1
|
Proal AD, Aleman S, Bomsel M, Brodin P, Buggert M, Cherry S, Chertow DS, Davies HE, Dupont CL, Deeks SG, Ely EW, Fasano A, Freire M, Geng LN, Griffin DE, Henrich TJ, Hewitt SM, Iwasaki A, Krumholz HM, Locci M, Marconi VC, Mehandru S, Muller-Trutwin M, Painter MM, Pretorius E, Price DA, Putrino D, Qian Y, Roan NR, Salmon D, Tan GS, VanElzakker MB, Wherry EJ, Van Weyenbergh J, Yonker LM, Peluso MJ. Targeting the SARS-CoV-2 reservoir in long COVID. THE LANCET. INFECTIOUS DISEASES 2025; 25:e294-e306. [PMID: 39947217 DOI: 10.1016/s1473-3099(24)00769-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/28/2024] [Accepted: 11/12/2024] [Indexed: 03/15/2025]
Abstract
There are no approved treatments for post-COVID-19 condition (also known as long COVID), a debilitating disease state following SARS-CoV-2 infection that is estimated to affect tens of millions of people. A growing body of evidence shows that SARS-CoV-2 can persist for months or years following COVID-19 in a subset of individuals, with this reservoir potentially driving long-COVID symptoms or sequelae. There is, therefore, an urgent need for clinical trials targeting persistent SARS-CoV-2, and several trials of antivirals or monoclonal antibodies for long COVID are underway. However, because mechanisms of SARS-CoV-2 persistence are not yet fully understood, such studies require important considerations related to the mechanism of action of candidate therapeutics, participant selection, duration of treatment, standardisation of reservoir-associated biomarkers and measurables, optimal outcome assessments, and potential combination approaches. In addition, patient subgroups might respond to some interventions or combinations of interventions, making post-hoc analyses crucial. Here, we outline these and other key considerations, with the goal of informing the design, implementation, and interpretation of trials in this rapidly growing field. Our recommendations are informed by knowledge gained from trials targeting the HIV reservoir, hepatitis C, and other RNA viruses, as well as precision oncology, which share many of the same hurdles facing long-COVID trials.
Collapse
Affiliation(s)
- Amy D Proal
- PolyBio Research Foundation, Medford, MA, USA.
| | - Soo Aleman
- Department of Infectious Diseases and Unit of Post-COVID Huddinge, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Morgane Bomsel
- HIV entry and Laboratory of Mucosal Immunity, Institut Cochin, Paris, France; Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
| | - Petter Brodin
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Department of Immunology and Inflammation, Imperial College London, London, UK; Medical Research Council Laboratory of Medical Sciences, Imperial College London, London, UK
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel S Chertow
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA; Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Helen E Davies
- Department of Respiratory Medicine, University Hospital Llandough, Cardiff, UK; University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Christopher L Dupont
- Division of Genomic Medicine, Environment & Sustainability, J Craig Venter Institute, University of California San Diego, La Jolla, CA, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | - E Wes Ely
- The Critical Illness, Brain Dysfunction, Survivorship Center at Vanderbilt University Medical Center, Nashville, TN, USA; Veteran's Affairs Tennessee Valley Geriatric Research Education Clinical Center, Nashville, TN, USA
| | - Alessio Fasano
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA; Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Marcelo Freire
- Department of Infectious Diseases, J Craig Venter Institute, University of California San Diego, La Jolla, CA, USA
| | - Linda N Geng
- J Craig Venter Institute, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Diane E Griffin
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California, San Francisco, CA, USA
| | - Stephen M Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Center for Infection and Immunity, Yale University School of Medicine, New Haven, CT, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Harlan M Krumholz
- Center for Infection and Immunity, Yale University School of Medicine, New Haven, CT, USA; Center for Outcomes Research and Evaluation, Yale New Haven Hospital, New Haven, CT, USA; Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Health Policy and Management, Yale School of Public Health, New Haven, CT, USA
| | - Michela Locci
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vincent C Marconi
- Emory University School of Medicine and Rollins School of Public Health, Atlanta, GA, USA; Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Saurabh Mehandru
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Henry D Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michaela Muller-Trutwin
- Institut Pasteur, Université Paris-Cité, HIV, Inflammation and Persistence Unit, Paris, France
| | - Mark M Painter
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - David Putrino
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yu Qian
- Department of Informatics, J Craig Venter Institute, University of California San Diego, La Jolla, CA, USA
| | - Nadia R Roan
- Gladstone Institutes, University of California, San Francisco, CA, USA; Department of Urology, University of California, San Francisco, CA, USA
| | - Dominique Salmon
- Department of Infectious Diseases, Institut Fournier, Paris, France; Direction of International Relations Assistance Publique Hôpitaux de Paris, Paris, France
| | - Gene S Tan
- Department of Infectious Diseases, J Craig Venter Institute, University of California San Diego, La Jolla, CA, USA
| | - Michael B VanElzakker
- PolyBio Research Foundation, Medford, MA, USA; Division of Neurotherapeutics, Massachusetts General Hospital, Boston, MA, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Johan Van Weyenbergh
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Lael M Yonker
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA; Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
2
|
Crowell TA. "Let's start at the very beginning": studies of acute HIV inform prevention, diagnosis, and treatment. Curr Opin HIV AIDS 2025; 20:183-185. [PMID: 40178435 DOI: 10.1097/coh.0000000000000930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Affiliation(s)
- Trevor A Crowell
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Giovane RA, deWeber K, Sauceda U, Bianchi D. Blood-Borne Infection Prevention in Combat Sports: Position Statement of the Association of Ringside Physicians. Clin J Sport Med 2025:00042752-990000000-00320. [PMID: 40197438 DOI: 10.1097/jsm.0000000000001350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 02/22/2025] [Indexed: 04/10/2025]
Abstract
ABSTRACT The Association of Ringside Physicians (ARP) emphasizes the importance of screening combat sports athletes for blood-borne infections, including hepatitis B, HIV, and hepatitis C, to mitigate transmission risks and ensure participant safety. Although transmission of hepatitis B and C and HIV in combat sports is rare, protecting athletes is of utmost importance. It is the recommendation of the ARP that all fighters participating in combat sports, in which the presence of blood is a common occurrence and is allowed during competition, should undergo testing for HIV, hepatitis B (HBV), and hepatitis C (HCV). Testing should be conducted using serum samples, because rapid tests are not considered acceptable for accurate results. Testing for HBV, HCV, and HIV should optimally be done within 3 months of competition, but within 6 months is acceptable. Athletes whose tests suggest active HBV, HCV, or HIV infection should be disqualified from competition in sports where blood is common and allowed. Athletes with cured prior HCV infection may be cleared for competition in all combat sports. Athletes with prior HBV infection and no detectable HBV DNA in blood can be cleared for competition in all combat sports. Athletes with latent HBV infection with detectable HBV DNA in blood have a small risk of disease reactivation, so they should not be cleared.
Collapse
Affiliation(s)
- Richard A Giovane
- Department of Family Medicine, University of Alabama, Tuscaloosa, Alabama
| | - Kevin deWeber
- SW Washington Sports Medicine Fellowship, Vancouver, Washington
- Oregon Health and Science University, Portland, Oregon
| | - Uziel Sauceda
- RUHS/UCR Sports Medicine Fellowship, Moreno Valley California
- Riverside University Health System/University of California Riverside, Moreno Valley California
| | - Davide Bianchi
- Chief Medical Officer SwissBoxing, Verbandarzt SwissBoxing, Switzerland
| |
Collapse
|
4
|
Clain JA, Picard M, Rabezanahary H, André S, Boutrais S, Goma Matsetse E, Dewatines J, Dueymes Q, Thiboutot E, Racine G, Soundaramourty C, Mammano F, Corbeau P, Zghidi-Abouzid O, Estaquier J. Immune Alterations and Viral Reservoir Atlas in SIV-Infected Chinese Rhesus Macaques. Infect Dis Rep 2025; 17:12. [PMID: 39997464 PMCID: PMC11855486 DOI: 10.3390/idr17010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Over the last decades, our projects have been dedicated to clarifying immunopathological and virological events associated with Human Immunodeficiency Virus (HIV) infection. METHODS By using non-human primate models of pathogenic and non-pathogenic lentiviral infections, we aimed at identifying the cells and tissues in which the virus persists, despite antiretroviral therapy (ART). Indeed, the eradication of viral reservoirs is a major challenge for HIV cure. RESULTS We present a series of results performed in rhesus macaques of Chinese origin deciphering the virological and immunological events associated with ART that can be of interest for people living with HIV. CONCLUSIONS This model could be of interest for understanding in whole body the clinical alteration that persist despite ART.
Collapse
Affiliation(s)
- Julien A. Clain
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Morgane Picard
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| | - Henintsoa Rabezanahary
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Sonia André
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| | - Steven Boutrais
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Ella Goma Matsetse
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Juliette Dewatines
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Quentin Dueymes
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Elise Thiboutot
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Gina Racine
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Calaiselvy Soundaramourty
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| | - Fabrizio Mammano
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
- Institut national de la santé et de la recherche médicale (Inserm) U1259 MAVIVHe, Université de Tours, 37032 Tours, France
| | - Pierre Corbeau
- Institut de Génétique Humaine, CNRS-Université de Montpellier UMR9002, 34094 Montpellier, France;
| | - Ouafa Zghidi-Abouzid
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Jérôme Estaquier
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| |
Collapse
|
5
|
Sahu M, Schaafsma T, Szpiro AA, Van Rooyen H, Asiimwe S, Shahmanesh M, Krows ML, Sithole N, Van Heerden A, Barnabas RV. Performance of patient-collected dried blood specimens for HIV-1 viral load testing in South Africa. AIDS 2024; 38:2050-2055. [PMID: 39264578 PMCID: PMC11562487 DOI: 10.1097/qad.0000000000004011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/25/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVE Evaluate the clinical utility of patient-collected dried blood spots (DBS) in measuring HIV-1 viral load (VL) for monitoring antiretroviral therapy (ART) compared to provider-collected DBS and blood plasma. DESIGN In a randomized trial of community-based delivery of ART in South Africa, we assessed performance of: DBS specimens compared to plasma, and participant-collected vs. staff-collected DBS specimens, to measure HIV-1 VL. METHODS The bioMérieux NucliSENS EasyQ HIV-1 v2.0 assay was used for VL measurement. From October 2017 to November 2019, we collected 996 pairs of plasma/DBS specimens from 760 participants and 315 pairs of staff-/participant-collected DBS cards from 261 participants. We assessed DBS test sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) using the WHO failure threshold of 1000 copies/ml. Log-transformed VL was compared using concordance correlation coefficients (CCC) and mean differences from linear mixed models. RESULTS In a population with 13% detectable VL, DBS VL compared with plasma VL had 91% [95% confidence interval (CI): 86-95] sensitivity, 99% (98-100) specificity, 94% (90-98) PPV, and 99% (98-99) NPV. We observed high agreement between staff-collected DBS VL and plasma VL (CCC: 0.94), and between participant-collected DBS VL and plasma VL (CCC: 0.92). We did not observe a statistically significant difference between participant- and staff-collected DBS VL and correlation was very high (CCC: 0.97). CONCLUSIONS VL results from participant-collected DBS are clinically comparable with those collected by clinical staff and using blood plasma. Self-collected DBS has potential for use for ART monitoring outside the clinic.
Collapse
Affiliation(s)
- Maitreyi Sahu
- Department of Health Metrics Sciences, University of Washington, Seattle, WA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
| | - Torin Schaafsma
- International Clinical Research Center, Department of Global Health
| | - Adam A. Szpiro
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | | | | | | | - Meighan L. Krows
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
- International Clinical Research Center, Department of Global Health
| | | | - Alastair Van Heerden
- SAMRC/WITS Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng
- Center for Community Based Research, Human Sciences Research Council, Sweetwaters, KwaZulu-Natal, South Africa
| | - Ruanne V. Barnabas
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Baxter J, Villabona-Arenas CJ, Thompson RN, Hué S, Regoes RR, Kouyos RD, Günthard HF, Albert J, Leigh Brown A, Atkins KE. Reconciling founder variant multiplicity of HIV-1 infection with the rate of CD4 + decline. J R Soc Interface 2024; 21:20240255. [PMID: 39471873 PMCID: PMC11606301 DOI: 10.1098/rsif.2024.0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/18/2024] [Accepted: 09/11/2024] [Indexed: 11/01/2024] Open
Abstract
HIV-1 transmission precipitates a stringent genetic bottleneck, with 75% of new infections initiated by a single genetic variant. Where multiple variants initiate infection, recipient set point viral load (SpVL) and the rate of CD4+ T cell decline may be elevated, but these findings remain inconsistent. Here, we summarised the evidence for this phenomenon, then tested whether previous studies possessed sufficient statistical power to reliably identify a true effect of multiple variant infection leading to higher SpVL. Next, we combined models of HIV-1 transmission, heritability and disease progression to understand whether available data suggest a faster CD4+ T cell decline would be expected to associated with multiple variant infection, without an explicit dependency between the two. First, we found that most studies had insufficient power to identify a true significant difference, prompting an explanation for previous inconsistencies. Next, our model framework revealed we would not expect to observe a positive association between multiple variant infections and faster CD4+ T cell decline, in the absence of an explicit dependency. Consequently, while empirical evidence may be consistent with a positive association between multiple variant infection and faster CD4+ T cell decline, further investigation is required to establish a causal basis.
