1
|
Tanga CTF, Makouloutou-Nzassi P, Mbehang Nguema PP, Düx A, Lendzele Sevidzem S, Mavoungou JF, Leendertz FH, Mintsa-Nguema R. Antimicrobial Resistance in African Great Apes. Antibiotics (Basel) 2024; 13:1140. [PMID: 39766531 PMCID: PMC11672706 DOI: 10.3390/antibiotics13121140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/07/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Antibiotic-resistant bacteria pose a significant global public health threat that demands serious attention. The proliferation of antimicrobial resistance (AMR) is primarily attributed to the overuse of antibiotics in humans, livestock, and the agro-industry. However, it is worth noting that antibiotic-resistant genes (ARGs) can be found in all ecosystems, even in environments where antibiotics have never been utilized. African great apes (AGAs) are our closest living relatives and are known to be susceptible to many of the same pathogens (and other microorganisms) as humans. AGAs could therefore serve as sentinels for human-induced AMR spread into the environment. They can potentially also serve as reservoirs for AMR. AGAs inhabit a range of environments from remote areas with little anthropogenic impact, over habitats that are co-used by AGAs and humans, to captive settings with close human-animal contacts like zoos and sanctuaries. This provides opportunities to study AMR in relation to human interaction. This review examines the literature on AMR in AGAs, identifying knowledge gaps. RESULTS Of the 16 articles reviewed, 13 focused on wild AGAs in habitats with different degrees of human presence, 2 compared wild and captive apes, and 1 study tested captive apes alone. Ten studies included humans working with or living close to AGA habitats. Despite different methodologies, all studies detected AMR in AGAs. Resistance to beta-lactams was the most common (36%), followed by resistance to aminoglycosides (22%), tetracyclines (15%), fluoroquinolones (10%), sulphonamides (5%), trimethoprim (5%), macrolide (3%), phenicoles (2%) and fosfomycin (1%). CONCLUSIONS While several studies suggest a correlation between increased human contact and higher AMR in AGAs, resistance was also found in relatively pristine habitats. While AGAs clearly encounter bacteria resistant to diverse antibiotics, significant gaps remain in understanding the underlying processes. Comparative studies using standardized methods across different sites would enhance our understanding of the origin and distribution of AMR in AGAs.
Collapse
Affiliation(s)
- Coch Tanguy Floyde Tanga
- Department of Biology and Animal Ecology, Research Institute for Tropical Ecology (IRET/CENAREST), Libreville BP 13354, Gabon; (P.M.-N.); (R.M.-N.)
- Ecole Doctorale des Grandes Ecoles de Libreville, Libreville BP 3989, Gabon
- Helmholtz Institute for One Health, Helmholtz-Centre for Infection Research, Fleischmannstrasse 42, 17489 Greifswald, Germany; (A.D.)
| | - Patrice Makouloutou-Nzassi
- Department of Biology and Animal Ecology, Research Institute for Tropical Ecology (IRET/CENAREST), Libreville BP 13354, Gabon; (P.M.-N.); (R.M.-N.)
- Unit of Research in Health Ecology (URES/CIRMF), Franceville BP 769, Gabon
| | - Pierre Philippe Mbehang Nguema
- Department of Biology and Animal Ecology, Research Institute for Tropical Ecology (IRET/CENAREST), Libreville BP 13354, Gabon; (P.M.-N.); (R.M.-N.)
| | - Ariane Düx
- Helmholtz Institute for One Health, Helmholtz-Centre for Infection Research, Fleischmannstrasse 42, 17489 Greifswald, Germany; (A.D.)
| | - Silas Lendzele Sevidzem
- Laboratoire d’Ecologie des Maladies Transmissibles (LEMAT), Université Libreville Nord (ULN), Libreville BP 1177, Gabon
| | - Jacques François Mavoungou
- Department of Biology and Animal Ecology, Research Institute for Tropical Ecology (IRET/CENAREST), Libreville BP 13354, Gabon; (P.M.-N.); (R.M.-N.)
- Université Internationale de Libreville, Libreville BP 20411, Gabon
| | - Fabian H. Leendertz
- Helmholtz Institute for One Health, Helmholtz-Centre for Infection Research, Fleischmannstrasse 42, 17489 Greifswald, Germany; (A.D.)
| | - Rodrigue Mintsa-Nguema
- Department of Biology and Animal Ecology, Research Institute for Tropical Ecology (IRET/CENAREST), Libreville BP 13354, Gabon; (P.M.-N.); (R.M.-N.)
- Ecole Doctorale des Grandes Ecoles de Libreville, Libreville BP 3989, Gabon
- Laboratoire d’Ecologie des Maladies Transmissibles (LEMAT), Université Libreville Nord (ULN), Libreville BP 1177, Gabon
| |
Collapse
|
2
|
Mayoukou W, Morgan D, Strindberg S, McElmurray P, Abedine C, Sanz C. Great ape surveys and the implications of long-term monitoring in the Djéké Triangle, Republic of Congo. Primates 2024; 65:457-468. [PMID: 39432210 DOI: 10.1007/s10329-024-01157-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024]
Abstract
Existing protected areas are anchors for conservation. Safeguarding flora and fauna within their peripheral areas is essential to maintaining their integrity and to potential increases to the area under effective conservation. With the decline in tropical forests, initiatives to increase the area of undisturbed forests under strict protection, particularly those neighboring protected areas, is of critical importance. Applied research has informed such land-management decisions for areas surrounding the Nouabalé-Ndoki National Park (NNNP) in Republic of Congo since the park's inception three decades ago. Here, we present results of the first systematic line transect survey of great ape nests conducted in the Djéké Triangle, a 100 km2 unlogged continuous forest in the Kabo Forestry Management Unit adjacent to the NNNP. Distance sampling methods applied along 26 line transects on two different occasions (2016 and 2018, with total effort of 69.4 km) provided density estimates of 0.75 (95% confidence interval (CI) 0.52-1.09) and 0.61 (95% CI 0.40-0.92) chimpanzees/km2 and 2.15 (95% CI 1.36-3.40) and 1.19 (95% CI 0.78-1.82) gorillas/km2 for each of the two surveys, respectively. Estimated ape densities were compared to others across the landscape. The findings provide a unique baseline in an area that supports ongoing behavioral research and future gorilla tourism opportunities in the Djéké Triangle. More importantly, results provided empirical evidence of the environmental value and strategic conservation importance supporting inclusion of the Djéké Triangle into the NNNP in 2023. These long-term monitoring results inform best-practice standards and ape tourism certification.
Collapse
Affiliation(s)
- W Mayoukou
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - D Morgan
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, 2001 N. Clark Street, Chicago, IL, 60614, USA.
| | - S Strindberg
- Wildlife Conservation Society, Global Conservation Program, 2300 Southern Boulevard Bronx, New York, NY, 10460, USA
| | - P McElmurray
- Department of Anthropology, Washington University in St. Louis, 1 Brookings Drive, Saint Louis, MO, 63130, USA
| | - C Abedine
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - C Sanz
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
- Department of Anthropology, Washington University in St. Louis, 1 Brookings Drive, Saint Louis, MO, 63130, USA
| |
Collapse
|
3
|
Morgan D, Malonga R, Agnagna M, Onononga JR, Yako V, Mokoko Ikonga J, Stokes EJ, Eyana Ayina C, Funkhouser JA, Judson K, Villioth J, Nishihara T, Sanz C. A brief history of primate research in the Ndoki forest. Primates 2024; 65:439-456. [PMID: 39379787 DOI: 10.1007/s10329-024-01158-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024]
Abstract
The Nouabalé-Ndoki National Park (NNNP) in Republic of Congo has become a beacon for conservation in Central Africa. This manuscript documents the arrival of primatologists, the establishment of field stations and major discoveries in primate behavior and ecology. Field stations were strategically established to study primate behavior in a variety of different contexts from stationary platforms to forest follows of habituated groups. The implementation of new technologies and analyses have also been a hallmark of research at Ndoki. Scientists are shaping a new era in primatology at NNNP by building on past successes and promoting the next generation of Congolese conservationists to address environmental challenges. Results have proven crucial in discussions with government and industry and led to conservation gains such as the inclusion of the intact forests of the Goualougo and Djéké Triangles into the NNNP. The research stations have also become essential for developing a long-term certified sustainable international gorilla tourism program. Despite the many advancements for conservation such as increased protection of forests, development of internationally recognized protocols and large-scale capacity building initiatives, there are reasons for considerable concern in the near- and long-term for primates and their forest habitats in the Ndoki landscape. To address these concerns, we emphasize the long history of forming partnerships with local communities. We also discuss shared overlap featuring multicultural and environmental use of forest resources that is likely to be crucial in championing the conservation of the Ndoki forests for the next 25 years and beyond.
Collapse
Affiliation(s)
- David Morgan
- Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, 2001 N. Clark Street, Chicago, IL, 60614, USA.
| | - Richard Malonga
- Wildlife Conservation Society, New York, USA
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | | | - Jean Robert Onononga
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - Valentin Yako
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - Jerome Mokoko Ikonga
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | | | - Crepin Eyana Ayina
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - Jake A Funkhouser
- Department of Anthropology, Washington University in Saint Louis, 1 Brookings Drive, Saint Louis, MO, 63130, USA
- Department of Evolutionary Anthropology, University of Zurich, 8057, Zurich, Switzerland
| | - Kathryn Judson
- Department of Anthropology, Washington University in Saint Louis, 1 Brookings Drive, Saint Louis, MO, 63130, USA
| | - Jakob Villioth
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | | | - Crickette Sanz
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
- Department of Anthropology, Washington University in Saint Louis, 1 Brookings Drive, Saint Louis, MO, 63130, USA
| |
Collapse
|
4
|
Cooksey KE, Sanz C, Massamba JM, Ebombi TF, Teberd P, Abea G, Mbebouti G, Kienast I, Brogan S, Stephens C, Morgan D. Predictors of respiratory illness in western lowland gorillas. Primates 2024; 65:557-569. [PMID: 36653552 PMCID: PMC9849104 DOI: 10.1007/s10329-022-01045-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2022] [Indexed: 01/20/2023]
Abstract
Infectious disease is hypothesized to be one of the most important causes of morbidity and mortality in wild great apes. Specific socioecological factors have been shown to influence incidences of respiratory illness and disease prevalence in some primate populations. In this study, we evaluated potential predictors (including age, sex, group size, fruit availability, and rainfall) of respiratory illness across three western lowland gorilla groups in the Republic of Congo. A total of 19,319 observational health assessments were conducted during daily follows of habituated gorillas in the Goualougo and Djéké Triangles over a 4-year study period. We detected 1146 incidences of clinical respiratory signs, which indicated the timing of probable disease outbreaks within and between groups. Overall, we found that males were more likely to exhibit signs than females, and increasing age resulted in a higher likelihood of respiratory signs. Silverback males showed the highest average monthly prevalence of coughs and sneezes (Goualougo: silverback Loya, 9.35 signs/month; Djéké: silverback Buka, 2.65 signs/month; silverback Kingo,1.88 signs/month) in each of their groups. Periods of low fruit availability were associated with an increased likelihood of respiratory signs. The global pandemic has increased awareness about the importance of continuous monitoring and preparedness for infectious disease outbreaks, which are also known to threaten wild ape populations. In addition to the strict implementation of disease prevention protocols at field sites focused on great apes, there is a need for heightened vigilance and systematic monitoring across sites to protect both wildlife and human populations.
Collapse
Affiliation(s)
- Kristena E Cooksey
- Department of Anthropology, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1114, Saint Louis, MO, 63130, USA.
| | - Crickette Sanz
- Department of Anthropology, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1114, Saint Louis, MO, 63130, USA
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - Jean Marie Massamba
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - Thierry Fabrice Ebombi
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - Prospère Teberd
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - Gaston Abea
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - Gaeton Mbebouti
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - Ivonne Kienast
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, 14850, USA
- K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA
| | - Sean Brogan
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - Colleen Stephens
- Department of Anthropology, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1114, Saint Louis, MO, 63130, USA
| | - David Morgan
- Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, 2001 N. Clark Street, Chicago, IL, 60614, USA
| |
Collapse
|
5
|
Yinda LEDO, Onanga R, Obiang CS, Begouabe H, Akomo-Okoue EF, Obame-Nkoghe J, Mitola R, Ondo JP, Atome GRN, Engonga LCO, Ibrahim, Setchell JM, Godreuil S. Antibacterial and antioxidant activities of plants consumed by western lowland gorilla (Gorilla gorilla gorilla) in Gabon. PLoS One 2024; 19:e0306957. [PMID: 39259705 PMCID: PMC11389915 DOI: 10.1371/journal.pone.0306957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 06/26/2024] [Indexed: 09/13/2024] Open
Abstract
Zoopharmacognosy is the study of the self-medication behaviors of non-human animals that use plant, animal or soil items as remedies. Recent studies have shown that some of the plants employed by animals may also be used for the same therapeutic purposes in humans. The aim of this study was to determine the antioxidant and antibacterial activity of Ceiba pentandra, Myrianthus arboreus, Ficus subspecies (ssp.) and Milicia excelsa bark crude extracts (BCE), plants consumed by western lowland gorillas (Gorilla gorilla gorilla) in Moukalaba-Doudou National Park (MDNP) and used in traditional medicine, and then to characterize their phytochemical compounds. DPPH (2,2-Diphenyl-1-Picrylhydrazyl), phosphomolybdenum complex and β-carotene bleaching methods were used to assess antioxidant activity. Antimicrobial susceptibility testing was performed using the diffusion method, while minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were assessed using the microdilution method. The highest level of total phenolics was found in Myrianthus arboreus aqueous extract [385.83 ± 3.99 mg [gallic acid equivalent (GAE)/g]. Total flavonoid (134.46 ± 3.39) mg quercetin equivalent (QE)/100 g of extract] were highest in Milicia excelsa, tannin [(272.44 ± 3.39) mg tannic acid equivalent (TAE)/100 g of extract] in Myrianthus arboreus and proanthocyanidin [(404.33 ± 3.39) mg apple procyanidins equivalent (APE)/100 g of extract] in Ceiba pentandra. Ficus ssp. (IC50 1.34 ±3.36 μg/mL; AAI 18.57 ± 0.203) ethanolic BCE and Milicia excelsa (IC50 2.07 ± 3.37 μg/mL; AAI 12.03 ± 0.711) showed the strongest antioxidant activity. Myrianthus arboreus ethanolic BCE (73.25 ± 5.29) and Milicia excelsa aqueous BCE (38.67 ± 0.27) showed the strongest percentage of total antioxidant capacity (TAC). Ceiba pentandra ethanolic BCE (152.06 ± 19.11 mg AAE/g) and Ficus ssp aqueous BCE (124.33 ± 39.05 mg AAE/g) showed strongest relative antioxidant activity (RAA). The plant BCE showed antimicrobial activity against multidrug resistant (MDR) E. coli (DECs) isolates, with MICs varying from 1.56 to 50 mg/mL and inhibition diameters ranging from 7.34 ± 0.57 to 13.67 ± 0.57mm. Several families of compounds were found, including total phenolic compounds, flavonoids, tannins and proanthocyanidins were found in the plant BCEs. The plant BCEs showed antioxidant activities with free radical scavenging and antimicrobial activities against 10 MDR E. coli (DECs) isolates, and could be a promising novel source for new drug discovery.
Collapse
Affiliation(s)
| | - Richard Onanga
- Laboratory of Bacteriology, Interdisciplinary Medical Research Center of Franceville, Franceville, Gabon
| | - Cédric Sima Obiang
- Laboratory of Research in Biochemistry (LAREBIO), University of Sciences and Technology of Masuku (USTM), Franceville, Gabon
| | - Herman Begouabe
- Laboratory of Research in Biochemistry (LAREBIO), University of Sciences and Technology of Masuku (USTM), Franceville, Gabon
| | | | - Judicaël Obame-Nkoghe
- Unity of Vector Ecology, Interdisciplinary Medical Research Center of Franceville, Franceville, Gabon
| | - Roland Mitola
- Laboratory of Biology, University of Science and Technology of Masuku, Franceville, Gabon
| | - Joseph-Privat Ondo
- Laboratory of Research in Biochemistry (LAREBIO), University of Sciences and Technology of Masuku (USTM), Franceville, Gabon
| | - Guy-Roger Ndong Atome
- Laboratory of Research in Biochemistry (LAREBIO), University of Sciences and Technology of Masuku (USTM), Franceville, Gabon
| | - Louis-Clément Obame Engonga
- Laboratory of Research in Biochemistry (LAREBIO), University of Sciences and Technology of Masuku (USTM), Franceville, Gabon
| | - Ibrahim
- Laboratory of Biology, University of Science and Technology of Masuku, Franceville, Gabon
| | - Joanna M Setchell
- Department of Anthropology, Université de Durham, Durham, United Kingdom
| | - Sylvain Godreuil
- Laboratoire de Bactériologie, CHU de Montpellier, UMR MIVEGEC (IRD, CNRS, Université de Montpelier), Montpellier, France
| |
Collapse
|
6
|
Ostridge HJ, Fontsere C, Lizano E, Soto DC, Schmidt JM, Saxena V, Alvarez-Estape M, Barratt CD, Gratton P, Bocksberger G, Lester JD, Dieguez P, Agbor A, Angedakin S, Assumang AK, Bailey E, Barubiyo D, Bessone M, Brazzola G, Chancellor R, Cohen H, Coupland C, Danquah E, Deschner T, Dotras L, Dupain J, Egbe VE, Granjon AC, Head J, Hedwig D, Hermans V, Hernandez-Aguilar RA, Jeffery KJ, Jones S, Junker J, Kadam P, Kaiser M, Kalan AK, Kambere M, Kienast I, Kujirakwinja D, Langergraber KE, Lapuente J, Larson B, Laudisoit A, Lee KC, Llana M, Maretti G, Martín R, Meier A, Morgan D, Neil E, Nicholl S, Nixon S, Normand E, Orbell C, Ormsby LJ, Orume R, Pacheco L, Preece J, Regnaut S, Robbins MM, Rundus A, Sanz C, Sciaky L, Sommer V, Stewart FA, Tagg N, Tédonzong LR, van Schijndel J, Vendras E, Wessling EG, Willie J, Wittig RM, Yuh YG, Yurkiw K, Vigilant L, Piel A, Boesch C, Kühl HS, Dennis MY, Marques-Bonet T, Arandjelovic M, Andrés AM. Local genetic adaptation to habitat in wild chimpanzees. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.601734. [PMID: 39026872 PMCID: PMC11257515 DOI: 10.1101/2024.07.09.601734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
How populations adapt to their environment is a fundamental question in biology. Yet we know surprisingly little about this process, especially for endangered species such as non-human great apes. Chimpanzees, our closest living relatives, are particularly interesting because they inhabit diverse habitats, from rainforest to woodland-savannah. Whether genetic adaptation facilitates such habitat diversity remains unknown, despite having wide implications for evolutionary biology and conservation. Using 828 newly generated exomes from wild chimpanzees, we find evidence of fine-scale genetic adaptation to habitat. Notably, adaptation to malaria in forest chimpanzees is mediated by the same genes underlying adaptation to malaria in humans. This work demonstrates the power of non-invasive samples to reveal genetic adaptations in endangered populations and highlights the importance of adaptive genetic diversity for chimpanzees.
