1
|
Tian T, Wen Y, Gao L, Liu T, Huang X, Li C, Du S, Li H, Guo M, Li J, Wang S, Li D, Li A, Liang M. Rapidly obtaining genome sequence of Severe Fever with Thrombocytopenia Syndrome virus directly from clinical serum specimen using long amplicon based nanopore sequencing workflow. PLoS One 2025; 20:e0321218. [PMID: 40279329 PMCID: PMC12027057 DOI: 10.1371/journal.pone.0321218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/03/2025] [Indexed: 04/27/2025] Open
Abstract
Severe Fever with Thrombocytopenia Syndrome (SFTS) is an emerging viral infectious disease discovered in 2009 with a high fatality rate and continuing to pose a public threat for many countries. Surveillance of genome sequence of its causative pathogen, Severe Fever with Thrombocytopenia Syndrome virus (SFTSV), could provide evidence for SFTS control, diagnosis method update, viral evolution dynamic and pathogenic mechanism research, etc. Here, we developed a workflow for rapidly obtaining the genome sequence of SFTSV directly from clinical samples to facilitate the viral genome sequence surveillance. Three pairs of primers targeting the terminal conserved regions of three segments were newly designed to more efficiently enrich nearly whole viral genome. Datasets comprised reads generated in different timeframes for four simulated samples with high to low serially diluted viral loads were subjected to analysis. For a simulated sample with a Ct value of 35 and sequenced for 10 minutes, the average coverage depth could reach over 700x, and the genome coverage could reach 98.69% after subtraction of the primer sequence, and the sequence identity with Sanger sequencing could reach over 99.91%. Two clinical serum specimens were used to validate the workflow and sequences were successfully obtained. A long amplicon based nanopore sequencing workflow was established, which could finish in 10 hours from serum specimen to genome sequence. This workflow has potential to provide essential information for SFTS control and support further pathogenesis research.
Collapse
Affiliation(s)
- Tingting Tian
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Health Commission Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanhan Wen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Health Commission Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liping Gao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Health Commission Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tiezhu Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Health Commission Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoxia Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Health Commission Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chuan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Health Commission Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shanshan Du
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Health Commission Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hao Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Health Commission Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Meijun Guo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Health Commission Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiandong Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Health Commission Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shiwen Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Health Commission Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dexin Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Health Commission Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Aqian Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Health Commission Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mifang Liang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Health Commission Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- China CDC-WIV Joint Research Center for Emerging Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
2
|
Lule DB, Ssemwanga D, Kaleebu P, Tully DC. The utility of integrating nanopore sequencing into routine HIV-1 drug resistance surveillance. Microb Genom 2025; 11:001375. [PMID: 40111248 PMCID: PMC11925199 DOI: 10.1099/mgen.0.001375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/01/2025] [Indexed: 03/22/2025] Open
Abstract
HIV continues to be a significant global public health concern. In 2022, an estimated 29.8 million people living with HIV received antiretroviral treatment (ART). From this, an estimated 10-15% of individuals living with HIV have drug-resistant strains of the virus. Testing for resistance to antiretroviral drugs is recommended before initiating ART. However, such services are often inaccessible due to costs and the need for complex laboratory infrastructure. The assessment of HIV drug resistance (HIVDR) relies on genotyping sequencing and algorithms to interpret genotypic resistance test results. Genotypic assays involve Sanger sequencing of the reverse transcriptase (RT), protease (PR) and integrase (IN) genes of circulating RNA in plasma to detect mutations that are known to confer drug resistance. While state-of-the-art sequencing technologies have swept the globe and enhanced our global pandemic response capabilities, they are still sparingly used for HIVDR surveillance. The scale-up of ART, especially in low- and middle-income countries, necessitates the establishment of cheap, expeditious and decentralized methods for HIVDR monitoring. Here, we outline how one low-capital next-generation sequencing platform, namely, nanopore sequencing, could augment efforts in expanding HIVDR surveillance efforts, especially in resource-limited settings. We discuss that because of its versatility, nanopore sequencing can accelerate HIVDR surveillance in conjunction with scaling up ART efforts and outline some of the challenges that need to be considered before its widespread and routine adaptation to detect drug resistance rapidly.
Collapse
Affiliation(s)
- Daniel Bugembe Lule
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine Uganda Unit, Plot 51-59 Nakiwogo Road, P. O. Box 49, Entebbe, Uganda
- St. Georges University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
| | - Deogratius Ssemwanga
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine Uganda Unit, Plot 51-59 Nakiwogo Road, P. O. Box 49, Entebbe, Uganda
- Uganda Virus Research Institute, Plot 51-59 Nakiwogo Road, P. O. Box 49, Entebbe, Uganda
| | - Pontiano Kaleebu
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine Uganda Unit, Plot 51-59 Nakiwogo Road, P. O. Box 49, Entebbe, Uganda
- Uganda Virus Research Institute, Plot 51-59 Nakiwogo Road, P. O. Box 49, Entebbe, Uganda
| | - Damien C. Tully
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine Uganda Unit, Plot 51-59 Nakiwogo Road, P. O. Box 49, Entebbe, Uganda
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
3
|
Hoßbach J, Tovey S, Ensslen T, Behrends JC, Holm C. Peptide classification from statistical analysis of nanopore sensing experiments. J Chem Phys 2025; 162:084107. [PMID: 39998165 DOI: 10.1063/5.0250399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Peptide classification using nanopore-based devices promises to be a breakthrough method in basic research, diagnostics, and analytics. However, the measured blockage currents suffer from a low signal-to-noise ratio and a high information density that has hitherto not been fully deciphered. Some simple machine learning approaches using average current blockade depths and dwell-times have been investigated to improve this situation. In this work, a comprehensive statistical analysis of nanopore current signals is performed and demonstrated to be sufficient for classifying up to 42 peptides with over 70% accuracy. Two sets of features, the statistical moments and the catch22 set, are compared both in their representations and after training small classifier neural networks. We demonstrate that complex features of the events, captured in both the catch22 set and the central moments, are key to classifying peptides with otherwise similar mean currents. These results highlight the efficacy of purely statistical analysis of nanopore data and suggest a path forward for more sophisticated classification techniques.
Collapse
Affiliation(s)
- Julian Hoßbach
- Institute for Computational Physics, University of Stuttgart, 70569 Stuttgart, Germany
| | - Samuel Tovey
- Institute for Computational Physics, University of Stuttgart, 70569 Stuttgart, Germany
| | - Tobias Ensslen
- Laboratory for Membrane Physiology and Technology, Department of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Jan C Behrends
- Laboratory for Membrane Physiology and Technology, Department of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
4
|
Sung YH, Ju YK, Lee HJ, Park SM, Suh JW, Kim JY, Sohn JW, Yoon YK. Clinical performance of real-time nanopore metagenomic sequencing for rapid identification of bacterial pathogens in cerebrospinal fluid: a pilot study. Sci Rep 2025; 15:3493. [PMID: 39875797 PMCID: PMC11775224 DOI: 10.1038/s41598-025-87858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/22/2025] [Indexed: 01/30/2025] Open
Abstract
This study aimed to evaluate the usefulness of amplicon-based real-time metagenomic sequencing applied to cerebrospinal fluid (CSF) for identifying the causative agents of bacterial meningitis. We conducted a 16S rRNA amplicon sequencing using a nanopore-based platform, alongside routine polymerase chain reaction (PCR) testing or bacterial culture, to compare its clinical performance in pathogen detection on CSF samples. Among 17 patients, nanopore-based sequencing, multiplex PCR, and bacterial culture detected potential bacterial pathogens in 47.1%, 0%, and 47.1% samples, respectively. Nanopore-based sequencing demonstrated a sensitivity of 50.0%, specificity of 55.6%, positive predictive value of 50.0%, negative predictive value of 55.6%, and overall accuracy of 47.1%, compared to the gold standard method for bacterial culture. In 44.4% (4/9) of culture-negative cases, nanopore-based sequencing detected potentially causative pathogens, whereas four (23.5%) patients were positive only in culture. Using nanopore-based sequencing alongside bacterial culture increased the positivity rate from 47.1 to 70.6%. However, these values may be overestimated due to challenges in distinguishing significant pathogens from background noise. Meanwhile, the bioinformatics module in EPI2ME reduced the turn-around time to 10 min. Nanopore-based metagenomic sequencing is expected to serve as a complementary tool for pathogen detection in CSF samples by facilitating rapid and accurate diagnosis.
Collapse
Affiliation(s)
- Yoon Hyun Sung
- Institute of Emerging Infectious Diseases, Korea University, Seoul, Republic of Korea
| | - Yong Kuk Ju
- Institute of Emerging Infectious Diseases, Korea University, Seoul, Republic of Korea
| | - Hak Jun Lee
- Institute of Emerging Infectious Diseases, Korea University, Seoul, Republic of Korea
| | - Seung Min Park
- Institute of Emerging Infectious Diseases, Korea University, Seoul, Republic of Korea
| | - Jin Woong Suh
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jeong Yeon Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jang Wook Sohn
- Institute of Emerging Infectious Diseases, Korea University, Seoul, Republic of Korea
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Young Kyung Yoon
- Institute of Emerging Infectious Diseases, Korea University, Seoul, Republic of Korea.