Collapse
Affiliation(s)
- James Baxter
- Usher Institute, Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK
| | - Ch. Julián Villabona-Arenas
- Faculty of Epidemiology and Population Health, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Stéphane Hué
- Faculty of Epidemiology and Population Health, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Roland R. Regoes
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Roger D. Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Huldrych F. Günthard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Andrew Leigh Brown
- Institute of Evolutionary Ecology, The University of Edinburgh, Edinburgh, UK
| | - Katherine E. Atkins
- Usher Institute, Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK
- Faculty of Epidemiology and Population Health, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
7
|
Grant-McAuley W, Morgenlander WR, Ruczinski I, Kammers K, Laeyendecker O, Hudelson SE, Thakar M, Piwowar-Manning E, Clarke W, Breaud A, Ayles H, Bock P, Moore A, Kosloff B, Shanaube K, Meehan SA, van Deventer A, Fidler S, Hayes R, Larman HB, Eshleman SH, for the HPTN 071 (PopART) Study Team. Identification of antibody targets associated with lower HIV viral load and viremic control. PLoS One 2024; 19:e0305976. [PMID: 39288118 PMCID: PMC11407625 DOI: 10.1371/journal.pone.0305976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/09/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND High HIV viral loads (VL) are associated with increased morbidity, mortality, and on-going transmission. HIV controllers maintain low VLs in the absence of antiretroviral therapy (ART). We previously used a massively multiplexed antibody profiling assay (VirScan) to compare antibody profiles in HIV controllers and persons living with HIV (PWH) who were virally suppressed on ART. In this report, we used VirScan to evaluate whether antibody reactivity to specific HIV targets and broad reactivity across the HIV genome was associated with VL and controller status 1-2 years after infection. METHODS Samples were obtained from participants who acquired HIV infection in a community-randomized trial in Africa that evaluated an integrated strategy for HIV prevention (HPTN 071 PopART). Controller status was determined using VL and antiretroviral (ARV) drug data obtained at the seroconversion visit and 1 year later. Viremic controllers had VLs <2,000 copies/mL at both visits; non-controllers had VLs >2,000 copies/mL at both visits. Both groups had no ARV drugs detected at either visit. VirScan testing was performed at the second HIV-positive visit (1-2 years after HIV infection). RESULTS The study cohort included 13 viremic controllers and 64 non-controllers. We identified ten clusters of homologous peptides that had high levels of antibody reactivity (three in gag, three in env, two in integrase, one in protease, and one in vpu). Reactivity to 43 peptides (eight unique epitopes) in six of these clusters was associated with lower VL; reactivity to six of the eight epitopes was associated with HIV controller status. Higher aggregate antibody reactivity across the eight epitopes (more epitopes targeted, higher mean reactivity across all epitopes) and across the HIV genome was also associated with lower VL and controller status. CONCLUSIONS We identified HIV antibody targets associated with lower VL and HIV controller status 1-2 years after infection. Robust aggregate responses to these targets and broad antibody reactivity across the HIV genome were also associated with lower VL and controller status. These findings provide novel insights into the relationship between humoral immunity and viral containment that could help inform the design of antibody-based approaches for reducing HIV VL.
Collapse
Affiliation(s)
- Wendy Grant-McAuley
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - William R. Morgenlander
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Kai Kammers
- Quantitative Sciences Division, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Oliver Laeyendecker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Sarah E. Hudelson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Manjusha Thakar
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Estelle Piwowar-Manning
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - William Clarke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Autumn Breaud
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Helen Ayles
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Peter Bock
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Ayana Moore
- FHI 360, Durham, North Carolina, United States of America
| | - Barry Kosloff
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kwame Shanaube
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
| | - Sue-Ann Meehan
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Anneen van Deventer
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Sarah Fidler
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Richard Hayes
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - H. Benjamin Larman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Susan H. Eshleman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | | |
Collapse
|
8
|
Capoferri AA, Wiegand A, Hong F, Jacobs JL, Spindler J, Musick A, Bale MJ, Shao W, Sobolewski MD, Cillo AR, Luke BT, Fennessey CM, Gorelick RJ, Hoh R, Halvas EK, Deeks SG, Coffin JM, Mellors JW, Kearney MF. HIV-1 control in vivo is related to the number but not the fraction of infected cells with viral unspliced RNA. Proc Natl Acad Sci U S A 2024; 121:e2405210121. [PMID: 39190360 PMCID: PMC11388345 DOI: 10.1073/pnas.2405210121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
In the absence of antiretroviral therapy (ART), a subset of individuals, termed HIV controllers, have levels of plasma viremia that are orders of magnitude lower than non-controllers (NC) who are at higher risk for HIV disease progression. In addition to having fewer infected cells resulting in fewer cells with HIV RNA, it is possible that lower levels of plasma viremia in controllers are due to a lower fraction of the infected cells having HIV-1 unspliced RNA (HIV usRNA) compared with NC. To directly test this possibility, we used sensitive and quantitative single-cell sequencing methods to compare the fraction of infected cells that contain one or more copies of HIV usRNA in peripheral blood mononuclear cells (PBMC) obtained from controllers and NC. The fraction of infected cells containing HIV usRNA did not differ between the two groups. Rather, the levels of viremia were strongly associated with the total number of infected cells that had HIV usRNA, as reported by others, with controllers having 34-fold fewer infected cells per million PBMC. These results reveal that viremic control is not associated with a lower fraction of proviruses expressing HIV usRNA, unlike what is reported for elite controllers, but is only related to having fewer infected cells overall, maybe reflecting greater immune clearance of infected cells. Our findings show that proviral silencing is not a key mechanism for viremic control and will help to refine strategies toward achieving HIV remission without ART.
Collapse
Affiliation(s)
- Adam A. Capoferri
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
- Department of Microbiology and Immunology, Georgetown University, Washington, DC20007
| | - Ann Wiegand
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Feiyu Hong
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| | - Jana L. Jacobs
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| | - Jonathan Spindler
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Andrew Musick
- Leidos Biomedical Research, Inc., Frederick National Laboratories for Cancer Research, Frederick, MD21702
| | - Michael J. Bale
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Wei Shao
- Leidos Biomedical Research, Inc., Frederick National Laboratories for Cancer Research, Frederick, MD21702
| | - Michele D. Sobolewski
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| | - Anthony R. Cillo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Brian T. Luke
- Leidos Biomedical Research, Inc., Frederick National Laboratories for Cancer Research, Frederick, MD21702
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco, CA94143
| | - Elias K. Halvas
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, CA94143
| | - John M. Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA02111
| | - John W. Mellors
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| | - Mary F. Kearney
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| |
Collapse
|
9
|
Jain P, Parikh S, Patel P, Shah S, Patel K. Comprehensive insights into herbal P-glycoprotein inhibitors and nanoformulations for improving anti-retroviral therapy efficacy. J Drug Target 2024; 32:884-908. [PMID: 38748868 DOI: 10.1080/1061186x.2024.2356751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/28/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024]
Abstract
The worldwide HIV cases were 39.0 million (33.1-45.7 million) in 2022. Due to genetic variations, HIV-1 is more easily transmitted than HIV-2 and favours CD4 + T cells and macrophages, producing AIDS. Conventional HIV drug therapy has many drawbacks, including adherence issues leading to resistance, side effects that lower life quality, drug interactions, high costs limiting global access, inability to eliminate viral reservoirs, chronicity requiring lifelong treatment, emerging toxicities, and a focus on managing infections. Conventional dosage forms have bioavailability issues due to intestinal P-glycoprotein (P-gp) efflux, which can reduce anti-retroviral drug efficacy and lead to resistance. Use of phyto-constituents with P-gp regulating actions has great benefits for semi-synthetic modification to create formulations with greater bioavailability and reduced toxicity, which improves drug effectiveness. Lipid-based nanocarriers, solid lipid nanoparticles, nanostructured lipid carriers, polymer-based nanocarriers, and inorganic nanoparticles may inhibit P-gp efflux. Employing potent P-gp inhibitors within nanocarriers as a Trojan horse approach can enhance the intracellular accumulation of anti-retroviral drugs (ARDs), which are substrates for efflux transporters. This technique increases oral bioavailability and offers lower-dose options, boosting HIV patient compliance and lowering costs. Molecular docking of the inhibitor with P-gp may anticipate optimum binding and function, allowing drug efflux to be minimised.
Collapse
Affiliation(s)
- Prexa Jain
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad, India
| | - Shreni Parikh
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad, India
| | - Paresh Patel
- Department of Pharmaceutical Chemistry, L. J. Institute of Pharmacy, L J University, Ahmedabad, India
| | - Shreeraj Shah
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad, India
| | - Kaushika Patel
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad, India
| |
Collapse
|
10
|
Barbehenn A, Zhao SD. Nonparametric empirical Bayes biomarker imputation and estimation. Stat Med 2024; 43:3742-3758. [PMID: 38897921 DOI: 10.1002/sim.10150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 03/31/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
Biomarkers are often measured in bulk to diagnose patients, monitor patient conditions, and research novel drug pathways. The measurement of these biomarkers often suffers from detection limits that result in missing and untrustworthy measurements. Frequently, missing biomarkers are imputed so that down-stream analysis can be conducted with modern statistical methods that cannot normally handle data subject to informative censoring. This work develops an empirical Bayesg $$ g $$ -modeling method for imputing and denoising biomarker measurements. We establish superior estimation properties compared to popular methods in simulations and with real data, providing the useful biomarker measurement estimations for down-stream analysis.
Collapse
Affiliation(s)
- Alton Barbehenn
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California, San Francisco, California, USA
- Department of Statistics, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Sihai Dave Zhao
- Department of Statistics, University of Illinois, Urbana-Champaign, Illinois, USA
| |
Collapse
|
11
|
Casado-Fernández G, Cantón J, Nasarre L, Ramos-Martín F, Manzanares M, Sánchez-Menéndez C, Fuertes D, Mateos E, Murciano-Antón MA, Pérez-Olmeda M, Cervero M, Torres M, Rodríguez-Rosado R, Coiras M. Pre-existing cell populations with cytotoxic activity against SARS-CoV-2 in people with HIV and normal CD4/CD8 ratio previously unexposed to the virus. Front Immunol 2024; 15:1362621. [PMID: 38812512 PMCID: PMC11133563 DOI: 10.3389/fimmu.2024.1362621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction HIV-1 infection may produce a detrimental effect on the immune response. Early start of antiretroviral therapy (ART) is recommended to preserve the integrity of the immune system. In fact, people with HIV (PWH) and normal CD4/CD8 ratio appear not to be more susceptible to severe forms of COVID-19 than the general population and they usually present a good seroconversion rate in response to vaccination against SARS-CoV-2. However, few studies have fully characterized the development of cytotoxic immune populations in response to COVID-19 vaccination in these individuals. Methods In this study, we recruited PWH with median time of HIV-1 infection of 6 years, median CD4/CD8 ratio of 1.0, good adherence to ART, persistently undetectable viral load, and negative serology against SARS-CoV-2, who then received the complete vaccination schedule against COVID-19. Blood samples were taken before vaccination against COVID-19 and one month after receiving the complete vaccination schedule. Results PWH produced high levels of IgG against SARS-CoV-2 in response to vaccination that were comparable to healthy donors, with a significantly higher neutralization capacity. Interestingly, the cytotoxic activity of PBMCs from PWH against SARS-CoV-2-infected cells was higher than healthy donors before receiving the vaccination schedule, pointing out the pre-existence of activated cell populations with likely unspecific antiviral activity. The characterization of these cytotoxic cell populations revealed high levels of Tgd cells with degranulation capacity against SARS-CoV-2-infected cells. In response to vaccination, the degranulation capacity of CD8+ T cells also increased in PWH but not in healthy donors. Discussion The full vaccination schedule against COVID-19 did not modify the ability to respond against HIV-1-infected cells in PWH and these individuals did not show more susceptibility to breakthrough infection with SARS-CoV-2 than healthy donors after 12 months of follow-up. These results revealed the development of protective cell populations with broad-spectrum antiviral activity in PWH with normal CD4/CD8 ratio and confirmed the importance of early ART and treatment adherence to avoid immune dysfunctions.
Collapse
Affiliation(s)
- Guiomar Casado-Fernández
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- PhD Program in Health Sciences, Faculty of Sciences, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Juan Cantón
- PhD Program in Health Sciences, Faculty of Sciences, Universidad de Alcalá, Alcalá de Henares, Spain
- Internal Medicine Service, Hospital Universitario Severo Ochoa, Leganés, Madrid, Spain
| | - Laura Nasarre
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Fernando Ramos-Martín
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Mario Manzanares
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- PhD Program in Biomedical Sciences and Public Health, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Clara Sánchez-Menéndez
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- PhD Program in Biomedical Sciences and Public Health, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Daniel Fuertes
- School of Telecommunications Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - Elena Mateos
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases [Centro de Investigación Biomédica en Red Enfermedades Infecciosas (CIBERINFEC)], Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - María Aranzazu Murciano-Antón
- Family Medicine, Centro de Salud Doctor Pedro Laín Entralgo, Alcorcón, Madrid, Spain
- International PhD School, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Mayte Pérez-Olmeda
- Biomedical Research Center Network in Infectious Diseases [Centro de Investigación Biomédica en Red Enfermedades Infecciosas (CIBERINFEC)], Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Serology Service, Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Cervero
- Internal Medicine Service, Hospital Universitario Severo Ochoa, Leganés, Madrid, Spain
- School of Medicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Montserrat Torres
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases [Centro de Investigación Biomédica en Red Enfermedades Infecciosas (CIBERINFEC)], Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Rafael Rodríguez-Rosado
- Internal Medicine Service, Hospital Universitario Severo Ochoa, Leganés, Madrid, Spain
- School of Medicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Mayte Coiras
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases [Centro de Investigación Biomédica en Red Enfermedades Infecciosas (CIBERINFEC)], Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
12
|
Bui JK, Starke CE, Poole NH, Rust BJ, Jerome KR, Kiem HP, Peterson CW. CD20 CAR T cells safely and reversibly ablate B cell follicles in a non-human primate model of HIV persistence. Mol Ther 2024; 32:1238-1251. [PMID: 38414244 PMCID: PMC11081808 DOI: 10.1016/j.ymthe.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/30/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapies have demonstrated immense clinical success for B cell and plasma cell malignancies. We tested their impact on the viral reservoir in a macaque model of HIV persistence, comparing the functions of CD20 CAR T cells between animals infected with simian/human immunodeficiency virus (SHIV) and uninfected controls. We focused on the potential of this approach to disrupt B cell follicles (BCFs), exposing infected cells for immune clearance. In SHIV-infected animals, CAR T cells were highly functional, with rapid expansion and trafficking to tissue-associated viral sanctuaries, including BCFs and gut-associated lymphoid tissue (GALT). CD20 CAR T cells potently ablated BCFs and depleted lymph-node-associated follicular helper T (TFH) cells, with complete restoration of BCF architecture and TFH cells following CAR T cell contraction. BCF ablation decreased the splenic SHIV reservoir but was insufficient for effective reductions in systemic viral reservoirs. Although associated with moderate hematologic toxicity, CD20 CAR T cells were well tolerated in SHIV-infected and control animals, supporting the feasibility of this therapy in people living with HIV with underlying B cell malignancies. Our findings highlight the unique ability of CD20 CAR T cells to safely and reversibly unmask TFH cells within BCF sanctuaries, informing future combinatorial HIV cure strategies designed to augment antiviral efficacy.