Collapse
Affiliation(s)
- Harrison J Ostridge
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Claudia Fontsere
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Esther Lizano
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Daniela C Soto
- University of California, Davis, Genome Center, MIND Institute, Department of Biochemistry & Molecular Medicine, One Shields Drive, Davis, CA, 95616, USA
| | - Joshua M Schmidt
- Flinders Health and Medical Research Institute (FHMRI), Department of Ophthalmology, Flinders University Sturt Rd, Bedford Park South Australia 5042 Australia
| | - Vrishti Saxena
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Marina Alvarez-Estape
- University of California, Davis, Genome Center, MIND Institute, Department of Biochemistry & Molecular Medicine, One Shields Drive, Davis, CA, 95616, USA
| | - Christopher D Barratt
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Puschstrasse 4, 04103 Leipzig, Germany
| | - Paolo Gratton
- University of Rome "Tor Vergata" Department of Biology Via Cracovia, 1, Roma, Italia
| | - Gaëlle Bocksberger
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage, 60325 Frankfurt am Main, Germany
| | - Jack D Lester
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Paula Dieguez
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Puschstrasse 4, 04103 Leipzig, Germany
| | - Anthony Agbor
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Samuel Angedakin
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Alfred Kwabena Assumang
- Department of Wildlife and Range Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Emma Bailey
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Donatienne Barubiyo
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Mattia Bessone
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- University of Konstanz, Centre for the Advanced Study of Collective Behaviour, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Gregory Brazzola
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Rebecca Chancellor
- West Chester University, Depts of Anthropology & Sociology and Psychology, West Chester, PA, 19382 USA
| | - Heather Cohen
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Puschstrasse 4, 04103 Leipzig, Germany
| | - Charlotte Coupland
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Emmanuel Danquah
- Department of Wildlife and Range Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Tobias Deschner
- Institute of Cognitive Science, University of Osnabrück, Artilleriestrasse 34, 49076 Osnabrück, Germany
| | - Laia Dotras
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
- Department of Social Psychology and Quantitative Psychology, Serra Hunter Programme, University of Barcelona, Barcelona, Spain
| | - Jef Dupain
- Antwerp Zoo Foundation, RZSA, Kon.Astridplein 26, 2018 Antwerp, Belgium
| | - Villard Ebot Egbe
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Anne-Céline Granjon
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Josephine Head
- The Biodiversity Consultancy, 3E Kings Parade, Cambridge, CB2 1SJ, UK
| | - Daniela Hedwig
- Elephant Listening Project, K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
| | - Veerle Hermans
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 20-26, B-2018 Antwerp, Belgium
| | - R Adriana Hernandez-Aguilar
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
- Department of Social Psychology and Quantitative Psychology, Serra Hunter Programme, University of Barcelona, Barcelona, Spain
| | - Kathryn J Jeffery
- School of Natural Sciences, University of Stirling, UK
- Agence National des Parcs Nationaux (ANPN) Batterie 4, BP20379, Libreville, Gabon
| | - Sorrel Jones
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Jessica Junker
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Puschstrasse 4, 04103 Leipzig, Germany
| | - Parag Kadam
- Greater Mahale Ecosystem Research and Conservation Project
| | - Michael Kaiser
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Ammie K Kalan
- Department of Anthropology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada
| | - Mbangi Kambere
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Ivonne Kienast
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY 14850, USA
- K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
| | - Deo Kujirakwinja
- Wildlife Conservation Society (WCS), 2300 Southern Boulevard. Bronx, New York 10460, USA
| | - Kevin E Langergraber
- School of Human Evolution and Social Change, Institute of Human Origins, Arizona State University, 777 East University Drive, Tempe, AZ 85287 Arizona State University, PO Box 872402, Tempe, AZ 85287-2402 USA
- Institute of Human Origins, Arizona State University, 900 Cady Mall, Tempe, AZ 85287 Arizona State University, PO Box 872402, Tempe, AZ 85287-2402 USA
| | - Juan Lapuente
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | | | | | - Kevin C Lee
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
| | - Manuel Llana
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
| | - Giovanna Maretti
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Rumen Martín
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Amelia Meier
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- Hawai'i Insititute of Marine Biology, University of Hawai'i at Manoa, 46-007 Lilipuna Place, Kaneohe, HI, 96744, USA
| | - David Morgan
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, 2001 North Clark Street, Chicago, Illinois 60614 USA
| | - Emily Neil
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Sonia Nicholl
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Stuart Nixon
- North of England Zoological Society, Chester Zoo, Upton by Chester, CH2 1LH, United Kingdom
| | | | - Christopher Orbell
- Panthera, 8 W 40TH ST, New York, NY 10018, USA
- School of Natural Sciences, University of Stirling, UK
| | - Lucy Jayne Ormsby
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Robinson Orume
- Korup Rainforest Conservation Society, c/o Korup National Park, P.O. Box 36 Mundemba, South West Region, Cameroon
| | - Liliana Pacheco
- Save the Dogs and Other Animals, DJ 223 Km 3, 905200 Cernavoda CT, Romania
| | - Jodie Preece
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | | | - Martha M Robbins
- Max Planck Institute for Evolutionary Anthropology, Department of Primate Behavior and Evolution, Deutscher Platz 6, 04103 Leipzig
| | - Aaron Rundus
- West Chester University, Depts of Anthropology & Sociology and Psychology, West Chester, PA, 19382 USA
| | - Crickette Sanz
- Washington University in Saint Louis, Department of Anthropology, One Brookings Drive, St. Louis, MO 63130, USA
- Congo Program, Wildlife Conservation Society, 151 Avenue Charles de Gaulle, Brazzaville, Republic of Congo
| | - Lilah Sciaky
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Volker Sommer
- University College London, Department of Anthropology, 14 Taviton Street, London WC1H 0BW, UK
| | - Fiona A Stewart
- University College London, Department of Anthropology, 14 Taviton Street, London WC1H 0BW, UK
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Nikki Tagg
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 20-26, B-2018 Antwerp, Belgium
- Born Free Foundation, Floor 2 Frazer House, 14 Carfax, Horsham, RH12 1ER, UK
| | - Luc Roscelin Tédonzong
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 20-26, B-2018 Antwerp, Belgium
| | - Joost van Schijndel
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Elleni Vendras
- Frankfurt Zoological Society, Bernhard-Grzimek-Allee 1, 60316 Frankfurt, Germany
| | - Erin G Wessling
- Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen,Göttingen, Germany
- German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Jacob Willie
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 20-26, B-2018 Antwerp, Belgium
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University (UGent), K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Roman M Wittig
- Ape Social Mind Lab, Institute for Cognitive Sciences Marc Jeannerod, CNRS UMR 5229 CNRS, 67 bd Pinel, 69675 Bron CEDEX, France
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, BP 1301, Abidjan 01, CI
| | - Yisa Ginath Yuh
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Kyle Yurkiw
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Linda Vigilant
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Alex Piel
- University College London, Department of Anthropology, 14 Taviton Street, London WC1H 0BW, UK
| | | | - Hjalmar S Kühl
- Senckenberg Museum for Natural History Görlitz, Senckenberg - Member of the Leibniz Association Am Museum 1, 02826 Görlitz, Germany
- International Institute Zittau, Technische Universität Dresden, Markt 23, 02763 Zittau, Germany
| | - Megan Y Dennis
- University of California, Davis, Genome Center, MIND Institute, Department of Biochemistry & Molecular Medicine, One Shields Drive, Davis, CA, 95616, USA
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Mimi Arandjelovic
- Max Planck Institute for Evolutionary Anthropology, Department of Primate Behavior and Evolution, Deutscher Platz 6, 04103 Leipzig
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103
| | - Aida M Andrés
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
7
|
Strahan EK, Witherbee J, Bergl R, Lonsdorf EV, Mwacha D, Mjungu D, Arandjelovic M, Ikfuingei R, Terio K, Travis DA, Gillespie TR. Potentially Zoonotic Enteric Infections in Gorillas and Chimpanzees, Cameroon and Tanzania. Emerg Infect Dis 2024; 30:577-580. [PMID: 38407249 PMCID: PMC10902540 DOI: 10.3201/eid3003.230318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Despite zoonotic potential, data are lacking on enteric infection diversity in wild apes. We employed a novel molecular diagnostic platform to detect enteric infections in wild chimpanzees and gorillas. Prevalent Cryptosporidium parvum, adenovirus, and diarrheagenic Escherichia coli across divergent sites and species demonstrates potential widespread circulation among apes in Africa.
Collapse
|
8
|
Ilík V, Kreisinger J, Modrý D, Schwarz EM, Tagg N, Mbohli D, Nkombou IC, Petrželková KJ, Pafčo B. High diversity and sharing of strongylid nematodes in humans and great apes co-habiting an unprotected area in Cameroon. PLoS Negl Trop Dis 2023; 17:e0011499. [PMID: 37624869 PMCID: PMC10484444 DOI: 10.1371/journal.pntd.0011499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 09/07/2023] [Accepted: 07/03/2023] [Indexed: 08/27/2023] Open
Abstract
Rapid increases in human populations and environmental changes of past decades have led to changes in rates of contact and spatial overlap with wildlife. Together with other historical, social and environmental processes, this has significantly contributed to pathogen transmission in both directions, especially between humans and non-human primates, whose close phylogenetic relationship facilitates cross-infections. Using high-throughput amplicon sequencing, we studied strongylid communities in sympatric western lowland gorillas, central chimpanzees and humans co-occurring in an unprotected area in the northern periphery of the Dja Faunal Reserve, Cameroon. At the genus level, we classified 65 strongylid ITS-2 amplicon sequencing variants (ASVs) in humans and great apes. Great apes exhibited higher strongylid diversity than humans. Necator and Oesophagostomum were the most prevalent genera, and we commonly observed mixed infections of more than one strongylid species. Human strongylid communities were dominated by the human hookworm N. americanus, while great apes were mainly infected with N. gorillae, O. stephanostomum and trichostrongylids. We were also able to detect rare strongylid taxa (such as Ancylostoma and Ternidens). We detected eight ASVs shared between humans and great apes (four N. americanus variants, two N. gorillae variants, one O. stephanostomum type I and one Trichostrongylus sp. type II variant). Our results show that knowledge of strongylid communities in primates, including humans, is still limited. Sharing the same habitat, especially outside protected areas (where access to the forest is not restricted), can enable mutual parasite exchange and can even override host phylogeny or conserved patterns. Such studies are critical for assessing the threats posed to all hosts by increasing human-wildlife spatial overlap. In this study, the term "contact" refers to physical contact, while "spatial overlap" refers to environmental contact.
Collapse
Affiliation(s)
- Vladislav Ilík
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, Praha, Czech Republic
| | - David Modrý
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources/CINeZ, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Erich Marquard Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Nikki Tagg
- Centre for Research and Conservation/KMDA, Antwerp, Belgium
| | - Donald Mbohli
- Association de la Protection des Grands Singes, Yaoundé, Cameroon
| | | | - Klára Judita Petrželková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Barbora Pafčo
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
9
|
Zimmerman DM, Hardgrove E, Sullivan S, Mitchell S, Kambale E, Nziza J, Ssebide B, Shalukoma C, Cranfield M, Pandit PS, Troth SP, Callicrate T, Miller P, Gilardi K, Lacy RC. Projecting the impact of an ebola virus outbreak on endangered mountain gorillas. Sci Rep 2023; 13:5675. [PMID: 37029156 PMCID: PMC10082040 DOI: 10.1038/s41598-023-32432-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
Ebola virus is highly lethal for great apes. Estimated mortality rates up to 98% have reduced the global gorilla population by approximately one-third. As mountain gorillas (Gorilla beringei beringei) are endangered, with just over 1000 individuals remaining in the world, an outbreak could decimate the population. Simulation modeling was used to evaluate the potential impact of an Ebola virus outbreak on the mountain gorilla population of the Virunga Massif. Findings indicate that estimated contact rates among gorilla groups are high enough to allow rapid spread of Ebola, with less than 20% of the population projected to survive at 100 days post-infection of just one gorilla. Despite increasing survival with vaccination, no modeled vaccination strategy prevented widespread infection. However, the model projected that survival rates greater than 50% could be achieved by vaccinating at least half the habituated gorillas within 3 weeks of the first infectious individual.
Collapse
Affiliation(s)
- Dawn M Zimmerman
- Veterinary Initiative for Endangered Wildlife, Bozeman, MT, USA.
- Smithsonian Institution, National Museum of Natural History, Washington, DC, USA.
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, New Haven, CT, USA.
| | - Emily Hardgrove
- Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Sara Sullivan
- Species Conservation Toolkit Initiative, Chicago Zoological Society, Brookfield, IL, USA
| | - Stephanie Mitchell
- Center for Species Survival, Smithsonian National Zoological Park and Conservation Biology Institute, Washington, DC, USA
| | | | | | | | - Chantal Shalukoma
- Institut Congolais Pour La Conservation de Nature, Kinshasa, Democratic Republic of Congo
| | | | - Pranav S Pandit
- EpiCenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | | | - Taylor Callicrate
- Species Conservation Toolkit Initiative, Chicago Zoological Society, Brookfield, IL, USA
| | - Philip Miller
- IUCN SSC Conservation Planning Specialist Group US, Apple Valley, MN, USA
| | - Kirsten Gilardi
- Gorilla Doctors (MGVP, Inc.), Davis, CA, USA
- School of Veterinary Medicine, Karen C. Drayer Wildlife Health Center, University of California, Davis, CA, USA
| | - Robert C Lacy
- Species Conservation Toolkit Initiative, Chicago Zoological Society, Brookfield, IL, USA
| |
Collapse
|
10
|
Jahan M, Calvignac-Spencer S, Chapman CA, Kalbitzer U, Leendertz FH, Omeja PA, Sarkar D, Ulrich M, Gogarten JF. The Movement of Pathogen Carrying Flies at the Human-Wildlife Interface. ECOHEALTH 2022; 19:450-457. [PMID: 36629957 PMCID: PMC9833016 DOI: 10.1007/s10393-022-01621-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 10/04/2022] [Indexed: 06/17/2023]
Abstract
Flies form high-density associations with human settlements and groups of nonhuman primates and are implicated in transmitting pathogens. We investigate the movement of nonhuman primate-associated flies across landscapes surrounding Kibale National Park, Uganda, using a mark-recapture experiment. Flies were marked in nine nonhuman primate groups at the forest edge ([Formula: see text] = 929 flies per group), and we then attempted to recapture them in more anthropized areas (50 m, 200 m and 500 m from where marked; 2-21 days after marking). Flies marked in nonhuman primate groups were recaptured in human areas (19/28,615 recaptured). Metabarcoding of the flies in nonhuman primate groups revealed the DNA of multiple eukaryotic primate parasites. Taken together, these results demonstrate the potential of flies to serve as vectors between nonhuman primates, livestock and humans at this biodiverse interface.