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
5
|
Ye F, Zhu J, Zhang X, Zhang J, Xie Z, Yang T, Han Y, Yang X, Ren Z, Ni M. Characteristics and filtering of low-frequency artificial short deletion variations based on nanopore sequencing. Gigascience 2025; 14:giaf018. [PMID: 40117177 PMCID: PMC11927395 DOI: 10.1093/gigascience/giaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/20/2024] [Accepted: 02/09/2025] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND Nanopore sequencing is characterized by high portability and long reads, albeit accompanied by systematic errors causing short deletions. Few tools can filter low-frequency artificial deletions, especially in single samples. RESULTS To solve this problem, we first synthesized or purchased 17 DNA/RNA standards for nanopore sequencing with R9 and R10 flowcells to obtain benchmarking datasets. False-positive (FP) deletions were prevalent (75.86%-96.26%), while the majority (62.07%-79.68%) were located in homopolymeric regions. The 10-mer base-quality scores (Q scores) and sequencing speeds flanking the FP homopolymeric deletions marginally differed from the true-positive (TP) deletions. We thus investigated the raw current signals after normalizing them by length. We found more significant differences in current signals between the reads with and without FP deletions. Indexes including the MRPP A (Multiple Response Permutation Procedure, statistic A), the accumulative difference of normalized current signals, and the Q score were tested for the power of distinguishing between FP and TP deletions. MRPP A outperformed the other indexes in homopolymeric regions and achieved the highest accuracy of 76.73% for challenging 1-base homopolymeric deletions. When sequencing depth was low, the Q score performed better than MRPP A. We developed Delter (Deletion filter) to filter low-frequency FP deletions of nanopore sequencing in single samples, which removed 60.98% to 100% of artificial homopolymeric deletions in real samples. CONCLUSIONS Low-frequency artificial short deletion variations, especially the most challenging homopolymeric deletions, could be effectively filtered by Delter using normalized current signals or Q scores according to the employed sequencing strategies.
Collapse
Affiliation(s)
- Fuqiang Ye
- Huadong Research Institute for Medicine and Biotechniques, Nanjing 210002, People’s Republic of China
| | - Juanjuan Zhu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Xiaomin Zhang
- Department of Advanced & Interdisciplinary Biotechnology, Academy of Military Medical Sciences, Beijing 100850, People’s Republic of China
| | - Jiarong Zhang
- Department of Advanced & Interdisciplinary Biotechnology, Academy of Military Medical Sciences, Beijing 100850, People’s Republic of China
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, People’s Republic of China
| | - Zihan Xie
- Department of Advanced & Interdisciplinary Biotechnology, Academy of Military Medical Sciences, Beijing 100850, People’s Republic of China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Tingting Yang
- Department of Advanced & Interdisciplinary Biotechnology, Academy of Military Medical Sciences, Beijing 100850, People’s Republic of China
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, People’s Republic of China
| | - Yifang Han
- Huadong Research Institute for Medicine and Biotechniques, Nanjing 210002, People’s Republic of China
| | - Xiaohong Yang
- Huadong Research Institute for Medicine and Biotechniques, Nanjing 210002, People’s Republic of China
| | - Zilin Ren
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122, People’s Republic of China
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, People’s Republic of China
| | - Ming Ni
- Department of Advanced & Interdisciplinary Biotechnology, Academy of Military Medical Sciences, Beijing 100850, People’s Republic of China
| |
Collapse
|
6
|
Yuson M, Bautista CT, Rees EM, Bogaardt C, Cruz VDD, Durrant R, Formstone A, Manalo DL, Manzanilla DR, Kundergorski M, Nacion L, Aloyon H, Bolivar JK, Bondoc J, Cobbold C, Panganiban E, Telmo SVM, Maestro J, Miranda MEG, Chng NR, Brunker K, Hampson K. Combining genomics and epidemiology to investigate a zoonotic outbreak of rabies in Romblon Province, Philippines. Nat Commun 2024; 15:10753. [PMID: 39737920 PMCID: PMC11685615 DOI: 10.1038/s41467-024-54255-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/01/2024] [Indexed: 01/01/2025] Open
Abstract
Rabies is a viral zoonosis that kills thousands of people annually in low- and middle-income countries across Africa and Asia where domestic dogs are the reservoir. 'Zero by 30', the global strategy to end dog-mediated human rabies, promotes a One Health approach underpinned by mass dog vaccination, post-exposure vaccination of bite victims, robust surveillance and community engagement. Using Integrated Bite Case Management (IBCM) and whole genome sequencing (WGS), we enhanced rabies surveillance to detect an outbreak in a formerly rabies-free island province in the Philippines. We inferred that the outbreak was seeded by at least three independent human-mediated introductions that were identified as coming from neighbouring rabies-endemic provinces. Considerable local transmission went undetected, and two human deaths occurred within 6 months of outbreak detection. Suspension of routine dog vaccination due to COVID-19 restrictions likely facilitated rabies spread from these introductions. Emergency response, consisting of awareness measures, and ring vaccination, were performed, but swifter and more widespread implementation is needed to contain and eliminate the outbreak and to secure rabies freedom. We conclude that strengthened surveillance making use of new tools such as IBCM, WGS, and rapid diagnostic tests can support One Health in action and progress towards the 'Zero by 30' goal.
Collapse
Affiliation(s)
- Mirava Yuson
- Boyd Orr Centre for Population and Ecosystem Health, School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.
- Field Epidemiology Training Programme Alumni Foundation Inc (FETPAFI), Quezon City, Philippines.
| | - Criselda T Bautista
- Boyd Orr Centre for Population and Ecosystem Health, School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
- Research Institute for Tropical Medicine (RITM), Alabang Muntinlupa City, Metro Manila, Philippines
| | - Eleanor M Rees
- Boyd Orr Centre for Population and Ecosystem Health, School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Carlijn Bogaardt
- School of Computing Science, College of Science & Engineering, University of Glasgow, Glasgow, UK
| | - Van Denn D Cruz
- Field Epidemiology Training Programme Alumni Foundation Inc (FETPAFI), Quezon City, Philippines
| | - Rowan Durrant
- Boyd Orr Centre for Population and Ecosystem Health, School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Anna Formstone
- Boyd Orr Centre for Population and Ecosystem Health, School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Daria L Manalo
- Research Institute for Tropical Medicine (RITM), Alabang Muntinlupa City, Metro Manila, Philippines
| | - Duane R Manzanilla
- Field Epidemiology Training Programme Alumni Foundation Inc (FETPAFI), Quezon City, Philippines
| | - Mikolaj Kundergorski
- Boyd Orr Centre for Population and Ecosystem Health, School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Leilanie Nacion
- Research Institute for Tropical Medicine (RITM), Alabang Muntinlupa City, Metro Manila, Philippines
| | - Hannaniah Aloyon
- Research Institute for Tropical Medicine (RITM), Alabang Muntinlupa City, Metro Manila, Philippines
| | - Jude Karlo Bolivar
- Research Institute for Tropical Medicine (RITM), Alabang Muntinlupa City, Metro Manila, Philippines
| | - Jeromir Bondoc
- Research Institute for Tropical Medicine (RITM), Alabang Muntinlupa City, Metro Manila, Philippines
| | - Christina Cobbold
- School of Mathematics & Statistics, College of Science & Engineering, University of Glasgow, Glasgow, UK
| | - Efraim Panganiban
- Research Institute for Tropical Medicine (RITM), Alabang Muntinlupa City, Metro Manila, Philippines
| | - Shynie Vee M Telmo
- Regional Animal Disease Diagnostic Laboratory, Naujan, Oriental Mindoro, Philippines
| | - Jobin Maestro
- Municipal Health Office, Alcantara, Romblon, Philippines
| | | | - Nai Rui Chng
- Boyd Orr Centre for Population and Ecosystem Health, School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Kirstyn Brunker
- Boyd Orr Centre for Population and Ecosystem Health, School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Katie Hampson
- Boyd Orr Centre for Population and Ecosystem Health, School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
7
|
Bosworth A, Robson J, Lawrence B, Casey AL, Fair A, Khanam S, Hudson C, O'Shea MK. Deployment of whole genome next-generation sequencing of SARS-CoV-2 in a military maritime setting. BMJ Mil Health 2024; 170:e144-e149. [PMID: 36759003 PMCID: PMC11672050 DOI: 10.1136/military-2022-002296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND SARS-CoV-2 can spread rapidly on maritime platforms. Several outbreaks of SARS-CoV-2 have been reported on warships at sea, where transmission is facilitated by living and working in close quarters. Core components of infection control measures such as social distancing, patient isolation and quarantine of exposed persons are extremely difficult to implement. Whole genome sequencing (WGS) of SARS-CoV-2 has facilitated epidemiological investigations of outbreaks, impacting on outbreak management in real time by identifying transmission patterns, clusters of infection and guiding control measures. We suggest such a capability could mitigate against the impact of SARS-CoV-2 in maritime settings. METHODS We set out to establish SARS-CoV-2 WGS using miniaturised nanopore sequencing technology aboard the Royal Fleet Auxiliary ARGUS while at sea. Objectives included designing a simplified protocol requiring minimal reagents and processing steps, the use of miniaturised equipment compatible for use in limited space, and a streamlined and standalone data analysis capability to allow rapid in situ data acquisition and interpretation. RESULTS Eleven clinical samples with blinded SARS-CoV-2 status were tested at sea. Following viral RNA extraction and ARTIC sequencing library preparation, reverse transcription and ARTIC PCR-tiling were performed. Samples were subsequently barcoded and sequenced using the Oxford Nanopore MinION Mk1B. An offline version of the MinKNOW software was used followed by CLC Genomics Workbench for downstream analysis for variant identification and phylogenetic tree construction. All samples were correctly classified, and relatedness identified. CONCLUSIONS It is feasible to establish a small footprint sequencing capability to conduct SARS-CoV-2 WGS in a military maritime environment at sea with limited access to reach-back support. This proof-of-concept study has highlighted the potential of deploying such technology in the future to military environments, both maritime and land-based, to provide meaningful clinical data to aid outbreak investigations.