Collapse
Affiliation(s)
- John K Bui
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Allergy and Infection Diseases, University of Washington, Seattle, WA, USA
| | - Carly E Starke
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Nikhita H Poole
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Blake J Rust
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Keith R Jerome
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Hans-Peter Kiem
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Allergy and Infection Diseases, University of Washington, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Christopher W Peterson
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
13
|
Le Buanec H, Schiavon V, Merandet M, How-Kit A, Song H, Bergerat D, Fombellida-Lopez C, Bensussan A, Bouaziz JD, Burny A, Darcis G, Sajadi MM, Kottilil S, Zagury D, Gallo RC. IFNα induces CCR5 in CD4 + T cells of HIV patients causing pathogenic elevation. COMMUNICATIONS MEDICINE 2024; 4:52. [PMID: 38504093 PMCID: PMC10951336 DOI: 10.1038/s43856-024-00453-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/07/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Among people living with HIV, elite controllers (ECs) maintain an undetectable viral load, even without receiving anti-HIV therapy. In non-EC patients, this therapy leads to marked improvement, including in immune parameters, but unlike ECs, non-EC patients still require ongoing treatment and experience co-morbidities. In-depth, comprehensive immune analyses comparing EC and treated non-EC patients may reveal subtle, consistent differences. This comparison could clarify whether elevated circulating interferon-alpha (IFNα) promotes widespread immune cell alterations and persists post-therapy, furthering understanding of why non-EC patients continue to need treatment. METHODS Levels of IFNα in HIV-infected EC and treated non-EC patients were compared, along with blood immune cell subset distribution and phenotype, and functional capacities in some cases. In addition, we assessed mechanisms potentially associated with IFNα overload. RESULTS Treatment of non-EC patients results in restoration of IFNα control, followed by marked improvement in distribution numbers, phenotypic profiles of blood immune cells, and functional capacity. These changes still do not lead to EC status, however, and IFNα can induce these changes in normal immune cell counterparts in vitro. Hypothesizing that persistent alterations could arise from inalterable effects of IFNα at infection onset, we verified an IFNα-related mechanism. The protein induces the HIV coreceptor CCR5, boosting HIV infection and reducing the effects of anti-HIV therapies. EC patients may avoid elevated IFNα following on infection with a lower inoculum of HIV or because of some unidentified genetic factor. CONCLUSIONS Early control of IFNα is essential for better prognosis of HIV-infected patients.
Collapse
Affiliation(s)
- Hélène Le Buanec
- Université de Paris; INSERM U976, HIPI Unit, Institut de Recherche Saint-Louis, F-75010, Paris, France
| | - Valérie Schiavon
- Université de Paris; INSERM U976, HIPI Unit, Institut de Recherche Saint-Louis, F-75010, Paris, France
| | - Marine Merandet
- Université de Paris; INSERM U976, HIPI Unit, Institut de Recherche Saint-Louis, F-75010, Paris, France
| | | | - Hongshuo Song
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - David Bergerat
- Université de Paris; INSERM U976, HIPI Unit, Institut de Recherche Saint-Louis, F-75010, Paris, France
| | - Céline Fombellida-Lopez
- Laboratory of Infectious Diseases, GIGA-I3, GIGA-Institute University of Liege, 4000, Liege, Belgium
| | - Armand Bensussan
- Université de Paris; INSERM U976, HIPI Unit, Institut de Recherche Saint-Louis, F-75010, Paris, France
| | - Jean-David Bouaziz
- Université de Paris; INSERM U976, HIPI Unit, Institut de Recherche Saint-Louis, F-75010, Paris, France
- Dermatology Department, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Arsène Burny
- Laboratory of Molecular Biology, Gembloux Agrobiotech, University of Liège, Liège, Belgium
- Global Virus Network, Baltimore, MD, 21201, USA
| | - Gilles Darcis
- Laboratory of Infectious Diseases, GIGA-I3, GIGA-Institute University of Liege, 4000, Liege, Belgium
| | - Mohammad M Sajadi
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
- Global Virus Network, Baltimore, MD, 21201, USA
- University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Shyamasundaran Kottilil
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
- Global Virus Network, Baltimore, MD, 21201, USA
- University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Program in Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA
| | | | - Robert C Gallo
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.
- University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
14
|
Delle Donne V, Massaroni V, Lombardi F, Dusina A, Salvo PF, Borghetti A, Ciccullo A, Visconti E, Di Giambenedetto S. The association between stigma and wellbeing in an Italian cohort of PLWH: The role of social support and personal factors. Int J STD AIDS 2024; 35:176-187. [PMID: 37956698 DOI: 10.1177/09564624231213115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Our aim was to assess the association between different types of stigma and physical, behavioural and emotional wellbeing, and to evaluate whether these associations were mediated by the level of social support, age, education, sex and time from HIV diagnosis in an Italian cohort of people living with HIV (PLWH). We enrolled 96 PLWH and had them complete a cross-sectional online survey that included the "HSS-12", the "SF-12" and the "DASS-21". We performed linear regression analyses to explore the associations between the HSS-12 scores and cART adherence, viral load, SF-12 and DASS-21 scores, and a mediation analysis to identify mediators in the significant associations. We showed that higher level of depression and worse perception of mental health were significantly associated with higher HSS-12 "personalised stigma" (p = .009, p = .020) "disclosure concerns" (p = .012, p = .039), "concerns about public attitudes" (p =.007, p = .005) and "negative self-image" scores; (p < .001, p = .001); worse perception of physical health status was associated with higher HSS-12 "personalised stigma" scores (p = .018); higher level of anxiety and stress were associated with higher "negative self-image" scores (0.001 and p < .001). The association between higher HSS-12 "negative self-image" and higher levels of depression, anxiety and stress were mediated by lower age (a*b = +0.10; a*b = +0.12; a*b = +0.11). This study may have important implications for clinical practice as it contributes to understanding the characteristics and consequences of HIV-related stigma in a population of PLWH with excellent viroimmunological status and therapeutic adherence.
Collapse
Affiliation(s)
- Valentina Delle Donne
- Department of Safety and Bioethics, Infectious Diseases Institute, Catholic University of Sacred Heart, Rome, Italy
| | - Valentina Massaroni
- Department of Safety and Bioethics, Infectious Diseases Institute, Catholic University of Sacred Heart, Rome, Italy
| | - Francesca Lombardi
- UOC Infectious Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alex Dusina
- UOC Infectious Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Alberto Borghetti
- UOC Infectious Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Arturo Ciccullo
- UOC Infectious Diseases, Ospedale S. Salvatore, L'Aquila, Italy
| | - Elena Visconti
- UOC Infectious Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Simona Di Giambenedetto
- Department of Safety and Bioethics, Infectious Diseases Institute, Catholic University of Sacred Heart, Rome, Italy
- UOC Infectious Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
15
|
Lee EH, Lee JA, Kim CH, Lee KH, Kim J, Kim JH, Ahn JY, Ku NS, Choi JY, Yeom JS, Jeong SJ. Pentraxin 3 as an Immune Recovery Marker in HIV Infection After Combination Antiretroviral Therapy. AIDS Res Hum Retroviruses 2024; 40:110-113. [PMID: 37335044 DOI: 10.1089/aid.2023.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection causes chronic inflammation in affected individuals. Chronic inflammation may hinder immunological recovery. Treatment with combination antiretroviral therapy (cART) is insufficient to reduce inflammation. Pentraxin 3 (PTX3) is an inflammatory marker associated with cardiovascular disease, malignancy, and acute infection. This study evaluated the usefulness of serum PTX3 levels in measuring inflammation levels, which may be associated with the probability of immune recovery in people living with HIV (PLH). In this single-center prospective study, we measured serum PTX3 levels in PLH treated with cART. Clinical information on HIV status, type of cART administered, and CD4+ and CD8+ T cell counts at the initial diagnosis of HIV and at study enrollment was obtained from each participant. PLH were divided into good and poor responder groups according to their CD4+ T cell counts at enrollment. A total of 198 PLH were enrolled in this study. A total of 175 and 23 participants were assigned to the good and poor responder groups, respectively. The poor responder group exhibited higher PTX3 levels (0.53 ng/mL vs. 1.26 ng/mL, p = .032). Logistic regression analysis demonstrated that low body mass index [odds ratio (OR) = 0.8, p = .010], low initial CD4+ T cell counts at diagnosis (OR = 0.994, p = .001), and high PTX3 levels (OR = 1.545, p = .006) are clinical factors that were significantly associated with poor immune recovery in PLH. According to the Youden index, PTX3 levels >1.25 ng/mL are associated with poor immune recovery. PLH should be clinically, virologically, and immunologically evaluated. Serum PTX level is a useful inflammatory marker associated with immune recovery in PLH treated with cART.
Collapse
Affiliation(s)
- Eun Hwa Lee
- Department of Internal Medicine and AIDS Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Ah Lee
- Department of Internal Medicine and AIDS Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chang Hyup Kim
- Department of Internal Medicine and AIDS Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ki Hyun Lee
- Department of Internal Medicine and AIDS Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinnam Kim
- Department of Internal Medicine and AIDS Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Ho Kim
- Department of Internal Medicine and AIDS Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Young Ahn
- Department of Internal Medicine and AIDS Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Nam Su Ku
- Department of Internal Medicine and AIDS Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun Yong Choi
- Department of Internal Medicine and AIDS Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon-Sup Yeom
- Department of Internal Medicine and AIDS Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su Jin Jeong
- Department of Internal Medicine and AIDS Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
16
|
Min AK, Javidfar B, Missall R, Doanman D, Durens M, Graziani M, Mordelt A, Marro SG, de Witte L, Chen BK, Swartz TH, Akbarian S. HIV-1 infection of genetically engineered iPSC-derived central nervous system-engrafted microglia in a humanized mouse model. J Virol 2023; 97:e0159523. [PMID: 38032195 PMCID: PMC10734545 DOI: 10.1128/jvi.01595-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/05/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Our mouse model is a powerful tool for investigating the genetic mechanisms governing central nervous system (CNS) human immunodeficiency virus type-1 (HIV-1) infection and latency in the CNS at a single-cell level. A major advantage of our model is that it uses induced pluripotent stem cell-derived microglia, which enables human genetics, including gene function and therapeutic gene manipulation, to be explored in vivo, which is more challenging to study with current hematopoietic stem cell-based models for neuroHIV. Our transgenic tracing of xenografted human cells will provide a quantitative medium to develop new molecular and epigenetic strategies for reducing the HIV-1 latent reservoir and to test the impact of therapeutic inflammation-targeting drug interventions on CNS HIV-1 latency.
Collapse
Affiliation(s)
- Alice K. Min
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Behnam Javidfar
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Roy Missall
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Donald Doanman
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Madel Durens
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mara Graziani
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Annika Mordelt
- Department of Human Genetics and Department of Cognitive Neuroscience, Radboud UMC, Nijmegen, the Netherlands
- Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands
| | - Samuele G. Marro
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lotje de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Human Genetics and Department of Cognitive Neuroscience, Radboud UMC, Nijmegen, the Netherlands
- Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands
| | - Benjamin K. Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Talia H. Swartz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Schahram Akbarian
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
17
|
Wilde THC, Shukla RK, Madden C, Vodovotz Y, Sharma A, McGraw WS, Hale VL. Simian immunodeficiency virus and storage buffer: Field-friendly preservation methods for RNA viral detection in primate feces. mSphere 2023; 8:e0048423. [PMID: 38032220 PMCID: PMC10732032 DOI: 10.1128/msphere.00484-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Simian immunodeficiency virus (SIV), which originated in African monkeys, crossed the species barrier into humans and ultimately gave rise to HIV and the global HIV/AIDS epidemic. While SIV infects over 40 primate species in sub-Saharan Africa, testing for RNA viruses in wild primate populations can be challenging. Optimizing field-friendly methods for assessing viral presence/abundance in non-invasively collected biological samples facilitates the study of viruses, including potentially zoonotic viruses, in wild primate populations. This study compares SIV RNA preservation and recovery from non-human primate feces stored in four different buffers. Our results will inform future fieldwork and facilitate improved approaches to characterizing prevalence, shedding, and transmission of RNA viruses like SIV in natural hosts including wild-living non-human primates.
Collapse
Affiliation(s)
- Tessa H. C. Wilde
- Department of Anthropology, The Ohio State University, Columbus, Ohio, USA
| | - Rajni Kant Shukla
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Christopher Madden
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Yael Vodovotz
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
| | - Amit Sharma
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - W. Scott McGraw
- Department of Anthropology, The Ohio State University, Columbus, Ohio, USA
| | - Vanessa L. Hale
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
18
|
Yang Y, Yu F, Fei Y, Dong G, Cao P, Liu Y. Immune indices and oral health in patients infected with the human immunodeficiency virus. BMC Oral Health 2023; 23:1009. [PMID: 38102603 PMCID: PMC10724968 DOI: 10.1186/s12903-023-03752-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The human immunodeficiency virus (HIV) is the causative agent of acquired immunodeficiency syndrome (AIDS). During the incubation period of AIDS, oral manifestations may precede systemic symptoms; therefore, it is vitally important to explore the relationship between HIV and oral health and other indicators. This study aimed to further assess the correlation between demographic risk factors, the dental health of HIV-infected patients, and the correlation of oral health indicators with CD4+ T-cell counts (CTCCs) and HIV viral loads (HIV-VLs). METHODS Demographic data on 108 HIV-infected patients were first recorded by questionnaire from March 2016 to November 2018. Patients' dental health and oral lesions were assessed by a dental specialist; in addition, they were tested for CTCCs and HIV-VLs by flow cytometry and NucliSENS EasyQ® HIV-1 virometer. Finally, the links between CTCC, HIV-VL, and the dental health (including oral lesions) of the patients were analyzed. RESULTS We found that age, marital status, and body mass index (BMI) were relevant to the patient's dental health (P < 0.05) and that their oral hygiene was relevant to their dental health (P < 0.05). However, HIV-VL was not directly related to periodontal/dental clinical indicators (P > 0.05). We discovered that the oral lesions in HIV-infected patients were related to decreased CTCCs and increased HIV-VLs (P < 0.05). CONCLUSIONS We concluded that HIV-infected patients with severely impaired immune function tend to have poor dental health. Moreover, the prevalence of oral lesions was negatively correlated with CTCC and positively correlated with HIV-VL.
Collapse
Affiliation(s)
- Yuxiang Yang
- Department of Radiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Feixue Yu
- Department of Radiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yujie Fei
- West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Guangyan Dong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Peilin Cao
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# W. Sec 2, 1st Ring Rd. Chengdu, Chengdu, 610072, Sichuan, China.
| | - Yi Liu
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# W. Sec 2, 1st Ring Rd. Chengdu, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
19
|
Valenzuela-Ponce H, Carbajal C, Soto-Nava M, Tapia-Trejo D, García-Morales C, Murillo W, Lorenzana I, Reyes-Terán G, Ávila-Ríos S. Honduras HIV cohort: HLA class I and CCR5-Δ32 profiles and their associations with HIV disease outcome. Microbiol Spectr 2023; 11:e0161323. [PMID: 37962394 PMCID: PMC10714756 DOI: 10.1128/spectrum.01613-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/03/2023] [Indexed: 11/15/2023] Open
Abstract
IMPORTANCE We identify both canonical and novel human leukocyte antigen (HLA)-HIV associations, providing a first step toward improved understanding of HIV immune control among the understudied Honduras Mestizo population. Our results are relevant to understanding the protective or detrimental effects of HLA subtypes in Latin America because their unique HLA diversity poses challenges for designing vaccines against HIV and interpreting results from such vaccine trials. Likewise, the description of the HLA profile in an understudied population that shows a unique HLA immunogenetic background is not only relevant for HIV immunology but also relevant in population genetics, molecular anthropology, susceptibility to other infections, autoimmune diseases, and allograft transplantation.
