1
|
Emami S, Westerlund E, Rojas Converso T, Johansson-Lindbom B, Persson JJ. Protection acquired upon intraperitoneal group a Streptococcus immunization is independent of concurrent adaptive immune responses but relies on macrophages and IFN-γ. Virulence 2025; 16:2457957. [PMID: 39921669 PMCID: PMC11810095 DOI: 10.1080/21505594.2025.2457957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/09/2024] [Accepted: 01/20/2025] [Indexed: 02/10/2025] Open
Abstract
Group A Streptococcus (GAS; Streptococcus pyogenes) is an important bacterial pathogen causing over 700 million superficial infections and around 500.000 deaths due to invasive disease or severe post-infection sequelae yearly. In spite of this major impact on society, there is currently no vaccine available against this bacterium. GAS strains can be separated into >250 distinct emm (M)-types, and protective immunity against GAS is believed to in part be dependent on type-specific antibodies. Here, we analyse the nature of protective immunity generated against GAS in a model of intraperitoneal immunization in mice. We demonstrate that multiple immunizations are required for the ability to survive a subsequent lethal challenge, and although significant levels of GAS-specific antibodies are produced, these are redundant for protection. Instead, our data show that the immunization-dependent protection in this model is induced in the absence of B and T cells and is accompanied by the induction of an altered acute cytokine profile upon subsequent infection, noticeable e.g. by the absence of classical pro-inflammatory cytokines and increased IFN-γ production. Further, the ability of immunized mice to survive a lethal infection is dependent on macrophages and the macrophage-activating cytokine IFN-γ. To our knowledge these findings are the first to suggest that GAS may have the ability to induce forms of trained innate immunity. Taken together, the current study proposes a novel role for the innate immune system in response to GAS infections that potentially could be leveraged for future development of effective vaccines.
Collapse
Affiliation(s)
- Shiva Emami
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Elsa Westerlund
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | | | - Jenny J Persson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Paton H, Sarkar P, Gurung P. An overview of host immune responses against Leishmania spp. infections. Hum Mol Genet 2025:ddaf043. [PMID: 40287829 DOI: 10.1093/hmg/ddaf043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Leishmania spp. infections pose a significant global health challenge, affecting approximately 1 billion people across more than 88 endemic countries. This unicellular, obligate intracellular parasite causes a spectrum of diseases, ranging from localized cutaneous lesions to systemic visceral infections. Despite advancements in modern medicine and increased understanding of the parasite's etiology and associated diseases, treatment options remain limited to pentavalent antimonials, liposomal amphotericin B, and miltefosine. A deeper understanding of the interactions between immune and non-immune cells involved in the clearance of Leishmania spp. infections could uncover novel therapeutic strategies for this debilitating disease. This review highlights recent progress in elucidating how various cell types contribute to the regulation and resolution of Leishmania spp. infections.
Collapse
Affiliation(s)
- Hanna Paton
- Inflammation Program, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
- Department of Internal Medicine, University of Iowa, 431 Newton Road, Iowa City, IA 52442, United States
- Immunology Graduate Program, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
| | - Prabuddha Sarkar
- Inflammation Program, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
- Department of Internal Medicine, University of Iowa, 431 Newton Road, Iowa City, IA 52442, United States
| | - Prajwal Gurung
- Inflammation Program, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
- Department of Internal Medicine, University of Iowa, 431 Newton Road, Iowa City, IA 52442, United States
- Immunology Graduate Program, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
- Center for Immunology and Immune Based Disease, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
- Iowa City Veterans Affairs (VA) Medical Center, 601 US-6, Iowa City, IA 52246, United States
| |
Collapse
|
3
|
Lu C, Chen W, Chen H, Xing G, Ma J, Zhou H, Qin L, Da L, Sun S, Peng P, Li H, Jin Y, Yan Y, Pan S, Dong W, Gu J, Zhou J. Immunological characteristics of the recombinant pseudorabies virus with chimeric PCV Cap protein in pigs. Vet Microbiol 2025; 305:110529. [PMID: 40288026 DOI: 10.1016/j.vetmic.2025.110529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/18/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
Porcine circovirus type 2 (PCV2) is one of the main pathogens causing porcine circovirus-associated diseases (PCVAD). We recently reported the immunogenicity of the recombinant PRV with an envelope-embedded Cap protein of PCV2 (PRV-Cap) in mice. Here, we further evaluated the immunoprotective efficacy of PRV-Cap virus in pigs. Following vaccination, the PRV-Cap stimulated the production of neutralizing antibodies against PRV and PCV2, along with protected piglets from the challenge of the lethal PRV, the virulent PCV2b and PCV2d. Peripheral blood mononuclear cells analysis revealed that PRV-Cap virus effectively induced proliferation and activation of CD4 and CD8 T cells, as well as an increase in T follicular helper cells, although γδ T and B cells did not show significant differences. Compared to DMEM control piglets, the expanded CD4 and CD8 T cells exhibited an effector memory T cell phenotype, and in vitro stimulation led to PRV- and PCV2-specific IFN-γ and TNF-α secretion, peaking at 21 days post-immunization. In summary, PRV-Cap virus effectively prevents PRV, PCV2b and PCV2d challenges in piglets by simultaneously inducing both PRV- and PCV2-specific humoral and cellular immunity, indicating that PRV-Cap virus is a promising and safe candidate vaccine for combined PRV and PCV2 immunization.
Collapse
Affiliation(s)
- Chenhe Lu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Wenjing Chen
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Heng Chen
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Gang Xing
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Jiayu Ma
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Hui Zhou
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Linglong Qin
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Liu Da
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Shiping Sun
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Peng Peng
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Haimin Li
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Yulan Jin
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Yan Yan
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Shiyue Pan
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Weiren Dong
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Jinyan Gu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China; State Key Laboratory for Diagnosis and Treatment of Severe Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Sabzevari A, Ung J, Craig JW, Jayappa KD, Pal I, Feith DJ, Loughran TP, O'Connor OA. Management of T-cell malignancies: Bench-to-bedside targeting of epigenetic biology. CA Cancer J Clin 2025. [PMID: 40232267 DOI: 10.3322/caac.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 04/16/2025] Open
Abstract
The peripheral T-cell lymphomas (PTCL) are the only disease for which four histone deacetylase (HDAC) inhibitors have been approved globally as single agents. Although it is not clear why the PTCL exhibit such a vulnerability to these drugs, understanding the biological basis for this activity is essential. Many lines of data have established that the PTCL exhibit marked sensitivity to other epigenetically targeted drugs, including EZH2 and DNMT3 (DNA-methyltransferase 3) inhibitors. Even more compelling is the finding that combinations of drugs targeting the epigenetic biology of PTCL are beginning to produce provocative data, leading some to wonder if these agents can replace historical chemotherapy regimens routinely used for patients with the disease. Simultaneously, the field has identified a spectrum of mutations in genes governing epigenetic biology in many subtypes of PTCL, although the T follicular helper lymphomas, including angioimmunoblastic T-cell lymphoma, appear to be particularly enriched for these genetic features. While the direct relationship between the presence of any one of these mutations and responsiveness to a particular epigenetic drug has yet to be established, it is increasingly accepted that the PTCL may be the prototypical epigenetic disease as no other form of cancer has exhibited such a vulnerability to this diversity of epigenetically targeted agents. Herein, we comprehensively review this esoteric and rapidly evolving field to identify themes and lessons from these experiences that may guide efforts to improve outcomes of patients with T-cell neoplasms. Furthermore, we will discuss how these concepts might be applied to the broader field of cancer medicine.
Collapse
Affiliation(s)
- Ariana Sabzevari
- Department of Microbiology, Immunology, and Cancer Biology, Charlottesville, Virginia, USA
| | - Johnson Ung
- Department of Microbiology, Immunology, and Cancer Biology, Charlottesville, Virginia, USA
| | - Jeffrey W Craig
- Department of Pathology, University of Virginia Medical Center, Charlottesville, Virginia, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, Virginia, USA
| | - Kallesh D Jayappa
- Department of Medicine, Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Ipsita Pal
- University of Virginia Comprehensive Cancer Center, Charlottesville, Virginia, USA
| | - David J Feith
- University of Virginia Comprehensive Cancer Center, Charlottesville, Virginia, USA
- Department of Medicine, Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Thomas P Loughran
- University of Virginia Comprehensive Cancer Center, Charlottesville, Virginia, USA
- Department of Medicine, Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Owen A O'Connor
- Department of Microbiology, Immunology, and Cancer Biology, Charlottesville, Virginia, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, Virginia, USA
- Department of Medicine, Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
5
|
Xin M, Wang A, Ji M, Wu J, Jiang B, Shi M, Song L, Xin Z. Molecular Biology and Functions of T Follicular Helper Cells in Cancer and Immunotherapy. Immune Netw 2025; 25:e7. [PMID: 40342840 PMCID: PMC12056291 DOI: 10.4110/in.2025.25.e7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/22/2024] [Accepted: 01/08/2025] [Indexed: 05/11/2025] Open
Abstract
T follicular helper (Tfh) cells are integral to the germinal center (GC) response and the development of potent humoral immunity. By priming B cells, Tfh cells can initiate both extrafollicular and GC-dependent Ab responses. The dynamic physical interactions between Tfh and B cells constitute the primary platform for Tfh cells to provide essential "help" factors to B cells, as well as for reciprocal signaling from B cells to sustain the helper state of Tfh cells. In recent years, significant advancements have been made in understanding the diverse roles of Tfh cells across various diseases, particularly in cancer. Notably, beyond the classical GC-Tfh cells, it is increasingly recognized that the Tfh cell phenotype is highly heterogeneous and dynamic, which adds complexity to their roles in disease contexts. This review aims to encapsulate progress in Tfh cell biology, with a focus on their role in cancer and immunotherapy.
Collapse
Affiliation(s)
- Mengyuan Xin
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, China
| | - Antuo Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, China
| | - Minghao Ji
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Jingru Wu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Bin Jiang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Mo Shi
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Liang Song
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Zhongwei Xin
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, China
| |
Collapse
|
6
|
Foster WS, Marcial-Juárez E, Linterman MA. The cellular factors that impair the germinal center in advanced age. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkae039. [PMID: 40073096 DOI: 10.1093/jimmun/vkae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/25/2024] [Indexed: 03/14/2025]
Abstract
Long-lasting immunological memory is a core feature of the adaptive immune system that allows an organism to have a potent recall response to foreign agents that have been previously encountered. Persistent humoral immunity is afforded by long-lived memory B cells and plasma cells, which can mature in germinal centers (GCs) in secondary lymphoid organs. The development of new GC-derived immunity diminishes with age, thereby impairing our immune system's response to both natural infections and vaccinations. This review will describe the current knowledge of how aging affects the cells and microenvironment of the GC. A greater understanding of how the GC changes with age, and how to circumvent these changes, will be critical for tailoring vaccines for older people. This area of research is critical given the twenty-first century will witness a doubling of the aging population and an increased frequency of pandemics.
Collapse
Affiliation(s)
- William S Foster
- Immunology Program, Babraham Institute, Cambridge, United Kingdom
| | | | | |
Collapse
|
7
|
Xing Y, Tan C, Liu Z, Liu Y, Liu S, Wang G, Zhong Y. Resveratrol as a BCL6 natural inhibitor suppresses germinal center derived Non-Hodgkin lymphoma cells growth. J Nat Med 2025; 79:399-411. [PMID: 39815148 PMCID: PMC11880072 DOI: 10.1007/s11418-024-01873-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/21/2024] [Indexed: 01/18/2025]
Abstract
Non-Hodgkin lymphomas (NHL), including diffuse large B-cell lymphoma (DLBCL), Burkitt lymphoma (BL), and follicular lymphoma (FL), predominantly arise from B cells undergoing germinal center (GC) reactions. The transcriptional repressor B-cell lymphoma 6 (BCL6) is indispensable for GC formation and contributes to lymphomagenesis via its BTB domain-mediated suppression of target genes. Dysregulation of BCL6 underpins the pathogenesis of GC-derived NHL. While pharmacological targeting the BCL6-BTB domain has shown therapeutic promise, natural product-based inhibitors remain underexplored. In this study, resveratrol, a polyphenolic compound derived from grapes, was identified as a potent BCL6 inhibitor through a comprehensive screen of traditional Chinese medicine monomers using Homogeneous Time-Resolved Fluorescence (HTRF) assay. As a BCL6 natural inhibitor, resveratrol effectively disrupted the BCL6/SMRT interaction, reactivated suppressed gene expression, and inhibited the proliferation of GC-derived NHL cells. It also exhibited synergistic efficacy when combined with EZH2 and PRMT5 inhibitors. In vivo, resveratrol suppressed GC formation, reduced follicular helper T-cell frequencies, impaired class-switch recombination, and disrupted immunoglobulin affinity maturation. Furthermore, it markedly inhibited the progression of GC-derived NHL in animal models. Our findings demonstrate that resveratrol functions as a natural BCL6 inhibitor with significant therapeutic potential for the treatment of GC-derived NHL.