Collapse
Affiliation(s)
- Mueena Jahan
- Epidemiology of Highly Pathogenic Organisms, Robert Koch Institute, Berlin, Germany
- Department of Microbiology and Public Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Sébastien Calvignac-Spencer
- Epidemiology of Highly Pathogenic Organisms, Robert Koch Institute, Berlin, Germany
- Viral Evolution, Robert Koch Institute Berlin, Berlin, Germany
| | - Colin A Chapman
- Wilson Center, 1300 Pennsylvania Avenue NW, Washington, DC, USA
- Center for the Advanced Study of Human Paleobiology, George Washington University, Washington, DC, USA
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China
| | - Urs Kalbitzer
- Department of Biology, University of Konstanz, Constance, Germany
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Radolfzell, Germany
| | - Fabian H Leendertz
- Epidemiology of Highly Pathogenic Organisms, Robert Koch Institute, Berlin, Germany
- Helmholtz Institute for One Health, Greifswald, Germany
| | - Patrick A Omeja
- Makerere University Biological Field Station, Fort Portal, Uganda
| | - Dipto Sarkar
- Department of Geography and Environmental Studies, Carleton University, Ottawa, Canada
| | - Markus Ulrich
- Epidemiology of Highly Pathogenic Organisms, Robert Koch Institute, Berlin, Germany
- Helmholtz Institute for One Health, Greifswald, Germany
| | - Jan F Gogarten
- Epidemiology of Highly Pathogenic Organisms, Robert Koch Institute, Berlin, Germany.
- Viral Evolution, Robert Koch Institute Berlin, Berlin, Germany.
- Helmholtz Institute for One Health, Greifswald, Germany.
- Department of Applied Zoology and Nature Conservation, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
11
|
Oyaba Yinda LED, Onanga R, Mbehang Nguema PP, Akomo-Okoue EF, Nsi Akoue G, Longo Pendy NM, Otsaghe Ekore D, Lendamba RW, Mabika-Mabika A, Mbeang JCO, Poungou N, Ibrahim, Mavoungou JF, Godreuil S. Phylogenetic Groups, Pathotypes and Antimicrobial Resistance of Escherichia coli Isolated from Western Lowland Gorilla Faeces ( Gorilla gorilla gorilla) of Moukalaba-Doudou National Park (MDNP). Pathogens 2022; 11:1082. [PMID: 36297139 PMCID: PMC9607589 DOI: 10.3390/pathogens11101082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
(1) Background: Terrestrial mammals in protected areas have been identified as a potential source of antimicrobial-resistant bacteria. Studies on antimicrobial resistance in gorillas have already been conducted. Thus, this study aimed to describe the phylogroups, pathotypes and prevalence of antimicrobial resistance of Escherichia coli isolated from western lowland gorilla's faeces living in MDNP. (2) Materials and Methods: Ninety-six faecal samples were collected from western lowland gorillas (Gorilla gorilla gorilla) during daily monitoring in the MDNP. Sixty-four E. coli isolates were obtained and screened for phylogenetic and pathotype group genes by polymerase chain reaction (PCR) after DNA extraction. In addition, antimicrobial susceptibility was determined by the disk diffusion method on Mueller Hinton agar. (3) Results: Sixty-four (64%) isolates of E. coli were obtained from samples. A high level of resistance to the beta-lactam family, a moderate rate for fluoroquinolone and a low rate for aminoglycoside was obtained. All E. coli isolates were positive in phylogroup PCR with a predominance of A (69% ± 11.36%), followed by B2 (20% ± 19.89%) and B1 (10% ± 8.90%) and low prevalence for D (1% ± 3.04%). In addition, twenty E. coli isolates (31%) were positive for pathotype PCR, such as EPEC (85% ± 10.82%) and EPEC/EHEC (15% ± 5.18%) that were obtained in this study. The majority of these MDR E. coli (DECs) belonged to phylogenetic group A, followed by MDR E. coli (DECs) belonging to group B2. (4) Conclusion: This study is the first description of MDR E. coli (DECs) assigned to phylogroup A in western lowland gorillas from the MDNP in Gabon. Thus, wild gorillas in MDNP could be considered as asymptomatic carriers of potential pathogenic MDR E. coli (DECs) that may present a potential risk to human health.
Collapse
Affiliation(s)
| | - Richard Onanga
- Laboratory of Bacteriology, Interdisciplinary Medical Research Center of Franceville, Franceville P.O. Box 769, Gabon
| | | | | | | | - Neil Michel Longo Pendy
- Laboratory of Vector Ecology, Interdisciplinary Medical Research Center of Franceville, Franceville P.O. Box 769, Gabon
| | - Desire Otsaghe Ekore
- Laboratory of Bacteriology, Interdisciplinary Medical Research Center of Franceville, Franceville P.O. Box 769, Gabon
| | - Roméo Wenceslas Lendamba
- Laboratory of Bacteriology, Interdisciplinary Medical Research Center of Franceville, Franceville P.O. Box 769, Gabon
| | - Arsène Mabika-Mabika
- Laboratory of Bacteriology, Interdisciplinary Medical Research Center of Franceville, Franceville P.O. Box 769, Gabon
| | | | - Natacha Poungou
- Microbiology Laboratory, Research Institute for Tropical Ecology, Libreville P.O. Box 13354, Gabon
| | - Ibrahim
- Laboratory of Biology, University of Science and Technology of Masuku, Franceville P.O. Box 913, Gabon
| | | | - Sylvain Godreuil
- Laboratoire de Bactériologie, CHU de Montpellier, UMR MIVEGEC (IRD, CNRS, Université de Montpellier), 34295 Montpellier, France
| |
Collapse
|
12
|
Oke MA, Afolabi FJ, Oyeleke OO, Kilani TA, Adeosun AR, Olanbiwoninu AA, Adebayo EA. Ganoderma lucidum: Unutilized natural medicine and promising future solution to emerging diseases in Africa. Front Pharmacol 2022; 13:952027. [PMID: 36071846 PMCID: PMC9441938 DOI: 10.3389/fphar.2022.952027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Ganoderma lucidum is a well-known medicinal mushroom that has been used for the prevention and treatment of different ailments to enhance longevity and health specifically in China, Japan, and Korea. It was known as "God's herb" in ancient China as it was believed to prolong life, enhance the youthful spirit and sustain/preserve vitality. G. lucidum is seldom collected from nature and is substantially cultivated on wood logs and sawdust in plastic bags or bottles to meet the international market demand. Both in vitro and in vivo studies on the copious metabolic activities of G. lucidum have been carried out. Varied groups of chemical compounds including triterpenoids, polysaccharides, proteins, amino acids, nucleosides, alkaloids, steroids, lactones, lectins, fatty acids, and enzymes with potent pharmacological activities have been isolated from the mycelia and fruiting bodies of G. lucidum. Several researchers have reported the abundance and diversification of its biological actions triggered by these chemical compounds. Triterpenoids and polysaccharides of G. lucidum have been reported to possess cytotoxic, hepatoprotective, antihypertensive, hypocholesterolemic, antihistaminic effects, antioxidant, antimicrobial, anti-inflammatory, hypoglycemic antiallergic, neuroprotective, antitumor, immunomodulatory and antiangiogenic activities. Various formulations have been developed, patented, and utilized as nutraceuticals, cosmeceuticals, and pharmaceuticals from G. lucidum extracts and active compounds. Thus, this review presents current updates on emerging infectious diseases and highlights the scope, dynamics, and advances in infectious disease management with a particular focus on Ganoderma lucidum, an unutilized natural medicine as a promising future solution to emerging diseases in Africa. However, details such as the chemical compound and mode of action of each bioactive against different emerging diseases were not discussed in this study.
Collapse
Affiliation(s)
- M. A. Oke
- Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Microbiology and Nanobiotechnology Laboratory, LAUTECH, Ogbomoso, Nigeria
| | - F. J. Afolabi
- Mushrooms Department, National Biotechnology Development Centre, Ogbomoso, Nigeria
| | - O. O. Oyeleke
- Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Microbiology and Nanobiotechnology Laboratory, LAUTECH, Ogbomoso, Nigeria
| | - T. A. Kilani
- Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Microbiology and Nanobiotechnology Laboratory, LAUTECH, Ogbomoso, Nigeria
| | - A. R. Adeosun
- Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Microbiology and Nanobiotechnology Laboratory, LAUTECH, Ogbomoso, Nigeria
| | - A. A. Olanbiwoninu
- Department of Biological Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - E. A. Adebayo
- Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Microbiology and Nanobiotechnology Laboratory, LAUTECH, Ogbomoso, Nigeria
- Mushrooms Department, National Biotechnology Development Centre, Ogbomoso, Nigeria
| |
Collapse
|
13
|
Sanchez CR, Hidalgo-Hermoso E. Mycobacterium tuberculosis sensu stricto in African Apes, What Is Its True Health Impact? Pathogens 2022; 11:484. [PMID: 35631005 PMCID: PMC9145341 DOI: 10.3390/pathogens11050484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 11/30/2022] Open
Abstract
Since the Symposium on Mycobacterial Infections of Zoo Animals held at the National Zoological Park, Smithsonian Institution in 1976, our understanding of tuberculosis (TB) in non-domestic animals has greatly expanded. Throughout the past decades, this knowledge has resulted in improved zoo-habitats and facilities design, stricter biosecurity measures, and advanced diagnostic methods, including molecular techniques, that have significantly decreased the number of clinical disease caused by Mycobacterium tuberculosis in apes under human care settings. In the other hand, exponential growth of human populations has led to human encroachment in wildlife habitat which has resulted in increased inter-species contact and recurrent conflict between humans and wild animals. Although it is widely accepted that non-human primates are susceptible to M. tb infection, opinions differ with regard to the susceptibility to develop disease amongst different taxa. Specifically, some authors suggest that African apes are less susceptible to clinical tuberculosis than other species of primates. The aim of this review article is to evaluate the current scientific literature to determine the actual health impact of disease caused by Mycobacterium tuberculosis and more specifically Mycobacterium tuberculosis sensu stricto in African apes. The literature review included literature databases: Web of Science, Pubmed, Scopus, Wiley, Springer and Science direct, without temporal limit and proceedings of annual conferences in the field of wildlife health. Our general inclusion criteria included information about serological, molecular, pathological (macroscopic and/or microscopic), and clinical evidence of TB in African apes; while our, our more stringent inclusion selection criteria required that in addition to a gross pathology, a molecular test confirmed Mycobacterium tuberculosis sensu stricto as the cause of disease or death. We identified eleven reports of tuberculosis in African apes; of those, only four reports met the more stringent selection criteria that confirmed M. tb sensu stricto in six individuals. All reports that confirmed M. tb sensu stricto originated from zoological collections. Our review suggests that there is little evidence of disease or mortality caused by M. tb in the different species of African apes both under human care and free ranging populations. Additional studies are needed in free-ranging, semi-captive populations (sanctuaries) and animals under human care (zoos and rescue centers) to definitely conclude that this mycobacteria has a limited health effect in African ape species.
Collapse
Affiliation(s)
- Carlos R. Sanchez
- Veterinary Medical Center, Oregon Zoo, Portland, 4001 SW Canyon Rd., Portland, OR 97221, USA
| | - Ezequiel Hidalgo-Hermoso
- Conservation and Research Department, Parque Zoologico Buin Zoo, Panamericana Sur Km 32, Buin 01730, Chile;
| |
Collapse
|
14
|
Zimmerman DM, Mitchell SL, Wolf TM, Deere JR, Noheri JB, Takahashi E, Cranfield MR, Travis DA, Hassell JM. Great ape health watch: Enhancing surveillance for emerging infectious diseases in great apes. Am J Primatol 2022; 84:e23379. [PMID: 35389523 DOI: 10.1002/ajp.23379] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/24/2022] [Accepted: 03/12/2022] [Indexed: 12/27/2022]
Abstract
Infectious diseases have the potential to extirpate populations of great apes. As the interface between humans and great apes expands, zoonoses pose an increasingly severe threat to already endangered great ape populations. Despite recognition of the threat posed by human pathogens to great apes, health monitoring is only conducted for a small fraction of the world's wild great apes (and mostly those that are habituated) meaning that outbreaks of disease often go unrecognized and therefore unmitigated. This lack of surveillance (even in sites where capacity to conduct surveillance is present) is the most significant limiting factor in our ability to quickly detect and respond to emerging infectious diseases in great apes when they first appear. Accordingly, we must create a surveillance system that links disease outbreaks in humans and great apes in time and space, and enables veterinarians, clinicians, conservation managers, national decision makers, and the global health community to respond quickly to these events. Here, we review existing great ape health surveillance programs in African range habitats to identify successes, gaps, and challenges. We use these findings to argue that standardization of surveillance across sites and geographic scales, that monitors primate health in real-time and generates early warnings of disease outbreaks, is an efficient, low-cost step to conserve great ape populations. Such a surveillance program, which we call "Great Ape Health Watch" would lead to long-term improvements in outbreak preparedness, prevention, detection, and response, while generating valuable data for epidemiological research and sustainable conservation planning. Standardized monitoring of great apes would also make it easier to integrate with human surveillance activities. This approach would empower local stakeholders to link wildlife and human health, allowing for near real-time, bidirectional surveillance at the great ape-human interface.
Collapse
Affiliation(s)
- Dawn M Zimmerman
- Global Health Program, Smithsonian Conservation Biology Institute, Washington, District of Columbia, USA.,School of Public Health, Yale University, New Haven, Connecticut, USA.,Technical Advisory Board, Gorilla Doctors, Musanze, Rwanda
| | - Stephanie L Mitchell
- Global Health Program, Smithsonian Conservation Biology Institute, Washington, District of Columbia, USA
| | - Tiffany M Wolf
- Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Jessica R Deere
- Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | | | | | - Michael R Cranfield
- Technical Advisory Board, Gorilla Doctors, Musanze, Rwanda.,Mountain Gorilla Veterinary Project, Baltimore, Maryland, USA
| | - Dominic A Travis
- Technical Advisory Board, Gorilla Doctors, Musanze, Rwanda.,Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - James M Hassell
- Global Health Program, Smithsonian Conservation Biology Institute, Washington, District of Columbia, USA.,School of Public Health, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
15
|
Illia G, Jouliá RB, Citon L, Oklander L, Kowalewski M. Parasites and Other Infectious Agents in Non-human Primates of Argentina. CURRENT TROPICAL MEDICINE REPORTS 2022; 9:267-277. [PMID: 36406044 PMCID: PMC9649014 DOI: 10.1007/s40475-022-00277-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2022] [Indexed: 11/12/2022]
Abstract
Purpose of Review In Argentina, there are five non-human primate (NHP) species: Sapajus nigritus cucullatus, Sapajus cay, Alouatta caraya, Alouatta guariba clamitans, and Aotus azarae. All of them inhabit protected and non-protected areas and face severe threats due anthropization. We aim to summarize the information available about parasites and infectious diseases of these NHPs and suggest further research on primate diseases in Argentina. Recent Findings NHPs of Argentina are hosts of several parasites and pathogens important for conservation as well as public health. Alouatta species are lethally susceptible to yellow fever virus, which makes them suitable health sentinels of possible outbreaks. For other primate species, few parasite surveys have been carried out. Summary Assessing the presence of infectious diseases and long-term surveillance on NHP allow the development of strategies to help in the early detection of pathogens that may threat public health. Increasing the knowledge about parasites and infectious diseases and their consequences in NHP of Argentina is needed, considering a One Health approach.
Collapse
Affiliation(s)
- Gimena Illia
- Instituto de Biología Subtropical, Consejo Nacional de Investigaciónes Científicas Y Técnicas (IBS-CONICET), Misiones, Argentina
| | - Rodrigo Bay Jouliá
- Centro de Ecologia Aplicada del Litoral (CECOAL-CONICET), Estación Biológica Corrientes (EBCo), Corrientes, Argentina
| | - Lucila Citon
- Centro de Ecologia Aplicada del Litoral (CECOAL-CONICET), Estación Biológica Corrientes (EBCo), Corrientes, Argentina
| | - Luciana Oklander
- Instituto de Biología Subtropical, Consejo Nacional de Investigaciónes Científicas Y Técnicas (IBS-CONICET), Misiones, Argentina
| | - Martin Kowalewski
- Centro de Ecologia Aplicada del Litoral (CECOAL-CONICET), Estación Biológica Corrientes (EBCo), Corrientes, Argentina
| |
Collapse
|
16
|
Destoumieux-Garzón D, Matthies-Wiesler F, Bierne N, Binot A, Boissier J, Devouge A, Garric J, Gruetzmacher K, Grunau C, Guégan JF, Hurtrez-Boussès S, Huss A, Morand S, Palmer C, Sarigiannis D, Vermeulen R, Barouki R. Getting out of crises: Environmental, social-ecological and evolutionary research is needed to avoid future risks of pandemics. ENVIRONMENT INTERNATIONAL 2022; 158:106915. [PMID: 34634622 PMCID: PMC8500703 DOI: 10.1016/j.envint.2021.106915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 05/05/2023]
Abstract
The implementation of One Health/EcoHealth/Planetary Health approaches has been identified as key (i) to address the strong interconnections between risk for pandemics, climate change and biodiversity loss and (ii) to develop and implement solutions to these interlinked crises. As a response to the multiple calls from scientists on that subject, we have here proposed seven long-term research questions regarding COVID-19 and emerging infectious diseases (EIDs) that are based on effective integration of environmental, ecological, evolutionary, and social sciences to better anticipate and mitigate EIDs. Research needs cover the social ecology of infectious disease agents, their evolution, the determinants of susceptibility of humans and animals to infections, and the human and ecological factors accelerating infectious disease emergence. For comprehensive investigation, they include the development of nature-based solutions to interlinked global planetary crises, addressing ethical and philosophical questions regarding the relationship of humans to nature and regarding transformative changes to safeguard the environment and human health. In support of this research, we propose the implementation of innovative multidisciplinary facilities embedded in social ecosystems locally: ecological health observatories and living laboratories. This work was carried out in the frame of the European Community project HERA (www.HERAresearchEU.eu), which aims to set priorities for an environment, climate and health research agenda in the European Union by adopting a systemic approach in the face of global environmental change.