Collapse
Affiliation(s)
- Humberto Valenzuela-Ponce
- CIENI Centro de Investigación en Enfermedades Respiratorias, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Candy Carbajal
- Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Maribel Soto-Nava
- CIENI Centro de Investigación en Enfermedades Respiratorias, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Daniela Tapia-Trejo
- CIENI Centro de Investigación en Enfermedades Respiratorias, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Claudia García-Morales
- CIENI Centro de Investigación en Enfermedades Respiratorias, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Wendy Murillo
- Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Ivette Lorenzana
- Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Gustavo Reyes-Terán
- Comisión Coordinadora de Institutos Nacional de Salud y Hospitales de Alta Especialidad, Secretar ´ıa de Salud, Mexico City, Mexico
| | - Santiago Ávila-Ríos
- CIENI Centro de Investigación en Enfermedades Respiratorias, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
20
|
Wu F, Simonetti FR. Learning from Persistent Viremia: Mechanisms and Implications for Clinical Care and HIV-1 Cure. Curr HIV/AIDS Rep 2023; 20:428-439. [PMID: 37955826 PMCID: PMC10719122 DOI: 10.1007/s11904-023-00674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/14/2023]
Abstract
PURPOSE OF REVIEW In this review, we discuss what persistent viremia has taught us about the biology of the HIV-1 reservoir during antiretroviral therapy (ART). We will also discuss the implications of this phenomenon for HIV-1 cure research and its clinical management. RECENT FINDINGS While residual viremia (RV, 1-3 HIV-1 RNA copies/ml) can be detected in most of people on ART, some individuals experience non-suppressible viremia (NSV, > 20-50 copies/mL) despite optimal adherence. When issues of drug resistance and pharmacokinetics are ruled out, this persistent virus in plasma is the reflection of virus production from clonally expanded CD4+ T cells carrying proviruses. Recent work has shown that a fraction of the proviruses source of NSV are not infectious, due to defects in the 5'-Leader sequence. However, additional viruses and host determinants of NSV are not fully understood. The study of NSV is of prime importance because it represents a challenge for the clinical care of people on ART, and it sheds light on virus-host interactions that could advance HIV-1 remission research.
Collapse
Affiliation(s)
- Fengting Wu
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA
| | - Francesco R Simonetti
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA.
| |
Collapse
|
21
|
Nicholls EJ, Policek N, Volny-Anne A, Spire B, Burns F, Ruiz-Burga E, Tariq S. A systematic review of qualitative research on recently acquired HIV. AIDS 2023; 37:2199-2212. [PMID: 37650757 PMCID: PMC10621639 DOI: 10.1097/qad.0000000000003697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVES Recently acquired HIV is a critical time when people may experience debilitating symptoms and is when they are most likely to pass HIV on. Qualitative research offers insights into lived experiences and a deeper understanding of the contextual factors underlying HIV acquisition. We aimed to synthesize qualitative literature on recently acquired HIV. DESIGN Systematic review and textual narrative synthesis. METHODS We searched MEDLINE, CINAHL Plus, PsycINFO and Sociology Database. Articles were screened, and two authors completed full text review and data extraction. Quality appraisal was conducted (Critical Appraisal Skills Programme Qualitative Studies Checklist) and certainty of findings graded (GRADE-CERQual). RESULTS We reviewed 1890 articles (1554 following de-duplication), excluding 1539. Fifteen articles were included and an additional article was included after updating the search. We identified 15 themes, three of which we have high confidence in: recent acquisition of HIV facilitates understanding of circumstances of HIV acquisition; indeterminate HIV tests generate uncertainty and anxiety; and people with recently acquired HIV are motivated to reduce risk of onward transmission. CONCLUSIONS Our findings highlight the importance of continued research into recently acquired HIV, as well as the need for support to manage the emotional impact of indeterminate test results and negotiate risk reduction. We found no studies exploring sexual risk in the context of recently acquired HIV, or use of pre-exposure prophylaxis or treatment as prevention. The literature is primarily focused on HIV acquisition from an individual and behavioural perspective, neglecting important aspects of lived experience such as immediate ART, stigma, and health and wellbeing.
Collapse
Affiliation(s)
| | | | | | - Bruno Spire
- Aix Marseille Univ., Inserm, IRD, SESSTIM, ISSPAM, Marseille, France
| | - Fiona Burns
- Institute for Global Health, University College London, London
- Royal Free London NHS Foundation Trust, London
| | | | - Shema Tariq
- Institute for Global Health, University College London, London
- Mortimer Market Centre, Central and North West London NHS Foundation Trust, London, UK
| |
Collapse
|
22
|
Colson P, Bader W, Fantini J, Dudouet P, Levasseur A, Pontarotti P, Devaux C, Raoult D. From viral democratic genomes to viral wild bunch of quasispecies. J Med Virol 2023; 95:e29209. [PMID: 37937701 DOI: 10.1002/jmv.29209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/05/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023]
Abstract
The tremendous majority of RNA genomes from pathogenic viruses analyzed and deposited in databases are consensus or "democratic" genomes. They represent the genomes most frequently found in the clinical samples of patients but do not account for the huge genetic diversity of coexisting genomes, which is better described as quasispecies. A viral quasispecies is defined as the dynamic distribution of nonidentical but closely related mutants, variants, recombinant, or reassortant viral genomes. Viral quasispecies have collective behavior and dynamics and are the subject of internal interactions that comprise interference, complementation, or cooperation. In the setting of SARS-CoV-2 infection, intrahost SARS-CoV-2 genetic diversity was recently notably reported for immunocompromised, chronically infected patients, for patients treated with monoclonal antibodies targeting the viral spike protein, and for different body compartments of a single patient. A question that deserves attention is whether such diversity is generated postinfection from a clonal genome in response to selection pressure or is already present at the time of infection as a quasispecies. In the present review, we summarize the data supporting that hosts are infected by a "wild bunch" of viruses rather than by multiple virions sharing the same genome. Each virion in the "wild bunch" may have different virulence and tissue tropisms. As the number of viruses replicated during host infections is huge, a viral quasispecies at any time of infection is wide and is also influenced by host-specific selection pressure after infection, which accounts for the difficulty in deciphering and predicting the appearance of more fit variants and the evolution of epidemics of novel RNA viruses.
Collapse
Affiliation(s)
- Philippe Colson
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Université., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Wahiba Bader
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Université., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Jacques Fantini
- INSERM UMR_S 1072, Aix-Marseille Université, Marseille, France
| | - Pierre Dudouet
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Université., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Anthony Levasseur
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Université., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Pierre Pontarotti
- IHU Méditerranée Infection, Marseille, France
- Department of Biological Sciences, Centre National de la Recherche 16 Scientifique (CNRS)-SNC5039, Marseille, France
| | - Christian Devaux
- IHU Méditerranée Infection, Marseille, France
- Department of Biological Sciences, Centre National de la Recherche 16 Scientifique (CNRS)-SNC5039, Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Université., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| |
Collapse
|
23
|
Grant‐McAuley W, Piwowar‐Manning E, Clarke W, Breaud A, Zewdie KB, Moore A, Ayles HM, Kosloff B, Shanaube K, Bock P, Meehan S, Maarman G, Fidler S, Hayes R, Donnell D, Eshleman SH, for the HPTN 071 (PopART) Study Team. Population-level analysis of natural control of HIV infection in Zambia and South Africa: HPTN 071 (PopART). J Int AIDS Soc 2023; 26:e26179. [PMID: 37886843 PMCID: PMC10603557 DOI: 10.1002/jia2.26179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
INTRODUCTION HIV controllers have low viral loads (VL) without antiretroviral treatment (ART). We evaluated viraemic control in a community-randomized trial conducted in Zambia and South Africa that evaluated the impact of a combination prevention intervention on HIV incidence (HPTN 071 [PopART]; 2013-2018). METHODS VL and antiretroviral (ARV) drug testing were performed using plasma samples collected 2 years after enrolment for 4072 participants who were HIV positive at the start of the study intervention. ARV drug use was assessed using a qualitative laboratory assay that detects 22 ARV drugs in five drug classes. Participants were classified as non-controllers if they had a VL ≥2000 copies/ml with no ARV drugs detected at this visit. Additional VL and ARV drug testing was performed at a second annual study visit to confirm controller status. Participants were classified as controllers if they had VLs <2000 with no ARV drugs detected at both visits. Non-controllers who had ARV drugs detected at either visit were excluded from the analysis to minimize potential confounders associated with ARV drug access and uptake. RESULTS The final cohort included 126 viraemic controllers and 766 non-controllers who had no ARV drugs detected. The prevalence of controllers among the 4072 persons assessed was 3.1% (95% confidence interval [CI]: 2.6%, 3.6%). This should be considered a minimum estimate, since high rates of ARV drug use in the parent study limited the ability to identify controllers. Among the 892 participants in the final cohort, controller status was associated with biological sex (female > male, p = 0.027). There was no significant association between controller status and age, study country or herpes simplex virus type 2 (HSV-2) status at study enrolment. CONCLUSIONS To our knowledge, this report presents the first large-scale, population-level study evaluating the prevalence of viraemic control and associated factors in Africa. A key advantage of this study was that a biomedical assessment was used to assess ARV drug use (vs. self-reported data). This study identified a large cohort of HIV controllers and non-controllers not taking ARV drugs, providing a unique repository of longitudinal samples for additional research. This cohort may be useful for further studies investigating the mechanisms of virologic control.
Collapse
Affiliation(s)
- Wendy Grant‐McAuley
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | | - William Clarke
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Autumn Breaud
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | | | | - Helen Mary Ayles
- ZambartUniversity of Zambia School of Public HealthLusakaZambia
- Clinical Research DepartmentLondon School of Hygiene and Tropical MedicineLondonUK
| | - Barry Kosloff
- ZambartUniversity of Zambia School of Public HealthLusakaZambia
- Clinical Research DepartmentLondon School of Hygiene and Tropical MedicineLondonUK
| | - Kwame Shanaube
- ZambartUniversity of Zambia School of Public HealthLusakaZambia
| | - Peter Bock
- Desmond Tutu TB CenterDepartment of Paediatrics and Child HealthStellenbosch UniversityWestern CapeSouth Africa
| | - Sue‐Ann Meehan
- Desmond Tutu TB CenterDepartment of Paediatrics and Child HealthStellenbosch UniversityWestern CapeSouth Africa
| | - Gerald Maarman
- Centre for Cardio‐Metabolic Research in AfricaDivision of Medical PhysiologyFaculty of Medicine and Health SciencesStellenbosch UniversityWestern CapeSouth Africa
| | - Sarah Fidler
- Department of Infectious DiseaseImperial College LondonLondonUK
| | - Richard Hayes
- Department of Infectious Disease EpidemiologyLondon School of Hygiene and Tropical MedicineLondonUK
| | | | - Susan H. Eshleman
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | |
Collapse
|
24
|
Hans L, Cassim N, Sarang S, Hardie D, Ndlovu S, Venter WF, Da Silva P, Stevens W. HIV Viral Load Testing in the South African Public Health Setting in the Context of Evolving ART Guidelines and Advances in Technology, 2013-2022. Diagnostics (Basel) 2023; 13:2731. [PMID: 37685268 PMCID: PMC10486780 DOI: 10.3390/diagnostics13172731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
HIV viral load (VL) testing plays a key role in the clinical management of HIV as a marker of adherence and antiretroviral efficacy. To date, national and international antiretroviral treatment recommendations have evolved to endorse routine VL testing. South Africa (SA) has recommended routine VL testing since 2004. Progressively, the centralised HIV VL program managed by its National Health Laboratory Service (NHLS) has undergone expansive growth. Retrospective de-identified VL data from 2013 to 2022 were evaluated to review program performance. Test volumes increased from 1,961,720 performed in 2013 to 45,334,864 in 2022. The median total in-laboratory turnaround time (TAT) ranged from 94 h (2015) to 51 h (2022). Implementation of two new assays improved median TATs in all laboratories. Samples of VL greater than 1000 copies/mL declined steadily. Despite initial increases, samples of fewer than 50 copies/mL stagnated at about 70% from 2019 and declined to 68% in 2022. Some variations between assays were observed. Overall, the SA VL program is successful. The scale of the VL program, the largest of its kind in the world by some margin, provides lessons for future public health programs dependent on laboratories for patient outcome and program performance monitoring.
Collapse
Affiliation(s)
- Lucia Hans
- Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2193, South Africa
- Wits Diagnostics Innovation Hub, Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2193, South Africa (W.S.)
- National Health Laboratory Service, National Priority Programme (NPP), Johannesburg 2193, South Africa
| | - Naseem Cassim
- Wits Diagnostics Innovation Hub, Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2193, South Africa (W.S.)
- National Health Laboratory Service, National Priority Programme (NPP), Johannesburg 2193, South Africa
| | - Somayya Sarang
- Wits Diagnostics Innovation Hub, Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2193, South Africa (W.S.)
- National Health Laboratory Service, National Priority Programme (NPP), Johannesburg 2193, South Africa
| | - Diana Hardie
- National Health Laboratory Service, Cape Town 8005, South Africa
- Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
| | - Silence Ndlovu
- Wits Diagnostics Innovation Hub, Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2193, South Africa (W.S.)
- National Health Laboratory Service, National Priority Programme (NPP), Johannesburg 2193, South Africa
| | - W.D. Francois Venter
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
| | - Pedro Da Silva
- Wits Diagnostics Innovation Hub, Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2193, South Africa (W.S.)
- National Health Laboratory Service, National Priority Programme (NPP), Johannesburg 2193, South Africa
| | - Wendy Stevens
- Wits Diagnostics Innovation Hub, Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2193, South Africa (W.S.)