Collapse
Affiliation(s)
- Yajing Xing
- Chongqing Academy of Chinese Materia Medica, Chongqing University of Chinese Medicine, Chongqing, 402760, China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Chunbin Tan
- Chongqing Academy of Chinese Materia Medica, Chongqing University of Chinese Medicine, Chongqing, 402760, China
| | - Zhoujiang Liu
- Chongqing Academy of Chinese Materia Medica, Chongqing University of Chinese Medicine, Chongqing, 402760, China
| | - Yanqi Liu
- Chongqing Academy of Chinese Materia Medica, Chongqing University of Chinese Medicine, Chongqing, 402760, China
| | - Simei Liu
- Chongqing Academy of Chinese Materia Medica, Chongqing University of Chinese Medicine, Chongqing, 402760, China
- College of Traditional Chinese Medicine, Chongqing University of Chinese Medicine, Chongqing, 402760, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| | - Yadong Zhong
- Chongqing Academy of Chinese Materia Medica, Chongqing University of Chinese Medicine, Chongqing, 402760, China.
- College of Traditional Chinese Medicine, Chongqing University of Chinese Medicine, Chongqing, 402760, China.
- College of Public Health, Chongqing Medical University, Chongqing, 401331, China.
| |
Collapse
|
8
|
Kraaijeveld R, Hesselink DA, Dieterich M, van den Bosch TPP, Heidt S, Baan CC. Small molecule BCL6-inhibition suppresses follicular T helper cell differentiation and plasma blast formation. Hum Immunol 2025; 86:111242. [PMID: 39903994 DOI: 10.1016/j.humimm.2025.111242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
B cell responses are dependent on specialized help provided by follicular T helper (Tfh). Tfh and B cells both express the transcription factor B-cell lymphoma 6 protein (BCL6) and targeting BCL6 may thus prevent humoral allo-immune responses after transplantation. In this study, the effects of the small molecule BCL6 inhibitor 79-6 on human T and B cell differentiation and proliferation were investigated. To this end, naïve CD4 helper T cells and resting B cells were stimulated polyclonally in the presence of 79-6. This compound suppressed proliferation, differentiation, and function of Tfh cells, and also the proliferation and differentiation of B cells. Plasma blast formation was affected, resulting in inhibition of antibody production by > 70 % at the highest concentration of 79-6 used. A time-dependent impact of 79-6 on B cell functions was also demonstrated during allo-antigen stimulation. In contrast to the condition of adding 79-6 at day 0, addition on day 3 or 7 hardly inhibited plasma blast formation. In conclusion, targeting BCL6 with 79-6 inhibits T and B cells' differentiation towards Tfh cells and plasma blasts and subsequent antibody production. Small molecule 79-6 is a promising compound which might prevent interaction between Tfh and B cells.
Collapse
Affiliation(s)
- Rens Kraaijeveld
- Erasmus MC Transplant Institute, Department of Internal Medicine, Division of Nephrology & Transplantation, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Dennis A Hesselink
- Erasmus MC Transplant Institute, Department of Internal Medicine, Division of Nephrology & Transplantation, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marjolein Dieterich
- Erasmus MC Transplant Institute, Department of Internal Medicine, Division of Nephrology & Transplantation, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Thierry P P van den Bosch
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Sebastiaan Heidt
- Erasmus MC Transplant Institute, Department of Internal Medicine, Division of Nephrology & Transplantation, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Carla C Baan
- Erasmus MC Transplant Institute, Department of Internal Medicine, Division of Nephrology & Transplantation, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
9
|
Mannion JM, Rahimi RA. Tissue-Resident Th2 Cells in Type 2 Immunity and Allergic Diseases. Immunol Rev 2025; 330:e70006. [PMID: 39981858 PMCID: PMC11897987 DOI: 10.1111/imr.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
Type 2 immunity represents a unique immune module that provides host protection against macro-parasites and noxious agents such as venoms and toxins. In contrast, maladaptive type 2 immune responses cause allergic diseases. While multiple cell types play important roles in type 2 immunity, recent studies in humans and murine models of chronic allergic diseases have shown that a distinct population of tissue-resident, CD4+ T helper type 2 (Th2) cells play a critical role in chronic allergic inflammation. The rules regulating Th2 cell differentiation have remained less well defined than other T cell subsets, but recent studies have shed new light into the specific mechanisms controlling Th2 cell biology in vivo. Here, we review our current understanding of the checkpoints regulating the development and function of tissue-resident Th2 cells with a focus on chronic allergic diseases. We discuss evidence for a barrier tissue checkpoint in initial Th2 cell priming, including the role of neuropeptides, damage-associated molecular patterns, and dendritic cell macro-clusters. Furthermore, we review the evidence for a second barrier tissue checkpoint that instructs the development of multi-cytokine producing, tissue-resident Th2 cells that orchestrate allergic inflammation. Lastly, we discuss potential approaches to therapeutically target tissue-resident Th2 cells in chronic allergic diseases.
Collapse
Affiliation(s)
- Jenny M Mannion
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rod A Rahimi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Bu S, Liu M, Yang L, Lee P, Miller H, Park CS, Byazrova M, Filatov A, Benlagha K, Gaber T, Buttgereit F, Gong Q, Zhai Z, Liu C. The function of T cells in immune thrombocytopenia. Front Immunol 2025; 16:1499014. [PMID: 40061938 PMCID: PMC11885273 DOI: 10.3389/fimmu.2025.1499014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/20/2025] [Indexed: 05/13/2025] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease, characterized by increased bleeding due to a reduced platelet count. The pathogenesis of ITP is very complex and involves autoantibody production and T-cell-mediated immune abnormalities. An imbalance of effector and regulatory CD4+ T cells and the breach of tolerance primarily cause ITP, leading to the dysfunctional development of autoreactive Th cells (including Th1, Th2, and Th17 cells) and Tregs. The loss of auto-platelet antigen tolerance in ITP results in autoantibody- and cytotoxic T-cell-mediated platelet clearance. T-cell-related genetic risk factors significantly influence the development and progression of this disease. New therapies targeting T cells have emerged as potentially effective cures for this disease. This review summarizes the role of T cells in ITP.
Collapse
Affiliation(s)
- Siyuan Bu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Liu
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Institute of the Leibniz Association, Berlin, Germany
| | - Lu Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, United States
| | - Chan-Sik Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Maria Byazrova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Alexander Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Kamel Benlagha
- Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Timo Gaber
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Institute of the Leibniz Association, Berlin, Germany
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Institute of the Leibniz Association, Berlin, Germany
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Zhimin Zhai
- Department of Hematology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
11
|
Hernández Ruiz JJ, Romero Malacara AMC, López Mota LA, Pérez Guzmán MJ. Therapeutic development towards T follicular helper cells as a molecular target in myasthenia gravis disease. J Neuroimmunol 2025; 399:578503. [PMID: 39657358 DOI: 10.1016/j.jneuroim.2024.578503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 10/07/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024]
Abstract
This review intends to gather literature to provide a comprehensive understanding of the molecular mechanisms and role of T follicular helper cells (Tfh) in the interaction with germinal centers (GCs) in Myasthenia Gravis (MG) disease regarding new developments focusing on Tfh as a therapeutic target and its key regulator B cell lymphoma 6 (Bcl6). Tfh cells are CD4+ T cells specialized in providing signals for the activation and maturation of B cells plus the formation and maintenance of GCs; the role of Bcl6 stands as the key transcriptional factor for the survival of GCs and promotion of Tfh generation. Previous studies have demonstrated gene therapy to be beneficial by achieving re-establishment of "immune homeostasis" and amelioration of the proinflammatory process.
Collapse
Affiliation(s)
- J J Hernández Ruiz
- Facultad Mexicana de Medicina, Universidad La Salle, Fuentes # 17, Av. San Fernando, Col. Tlalpan, C.P.14000 Del. Tlalpan, Mexico City, Mexico.
| | - A M C Romero Malacara
- Facultad Mexicana de Medicina, Universidad La Salle, Fuentes # 17, Av. San Fernando, Col. Tlalpan, C.P.14000 Del. Tlalpan, Mexico City, Mexico
| | - L A López Mota
- Facultad Mexicana de Medicina, Universidad La Salle, Fuentes # 17, Av. San Fernando, Col. Tlalpan, C.P.14000 Del. Tlalpan, Mexico City, Mexico
| | - M J Pérez Guzmán
- Facultad Mexicana de Medicina, Universidad La Salle, Fuentes # 17, Av. San Fernando, Col. Tlalpan, C.P.14000 Del. Tlalpan, Mexico City, Mexico
| |
Collapse
|
12
|
Lei H, Hu J, Zhu J, Li R, Zhao Y, Zhao Y, He G, Song T, Lu C, Zheng W, Li L, Liu C, Chen H. Global research prospects and trends in TFH cells and tumors: a bibliometric analysis. Front Oncol 2025; 15:1443890. [PMID: 40027134 PMCID: PMC11867951 DOI: 10.3389/fonc.2025.1443890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/24/2025] [Indexed: 03/05/2025] Open
Abstract
Background T follicular helper (TFH) cells, a subset of CD4+Th cells, play a critical role in B cell activation, proliferation, and differentiation primarily within B follicles in secondary lymphoid organs, essential processes for effective antibody responses. TFH cells are also implicated in various conditions, including autoimmune diseases, cancer, infectious diseases, allergies, and vaccine reactions. Despite their broad impact, a review of the literature on TFH cells and tumors has not been conducted. We aimed to fill this gap by providing a detailed analysis of the research landscape concerning TFH cells and tumors. Method We conducted a bibliometric analysis of literature on TFH cells and tumors from 2012 to 2024 using the Web of Science Core Collection (WoSCC). For an analysis of the global research landscape, we employed VOSviewer (version 1.6.20), CiteSpace 6.2.R6 software, and the "bibliometric" package in R language (version 4.3.2) to evaluate data on countries/regions, authors and cited authors, institutions, journals, references, and keywords. We also conducted a systematic review to summarize the global research trends, prospects, and hotspots in this field. Results Our analysis included contributions from 60 countries/regions, 7,864 authors, 35,853 cited authors, 1,756 institutions, 385 academic journals, 50883 references, 222 keywords, and 1,181published papers. Over the past decade, the volume of research on TFH cells and tumors had consistently increased. China published the most papers, more than double that of the United States. The top 2 authors ranked by publication volume were Gaulard, Philippe (14 articles, 379 citations), and De leval, Laurence (12 articles, 236 citations) Notably, 9 of the top 10 most published institutions were from China. Frontiers in Immunology and Immunity were the leading journals in publications and citations. A cluster analysis revealed a shift in research focus from "expression","B cells" and "survival" to "tumor microenvironment", "tumor infiltrating immune cells" and "immune infiltration" in recent years. Conclusion This bibliometric analysis suggests that TFH cells hold significant research value and potential clinical applications in tumor immunotherapy. Moreover, the bibliometric analysis offers valuable references and guidance for related research endeavors. It also points out the prevailing issues and challenges in TFH cell research, and underscores the need for further basic and clinical research to advance the related fields.
Collapse
Affiliation(s)
- Hao Lei
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jin Hu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Junpeng Zhu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Runze Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhao
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqi Zhao
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guisheng He
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Tao Song
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Chong Lu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wuping Zheng
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Lei Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunping Liu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hengyu Chen
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
13
|
Shao P, Antonetti RM, Arkee T, Hornick EL, Xue HH, Bishop GA, Butler NS. TRAF3 is critical for initial T follicular helper cell specification via coordination of the IL-6R/IL-2R-BCL6 signaling nexus. Sci Immunol 2025; 10:eadr0517. [PMID: 39951546 DOI: 10.1126/sciimmunol.adr0517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/16/2025] [Indexed: 02/16/2025]
Abstract
CD4+ T follicular helper (TFH) cells are essential for orchestrating robust humoral immunity, yet the signals that initiate TFH cell differentiation are not fully understood. We identified that the adapter protein TRAF3 was required for TFH cell differentiation and function during systemic inflammatory infections. Loss of CD4+ T cell-intrinsic TRAF3 impaired chromatin remodeling and transcriptional programming essential for TFH cell initiation and instead augmented TH1 development and function. TRAF3-deficient CD4+ T cells exhibited altered interleukin-6 (IL-6) and IL-2 responsiveness, which were coupled to failures in BCL6 expression. Enforced expression of either IL-6 receptor or BCL6 or blockade of IL-2 signaling was sufficient to rescue TFH cell differentiation. Human CD4+ T cells lacking TRAF3 exhibited impaired TFH polarization, supporting a conserved mechanism by which TRAF3 regulates CD4+ T cell fate determination. Thus, TRAF3 functions at the nexus of cytokine, transcriptional, and epigenetic nodes that promote the TFH cell specification during infection.