Collapse
Affiliation(s)
| | - Franziska Matthies-Wiesler
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Germany.
| | - Nicolas Bierne
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Aurélie Binot
- Animals, health, Territories, Risks and Ecosystem (ASTRE), University of Montpellier, Agricultural Research for Development (CIRAD), National Research Institute for Agriculture, Food and the Environment (INRAE), Montpellier, France
| | - Jérôme Boissier
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | | | - Jeanne Garric
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), UR Riverly, F-69625 Villeurbanne, France
| | - Kim Gruetzmacher
- Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Science, Berlin Germany
| | - Christoph Grunau
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - Jean-François Guégan
- Animals, health, Territories, Risks and Ecosystem (ASTRE), University of Montpellier, Agricultural Research for Development (CIRAD), National Research Institute for Agriculture, Food and the Environment (INRAE), Montpellier, France; MIVEGEC, Univ Montpellier, IRD, CNRS, Montpellier, France
| | - Sylvie Hurtrez-Boussès
- MIVEGEC, Univ Montpellier, IRD, CNRS, Montpellier, France; Département de Biologie-Ecologie, Faculté des Sciences, Univ Montpellier, Montpellier, France
| | | | - Serge Morand
- Centre National de la Recherche Scientifique - UMR ASTRE, CIRAD, INRAE - Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Clare Palmer
- Department of Philosophy, YMCA Building, Texas A&M University, College Station, TX 77843, USA
| | - Denis Sarigiannis
- Aristotle University of Thessaloniki, Thessaloniki 54164, Greece; University School for Advanced Study IUSS, Pavia, Italy
| | | | | |
Collapse
|
17
|
Ehlers LP, Slaviero M, Bianchi MV, de Mello LS, De Lorenzo C, Surita LE, Alievi MM, Driemeier D, Pavarini SP, Sonne L. Causes of death in neotropical primates in Rio Grande do Sul State, Southern Brazil. J Med Primatol 2021; 51:85-92. [PMID: 34862608 DOI: 10.1111/jmp.12557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Anthropogenic disturbances are the main threats to nonhuman primates conservation, and infectious diseases may also play a key role in primate population decline. This study aimed to determine the main causes of death in neotropical primates. METHODS A retrospective study of post-mortem examinations was conducted on 146 neotropical primates between January 2000 and December 2018. RESULTS Conclusive diagnoses were obtained in 68.5% of the cases, of which 59 corresponded to non-infectious causes and 41 to infectious diseases. Trauma was the main cause of death (54/100), with anthropogenic stressors caused by blunt force trauma injuries (collision with vehicles) and puncture wound injuries associated with interspecific aggression (dog predation) were the most common factors. Other causes of death included bacterial diseases (27%), followed by parasitic diseases (12%), neoplasms (2%), and viral diseases (2%). CONCLUSIONS Free-ranging primates were mostly affected by non-infectious causes, while captive primates were by infectious conditions.
Collapse
Affiliation(s)
- Luiza P Ehlers
- Setor de Patologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Mônica Slaviero
- Setor de Patologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Matheus V Bianchi
- Setor de Patologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Lauren S de Mello
- Setor de Patologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Cíntia De Lorenzo
- Setor de Patologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Lívia E Surita
- Hospital de Clínicas Veterinárias, Faculdade de Veterinária, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marcelo M Alievi
- Hospital de Clínicas Veterinárias, Faculdade de Veterinária, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - David Driemeier
- Setor de Patologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Saulo P Pavarini
- Setor de Patologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Luciana Sonne
- Setor de Patologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
18
|
Whytock RC, Abwe EE, Mfossa DM, Ketchen ME, Abwe AE, Nguimdo VR, Maisels F, Strindberg S, Morgan BJ. Mammal distribution and trends in the threatened Ebo 'intact forest landscape', Cameroon. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
19
|
Morrison RE, Mushimiyimana Y, Stoinski TS, Eckardt W. Rapid transmission of respiratory infections within but not between mountain gorilla groups. Sci Rep 2021; 11:19622. [PMID: 34620899 PMCID: PMC8497490 DOI: 10.1038/s41598-021-98969-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/09/2021] [Indexed: 02/06/2023] Open
Abstract
Minimizing disease transmission between humans and wild apes and controlling outbreaks in ape populations is vital to both ape conservation and human health, but information on the transmission of real infections in wild populations is rare. We analyzed respiratory outbreaks in a subpopulation of wild mountain gorillas (Gorilla beringei beringei) between 2004 and 2020. We investigated transmission within groups during 7 outbreaks using social networks based on contact and proximity, and transmission between groups during 15 outbreaks using inter-group encounters, transfers and home range overlap. Patterns of contact and proximity within groups were highly predictable based on gorillas' age and sex. Disease transmission within groups was rapid with a median estimated basic reproductive number (R0) of 4.18 (min = 1.74, max = 9.42), and transmission was not predicted by the social network. Between groups, encounters and transfers did not appear to have enabled disease transmission and the overlap of groups' ranges did not predict concurrent outbreaks. Our findings suggest that gorilla social structure, with many strong connections within groups and weak ties between groups, may enable rapid transmission within a group once an infection is present, but limit the transmission of infections between groups.
Collapse
Affiliation(s)
- Robin E Morrison
- Dian Fossey Gorilla Fund, Musanze, Rwanda.
- Centre for Research in Animal Behavior, University of Exeter, Exeter, UK.
| | | | | | | |
Collapse
|
20
|
Abstract
Over the last two decades, the viromes of our closest relatives, the African great apes (AGA), have been intensively studied. Comparative approaches have unveiled diverse evolutionary patterns, highlighting both stable host-virus associations over extended evolutionary timescales and much more recent viral emergence events. In this chapter, we summarize these findings and outline how they have shed a new light on the origins and evolution of many human-infecting viruses. We also show how this knowledge can be used to better understand the evolution of human health in relation to viral infections.
Collapse
|
21
|
Sirima C, Bizet C, Hamou H, Červená B, Lemarcis T, Esteban A, Peeters M, Mpoudi Ngole E, Mombo IM, Liégeois F, Petrželková KJ, Boussinesq M, Locatelli S. Soil-transmitted helminth infections in free-ranging non-human primates from Cameroon and Gabon. Parasit Vectors 2021; 14:354. [PMID: 34225777 PMCID: PMC8259424 DOI: 10.1186/s13071-021-04855-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Zoonotic diseases are a serious threat to both public health and animal conservation. Most non-human primates (NHP) are facing the threat of forest loss and fragmentation and are increasingly living in closer spatial proximity to humans. Humans are infected with soil-transmitted helminths (STH) at a high prevalence, and bidirectional infection with NHP has been observed. The aim of this study was to determine the prevalence, genetic diversity, distribution and presence of co-infections of STH in free-ranging gorillas, chimpanzees and other NHP species, and to determine the potential role of these NHP as reservoir hosts contributing to the environmental sustenance of zoonotic nematode infections in forested areas of Cameroon and Gabon. METHODS A total of 315 faecal samples from six species of NHPs were analysed. We performed PCR amplification, sequencing and maximum likelihood analysis of DNA fragments of the internal transcribed spacer 2 (ITS2) nuclear ribosomal DNA to detect the presence and determine the genetic diversity of Oesophagostomum spp., Necator spp. and Trichuris spp., and of targeted DNA fragments of the internal transcribed spacer 1 (ITS1) to detect the presence of Ascaris spp. RESULTS Necator spp. infections were most common in gorillas (35 of 65 individuals), but also present in chimpanzees (100 of 222 individuals) and in one of four samples from greater spot-nosed monkeys. These clustered with previously described type II and III Necator spp. Gorillas were also the most infected NHP with Oesophagostomum (51/65 individuals), followed by chimpanzees (157/222 individuals), mandrills (8/12 samples) and mangabeys (7/12 samples), with O. stephanostomum being the most prevalent species. Oesophagostomum bifurcum was detected in chimpanzees and a red-capped mangabey, and a non-classified Oesophagostomum species was detected in a mandrill and a red-capped mangabey. In addition, Ternidens deminutus was detected in samples from one chimpanzee and three greater spot-nosed monkeys. A significant relative overabundance of co-infections with Necator and Oesophagostomum was observed in chimpanzees and gorillas. Trichuris sp. was detected at low prevalence in a gorilla, a chimpanzee and a greater spot-nosed monkey. No Ascaris was observed in any of the samples analysed. CONCLUSIONS Our results on STH prevalence and genetic diversity in NHP from Cameroon and Gabon corroborate those obtained from other wild NHP populations in other African countries. Future research should focus on better identifying, at a molecular level, the species of Necator and Oesophagostomum infecting NHP and determining how human populations may be affected by increased proximity resulting from encroachment into sylvatic STH reservoir habitats.
Collapse
Affiliation(s)
- C. Sirima
- Institut de Recherche Pour Le Développement (IRD), UMI 233-TransVIHMI-INSERM U1175–University of Montpellier, Montpellier, France
| | - C. Bizet
- Institut de Recherche Pour Le Développement (IRD), UMI 233-TransVIHMI-INSERM U1175–University of Montpellier, Montpellier, France
| | - H. Hamou
- Institut de Recherche Pour Le Développement (IRD), UMI 233-TransVIHMI-INSERM U1175–University of Montpellier, Montpellier, France
| | - B. Červená
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - T. Lemarcis
- Institut de Recherche Pour Le Développement (IRD), UMI 233-TransVIHMI-INSERM U1175–University of Montpellier, Montpellier, France
| | - A. Esteban
- Institut de Recherche Pour Le Développement (IRD), UMI 233-TransVIHMI-INSERM U1175–University of Montpellier, Montpellier, France
| | - M. Peeters
- Institut de Recherche Pour Le Développement (IRD), UMI 233-TransVIHMI-INSERM U1175–University of Montpellier, Montpellier, France
| | - E. Mpoudi Ngole
- Projet Prévention du Sida Au Cameroun (PRESICA) and Virology Laboratory IMPM/IRD, Yaoundé, Cameroon
| | - I. M. Mombo
- Centre Interdisciplinaire de Recherches Médicales de Franceville, BP 769, Franceville, Gabon
| | - F. Liégeois
- Present Address: Institut de Recherche Pour Le Développement (IRD), Maladies Infectieuses Et Vecteurs : Écologie, Génétique, Évolution et Contrôle (MIVEGEC), IRD 224-CNRS 5290–University of Montpellier, Montpellier, France
| | - K. J. Petrželková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - M. Boussinesq
- Institut de Recherche Pour Le Développement (IRD), UMI 233-TransVIHMI-INSERM U1175–University of Montpellier, Montpellier, France
| | - S. Locatelli
- Institut de Recherche Pour Le Développement (IRD), UMI 233-TransVIHMI-INSERM U1175–University of Montpellier, Montpellier, France
- Present Address: Institut de Recherche Pour Le Développement (IRD), Maladies Infectieuses Et Vecteurs : Écologie, Génétique, Évolution et Contrôle (MIVEGEC), IRD 224-CNRS 5290–University of Montpellier, Montpellier, France
| |
Collapse
|
22
|
Unwin S, Commitante R, Moss A, Bridges E, Farmer KH, Jaya RL, Saraswati YS, Nente C, Soedarmanto I, Sulistyo F, Sugnaseelan S. Evaluating the contribution of a wildlife health capacity building program on orangutan conservation. Am J Primatol 2021; 84:e23273. [PMID: 34018623 DOI: 10.1002/ajp.23273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/01/2021] [Accepted: 05/06/2021] [Indexed: 11/12/2022]
Abstract
One Health is increasingly being used as a tool in ecosystem protection. The Orangutan Veterinary Advisory Group (OVAG) is working to address One Health concerns in Pongo spp. (orangutan) welfare and conservation. Orangutans are vital contributors to the ecosystem health of their range areas. Strengthening national capacity is crucial to make a lasting difference in the currently bleak outlook for orangutan species survival. OVAG is a capacity strengthening and expertise network that brings together all those working with orangutans, in- and ex-situ, to share knowledge, skills, and to collectively learn. Using the One Health paradigm embedded to enhance professional development, the OVAG network is successfully supporting conservation outcomes and impact. As part of our adaptive management approach, and to assess individual and organizational change attributable to the capacity strengthening work of OVAG, we evaluated technical skill test data, program satisfaction data, and asked participants to complete a self-reflective survey. This pilot study of our work demonstrates statistically significant improvements in conservation medicine (t = 5.481, p < 0.0001) and wildlife clinical skills knowledge (t = 3.923, p < 0.001) for those in the OVAG program. Most consider OVAG participation to be either critical or very useful in their conservation medicine decision-making process, with a perceived positive impact on their skills at handling multiple situations. Additionally, participant feedback shows a sense of being able to drive positive change locally and nationally (within their own countries) as a consequence of OVAG participation. The authors hope the OVAG model including its associated capacity support mechanisms and pedagogical approaches can be used as a template for other One Health efforts.
Collapse
Affiliation(s)
- Steve Unwin
- OVAG/School of Biosciences, University of Birmingham, Birmingham, UK
| | - Raffaella Commitante
- OVAG/Orangutan Conservancy, California State University Fullerton Anthropology, Fullerton, California, USA
| | | | | | | | - Ricko Laino Jaya
- OVAG/School of Biosciences, University of Birmingham, Birmingham, UK
| | | | - Citrakasih Nente
- OVAG/Sumatran Orangutan Conservation Programme, Medan, Indonesia
| | | | - Fransiska Sulistyo
- OVAG/Borneo Orangutan Survival Foundation (until 2018), Bogor, Indonesia
| | - Sumita Sugnaseelan
- OVAG/Dept. Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
23
|
Behringer V, Deimel C, Stevens JMG, Kreyer M, Lee SM, Hohmann G, Fruth B, Heistermann M. Cell-Mediated Immune Ontogeny Is Affected by Sex but Not Environmental Context in a Long-Lived Primate Species. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.629094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ecoimmunology conceptualizes the role of immunity in shaping life history in a natural context. Within ecoimmunology, macroimmunology is a framework that explains the effects of habitat and spatial differences on variation in immune phenotypes across populations. Within these frameworks, immune ontogeny—the development of the immune system across an individual life span—has received little attention. Here, we investigated how immune ontogeny from birth until adulthood is affected by age, sex, and developmental environment in a long-lived primate species, the bonobo. We found a progressive, significant decline of urinary neopterin levels, a marker for the cell-mediated immune response, from birth until 5 years of age in both sexes. The overall pattern of age-related neopterin changes was sex-specific, with males having higher urinary neopterin levels than females in the first 3 years of life, and females having higher levels than males between 6 and 8 years. Environmental condition (zoo-housed vs. wild) did not influence neopterin levels, nor did age-related changes in neopterin levels differ between environments. Our data suggest that the post-natal development of cell-mediated immune ontogeny is sex-specific but does not show plasticity in response to environmental conditions in this long-lived primate species. This indicates that cell-mediated immune ontogeny in the bonobo follows a stereotypic and maybe a genetically determined pattern that is not affected by environmental differences in pathogen exposure and energy availability, but that sex is an important, yet often overlooked factor shaping patterns of immune ontogeny. Investigating the causes and consequences of variation in immunity throughout life is critical for our understanding of life-history evolution and strategies, mechanisms of sexual selection, and population dynamics with respect to pathogen susceptibility. A general description of sex-specific immune ontogeny as done here is a crucial step in this direction, particularly when it is considered in the context of a species’ ecology and evolutionary history.
Collapse
|
24
|
Medkour H, Castaneda S, Amona I, Fenollar F, André C, Belais R, Mungongo P, Muyembé-Tamfum JJ, Levasseur A, Raoult D, Davoust B, Mediannikov O. Potential zoonotic pathogens hosted by endangered bonobos. Sci Rep 2021; 11:6331. [PMID: 33737691 PMCID: PMC7973442 DOI: 10.1038/s41598-021-85849-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/05/2021] [Indexed: 12/18/2022] Open
Abstract
Few publications, often limited to one specific pathogen, have studied bonobos (Pan paniscus), our closest living relatives, as possible reservoirs of certain human infectious agents. Here, 91 stool samples from semicaptive bonobos and bonobos reintroduced in the wild, in the Democratic Republic of the Congo, were screened for different infectious agents: viruses, bacteria and parasites. We showed the presence of potentially zoonotic viral, bacterial or parasitic agents in stool samples, sometimes coinfecting the same individuals. A high prevalence of Human mastadenoviruses (HAdV-C, HAdV-B, HAdV-E) was observed. Encephalomyocarditis viruses were identified in semicaptive bonobos, although identified genotypes were different from those identified in the previous fatal myocarditis epidemic at the same site in 2009. Non-pallidum Treponema spp. including symbiotic T. succinifaciens, T. berlinense and several potential new species with unknown pathogenicity were identified. We detected DNA of non-tuberculosis Mycobacterium spp., Acinetobacter spp., Salmonella spp. as well as pathogenic Leptospira interrogans. Zoonotic parasites such as Taenia solium and Strongyloides stercoralis were predominantly present in wild bonobos, while Giardia lamblia was found only in bonobos in contact with humans, suggesting a possible exchange. One third of bonobos carried Oesophagostomum spp., particularly zoonotic O. stephanostomum and O. bifurcum-like species, as well as other uncharacterized Nematoda. Trypanosoma theileri has been identified in semicaptive bonobos. Pathogens typically known to be transmitted sexually were not identified. We present here the results of a reasonably-sized screening study detecting DNA/RNA sequence evidence of potentially pathogenic viruses and microorganisms in bonobo based on a noninvasive sampling method (feces) and focused PCR diagnostics.