Collapse
Affiliation(s)
- Andrew Bosworth
- Department of Microbiology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Institute for Immunology and Immunotherapy, University of Birmingham College of Medical and Dental Sciences, Birmingham, UK
| | - J Robson
- Department of Microbiology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Defence Pathology, Royal Centre for Defence Medicine, Birmingham, UK
| | - B Lawrence
- Defence Pathology, Royal Centre for Defence Medicine, Birmingham, UK
- Department of Pathology, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | - A L Casey
- Department of Microbiology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - A Fair
- Molecular Pathology Diagnostic Service, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - S Khanam
- Department of Microbiology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - C Hudson
- Department of Microbiology, Frimley Park Hospital, Camberley, UK
| | - M K O'Shea
- Institute for Immunology and Immunotherapy, University of Birmingham College of Medical and Dental Sciences, Birmingham, UK
- Defence Pathology, Royal Centre for Defence Medicine, Birmingham, UK
| |
Collapse
|
8
|
Zhang T, Li H, Jiang M, Hou H, Gao Y, Li Y, Wang F, Wang J, Peng K, Liu YX. Nanopore sequencing: flourishing in its teenage years. J Genet Genomics 2024; 51:1361-1374. [PMID: 39293510 DOI: 10.1016/j.jgg.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Over the past decade, nanopore sequencing has experienced significant advancements and changes, transitioning from an initially emerging technology to a significant instrument in the field of genomic sequencing. However, as advancements in next-generation sequencing technology persist, nanopore sequencing also improves. This paper reviews the developments, applications, and outlook on nanopore sequencing technology. Currently, nanopore sequencing supports both DNA and RNA sequencing, making it widely applicable in areas such as telomere-to-telomere (T2T) genome assembly, direct RNA sequencing (DRS), and metagenomics. The openness and versatility of nanopore sequencing have established it as a preferred option for an increasing number of research teams, signaling a transformative influence on life science research. As the nanopore sequencing technology advances, it provides a faster, more cost-effective approach with extended read lengths, demonstrating the significant potential for complex genome assembly, pathogen detection, environmental monitoring, and human disease research, offering a fresh perspective in sequencing technologies.
Collapse
Affiliation(s)
- Tianyuan Zhang
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China; Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei 430000, China
| | - Hanzhou Li
- Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei 430000, China
| | - Mian Jiang
- Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei 430000, China
| | - Huiyu Hou
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Yunyun Gao
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Yali Li
- Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei 430000, China
| | - Fuhao Wang
- Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei 430000, China
| | - Jun Wang
- Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei 430000, China
| | - Kai Peng
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225000, China
| | - Yong-Xin Liu
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China.
| |
Collapse
|
9
|
Markandan K, Tiong YW, Sankaran R, Subramanian S, Markandan UD, Chaudhary V, Numan A, Khalid M, Walvekar R. Emergence of infectious diseases and role of advanced nanomaterials in point-of-care diagnostics: a review. Biotechnol Genet Eng Rev 2024; 40:3438-3526. [PMID: 36243900 DOI: 10.1080/02648725.2022.2127070] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022]
Abstract
Infectious outbreaks are the foremost global public health concern, challenging the current healthcare system, which claims millions of lives annually. The most crucial way to control an infectious outbreak is by early detection through point-of-care (POC) diagnostics. POC diagnostics are highly advantageous owing to the prompt diagnosis, which is economical, simple and highly efficient with remote access capabilities. In particular, utilization of nanomaterials to architect POC devices has enabled highly integrated and portable (compact) devices with enhanced efficiency. As such, this review will detail the factors influencing the emergence of infectious diseases and methods for fast and accurate detection, thus elucidating the underlying factors of these infections. Furthermore, it comprehensively highlights the importance of different nanomaterials in POCs to detect nucleic acid, whole pathogens, proteins and antibody detection systems. Finally, we summarize findings reported on nanomaterials based on advanced POCs such as lab-on-chip, lab-on-disc-devices, point-of-action and hospital-on-chip. To this end, we discuss the challenges, potential solutions, prospects of integrating internet-of-things, artificial intelligence, 5G communications and data clouding to achieve intelligent POCs.
Collapse
Affiliation(s)
- Kalaimani Markandan
- Temasek Laboratories, Nanyang Technological University, Nanyang Drive, Singapore
- Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia
| | - Yong Wei Tiong
- NUS Environmental Research Institute, National University of Singapore, Engineering Drive, Singapore
| | - Revathy Sankaran
- Graduate School, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Sakthinathan Subramanian
- Department of Materials & Mineral Resources Engineering, National Taipei University of Technology (NTUT), Taipei, Taiwan
| | | | - Vishal Chaudhary
- Research Cell & Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi, India
| | - Arshid Numan
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster School of Engineering and Technology, Sunway University, Selangor, Malaysia
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster School of Engineering and Technology, Sunway University, Selangor, Malaysia
| | - Rashmi Walvekar
- Department of Chemical Engineering, School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| |
Collapse
|
10
|
Carnec X, Borges-Cardoso V, Reynard S, Kowalski H, Gaillard JC, Mateo M, Armengaud J, Baize S. Targeting n-myristoyltransferases promotes a pan-Mammarenavirus inhibition through the degradation of the Z matrix protein. PLoS Pathog 2024; 20:e1012715. [PMID: 39625987 DOI: 10.1371/journal.ppat.1012715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/19/2024] [Accepted: 10/31/2024] [Indexed: 12/21/2024] Open
Abstract
Several Old World and New World Mammarenavirus are responsible for hemorrhagic fever in humans. These enveloped viruses have a bi-segmented ambisense RNA genome that encodes four proteins. All Mammarenavirus identified to date share a common dependency on myristoylation: the addition of the C14 myristic acid on the N-terminal G2 residue on two of their proteins. The myristoylation of the Z matrix protein is required for viral particle budding, while the myristoylation of the signal peptide to the envelope glycoproteins is important for the entry mechanism. Using Mopeia virus as a model, we characterized the interaction of the Z matrix protein with the N-Myristoyltransferases (NMT) 1 and 2, the two enzymes responsible for myristoylation in mammals. While both enzymes were capable to interact with Z, we showed that only NMT1 was important for the production of viral progeny, the endogenous expression of NMT2 being insufficient to make up for NMT1 in its absence. Using the high affinity inhibitors of NMTs, IMP1088 and DDD85646, we demonstrated a strong, dose dependent and specific inhibition at the nanomolar range for all Mammarenavirus tested, including the highly pathogenic Lassa, Machupo, Junin and Lujo viruses. Mechanistically, IMP1088 and DDD85646 blocked the interaction between Z and both NMTs, preventing myristoylation and further viral particle formation, egress and spread. Unexpectedly, we found that the matrix protein devoid of myristate, despite being fully translated, did not accumulate as the other viral proteins in infected cells but was instead degraded in a proteasome- and autophagy-independent manner. These molecules represent a new broad-spectrum class of inhibitors against Mammarenavirus.
Collapse
Affiliation(s)
- Xavier Carnec
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Virginie Borges-Cardoso
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Stéphanie Reynard
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Heinrich Kowalski
- Center for Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Jean-Charles Gaillard
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (LI2D), Service de Pharmacologie et Immunoanalyse (SPI), Commissariat à l'Energie Atomique et aux Energies Alternatives, Bagnols sur Cèze, France
| | - Mathieu Mateo
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jean Armengaud
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (LI2D), Service de Pharmacologie et Immunoanalyse (SPI), Commissariat à l'Energie Atomique et aux Energies Alternatives, Bagnols sur Cèze, France
| | - Sylvain Baize
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
11
|
Smith DRM, Turner J, Fahr P, Attfield LA, Bessell PR, Donnelly CA, Gibb R, Jones KE, Redding DW, Asogun D, Ayodeji OO, Azuogu BN, Fischer WA, Jan K, Olayinka AT, Wohl DA, Torkelson AA, Dinkel KA, Nixon EJ, Pouwels KB, Hollingsworth TD. Health and economic impacts of Lassa vaccination campaigns in West Africa. Nat Med 2024; 30:3568-3577. [PMID: 39198710 PMCID: PMC11645265 DOI: 10.1038/s41591-024-03232-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024]
Abstract
Lassa fever is a zoonotic disease identified by the World Health Organization (WHO) as having pandemic potential. This study estimates the health-economic burden of Lassa fever throughout West Africa and projects impacts of a series of vaccination campaigns. We also model the emergence of 'Lassa-X'-a hypothetical pandemic Lassa virus variant-and project impacts of achieving 100 Days Mission vaccination targets. Our model predicted 2.7 million (95% uncertainty interval: 2.1-3.4 million) Lassa virus infections annually, resulting over 10 years in 2.0 million (793,800-3.9 million) disability-adjusted life years (DALYs). The most effective vaccination strategy was a population-wide preventive campaign primarily targeting WHO-classified 'endemic' districts. Under conservative vaccine efficacy assumptions, this campaign averted $20.1 million ($8.2-$39.0 million) in lost DALY value and $128.2 million ($67.2-$231.9 million) in societal costs (2021 international dollars ($)). Reactive vaccination in response to local outbreaks averted just one-tenth the health-economic burden of preventive campaigns. In the event of Lassa-X emerging, spreading throughout West Africa and causing approximately 1.2 million DALYs within 2 years, 100 Days Mission vaccination averted 22% of DALYs given a vaccine 70% effective against disease and 74% of DALYs given a vaccine 70% effective against both infection and disease. These findings suggest how vaccination could alleviate Lassa fever's burden and assist in pandemic preparedness.