Collapse
Affiliation(s)
- Peng Shao
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Regina M Antonetti
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - Tina Arkee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emma L Hornick
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Hai Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
- New Jersey Veterans Affairs Health Care System, East Orange, NJ, USA
| | - Gail A Bishop
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
- Veterans Affairs Medical Center, University of Iowa, Iowa City, IA, USA
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Noah S Butler
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
14
|
Forconi CS, Nixon C, Wu HW, Odwar B, Pond-Tor S, Ong’echa JM, Kurtis J, Moormann AM. T follicular helper cell profiles differ by malaria antigen and for children compared to adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.13.589352. [PMID: 38659768 PMCID: PMC11042194 DOI: 10.1101/2024.04.13.589352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Background Circulating T-follicular helper (cTFH) cells have the potential to provide an additional correlate of protection against Plasmodium falciparum (Pf) as they are essential to promote B-cell production of long-lasting antibodies. Assessing the specificity of cTFH subsets to individual malaria antigens is vital to understanding the variation observed in antibody responses and identifying promising malaria vaccine candidates. Methods Using spectral flow cytometry and unbiased clustering analysis, we assessed antigen-specific cTFH cell recall responses in vitro to malaria vaccine candidates Pf-schizont egress antigen-1 (PfSEA-1A) and Pf-glutamic acid-rich protein (PfGARP) within a cross-section of children and adults living in a malaria-holoendemic region of western Kenya. Findings In children, a broad array of cTFH subsets (defined by cytokine and transcription factor expression) were reactive to both malaria antigens, PfSEA-1A and PfGARP, while adults had a narrow profile centering on cTFH17- and cTFH1/17-like subsets following stimulation with PfGARP only. Interpretation Because TFH17 cells are involved in the maintenance of memory antibody responses within the context of parasitic infections, our results suggest that PfGARP might generate longer-lived antibody responses compared to PfSEA-1A. These findings have intriguing implications for evaluating malaria vaccine candidates as they highlight the importance of including cTFH profiles when assessing interdependent correlates of protective immunity.
Collapse
Affiliation(s)
- Catherine S. Forconi
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Christina Nixon
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Hannah W. Wu
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Boaz Odwar
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Sunthorn Pond-Tor
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - John M. Ong’echa
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Jonathan Kurtis
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Ann M. Moormann
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
15
|
Clain JA, Picard M, Rabezanahary H, André S, Boutrais S, Goma Matsetse E, Dewatines J, Dueymes Q, Thiboutot E, Racine G, Soundaramourty C, Mammano F, Corbeau P, Zghidi-Abouzid O, Estaquier J. Immune Alterations and Viral Reservoir Atlas in SIV-Infected Chinese Rhesus Macaques. Infect Dis Rep 2025; 17:12. [PMID: 39997464 PMCID: PMC11855486 DOI: 10.3390/idr17010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Over the last decades, our projects have been dedicated to clarifying immunopathological and virological events associated with Human Immunodeficiency Virus (HIV) infection. METHODS By using non-human primate models of pathogenic and non-pathogenic lentiviral infections, we aimed at identifying the cells and tissues in which the virus persists, despite antiretroviral therapy (ART). Indeed, the eradication of viral reservoirs is a major challenge for HIV cure. RESULTS We present a series of results performed in rhesus macaques of Chinese origin deciphering the virological and immunological events associated with ART that can be of interest for people living with HIV. CONCLUSIONS This model could be of interest for understanding in whole body the clinical alteration that persist despite ART.
Collapse
Affiliation(s)
- Julien A. Clain
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Morgane Picard
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| | - Henintsoa Rabezanahary
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Sonia André
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| | - Steven Boutrais
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Ella Goma Matsetse
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Juliette Dewatines
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Quentin Dueymes
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Elise Thiboutot
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Gina Racine
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Calaiselvy Soundaramourty
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| | - Fabrizio Mammano
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
- Institut national de la santé et de la recherche médicale (Inserm) U1259 MAVIVHe, Université de Tours, 37032 Tours, France
| | - Pierre Corbeau
- Institut de Génétique Humaine, CNRS-Université de Montpellier UMR9002, 34094 Montpellier, France;
| | - Ouafa Zghidi-Abouzid
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Jérôme Estaquier
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| |
Collapse
|
16
|
Gribonika I, Band VI, Chi L, Perez-Chaparro PJ, Link VM, Ansaldo E, Oguz C, Bousbaine D, Fischbach MA, Belkaid Y. Skin autonomous antibody production regulates host-microbiota interactions. Nature 2025; 638:1043-1053. [PMID: 39662506 PMCID: PMC11864984 DOI: 10.1038/s41586-024-08376-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 11/08/2024] [Indexed: 12/13/2024]
Abstract
The microbiota colonizes each barrier site and broadly controls host physiology1. However, when uncontrolled, microbial colonists can also promote inflammation and induce systemic infection2. The unique strategies used at each barrier tissue to control the coexistence of the host with its microbiota remain largely elusive. Here we uncover that, in the skin, host-microbiota symbiosis depends on the ability of the skin to act as an autonomous lymphoid organ. Notably, an encounter with a new skin commensal promotes two parallel responses, both under the control of Langerhans cells. On one hand, skin commensals induce the formation of classical germinal centres in the lymph node associated with immunoglobulin G1 (IgG1) and IgG3 antibody responses. On the other hand, microbial colonization also leads to the development of tertiary lymphoid organs in the skin that can locally sustain IgG2b and IgG2c responses. These phenomena are supported by the ability of regulatory T cells to convert into T follicular helper cells. Skin autonomous production of antibodies is sufficient to control local microbial biomass, as well as subsequent systemic infection with the same microorganism. Collectively, these results reveal a compartmentalization of humoral responses to the microbiota allowing for control of both microbial symbiosis and potential pathogenesis.
Collapse
Affiliation(s)
- Inta Gribonika
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Victor I Band
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Liang Chi
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Paula Juliana Perez-Chaparro
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Verena M Link
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Eduard Ansaldo
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cihan Oguz
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Djenet Bousbaine
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- Metaorganism Immunity Laboratory, Immunology Laboratory, Pasteur Institute, Paris, France.
| |
Collapse
|
17
|
Matta B, Battaglia J, Lapan M, Sharma V, Barnes BJ. IRF5 Controls Plasma Cell Generation and Antibody Production via Distinct Mechanisms Depending on the Antigenic Trigger. Immunology 2025; 174:226-238. [PMID: 39572974 PMCID: PMC11999051 DOI: 10.1111/imm.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/15/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025] Open
Abstract
Elevated levels of serum autoantibodies are a hallmark of systemic lupus erythematosus (SLE) and are produced by plasma cells in response to a variety of antigenic triggers. In SLE, the triggers are complex and may include both T cell-dependent/-independent and TLR-dependent/-independent mechanisms of immune activation, which ultimately contributes to the significant immune dysregulation seen in patients at the level of cytokine production and cellular activation (B cells, T cells, dendritic cells, neutrophils and macrophages). Interferon regulatory factor 5 (IRF5) has been identified as an autoimmune susceptibility gene and polymorphisms in IRF5 associate with altered expression and hyper-activation in distinct SLE immune cell subsets. To gain further insight into the mechanisms that drive IRF5-mediated SLE immune activation, we characterised wild-type (WT) and Irf5 -/- Balb/c mice in response to immunisation. WT and Irf5 -/- Balb/c mice were immunised to activate various signalling pathways in vivo followed by systemic immunophenotyping and detection of antibody production by multi-colour flow cytometry and ELISPOT. We identified two pathways, TLR9-dependent and T cell-dependent that resulted in IRF5 cell type-specific function. Immunisation with either CpG-B + Alum or NP-KLH + Alum but not with R848 + Alum, NP-LPS + Alum or NP-Ficoll+Alum resulted in decreased plasma cell generation and reduced antibody production in Irf5 -/- mice. Notably, the mechanism(s) leading to this downstream phenotype was distinct. In CpG-B + Alum immunised mice, we found reduced activation of plasmacytoid dendritic cells, resulting in reduced IFNα and IL6 production in Irf5 -/- mice. Conversely, mice immunised with NP-KLH + Alum had reduced numbers of T follicular helper cells and germinal centre B cells with reduced expression of Bcl6 in Irf5 -/- mice. Moreover, T follicular helper cells from Irf5 -/- mice were functionally defective. Even though the downstream phenotype of reduced antibody production in Irf5 -/- mice was conserved between T cell-dependent and TLR9-dependent immunisation, the mechanisms leading to this phenotype were antigen- and cell type-specific.
Collapse
Affiliation(s)
- Bharati Matta
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Jenna Battaglia
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Margaret Lapan
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Vinay Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Betsy J. Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Departments of Pediatrics and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
18
|
Lyu F, Gong H, Wu X, Liu X, Lu Y, Wei X, Liu C, Shen Y, Wang Y, Lei L, Chen J, Ma S, Sun H, Yu D, Han J, Xu Y, Wu D. Dimethyl fumarate ameliorates chronic graft-versus-host disease by inhibiting Tfh differentiation via Nrf2. Leukemia 2025; 39:473-481. [PMID: 39580582 DOI: 10.1038/s41375-024-02475-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/26/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024]
Abstract
Chronic graft-versus-host disease (cGVHD), characterized by chronic tissue inflammation and fibrosis involving multiple organs, remains a major complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Dimethyl fumarate (DMF) is an anti-inflammatory drug approved for the treatment of multiple sclerosis and psoriasis. We previously reported that DMF effectively inhibits acute GVHD (aGVHD) while preserving the graft-versus-leukemia effect. However, the role of DMF in cGVHD progression remains unknown. Here, we found that DMF administration significantly suppresses follicular helper T cell (Tfh) differentiation, and germinal center formation and alleviates disease severity in different murine cGVHD models. Mechanistically, DMF treatment downregulates IL-21 transcription by activation of Nrf2, thus orchestrating Tfh-related gene programs both in mice and humans. The inhibitory role of DMF on Tfh cell differentiation was diminished in Nrf2 deficient T cells. Importantly, the therapeutic potential of DMF in clinical cGVHD has been validated in human data whereby DMF effectively reduces IL-21 production and Tfh cell generation in peripheral blood mononuclear cells from active cGVHD patients and further attenuates xenograft GVHD. Collectively, our findings reveal that DMF potently inhibits cGVHD development by repressing Tfh cell differentiation via Nrf2, paving the way for the treatment of cGVHD in the clinic.
Collapse
Affiliation(s)
- Fulian Lyu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Huanle Gong
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China.
| | - Xiaojin Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Xin Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Yinghao Lu
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiya Wei
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Chenchen Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yaoyao Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Yuhang Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Lei Lei
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Jia Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Hongjian Sun
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Di Yu
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - JingJing Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China.
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China.
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China.
| |
Collapse
|
19
|
Sasaki T, Sowerby J, Xiao Y, Wang R, Marks KE, Horisberger A, Gao Y, Lee PY, Qu Y, Sze MA, Alves SE, Levesque MC, Fujio K, Costenbader KH, Rao DA. Clonal relationships between Tph and Tfh cells in patients with SLE and in murine lupus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635189. [PMID: 39974998 PMCID: PMC11838332 DOI: 10.1101/2025.01.27.635189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Pathologic T cell-B cell interactions drive disease in systemic lupus erythematosus (SLE). The T cells that activate B cell responses include T peripheral helper (Tph) and T follicular helper (Tfh) cells, yet the developmental and clonal relationships between these B cell-helper T cell populations are unclear. Here we use T cell receptor (TCR) profiling to demonstrate clonal overlap between Tph and Tfh cells in the circulation of patients with SLE. Expanded Tph and Tfh cell clones persist over the course of 1 year in patients with a new diagnosis of SLE, and clones are observed to shift both from Tfh to Tph cells and from Tph to Tfh cells over time. High resolution analysis of cells sorted as Tph cells (CXCR5- PD-1hi) and Tfh cells (CXCR5+ PD-1hi) from SLE patients revealed considerable heterogeneity among cells sorted as Tph cells and highlighted a specific cluster of cells that expressed transcriptomic features of activated B cell-helper T cells. This cell population, marked by expression of TOX and CXCL13, was found in both sorted Tph and Tfh cells, and was clonally linked in these two populations. Analysis of B cell-helper T cells in murine pristane-induced lupus demonstrated similar populations of Tph and Tfh cells in both lung and spleen with strong clonal overlap. T cell-specific loss of Bcl6 prevented accumulation of Tfh cells and reduced accumulation of Tph cells in pristane-treated mice, indicating a role for Bcl6 in the survival and expansion of both populations. Together, these observations demonstrate a shared developmental path among pathologically expanded Tph and Tfh cells in lupus. The persistence of expanded Tph and Tfh cells clones over time may impose barriers to induction of stable tolerance by immunosuppressive medications or by B cell depletion.