Collapse
Affiliation(s)
- Hacène Medkour
- Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Sergei Castaneda
- Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Inestin Amona
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - Florence Fenollar
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - Claudine André
- Les Amis des Bonobos du Congo, Kinshasa, Democratic Republic of the Congo
| | - Raphaël Belais
- Les Amis des Bonobos du Congo, Kinshasa, Democratic Republic of the Congo
| | - Paulin Mungongo
- Les Amis des Bonobos du Congo, Kinshasa, Democratic Republic of the Congo
| | | | - Anthony Levasseur
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Bernard Davoust
- Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Oleg Mediannikov
- Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France.
- IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
25
|
Wertheim JO, Hostager R, Ryu D, Merkel K, Angedakin S, Arandjelovic M, Ayimisin EA, Babweteera F, Bessone M, Brun-Jeffery KJ, Dieguez P, Eckardt W, Fruth B, Herbinger I, Jones S, Kuehl H, Langergraber KE, Lee K, Madinda NF, Metzger S, Ormsby LJ, Robbins MM, Sommer V, Stoinski T, Wessling EG, Wittig RM, Yuh YG, Leendertz FH, Calvignac-Spencer S. Discovery of Novel Herpes Simplexviruses in Wild Gorillas, Bonobos, and Chimpanzees Supports Zoonotic Origin of HSV-2. Mol Biol Evol 2021; 38:2818-2830. [PMID: 33720357 PMCID: PMC8233514 DOI: 10.1093/molbev/msab072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Viruses closely related to human pathogens can reveal the origins of human infectious diseases. Human herpes simplexvirus type 1 (HSV-1) and type 2 (HSV-2) are hypothesized to have arisen via host-virus codivergence and cross-species transmission. We report the discovery of novel herpes simplexviruses during a large-scale screening of fecal samples from wild gorillas, bonobos, and chimpanzees. Phylogenetic analysis indicates that, contrary to expectation, simplexviruses from these African apes are all more closely related to HSV-2 than to HSV-1. Molecular clock-based hypothesis testing suggests the divergence between HSV-1 and the African great ape simplexviruses likely represents a codivergence event between humans and gorillas. The simplexviruses infecting African great apes subsequently experienced multiple cross-species transmission events over the past 3 My, the most recent of which occurred between humans and bonobos around 1 Ma. These findings revise our understanding of the origins of human herpes simplexviruses and suggest that HSV-2 is one of the earliest zoonotic pathogens.
Collapse
Affiliation(s)
- Joel O Wertheim
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Reilly Hostager
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Diane Ryu
- Viral Evolution, Robert Koch Institute, Berlin, Germany.,Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | - Kevin Merkel
- Viral Evolution, Robert Koch Institute, Berlin, Germany.,Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | - Samuel Angedakin
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mimi Arandjelovic
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | | | - Mattia Bessone
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,School of Biological & Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | | | - Paula Dieguez
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Winnie Eckardt
- Dian Fossey Gorilla Fund International, Atlanta, GA, USA.,Department of Environmental Sciences and Program in Population Biology, Ecology and Evolution, Emory University, Druid Hills, GA, USA
| | - Barbara Fruth
- School of Biological & Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom.,Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | | | - Sorrel Jones
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Royal Society for the Protection of Birds, Centre for Conservation Science, Cambridge, United Kingdom
| | - Hjalmar Kuehl
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Kevin E Langergraber
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.,Institute of Human Origins, Arizona State University, Tempe, AZ, USA
| | - Kevin Lee
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.,Institute of Human Origins, Arizona State University, Tempe, AZ, USA
| | - Nadege F Madinda
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany.,Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Sonja Metzger
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany.,Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Lucy Jayne Ormsby
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Martha M Robbins
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Volker Sommer
- Department of Anthropology, University College London, London, United Kingdom.,Gashaka Primate Project, Serti/Taraba, Nigeria
| | - Tara Stoinski
- Dian Fossey Gorilla Fund International, Atlanta, GA, USA.,Department of Environmental Sciences and Program in Population Biology, Ecology and Evolution, Emory University, Druid Hills, GA, USA
| | - Erin G Wessling
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Roman M Wittig
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Yisa Ginath Yuh
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Fabian H Leendertz
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | - Sébastien Calvignac-Spencer
- Viral Evolution, Robert Koch Institute, Berlin, Germany.,Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
26
|
Owens LA, Colitti B, Hirji I, Pizarro A, Jaffe JE, Moittié S, Bishop-Lilly KA, Estrella LA, Voegtly LJ, Kuhn JH, Suen G, Deblois CL, Dunn CD, Juan-Sallés C, Goldberg TL. A Sarcina bacterium linked to lethal disease in sanctuary chimpanzees in Sierra Leone. Nat Commun 2021; 12:763. [PMID: 33536429 PMCID: PMC7859188 DOI: 10.1038/s41467-021-21012-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
Human and animal infections with bacteria of the genus Sarcina (family Clostridiaceae) are associated with gastric dilation and emphysematous gastritis. However, the potential roles of sarcinae as commensals or pathogens remain unclear. Here, we investigate a lethal disease of unknown etiology that affects sanctuary chimpanzees (Pan troglodytes verus) in Sierra Leone. The disease, which we have named "epizootic neurologic and gastroenteric syndrome" (ENGS), is characterized by neurologic and gastrointestinal signs and results in death of the animals, even after medical treatment. Using a case-control study design, we show that ENGS is strongly associated with Sarcina infection. The microorganism is distinct from Sarcina ventriculi and other known members of its genus, based on bacterial morphology and growth characteristics. Whole-genome sequencing confirms this distinction and reveals the presence of genetic features that may account for the unusual virulence of the bacterium. Therefore, we propose that this organism be considered the representative of a new species, named "Candidatus Sarcina troglodytae". Our results suggest that a heretofore unrecognized complex of related sarcinae likely exists, some of which may be highly virulent. However, the potential role of "Ca. S. troglodytae" in the etiology of ENGS, alone or in combination with other factors, remains a topic for future research.
Collapse
Affiliation(s)
- Leah A Owens
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Barbara Colitti
- Department of Veterinary Science, University of Torino, Torino, Italy
| | - Ismail Hirji
- Tacugama Chimpanzee Sanctuary, Freetown, Sierra Leone
| | | | - Jenny E Jaffe
- Tai Chimpanzee Project, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | - Sophie Moittié
- School of Veterinary Medicine and Sciences, University of Nottingham Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK
- Twycross Zoo, Atherstone, UK
| | - Kimberly A Bishop-Lilly
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center, Fort Detrick, MD, USA
| | - Luis A Estrella
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center, Fort Detrick, MD, USA
| | - Logan J Voegtly
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center, Fort Detrick, MD, USA
- Leidos, Reston, VI, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD, USA
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Courtney L Deblois
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christopher D Dunn
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Tony L Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
27
|
Grossmann A, Froböse NJ, Mellmann A, Alabi AS, Schaumburg F, Niemann S. An in vitro study on Staphylococcus schweitzeri virulence. Sci Rep 2021; 11:1157. [PMID: 33442048 PMCID: PMC7806826 DOI: 10.1038/s41598-021-80961-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/24/2020] [Indexed: 02/05/2023] Open
Abstract
Staphylococcus schweitzeri belongs to the Staphylococcus aureus-related complex and is mainly found in African wildlife; no infections in humans are reported yet. Hence, its medical importance is controversial. The aim of this work was to assess the virulence of S. schweitzeri in vitro. The capacity of African S. schweitzeri (n = 58) for invasion, intra- and extracellular cytotoxicity, phagolysosomal escape, coagulase activity, biofilm formation and host cell activation was compared with S. aureus representing the most common clonal complexes in Africa (CC15, CC121, CC152). Whole genome sequencing revealed that the S. schweitzeri isolates belonged to five geographical clusters. Isolates from humans were found in two different clades. S. schweitzeri and S. aureus showed a similar host cell invasion (0.9 vs. 1.2 CFU/Vero cell), host cell activation (i.e. expression of pro-inflammatory cytokines, 4.1 vs. 1.7 normalized fold change in gene expression of CCL5; 7.3 vs. 9.9 normalized fold change in gene expression of IL8, A549 cells) and intracellular cytotoxicity (31.5% vs. 25% cell death, A549 cells). The extracellular cytotoxicity (52.9% vs. 28.8% cell death, A549 cells) was higher for S. schweitzeri than for S. aureus. Nearly all tested S. schweitzeri (n = 18/20) were able to escape from phagolysosomes. In conclusion, some S. schweitzeri isolates display virulence phenotypes comparable to African S. aureus. S. schweitzeri might become an emerging zoonotic pathogen within the genus Staphylococcus.
Collapse
Affiliation(s)
- Almut Grossmann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Neele J Froböse
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Alexander Mellmann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany.,Institute for Hygiene, University Hospital Münster, Münster, Germany
| | - Abraham S Alabi
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Frieder Schaumburg
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany.
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany.,Section of Medical and Geographical Infectiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
28
|
Narat V, Amato KR, Ranger N, Salmona M, Mercier-Delarue S, Rupp S, Ambata P, Njouom R, Simon F, Giles-Vernick T, LeGoff J. A multi-disciplinary comparison of great ape gut microbiota in a central African forest and European zoo. Sci Rep 2020; 10:19107. [PMID: 33154444 PMCID: PMC7645722 DOI: 10.1038/s41598-020-75847-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/15/2020] [Indexed: 01/01/2023] Open
Abstract
Comparisons of mammalian gut microbiota across different environmental conditions shed light on the diversity and composition of gut bacteriome and suggest consequences for human and animal health. Gut bacteriome comparisons across different environments diverge in their results, showing no generalizable patterns linking habitat and dietary degradation with bacterial diversity. The challenge in drawing general conclusions from such studies lies in the broad terms describing diverse habitats ("wild", "captive", "pristine"). We conducted 16S ribosomal RNA gene sequencing to characterize intestinal microbiota of free-ranging sympatric chimpanzees and gorillas in southeastern Cameroon and sympatric chimpanzees and gorillas in a European zoo. We conducted participant-observation and semi-structured interviews among people living near these great apes to understand better their feeding habits and habitats. Unexpectedly, bacterial diversity (ASV, Faith PD and Shannon) was higher among zoo gorillas than among those in the Cameroonian forest, but zoo and Cameroonian chimpanzees showed no difference. Phylogeny was a strong driver of species-specific microbial composition. Surprisingly, zoo gorilla microbiota more closely resembled that of zoo chimpanzees than of Cameroonian gorillas. Zoo living conditions and dietary similarities may explain these results. We encourage multidisciplinary approach integrating environmental sampling and anthropological evaluation to characterize better diverse environmental conditions of such investigations.
Collapse
Affiliation(s)
- Victor Narat
- Eco-anthropologie, UMR7206 CNRS/MNHN/Université de Paris, Site du Musée de L'Homme, Paris, France
- Institut Pasteur, Anthropology and Ecology of Disease Emergence Unit, Paris, France
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, USA
- Humans and the Microbiome, CIFAR, Toronto, Canada
| | - Noémie Ranger
- Université de Paris, Equipe INSIGHT, Inserm U976, 75010, Paris, France
| | - Maud Salmona
- Université de Paris, Equipe INSIGHT, Inserm U976, 75010, Paris, France
- Département des Agents Infectieux, Virologie et Greffes, AP-HP, Hôpital Saint-Louis, 75010, Paris, France
| | | | - Stephanie Rupp
- Department of Anthropology, City University of New York - Lehman College, New York, NY, USA
| | - Philippe Ambata
- Ministry of Agriculture and Rural Development, Yaounde, Cameroon
| | | | - François Simon
- Université de Paris, Equipe INSIGHT, Inserm U976, 75010, Paris, France
| | - Tamara Giles-Vernick
- Institut Pasteur, Anthropology and Ecology of Disease Emergence Unit, Paris, France.
- Humans and the Microbiome, CIFAR, Toronto, Canada.
| | - Jérôme LeGoff
- Université de Paris, Equipe INSIGHT, Inserm U976, 75010, Paris, France.
- Département des Agents Infectieux, Virologie et Greffes, AP-HP, Hôpital Saint-Louis, 75010, Paris, France.
| |
Collapse
|
29
|
Lappan S, Malaivijitnond S, Radhakrishna S, Riley EP, Ruppert N. The human-primate interface in the New Normal: Challenges and opportunities for primatologists in the COVID-19 era and beyond. Am J Primatol 2020; 82:e23176. [PMID: 32686188 PMCID: PMC7404331 DOI: 10.1002/ajp.23176] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/23/2020] [Accepted: 07/04/2020] [Indexed: 12/12/2022]
Abstract
The emergence of SARS-CoV-2 in late 2019 and human responses to the resulting COVID-19 pandemic in early 2020 have rapidly changed many aspects of human behavior, including our interactions with wildlife. In this commentary, we identify challenges and opportunities at human-primate interfaces in light of COVID-19, focusing on examples from Asia, and make recommendations for researchers working with wild primates to reduce zoonosis risk and leverage research opportunities. First, we briefly review the evidence for zoonotic origins of SARS-CoV-2 and discuss risks of zoonosis at the human-primate interface. We then identify challenges that the pandemic has caused for primates, including reduced nutrition, increased intraspecific competition, and increased poaching risk, as well as challenges facing primatologists, including lost research opportunities. Subsequently, we highlight opportunities arising from pandemic-related lockdowns and public health messaging, including opportunities to reduce the intensity of problematic human-primate interfaces, opportunities to reduce the risk of zoonosis between humans and primates, opportunities to reduce legal and illegal trade in primates, new opportunities for research on human-primate interfaces, and opportunities for community education. Finally, we recommend specific actions that primatologists should take to reduce contact and aggression between humans and primates, to reduce demand for primates as pets, to reduce risks of zoonosis in the context of field research, and to improve understanding of human-primate interfaces. Reducing the risk of zoonosis and promoting the well-being of humans and primates at our interfaces will require substantial changes from "business as usual." We encourage primatologists to help lead the way.
Collapse
Affiliation(s)
- Susan Lappan
- Department of AnthropologyAppalachian State UniversityBooneNorth Carolina
- School of Biological SciencesUniversiti Sains MalaysiaPenangMalaysia
| | - Suchinda Malaivijitnond
- National Primate Research Center of ThailandChulalongkorn UniversityKaeng KhoiSaraburiThailand
- Department of Biology, Faculty of ScienceChulalongkorn UniversityBangkokThailand
| | - Sindhu Radhakrishna
- National Institute of Advanced StudiesIndian Institute of ScienceBengaluruIndia
| | - Erin P. Riley
- Department of AnthropologySan Diego State UniversitySan DiegoCalifornia
| | - Nadine Ruppert
- School of Biological SciencesUniversiti Sains MalaysiaPenangMalaysia
| |
Collapse
|
30
|
Ryu H, Hill DA, Sakamaki T, Garai C, Tokuyama N, Furuichi T. Occurrence and transmission of flu-like illness among neighboring bonobo groups at Wamba. Primates 2020; 61:775-784. [PMID: 32562165 DOI: 10.1007/s10329-020-00832-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 05/29/2020] [Indexed: 10/24/2022]
Abstract
Infectious diseases constitute one of the major threats to African great apes. Bonobos (Pan paniscus) may be particularly vulnerable to the transmission of infectious diseases because of their cohesive grouping and frequent social and sexual interactions between groups. Here we report two cases of a flu-like illness and possible transmission of the illness among neighboring wild bonobo groups at Wamba, DR Congo. The first flu-like outbreak started in the PE group on July 28, 2013, 2 days after they had encounters with the BI and PW groups. All PE members, except for one infant, subsequently developed flu-like symptoms, including coughing and running nose. The second flu-like outbreak occurred in the E1 group on October 14, 2013, after E1 had encountered the PE group and the two groups stayed together from October 7 to 11. Eleven out of the 15 observed party members developed symptoms over the next 4 days. The pathogens underlying the two outbreaks may have been related as two temporary immigrant females, who had previously shown symptoms while in the PE group, stayed briefly in the E1 group during the second outbreak, but did not show any symptoms.