Collapse
Affiliation(s)
- David R M Smith
- Nuffield Department of Population Health, Health Economics Research Centre, University of Oxford, Oxford, UK.
| | - Joanne Turner
- Department of Mathematical Sciences, University of Liverpool, Liverpool, UK
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Patrick Fahr
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Lauren A Attfield
- Department of Genetics, Evolution and Environment, Centre for Biodiversity and Environment Research, University College London, London, UK
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | | | - Christl A Donnelly
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
- Department of Statistics, University of Oxford, Oxford, UK
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Rory Gibb
- Department of Genetics, Evolution and Environment, Centre for Biodiversity and Environment Research, University College London, London, UK
| | - Kate E Jones
- Department of Genetics, Evolution and Environment, Centre for Biodiversity and Environment Research, University College London, London, UK
| | | | - Danny Asogun
- Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | | | - Benedict N Azuogu
- Alex Ekwueme Federal University Teaching Hospital Abakaliki, Abakaliki, Nigeria
| | - William A Fischer
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Kamji Jan
- Nigeria Centre for Disease Control and Prevention, Abuja, Nigeria
| | | | - David A Wohl
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | | | | | - Emily J Nixon
- Department of Mathematical Sciences, University of Liverpool, Liverpool, UK
| | - Koen B Pouwels
- Nuffield Department of Population Health, Health Economics Research Centre, University of Oxford, Oxford, UK
| | - T Déirdre Hollingsworth
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, NDM Centre for Global Health Research, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Yinda CK, Koukouikila-Koussounda F, Mayengue PI, Elenga RG, Greene B, Ochwoto M, Indolo GD, Mavoungou YVT, Boussam DAE, Ampiri BRV, Mfoutou CCM, Mbouala YDK, Ntoumi F, Kankou JM, Munster VJ, Niama FR. Genetic sequencing analysis of monkeypox virus clade I in Republic of the Congo: a cross-sectional, descriptive study. Lancet 2024; 404:1815-1822. [PMID: 39426387 DOI: 10.1016/s0140-6736(24)02188-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Monkeypox virus clade I is endemic in several central African countries and characterised by an increase in disease severity and mortality. Since October, 2023, a large-scale mpox outbreak has emerged in DR Congo, and in March, 2024, the first individuals with mpox were reported outside the endemic areas in Republic of the Congo. We aimed to provide insight into the epidemic by sequencing samples obtained from individuals with mpox in Republic of the Congo. METHODS In this cross-sectional, descriptive study, samples were collected from individuals with suspected mpox between Jan 15 and April 8, 2024, in Brazzaville, Pointe-Noire, Likouala, Cuvette-Centrale, and Plateaux (Republic of the Congo). Blood samples, skin or oropharyngeal swabs, or skin crusts were obtained for molecular diagnosis via real-time PCR. Monkeypox virus sequences were obtained and analysed using newly established nanopore sequencing methodology and bioinformatic pipeline. The sequences obtained were aligned and used to construct a maximum likelihood phylogenetic tree using IG-TREE. FINDINGS 61 samples were collected from individuals with suspected mpox, 31 of which were positive for monkeypox virus and were included in our analysis (four positive samples were excluded due to unavailability of epidemiological data or insufficient biological material). Individuals who tested positive for monkeypox virus were from Cuvette-Centrale (19 [61%] of 31), Likouala (eight [26%]), and Pointe-Noire (four [13%]). 20 (65%) were male and 11 (35%) were female. Phylogenetic analysis of sequences showed two major clusters within clade Ia. One cluster was made up of four sequences from this study clustering with two monkeypox virus sequences from the current DR Congo outbreak, three older sequences from Central African Republic sequenced between 2017 and 2018, and seven sequences from DR Congo sequenced in 2006-07 and 2022. The second cluster was made up of 16 sequences from this study clustering with sequences from the current DR Congo outbreak. In addition, sequences from Republic of the Congo show multiple phylogenetic positioning suggesting the occurrence of multiple co-circulating strains in the human population. INTERPRETATION Our findings suggest that multiple monkeypox virus strains are co-circulating in the human population, highlighting the need for implementation of expanded mpox surveillance, especially in countries bordering DR Congo and Republic of the Congo, in combination with control measures focused on containing the current outbreaks in these countries to prevent escalation into a larger-scale epidemic. FUNDING Intramural Research Program of the National Institute of Allergy and Infectious Diseases at the National Institutes of Health.
Collapse
Affiliation(s)
- Claude Kwe Yinda
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Félix Koukouikila-Koussounda
- Laboratoire National de Santé Publique, Brazzaville, Republic of the Congo; Faculté des Sciences et Techniques, Marien NGOUABI University, Brazzaville, Republic of the Congo
| | - Pembe Issamou Mayengue
- Laboratoire National de Santé Publique, Brazzaville, Republic of the Congo; Faculté des Sciences et Techniques, Marien NGOUABI University, Brazzaville, Republic of the Congo
| | | | - Benjamin Greene
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Missiani Ochwoto
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | | | | | | | | | | | | | - Francine Ntoumi
- La Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of the Congo; Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Jean-Médard Kankou
- Direction de l'Epidémiologie et la Lutte Contre la Maladie, Ministry of Health and Population, Brazzaville, Republic of the Congo
| | - Vincent J Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA.
| | - Fabien Roch Niama
- Laboratoire National de Santé Publique, Brazzaville, Republic of the Congo; Faculté des Sciences et Techniques, Marien NGOUABI University, Brazzaville, Republic of the Congo
| |
Collapse
|
13
|
Duvignaud A, Etafo IC, Jaspard M, Salau Q, Serra B, Kareem AJ, Juchet S, Jegede TO, Gabillard D, Abidoye AT, Le Gal C, Abejegah C, Owhin S, Okwaraeke K, Doutchi M, Katembo Vihundira J, Besong-Lache RM, Seri B, Bérerd-Camara M, Salam APA, Olayinka A, Horby P, Ogbaini-Emovon E, Duraffour S, Ahmed LA, Günther S, Adedosu AN, Anglaret X, Malvy D, Lang HJ, Ayodeji OO. Presentation and Outcomes of Lassa Fever in Children in Nigeria: A Prospective Cohort Study (LASCOPE). J Pediatric Infect Dis Soc 2024; 13:513-522. [PMID: 39167706 PMCID: PMC11631139 DOI: 10.1093/jpids/piae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Data on the presentation, management, and outcomes of Lassa fever (LF) in children are limited. METHODS Description of the clinical and biological features, treatment, and outcomes of reverse transcriptase and polymerase chain reaction (RT-PCR)-confirmed LF in children aged under 15, enrolled in the LASsa fever clinical COurse and Prognostic factors in an Epidemic context (LASCOPE) prospective cohort study in Nigeria between April 2018 and February 2023. RESULTS One hundred twenty-four children (aged under 12 months: 19; over 12 months: 105) were hospitalized with RT-PCR-confirmed LF. All received intravenous ribavirin. During follow-up, 99/124 (80%) had fever; 71/124 (57%) had digestive symptoms, vomiting (n = 56/122, 46%) and abdominal pain (n = 34/78 aged ≥5 years, 44%) more often than diarrhea (n = 19/124, 15%); 17/124 (14%) had hemorrhagic signs; 44/112 (39%) had a hematocrit lower than 25%, of whom 32/44 (73%) received transfusions; 44/88 (50%) developed hypotension; 18/112 (16.1%) developed kidney disease improving global outcome (KDIGO) ≥2 acute kidney injury; 10/112 (8.9%) had KDIGO 3 acute kidney failure; 4/124 (3.2%) underwent renal replacement therapy. Seven children died, including 4 aged under 12 months (case fatality rate: under 12 months-22%, 95% confidence interval (CI): 7%-48%; over 12 months-2.9%, 95% CI: 0.7%-8.7%). In univariable analysis, age (P = .003), impaired consciousness (P = .026), and Lassa RT-PCR Ct value (P = .006) were associated with Day 30 mortality. CONCLUSIONS The fatality rate for children over 12 months hospitalized with LF was lower than that previously reported for adults. Hypotension and acute kidney injury were the most frequent organ dysfunctions. Bleeding was relatively infrequent. Anemia and the need for transfusion were common, the relative contribution of ribavirin-induced hemolysis being unknown.