Collapse
Affiliation(s)
- Takanori Sasaki
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - John Sowerby
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yinan Xiao
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Runci Wang
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kathryne E Marks
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alice Horisberger
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yidan Gao
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yujie Qu
- Merck & Co., Inc., Boston, MA, USA
| | | | | | | | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Karen H Costenbader
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Zhou X, Wu Y, Zhu Z, Lu C, Zhang C, Zeng L, Xie F, Zhang L, Zhou F. Mucosal immune response in biology, disease prevention and treatment. Signal Transduct Target Ther 2025; 10:7. [PMID: 39774607 PMCID: PMC11707400 DOI: 10.1038/s41392-024-02043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/05/2024] [Accepted: 10/27/2024] [Indexed: 01/11/2025] Open
Abstract
The mucosal immune system, as the most extensive peripheral immune network, serves as the frontline defense against a myriad of microbial and dietary antigens. It is crucial in preventing pathogen invasion and establishing immune tolerance. A comprehensive understanding of mucosal immunity is essential for developing treatments that can effectively target diseases at their entry points, thereby minimizing the overall impact on the body. Despite its importance, our knowledge of mucosal immunity remains incomplete, necessitating further research. The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has underscored the critical role of mucosal immunity in disease prevention and treatment. This systematic review focuses on the dynamic interactions between mucosa-associated lymphoid structures and related diseases. We delve into the basic structures and functions of these lymphoid tissues during disease processes and explore the intricate regulatory networks and mechanisms involved. Additionally, we summarize novel therapies and clinical research advances in the prevention of mucosal immunity-related diseases. The review also addresses the challenges in developing mucosal vaccines, which aim to induce specific immune responses while maintaining tolerance to non-pathogenic microbes. Innovative therapies, such as nanoparticle vaccines and inhalable antibodies, show promise in enhancing mucosal immunity and offer potential for improved disease prevention and treatment.
Collapse
Affiliation(s)
- Xiaoxue Zhou
- School of Medicine, Hangzhou City University, Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yuchen Wu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhipeng Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chu Lu
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Chunwu Zhang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linghui Zeng
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Feng Xie
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
21
|
Cañete PF, Yu D. Follicular T cells and the control of IgE responses. Allergol Int 2025; 74:13-19. [PMID: 39455298 DOI: 10.1016/j.alit.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
Atopy is considered the epidemic of the 21st century, and while decades of research have established a direct link between Th2 cells driving pathogenic IgE-mediated allergic disease, only in the past years have T follicular helper (Tfh) cells emerged as pivotal drivers of these responses. In this review, we will examine the molecular mechanisms governing the IgE response, with a particular emphasis on the key cytokines and signaling pathways. We will discuss the exclusion of IgE-producing B cells from germinal centers and explore the recently established role of follicular T cell function and heterogeneity in driving or curtailing these immune responses. Additionally, we will assess the current state of major monoclonal antibodies and allergen immunotherapies designed to counteract Th2-driven inflammation, as well as reflect on the need to investigate how these biologics impact Tfh cell activity, differentiation, and function, as these insights could pave the way for much-needed therapeutic innovation in the treatment of allergic diseases.
Collapse
Affiliation(s)
- Pablo F Cañete
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| | - Di Yu
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
22
|
Kim D, Kim J, Yeo H, Chung Y. Immunometabolic regulation of germinal centers and its implications for aging. Curr Opin Immunol 2024; 91:102485. [PMID: 39357081 DOI: 10.1016/j.coi.2024.102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
Aging, metabolism, and immunity have long been considered distinct domains. Aging is primarily associated with the gradual decline of physiological functions, metabolism regulates energy production and maintains cellular processes, and the immune system manages innate and adaptive responses against pathogens and vaccines. However, recent studies have revealed that these three systems are intricately interconnected, collectively influencing an individual's response to stress and disease. This review explores the interplay between immunometabolism, T follicular helper cells, B cells, and aging, focusing on how these interactions impact immune function in the elderly.
Collapse
Affiliation(s)
- Daehong Kim
- Institute of Pharmaceutical Sciences, College of Pharmacy, and Seoul National University, Seoul 08826, Seoul, Republic of Korea; BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul 08826, Seoul, Republic of Korea
| | - Jaemin Kim
- Institute of Pharmaceutical Sciences, College of Pharmacy, and Seoul National University, Seoul 08826, Seoul, Republic of Korea; BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul 08826, Seoul, Republic of Korea
| | - Hyeonuk Yeo
- Institute of Pharmaceutical Sciences, College of Pharmacy, and Seoul National University, Seoul 08826, Seoul, Republic of Korea; BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul 08826, Seoul, Republic of Korea
| | - Yeonseok Chung
- Institute of Pharmaceutical Sciences, College of Pharmacy, and Seoul National University, Seoul 08826, Seoul, Republic of Korea; BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul 08826, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Jiang Q, Chi X, Wei T, Nakayamada S, Shan Y, Sun Y, Zhao X, Zhou J, Fan Y, Gu J, Jiang H, Ma X. Amelioration of immunoglobulin A vasculitis by suppression of the pathological expansion of T follicular helper 17 cells. J Autoimmun 2024; 149:103304. [PMID: 39232430 DOI: 10.1016/j.jaut.2024.103304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/25/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
The main pathogenic features of immunoglobulin A vasculitis (IgAV) are overactive B cells and elevated production of IgA, which requires help from T follicular helper 17 (Tfh17) cells. To evaluate the pathological role of Tfh17 cells in IgAV, we investigated the mechanism responsible for Tfh17 differentiation and explored how to ameliorate IgAV by modulating Tfh17 generation. Peripheral blood mononuclear cells from IgAV patients were analyzed by flow cytometry. In vitro culture was performed to assess the modulation of cytokine-induced phenotypes. IgAV rats were used to explore the therapeutic effects of IL-6 blockade and the regulatory functions of IL-6 in Tfh17 cells. Serum cytokine and IgA levels were measured by ELISA while histopathological changes were evaluated by H&E,PAS or immunofluorescence staining. Frequency of CD4+CXCR5+CCR6+ Tfh17 cells were increased in IgAV patients and associated with disease severity. There was also a significant infiltration of Tfh17 cells in the kidney of human IgAV nephritis patients. IL-6 promoted the dendritic cell production of TGF-β and Tfh17 differentiation. In IgAV rats, the in vivo blockade of IL-6 signaling inhibited Tfh17 differentiation, resulting in reduction of the germinal center and IgA production. Suppression of Tfh17 cells using IL-6 blockade greatly ameliorated clinical symptoms such as hemorrhagic rash and bloody stool and decreased IgA deposition and mesangial proliferation in the kidney in IgAV rats. Our findings suggest that suppression of Tfh17 differentiation can alleviate IgA-mediated vasculitis and may permit the development of tailored medicines for treating IgAV.
Collapse
Affiliation(s)
- Qinglian Jiang
- Department of General Pediatrics, Zhongshan City People's Hospital, Zhongshan, China; Department of Pediatrics, The First Hospital of China Medical University, Shenyang, China
| | - Xuyang Chi
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, China
| | - Tong Wei
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, China; Division of Nephrology, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shingo Nakayamada
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Yu Shan
- Department of Pediatrics, Shenyang Women's and Children's Hospital, Shenyang, China
| | - Yini Sun
- Department of Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Xing Zhao
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, China
| | - Jieqing Zhou
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, China
| | - Yan Fan
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, China
| | - Jia Gu
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, China
| | - Hong Jiang
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, China
| | - Xiaoxue Ma
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, China; Department of Microbiology & Immunology and Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
24
|
Iwata M, Takada A, Sakamoto R, Song SY, Ito E. The active form of vitamin D (calcitriol) promotes CXCR5 expression during follicular helper T cell differentiation. Int Immunol 2024; 37:53-70. [PMID: 39101520 PMCID: PMC11587897 DOI: 10.1093/intimm/dxae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 08/03/2024] [Indexed: 08/06/2024] Open
Abstract
Follicular helper T (Tfh) cells promote B cell differentiation and antibody production in the B cell follicles of secondary lymphoid organs. Tfh cells express their signature transcription factor BCL6, interleukin (IL)-21, and surface molecules including inducible T cell costimulator (ICOS), programmed cell death-1 (PD-1), and C-X-C motif chemokine receptor 5 (CXCR5). Migration of Tfh cells to B cell follicles largely depends on the CXCR5 expression induced by interactions with antigen-presenting dendritic cells in the T cell area. How Tfh cells acquire sufficient levels of CXCR5 expression, however, has remained unclear. Using our in vitro culture system to generate CXCR5low Tfh-like cells from naive CD4+ T cells with IL-6 in the absence of other cell types, we found that the active form of vitamin D, calcitriol, markedly enhanced CXCR5 expression after the release from persistent T cell receptor (TCR) stimulation. CH-223191, an aryl hydrocarbon receptor antagonist, further enhanced CXCR5 expression. IL-12 but not IL-4, in place of IL-6, also supported calcitriol to enhance CXCR5 expression even before the release from TCR stimulation, whereas the cell viability sharply decreased after the release. The Tfh-like cells generated with IL-6 and calcitriol exhibited chemotaxis toward C-X-C motif chemokine ligand 13 (CXCL13), expressed IL-21, and helped B cells to produce IgG antibodies in vitro more efficiently than Tfh-like cells generated without added calcitriol. Calcitriol injections into antigen-primed mice increased the proportion of CXCR5+PD-1+CD4+ cells in their lymphoid organs, and enhanced T cell entry into B cell follicles. These results suggest that calcitriol promotes CXCR5 expression in developing Tfh cells and regulates their functional differentiation.
Collapse
Affiliation(s)
- Makoto Iwata
- Research Organization for Nano and Life Innovation, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan
| | - Ayumi Takada
- Department of Biology, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan
| | - Rei Sakamoto
- Department of Biology, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan
| | - Si-Young Song
- Waseda Research Institute for Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan
| | - Etsuro Ito
- Research Organization for Nano and Life Innovation, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan
- Department of Biology, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan
- Waseda Research Institute for Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan
| |
Collapse
|
25
|
Cang X, Li N, Qi J, Chen H, Xing H, Qiu J, Tian Y, Huang S, Deng P, Gao F, Chaulagain RP, Ullah U, Wang C, Liu L, Jin S. Identification of immune-associated genes for the diagnosis of ulcerative colitis-associated carcinogenesis via integrated bioinformatics analysis. Front Oncol 2024; 14:1475189. [PMID: 39582536 PMCID: PMC11581968 DOI: 10.3389/fonc.2024.1475189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
Background UC patients suffer more from colorectal cancer (CRC) than the general population, which increases with disease duration. Early colonoscopy is difficult because ulcerative colitis-associated colorectal cancer (UCAC) lesions are flat and multifocal. Our study aimed to identify promising UCAC biomarkers that are complementary endoscopy strategies in the early stages. Methods The datasets may be accessed from the Gene Expression Omnibus and The Cancer Genome Atlas databases. The co-expressed modules of UC and CRC were determined via weighted co-expression network analysis (WGCNA). The biological mechanisms of the shared genes were exported for analysis using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. To identify protein interactions and hub genes, a protein-protein interaction network and CytoHubba analysis were conducted. To evaluate gene expression, external datasets and experimental validation of human colon tissues were utilized. The diagnostic value of core genes was examined through receiver operating characteristic (ROC) curves. Immune infiltration analysis was employed to investigate the associations between immune cell populations and hub genes. Results Three crucial modules were identified from the WGCNA of UC and CRC tissues, and 33 coexpressed genes that were predominantly enriched in the NF-κB pathway were identified. Two biomarkers (CXCL1 and BCL6) were identified via Cytoscape and validated in external datasets and human colon tissues. CRC patients expressed CXCL1 at the highest level, whereas UC and CRC patients showed higher levels than the controls. The UC cohort expressed BCL6 at the highest level, whereas the UC and CRC cohorts expressed it more highly than the controls. The hub genes exhibited significant diagnostic potential (ROC curve > 0.7). The immune infiltration results revealed a correlation among the hub genes and macrophages, neutrophils and B cells. Conclusions The findings of our research suggest that BCL6 and CXCL1 could serve as effective biomarkers for UCAC surveillance. Additionally, they demonstrated a robust correlation with immune cell populations within the CRC tumour microenvironment (TME). Our findings provide a valuable insight about diagnosis and therapy of UCAC.