Collapse
Affiliation(s)
- Heungjin Ryu
- Primate Research Institute of Kyoto University, Kanrin 41-2 Inuyama, Aichi, 484-8506, Japan. .,Ulsan National Institute of Science and Technology, UNIST-Gil 50, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea.
| | - David A Hill
- Wildlife Research Center of Kyoto University, 2-24 Tanaka-Sekiden-cho, Sakyo, Kyoto, 606-8203, Japan
| | - Tetsuya Sakamaki
- Primate Research Institute of Kyoto University, Kanrin 41-2 Inuyama, Aichi, 484-8506, Japan.,The Antwerp Zoo Foundation of the VZW Royal Zoological Society Antwerp, Koningin Astridplein 26, 2018, Antwerpen, Belgium
| | - Cintia Garai
- Primate Research Institute of Kyoto University, Kanrin 41-2 Inuyama, Aichi, 484-8506, Japan.,Wildlife Messengers, 5645 Hard Rock Place, Richmond, VA, 23230, USA
| | - Nahoko Tokuyama
- Primate Research Institute of Kyoto University, Kanrin 41-2 Inuyama, Aichi, 484-8506, Japan.,Wildlife Research Center of Kyoto University, 2-24 Tanaka-Sekiden-cho, Sakyo, Kyoto, 606-8203, Japan
| | - Takeshi Furuichi
- Primate Research Institute of Kyoto University, Kanrin 41-2 Inuyama, Aichi, 484-8506, Japan
| |
Collapse
|
31
|
Devaux CA, Mediannikov O, Medkour H, Raoult D. Infectious Disease Risk Across the Growing Human-Non Human Primate Interface: A Review of the Evidence. Front Public Health 2019; 7:305. [PMID: 31828053 PMCID: PMC6849485 DOI: 10.3389/fpubh.2019.00305] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/07/2019] [Indexed: 12/22/2022] Open
Abstract
Most of the human pandemics reported to date can be classified as zoonoses. Among these, there is a long history of infectious diseases that have spread from non-human primates (NHP) to humans. For millennia, indigenous groups that depend on wildlife for their survival were exposed to the risk of NHP pathogens' transmission through animal hunting and wild meat consumption. Usually, exposure is of no consequence or is limited to mild infections. In rare situations, it can be more severe or even become a real public health concern. Since the emergence of acquired immune deficiency syndrome (AIDS), nobody can ignore that an emerging infectious diseases (EID) might spread from NHP into the human population. In large parts of Central Africa and Asia, wildlife remains the primary source of meat and income for millions of people living in rural areas. However, in the past few decades the risk of exposure to an NHP pathogen has taken on a new dimension. Unprecedented breaking down of natural barriers between NHP and humans has increased exposure to health risks for a much larger population, including people living in urban areas. There are several reasons for this: (i) due to road development and massive destruction of ecosystems for agricultural needs, wildlife and humans come into contact more frequently; (ii) due to ecological awareness, many long distance travelers are in search of wildlife discovery, with a particular fascination for African great apes; (iii) due to the attraction for ancient temples and mystical practices, others travelers visit Asian places colonized by NHP. In each case, there is a risk of pathogen transmission through a bite or another route of infection. Beside the individual risk of contracting a pathogen, there is also the possibility of starting a new pandemic. This article reviews the known cases of NHP pathogens' transmission to humans whether they are hunters, travelers, ecotourists, veterinarians, or scientists working on NHP. Although pathogen transmission is supposed to be a rare outcome, Rabies virus, Herpes B virus, Monkeypox virus, Ebola virus, or Yellow fever virus infections are of greater concern and require quick countermeasures from public health professionals.
Collapse
Affiliation(s)
- Christian A. Devaux
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
- CNRS, Marseille, France
| | - Oleg Mediannikov
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Hacene Medkour
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
32
|
Pafčo B, Kreisinger J, Čížková D, Pšenková-Profousová I, Shutt-Phillips K, Todd A, Fuh T, Petrželková KJ, Modrý D. Genetic diversity of primate strongylid nematodes: Do sympatric nonhuman primates and humans share their strongylid worms? Mol Ecol 2019; 28:4786-4797. [PMID: 31573713 DOI: 10.1111/mec.15257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022]
Abstract
The close phylogenetic relationship between humans and nonhuman primates (NHPs) can result in a high potential for pathogen exchange. In recent decades, NHP and human interactions have become more frequent due to increasing habitat encroachment and ecotourism. Strongylid communities, which include members of several genera, are typically found in NHPs. Using optimized high-throughput sequencing for strain-level identification of primate strongylids, we studied the structure of strongylid communities in NHPs and humans co-habiting a tropical forest ecosystem in the Central African Republic. General taxonomic assignment of 85 ITS-2 haplotypes indicated that the studied primates harbour at least nine genera of strongylid nematodes, with Oesophagostomum and Necator being the most prevalent. We detected both host-specific and shared strongylid haplotypes. Skin-penetrating Necator gorillaehaplotypes were shared between humans and gorillas but Necator americanus were much more restricted to humans. Strongylid communities of local hunter-gatherers employed as trackers were more similar to those of gorillas compared to their relatives, who spent more time in villages. This was due to lower abundance of human-origin N. americanus in both gorillas and trackers. Habituated gorillas or those under habituation did not show larger overlap of strongylids with humans compared to unhabituated. We concluded that the occurrence of the human-specific strongylids in gorillas does not increase with direct contact between gorillas and humans due to the habituation. Overall, our results indicate that the degree of habitat sharing between hosts, together with mode of parasite transmission, are important factors for parasite spillover among primates.
Collapse
Affiliation(s)
- Barbora Pafčo
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic.,Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Jakub Kreisinger
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic.,Department of Zoology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Dagmar Čížková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Ilona Pšenková-Profousová
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | | | | | | | - Klára J Petrželková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - David Modrý
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Central European Institute for Technology (CEITEC), University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| |
Collapse
|
33
|
Mugoya GJ, Sente C, Cumber SN, Taseera K, Nkfusai CN, Atuhaire C. Cryptosporidium and giardia species in newly and previously habituated gorillas and nearby water sources in Bwindi Impenetrable National Park, Uganda. Pan Afr Med J 2019; 34:112. [PMID: 31934254 PMCID: PMC6945389 DOI: 10.11604/pamj.2019.34.112.19288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/17/2019] [Indexed: 11/24/2022] Open
Abstract
Introduction cryptosporidium and giardia are of great one health significance and major cause of protozoan diarrhea in humans and primates; they are found in the faecal matter of animals and humans and also in contaminated water and soil as well. Therefore, we aimed at establishing the prevalence and shedding intensity of faecal Cryptosporidium and giardia in the Newly Habituated Mountain Gorillas (NHMG) and Previously Habituated Mountain Gorillas (PHMG) and in selected water sources within the gorilla home ranges in the month of January 2018. Methods we conducted a cross sectional study in the southern sector of Bwindi Impenetrable National Park where a total of 56 faecal samples from both NHMG (34) and PHMG (22) and 30 water samples were purposively collected. Faecal and water samples were transported in a cooler box at 4ºC to Makerere University Parasitology Laboratory for analysis. The samples were analyzed using modified Ziehl-Neelsen technique and Ether concentration method for Cryptosporidium and giardia respectively. Results the prevalence of cryptosporidium was established as 13 (59.1%), 15 (44.1%) and 7 (23.3%) in PHMG, NHMG and water respectively. The mean concentration of the oocysts per gram was 222±52.9 in PHMG, 174±41.5 in NHMG and 31±13.2 in water. The prevalence of giardia was 3 (13.6%), 4 (11.8%) and 3 (10%) in PHMG, NHMG and water respectively. The mean concentration of the oocysts per gram was 34±19.9 in PHMG, 25±12.4 in NHMG and 5±2.9 in water. There was no significant difference in both the prevalence of cryptosporidium (p>0.05) and giardia (p>0.05) in the PHMG and NHMG. This indicates that there is high risk of cross infection among the gorillas within the forest sharing similar home ranges. Conclusion the park authorities should ensure that procedures for proper waste disposal while in the forest are properly followed, water drawn for drinking from the forest should be avoided. Further research should be carried out to identify whether the strains of the parasites found in water or other animals in the forest are the same with strains in gorilla dung in order to confirm cross infection.
Collapse
Affiliation(s)
- Gizamba Jacob Mugoya
- College of Veterinary Medicine, Animal Resources and Biosecurity, School of Veterinary Medicine and Animal Resources, Department of Wildlife and Aquatic Animal Resources, Makerere University, Kampala, Uganda
| | - Celsus Sente
- College of Veterinary Medicine, Animal Resources and Biosecurity, School of Veterinary Medicine and Animal Resources, Department of Wildlife and Aquatic Animal Resources, Makerere University, Kampala, Uganda
| | - Samuel Nambile Cumber
- Section for Epidemiology and Social Medicine, Department of Public Health, Institute of Medicine (EPSO), The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.,School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria Private Bag X323, Gezina, Pretoria, South Africa
| | - Kabanda Taseera
- Faculty of Medicine, Department of Microbiology, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Claude Ngwayu Nkfusai
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Catherine Atuhaire
- Faculty of Medicine, Department of Nursing, Mbarara University of Science and Technology, Mbarara, Uganda
| |
Collapse
|
34
|
Sympatric western lowland gorillas, central chimpanzees and humans are infected with different trichomonads. Parasitology 2019; 147:225-230. [PMID: 31559930 DOI: 10.1017/s0031182019001343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We investigated intestinal trichomonads in western lowland gorillas, central chimpanzees and humans cohabiting the forest ecosystem of Dzanga-Sangha Protected Area in Central African Republic, using the internal transcribed spacer (ITS) region and SSU rRNA gene sequences. Trichomonads belonging to the genus Tetratrichomonas were detected in 23% of the faecal samples and in all host species. Different hosts were infected with different genotypes of Tetratrichomonas. In chimpanzees, we detected tetratrichomonads from 'novel lineage 2', which was previously reported mostly in captive and wild chimpanzees. In gorillas, we found two different genotypes of Tetratrichomonas. The ITS region sequences of the more frequent genotype were identical to the sequence found in a faecal sample of a wild western lowland gorilla from Cameroon. Sequences of the second genotype from gorillas were almost identical to sequences previously obtained from an anorexic French woman. We provide the first report of the presence of intestinal tetratrichomonads in asymptomatic, apparently healthy humans. Human tetratrichomonads belonged to the lineage 7, which was previously reported in domestic and wild pigs and a domestic horse. Our findings suggest that the ecology and spatial overlap among hominids in the tropical forest ecosystem has not resulted in exchange of intestinal trichomonads among these hosts.
Collapse
|
35
|
Negrey JD, Reddy RB, Scully EJ, Phillips-Garcia S, Owens LA, Langergraber KE, Mitani JC, Emery Thompson M, Wrangham RW, Muller MN, Otali E, Machanda Z, Hyeroba D, Grindle KA, Pappas TE, Palmenberg AC, Gern JE, Goldberg TL. Simultaneous outbreaks of respiratory disease in wild chimpanzees caused by distinct viruses of human origin. Emerg Microbes Infect 2019; 8:139-149. [PMID: 30866768 PMCID: PMC6455141 DOI: 10.1080/22221751.2018.1563456] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Respiratory viruses of human origin infect wild apes across Africa, sometimes lethally. Here we report simultaneous outbreaks of two distinct human respiratory viruses, human metapneumovirus (MPV; Pneumoviridae: Metapneumovirus) and human respirovirus 3 (HRV3; Paramyxoviridae; Respirovirus, formerly known as parainfluenza virus 3), in two chimpanzee (Pan troglodytes schweinfurthii) communities in the same forest in Uganda in December 2016 and January 2017. The viruses were absent before the outbreaks, but each was present in ill chimpanzees from one community during the outbreak period. Clinical signs and gross pathologic changes in affected chimpanzees closely mirrored symptoms and pathology commonly observed in humans for each virus. Epidemiologic modelling showed that MPV and HRV3 were similarly transmissible (R0 of 1.27 and 1.48, respectively), but MPV caused 12.2% mortality mainly in infants and older chimpanzees, whereas HRV3 caused no direct mortality. These results are consistent with the higher virulence of MPV than HRV3 in humans, although both MPV and HRV3 cause a significant global disease burden. Both viruses clustered phylogenetically within groups of known human variants, with MPV closely related to a lethal 2009 variant from mountain gorillas (Gorilla beringei beringei), suggesting two independent and simultaneous reverse zoonotic origins, either directly from humans or via intermediary hosts. These findings expand our knowledge of human origin viruses threatening wild chimpanzees and suggest that such viruses might be differentiated by their comparative epidemiological dynamics and pathogenicity in wild apes. Our results also caution against assuming common causation in coincident outbreaks.
Collapse
Affiliation(s)
| | | | | | | | - Leah A Owens
- e University of Wisconsin-Madison , Madison , WI , USA
| | | | | | | | | | | | | | | | | | | | | | | | - James E Gern
- e University of Wisconsin-Madison , Madison , WI , USA
| | | |
Collapse
|
36
|
Wolf TM, Singer RS, Lonsdorf EV, Maclehose R, Gillespie TR, Lipende I, Raphael J, Terio K, Murray C, Pusey A, Hahn BH, Kamenya S, Mjungu D, Travis DA. Syndromic Surveillance of Respiratory Disease in Free-Living Chimpanzees. ECOHEALTH 2019; 16:275-286. [PMID: 30838479 PMCID: PMC6684380 DOI: 10.1007/s10393-019-01400-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Disease surveillance in wildlife is rapidly expanding in scope and methodology, emphasizing the need for formal evaluations of system performance. We examined a syndromic surveillance system for respiratory disease detection in Gombe National Park, Tanzania, from 2004 to 2012, with respect to data quality, disease trends, and respiratory disease detection. Data quality was assessed by examining community coverage, completeness, and consistency. The data were examined for baseline trends; signs of respiratory disease occurred at a mean frequency of less than 1 case per week, with most weeks containing zero observations of abnormalities. Seasonal and secular (i.e., over a period of years) trends in respiratory disease frequency were not identified. These baselines were used to develop algorithms for outbreak detection using both weekly counts and weekly prevalence thresholds and then compared retrospectively on the detection of 13 respiratory disease clusters from 2005 to 2012. Prospective application of outbreak detection algorithms to real-time syndromic data would be useful in triggering a rapid outbreak response, such as targeted diagnostic sampling, enhanced surveillance, or mitigation.
Collapse
Affiliation(s)
- Tiffany M Wolf
- Veterinary Population Medicine, University of Minnesota, 495 Animal Science/Veterinary Medicine, 1988 Fitch Ave, St. Paul, MN, 55108, USA.
| | - Randall S Singer
- Veterinary Biomedical Sciences, University of Minnesota, 1971 Commonwealth Ave, St. Paul, MN, 55108, USA
| | | | - Richard Maclehose
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, 1300 S 2nd St, Minneapolis, MN, 55454, USA
| | - Thomas R Gillespie
- Emory University and Rollins School of Public Health, 400 Dowman Drive, Math and Science Center, Suite E510, Atlanta, GA, 30322, USA
| | - Iddi Lipende
- Gombe Stream Research Center, Jane Goodall Institute, PO Box 1182, Kigoma, Tanzania
| | - Jane Raphael
- Gombe National Park, Tanzania National Parks Authority, S L P 185, Kigoma, Tanzania
| | - Karen Terio
- Zoological Pathology Program, University of Illinois, 3300 Golf Rd, Brookfield, IL, 60513, USA
| | - Carson Murray
- George Washington University, 800 22nd St. NW, Suite 6000, Washington, DC, 20052, USA
| | - Anne Pusey
- Duke University, Box 90383, Durham, NC, 27708, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, 409 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Shadrack Kamenya
- Gombe Stream Research Center, Jane Goodall Institute, PO Box 1182, Kigoma, Tanzania
| | - Deus Mjungu
- Gombe Stream Research Center, Jane Goodall Institute, PO Box 1182, Kigoma, Tanzania
| | - Dominic A Travis
- Veterinary Population Medicine, University of Minnesota, 495 Animal Science/Veterinary Medicine, 1988 Fitch Ave, St. Paul, MN, 55108, USA
| |
Collapse
|
37
|
Rodrigues de Oliveira A, Pinheiro GRG, Tinoco HP, Loyola ME, Coelho CM, Dias ES, Monteiro ÉM, de Oliveira Lara e Silva F, Pessanha AT, Souza AGM, Pereira NCL, Gontijo NF, Fujiwara RT, Alves da Paixão T, Santos RL. Competence of non-human primates to transmit Leishmania infantum to the invertebrate vector Lutzomyia longipalpis. PLoS Negl Trop Dis 2019; 13:e0007313. [PMID: 30995227 PMCID: PMC6488095 DOI: 10.1371/journal.pntd.0007313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 04/29/2019] [Accepted: 03/19/2019] [Indexed: 12/02/2022] Open
Abstract
Leishmaniasis is a zoonotic disease of worldwide relevance. Visceral leishmaniasis is endemic in Brazil, where it is caused by Leishmania infantum with Lutzomyia longipalpis being the most important invertebrate vector. Non-human primates are susceptible to L. infantum infection. However, little is known about the role of these species as reservoirs. The aim of this study was to evaluate the transmissibility potential of visceral leishmaniasis by non-human primates through xenodiagnosis using the phlebotomine Lu. longipalpis as well as to identify phlebotomine species prevalent in the area where the primates were kept in captivity, and assess infection by Leishmania in captured phlebotomine specimens. Fifty two non-human primates kept in captivity in an endemic area for leishmaniasis were subjected to xenodiagnosis. All primates were serologically tested for detection of anti-Leishmania antibodies. Additionally, an anti-Lu. longipalpis saliva ELISA was performed. Sand flies fed on all animals were tested by qPCR to identify and quantify L. infantum promastigotes. Eight of the 52 non-human primates were positive by xenodiagnosis, including three Pan troglodytes, three Leontopithecus rosalia, one Sapajus apella, and one Miopithecus talapoin, with estimated numbers of promastigotes ranging from 5.67 to 1,181.93 per μg of DNA. Positive animals had higher levels of IgG anti-Lu. longipalpis saliva when compared to negative animals, prior to xenodiagnosis. Captive non-human primates are capable of infecting Lu. longipalpis with L. infantum. Our findings also demonstrate the relevance of non-human primates as sentinels to zoonotic diseases. Several phlebotomine species, including Lu. longipalpis, have been identified in the area where the primates were maintained, but only one pool of Lutzomyia lenti was infected with L. infantum. This study has implications for public health strategies and conservation medicine. Visceral leishmaniasis is a zoonotic disease with worldwide distribution. The disease is endemic in several Brazilian regions, including the city of Belo Horizonte, where visceral leishmaniasis is caused by Leishmania infantum and transmitted by Lutzomyia longipalpis. This study evaluated the competence of non-human primates to infect Lutzomyia longipalpis with Leishmania infantum. Eight of 52 non-human primates were positive to leishmaniasis by xenodiagnosis, i.e. capable of infecting sand flies, with averages of 5.67 to 1,181.93 promastigotes/μg of DNA. Positive animals had higher levels of IgG anti-Lu. longipalpis saliva when compared to negative animals, prior to xenodiagnosis. This study highlights the importance of non-human primates in the leishmaniasis cycle, providing information that is relevant for development of better public health strategies, and to conservation medicine.
