viruses such as HIV-1 envelope (Env) and influenza hemagglutinin, is heavily glycosylated. Viral Env glycans, though host derived, are distinctly processed and thereby recognized or accommodated during antibody responses. In recent years, highly potent and/or broadly neutralizing human monoclonal antibodies (bnAbs) that are generated in chronic HIV-1 infections have been defined. These bnAbs exhibit atypical features such as extensive somatic hypermutations, long complementary determining region (CDR) lengths, tyrosine sulfation and presence of insertions/deletions, enabling them to effectively neutralize diverse HIV-1 viruses despite extensive variations within the core epitopes they recognize. As some of the HIV-1 bnAbs have evolved to recognize the dense viral glycans and cross-reactive epitopes (CREs), we assessed if these bnAbs cross-react with SARS-CoV-2. Several HIV-1 bnAbs showed cross-reactivity with SARS-CoV-2 while one HIV-1 CD4 binding site bnAb, N6, neutralized SARS-CoV-2. Furthermore, neutralizing plasma antibodies of chronically HIV-1 infected children showed cross neutralizing activity against SARS-CoV-2 pseudoviruses. Collectively, our observations suggest that human monoclonal antibodies tolerating extensive epitope variability can be leveraged to neutralize pathogens with related antigenic profile.
Collapse
Affiliation(s)
- Nitesh Mishra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjeev Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
- ICGEB-Emory Vaccine Centre Program, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Swarandeep Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Tanu Bansal
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Nishkarsh Jain
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sumedha Saluja
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sankar Bhattacharyya
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | | | - Riyaz Ahmad Mir
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|