- National Health Laboratory Service, National Priority Programme (NPP), Johannesburg 2193, South Africa
| |
Collapse
|
25
|
Yaffe ZA, Sung K, Bosire R, Farquhar C, Ngacha DM, Lohman-Payne B, Nduati R, John-Stewart G, Matsen FA, Overbaugh J. Passively Acquired Constant Region 5-Specific Antibodies Associated With Improved Survival in Infants Who Acquire Human Immunodeficiency Virus. Open Forum Infect Dis 2023; 10:ofad316. [PMID: 37426948 PMCID: PMC10323728 DOI: 10.1093/ofid/ofad316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
Studying vertical human immunodeficiency virus (HIV) transmission enables the impact of passively transferred antibodies on HIV transmission and pathogenesis to be examined. Using phage display of HIV envelope peptides and peptide enzyme-linked immunosorbent assay (ELISA), we found that, in infants who acquired HIV, passive antibody responses to constant region 5 (C5) were associated with improved survival in 2 cohorts. In a combined analysis, C5 peptide ELISA activity was correlated directly with survival and estimated infection time and inversely with set point viral load. These results suggest that preexisting C5-specific antibodies may be correlated with the survival of infants living with HIV, motivating additional research into their protective potential.
Collapse
Affiliation(s)
- Zak A Yaffe
- Correspondence: Julie Overbaugh, PhD, Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, C2-023, Seattle, WA 98109 (); Zak A. Yaffe, PhD, Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, C2-023, Seattle, WA 98109 ()
| | - Kevin Sung
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Rose Bosire
- Centre for Public Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Carey Farquhar
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Dorothy Mbori Ngacha
- HIV Section, United Nations Children's Fund, New York, New York, USA
- Department of Paediatrics and Child Health, University of Nairobi, Kenyatta National Hospital, Nairobi, Kenya
| | - Barbara Lohman-Payne
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Paediatrics and Child Health, University of Nairobi, Kenyatta National Hospital, Nairobi, Kenya
| | - Ruth Nduati
- Department of Paediatrics and Child Health, University of Nairobi, Kenyatta National Hospital, Nairobi, Kenya
| | - Grace John-Stewart
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Frederick A Matsen
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, Washington, USA
| | - Julie Overbaugh
- Correspondence: Julie Overbaugh, PhD, Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, C2-023, Seattle, WA 98109 (); Zak A. Yaffe, PhD, Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, C2-023, Seattle, WA 98109 ()
| |
Collapse
|
26
|
Sanders-Beer BE, Archin NM, Brumme ZL, Busch MP, Deleage C, O'Doherty U, Hughes SH, Jerome KR, Jones RB, Karn J, Kearney MF, Keele BF, Kulpa DA, Laird GM, Li JZ, Lichterfeld MD, Nussenzweig MC, Persaud D, Yukl SA, Siliciano RF, Mellors JW. Current HIV/SIV Reservoir Assays for Preclinical and Clinical Applications: Recommendations from the Experts 2022 NIAID Workshop Summary. AIDS Res Hum Retroviruses 2023; 40:7-21. [PMID: 37126090 DOI: 10.1089/aid.2022.0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Since the first HIV-cured person was reported in 2009, a strong interest in developing highly sensitive HIV and SIV reservoir assays has emerged. In particular, the question arose about the comparative value of state-of-the-art assays to measure and characterize the HIV reservoir, and how these assays can be applied to accurately detect changes in the reservoir during efforts to develop a cure for HIV infection. Second, it is important to consider the impact on the outcome of clinical trials if these relatively new HIV reservoir assays are incorporated into clinical trial endpoints and/or used for clinical decision-making. To understand the advantages and limitations and the regulatory implications of HIV reservoir assays, the National Institute of Allergy and Infectious Diseases (NIAID) sponsored and convened a meeting on September 16, 2022, to discuss the state of knowledge concerning these questions and best practices for selecting HIV reservoir assays for a particular research question or clinical trial protocol.
Collapse
Affiliation(s)
- Brigitte E Sanders-Beer
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nancie M Archin
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Michael P Busch
- Vitalant Research Institute, University of California, San Francisco, California, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, Maryland, USA
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen H Hughes
- HIV Dynamics and Replication Program, CCR, National Cancer Institute, Frederick, Maryland, USA
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, and Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - R Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mary F Kearney
- HIV Dynamics and Replication Program, CCR, National Cancer Institute, Frederick, Maryland, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, Maryland, USA
| | - Deanna A Kulpa
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Jonathan Z Li
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mathias D Lichterfeld
- Brigham and Women's Hospital and Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Deborah Persaud
- Department of Pediatric Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Steven A Yukl
- Department of Medicine, University of California San Francisco (UCSF) and San Francisco VA Medical Center, San Francisco, California, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John W Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
27
|
Ahuja SK, Manoharan MS, Lee GC, McKinnon LR, Meunier JA, Steri M, Harper N, Fiorillo E, Smith AM, Restrepo MI, Branum AP, Bottomley MJ, Orrù V, Jimenez F, Carrillo A, Pandranki L, Winter CA, Winter LA, Gaitan AA, Moreira AG, Walter EA, Silvestri G, King CL, Zheng YT, Zheng HY, Kimani J, Blake Ball T, Plummer FA, Fowke KR, Harden PN, Wood KJ, Ferris MT, Lund JM, Heise MT, Garrett N, Canady KR, Abdool Karim SS, Little SJ, Gianella S, Smith DM, Letendre S, Richman DD, Cucca F, Trinh H, Sanchez-Reilly S, Hecht JM, Cadena Zuluaga JA, Anzueto A, Pugh JA, Agan BK, Root-Bernstein R, Clark RA, Okulicz JF, He W. Immune resilience despite inflammatory stress promotes longevity and favorable health outcomes including resistance to infection. Nat Commun 2023; 14:3286. [PMID: 37311745 PMCID: PMC10264401 DOI: 10.1038/s41467-023-38238-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/17/2023] [Indexed: 06/15/2023] Open
Abstract
Some people remain healthier throughout life than others but the underlying reasons are poorly understood. Here we hypothesize this advantage is attributable in part to optimal immune resilience (IR), defined as the capacity to preserve and/or rapidly restore immune functions that promote disease resistance (immunocompetence) and control inflammation in infectious diseases as well as other causes of inflammatory stress. We gauge IR levels with two distinct peripheral blood metrics that quantify the balance between (i) CD8+ and CD4+ T-cell levels and (ii) gene expression signatures tracking longevity-associated immunocompetence and mortality-associated inflammation. Profiles of IR metrics in ~48,500 individuals collectively indicate that some persons resist degradation of IR both during aging and when challenged with varied inflammatory stressors. With this resistance, preservation of optimal IR tracked (i) a lower risk of HIV acquisition, AIDS development, symptomatic influenza infection, and recurrent skin cancer; (ii) survival during COVID-19 and sepsis; and (iii) longevity. IR degradation is potentially reversible by decreasing inflammatory stress. Overall, we show that optimal IR is a trait observed across the age spectrum, more common in females, and aligned with a specific immunocompetence-inflammation balance linked to favorable immunity-dependent health outcomes. IR metrics and mechanisms have utility both as biomarkers for measuring immune health and for improving health outcomes.
Collapse
Affiliation(s)
- Sunil K Ahuja
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| | - Muthu Saravanan Manoharan
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Grace C Lee
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Pharmacotherapy Education and Research Center, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Lyle R McKinnon
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, 4001, South Africa
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Justin A Meunier
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Maristella Steri
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, 09042, Italy
| | - Nathan Harper
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Edoardo Fiorillo
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, 09042, Italy
| | - Alisha M Smith
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Marcos I Restrepo
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Anne P Branum
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Matthew J Bottomley
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX1 2JD, UK
- Oxford Kidney Unit, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Valeria Orrù
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, 09042, Italy
| | - Fabio Jimenez
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Andrew Carrillo
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Lavanya Pandranki
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Caitlyn A Winter
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Lauryn A Winter
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Alvaro A Gaitan
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Alvaro G Moreira
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Elizabeth A Walter
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Guido Silvestri
- Department of Pathology, Emory University School of Medicine & Emory National Primate Research Center, Atlanta, GA, 30322, USA
| | - Christopher L King
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- National Resource Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
| | - Hong-Yi Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- National Resource Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
| | - Joshua Kimani
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - T Blake Ball
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Francis A Plummer
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Keith R Fowke
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Paul N Harden
- Oxford Kidney Unit, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Kathryn J Wood
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX1 2JD, UK
| | - Martin T Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jennifer M Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Department of Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Mark T Heise
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Kristen R Canady
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, 4001, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Susan J Little
- Department of Medicine, University of California, La Jolla, CA, 92093, USA
- San Diego Center for AIDS Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sara Gianella
- Department of Medicine, University of California, La Jolla, CA, 92093, USA
- San Diego Center for AIDS Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - Davey M Smith
- Department of Medicine, University of California, La Jolla, CA, 92093, USA
- San Diego Center for AIDS Research, University of California San Diego, La Jolla, CA, 92093, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, 92161, USA
| | - Scott Letendre
- Department of Medicine, University of California, La Jolla, CA, 92093, USA
| | - Douglas D Richman
- San Diego Center for AIDS Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, 09042, Italy
- Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, 07100, Italy
| | - Hanh Trinh
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
| | - Sandra Sanchez-Reilly
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Joan M Hecht
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Jose A Cadena Zuluaga
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Antonio Anzueto
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Jacqueline A Pugh
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Brian K Agan
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | | | - Robert A Clark
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Jason F Okulicz
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Department of Medicine, Infectious Diseases Service, Brooke Army Medical Center, San Antonio, TX, 78234, USA
| | - Weijing He
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| |
Collapse
|
28
|
Kayesh MEH, Kohara M, Tsukiyama-Kohara K. Toll-like Receptor Response to Human Immunodeficiency Virus Type 1 or Co-Infection with Hepatitis B or C Virus: An Overview. Int J Mol Sci 2023; 24:ijms24119624. [PMID: 37298575 DOI: 10.3390/ijms24119624] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Toll-like receptors (TLRs) are evolutionarily conserved pattern recognition receptors that play important roles in the early detection of pathogen-associated molecular patterns and shaping innate and adaptive immune responses, which may influence the consequences of infection. Similarly to other viral infections, human immunodeficiency virus type 1 (HIV-1) also modulates the host TLR response; therefore, a proper understanding of the response induced by human HIV-1 or co-infection with hepatitis B virus (HBV) or hepatitis C virus (HCV), due to the common mode of transmission of these viruses, is essential for understanding HIV-1 pathogenesis during mono- or co-infection with HBV or HCV, as well as for HIV-1 cure strategies. In this review, we discuss the host TLR response during HIV-1 infection and the innate immune evasion mechanisms adopted by HIV-1 for infection establishment. We also examine changes in the host TLR response during HIV-1 co-infection with HBV or HCV; however, this type of study is extremely scarce. Moreover, we discuss studies investigating TLR agonists as latency-reverting agents and immune stimulators towards new strategies for curing HIV. This understanding will help develop a new strategy for curing HIV-1 mono-infection or co-infection with HBV or HCV.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
29
|
John-Olabode SO, Akintan P, Okunade KS, Ajie I. Comparative Assessment of Serum Selenium Status in HIV-Infected and Non-infected Children: A Pilot Study in a Tertiary Hospital in Nigeria. Cureus 2023; 15:e39626. [PMID: 37388617 PMCID: PMC10301851 DOI: 10.7759/cureus.39626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 07/01/2023] Open
Abstract
Background Selenium is an essential micronutrient that plays a crucial role in a wide range of physiological processes, including immune responses. Selenium deficiency has been recognized as an associated factor in the progression of HIV to advanced HIV disease and/or mortality. Although selenium supplementation has been shown to reduce hospitalizations and improve cellular immunity, the evidence remains mixed. This study aimed to determine the prevalence of selenium deficiency and its relationship with HIV disease markers in HIV-infected children at the Lagos University Teaching Hospital. Methodology This is a cross-sectional, comparative, pilot study of plasma concentrations of selenium in HIV-infected (n = 30) and non-infected (n = 20) children enrolled in the pediatric HIV clinic of the Lagos University Teaching Hospital, Lagos, Nigeria, from May 2019 to May 2021. HIV-infected children were on stable antiretroviral therapy (ART) with an undetectable viral load. The serum concentration of selenium was measured using the automated atomic absorption spectrophotometer (hydride generation method). Logistic regression was used to study the effect of selenium status on the levels of HIV disease markers (CD4 count, viral load, weight, opportunistic infections) in the study participants. Results The median age of all participants was nine (4-12) years, with 74% being boys. The mean selenium concentrations were lower in HIV-infected children (91.1 ± 12.0 µg/L) compared to the comparison group without HIV (147.8 ± 4.9 µg/L) (p = 0.001). After controlling for age, ART duration, markers of HIV infection, and other potentially confounding variables, participants with selenium deficiency had approximately 11-fold odds of increased hospital admissions (adjusted odds ratio = 10.57, 95% confidence interval = 1.58 to 70.99; p = 0.015). Conclusions In this study, selenium concentrations were significantly lower in HIV-infected children than in the HIV-negative comparison group. Lower serum selenium concentrations were associated with increased hospitalizations. Although our findings suggest the potential need for selenium supplementation for children living with HIV in Nigeria, further studies are warranted to determine the safety and efficacy of selenium supplementation in this key population.
Collapse
Affiliation(s)
- Sarah O John-Olabode
- Haematology and Blood Transfusion, College of Medicine, University of Lagos, Lagos, NGA
| | - Patricia Akintan
- Paediatrics, College of Medicine, University of Lagos, Lagos, NGA
| | - Kehinde S Okunade
- Obstetrics and Gynaecology, College of Medicine, University of Lagos, Lagos, NGA
| | - Iwuchukwu Ajie
- Clinical Pathology, College of Medicine, University of Lagos, Lagos, NGA
| |
Collapse
|
30
|
Resende F, de Araújo S, Tavares LP, Teixeira MM, Costa VV. The Multifaceted Role of Annexin A1 in Viral Infections. Cells 2023; 12:1131. [PMID: 37190040 PMCID: PMC10137178 DOI: 10.3390/cells12081131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Dysregulated inflammatory responses are often correlated with disease severity during viral infections. Annexin A1 (AnxA1) is an endogenous pro-resolving protein that timely regulates inflammation by activating signaling pathways that culminate with the termination of response, clearance of pathogen and restoration of tissue homeostasis. Harnessing the pro-resolution actions of AnxA1 holds promise as a therapeutic strategy to control the severity of the clinical presentation of viral infections. In contrast, AnxA1 signaling might also be hijacked by viruses to promote pathogen survival and replication. Therefore, the role of AnxA1 during viral infections is complex and dynamic. In this review, we provide an in-depth view of the role of AnxA1 during viral infections, from pre-clinical to clinical studies. In addition, this review discusses the therapeutic potential for AnxA1 and AnxA1 mimetics in treating viral infections.