Collapse
Affiliation(s)
- Ayisa Rodrigues de Oliveira
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Guilherme Rafael Gomide Pinheiro
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Herlandes P. Tinoco
- Fundação de Parques Municipais e Zoobotânica de Belo Horizonte, Belo Horizonte, Minas Gerais, Brazil
| | - Maria Elvira Loyola
- Fundação de Parques Municipais e Zoobotânica de Belo Horizonte, Belo Horizonte, Minas Gerais, Brazil
| | - Carlyle Mendes Coelho
- Fundação de Parques Municipais e Zoobotânica de Belo Horizonte, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | - Angela Tinoco Pessanha
- Fundação de Parques Municipais e Zoobotânica de Belo Horizonte, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Nelder F. Gontijo
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo T. Fujiwara
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tatiane Alves da Paixão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renato Lima Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- * E-mail:
| |
Collapse
|
38
|
Berger KM, Wood JLN, Jenkins B, Olsen J, Morse SS, Gresham L, Root JJ, Rush M, Pigott D, Winkleman T, Moore M, Gillespie TR, Nuzzo JB, Han BA, Olinger P, Karesh WB, Mills JN, Annelli JF, Barnabei J, Lucey D, Hayman DTS. Policy and Science for Global Health Security: Shaping the Course of International Health. Trop Med Infect Dis 2019; 4:E60. [PMID: 30974815 PMCID: PMC6631183 DOI: 10.3390/tropicalmed4020060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 01/05/2023] Open
Abstract
The global burden of infectious diseases and the increased attention to natural, accidental, and deliberate biological threats has resulted in significant investment in infectious disease research. Translating the results of these studies to inform prevention, detection, and response efforts often can be challenging, especially if prior relationships and communications have not been established with decision-makers. Whatever scientific information is shared with decision-makers before, during, and after public health emergencies is highly dependent on the individuals or organizations who are communicating with policy-makers. This article briefly describes the landscape of stakeholders involved in information-sharing before and during emergencies. We identify critical gaps in translation of scientific expertise and results, and biosafety and biosecurity measures to public health policy and practice with a focus on One Health and zoonotic diseases. Finally, we conclude by exploring ways of improving communication and funding, both of which help to address the identified gaps. By leveraging existing scientific information (from both the natural and social sciences) in the public health decision-making process, large-scale outbreaks may be averted even in low-income countries.
Collapse
Affiliation(s)
- Kavita M Berger
- Gryphon Scientific, LLC, 6930 Carroll Avenue, Suite 810, Takoma Park, MD 20912, USA.
| | - James L N Wood
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| | - Bonnie Jenkins
- Brookings Institution, 1775 Massachusetts Avenue NW, Washington, DC 20036, USA.
- Women of Color Advancing Peace, Security and Conflict Transformation, 3695 Ketchum Court, Woodbridge, VA 22193, USA.
| | - Jennifer Olsen
- Rosalynn Carter Institute for Caregiving, Georgia Southwestern State University, 800 GSW State University Drive, Americus, GA 31709, USA.
| | - Stephen S Morse
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th St., New York, NY 10032, USA.
| | - Louise Gresham
- Ending Pandemics and San Diego State University, San Diego, CA 92182, USA.
| | - J Jeffrey Root
- U.S. Department of Agriculture, National Wildlife Research Center, Fort Collins, CO 80521, USA.
| | - Margaret Rush
- Gryphon Scientific, LLC, 6930 Carroll Avenue, Suite 810, Takoma Park, MD 20912, USA.
| | - David Pigott
- Institute for Health Metrics and Evaluation, Department of Health Metrics Sciences, University of Washington, 2301 Fifth Avenue, Suite 600, Seattle, WA 98121, USA.
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| | - Taylor Winkleman
- Next Generation Global Health Security Network, Washington, DC 20001, USA.
| | - Melinda Moore
- RAND Corporation, 1200 South Hayes St., Arlington, VA 22202, USA
| | - Thomas R Gillespie
- Population Biology, Ecology, and Evolution Program, Emory University, Atlanta, GA 30322, USA.
- Department of Environmental Health, Rollins School of Public Health, 1518 Clifton Road, Atlanta, GA 30322, USA.
| | - Jennifer B Nuzzo
- Center for Health Security, Johns Hopkins University School of Public Health, Pratt Street, Baltimore, MD 21202, USA.
| | - Barbara A Han
- Cary Institute of Ecosystem Studies, Box AB Millbrook, NY 12545, USA.
| | - Patricia Olinger
- Environmental, Health and Safety Office (EHSO), Emory University, 1762 Clifton Rd., Suite 1200, Atlanta, GA 30322, USA.
| | - William B Karesh
- EcoHealth Alliance, 460 West 34th Street, New York, NY 10001, USA.
| | - James N Mills
- Population Biology, Ecology, and Evolution Program, Emory University, Atlanta, GA 30322, USA.
| | | | - Jamie Barnabei
- Plum Island Animal Disease Center, Department of Homeland Security, Greenport, NY 11944, USA.
| | - Daniel Lucey
- Department of Medicine Infectious Disease, Georgetown University, 600 New Jersey Avenue, NW Washington, DC 20001, USA.
| | - David T S Hayman
- EpiLab, Infectious Disease Research Centre, School of Veterinary Science, Massey University, Private Bag, 11 222, Palmerston North 4442, New Zealand.
| |
Collapse
|
39
|
Kaul A, Schönmann U, Pöhlmann S. Seroprevalence of viral infections in captive rhesus and cynomolgus macaques. Primate Biol 2019; 6:1-6. [PMID: 32110713 PMCID: PMC7041514 DOI: 10.5194/pb-6-1-2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/16/2019] [Indexed: 11/11/2022] Open
Abstract
Macaques serve as important animal models for biomedical research. Viral infection of macaques can compromise animal health as well as the results of biomedical research, and infected animals constitute an occupational health risk. Therefore, monitoring macaque colonies for viral infection is an important task. We used a commercial chip-based assay to analyze sera of 231 macaques for the presence of antibody responses against nine animal and human viruses. We report high seroprevalence of cytomegalovirus (CMV), lymphocryptovirus (LCV), rhesus rhadinovirus (RRV) and simian foamy virus (SFV) antibodies in all age groups. In contrast, antibodies against simian retrovirus type D (SRV/D) and simian T cell leukemia virus (STLV) were detected only in 5 % and 10 % of animals, respectively, and were only found in adult or aged animals. Moreover, none of the animals had antibodies against herpes B virus (BV), in keeping with the results of in-house tests previously used for screening. Finally, an increased seroprevalence of measles virus antibodies in animals with extensive exposure to multiple humans for extended periods of time was observed. However, most of these animals were obtained from external sources, and a lack of information on the measles antibody status of the animals at the time of arrival precluded drawing reliable conclusions from the data. In sum, we show, that in the colony studied, CMV, LCV, RRV and SFV infection was ubiquitous and likely acquired early in life while SRV/D and STLV infection was rare and likely acquired during adulthood.
Collapse
Affiliation(s)
- Artur Kaul
- Infection Biology Unit, German Primate Center – Leibniz Institute for
Primate Research, 37077 Göttingen, Germany
| | - Uwe Schönmann
- Laboratory Animal Sciences Unit, German Primate Center, 37077 Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center – Leibniz Institute for
Primate Research, 37077 Göttingen, Germany
- Faculty of Biology and Psychology, University of Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
40
|
Wolf TM, Annie Wang W, Lonsdorf EV, Gillespie TR, Pusey A, Gilby IC, Travis DA, Singer RS. Optimizing syndromic health surveillance in free ranging great apes: the case of Gombe National Park. J Appl Ecol 2019; 56:509-518. [PMID: 30983624 PMCID: PMC6457473 DOI: 10.1111/1365-2664.13284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022]
Abstract
1. Syndromic surveillance is an incipient approach to early wildlife disease detection. Consequently, systematic assessments are needed for methodology validation in wildlife populations. 2. We evaluated the sensitivity of a syndromic surveillance protocol for respiratory disease detection among chimpanzees in Gombe National Park, Tanzania. Empirical health, behavioural and demographic data were integrated with an agent-based, network model to simulate disease transmission and surveillance. 3. Surveillance sensitivity was estimated as 66% (95% Confidence Interval: 63.1, 68.8%) and 59.5% (95% Confidence Interval: 56.5%, 62.4%) for two monitoring methods (weekly count and prevalence thresholds, respectively), but differences among calendar quarters in outbreak size and surveillance sensitivity suggest seasonal effects. 4. We determined that a weekly detection threshold of ≥2 chimpanzees with clinical respiratory disease leading to outbreak response protocols (enhanced observation and biological sampling) is an optimal algorithm for outbreak detection in this population. 5. Synthesis and applications. This is the first quantitative assessment of syndromic surveillance in wildlife, providing a model approach to detecting disease emergence. Coupling syndromic surveillance with targeted diagnostic sampling in the midst of suspected outbreaks will provide a powerful system for detecting disease transmission and understanding population impacts.
Collapse
Affiliation(s)
- Tiffany M Wolf
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Wenchun Annie Wang
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5C9 Canada
| | - Elizabeth V Lonsdorf
- Department of Psychology, Franklin and Marshall College, Lancaster, Pennsylvania 17604, USA
| | - Thomas R Gillespie
- Emory University & Rollins School of Public Health, Atlanta, Georgia 30322, USA
| | - Anne Pusey
- Duke University, Durham, North Carolina 27708, USA
| | - Ian C Gilby
- School of Human Evolution and Social Change, Institute of Human Origins, Arizona State University, Tempe, Arizona, 85287 USA
| | - Dominic A Travis
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Randall S Singer
- Veterinary Biomedical Sciences Department, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108 USA
| |
Collapse
|
41
|
Buechler C, Semler M, Baker DA, Newman C, Cornish JP, Chavez D, Guerra B, Lanford R, Brasky K, Kuhn JH, Johnson RF, O'Connor DH, Bailey AL. Subclinical Infection of Macaques and Baboons with A Baboon Simarterivirus. Viruses 2018; 10:v10120701. [PMID: 30544677 PMCID: PMC6316555 DOI: 10.3390/v10120701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023] Open
Abstract
Simarteriviruses (Arteriviridae: Simarterivirinae) are commonly found at high titers in the blood of African monkeys but do not cause overt disease in these hosts. In contrast, simarteriviruses cause severe disease in Asian macaques upon accidental or experimental transmission. Here, we sought to better understand the host-dependent drivers of simarterivirus pathogenesis by infecting olive baboons (n = 4) and rhesus monkeys (n = 4) with the simarterivirus Southwest baboon virus 1 (SWBV-1). Surprisingly, none of the animals in our study showed signs of disease following SWBV-1 inoculation. Three animals (two rhesus monkeys and one olive baboon) became infected and sustained high levels of SWBV-1 viremia for the duration of the study. The course of SWBV-1 infection was highly predictable: plasma viremia peaked between 1 × 107 and 1 × 108 vRNA copies/mL at 3–10 days post-inoculation, which was followed by a relative nadir and then establishment of a stable set-point between 1 × 106 and 1 × 107 vRNA copies/mL for the remainder of the study (56 days). We characterized cellular and antibody responses to SWBV-1 infection in these animals, demonstrating that macaques and baboons mount similar responses to SWBV-1 infection, yet these responses are ineffective at clearing SWBV-1 infection. SWBV-1 sequencing revealed the accumulation of non-synonymous mutations in a region of the genome that corresponds to an immunodominant epitope in the simarterivirus major envelope glycoprotein GP5, which likely contribute to viral persistence by enabling escape from host antibodies.
Collapse
Affiliation(s)
- Connor Buechler
- Department of Pathology and Laboratory Medicine, University of Wisconsin⁻Madison, Madison, WI 53711, USA.
- Wisconsin National Primate Research Center, Madison, WI 53711, USA..
| | - Matthew Semler
- Department of Pathology and Laboratory Medicine, University of Wisconsin⁻Madison, Madison, WI 53711, USA.
- Wisconsin National Primate Research Center, Madison, WI 53711, USA..
| | - David A Baker
- Department of Pathology and Laboratory Medicine, University of Wisconsin⁻Madison, Madison, WI 53711, USA.
- Wisconsin National Primate Research Center, Madison, WI 53711, USA..
| | - Christina Newman
- Department of Pathology and Laboratory Medicine, University of Wisconsin⁻Madison, Madison, WI 53711, USA.
- Wisconsin National Primate Research Center, Madison, WI 53711, USA..
| | - Joseph P Cornish
- Emerging Viral Pathogens Section, Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 20896, USA.
| | - Deborah Chavez
- Texas Biomedical Research Institute, Southwest National Primate Research Center, San Antonio, TX 78227, USA.
| | - Bernadette Guerra
- Texas Biomedical Research Institute, Southwest National Primate Research Center, San Antonio, TX 78227, USA.
| | - Robert Lanford
- Texas Biomedical Research Institute, Southwest National Primate Research Center, San Antonio, TX 78227, USA.
| | - Kathy Brasky
- Texas Biomedical Research Institute, Southwest National Primate Research Center, San Antonio, TX 78227, USA.
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA.
| | - Reed F Johnson
- Emerging Viral Pathogens Section, Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 20896, USA.
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin⁻Madison, Madison, WI 53711, USA.
- Wisconsin National Primate Research Center, Madison, WI 53711, USA..
| | - Adam L Bailey
- Department of Pathology and Laboratory Medicine, University of Wisconsin⁻Madison, Madison, WI 53711, USA.
- Wisconsin National Primate Research Center, Madison, WI 53711, USA..
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
42
|
Löhrich T, Behringer V, Wittig RM, Deschner T, Leendertz FH. The Use of Neopterin as a Noninvasive Marker in Monitoring Diseases in Wild Chimpanzees. ECOHEALTH 2018; 15:792-803. [PMID: 30117002 DOI: 10.1007/s10393-018-1357-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 05/28/2023]
Abstract
Pathogen analysis in wild great apes is both time- and resource-consuming. Therefore, we examined the potential use of urinary neopterin, a sensitive marker of cell-mediated immune system activation, as a disease marker and unspecific screening tool to facilitate informed pathogen analysis in great ape health monitoring. To test this, urinary neopterin was correlated to other disease markers such as sickness behaviors, fever, and urine parameters. Seasonal variation in urinary neopterin levels was investigated as well. The study encompassed noninvasively collected longitudinal data of young wild chimpanzees from the Taï National Park, Côte d´Ivoire. Relationships between disease markers were examined using a linear mixed model and a case study approach. Seasonal variation in urinary neopterin was tested using a linear mixed model. While the linear mixed model found no obvious relationship between urinary neopterin levels and other disease markers, the case study approach revealed a pattern resembling those found in humans. Urinary neopterin levels indicated seasonal immune system activation peaking in times of low ambient temperatures. We suggest the use of urinary neopterin as an unspecific screening tool in great ape health monitoring to identify relevant samples, individuals, and time periods for selective pathogen analysis and zoonotic risk assessment.
Collapse
Affiliation(s)
- Therese Löhrich
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
- Institute of Microbiology and Epizootics, Free University, 14163, Berlin, Germany
| | - Verena Behringer
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Roman M Wittig
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan 01, Côte d'Ivoire
| | - Tobias Deschner
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Fabian H Leendertz
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany.
| |
Collapse
|
43
|
Fenollar F, Mediannikov O. Emerging infectious diseases in Africa in the 21st century. New Microbes New Infect 2018; 26:S10-S18. [PMID: 30402238 PMCID: PMC6205565 DOI: 10.1016/j.nmni.2018.09.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/29/2018] [Accepted: 09/06/2018] [Indexed: 11/25/2022] Open
Abstract
Many infectious diseases have emerged or reemerged in Africa in the 21st century. Some of them are associated with newly discovered microorganisms such as Rickettsia felis and Tropheryma whipplei; others are known, historical diseases such as plague and cholera. In addition are diseases related to previously known microorganisms which recently have been involved for the first time in massive outbreaks with worldwide impacts (such as Ebola virus, Zika virus and Chikungunya virus). Research on emerging infectious diseases needs to be identified as a priority.