Collapse
Affiliation(s)
- Alexandre Duvignaud
- Global Health in the Global South Research Team—University of Bordeaux, National Institute for Health and Medical Research (INSERM) UMR 1219, French Research Institute for Sustainable Development (IRD) EMR 271, Bordeaux Population Health Research Centre, Bordeaux, France
- Department of Infectious Diseases and Tropical Medicine, Division of Tropical Medicine and Clinical International Health, CHU Bordeaux, Hôpital Pellegrin, Place Amélie Raba Léon, Bordeaux, France
- Programme PAC-CI/ANRS Research Site, University Hospital Centre of Treichville, Abidjan, Côte d’Ivoire
- The Alliance for International Medical Action, Dakar, Senegal
| | - Ijeoma C Etafo
- Lassa Fever Response Team, Infection Control and Research Centre, Federal Medical Centre Owo, Owo, Nigeria
| | - Marie Jaspard
- Global Health in the Global South Research Team—University of Bordeaux, National Institute for Health and Medical Research (INSERM) UMR 1219, French Research Institute for Sustainable Development (IRD) EMR 271, Bordeaux Population Health Research Centre, Bordeaux, France
- Programme PAC-CI/ANRS Research Site, University Hospital Centre of Treichville, Abidjan, Côte d’Ivoire
- The Alliance for International Medical Action, Dakar, Senegal
- Department of Infectious Diseases and Tropical Medicine, Hôpital Saint Antoine, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Qasim Salau
- Department of Pediatrics, Federal Medical Centre Owo, Owo, Nigeria
| | - Béatrice Serra
- Global Health in the Global South Research Team—University of Bordeaux, National Institute for Health and Medical Research (INSERM) UMR 1219, French Research Institute for Sustainable Development (IRD) EMR 271, Bordeaux Population Health Research Centre, Bordeaux, France
- Programme PAC-CI/ANRS Research Site, University Hospital Centre of Treichville, Abidjan, Côte d’Ivoire
- The Alliance for International Medical Action, Dakar, Senegal
| | - Abiodun J Kareem
- Department of Pediatrics, Federal Medical Centre Owo, Owo, Nigeria
| | - Sylvain Juchet
- Global Health in the Global South Research Team—University of Bordeaux, National Institute for Health and Medical Research (INSERM) UMR 1219, French Research Institute for Sustainable Development (IRD) EMR 271, Bordeaux Population Health Research Centre, Bordeaux, France
- Programme PAC-CI/ANRS Research Site, University Hospital Centre of Treichville, Abidjan, Côte d’Ivoire
- The Alliance for International Medical Action, Dakar, Senegal
| | | | - Delphine Gabillard
- Global Health in the Global South Research Team—University of Bordeaux, National Institute for Health and Medical Research (INSERM) UMR 1219, French Research Institute for Sustainable Development (IRD) EMR 271, Bordeaux Population Health Research Centre, Bordeaux, France
- Programme PAC-CI/ANRS Research Site, University Hospital Centre of Treichville, Abidjan, Côte d’Ivoire
| | - Abiodun T Abidoye
- Lassa Fever Response Team, Infection Control and Research Centre, Federal Medical Centre Owo, Owo, Nigeria
| | - Camille Le Gal
- The Alliance for International Medical Action, Dakar, Senegal
| | - Chukwuyem Abejegah
- Lassa Fever Response Team, Infection Control and Research Centre, Federal Medical Centre Owo, Owo, Nigeria
| | - Sampson Owhin
- Lassa Fever Response Team, Infection Control and Research Centre, Federal Medical Centre Owo, Owo, Nigeria
| | - Kevin Okwaraeke
- The Alliance for International Medical Action, Dakar, Senegal
| | - Mahamadou Doutchi
- The Alliance for International Medical Action, Dakar, Senegal
- Department of Infectious Diseases, Centre Hospitalier National de Zinder, Zinder, Niger
| | | | | | - Benjamin Seri
- Programme PAC-CI/ANRS Research Site, University Hospital Centre of Treichville, Abidjan, Côte d’Ivoire
| | | | - Alex P A Salam
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | | | - Peter Horby
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Ephraim Ogbaini-Emovon
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Sophie Duraffour
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg–Lübeck–Borstel–Riems, Hamburg, Germany
| | - Liasu A Ahmed
- Department of Family Medicine, Federal Medical Centre Owo, Owo, Nigeria
| | - Stephan Günther
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg–Lübeck–Borstel–Riems, Hamburg, Germany
| | - Akinola N Adedosu
- Viral Hemorrhagic Fever Laboratory, Infection Control and Research Centre, Federal Medical Centre Owo, Owo, Nigeria
| | - Xavier Anglaret
- Global Health in the Global South Research Team—University of Bordeaux, National Institute for Health and Medical Research (INSERM) UMR 1219, French Research Institute for Sustainable Development (IRD) EMR 271, Bordeaux Population Health Research Centre, Bordeaux, France
- Programme PAC-CI/ANRS Research Site, University Hospital Centre of Treichville, Abidjan, Côte d’Ivoire
- The Alliance for International Medical Action, Dakar, Senegal
| | - Denis Malvy
- Global Health in the Global South Research Team—University of Bordeaux, National Institute for Health and Medical Research (INSERM) UMR 1219, French Research Institute for Sustainable Development (IRD) EMR 271, Bordeaux Population Health Research Centre, Bordeaux, France
- Department of Infectious Diseases and Tropical Medicine, Division of Tropical Medicine and Clinical International Health, CHU Bordeaux, Hôpital Pellegrin, Place Amélie Raba Léon, Bordeaux, France
- Programme PAC-CI/ANRS Research Site, University Hospital Centre of Treichville, Abidjan, Côte d’Ivoire
- The Alliance for International Medical Action, Dakar, Senegal
| | - Hans J Lang
- The Alliance for International Medical Action, Dakar, Senegal
- Witten/Herdecke—University, Global Child Health, Witten, Germany
| | - Oladele O Ayodeji
- Lassa Fever Response Team, Infection Control and Research Centre, Federal Medical Centre Owo, Owo, Nigeria
| |
Collapse
|
14
|
Hoffmann C, Krasemann S, Wurr S, Hartmann K, Adam E, Bockholt S, Müller J, Günther S, Oestereich L. Lassa virus persistence with high viral titers following experimental infection in its natural reservoir host, Mastomys natalensis. Nat Commun 2024; 15:9319. [PMID: 39472431 PMCID: PMC11522386 DOI: 10.1038/s41467-024-53616-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Lassa virus (LASV) outbreaks in West Africa pose a significant public health threat. We investigated the infection phenotype and transmission (horizontal and vertical) of LASV strain Ba366 in its natural host, Mastomys natalensis. Here we analyze viral RNA levels in body fluids, virus titers in organs and antibody presence in blood. In adults and 2-week-old animals, LASV causes transient infections with subsequent seroconversion. However, mice younger than two weeks exhibit persistent infections lasting up to 16 months despite antibody presence. LASV can be detected in various body fluids, organs, and cell types, primarily in lung, kidney, and gonadal epithelial cells. Despite the systemic virus presence, no pathological alterations in organs are observed. Infected animals efficiently transmit the virus throughout their lives. Our findings underscore the crucial role of persistently infected individuals, particularly infected females and their progeny, in LASV dissemination within the host population.
Collapse
Affiliation(s)
- Chris Hoffmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Wurr
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Kristin Hartmann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elisa Adam
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infectious Diseases (DZIF), Partner Site Hamburg, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Sabrina Bockholt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infectious Diseases (DZIF), Partner Site Hamburg, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Jonas Müller
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infectious Diseases (DZIF), Partner Site Hamburg, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Lisa Oestereich
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
- German Center for Infectious Diseases (DZIF), Partner Site Hamburg, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.
| |
Collapse
|
15
|
Hewson R. Understanding Viral Haemorrhagic Fevers: Virus Diversity, Vector Ecology, and Public Health Strategies. Pathogens 2024; 13:909. [PMID: 39452780 PMCID: PMC11510013 DOI: 10.3390/pathogens13100909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Viral haemorrhagic fevers encompass a diverse group of severe, often life-threatening illnesses caused by viruses from multiple families, including Arenaviridae, Filoviridae, Flaviviridae, Hantaviridae, Nairoviridae, Peribunyaviridae, and Phenuiviridae. Characterised by fever and haemorrhagic symptoms, these diseases challenge public health systems by overwhelming healthcare facilities, complicating diagnostic processes, and requiring extensive resources for containment and treatment, especially in resource-limited settings. This discussion explores the intricate relationships between VHFs and their transmission vectors-both animal and arthropod-and examines the impact of ecological and geographic factors on disease spread. The primary transmission of VHFs typically occurs through direct contact with infected animals or via bites from haematophagous arthropods, facilitating zoonotic and, at times, human-to-human transmission. With an emphasis on the role of diverse wildlife, domesticated animals, and vectors such as mosquitoes and ticks in the epidemiology of VHFs, there is a recognised need for robust surveillance and strategic public health responses to manage outbreaks. This review discusses the necessity of interdisciplinary approaches that integrate virology, ecology, and public health to enhance diagnostic capabilities, develop vaccines and antivirals, and improve outbreak interventions. Exploring the ecological and biological dynamics of VHFs will help bolster a deeper understanding of these emerging viruses and underpin preparation for future outbreaks. The importance of enhanced global cooperation, continuous research, and collaboration to mitigate the public health threats posed by these complex infections is a central theme, serving as a foundational strategy to reinforce worldwide preparedness and response efforts. Future directions include addressing gaps in vaccine development and tailoring public health strategies to the unique challenges of managing VHFs, such as the rapid mutation rates of viruses, the need for cold chain logistics for vaccine distribution, and socio-economic barriers to healthcare access, in order to ensure readiness for and effective response to emerging threats worldwide.