Collapse
Affiliation(s)
- Xueyu Cang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ning Li
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jihan Qi
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongliang Chen
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Xing
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiawei Qiu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingying Tian
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shiling Huang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengchao Deng
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Feiyang Gao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ram Prasad Chaulagain
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ubaid Ullah
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunjing Wang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lina Liu
- Department of Endoscopic Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shizhu Jin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
26
|
Chen Y, Chen M, Liu Y, Li Q, Xue Y, Liu L, Liang R, Xiong Y, Zhao J, Chen J, Lin W, Wang J, Pan YF, Stohl W, Zheng SG. BAFF promotes follicular helper T cell development and germinal center formation through BR3 signal. JCI Insight 2024; 9:e183400. [PMID: 39325665 PMCID: PMC11601555 DOI: 10.1172/jci.insight.183400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
T follicular helper (Tfh) cells represent an important subset of CD4+ T cells that is crucial to the maturation and differentiation of B cells and the production of high-affinity antibodies. Because B cell activating-factor (BAFF), a vital B cell survival factor, is also crucial to B cell maturation and differentiation, we assessed the effects of BAFF on Tfh cell development and function. We demonstrated that deficiency of BAFF, but not of APRIL, markedly inhibited Tfh cell development, germinal center (GC) formation, and antigen-specific antibody production. The promoting effect of BAFF on Tfh cell development was dependent on expression of BR3 on T cells, and its promoting effect on GC formation was dependent on expression of BR3 on both T cells and B cells. BAFF directly promoted expression of the Tfh cell-characteristic genes via NF-κB signaling. This effect did need BR3 expression. Thus, BAFF not only has direct effects on B cells, but it also has direct effects on Tfh cell differentiation via engagement of BR3, which collectively promoted GC formation and production of high-affinity antibodies. This dual effect of BAFF on B cells and Tfh cells may help explain the clinical utility of BAFF antagonists in the management of certain autoimmune diseases.
Collapse
Affiliation(s)
- Ye Chen
- Department of Rheumatology & Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Division of Rheumatology, Department of Internal Medicine, and
| | - Maogen Chen
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu Liu
- Clinical Research Center, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Qiang Li
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Youqiu Xue
- Department of Rheumatology & Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liu Liu
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Rongzhen Liang
- Department of Rheumatology & Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiding Xiong
- Department of Rheumatology & Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhao
- Department of Rheumatology & Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingrong Chen
- Department of Rheumatology & Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weidong Lin
- Department of Rheumatology & Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Julie Wang
- Department of Rheumatology & Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Feng Pan
- Division of Rheumatology, Department of Internal Medicine, and
| | - William Stohl
- Division of Rheumatology, Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Song Guo Zheng
- Department of Rheumatology & Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Sainz TP, Sahu V, Gomez JA, Dcunha NJ, Basi AV, Kettlun C, Sarami I, Burks JK, Sampath D, Vega F. Role of the Crosstalk B:Neoplastic T Follicular Helper Cells in the Pathobiology of Nodal T Follicular Helper Cell Lymphomas. J Transl Med 2024; 104:102147. [PMID: 39389311 DOI: 10.1016/j.labinv.2024.102147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/06/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL), the most common form of peripheral T-cell lymphoma, originates from follicular helper T (Tfh) cells and is notably resistant to current treatments. The disease progression and maintenance, at least in early stages, are driven by a complex interplay between neoplastic Tfh and clusters of B-cells within the tumor microenvironment, mirroring the functional crosstalk observed inside germinal centers. This interaction is further complicated by recurrent mutations, such as TET2 and DNMT3A, which are present in both Tfh cells and B-cells. These findings suggest that the symbiotic relationship between these 2 cell types could represent a therapeutic vulnerability. This review examines the key components and signaling mechanisms involved in the synapses between B-cells and Tfh cells, emphasizing their significant role in the pathobiology of AITL and potential as therapeutic targets.
Collapse
Affiliation(s)
- Tania P Sainz
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Vishal Sahu
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Javier A Gomez
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Nicholas J Dcunha
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Akshay V Basi
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Claudia Kettlun
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Iman Sarami
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Jared K Burks
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Deepa Sampath
- Hematopoietic Biology and Malignancy, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Francisco Vega
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas.
| |
Collapse
|
28
|
Liongue C, Almohaisen FLJ, Ward AC. B Cell Lymphoma 6 (BCL6): A Conserved Regulator of Immunity and Beyond. Int J Mol Sci 2024; 25:10968. [PMID: 39456751 PMCID: PMC11507070 DOI: 10.3390/ijms252010968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
B cell lymphoma 6 (BCL6) is a conserved multi-domain protein that functions principally as a transcriptional repressor. This protein regulates many pivotal aspects of immune cell development and function. BCL6 is critical for germinal center (GC) formation and the development of high-affinity antibodies, with key roles in the generation and function of GC B cells, follicular helper T (Tfh) cells, follicular regulatory T (Tfr) cells, and various immune memory cells. BCL6 also controls macrophage production and function as well as performing a myriad of additional roles outside of the immune system. Many of these regulatory functions are conserved throughout evolution. The BCL6 gene is also important in human oncology, particularly in diffuse large B cell lymphoma (DLBCL) and follicular lymphoma (FL), but also extending to many in other cancers, including a unique role in resistance to a variety of therapies, which collectively make BCL6 inhibitors highly sought-after.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (C.L.); (F.L.J.A.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Farooq L. J. Almohaisen
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (C.L.); (F.L.J.A.)
- Department of Medical Laboratory Techniques, Southern Technical University, Basra 61001, Iraq
| | - Alister C. Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (C.L.); (F.L.J.A.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
29
|
Zhang L, Zhong H, Fan J, Mao J, Li Y. Clinical significance of T helper cell subsets in the peripheral blood and bone marrow of patients with multiple myeloma. Front Immunol 2024; 15:1445530. [PMID: 39324138 PMCID: PMC11422089 DOI: 10.3389/fimmu.2024.1445530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024] Open
Abstract
Background T helper (Th) cell subsets primarily assist B cells in differentiating into plasma cells in the germinal center. The mechanism of malignant transformation of plasma cells is an important target for the clinical treatment of MM; however, the mechanism remains unclear. Methods We collected the peripheral blood (PB) and bone marrow (BM) samples of 33 patients with MM. In addition, the PB was also collected from 25 normal healthy controls (HCs). We analyzed the percentages of Th cell subsets in the PB and BM samples of patients with MM. Results Tfh/CD4+ were positively correlated with the proportion of myeloma cells in the BM and PB samples (r = 0.592, P = 0.002 and r = 0.510, P = 0.010 respectively), and showed a strong correlation between the BM and PB samples (r = 0.6559, P = 0.0095). In the PB samples, the percentages of Th2/CD4+ and Tfh2/Tfh cells were significantly lower in patients with MM than in HCs (P = 0.00013 and P = 0.0004, respectively), whereas the percentage of Th17/CD4+ and Tfh17/Tfh was significantly higher in newly diagnosed patients with MM than in HCs (P = 0.0037 and P = 0.03, respectively), and all these cells showed a good predictive value for MM (area under the curve [AUC] 0.781, = 0.792, = 0.837, and 0.723 respectively). In the PB samples, all subsets of PD-1+ICOS- Tfh showed a noticeable downward trend in MM from newly diagnosed to non-remission and remission groups. In contrast, all subsets of PD-1-ICOS+ Tfh increased gradually. Conclusion Th cell subsets play an important role in the occurrence and development of MM and may provide a fundamental basis for identifying new immunotherapy targets and prognosis.
Collapse
Affiliation(s)
- Liangjun Zhang
- Department of Laboratory Medicine, Zigong First People’s Hospital, Zigong, China
| | - Huixiu Zhong
- Department of Laboratory Medicine, Zigong First People’s Hospital, Zigong, China
| | - Jiwen Fan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jiansen Mao
- Department of Laboratory Medicine, Nanjing International School, Nanjing, China
| | - Yi Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Mansourabadi Z, Ariafar A, Chenari N, Hakimellahi H, Vahidi Y, Faghih Z. Clinical and prognostic significance of follicular helper and regulatory T cells in bladder cancer draining lymph nodes. Sci Rep 2024; 14:20358. [PMID: 39223192 PMCID: PMC11369110 DOI: 10.1038/s41598-024-70675-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Follicular helper and regulatory T cells (Tfh/TFR) cells are distinct subsets of CD4+ cells that have been recognized for their critical role in regulating cellular reactions within the germinal centers of lymphoid follicles. In the present study, we aimed to determine the presence and the frequency of these cells in draining lymph nodes of patients with bladder cancer (BC). Forty-six patients with BC who had undergone radical cystectomy and pelvic lymph node dissection were enrolled. Following routine pathological examination, a portion of the dissected lymph nodes was minced to obtain a single-cell suspension. Mononuclear cells were then separated using Ficoll-Hypaque gradient centrifugation, and the samples with proper viability (> 95%) were subjected to further analysis. To phenotype the follicular subsets, cells were stained with appropriate fluorochrome-conjugated antibodies specific for CD4, CXCR5, BCL6, and FOXP3. The cells were then acquired on a four-color flow cytometer. The data were analyzed with the FlowJo software version 10.8.1 package. Our analysis indicated that, on average 37.89 ± 16.36% of CD4+ lymphocytes in draining lymph nodes of patients with BC expressed CXCR5. The majority of them were negative for FOXP3, representing helper subsets (28.73 ± 13.66). A small percent simultaneously expressed BCL6 transcription factor (1.65% ± 1.35), designated as Tfh (CD4+BCL6+CXCR5+FOXP3-). While less than 10% of CD4+ lymphocytes expressed CXCR5 and FOXP3, 1.78 ± 2.54 were also positive for BCL6, known as TFR. Statistical analysis revealed that the frequency of both Tfh and TFR cells was higher in draining lymph nodes of patients with tumor-infiltrated nodes (P = 0.035 and P = 0.079, respectively) compared to those with negative ones. The percentage of these cells was also higher in high-grade tumors compared to low-grade ones (P = 0.031 for both). Our data collectively indicated that however approximately one third of CD4+ lymphocytes expressed CXCR5 and accordingly had the capacity to enter the follicles, less than 2% of them represented Tfh and TFR phenotypes. The percentage of these cells increased in progressed tumors and showed an association with negative prognostic factors.
Collapse
Affiliation(s)
- Zahra Mansourabadi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, P.O. Box: 7134845550, Shiraz, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Ariafar
- Department of Urology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nooshafarin Chenari
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, P.O. Box: 7134845550, Shiraz, Iran
| | - Hossein Hakimellahi
- Department of Urology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yasmin Vahidi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, P.O. Box: 7134845550, Shiraz, Iran
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Zahra Faghih
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, P.O. Box: 7134845550, Shiraz, Iran.
| |
Collapse
|
31
|
Xing Q, Chang D, Xie S, Zhao X, Zhang H, Wang X, Bai X, Dong C. BCL6 is required for the thymic development of TCRαβ +CD8αα + intraepithelial lymphocyte lineage. Sci Immunol 2024; 9:eadk4348. [PMID: 38335269 DOI: 10.1126/sciimmunol.adk4348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/13/2023] [Indexed: 02/12/2024]
Abstract
TCRαβ+CD8αα+ intraepithelial lymphocytes (CD8αα+ αβ IELs) are a specialized subset of T cells in the gut epithelium that develop from thymic agonist selected IEL precursors (IELps). The molecular mechanisms underlying the selection and differentiation of this T cell type in the thymus are largely unknown. Here, we found that Bcl6 deficiency in αβ T cells resulted in the near absence of CD8αα+ αβ IELs. BCL6 was expressed by approximately 50% of CD8αα+ αβ IELs and by the majority of thymic PD1+ IELps after agonist selection. Bcl6 deficiency blocked early IELp generation in the thymus, and its expression in IELps was induced by thymic TCR signaling in an ERK-dependent manner. As a result of Bcl6 deficiency, the precursors of IELps among CD4+CD8+ double-positive thymocytes exhibited increased apoptosis during agonist selection and impaired IELp differentiation and maturation. Together, our results elucidate BCL6 as a crucial transcription factor during the thymic development of CD8αα+ αβ IELs.
Collapse
Affiliation(s)
- Qi Xing
- Shanghai Immune Therapy Institute, New Cornerstone Science Laboratory, Shanghai Jiao Tong University School of Medicine-affiliated Renji Hospital, Shanghai 200127, China
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Dehui Chang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Shiyuan Xie
- Institute for Advanced Interdisciplinary Studies and Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Peking University, Beijing 100084, China
| | - Xiaohong Zhao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hao Zhang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaohu Wang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xue Bai
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chen Dong
- Shanghai Immune Therapy Institute, New Cornerstone Science Laboratory, Shanghai Jiao Tong University School of Medicine-affiliated Renji Hospital, Shanghai 200127, China
- Research Unit of Immune Regulation and Immune Diseases of Chinese Academy of Medical Sciences, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai 200127, China
- Westlake University School of Medicine-affiliated Hangzhou First Hospital, Hangzhou 310024, China
| |
Collapse
|
32
|
Reyes JGA, Ni D, Santner-Nanan B, Pinget GV, Kraftova L, Ashhurst TM, Marsh-Wakefield F, Wishart CL, Tan J, Hsu P, King NJC, Macia L, Nanan R. A unique human cord blood CD8 +CD45RA +CD27 +CD161 + T-cell subset identified by flow cytometric data analysis using Seurat. Immunology 2024; 173:106-124. [PMID: 38798051 DOI: 10.1111/imm.13803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Advances in single-cell level analytical techniques, especially cytometric approaches, have led to profound innovation in biomedical research, particularly in the field of clinical immunology. This has resulted in an expansion of high-dimensional data, posing great challenges for comprehensive and unbiased analysis. Conventional manual analysis is thus becoming untenable to handle these challenges. Furthermore, most newly developed computational methods lack flexibility and interoperability, hampering their accessibility and usability. Here, we adapted Seurat, an R package originally developed for single-cell RNA sequencing (scRNA-seq) analysis, for high-dimensional flow cytometric data analysis. Based on a 20-marker antibody panel and analyses of T-cell profiles in both adult blood and cord blood (CB), we showcased the robust capacity of Seurat in flow cytometric data analysis, which was further validated by Spectre, another high-dimensional cytometric data analysis package, and conventional manual analysis. Importantly, we identified a unique CD8+ T-cell population defined as CD8+CD45RA+CD27+CD161+ T cell that was predominantly present in CB. We characterised its IFN-γ-producing and potential cytotoxic properties using flow cytometry experiments and scRNA-seq analysis from a published dataset. Collectively, we identified a unique human CB CD8+CD45RA+CD27+CD161+ T-cell subset and demonstrated that Seurat, a widely used package for scRNA-seq analysis, possesses great potential to be repurposed for cytometric data analysis. This facilitates an unbiased and thorough interpretation of complicated high-dimensional data using a single analytical pipeline and opens a novel avenue for data-driven investigation in clinical immunology.