Collapse
Affiliation(s)
- Filipe Resende
- Post-Graduation Program of Cell Biology, Department of Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Center for Research and Development of Drugs, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Simone de Araújo
- Center for Research and Development of Drugs, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Luciana Pádua Tavares
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Mauro Martins Teixeira
- Center for Research and Development of Drugs, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Vivian Vasconcelos Costa
- Post-Graduation Program of Cell Biology, Department of Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Center for Research and Development of Drugs, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| |
Collapse
|
31
|
Aksak-Wąs BJ, Kowalska JD, Ząbek P, Serwin K, Rafalska-Kosior M, Gołąb J, Chober D, Skonieczna-Żydecka K, Hackiewicz M, Parczewski M. Immune restoration affects 10-year survival in people living with HIV/AIDS. HIV Med 2023; 24:325-334. [PMID: 36054430 DOI: 10.1111/hiv.13391] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION In recent years, a reduction in the life expectancy gap between people living with HIV (PLWH) and the general population has been observed, irrespective of CD4 lymphocyte count, due to widespread access to antiretroviral treatment. The increase in the life expectancy of PLWH has increased awareness of both the ageing process and gender discrepancies in immune restoration and survival. MATERIALS AND METHODS Longitudinal data were collected for 2240 patients followed up at the Hospital for Infectious Diseases in Warsaw, Poland (n = 1482), and the Department of Acquired Immunodeficiency, Pomeranian Medical University, Szczecin, Poland (n = 758). Immune restoration was measured from the time of starting combination antiretroviral therapy until achieving 500 CD4 lymphocytes/μL, 800 CD4 lymphocytes/μL, and CD4/CD8 lymphocyte ratios of > 0.8 and > 1.0. Full recovery was achieved when the patient was restored to both 800 CD4 lymphocytes/μL and a CD4/CD8 lymphocyte ratio > 1.0. RESULTS For all endpoints, immune restoration had a protective effect by reducing mortality. Patients who achieved immune restoration had a greater chance of reduced mortality than those who did not achieve immune restoration: for CD4 count > 500 cells/μL, HR = 5.4 (interquartile range: 3.09-9.41), p < 0.001; for CD4 > 800 cells/μL, HR = 5.37 (2.52-11.43), p < 0.001; for CD4/CD8 ratio > 0.8, HR = 3.16 (1.81-5.51), p < 0.001; for CD4/CD8 ratio > 1.0, HR = 2.67 (1.49-5.24), p = 0.001, and for full immune recovery, HR = 3.62 (1.63-8.04), p = 0.002. CONCLUSIONS Immune restoration remains a powerful factor in improving the survival of PLWH, regardless of the speed of recovery.
Collapse
Affiliation(s)
- Bogusz Jan Aksak-Wąs
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Justyna D Kowalska
- Department of Adults' Infectious Diseases, Medical University of Warsaw, Warsaw, Poland.,Hospital for Infectious Diseases in Warsaw, Warsaw, Poland
| | - Piotr Ząbek
- Department of Adults' Infectious Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Karol Serwin
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Milena Rafalska-Kosior
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Joanna Gołąb
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Daniel Chober
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | | - Małgorzata Hackiewicz
- Department of Adults' Infectious Diseases, Medical University of Warsaw, Warsaw, Poland.,Hospital for Infectious Diseases in Warsaw, Warsaw, Poland
| | - Miłosz Parczewski
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
32
|
Kuriakose Gift S, Wieczorek L, Sanders-Buell E, Zemil M, Molnar S, Donofrio G, Townsley S, Chenine AL, Bose M, Trinh HV, Barrows BM, Sriplienchan S, Kitsiripornchai S, Nitayapan S, Eller LA, Rao M, Ferrari G, Michael NL, Ake JA, Krebs SJ, Robb ML, Tovanabutra S, Polonis VR. Evolution of Antibody Responses in HIV-1 CRF01_AE Acute Infection: Founder Envelope V1V2 Impacts the Timing and Magnitude of Autologous Neutralizing Antibodies. J Virol 2023; 97:e0163522. [PMID: 36749076 PMCID: PMC9973046 DOI: 10.1128/jvi.01635-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023] Open
Abstract
Understanding the dynamics of early immune responses to HIV-1 infection, including the evolution of initial neutralizing and antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies, will inform HIV vaccine design. In this study, we assess the development of autologous neutralizing antibodies (ANAbs) against founder envelopes (Envs) from 18 participants with HIV-1 CRF01_AE acute infection. The timing of ANAb development directly associated with the magnitude of the longitudinal ANAb response. Participants that developed ANAbs within 6 months of infection had significantly higher ANAb responses at 1 year (50% inhibitory concentration [IC50] geometric mean titer [GMT] = 2,010 versus 184; P = 0.001) and 2 years (GMT = 3,479 versus 340; P = 0.015), compared to participants that developed ANAb responses after 6 months. Participants with later development of ANAb tended to develop an earlier, potent heterologous tier 1 (92TH023) neutralizing antibody (NAb) response (P = 0.049). CRF01_AE founder Env V1V2 loop lengths correlated indirectly with the timing (P = 0.002, r = -0.675) and directly with magnitude (P = 0.005, r = 0.635) of ANAb responses; Envs with longer V1V2 loop lengths elicited earlier and more potent ANAb responses. While ANAb responses did not associate with viral load, the viral load set point correlated directly with neutralization of the heterologous 92TH023 strain (P = 0.007, r = 0.638). In contrast, a striking inverse correlation was observed between viral load set point and peak ADCC against heterologous 92TH023 Env strain (P = 0.0005, r = -0.738). These data indicate that specific antibody functions can be differentially related to viral load set point and may affect HIV-1 pathogenesis. Exploiting Env properties, such as V1V2 length, could facilitate development of subtype-specific vaccines that elicit more effective immune responses and improved protection. IMPORTANCE Development of an effective HIV-1 vaccine will be facilitated by better understanding the dynamics between the founder virus and the early humoral responses. Variations between subtypes may influence the evolution of immune responses and should be considered as we strive to understand these dynamics. In this study, autologous founder envelope neutralization and heterologous functional humoral responses were evaluated after acute infection by HIV-1 CRF01_AE, a subtype that has not been thoroughly characterized. The evolution of these humoral responses was assessed in relation to envelope characteristics, magnitude of elicited immune responses, and viral load. Understanding immune parameters in natural infection will improve our understanding of protective responses and aid in the development of immunogens that elicit protective functional antibodies. Advancing our knowledge of correlates of positive clinical outcomes should lead to the design of more efficacious vaccines.
Collapse
Affiliation(s)
- Syna Kuriakose Gift
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Lindsay Wieczorek
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Michelle Zemil
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Sebastian Molnar
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Gina Donofrio
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Samantha Townsley
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Agnes L. Chenine
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Meera Bose
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Hung V. Trinh
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Brittani M. Barrows
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Somchai Sriplienchan
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Suchai Kitsiripornchai
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sorachai Nitayapan
- Royal Thai Army, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Leigh-Anne Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Guido Ferrari
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nelson L. Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Julie A. Ake
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Shelly J. Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Merlin L. Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Victoria R. Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
33
|
Zhang X, Wang X, Qin L, Lu X, Liu Z, Li Z, Yuan L, Wang R, Jin J, Ma Z, Wu H, Zhang Y, Zhang T, Su B. Changing roles of CD3 + CD8 low T cells in combating HIV-1 infection. Chin Med J (Engl) 2023; 136:433-445. [PMID: 36580634 PMCID: PMC10106209 DOI: 10.1097/cm9.0000000000002458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cluster of differentiation 8 (CD8 T) cells play critical roles in eradicating human immunodeficiency virus (HIV)-1 infection, but little is known about the effects of T cells expressing CD8 at low levels (CD8 low ) or high levels (CD8 high ) on HIV-1 replication inhibition after HIV-1 invasion into individual. METHODS Nineteen patients who had been acutely infected with HIV-1 (AHI) and 20 patients with chronic infection (CHI) for ≥2 years were enrolled in this study to investigate the dynamics of the quantity, activation, and immune responses of CD3 + CD8 low T cells and their counterpart CD3 + CD8 high T cells at different stages of HIV-1 infection. RESULTS Compared with healthy donors, CD3 + CD8 low T cells expanded in HIV-1-infected individuals at different stages of infection. As HIV-1 infection progressed, CD3 + CD8 low T cells gradually decreased. Simultaneously, CD3 + CD8 high T cells was significantly reduced in the first month of AHI and then increased gradually as HIV-1 infection progressed. The classical activation of CD3 + CD8 low T cells was highest in the first month of AHI and then reduced as HIV-1 infection progressed and entered the chronic stage. Meanwhile, activated CD38 - HLA-DR + CD8 low T cells did not increase in the first month of AHI, and the number of these cells was inversely associated with viral load ( r = -0.664, P = 0.004) but positively associated with the CD4 T-cell count ( r = 0.586, P = 0.014). Increased programmed cell death protein 1 (PD-1) abundance on CD3 + CD8 low T cells was observed from the 1st month of AHI but did not continue to be enhanced, while a significant T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibition motif (ITIM) domains (TIGIT) abundance increase was observed in the 12th month of infection. Furthermore, increased PD-1 and TIGIT abundance on CD3 + CD8 low T cells was associated with a low CD4 T-cell count (PD-1: r = -0.456, P = 0.043; TIGIT: r = -0.488, P = 0.029) in CHI. Nonetheless, the nonincrease in PD-1 expression on classically activated CD3 + CD8 low T cells was inversely associated with HIV-1 viremia in the first month of AHI ( r = -0.578, P = 0.015). Notably, in the first month of AHI, few CD3 + CD8 low T cells, but comparable amounts of CD3 + CD8 high T cells, responded to Gag peptides. Then, weaker HIV-1-specific T-cell responses were induced in CD3 + CD8 low T cells than CD3 + CD8 high T cells at the 3rd and 12th months of AHI and in CHI. CONCLUSIONS Our findings suggest that CD3 + CD8 low T cells play an anti-HIV role in the first month of infection due to their abundance but induce a weak HIV-1-specific immune response. Subsequently, CD3 + CD8 low T-cell number decreased gradually as infection persisted, and their anti-HIV functions were inferior to those of CD3 + CD8 high T cells.
Collapse
Affiliation(s)
- Xin Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xiuwen Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Ling Qin
- Research Center for Biomedical Resources, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xiaofan Lu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Zhiying Liu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Zhen Li
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Lin Yuan
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Rui Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Junyan Jin
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Zhenglai Ma
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Yonghong Zhang
- Research Center for Biomedical Resources, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
34
|
Sokhela S, Lalla-Edward S, Siedner MJ, Majam M, Venter WDF. Roadmap for Achieving Universal Antiretroviral Treatment. Annu Rev Pharmacol Toxicol 2023; 63:99-117. [PMID: 36662580 PMCID: PMC10807407 DOI: 10.1146/annurev-pharmtox-052020-094321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Modern antiretroviral therapy safely, potently, and durably suppresses human immunodeficiency virus (HIV) that, if left untreated, predictably causes acquired immunodeficiency syndrome (AIDS), which has been responsible for tens of millions of deaths globally since it was described in 1981. In one of the most extraordinary medical success stories in modern times, a combination of pioneering basic science, innovative drug development, and ambitious public health programming resulted in access to lifesaving, safe drugs, taken as an oral tablet daily, for most of the world. However, substantial challenges remain in the fields of prevention, timely access to diagnosis, and treatment, especially in pediatric and adolescent patients. As HIV-positive adults age, treating their comorbidities will require understanding the course of different chronic diseases complicated by HIV-related and antiretroviral toxicities and finding potential treatments. Finally, new long-acting antiretrovirals on the horizon promise exciting new options in both the prevention and treatment fields.
Collapse
Affiliation(s)
- Simiso Sokhela
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa;
| | - Samanta Lalla-Edward
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa;
| | - Mark J Siedner
- Harvard Medical School and Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mohammed Majam
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa;
| | | |
Collapse
|
35
|
Gabrielaite M, Bennedbæk M, Rasmussen MS, Kan V, Furrer H, Flisiak R, Losso M, Lundgren JD, INSIGHT START Study Group, Marvig RL. Deep-sequencing of viral genomes from a large and diverse cohort of treatment-naive HIV-infected persons shows associations between intrahost genetic diversity and viral load. PLoS Comput Biol 2023; 19:e1010756. [PMID: 36595537 PMCID: PMC9838853 DOI: 10.1371/journal.pcbi.1010756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/13/2023] [Accepted: 11/23/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Infection with human immunodeficiency virus type 1 (HIV) typically results from transmission of a small and genetically uniform viral population. Following transmission, the virus population becomes more diverse because of recombination and acquired mutations through genetic drift and selection. Viral intrahost genetic diversity remains a major obstacle to the cure of HIV; however, the association between intrahost diversity and disease progression markers has not been investigated in large and diverse cohorts for which the majority of the genome has been deep-sequenced. Viral load (VL) is a key progression marker and understanding of its relationship to viral intrahost genetic diversity could help design future strategies for HIV monitoring and treatment. METHODS We analysed deep-sequenced viral genomes from 2,650 treatment-naive HIV-infected persons to measure the intrahost genetic diversity of 2,447 genomic codon positions as calculated by Shannon entropy. We tested for associations between VL and amino acid (AA) entropy accounting for sex, age, race, duration of infection, and HIV population structure. RESULTS We confirmed that the intrahost genetic diversity is highest in the env gene. Furthermore, we showed that mean Shannon entropy is significantly associated with VL, especially in infections of >24 months duration. We identified 16 significant associations between VL (p-value<2.0x10-5) and Shannon entropy at AA positions which in our association analysis explained 13% of the variance in VL. Finally, equivalent analysis based on variation in HIV consensus sequences explained only 2% of VL variance. CONCLUSIONS Our results elucidate that viral intrahost genetic diversity is associated with VL and could be used as a better disease progression marker than HIV consensus sequence variants, especially in infections of longer duration. We emphasize that viral intrahost diversity should be considered when studying viral genomes and infection outcomes. TRIAL REGISTRATION Samples included in this study were derived from participants who consented in the clinical trial, START (NCT00867048) (23), run by the International Network for Strategic Initiatives in Global HIV Trials (INSIGHT). All the participant sites are listed here: http://www.insight-trials.org/start/my_phpscript/participating.php?by=site.