Collapse
Affiliation(s)
- Roger Hewson
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK;
- Virus Reference & Research (Special Pathogens), WHO—Collaborating Centre, Salisbury SP4 0JG, UK
- UK—Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| |
Collapse
|
16
|
Baudeau T, Sahlin K. Improved sub-genomic RNA prediction with the ARTIC protocol. Nucleic Acids Res 2024; 52:e82. [PMID: 39149898 PMCID: PMC11417393 DOI: 10.1093/nar/gkae687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024] Open
Abstract
Viral subgenomic RNA (sgRNA) plays a major role in SARS-COV2's replication, pathogenicity, and evolution. Recent sequencing protocols, such as the ARTIC protocol, have been established. However, due to the viral-specific biological processes, analyzing sgRNA through viral-specific read sequencing data is a computational challenge. Current methods rely on computational tools designed for eukaryote genomes, resulting in a gap in the tools designed specifically for sgRNA detection. To address this, we make two contributions. Firstly, we present sgENERATE, an evaluation pipeline to study the accuracy and efficacy of sgRNA detection tools using the popular ARTIC sequencing protocol. Using sgENERATE, we evaluate periscope, a recently introduced tool that detects sgRNA from ARTIC sequencing data. We find that periscope has biased predictions and high computational costs. Secondly, using the information produced from sgENERATE, we redesign the algorithm in periscope to use multiple references from canonical sgRNAs to mitigate alignment issues and improve sgRNA and non-canonical sgRNA detection. We evaluate periscope and our algorithm, periscope_multi, on simulated and biological sequencing datasets and demonstrate periscope_multi's enhanced sgRNA detection accuracy. Our contribution advances tools for studying viral sgRNA, paving the way for more accurate and efficient analyses in the context of viral RNA discovery.
Collapse
Affiliation(s)
- Thomas Baudeau
- Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France
| | - Kristoffer Sahlin
- Department of Mathematics, Science for Life Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
17
|
Groger M, Ramharter M. Rapid diagnostic tests for Lassa fever: what do we aim for? THE LANCET. INFECTIOUS DISEASES 2024; 24:944-945. [PMID: 38734013 DOI: 10.1016/s1473-3099(24)00235-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 05/13/2024]
Affiliation(s)
- Mirjam Groger
- Centre of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, and Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Michael Ramharter
- Centre of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, and Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
18
|
Besson ME, Pépin M, Metral PA. Lassa Fever: Critical Review and Prospects for Control. Trop Med Infect Dis 2024; 9:178. [PMID: 39195616 PMCID: PMC11359316 DOI: 10.3390/tropicalmed9080178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Lassa Fever is a deadly viral haemorrhagic disease, causing annually several hundreds of deaths in West Africa. This zoonotic disease is primarily transmitted to humans by rodents of the genus Mastomys, even though other rodents reportedly carry the Lassa virus, while secondary interhuman transmission accounts for approximately 20% of cases. Although this disease has been endemic in rural zones of Nigeria, Sierra Leone, Liberfia, and Guinea for hundreds of years, it is also characterised by epidemic outbreaks in the dry season, responsible for heavy death tolls. No licensed vaccine or satisfying treatment is currently available. Disease management is hindered by the incomplete knowledge of the epidemiology and distribution of the disease, resulting from an inadequate health and surveillance system. Additional scientific constraints such as the genetic diversity of the virus and the lack of understanding of the mechanisms of immune protection complexify the development of a vaccine. The intricate socio-economic context in the affected regions, and the lack of monetary incentive for drug development, allow the disease to persist in some of West Africa's poorest communities. The increase in the number of reported cases and in the fatality rate, the expansion of the endemic area, as well as the threat Lassa Fever represents internationally should urge the global community to work on the disease control and prevention. The disease control requires collaborative research for medical countermeasures and tailored public health policies. Lassa Fever, created by the interconnection between animals, humans, and ecosystems, and embedded in an intricate social context, should be addressed with a 'One Health' approach. This article provides an overview of Lassa Fever, focusing on Nigeria, and discusses the perspectives for the control of disease.
Collapse
Affiliation(s)
- Marianne E. Besson
- Department of Public Health, Royal Veterinary College, London NW1 0TU, UK
| | - Michel Pépin
- Department of Virology and Infectiology, VetAgro Sup Lyon University, 69280 Marcy L’Etoile, France;
| | | |
Collapse
|
19
|
Scher G, Yankowski C, Kurup D, Josleyn NM, Wilkinson ER, Wells J, Steffens J, Lynn G, Vantongeren S, Zeng X, Twenhafel N, Cashman KA, Schnell MJ. Inactivated rabies-based Lassa fever virus vaccine candidate LASSARAB protects nonhuman primates from lethal disease. NPJ Vaccines 2024; 9:143. [PMID: 39122759 PMCID: PMC11315998 DOI: 10.1038/s41541-024-00930-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Lassa fever virus (LASV), a member of the Arenavirus family, is the etiological agent of Lassa fever, a severe hemorrhagic disease that causes considerable morbidity and mortality in the endemic areas of West Africa. LASV is a rodent-borne CDC Tier One biological threat agent and is on the World Health Organization's (WHO) Priority Pathogen list. Currently, no FDA-licensed vaccines or specific therapeutics are available. Here, we describe the efficacy of a deactivated rabies virus (RABV)-based vaccine encoding the glycoprotein precursor (GPC) of LASV (LASSARAB). Nonhuman primates (NHPs) were administered a two-dose regimen of LASSARAB or an irrelevant RABV-based vaccine to serve as a negative control. NHPs immunized with LASSARAB developed strong humoral responses to LASV-GPC. Upon challenge, NHPs vaccinated with LASSARAB survived to the study endpoint, whereas NHPs in the control group did not. This study demonstrates that LASSARAB is a worthy candidate for continued development.
Collapse
Affiliation(s)
- Gabrielle Scher
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Catherine Yankowski
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Drishya Kurup
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson Center for Vaccines and Pandemic Preparedness, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nicole M Josleyn
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, 21702, USA
| | - Eric R Wilkinson
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, 21702, USA
| | - Jay Wells
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, 21702, USA
| | - Jesse Steffens
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, 21702, USA
| | - Ginger Lynn
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, 21702, USA
| | - Sean Vantongeren
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, 21702, USA
| | - Xiankun Zeng
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, 21702, USA
| | - Nancy Twenhafel
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, 21702, USA
| | - Kathleen A Cashman
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, 21702, USA.
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA.
- Jefferson Center for Vaccines and Pandemic Preparedness, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Nuismer SL, Basinski AJ, Schreiner CL, Eskew EA, Fichet-Calvet E, Remien CH. Quantifying the risk of spillover reduction programs for human health. PLoS Comput Biol 2024; 20:e1012358. [PMID: 39146377 PMCID: PMC11349207 DOI: 10.1371/journal.pcbi.1012358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/27/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
Reducing spillover of zoonotic pathogens is an appealing approach to preventing human disease and minimizing the risk of future epidemics and pandemics. Although the immediate human health benefit of reducing spillover is clear, over time, spillover reduction could lead to counterintuitive negative consequences for human health. Here, we use mathematical models and computer simulations to explore the conditions under which unanticipated consequences of spillover reduction can occur in systems where the severity of disease increases with age at infection. Our results demonstrate that, because the average age at infection increases as spillover is reduced, programs that reduce spillover can actually increase population-level disease burden if the clinical severity of infection increases sufficiently rapidly with age. If, however, immunity wanes over time and reinfection is possible, our results reveal that negative health impacts of spillover reduction become substantially less likely. When our model is parameterized using published data on Lassa virus in West Africa, it predicts that negative health outcomes are possible, but likely to be restricted to a small subset of populations where spillover is unusually intense. Together, our results suggest that adverse consequences of spillover reduction programs are unlikely but that the public health gains observed immediately after spillover reduction may fade over time as the age structure of immunity gradually re-equilibrates to a reduced force of infection.
Collapse
Affiliation(s)
- Scott L. Nuismer
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Andrew J. Basinski
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Courtney L. Schreiner
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Evan A. Eskew
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, Idaho, United States of America
| | | | - Christopher H. Remien
- Department of Mathematics and Statistical Science, University of Idaho, Moscow, Idaho, United States of America
| |
Collapse
|
21
|
Pan G, Fu M, Ni H, Zhang W, Yao Y, Xie Y, Li J, Zhang Y, Wang Y, Han K, Gao Y. Legionella maceachernii pneumonia: a case report and literature review. Postgrad Med 2024; 136:678-682. [PMID: 39082113 DOI: 10.1080/00325481.2024.2385888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Legionella maceachernii pneumonia is a severe respiratory infection with low incidence but high mortality. However, the optimal treatment for this disease remains unclear. We report a case of successful treatment of Legionella maceachernii pneumonia, which is the first report of such a case in China. CASE PRESENTATION An 87-year-old man with concomitant chronic obstructive pulmonary disease, liver cirrhosis, and history of left nephrectomy was diagnosed with Legionella maceachernii pneumonia using Dano-seq pathogen metagenomic testing. After two weeks of treatment with cefoperazone/sulbactam combined with quinolone antibiotics, the patient showed improvement and was discharged. The patient continued to take oral quinolone antibiotics for one week after discharge and recovered during outpatient follow-up. CONCLUSIONS Dano-seq pathogen metagenomic testing can rapidly diagnose Legionella maceachernii pneumonia, and taking quinolone antibiotics is an effective treatment.