Collapse
Affiliation(s)
- Julen Gabirel Araneta Reyes
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Nepean Hospital, Nepean Blue Mountains Local Health District, Penrith, New South Wales, Australia
- Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Duan Ni
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Nepean Hospital, Nepean Blue Mountains Local Health District, Penrith, New South Wales, Australia
- Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Brigitte Santner-Nanan
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Nepean Hospital, Nepean Blue Mountains Local Health District, Penrith, New South Wales, Australia
- Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Gabriela Veronica Pinget
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Lucie Kraftova
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - Thomas Myles Ashhurst
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, The University of Sydney and Centenary Institute, Sydney, New South Wales, Australia
| | - Felix Marsh-Wakefield
- Liver Injury and Cancer Program, Centenary Institute, Sydney, New South Wales, Australia
- Human Cancer and Viral Immunology Laboratory, The University of Sydney, Sydney, New South Wales, Australia
| | - Claire Leana Wishart
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Viral immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Ramaciotti Facility for Human System Biology, The University of Sydney and Centenary Institute, Sydney, New South Wales, Australia
| | - Jian Tan
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter Hsu
- Kids Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Discipline of Child and Adolescent Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Nicholas Jonathan Cole King
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, The University of Sydney and Centenary Institute, Sydney, New South Wales, Australia
- Viral immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Ramaciotti Facility for Human System Biology, The University of Sydney and Centenary Institute, Sydney, New South Wales, Australia
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Nano, The University of Sydney, Sydney, New South Wales, Australia
| | - Laurence Macia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, The University of Sydney and Centenary Institute, Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ralph Nanan
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Nepean Hospital, Nepean Blue Mountains Local Health District, Penrith, New South Wales, Australia
- Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
33
|
Mohammad Piri S, Amin Habibi M, Shool S, Khazaeli Najafabadi M, Ahmadpour S, Alemi F, Aria Nejadghaderi S, Shokri P, Abdi M, Asghari N, Amir Asef-Agah S, Tavakolpour S. Role of T follicular helper cells in autoimmune rheumatic Diseases: A systematic review on immunopathogenesis and response to treatment. Hum Immunol 2024; 85:110838. [PMID: 38970880 DOI: 10.1016/j.humimm.2024.110838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/09/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND T follicular helper (Tfh) cells are a subdivision of T helper cells involved in antigen-specific B cell immunity. Tfh cells play an essential role in the interaction of T cells/B cells in the germinal centers (GC), and dysregulation of Tfh actions can offer pathogenic autoantibody formation and lead to the development of autoimmune diseases. This study seeks to evaluate changes in Tfh frequency and its related cytokines in autoimmune disease, its association with disease phase, severity, prognosis, and the effect of immunosuppressive treatment on the Tfh population. METHOD The study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 Statement. Electronic databases, including PubMed, Scopus, Web of Science, and Embase, were systematically searched for potentially eligible studies up to January 1, 2024. RESULTS We identified 4998 articles in the initial search, from which 1686 similar titles were removed. A total of 3312 articles were initially screened, and 3051 articles were excluded by title/abstract screening. A total of 261 studies were considered for full-text assessment, and 205 articles were excluded by reason. Finally, a total of 56 studies were included in our review. CONCLUSION The population of Tfh cells is generally higher in autoimmune diseases versus Health control. Moreover, the number of Tfh cells is associated with the disease severity and can be considered for determining the prognosis of studies. Also, peripheral blood circulating Tfh (cTfh) cells are an available sample that can be used as an indicator for diagnosing diseases.
Collapse
Affiliation(s)
- Seyed Mohammad Piri
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sina Shool
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Sajjad Ahmadpour
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Fakhroddin Alemi
- School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Seyed Aria Nejadghaderi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Pourya Shokri
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohtaram Abdi
- Student Research Committe, Faculty of Medicine, North Khorasan University of Medical Sciences, Bonjnurd, Iran.
| | - Negin Asghari
- Student Research Committe, Faculty of Medicine, North Khorasan University of Medical Sciences, Bonjnurd, Iran.
| | - Seyed Amir Asef-Agah
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | |
Collapse
|
34
|
Borcherding N, Kim W, Quinn M, Han F, Zhou JQ, Sturtz AJ, Schmitz AJ, Lei T, Schattgen SA, Klebert MK, Suessen T, Middleton WD, Goss CW, Liu C, Crawford JC, Thomas PG, Teefey SA, Presti RM, O'Halloran JA, Turner JS, Ellebedy AH, Mudd PA. CD4 + T cells exhibit distinct transcriptional phenotypes in the lymph nodes and blood following mRNA vaccination in humans. Nat Immunol 2024; 25:1731-1741. [PMID: 39164479 PMCID: PMC11627549 DOI: 10.1038/s41590-024-01888-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 06/06/2024] [Indexed: 08/22/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and mRNA vaccination induce robust CD4+ T cell responses. Using single-cell transcriptomics, here, we evaluated CD4+ T cells specific for the SARS-CoV-2 spike protein in the blood and draining lymph nodes (dLNs) of individuals 3 months and 6 months after vaccination with the BNT162b2 mRNA vaccine. We analyzed 1,277 spike-specific CD4+ T cells, including 238 defined using Trex, a deep learning-based reverse epitope mapping method to predict antigen specificity. Human dLN spike-specific CD4+ follicular helper T (TFH) cells exhibited heterogeneous phenotypes, including germinal center CD4+ TFH cells and CD4+IL-10+ TFH cells. Analysis of an independent cohort of SARS-CoV-2-infected individuals 3 months and 6 months after infection found spike-specific CD4+ T cell profiles in blood that were distinct from those detected in blood 3 months and 6 months after BNT162b2 vaccination. Our findings provide an atlas of human spike-specific CD4+ T cell transcriptional phenotypes in the dLNs and blood following SARS-CoV-2 vaccination or infection.
Collapse
Affiliation(s)
- Nicholas Borcherding
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Wooseob Kim
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Microbiology, Korea University College of Medicine, Seoul, Korea
| | - Michael Quinn
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Fangjie Han
- Department of Emergency Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Julian Q Zhou
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Alexandria J Sturtz
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Aaron J Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Tingting Lei
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Stefan A Schattgen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael K Klebert
- Clinical Trials Unit, Washington University School of Medicine, Saint Louis, MO, USA
| | - Teresa Suessen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - William D Middleton
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Charles W Goss
- Division of Biostatistics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Chang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | | | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sharlene A Teefey
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Rachel M Presti
- Clinical Trials Unit, Washington University School of Medicine, Saint Louis, MO, USA
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jane A O'Halloran
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jackson S Turner
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Philip A Mudd
- Department of Emergency Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
35
|
Sircy LM, Ramstead AG, Gibbs LC, Joshi H, Baessler A, Mena I, García-Sastre A, Emerson LL, Fairfax KC, Williams MA, Hale JS. Generation of antigen-specific memory CD4 T cells by heterologous immunization enhances the magnitude of the germinal center response upon influenza infection. PLoS Pathog 2024; 20:e1011639. [PMID: 39283916 PMCID: PMC11404825 DOI: 10.1371/journal.ppat.1011639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 08/05/2024] [Indexed: 09/22/2024] Open
Abstract
Current influenza vaccine strategies have yet to overcome significant obstacles, including rapid antigenic drift of seasonal influenza viruses, in generating efficacious long-term humoral immunity. Due to the necessity of germinal center formation in generating long-lived high affinity antibodies, the germinal center has increasingly become a target for the development of novel or improvement of less-efficacious vaccines. However, there remains a major gap in current influenza research to effectively target T follicular helper cells during vaccination to alter the germinal center reaction. In this study, we used a heterologous infection or immunization priming strategy to seed an antigen-specific memory CD4+ T cell pool prior to influenza infection in mice to evaluate the effect of recalled memory T follicular helper cells in increased help to influenza-specific primary B cells and enhanced generation of neutralizing antibodies. We found that heterologous priming with intranasal infection with acute lymphocytic choriomeningitis virus (LCMV) or intramuscular immunization with adjuvanted recombinant LCMV glycoprotein induced increased antigen-specific effector CD4+ T and B cellular responses following infection with a recombinant influenza strain that expresses LCMV glycoprotein. Heterologously primed mice had increased expansion of secondary Th1 and Tfh cell subsets, including increased CD4+ TRM cells in the lung. However, the early enhancement of the germinal center cellular response following influenza infection did not impact influenza-specific antibody generation or B cell repertoires compared to primary influenza infection. Overall, our study suggests that while heterologous infection or immunization priming of CD4+ T cells is able to enhance the early germinal center reaction, further studies to understand how to target the germinal center and CD4+ T cells specifically to increase long-lived antiviral humoral immunity are needed.
Collapse
Affiliation(s)
- Linda M. Sircy
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Andrew G. Ramstead
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Lisa C. Gibbs
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Hemant Joshi
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Andrew Baessler
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Lyska L. Emerson
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Keke C. Fairfax
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Matthew A. Williams
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - J. Scott Hale
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
36
|
Zhao L, Jin S, Wang S, Zhang Z, Wang X, Chen Z, Wang X, Huang S, Zhang D, Wu H. Tertiary lymphoid structures in diseases: immune mechanisms and therapeutic advances. Signal Transduct Target Ther 2024; 9:225. [PMID: 39198425 PMCID: PMC11358547 DOI: 10.1038/s41392-024-01947-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are defined as lymphoid aggregates formed in non-hematopoietic organs under pathological conditions. Similar to secondary lymphoid organs (SLOs), the formation of TLSs relies on the interaction between lymphoid tissue inducer (LTi) cells and lymphoid tissue organizer (LTo) cells, involving multiple cytokines. Heterogeneity is a distinguishing feature of TLSs, which may lead to differences in their functions. Growing evidence suggests that TLSs are associated with various diseases, such as cancers, autoimmune diseases, transplant rejection, chronic inflammation, infection, and even ageing. However, the detailed mechanisms behind these clinical associations are not yet fully understood. The mechanisms by which TLS maturation and localization affect immune function are also unclear. Therefore, it is necessary to enhance the understanding of TLS development and function at the cellular and molecular level, which may allow us to utilize them to improve the immune microenvironment. In this review, we delve into the composition, formation mechanism, associations with diseases, and potential therapeutic applications of TLSs. Furthermore, we discuss the therapeutic implications of TLSs, such as their role as markers of therapeutic response and prognosis. Finally, we summarize various methods for detecting and targeting TLSs. Overall, we provide a comprehensive understanding of TLSs and aim to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Lianyu Zhao
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Song Jin
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyao Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zhe Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Zhanwei Chen
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Xiaohui Wang
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
37
|
Sun X, Gu R, Bai J. Differentiation and regulation of CD4 + T cell subsets in Parkinson's disease. Cell Mol Life Sci 2024; 81:352. [PMID: 39153043 PMCID: PMC11335276 DOI: 10.1007/s00018-024-05402-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, and its hallmark pathological features are the loss of dopaminergic (DA) neurons in the midbrain substantia nigra pars compacta (SNpc) and the accumulation of alpha-synuclein (α-syn). It has been shown that the integrity of the blood-brain barrier (BBB) is damaged in PD patients, and a large number of infiltrating T cells and inflammatory cytokines have been detected in the cerebrospinal fluid (CSF) and brain parenchyma of PD patients and PD animal models, including significant change in the number and proportion of different CD4+ T cell subsets. This suggests that the neuroinflammatory response caused by CD4+ T cells is an important risk factor for the development of PD. Here, we systematically review the differentiation of CD4+ T cell subsets, and focus on describing the functions and mechanisms of different CD4+ T cell subsets and their secreted cytokines in PD. We also summarize the current immunotherapy targeting CD4+ T cells with a view to providing assistance in the diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Xiaowei Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650500, China
| | - Rou Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China.