Collapse
Affiliation(s)
| | - O Mediannikov
- IRD, AP-HM, MEPHI, Aix-Marseille Université, IRD, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
44
|
Davoust B, Levasseur A, Mediannikov O. Studies of nonhuman primates: key sources of data on zoonoses and microbiota. New Microbes New Infect 2018; 26:S104-S108. [PMID: 30402252 PMCID: PMC6205567 DOI: 10.1016/j.nmni.2018.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 12/11/2022] Open
Abstract
The genetic and morphologic similarities between primates and humans means that much information obtained from primates may be applied to humans, and vice versa. However, habitat loss, hunting and the continued presence of humans have a negative effect on the biology and behaviour of almost all nonhuman primates. Noninvasive methods such as stool collection are among the safest alternative ways to study the multiple aspects of the biology of primates. Many epidemiologic issues (e.g. pathogen detection, microbiota studies) may be easily studied using stool samples from primates. Primates are undoubtedly among the first candidates suspected of becoming the source of one of the next emerging epidemic of zoonotic origin, as has already been observed with HIV, malaria and monkeypox. The Institut Hospitalo-Universitaire Méditerranée Infection in Marseille actively participates in the study, mostly epidemiologic, of nonhuman primates, using mostly stool samples.
Collapse
Affiliation(s)
- B Davoust
- Microbes, Evolution, Phylogeny and Infection (MEФI), UMR Aix-Marseille Université, IRD, APHM, IHU Méditerranée Infection, Marseille, France
| | - A Levasseur
- Microbes, Evolution, Phylogeny and Infection (MEФI), UMR Aix-Marseille Université, IRD, APHM, IHU Méditerranée Infection, Marseille, France
| | - O Mediannikov
- Microbes, Evolution, Phylogeny and Infection (MEФI), UMR Aix-Marseille Université, IRD, APHM, IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
45
|
Benon AB, Juliet K, Samuel M, Catherine K, Benjamin S, Michael M, Innocent RB. Health workers' knowledge of zoonotic diseases in an endemic region of Western Uganda. Zoonoses Public Health 2018; 65:850-858. [PMID: 30076681 DOI: 10.1111/zph.12509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 06/13/2018] [Accepted: 07/01/2018] [Indexed: 11/30/2022]
Abstract
Many factors, including lack of knowledge, influence diagnosis and reporting of disease in Sub-Saharan Africa. Health Care workers (HCWs) are in constant interaction with communities and play an important role in the prevention, diagnosis and treatment of infectious diseases, including zoonoses. We determined knowledge of HCWs regarding cause, vector, transmission, diagnosis and clinical symptoms of five zoonotic diseases: anthrax, brucellosis, rabies as well as Ebola and marburg haemorrhagic fevers in endemic western Uganda. This was a descriptive cross-sectional study among HCWs based at health centres in and around Queen Elizabeth Conservation Area, Western Uganda. A self-administered questionnaire was used to measure knowledge of these five most common zoonoses recently recorded in the area. Data were captured as true if the responses were correct or false if incorrect. Analyses were in STATA and inferential statistics by cross-tabulation, and a chi-square P-value of less than 0.05 was considered significant. A majority (114/140; 81.4%) of the respondents had heard about zoonoses. The most accurately identified zoonoses were anthrax (128/140; 91.4%) closely followed by rabies (126/140; 90%), while only 21 (15%) respondents knew that cryptosporidiosis was zoonotic. Up to 20% (28/140) and 12.8% (18/140) thought that malaria and HIV, respectively, were zoonotic. There was poor overall knowledge of the endemic diseases brucellosis among all the participants, where only 1.4% (2/140) knew its causative agent, clinical symptoms and transmission. There was a total lack of knowledge (0%) about anthrax and Ebola whereby none of the 140 HCWs knew all the three above aspects required to be knowledgeable for each of the two diseases. Generally, there was poor knowledge of the five zoonoses. We recommend that medical curricula incorporate training on zoonotic and other emerging diseases, and continuing medical education regarding zoonoses should be designed for the HCWs practicing in hotspot zones.
Collapse
Affiliation(s)
- Asiimwe B Benon
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Kiguli Juliet
- Department of Community Health, School of Public Health, Makerere University, Kampala, Uganda
| | - Majalija Samuel
- Department of Biosecurity, Ecosystem Health and Veterinary Public Health College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Kansiime Catherine
- One Health Central and Eastern Africa, School of Public Health, Makerere University, Kampala, Uganda
| | - Sunday Benjamin
- One Health Central and Eastern Africa, School of Public Health, Makerere University, Kampala, Uganda
| | - Mahero Michael
- Department of Veterinary Population Medicine, Ecosystem Health Division, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| | - Rwego B Innocent
- Department of Biosecurity, Ecosystem Health and Veterinary Public Health College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda.,One Health Central and Eastern Africa, School of Public Health, Makerere University, Kampala, Uganda.,Department of Veterinary Population Medicine, Ecosystem Health Division, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| |
Collapse
|
46
|
Faust CL, McCallum HI, Bloomfield LSP, Gottdenker NL, Gillespie TR, Torney CJ, Dobson AP, Plowright RK. Pathogen spillover during land conversion. Ecol Lett 2018; 21:471-483. [DOI: 10.1111/ele.12904] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/04/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Christina L. Faust
- Department of Microbiology and Immunology; Montana State University; Montana MT USA
- Department of Ecology and Evolutionary Biology; Princeton University; Princeton NJ USA
- Institute of Biodiversity, Animal Health and Comparative Medicine; Universtiy of Glasgow; Glasgow UK
| | - Hamish I. McCallum
- Environmental Futures Research Institute and Griffith School of Environment; Griffith University; Griffith Qld. Australia
| | - Laura S. P. Bloomfield
- Emmett Interdisciplinary Program in Environment and Resources; Stanford University; Stanford CA USA
| | - Nicole L. Gottdenker
- Department of Veterinary Pathology; College of Veterinary Medicine; University of Georgia; Athens GA USA
| | - Thomas R. Gillespie
- Department of Environmental Sciences; Department of Environmental Health; Rollins School of Public Health; Program In Population; Biology, Ecology and Evolution; Emory University; Athens GA USA
| | - Colin J. Torney
- School of Mathematics and Statistics; University of Glasgow; Glasgow UK
| | - Andrew P. Dobson
- Department of Ecology and Evolutionary Biology; Princeton University; Princeton NJ USA
| | - Raina K. Plowright
- Department of Microbiology and Immunology; Montana State University; Montana MT USA
| |
Collapse
|
47
|
Faust CL, Dobson AP, Gottdenker N, Bloomfield LSP, McCallum HI, Gillespie TR, Diuk-Wasser M, Plowright RK. Null expectations for disease dynamics in shrinking habitat: dilution or amplification? Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0173. [PMID: 28438921 DOI: 10.1098/rstb.2016.0173] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2016] [Indexed: 11/12/2022] Open
Abstract
As biodiversity declines with anthropogenic land-use change, it is increasingly important to understand how changing biodiversity affects infectious disease risk. The dilution effect hypothesis, which points to decreases in biodiversity as critical to an increase in infection risk, has received considerable attention due to the allure of a win-win scenario for conservation and human well-being. Yet some empirical data suggest that the dilution effect is not a generalizable phenomenon. We explore the response of pathogen transmission dynamics to changes in biodiversity that are driven by habitat loss using an allometrically scaled multi-host model. With this model, we show that declining habitat, and thus declining biodiversity, can lead to either increasing or decreasing infectious-disease risk, measured as endemic prevalence. Whether larger habitats, and thus greater biodiversity, lead to a decrease (dilution effect) or increase (amplification effect) in infection prevalence depends upon the pathogen transmission mode and how host competence scales with body size. Dilution effects were detected for most frequency-transmitted pathogens and amplification effects were detected for density-dependent pathogens. Amplification effects were also observed over a particular range of habitat loss in frequency-dependent pathogens when we assumed that host competence was greatest in large-bodied species. By contrast, only amplification effects were observed for density-dependent pathogens; host competency only affected the magnitude of the effect. These models can be used to guide future empirical studies of biodiversity-disease relationships across gradients of habitat loss. The type of transmission, the relationship between host competence and community assembly, the identity of hosts contributing to transmission, and how transmission scales with area are essential factors to consider when elucidating the mechanisms driving disease risk in shrinking habitat.This article is part of the themed issue 'Conservation, biodiversity and infectious disease: scientific evidence and policy implications'.
Collapse
Affiliation(s)
- Christina L Faust
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA .,Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Andrew P Dobson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Nicole Gottdenker
- Department of Veterinary Pathology, University of Georgia, Athens, GA 30602, USA
| | - Laura S P Bloomfield
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, CA 94305, USA
| | - Hamish I McCallum
- Environmental Futures Research Institute and Griffith School of Environment, Griffith University, Brisbane, Queensland 4222, Australia
| | - Thomas R Gillespie
- Department of Environmental Sciences, Rollins School of Public Health; Program In Population, Biology, Ecology and Evolution; Emory University, Atlanta, GA 30322, USA.,Department of Environmental Health, Rollins School of Public Health; Program In Population, Biology, Ecology and Evolution; Emory University, Atlanta, GA 30322, USA
| | - Maria Diuk-Wasser
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA
| | - Raina K Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
48
|
LONSDORF ELIZABETHV, GILLESPIE THOMASR, WOLF TIFFANYM, LIPENDE IDDI, RAPHAEL JANE, BAKUZA JARED, MURRAY CARSONM, WILSON MICHAELL, KAMENYA SHADRACK, MJUNGU DEUS, COLLINS DANTHONY, GILBY IANC, STANTON MARGARETA, TERIO KARENA, BARBIAN HANNAHJ, LI YINGYING, RAMIREZ MIGUEL, KRUPNICK ALEXANDER, SEIDL EMILY, GOODALL JANE, HAHN BEATRICEH, PUSEY ANNEE, TRAVIS DOMINICA. Socioecological correlates of clinical signs in two communities of wild chimpanzees (Pan troglodytes) at Gombe National Park, Tanzania. Am J Primatol 2018; 80:10.1002/ajp.22562. [PMID: 27182786 PMCID: PMC5112147 DOI: 10.1002/ajp.22562] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 03/14/2016] [Accepted: 04/23/2016] [Indexed: 11/06/2022]
Abstract
Disease and other health hazards pose serious threats to the persistence of wild ape populations. The total chimpanzee population at Gombe National Park, Tanzania, has declined from an estimated 120 to 150 individuals in the 1960's to around 100 individuals by the end of 2013, with death associated with observable signs of disease as the leading cause of mortality. In 2004, we began a non-invasive health-monitoring program in the two habituated communities in the park (Kasekela and Mitumba) with the aim of understanding the prevalence of health issues in the population, and identifying the presence and impacts of various pathogens. Here we present prospectively collected data on clinical signs (observable changes in health) in the chimpanzees of the Kasekela (n = 81) and Mitumba (n = 32) communities over an 8-year period (2005-2012). First, we take a population approach and analyze prevalence of clinical signs in five different categories: gastrointestinal system (diarrhea), body condition (estimated weight loss), respiratory system (coughing, sneezing etc.), wounds/lameness, and dermatologic issues by year, month, and community membership. Mean monthly prevalence of each clinical sign per community varied, but typically affected <10% of observed individuals. Secondly, we analyze the presence of clinical signs in these categories as they relate to individual demographic and social factors (age, sex, and dominance rank) and simian immunodeficiency virus (SIVcpz) infection status. Adults have higher odds of being observed with diarrhea, loss of body condition, and wounds or lameness when compared to immatures, while males have a higher probability of being observed with wounds or lameness than females. In contrast, signs of respiratory illness appear not to be related to chimpanzee-specific factors and skin abnormalities are very rare. For a subset of known-rank individuals, dominance rank predicts the probability of wounding/lameness in adult males, but does not predict any adverse clinical signs in adult females. Instead, adult females with SIVcpz infection are more likely to be observed with diarrhea, a finding that warrants further investigation. Comparable data are needed from other sites to determine whether the prevalence of clinical signs we observe are relatively high or low, as well as to more fully understand the factors influencing health of wild apes at both the population and individual level. Am. J. Primatol. 80:e22562, 2018. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - THOMAS R. GILLESPIE
- Department of Environmental Sciences and Program in Population Biology, Ecology and Evolution, Rollins School of Public Health, Emory University, Atlanta, Georgia
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - TIFFANY M. WOLF
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| | - IDDI LIPENDE
- Gombe Stream Research Center, Jane Goodall Institute, Kigoma, Tanzania
| | - JANE RAPHAEL
- Gombe National Park, Tanzania National Parks, Kigoma, Tanzania
| | - JARED BAKUZA
- College of Education, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - CARSON M. MURRAY
- Center for the Advanced Study of Human Paleobiology, George Washington University, Washington, District of Columbia
| | - MICHAEL L. WILSON
- Departments of Anthropology and Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota
| | - SHADRACK KAMENYA
- Gombe Stream Research Center, Jane Goodall Institute, Kigoma, Tanzania
| | - DEUS MJUNGU
- Gombe Stream Research Center, Jane Goodall Institute, Kigoma, Tanzania
| | | | - IAN C. GILBY
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona
| | - MARGARET A. STANTON
- Center for the Advanced Study of Human Paleobiology, George Washington University, Washington, District of Columbia
| | - KAREN A. TERIO
- Zoological Pathology Program, University of Illinois, Brookfield, Illinois
| | - HANNAH J. BARBIAN
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - YINGYING LI
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - MIGUEL RAMIREZ
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - ALEXANDER KRUPNICK
- Department of Psychology, Franklin and Marshall College, Lancaster, Pennsylvania
| | - EMILY SEIDL
- Department of Psychology, Franklin and Marshall College, Lancaster, Pennsylvania
| | | | - BEATRICE H. HAHN
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - ANNE E. PUSEY
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina
| | - DOMINIC A. TRAVIS
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| |
Collapse
|
49
|
Narat V, Alcayna-Stevens L, Rupp S, Giles-Vernick T. Rethinking Human-Nonhuman Primate Contact and Pathogenic Disease Spillover. ECOHEALTH 2017; 14:840-850. [PMID: 29150826 DOI: 10.1007/s10393-017-1283-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/15/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
Zoonotic transmissions are a major global health risk, and human-animal contact is frequently raised as an important driver of transmission. A literature examining zooanthroponosis largely agrees that more human-animal contact leads to more risk. Yet the basis of this proposition, the term contact, has not been rigorously analyzed. To understand how contact is used to explain cross-species spillovers, we conducted a multi-disciplinary review of studies addressing human-nonhuman primate (NHP) engagements and pathogenic transmissions and employing the term contact. We find that although contact is frequently invoked, it is employed inconsistently and imprecisely across these studies, overlooking the range of pathogens and their transmission routes and directions. We also examine a related but more expansive approach focusing on human and NHP habitats and their spatial overlap, which can potentially facilitate pathogenic transmission. Contact and spatial overlap investigations cannot, however, explain the processes that bring together people, animals and pathogens. We therefore examine another approach that enhances our understanding of zoonotic spillovers: anthropological studies identifying such historical, social, environmental processes. Comparable to a One Health approach, our ongoing research in Cameroon draws contact, spatial overlap and anthropological-historical approaches into dialog to suggest where, when and how pathogenic transmissions between people and NHPs may occur. In conclusion, we call for zoonotic disease researchers to specify more precisely the human-animal contacts they investigate and to attend to how broader ecologies, societies and histories shape pathogen-human-animal interactions.
Collapse
Affiliation(s)
- Victor Narat
- Emerging Diseases Epidemiology Unit, Institut Pasteur, 25-28 rue du Docteur Roux, 75724, Paris Cedex, France
| | - Lys Alcayna-Stevens
- Emerging Diseases Epidemiology Unit, Institut Pasteur, 25-28 rue du Docteur Roux, 75724, Paris Cedex, France
| | - Stephanie Rupp
- Department of Anthropology, City University of New York - Lehman College, Bronx, NY, USA
| | - Tamara Giles-Vernick
- Emerging Diseases Epidemiology Unit, Institut Pasteur, 25-28 rue du Docteur Roux, 75724, Paris Cedex, France.
- Canadian Institute for Advanced Studies, Toronto, Canada.
| |
Collapse
|
50
|
Metcalf Pate KA, Blankson JN. The mouse viral outgrowth assay: avatars for the detection of HIV-1 reservoirs. Retrovirology 2017; 14:52. [PMID: 29157283 PMCID: PMC5697021 DOI: 10.1186/s12977-017-0376-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/12/2017] [Indexed: 11/10/2022] Open
Abstract
Sensitive assays are needed for the detection of residual viral reservoirs in HIV-1-infected subjects on suppressive combination antiretroviral therapy regimens to determine whether eradication strategies are effective. Mouse viral outgrowth assays have recently been developed and have the potential to be more sensitive than traditional in vitro quantitative viral outgrowth assays. In this article we describe these assays and review several studies that have used them to measure the latent reservoir.
Collapse
Affiliation(s)
- Kelly A Metcalf Pate
- Department of Molecular and Comparative Pathobiology, Center for AIDS Research, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Joel N Blankson
- Department of Molecular and Comparative Pathobiology, Center for AIDS Research, The Johns Hopkins School of Medicine, Baltimore, MD, USA. .,Department of Medicine, Center for AIDS Research, The Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|