Collapse
Affiliation(s)
- Migle Gabrielaite
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
- * E-mail: (MG); (MB)
| | - Marc Bennedbæk
- Centre of Excellence for Health, Immunity and Infections, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (MG); (MB)
| | - Malthe Sebro Rasmussen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
- Section of Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Virginia Kan
- Veterans Affairs Medical Center and The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States of America
| | - Hansjakob Furrer
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Bialystok, Bialystok, Poland
| | - Marcelo Losso
- Hospital General De Agudos J M Ramos Mejía, Buenos Aires, Argentina
| | - Jens D. Lundgren
- Centre of Excellence for Health, Immunity and Infections, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Rasmus L. Marvig
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
36
|
Abstract
Biological sex has wide-ranging impacts on HIV infection spanning differences in acquisition risk, the pathogenesis of untreated infection, impact of chronic treated disease and prospects for HIV eradication or functional cure. This chapter summarizes the scope of these differences and discusses several features of the immune response thought to contribute to the clinical outcomes.
Collapse
Affiliation(s)
- Marcus Altfeld
- Department Virus Immunology, Leibniz Institute for Virology, Hamburg, Germany
| | - Eileen P Scully
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
37
|
Gupta P, Rai A, Hans C, Husain M. An Observational Study of Genetic Diversity of HIV-1 vpu in Rapid Progressors in India. Curr HIV Res 2023; 21:99-108. [PMID: 36809950 DOI: 10.2174/1570162x21666230221152633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/29/2022] [Accepted: 01/05/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND The genetic diversity in HIV-1 genes affects viral pathogenesis in HIV-1 positive patients. Accessory genes of HIV-1, including vpu, are reported to play a critical role in HIV pathogenesis and disease progression. Vpu has a crucial role in CD4 degradation and virus release. The sequence heterogeneity in the vpu gene may affect disease progression in patients, therefore, the current study was undertaken to identify the role of vpu in patients defined as rapid progressors. OBJECTIVE The objective of the study was to identify the viral determinants present on vpu that may be important in disease progression in rapid progressors. METHODS Blood samples were collected from 13 rapid progressors. DNA was isolated from PBMCs and vpu was amplified using nested PCR. Both strands of the gene were sequenced using an automated DNA Sequencer. The characterization and analysis of vpu was done using various bioinformatics tools. RESULTS The analysis revealed that all sequences had intact ORF and sequence heterogeneity was present across all sequences and distributed all over the gene. The synonymous substitutions, however, were higher than nonsynonymous substitutions. The phylogenetic tree analysis showed an evolutionary relationship with previously published Indian subtype C sequences. Comparatively, the cytoplasmic tail(77 - 86) showed the highest degree of variability in these sequences as determined by Entropy- one tool. CONCLUSION The study showed that due to the robust nature of the protein, the biological activity of the protein was intact and sequence heterogeneity may promote disease progression in the study population.
Collapse
Affiliation(s)
- Poonam Gupta
- Molecular Virology Laboratory, Department of Biotechnology, Jamia Millia Islamia (Central University), 110 025, New Delhi, India
| | - Arvind Rai
- National Centre for Disease Control, Ministry of Health & Family Welfare, 22 - Sham Nath Marg, 110 054, Delhi, India
| | - Charoo Hans
- Department of Microbiology, Dr. Ram Manohar Lohia Hospital, 110 001, New Delhi, India
| | - Mohammad Husain
- Molecular Virology Laboratory, Department of Biotechnology, Jamia Millia Islamia (Central University), 110 025, New Delhi, India
| |
Collapse
|
38
|
Grant HE, Roy S, Williams R, Tutill H, Ferns B, Cane PA, Carswell JW, Ssemwanga D, Kaleebu P, Breuer J, Leigh Brown AJ. A large population sample of African HIV genomes from the 1980s reveals a reduction in subtype D over time associated with propensity for CXCR4 tropism. Retrovirology 2022; 19:28. [PMID: 36514107 PMCID: PMC9746199 DOI: 10.1186/s12977-022-00612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/12/2022] [Indexed: 12/15/2022] Open
Abstract
We present 109 near full-length HIV genomes amplified from blood serum samples obtained during early 1986 from across Uganda, which to our knowledge is the earliest and largest population sample from the initial phase of the HIV epidemic in Africa. Consensus sequences were made from paired-end Illumina reads with a target-capture approach to amplify HIV material following poor success with standard approaches. In comparisons with a smaller 'intermediate' genome dataset from 1998 to 1999 and a 'modern' genome dataset from 2007 to 2016, the proportion of subtype D was significantly higher initially, dropping from 67% (73/109), to 57% (26/46) to 17% (82/465) respectively (p < 0.0001). Subtype D has previously been shown to have a faster rate of disease progression than other subtypes in East African population studies, and to have a higher propensity to use the CXCR4 co-receptor ("X4 tropism"); associated with a decrease in time to AIDS. Here we find significant differences in predicted tropism between A1 and D subtypes in all three sample periods considered, which is particularly striking the 1986 sample: 66% (53/80) of subtype D env sequences were predicted to be X4 tropic compared with none of the 24 subtype A1. We also analysed the frequency of subtype in the envelope region of inter-subtype recombinants, and found that subtype A1 is over-represented in env, suggesting recombination and selection have acted to remove subtype D env from circulation. The reduction of subtype D frequency over three decades therefore appears to be a result of selective pressure against X4 tropism and its higher virulence. Lastly, we find a subtype D specific codon deletion at position 24 of the V3 loop, which may explain the higher propensity for subtype D to utilise X4 tropism.
Collapse
Affiliation(s)
- Heather E Grant
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK.
| | - Sunando Roy
- Division of Infection and Immunity, University College London, London, UK
| | - Rachel Williams
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Helena Tutill
- Division of Infection and Immunity, University College London, London, UK
| | - Bridget Ferns
- Department of Virology, University College London Hospitals NHS Foundation Trust, London, UK
| | | | | | - Deogratius Ssemwanga
- Medical Research Council (MRC)/Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Pontiano Kaleebu
- Medical Research Council (MRC)/Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, UK
| | | |
Collapse
|
39
|
Apetrei C, Marx PA, Mellors JW, Pandrea I. The COVID misinfodemic: not new, never more lethal. Trends Microbiol 2022; 30:948-958. [PMID: 35945120 PMCID: PMC9356696 DOI: 10.1016/j.tim.2022.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 12/26/2022]
Abstract
'Infodemia' is a portmanteau between 'information' and 'epidemics', referring to wide and rapid accumulation and dissemination of information, misinformation, and disinformation about a given subject, such as a disease. As facts, rumors and fears mix and disperse, the misinfodemic creates loud background noise, preventing the general public from discerning between accurate and false information. We compared and contrasted key elements of the AIDS and COVID-19 misinfodemics, to identify common features, and, based on experience with the AIDS pandemic, recommend actions to control and reverse the SARS-CoV-2 misinfodemic that contributed to erode the trust between the public and scientists and governments and has created barriers to control of COVID-19. As pandemics emerge and evolve, providing robust responses to future misinfodemics must be a priority for society and public health.
Collapse
Affiliation(s)
- Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Preston A Marx
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA; Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - John W Mellors
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ivona Pandrea
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
40
|
Contribution of the HIV-1 Envelope Glycoprotein to AIDS Pathogenesis and Clinical Progression. Biomedicines 2022; 10:biomedicines10092172. [PMID: 36140273 PMCID: PMC9495913 DOI: 10.3390/biomedicines10092172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/21/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022] Open
Abstract
In the absence of antiviral therapy, HIV-1 infection progresses to a wide spectrum of clinical manifestations that are the result of an entangled contribution of host, immune and viral factors. The contribution of these factors is not completely established. Several investigations have described the involvement of the immune system in the viral control. In addition, distinct HLA-B alleles, HLA-B27, -B57-58, were associated with infection control. The combination of these elements and antiviral host restriction factors results in different clinical outcomes. The role of the viral proteins in HIV-1 infection has been, however, less investigated. We will review contributions dedicated to the pathogenesis of HIV-1 infection focusing on studies identifying the function of the viral envelope glycoprotein (Env) in the clinical progression because of its essential role in the initial events of the virus life-cycle. Some analysis showed that inefficient viral Envs were dominant in non-progressor individuals. These poorly-functional viral proteins resulted in lower cellular activation, viral replication and minor viral loads. This limited viral antigenic production allows a better immune response and a lower immune exhaustion. Thus, the properties of HIV-1 Env are significant in the clinical outcome of the HIV-1 infection and AIDS pathogenesis.
Collapse
|
41
|
Bocharov G, Grebennikov D, Cebollada Rica P, Domenjo-Vila E, Casella V, Meyerhans A. Functional cure of a chronic virus infection by shifting the virus - host equilibrium state. Front Immunol 2022; 13:904342. [PMID: 36110838 PMCID: PMC9468810 DOI: 10.3389/fimmu.2022.904342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
The clinical handling of chronic virus infections remains a challenge. Here we describe recent progress in the understanding of virus - host interaction dynamics. Based on the systems biology concept of multi-stability and the prediction of multiplicative cooperativity between virus-specific cytotoxic T cells and neutralising antibodies, we argue for the requirements to engage multiple immune system components for functional cure strategies. Our arguments are derived from LCMV model system studies and are translated to HIV-1 infection.
Collapse
Affiliation(s)
- Gennady Bocharov
- Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia
- Moscow Center for Fundamental and Applied Mathematics at INM RAS, Moscow, Russia
- Institute for Computer Science and Mathematical Modelling, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Dmitry Grebennikov
- Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia
- Moscow Center for Fundamental and Applied Mathematics at INM RAS, Moscow, Russia
- Institute for Computer Science and Mathematical Modelling, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Paula Cebollada Rica
- Infection Biology Laboratory, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Eva Domenjo-Vila
- Infection Biology Laboratory, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Valentina Casella
- Infection Biology Laboratory, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
42
|
Vojnov L, Carmona S, Zeh C, Markby J, Boeras D, Prescott MR, Mayne ALH, Sawadogo S, Adje-Toure C, Zhang G, Perez Gonzalez M, Stevens WS, Doherty M, Yang C, Alexander H, Peter TF, Nkengasong J, the DBS for VL Diagnostics Investigation Consortium. The performance of using dried blood spot specimens for HIV-1 viral load testing: A systematic review and meta-analysis. PLoS Med 2022; 19:e1004076. [PMID: 35994520 PMCID: PMC9447868 DOI: 10.1371/journal.pmed.1004076] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/06/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Accurate routine HIV viral load testing is essential for assessing the efficacy of antiretroviral treatment (ART) regimens and the emergence of drug resistance. While the use of plasma specimens is the standard for viral load testing, its use is restricted by the limited ambient temperature stability of viral load biomarkers in whole blood and plasma during storage and transportation and the limited cold chain available between many health care facilities in resource-limited settings. Alternative specimen types and technologies, such as dried blood spots, may address these issues and increase access to viral load testing; however, their technical performance is unclear. To address this, we conducted a meta-analysis comparing viral load results from paired dried blood spot and plasma specimens analyzed with commonly used viral load testing technologies. METHODS AND FINDINGS Standard databases, conferences, and gray literature were searched in 2013 and 2018. Nearly all studies identified (60) were conducted between 2007 and 2018. Data from 40 of the 60 studies were included in the meta-analysis, which accounted for a total of 10,871 paired dried blood spot:plasma data points. We used random effects models to determine the bias, accuracy, precision, and misclassification for each viral load technology and to account for between-study variation. Dried blood spot specimens produced consistently higher mean viral loads across all technologies when compared to plasma specimens. However, when used to identify treatment failure, each technology compared best to plasma at a threshold of 1,000 copies/ml, the present World Health Organization recommended treatment failure threshold. Some heterogeneity existed between technologies; however, 5 technologies had a sensitivity greater than 95%. Furthermore, 5 technologies had a specificity greater than 85% yet 2 technologies had a specificity less than 60% using a treatment failure threshold of 1,000 copies/ml. The study's main limitation was the direct applicability of findings as nearly all studies to date used dried blood spot samples prepared in laboratories using precision pipetting that resulted in consistent input volumes. CONCLUSIONS This analysis provides evidence to support the implementation and scale-up of dried blood spot specimens for viral load testing using the same 1,000 copies/ml treatment failure threshold as used with plasma specimens. This may support improved access to viral load testing in resource-limited settings lacking the required infrastructure and cold chain storage for testing with plasma specimens.
Collapse
Affiliation(s)
- Lara Vojnov
- Clinton Health Access Initiative, Boston, Massachusetts, United States of America
- * E-mail:
| | - Sergio Carmona
- National Health Laboratory Service, Johannesburg, South Africa
| | - Clement Zeh
- Center for Global Health, Division of Global HIV/TB, US Centers for Disease Control, Atlanta, Georgia, United States of America
| | | | - Debrah Boeras
- Center for Global Health, Division of Global HIV/TB, US Centers for Disease Control, Atlanta, Georgia, United States of America
| | - Marta R. Prescott
- Clinton Health Access Initiative, Boston, Massachusetts, United States of America
| | | | - Souleymane Sawadogo
- Center for Global Health, Division of Global HIV/TB, US Centers for Disease Control, Windhoek, Namibia
| | - Christiane Adje-Toure
- Center for Global Health, Division of Global HIV/TB, US Centers for Disease Control, Abidjan, Cote d’Ivoire
| | - Guoqing Zhang
- Center for Global Health, Division of Global HIV/TB, US Centers for Disease Control, Atlanta, Georgia, United States of America
| | | | - Wendy S. Stevens
- National Health Laboratory Service, Johannesburg, South Africa
- Department of Molecular Medicine and Haematology, University of the Witwatersrand, Johannesburg, South Africa
| | - Meg Doherty
- World Health Organization, Geneva, Switzerland
| | - Chunfu Yang
- Center for Global Health, Division of Global HIV/TB, US Centers for Disease Control, Atlanta, Georgia, United States of America
| | - Heather Alexander
- Center for Global Health, Division of Global HIV/TB, US Centers for Disease Control, Atlanta, Georgia, United States of America
| | - Trevor F. Peter
- Clinton Health Access Initiative, Boston, Massachusetts, United States of America
| | - John Nkengasong
- Center for Global Health, Division of Global HIV/TB, US Centers for Disease Control, Atlanta, Georgia, United States of America
| | | |
Collapse
|
43
|
Breen EC, Sehl ME, Shih R, Langfelder P, Wang R, Horvath S, Bream JH, Duggal P, Martinson J, Wolinsky SM, Martínez-Maza O, Ramirez CM, Jamieson BD. Accelerated aging with HIV begins at the time of initial HIV infection. iScience 2022; 25:104488. [PMID: 35880029 PMCID: PMC9308149 DOI: 10.1016/j.isci.2022.104488] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/06/2021] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
Living with HIV infection is associated with early onset of aging-related chronic conditions, sometimes described as accelerated aging. Epigenetic DNA methylation patterns can evaluate acceleration of biological age relative to chronological age. The impact of initial HIV infection on five epigenetic measures of aging was examined before and approximately 3 years after HIV infection in the same individuals (n=102). Significant epigenetic age acceleration (median 1.9-4.8 years) and estimated telomere length shortening (all p≤ 0.001) were observed from pre-to post-HIV infection, and remained significant in three epigenetic measures after controlling for T cell changes. No acceleration was seen in age- and time interval-matched HIV-uninfected controls. Changes in genome-wide co-methylation clusters were also significantly associated with initial HIV infection (p≤ 2.0 × 10-4). These longitudinal observations clearly demonstrate an early and substantial impact of HIV infection on the epigenetic aging process, and suggest a role for HIV itself in the earlier onset of clinical aging.