Collapse
Affiliation(s)
- Gaofeng Pan
- Department of Infectious Diseases, The First People's Hospital of Kunshan, Kunshan, Jiangsu, China
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Infectious Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Maoying Fu
- Department of Infectious Diseases, The First People's Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Huihui Ni
- Department of Infectious Diseases, The First People's Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Wei Zhang
- Department of Infectious Diseases, The First People's Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Yi Yao
- Department of Infectious Diseases, The First People's Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Yingcong Xie
- Department of Infectious Diseases, The First People's Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Jing Li
- Department of Infectious Diseases, The First People's Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Yijia Zhang
- Department of Infectious Diseases, The First People's Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Yuting Wang
- Department of Infectious Diseases, The First People's Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Kexing Han
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Infectious Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Yufeng Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Infectious Diseases, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
22
|
Si W, Chen W, Chen B, Zhou Y, Zhang H. Detection value of third-generation sequencing to identify the pathogenic organisms in prosthetic joint infection. Diagn Microbiol Infect Dis 2024; 109:116319. [PMID: 38669776 DOI: 10.1016/j.diagmicrobio.2024.116319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
To compare the detection value of third-generation sequencing (TGS) with pathogenic microbial culture in prosthetic joint infection (PJI). Arthrocentesis was performed on 29 patients who underwent hip and knee revision surgeries. In the PJI group, TGS detected 85.71 % of positive cases, while pathogenic microbial culture detected only 42.85 %. TGS identified 17 different pathogenic microorganisms, including Staphylococcus epidermidis, Staphylococcus aureus, Streptococcus lactis, and Mycobacterium tuberculosis complex. In the loosening group, TGS was positive in one patient, while microbial culture was negative in all cases. TGS showed higher sensitivity (85.71 % vs. 42.85 %), comparable specificity (93.33 % vs. 100 %), and similar positive predictive value (92.31 % vs. 100 %) compared to culture.However, TGS had a higher negative predictive value (87.5 % vs. 65.22 %).Additionally, TGS provided faster results (mean time 23.8±3.6 h) compared to microbial culture (mean time 108.0±9.4 h).These findings suggest that TGS holds promise for detecting pathogenic microorganisms in PJI and has potential for clinical application.
Collapse
Affiliation(s)
- Wenteng Si
- Zhengzhou Orthopaedic Hospital of Joint Surgery, Zhengzhou 450052, China
| | - Wenzhong Chen
- Zhengzhou Orthopaedic Hospital of Joint Surgery, Zhengzhou 450052, China
| | - Bin Chen
- Zhengzhou Orthopaedic Hospital of Joint Surgery, Zhengzhou 450052, China
| | - Yu Zhou
- Zhengzhou Orthopaedic Hospital of Joint Surgery, Zhengzhou 450052, China
| | - Huaguo Zhang
- Department of Nursing, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.
| |
Collapse
|
23
|
John RS, Fatoyinbo HO, Hayman DTS. Modelling Lassa virus dynamics in West African Mastomys natalensis and the impact of human activities. J R Soc Interface 2024; 21:20240106. [PMID: 39045680 PMCID: PMC11267396 DOI: 10.1098/rsif.2024.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/25/2024] [Accepted: 06/04/2024] [Indexed: 07/25/2024] Open
Abstract
Lassa fever is a West African rodent-borne viral haemorrhagic fever that kills thousands of people a year, with 100 000 to 300 000 people a year probably infected by Lassa virus (LASV). The main reservoir of LASV is the Natal multimammate mouse, Mastomys natalensis. There is reported asynchrony between peak infection in the rodent population and peak Lassa fever risk among people, probably owing to differing seasonal contact rates. Here, we developed a susceptible-infected-recovered ([Formula: see text])-based model of LASV dynamics in its rodent host, M. natalensis, with a persistently infected class and seasonal birthing to test the impact of changes to seasonal birthing in the future owing to climate and land use change. Our simulations suggest shifting rodent birthing timing and synchrony will alter the peak of viral prevalence, changing risk to people, with viral dynamics mainly stable in adults and varying in the young, but with more infected individuals. We calculate the time-average basic reproductive number, [Formula: see text], for this infectious disease system with periodic changes to population sizes owing to birthing using a time-average method and with a sensitivity analysis show four key parameters: carrying capacity, adult mortality, the transmission parameter among adults and additional disease-induced mortality impact the maintenance of LASV in M. natalensis most, with carrying capacity and adult mortality potentially changeable owing to human activities and interventions.
Collapse
Affiliation(s)
- Reju Sam John
- Massey University, Private Bag, 11 222, Palmerston North4442, New Zealand
| | | | - David T. S. Hayman
- Massey University, Private Bag, 11 222, Palmerston North4442, New Zealand
| |
Collapse
|
24
|
Smith DRM, Turner J, Fahr P, Attfield LA, Bessell PR, Donnelly CA, Gibb R, Jones KE, Redding DW, Asogun D, Ayodeji OO, Azuogu BN, Fischer WA, Jan K, Olayinka AT, Wohl DA, Torkelson AA, Dinkel KA, Nixon EJ, Pouwels KB, Hollingsworth TD. Health and economic impacts of Lassa vaccination campaigns in West Africa. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.26.24303394. [PMID: 38978680 PMCID: PMC11230338 DOI: 10.1101/2024.02.26.24303394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Lassa fever is a zoonotic disease identified by the World Health Organization (WHO) as having pandemic potential. This study estimates the health-economic burden of Lassa fever throughout West Africa and projects impacts of a series of vaccination campaigns. We also model the emergence of "Lassa-X" - a hypothetical pandemic Lassa virus variant - and project impacts of achieving 100 Days Mission vaccination targets. Our model predicted 2.7M (95% uncertainty interval: 2.1M-3.4M) Lassa virus infections annually, resulting over ten years in 2.0M (793.8K-3.9M) disability-adjusted life years (DALYs). The most effective vaccination strategy was a population-wide preventive campaign primarily targeting WHO-classified "endemic" districts. Under conservative vaccine efficacy assumptions, this campaign averted $20.1M ($8.2M-$39.0M) in lost DALY value and $128.2M ($67.2M-$231.9M) in societal costs (International dollars 2021). Reactive vaccination in response to local outbreaks averted just one-tenth the health-economic burden of preventive campaigns. In the event of Lassa-X emerging, spreading throughout West Africa and causing approximately 1.2M DALYs within two years, 100 Days Mission vaccination averted 22% of DALYs given a vaccine 70% effective against disease, and 74% of DALYs given a vaccine 70% effective against both infection and disease. These findings suggest how vaccination could alleviate Lassa fever's burden and assist in pandemic preparedness.
Collapse
|
25
|
Mourik K, Sidorov I, Carbo EC, van der Meer D, Boot A, Kroes ACM, Claas ECJ, Boers SA, de Vries JJC. Comparison of the performance of two targeted metagenomic virus capture probe-based methods using reference control materials and clinical samples. J Clin Microbiol 2024; 62:e0034524. [PMID: 38757981 PMCID: PMC11237577 DOI: 10.1128/jcm.00345-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/05/2024] [Indexed: 05/18/2024] Open
Abstract
Viral enrichment by probe hybridization has been reported to significantly increase the sensitivity of viral metagenomics. This study compares the analytical performance of two targeted metagenomic virus capture probe-based methods: (i) SeqCap EZ HyperCap by Roche (ViroCap) and (ii) Twist Comprehensive Viral Research Panel workflow, for diagnostic use. Sensitivity, specificity, and limit of detection were analyzed using 25 synthetic viral sequences spiked in increasing proportions of human background DNA, eight clinical samples, and American Type Culture Collection (ATCC) Virome Virus Mix. Sensitivity and specificity were 95% and higher for both methods using the synthetic and reference controls as gold standard. Combining thresholds for viral sequence read counts and genome coverage [respectively 500 reads per million (RPM) and 10% coverage] resulted in optimal prediction of true positive results. Limits of detection were approximately 50-500 copies/mL for both methods as determined by ddPCR. Increasing proportions of spike-in cell-free human background sequences up to 99.999% (50 ng/mL) did not negatively affect viral detection, suggesting effective capture of viral sequences. These data show analytical performances in ranges applicable to clinical samples, for both probe hybridization metagenomic approaches. This study supports further steps toward more widespread use of viral metagenomics for pathogen detection, in clinical and surveillance settings using low biomass samples. IMPORTANCE Viral metagenomics has been gradually applied for broad-spectrum pathogen detection of infectious diseases, surveillance of emerging diseases, and pathogen discovery. Viral enrichment by probe hybridization methods has been reported to significantly increase the sensitivity of viral metagenomics. During the past years, a specific hybridization panel distributed by Roche has been adopted in a broad range of different clinical and zoonotic settings. Recently, Twist Bioscience has released a new hybridization panel targeting human and animal viruses. This is the first report comparing the performance of viral metagenomic hybridization panels.