- Southwest United Graduate School, Kunming, 650500, China.
| |
Collapse
|
38
|
McClure FA, Wemyss K, Cox JR, Bridgeman HM, Prise IE, King JI, Jaigirdar S, Whelan A, Jones GW, Grainger JR, Hepworth MR, Konkel JE. Th17-to-Tfh plasticity during periodontitis limits disease pathology. J Exp Med 2024; 221:e20232015. [PMID: 38819409 PMCID: PMC11143381 DOI: 10.1084/jem.20232015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/23/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Th17 cell plasticity is crucial for development of autoinflammatory disease pathology. Periodontitis is a prevalent inflammatory disease where Th17 cells mediate key pathological roles, yet whether they exhibit any functional plasticity remains unexplored. We found that during periodontitis, gingival IL-17 fate-mapped T cells still predominantly produce IL-17A, with little diversification of cytokine production. However, plasticity of IL-17 fate-mapped cells did occur during periodontitis, but in the gingiva draining lymph node. Here, some Th17 cells acquired features of Tfh cells, a functional plasticity that was dependent on IL-6. Notably, Th17-to-Tfh diversification was important to limit periodontitis pathology. Preventing Th17-to-Tfh plasticity resulted in elevated periodontal bone loss that was not simply due to increased proportions of conventional Th17 cells. Instead, loss of Th17-to-Tfh cells resulted in reduced IgG levels within the oral cavity and a failure to restrict the biomass of the oral commensal community. Thus, our data identify a novel protective function for a subset of otherwise pathogenic Th17 cells during periodontitis.
Collapse
Affiliation(s)
- Flora A. McClure
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Kelly Wemyss
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Joshua R. Cox
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Hayley M. Bridgeman
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Ian E. Prise
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - James I. King
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Shafqat Jaigirdar
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Annie Whelan
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Gareth W. Jones
- Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - John R. Grainger
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Matthew R. Hepworth
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Joanne E. Konkel
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
39
|
Bai X, Chen S, Chi X, Xie B, Guo X, Feng H, Wei P, Zhang D, Xie S, Xie T, Chen Y, Gou M, Qiao Q, Liu X, Jin W, Xu W, Zhao Z, Xing Q, Wang X, Zhang X, Dong C. Reciprocal regulation of T follicular helper cells and dendritic cells drives colitis development. Nat Immunol 2024; 25:1383-1394. [PMID: 38942990 DOI: 10.1038/s41590-024-01882-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 05/22/2024] [Indexed: 06/30/2024]
Abstract
The immunological mechanisms underlying chronic colitis are poorly understood. T follicular helper (TFH) cells are critical in helping B cells during germinal center reactions. In a T cell transfer colitis model, a lymphoid structure composed of mature dendritic cells (DCs) and TFH cells was found within T cell zones of colonic lymphoid follicles. TFH cells were required for mature DC accumulation, the formation of DC-T cell clusters and colitis development. Moreover, DCs promoted TFH cell differentiation, contributing to colitis development. A lineage-tracing analysis showed that, following migration to the lamina propria, TFH cells transdifferentiated into long-lived pathogenic TH1 cells, promoting colitis development. Our findings have therefore demonstrated the reciprocal regulation of TFH cells and DCs in colonic lymphoid follicles, which is critical in chronic colitis pathogenesis.
Collapse
Affiliation(s)
- Xue Bai
- New Cornerstone Science Laboratory, Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Sijie Chen
- Bioinformatics Division, BNRIST and Department of Automation, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
| | - Xinxin Chi
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Bowen Xie
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Xinyi Guo
- New Cornerstone Science Laboratory, Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Han Feng
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Peng Wei
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Di Zhang
- Department of Pathology, The First Hospital of China Medical University and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Shan Xie
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Tian Xie
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Yongzhen Chen
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Mengting Gou
- New Cornerstone Science Laboratory, Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
| | - Qin Qiao
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Xinwei Liu
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Wei Jin
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Wei Xu
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Zixuan Zhao
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Qi Xing
- New Cornerstone Science Laboratory, Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Xiaohu Wang
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Xuegong Zhang
- Bioinformatics Division, BNRIST and Department of Automation, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
- Center for Synthetic and Systems Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Chen Dong
- New Cornerstone Science Laboratory, Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China.
- Research Unit of Immune Regulation and Immune Diseases of Chinese Academy of Medical Sciences, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China.
- Westlake University School of Medicine, Hangzhou, China.
| |
Collapse
|
40
|
Lu C, Li H, Chen W, Li H, Ma J, Peng P, Yan Y, Dong W, Jin Y, Pan S, Shang S, Gu J, Zhou J. Immunological characteristics of a recombinant alphaherpesvirus with an envelope-embedded Cap protein of circovirus. Front Immunol 2024; 15:1438371. [PMID: 39081314 PMCID: PMC11286414 DOI: 10.3389/fimmu.2024.1438371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Variant pseudorabies virus (PRV) is a newly emerged zoonotic pathogen that can cause human blindness. PRV can take advantage of its large genome and multiple non-essential genes to construct recombinant attenuated vaccines carrying foreign genes. However, a major problem is that the foreign genes in recombinant PRV are only integrated into the genome for independent expression, rather than assembled on the surface of virion. Methods We reported a recombinant PRV with deleted gE/TK genes and an inserted porcine circovirus virus 2 (PCV2) Cap gene into the extracellular domain of the PRV gE gene using the Cre-loxP recombinant system combined with the CRISPR-Cas9 gene editing system. This recombinant PRV (PRV-Cap), with the envelope-embedded Cap protein, exhibits a similar replication ability to its parental virus. Results An immunogenicity assay revealed that PRV-Cap immunized mice have 100% resistance to lethal PRV and PCV2 attacks. Neutralization antibody and ELISPOT detections indicated that PRV-Cap can enhance neutralizing antibodies to PRV and produce IFN-γ secreting T cells specific for both PRV and PCV2. Immunological mechanistic investigation revealed that initial immunization with PRV-Cap stimulates significantly early activation and expansion of CD69+ T cells, promoting the activation of CD4 Tfh cell dependent germinal B cells and producing effectively specific effector memory T and B cells. Booster immunization with PRV-Cap recalled the activation of PRV-specific IFN-γ+IL-2+CD4+ T cells and IFN-γ+TNF-α+CD8+ T cells, as well as PCV2-specific IFN-γ+TNF-α+CD8+ T cells. Conclusion Collectively, our data suggested an immunological mechanism in that the recombinant PRV with envelope-assembled PCV2 Cap protein can serve as an excellent vaccine candidate for combined immunity against PRV and PCV2, and provided a cost-effective method for the production of PRV- PCV2 vaccine.
Collapse
Affiliation(s)
- Chenhe Lu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Haimin Li
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Wenjing Chen
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Hui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiayu Ma
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Peng Peng
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Yan Yan
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Weiren Dong
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Yulan Jin
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Shiyue Pan
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Shaobin Shang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jinyan Gu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Li X, Sun W, Huang M, Gong L, Zhang X, Zhong L, Calderon V, Bian Z, He Y, Suh WK, Li Y, Song T, Zou Y, Lian ZX, Gu H. Deficiency of CBL and CBLB ubiquitin ligases leads to hyper T follicular helper cell responses and lupus by reducing BCL6 degradation. Immunity 2024; 57:1603-1617.e7. [PMID: 38761804 DOI: 10.1016/j.immuni.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/01/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024]
Abstract
Recent evidence reveals hyper T follicular helper (Tfh) cell responses in systemic lupus erythematosus (SLE); however, molecular mechanisms responsible for hyper Tfh cell responses and whether they cause SLE are unclear. We found that SLE patients downregulated both ubiquitin ligases, casitas B-lineage lymphoma (CBL) and CBLB (CBLs), in CD4+ T cells. T cell-specific CBLs-deficient mice developed hyper Tfh cell responses and SLE, whereas blockade of Tfh cell development in the mutant mice was sufficient to prevent SLE. ICOS was upregulated in SLE Tfh cells, whose signaling increased BCL6 by attenuating BCL6 degradation via chaperone-mediated autophagy (CMA). Conversely, CBLs restrained BCL6 expression by ubiquitinating ICOS. Blockade of BCL6 degradation was sufficient to enhance Tfh cell responses. Thus, the compromised expression of CBLs is a prevalent risk trait shared by SLE patients and causative to hyper Tfh cell responses and SLE. The ICOS-CBLs axis may be a target to treat SLE.
Collapse
Affiliation(s)
- Xin Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China; Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada.
| | - Weili Sun
- Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Mengxing Huang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Liying Gong
- Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Xiaochen Zhang
- Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Department of Microbiology, Infectiology, and Immunology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Li Zhong
- Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | | | - Zhenhua Bian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, China
| | - Yi He
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Woong-Kyung Suh
- Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Yang Li
- Department of Rheumatology and Immunology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Tengfei Song
- The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Yongrui Zou
- The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Zhe-Xiong Lian
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China.
| | - Hua Gu
- Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada; Department of Microbiology, Infectiology, and Immunology, University of Montreal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
42
|
Huang L, Wu J, Cao J, Sheng X, Wang M, Cheng T. Resolvin D1 inhibits T follicular helper cell expansion in systemic lupus erythematosus. Scand J Rheumatol 2024; 53:276-283. [PMID: 38742879 DOI: 10.1080/03009742.2024.2344906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVE Resolvin D1 (RvD1) is one of the specialized pro-resolving lipid mediators, which control inflammation resolution and regulate immune responses. Previous research showed that RvD1 could block the progression of systemic lupus erythematosus (SLE). However, the detailed mechanism remains to be fully understood. METHOD Plasma RvD1 levels, and proportions of T follicular helper cells (Tfh cells) were measured in SLE patients and healthy controls. Plasma RvD1 levels and proportions of Tfh cells were quantitated in an MRL/lpr mouse model of lupus treated with RvD1. Naïve CD4+ T cells were purified from MRL/lpr mice to study the effect of RvD1 on Tfh cell differentiation in vitro. RESULTS In patients, there were significant negative correlations between plasma RvD1 levels and Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) score, as well as between plasma RvD1 and anti-double-stranded DNA antibody levels, and numbers of peripheral Tfh cells and plasma cells. In MRL/lpr mice, the expected amelioration of disease phenotype and inflammatory response with RvD1 treatment correlated with decreased percentages of Tfh cells and plasma cells. In addition, the differentiation and proliferation of Tfh cells were markedly suppressed by RvD1 in vitro. CONCLUSION RvD1 may control SLE progression through the suppression of Tfh cell differentiation and subsequent inhibition of B-cell responses.
Collapse
Affiliation(s)
- L Huang
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Su Zhou, PR China
| | - J Wu
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Su Zhou, PR China
| | - J Cao
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Su Zhou, PR China
| | - X Sheng
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Su Zhou, PR China
| | - M Wang
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Su Zhou, PR China
| | - T Cheng
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Su Zhou, PR China
| |
Collapse
|
43
|
Labeur-Iurman L, Harker JA. Mechanisms of antibody mediated immunity - Distinct in early life. Int J Biochem Cell Biol 2024; 172:106588. [PMID: 38768890 DOI: 10.1016/j.biocel.2024.106588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
Immune responses in early life are characterized by a failure to robustly generate long-lasting protective responses against many common pathogens or upon vaccination. This is associated with a reduced ability to generate T-cell dependent high affinity antibodies. This review highlights the differences in T-cell dependent antibody responses observed between infants and adults, in particular focussing on the alterations in immune cell function that lead to reduced T follicular helper cell-B cell crosstalk within germinal centres in early life. Understanding the distinct functional characteristics of early life humoral immunity, and how these are regulated, will be critical in guiding age-appropriate immunological interventions in the very young.