Collapse
Affiliation(s)
- Elizabeth Crabb Breen
- Cousins Center for Psychoneuroimmunology, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Mary E. Sehl
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Roger Shih
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Peter Langfelder
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ruibin Wang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MA 21205, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA
- Altos Labs, San Diego, CA 92121, USA
| | - Jay H. Bream
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MA 21205, USA
| | - Jeremy Martinson
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Steven M. Wolinsky
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Otoniel Martínez-Maza
- Departments of Obstetrics & Gynecology and Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Christina M. Ramirez
- Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Beth D. Jamieson
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
44
|
Bernard NF, Kant S, Kiani Z, Tremblay C, Dupuy FP. Natural Killer Cells in Antibody Independent and Antibody Dependent HIV Control. Front Immunol 2022; 13:879124. [PMID: 35720328 PMCID: PMC9205404 DOI: 10.3389/fimmu.2022.879124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022] Open
Abstract
Infection with the human immunodeficiency virus (HIV), when left untreated, typically leads to disease progression towards acquired immunodeficiency syndrome. Some people living with HIV (PLWH) control their virus to levels below the limit of detection of standard viral load assays, without treatment. As such, they represent examples of a functional HIV cure. These individuals, called Elite Controllers (ECs), are rare, making up <1% of PLWH. Genome wide association studies mapped genes in the major histocompatibility complex (MHC) class I region as important in HIV control. ECs have potent virus specific CD8+ T cell responses often restricted by protective MHC class I antigens. Natural Killer (NK) cells are innate immune cells whose activation state depends on the integration of activating and inhibitory signals arising from cell surface receptors interacting with their ligands on neighboring cells. Inhibitory NK cell receptors also use a subset of MHC class I antigens as ligands. This interaction educates NK cells, priming them to respond to HIV infected cell with reduced MHC class I antigen expression levels. NK cells can also be activated through the crosslinking of the activating NK cell receptor, CD16, which binds the fragment crystallizable portion of immunoglobulin G. This mode of activation confers NK cells with specificity to HIV infected cells when the antigen binding portion of CD16 bound immunoglobulin G recognizes HIV Envelope on infected cells. Here, we review the role of NK cells in antibody independent and antibody dependent HIV control.
Collapse
Affiliation(s)
- Nicole F. Bernard
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Clinical Immunology, McGill University Health Centre, Montreal, QC, Canada
- *Correspondence: Nicole F. Bernard,
| | - Sanket Kant
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Zahra Kiani
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Cécile Tremblay
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
- Department of Microbiology Infectiology and Immunology, University of Montreal, Montreal, QC, Canada
| | - Franck P. Dupuy
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
45
|
Ander SE, Li FS, Carpentier KS, Morrison TE. Innate immune surveillance of the circulation: A review on the removal of circulating virions from the bloodstream. PLoS Pathog 2022; 18:e1010474. [PMID: 35511797 PMCID: PMC9070959 DOI: 10.1371/journal.ppat.1010474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Many viruses utilize the lymphohematogenous route for dissemination; however, they may not freely use this highway unchecked. The reticuloendothelial system (RES) is an innate defense system that surveys circulating blood, recognizing and capturing viral particles. Examination of the literature shows that the bulk of viral clearance is mediated by the liver; however, the precise mechanism(s) mediating viral vascular clearance vary between viruses and, in many cases, remains poorly defined. Herein, we summarize what is known regarding the recognition and capture of virions from the circulation prior to the generation of a specific antibody response. We also discuss the consequences of viral capture on viral pathogenesis and the fate of the captor cell. Finally, this understudied topic has implications beyond viral pathogenesis, including effects on arbovirus ecology and the application of virus-vectored gene therapies.
Collapse
Affiliation(s)
- Stephanie E. Ander
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Frances S. Li
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Kathryn S. Carpentier
- Department of Natural Sciences, Greensboro College, Greensboro, North Carolina, United States of America
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
46
|
Xu W, Lin H, Zhang R, Liang H. Two-sample functional linear models with functional responses. J Stat Plan Inference 2022. [DOI: 10.1016/j.jspi.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Ta TM, Malik S, Anderson EM, Jones AD, Perchik J, Freylikh M, Sardo L, Klase ZA, Izumi T. Insights Into Persistent HIV-1 Infection and Functional Cure: Novel Capabilities and Strategies. Front Microbiol 2022; 13:862270. [PMID: 35572626 PMCID: PMC9093714 DOI: 10.3389/fmicb.2022.862270] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 12/23/2022] Open
Abstract
Although HIV-1 replication can be efficiently suppressed to undetectable levels in peripheral blood by combination antiretroviral therapy (cART), lifelong medication is still required in people living with HIV (PLWH). Life expectancies have been extended by cART, but age-related comorbidities have increased which are associated with heavy physiological and economic burdens on PLWH. The obstacle to a functional HIV cure can be ascribed to the formation of latent reservoir establishment at the time of acute infection that persists during cART. Recent studies suggest that some HIV reservoirs are established in the early acute stages of HIV infection within multiple immune cells that are gradually shaped by various host and viral mechanisms and may undergo clonal expansion. Early cART initiation has been shown to reduce the reservoir size in HIV-infected individuals. Memory CD4+ T cell subsets are regarded as the predominant cellular compartment of the HIV reservoir, but monocytes and derivative macrophages or dendritic cells also play a role in the persistent virus infection. HIV latency is regulated at multiple molecular levels in transcriptional and post-transcriptional processes. Epigenetic regulation of the proviral promoter can profoundly regulate the viral transcription. In addition, transcriptional elongation, RNA splicing, and nuclear export pathways are also involved in maintaining HIV latency. Although most proviruses contain large internal deletions, some defective proviruses may induce immune activation by expressing viral proteins or producing replication-defective viral-like particles. In this review article, we discuss the state of the art on mechanisms of virus persistence in the periphery and tissue and summarize interdisciplinary approaches toward a functional HIV cure, including novel capabilities and strategies to measure and eliminate the infected reservoirs and induce immune control.
Collapse
Affiliation(s)
- Tram M. Ta
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Sajjaf Malik
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Elizabeth M. Anderson
- Office of the Assistant Secretary for Health, Region 3, U.S. Department of Health and Human Services, Washington, DC, United States
| | - Amber D. Jones
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States,Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jocelyn Perchik
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Maryann Freylikh
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Luca Sardo
- Department of Infectious Disease and Vaccines, Merck & Co., Inc., Kenilworth, NJ, United States
| | - Zackary A. Klase
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States,Center for Neuroimmunology and CNS Therapeutics, Institute of Molecular Medicine and Infectious Diseases, Drexel University of Medicine, Philadelphia, PA, United States
| | - Taisuke Izumi
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States,*Correspondence: Taisuke Izumi,
| |
Collapse
|
48
|
Montaño-Castellón I, Marconi CSC, Saffe C, Brites C. Clinical and Laboratory Outcomes in HIV-1 and HTLV-1/2 Coinfection: A Systematic Review. Front Public Health 2022; 10:820727. [PMID: 35359787 PMCID: PMC8963803 DOI: 10.3389/fpubh.2022.820727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/04/2022] [Indexed: 01/06/2023] Open
Abstract
Aim To perform a systematic review to describe the available findings on clinical outcomes in HIV-1 and HTLV-1/HTLV-2 co-infected individuals since 1995. Design This Systematic Review used PECO criteria follow by PRISMA reporting guidelines and registered as CRD42021279062 (Prospero database). The Newcastle-Ottawa Scale assessed the methodological quality of included studies. Data Collection and Analysis A systematical search in PubMed/MEDLINE, Embase, Web of Sciences databases for cross-sectional, case-control, or cohort studies design to identify clinical and laboratorial outcomes related to HIV-1 and HTLV-1/2 coinfection. Search strategy: [(“HIV-1” AND “HTLV-1” OR “HTLV-2”) AND (“Coinfection”) AND (1990/01/01:2021/12/31[Date- Publication])]. Results A total of 15 articles were included on this systematic review describing data of 2,566 mono and coinfected patients, 58% male, with mean age was 35.7 ± 5.7 years. HIV-1 and HTLV-1 coinfected patients were more likely to had shorter survival and faster progression to death or mortality than monoinfected ones. Coinfected had higher CD4 cell counts and less likelihood of ART use. In addition, higher frequency of diseases like ichthyosis (22.2 vs. 6.8%), scabies (18.6 vs. 0%), candidiasis (42 vs. 12%), Strongyloidiasis (15.4 vs. 2%) and neurological manifestations like encephalopathy, peripheral neuropathy and HAM/TSP were more frequently reported in coinfected patients. Conclusions HIV-1 and HTLV-1 coinfection and HIV-1 and HTLV-1 /2 triple coinfection were related to shorter survival, higher mortality rate, and faster progression to death, while coinfection by HIV-1/HTLV-2 seems to have neutral association with longer survival, slower AIDS progression, and lower mortality rate. The available evidence indicates an urgent need for prevention and control measures, including screening, diagnosis, and treatment of HIV-1 and HTLV-1/2 coinfected patients. Test-and-treat strategy for patients living with HIV in areas endemic for HTLV infection is mandatory, to avoid the risks of delayed therapy and death for coinfected patients. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier: CRD42021279062.
Collapse
Affiliation(s)
- Iris Montaño-Castellón
- Laboratório de Pesquisa em Infectologia (LAPI), Hospital Universitário Professor Edgard Santos (HUPES), Salvador, Brazil.,Programa de Pós Graduação em Medicina e Saúde (PPgMS), Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Cleyde Sheyla Chachaqui Marconi
- Laboratório de Pesquisa em Infectologia (LAPI), Hospital Universitário Professor Edgard Santos (HUPES), Salvador, Brazil.,Programa de Pós Graduação em Medicina e Saúde (PPgMS), Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Clara Saffe
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Brazil
| | - Carlos Brites
- Laboratório de Pesquisa em Infectologia (LAPI), Hospital Universitário Professor Edgard Santos (HUPES), Salvador, Brazil.,Programa de Pós Graduação em Medicina e Saúde (PPgMS), Universidade Federal da Bahia (UFBA), Salvador, Brazil.,Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Brazil
| |
Collapse
|
49
|
Does HIV-1 virulence matter in the ART era? MED 2022; 3:217-219. [DOI: 10.1016/j.medj.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Pérez-Yanes S, Pernas M, Marfil S, Cabrera-Rodríguez R, Ortiz R, Urrea V, Rovirosa C, Estévez-Herrera J, Olivares I, Casado C, Lopez-Galindez C, Blanco J, Valenzuela-Fernández A. The Characteristics of the HIV-1 Env Glycoprotein Are Linked With Viral Pathogenesis. Front Microbiol 2022; 13:763039. [PMID: 35401460 PMCID: PMC8988142 DOI: 10.3389/fmicb.2022.763039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/31/2022] [Indexed: 12/17/2022] Open
Abstract
The understanding of HIV-1 pathogenesis and clinical progression is incomplete due to the variable contribution of host, immune, and viral factors. The involvement of viral factors has been investigated in extreme clinical phenotypes from rapid progressors to long-term non-progressors (LTNPs). Among HIV-1 proteins, the envelope glycoprotein complex (Env) has been concentrated on in many studies for its important role in the immune response and in the first steps of viral replication. In this study, we analyzed the contribution of 41 Envs from 24 patients with different clinical progression rates and viral loads (VLs), LTNP-Elite Controllers (LTNP-ECs); Viremic LTNPs (vLTNPs), and non-controller individuals contemporary to LTNPs or recent, named Old and Modern progressors. We studied the Env expression, the fusion and cell-to-cell transfer capacities, as well as viral infectivity. The sequence and phylogenetic analysis of Envs were also performed. In every functional characteristic, the Envs from subjects with viral control (LTNP-ECs and vLTNPs) showed significant lower performance compared to those from the progressor individuals (Old and Modern). Regarding sequence analysis, the variable loops of the gp120 subunit of the Env (i.e., V2, V4, and mainly V5) of the progressor individuals showed longer and more glycosylated sequences than controller subjects. Therefore, HIV-1 Envs from virus of patients presenting viremic control and the non-progressor clinical phenotype showed poor viral functions and shorter sequences, whereas functional Envs were associated with virus of patients lacking virological control and with progressor clinical phenotypes. These correlations support the role of Env genotypic and phenotypic characteristics in the in vivo HIV-1 infection and pathogenesis.
Collapse
Affiliation(s)
- Silvia Pérez-Yanes
- Unidad de Farmacología, Sección de Medicina, Laboratorio de Inmunología Celular y Viral, Facultad de Ciencias de la Salud de la Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
| | - María Pernas
- Unidad de Virologia Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Marfil
- Institut de Recerca de la Sida IrsiCaixa, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Romina Cabrera-Rodríguez
- Unidad de Farmacología, Sección de Medicina, Laboratorio de Inmunología Celular y Viral, Facultad de Ciencias de la Salud de la Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
| | - Raquel Ortiz
- Institut de Recerca de la Sida IrsiCaixa, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Víctor Urrea
- Institut de Recerca de la Sida IrsiCaixa, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Carla Rovirosa
- Institut de Recerca de la Sida IrsiCaixa, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Judith Estévez-Herrera
- Unidad de Farmacología, Sección de Medicina, Laboratorio de Inmunología Celular y Viral, Facultad de Ciencias de la Salud de la Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
| | - Isabel Olivares
- Unidad de Virologia Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Spain
| | - Concepción Casado
- Unidad de Virologia Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Spain
- Concepción Casado,
| | - Cecilio Lopez-Galindez
- Unidad de Virologia Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Spain
- Cecilio Lopez-Galindez,
| | - Julià Blanco
- Institut de Recerca de la Sida IrsiCaixa, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Barcelona, Spain
- Chair of Infectious Diseases and Immunity, Faculty of Medicine, Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Barcelona, Spain
- Julià Blanco,
| | - Agustín Valenzuela-Fernández
- Unidad de Farmacología, Sección de Medicina, Laboratorio de Inmunología Celular y Viral, Facultad de Ciencias de la Salud de la Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
- *Correspondence: Agustín Valenzuela-Fernández,
| |
Collapse
|