Collapse
Affiliation(s)
- Lucia Labeur-Iurman
- National Heart & Lung Institute, Imperial College London, London, United Kingdom.
| | - James A Harker
- National Heart & Lung Institute, Imperial College London, London, United Kingdom; Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom.
| |
Collapse
|
44
|
Cheng Q, Yang X, Zou T, Sun L, Zhang X, Deng L, Wu M, Gai W, Jiang H, Guo T, Lu Y, Dong J, Niu C, Pan W, Zhang J. RACK1 enhances STAT3 stability and promotes T follicular helper cell development and function during blood-stage Plasmodium infection in mice. PLoS Pathog 2024; 20:e1012352. [PMID: 39024388 PMCID: PMC11288429 DOI: 10.1371/journal.ppat.1012352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 07/30/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
CD4+ T cells are central mediators of protective immunity to blood-stage malaria, particularly for their capacity in orchestrating germinal center reaction and generating parasite-specific high-affinity antibodies. T follicular helper (Tfh) cells are predominant CD4+ effector T cell subset implicated in these processes, yet the factors and detailed mechanisms that assist Tfh cell development and function during Plasmodium infection are largely undefined. Here we provide evidence that receptor for activated C kinase 1 (RACK1), an adaptor protein of various intracellular signals, is not only important for CD4+ T cell expansion as previously implied but also plays a prominent role in Tfh cell differentiation and function during blood-stage Plasmodium yoelii 17XNL infection. Consequently, RACK1 in CD4+ T cells contributes significantly to germinal center formation, parasite-specific IgG production, and host resistance to the infection. Mechanistic exploration detects specific interaction of RACK1 with STAT3 in P. yoelii 17XNL-responsive CD4+ T cells, ablation of RACK1 leads to defective STAT3 phosphorylation, accompanied by substantially lower amount of STAT3 protein in CD4+ T cells, whereas retroviral overexpression of RACK1 or STAT3 in RACK1-deficient CD4+ T cells greatly restores STAT3 activity and Bcl-6 expression under the Tfh polarization condition. Further analyses suggest RACK1 positively regulates STAT3 stability by inhibiting the ubiquitin-proteasomal degradation process, thus promoting optimal STAT3 activity and Bcl-6 induction during Tfh cell differentiation. These findings uncover a novel mechanism by which RACK1 participates in posttranslational regulation of STAT3, Tfh cell differentiation, and subsequent development of anti-Plasmodium humoral immunity.
Collapse
Affiliation(s)
- Qianqian Cheng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiqin Yang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Tao Zou
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lin Sun
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
| | - Xueting Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lijiao Deng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Mengyao Wu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Wenbin Gai
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hui Jiang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Tingting Guo
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yuchen Lu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jie Dong
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chunxiao Niu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Weiqing Pan
- Department of Tropical Diseases, Navy Medical University, Shanghai, China
| | - Jiyan Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
45
|
Jones PW, Mallat Z, Nus M. T-Cell/B-Cell Interactions in Atherosclerosis. Arterioscler Thromb Vasc Biol 2024; 44:1502-1511. [PMID: 38813700 PMCID: PMC11208060 DOI: 10.1161/atvbaha.124.319845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Atherosclerosis is a complex inflammatory disease in which the adaptive immune response plays an important role. While the overall impact of T and B cells in atherosclerosis is relatively well established, we are only beginning to understand how bidirectional T-cell/B-cell interactions can exert prominent atheroprotective and proatherogenic functions. In this review, we will focus on these T-cell/B-cell interactions and how we could use them to therapeutically target the adaptive immune response in atherosclerosis.
Collapse
Affiliation(s)
- Peter William Jones
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute, University of Cambridge, United Kingdom (P.W.J., Z.M., M.N.)
| | - Ziad Mallat
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute, University of Cambridge, United Kingdom (P.W.J., Z.M., M.N.)
- INSERM U970, Paris Cardiovascular Research Centre, France (Z.M.)
| | - Meritxell Nus
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute, University of Cambridge, United Kingdom (P.W.J., Z.M., M.N.)
| |
Collapse
|
46
|
Wang JN, Zheng G, Wu W, Huang H. Follicular helper T cells: emerging roles in lymphomagenesis. J Leukoc Biol 2024; 116:54-63. [PMID: 37939814 DOI: 10.1093/jleuko/qiad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/11/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023] Open
Abstract
Follicular helper T cells are a subset of CD4+ T cells that are fundamental to forming germinal centers, which are the primary sites of antibody affinity maturation and the proliferation of activated B cells. Follicular helper T cells have been extensively studied over the past 10 years, especially regarding their roles in cancer genesis. This review describes the characteristics of normal follicular helper T cells and focuses on the emerging link between follicular helper T cells and lymphomagenesis. Advances in lymphoma genetics have substantially expanded our understanding of the role of follicular helper T cells in lymphomagenesis. Moreover, we detail a range of agents and new therapies, with a major focus on chimeric antigen receptor T-cell therapy; these novel approaches may offer new treatment opportunities for patients with lymphomas.
Collapse
Affiliation(s)
- Ji-Nuo Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 311106, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
| | - Gaofeng Zheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 311106, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
| | - Wenjun Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 311106, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 311106, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
| |
Collapse
|
47
|
Fang Q, Lu X, Zhu Y, Lv X, Yu F, Ma X, Liu B, Zhang H. Development of a PCSK9-targeted nanoparticle vaccine to effectively decrease the hypercholesterolemia. Cell Rep Med 2024; 5:101614. [PMID: 38897173 PMCID: PMC11228807 DOI: 10.1016/j.xcrm.2024.101614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/28/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the low-density lipoprotein receptor (LDLR) and mediates its internalization and degradation, resulting in an increase in LDL cholesterol levels. Recently, PCSK9 emerged as a therapeutic target for hypercholesterolemia and atherosclerosis. In this study, we develop a PCSK9 nanoparticle (NP) vaccine by covalently conjugating the catalytic domain (aa 153-aa 454, D374Y) of PCSK9 to self-assembled 24-mer ferritin NPs. We demonstrate that the PCSK9 NP vaccine effectively induces interfering antibodies against PCSK9 and reduces serum lipids levels in both a high-fat diet-induced hypercholesterolemia model and an adeno-associated virus-hPCSK9D374Y-induced hypercholesterolemia model. Additionally, the vaccine significantly reduces plaque lesion areas in the aorta and macrophages infiltration in an atherosclerosis mouse model. Furthermore, we discover that the vaccine's efficacy relied on T follicular help cells and LDLR. Overall, these findings suggest that the PCSK9 NP vaccine holds promise as an effective treatment for hypercholesterolemia and atherosclerosis.
Collapse
Affiliation(s)
- Qiannan Fang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China; Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Xinyu Lu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Yuanqiang Zhu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University·Zhaoqing Hospital, Zhaoqing, Guangdong 510630, China
| | - Xi Lv
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Fei Yu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Xiancai Ma
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong 510005, China
| | - Bingfeng Liu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
48
|
Gupta S, Su H, Agrawal S, Demirdag Y, Tran M, Gollapudi S. Adaptive Cellular Responses following SARS-CoV-2 Vaccination in Primary Antibody Deficiency Patients. Pathogens 2024; 13:514. [PMID: 38921811 PMCID: PMC11206773 DOI: 10.3390/pathogens13060514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/31/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024] Open
Abstract
Since the start of the COVID-19 pandemic, in a short span of 3 years, vaccination against SARS-CoV-2 has resulted in the end of the pandemic. Patients with inborn errors of immunity (IEI) are at an increased risk for SARS-CoV-2 infection; however, serious illnesses and mortality, especially in primary antibody deficiencies (PADs), have been lower than expected and lower than other high-risk groups. This suggests that PAD patients may mount a reasonable effective response to the SARS-CoV-2 vaccine. Several studies have been published regarding antibody responses, with contradictory reports. The current study is, perhaps, the most comprehensive study of phenotypically defined various lymphocyte populations in PAD patients following the SARS-CoV-2 vaccine. In this study, we examined, following two vaccinations and, in a few cases, prior to and following the 1st and 2nd vaccinations, subsets of CD4 and CD8 T cells (Naïve, TCM, TEM, TEMRA), T follicular helper cells (TFH1, TFH2, TFH17, TFH1/17), B cells (naïve, transitional, marginal zone, germinal center, IgM memory, switched memory, plasmablasts, CD21low), regulatory lymphocytes (CD4Treg, CD8Treg, TFR, Breg), and SARS-CoV-2-specific activation of CD4 T cells and CD8 T cells (CD69, CD137), SARS-CoV-2 tetramer-positive CD8 T cells, and CD8 CTL. Our data show significant alterations in various B cell subsets including Breg, whereas only a few subsets of various T cells revealed alterations. These data suggest that large proportions of PAD patients may mount significant responses to the vaccine.
Collapse
Affiliation(s)
- Sudhir Gupta
- Program in Primary Immunodeficiencies, Division of Basic and Clinical Immunology, University of California at Irvine, Irvine, CA 92697, USA; (H.S.); (S.A.); (Y.D.); (M.T.); (S.G.)
| | | | | | | | | | | |
Collapse
|
49
|
Park J, Lee J, Hur Y, Kim CJ, Kim HB, Um D, Kim DS, Lee JY, Park S, Park Y, Kim TK, Im SH, Kim SW, Kwok SK, Lee Y. ETV5 promotes lupus pathogenesis and follicular helper T cell differentiation by inducing osteopontin expression. Proc Natl Acad Sci U S A 2024; 121:e2322009121. [PMID: 38843187 PMCID: PMC11181037 DOI: 10.1073/pnas.2322009121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/07/2024] [Indexed: 06/18/2024] Open
Abstract
Follicular helper T (TFH) cells mediate germinal center reactions to generate high affinity antibodies against specific pathogens, and their excessive production is associated with the pathogenesis of systemic autoimmune diseases such as systemic lupus erythematosus (SLE). ETV5, a member of the ETS transcription factor family, promotes TFH cell differentiation in mice. In this study, we examined the role of ETV5 in the pathogenesis of lupus in mice and humans. T cell-specific deletion of Etv5 alleles ameliorated TFH cell differentiation and autoimmune phenotypes in lupus mouse models. Further, we identified SPP1 as an ETV5 target that promotes TFH cell differentiation in both mice and humans. Notably, extracellular osteopontin (OPN) encoded by SPP1 enhances TFH cell differentiation by activating the CD44-AKT signaling pathway. Furthermore, ETV5 and SPP1 levels were increased in CD4+ T cells from patients with SLE and were positively correlated with disease activity. Taken together, our findings demonstrate that ETV5 is a lupus-promoting transcription factor, and secreted OPN promotes TFH cell differentiation.
Collapse
Affiliation(s)
- Jiho Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Jongeun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Yunjung Hur
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Chan-Johng Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Han Bit Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Dahun Um
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Da Som Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul06591, Republic of Korea
| | - June-Yong Lee
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, and Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Sungjun Park
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon34114, Republic of Korea
| | - Youngjae Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul06591, Republic of Korea
| | - Tae-Kyung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul03722, Republic of Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul06591, Republic of Korea
| | - Seung-Ki Kwok
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul06591, Republic of Korea
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul03722, Republic of Korea
| |
Collapse
|
50
|
Kumar S, Basto AP, Ribeiro F, Almeida SCP, Campos P, Peres C, Pulvirenti N, Al-Khalidi S, Kilbey A, Tosello J, Piaggio E, Russo M, Gama-Carvalho M, Coffelt SB, Roberts EW, Geginat J, Florindo HF, Graca L. Specialized Tfh cell subsets driving type-1 and type-2 humoral responses in lymphoid tissue. Cell Discov 2024; 10:64. [PMID: 38834551 DOI: 10.1038/s41421-024-00681-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/16/2024] [Indexed: 06/06/2024] Open
Abstract
Effective antibody responses are essential to generate protective humoral immunity. Different inflammatory signals polarize T cells towards appropriate effector phenotypes during an infection or immunization. Th1 and Th2 cells have been associated with the polarization of humoral responses. However, T follicular helper cells (Tfh) have a unique ability to access the B cell follicle and support the germinal center (GC) responses by providing B cell help. We investigated the specialization of Tfh cells induced under type-1 and type-2 conditions. We first studied homogenous Tfh cell populations generated by adoptively transferred TCR-transgenic T cells in mice immunized with type-1 and type-2 adjuvants. Using a machine learning approach, we established a gene expression signature that discriminates Tfh cells polarized towards type-1 and type-2 response, defined as Tfh1 and Tfh2 cells. The distinct signatures of Tfh1 and Tfh2 cells were validated against datasets of Tfh cells induced following lymphocytic choriomeningitis virus (LCMV) or helminth infection. We generated single-cell and spatial transcriptomics datasets to dissect the heterogeneity of Tfh cells and their localization under the two immunizing conditions. Besides a distinct specialization of GC Tfh cells under the two immunizations and in different regions of the lymph nodes, we found a population of Gzmk+ Tfh cells specific for type-1 conditions. In human individuals, we could equally identify CMV-specific Tfh cells that expressed Gzmk. Our results show that Tfh cells acquire a specialized function under distinct types of immune responses and with particular properties within the B cell follicle and the GC.
Collapse
Affiliation(s)
- Saumya Kumar
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Afonso P Basto
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Filipa Ribeiro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Silvia C P Almeida
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Patricia Campos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Carina Peres
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa, Portugal
| | | | - Sarwah Al-Khalidi
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Anna Kilbey
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Jimena Tosello
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Eliane Piaggio
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Momtchilo Russo
- Institute of Biomedical Sciences, Department of Immunology, University of Sao Paulo, Sao Paulo, Brazil
| | - Margarida Gama-Carvalho
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Seth B Coffelt
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Ed W Roberts
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Jens Geginat
- Istituto Nazionale di Genetica Molecolare, Milano, Italy
- Università degli studi di Milano, DISCCO, Milano, Italy
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa, Portugal
| | - Luis Graca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| |
Collapse
|