Collapse
Affiliation(s)
- Kees Mourik
- Department of Medical Microbiology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Igor Sidorov
- Department of Medical Microbiology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Ellen C. Carbo
- Department of Medical Microbiology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - Aloysius C. M. Kroes
- Department of Medical Microbiology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Eric C. J. Claas
- Department of Medical Microbiology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Stefan A. Boers
- Department of Medical Microbiology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Jutte J. C. de Vries
- Department of Medical Microbiology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
26
|
Aljabr W, Dandachi I, Abbas B, Karkashan A, Al-Amari A, AlShahrani D. Metagenomic next-generation sequencing of nasopharyngeal microbiota in COVID-19 patients with different disease severities. Microbiol Spectr 2024; 12:e0416623. [PMID: 38557102 PMCID: PMC11237758 DOI: 10.1128/spectrum.04166-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/24/2024] [Indexed: 04/04/2024] Open
Abstract
Throughout the COVID-19 pandemic, extensive research has been conducted on SARS-COV-2 to elucidate its genome, prognosis, and possible treatments. However, few looked at the microbial markers that could be explored in infected patients and that could predict possible disease severity. The aim of this study is to compare the nasopharyngeal microbiota of healthy subjects, moderate, under medication, and recovered SARS-COV-2 patients. In 2020, 38 nasopharyngeal swabs were collected from 6 healthy subjects, 14 moderates, 10 under medication and 8 recovered SARS-COV-2 patients at the Prince Mohammed Bin Abdulaziz Hospital Riyadh. Metatranscriptomic sequencing was performed using Minion Oxford nanopore sequencing. No significant difference in alpha as well as beta diversity was observed among all four categories. Nevertheless, we have found that Streptococcus spp including Streptococcus pneumoniae and Streptococcus thermophilus were among the top 15 most abundant species detected in COVID-19 patients but not in healthy subjects. The genus Staphylococcus was found to be associated with COVID-19 patients compared to healthy subjects. Furthermore, the abundance of Leptotrichia was significantly higher in healthy subjects compared to recovered patients. Corynebacterium on the other hand, was associated with under-medication patients. Taken together, our study revealed no differences in the overall microbial composition between healthy subjects and COVID-19 patients. Significant differences were seen only at specific taxonomic level. Future studies should explore the nasopharyngeal microbiota between controls and COVID-19 patients while controlling for confounders including age, gender, and comorbidities; since these latter could affect the results and accordingly the interpretation.IMPORTANCEIn this work, no significant difference in the microbial diversity was seen between healthy subjects and COVID-19 patients. Changes in specific taxa including Leptotrichia, Staphylococcus, and Corynebacterium were only observed. Leptotrichia was significantly higher in healthy subjects, whereas Staphylococcus and Corynebacterium were mostly associated with COVID-19, and specifically with under-medication SARS-COV-2 patients, respectively. Although the COVID-19 pandemic has ended, the SARS-COV-2 virus is continuously evolving and the emergence of new variants causing more severe disease should be always kept in mind. Microbial markers in SARS-COV-2 infected patients can be useful in the early suspicion of the disease, predicting clinical outcomes, framing hospital and intensive care unit admission as well as, risk stratification. Data on which microbial marker to tackle is still controversial and more work is needed, hence the importance of this study.
Collapse
Affiliation(s)
- Waleed Aljabr
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Iman Dandachi
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Basma Abbas
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Alaa Karkashan
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ahod Al-Amari
- Department of Basic Medical Sciences, College of Medicine, Dar Al-Uloom University, Riyadh, Saudi Arabia
| | - Dayel AlShahrani
- Pediatric infectious diseases, King Fahad Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
27
|
Eskew EA, Bird BH, Ghersi BM, Bangura J, Basinski AJ, Amara E, Bah MA, Kanu MC, Kanu OT, Lavalie EG, Lungay V, Robert W, Vandi MA, Fichet-Calvet E, Nuismer SL. Reservoir displacement by an invasive rodent reduces Lassa virus zoonotic spillover risk. Nat Commun 2024; 15:3589. [PMID: 38678025 PMCID: PMC11055883 DOI: 10.1038/s41467-024-47991-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
The black rat (Rattus rattus) is a globally invasive species that has been widely introduced across Africa. Within its invasive range in West Africa, R. rattus may compete with the native rodent Mastomys natalensis, the primary reservoir host of Lassa virus, a zoonotic pathogen that kills thousands annually. Here, we use rodent trapping data from Sierra Leone and Guinea to show that R. rattus presence reduces M. natalensis density within the human dwellings where Lassa virus exposure is most likely to occur. Further, we integrate infection data from M. natalensis to demonstrate that Lassa virus zoonotic spillover risk is lower at sites with R. rattus. While non-native species can have numerous negative effects on ecosystems, our results suggest that R. rattus invasion has the indirect benefit of decreasing zoonotic spillover of an endemic pathogen, with important implications for invasive species control across West Africa.
Collapse
Affiliation(s)
- Evan A Eskew
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA.
| | - Brian H Bird
- One Health Institute, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA
| | - Bruno M Ghersi
- One Health Institute, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | | | - Andrew J Basinski
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | | | - Mohamed A Bah
- Ministry of Agriculture and Forestry, Freetown, Sierra Leone
| | | | | | | | | | | | | | | | - Scott L Nuismer
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
28
|
Lanszki Z, Islam MS, Shikder MF, Sarder MJU, Khan SA, Chowdhury S, Islam MN, Tauber Z, Tóth GE, Jakab F, Kemenesi G, Akter S. Snapshot study of canine distemper virus in Bangladesh with on-site PCR detection and nanopore sequencing. Sci Rep 2024; 14:9250. [PMID: 38649415 PMCID: PMC11035628 DOI: 10.1038/s41598-024-59343-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Canine distemper virus (CDV) is a highly contagious virus that affects domestic and wild animals, causing severe illness with high mortality rates. Rapid monitoring and sequencing can provide valuable information about circulating CDV strains, which may foster effective vaccination strategies and the successful integration of these into conservation programs. During two site visits in Bangladesh in 2023, we tested a mobile, deployable genomic surveillance setup to explore the genetic diversity and phylogenetic patterns of locally circulating CDV strains. We collected and analysed 355 oral swab samples from stray dogs in Rajshahi and Chattogram cities, Bangladesh. CDV-specific real-time RT-PCR was performed to screen the samples. Out of the 355 samples, 7.4% (10/135) from Rajshahi city and 0.9% (2/220) from Chattogram city tested positive for CDV. We applied a real-time RT-PCR assay and a pan-genotype CDV-specific amplicon-based Nanopore sequencing technology to obtain the near-completes. Five near-complete genome sequences were generated, with phylogenetic relation to the India-1/Asia-5 lineage previously identified in India. This is the first study to provide genomic data on CDV in Bangladesh and the first demonstration of a mobile laboratory setup as a powerful tool in rapid genomic surveillance and risk assessment for CDV in low resource regions.
Collapse
Affiliation(s)
- Zsófia Lanszki
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pecs, Hungary.
- Institute of Biology, Faculty of Sciences, University of Pécs, Pecs, Hungary.
| | - Md Shafeul Islam
- Faculty of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Md Foisal Shikder
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Md Jalal Uddin Sarder
- Faculty of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Shahneaz Ali Khan
- Department of Physiology Biochemistry and Pharmacology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Sharmin Chowdhury
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, One Health Institute, Rajshahi, Bangladesh
| | - Md Nurul Islam
- Department of Forest and Wildlife Ecology, Wisconsin Cooperative Wildlife Research Unit, University of Wisconsin-Madison, Madison, USA
| | - Zsófia Tauber
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pecs, Hungary
- School of Biomedical Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Gábor Endre Tóth
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pecs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pecs, Hungary
| | - Ferenc Jakab
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pecs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pecs, Hungary
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pecs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pecs, Hungary
| | - Sazeda Akter
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| |
Collapse
|
29
|
Alrezaihi A, Penrice-Randal R, Dong X, Prince T, Randle N, Semple MG, Openshaw PJM, MacGill T, Myers T, Orr R, Zakotnik S, Suljič A, Avšič-Županc T, Petrovec M, Korva M, AlJabr W, Hiscox JA. Enrichment of SARS-CoV-2 sequence from nasopharyngeal swabs whilst identifying the nasal microbiome. J Clin Virol 2024; 171:105620. [PMID: 38237303 DOI: 10.1016/j.jcv.2023.105620] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/06/2023] [Accepted: 11/18/2023] [Indexed: 03/17/2024]
Abstract
Simultaneously characterising the genomic information of coronaviruses and the underlying nasal microbiome from a single clinical sample would help characterise infection and disease. Metatranscriptomic approaches can be used to sequence SARS-CoV-2 (and other coronaviruses) and identify mRNAs associated with active transcription in the nasal microbiome. However, given the large sequence background, unenriched metatranscriptomic approaches often do not sequence SARS-CoV-2 to sufficient read and coverage depth to obtain a consensus genome, especially with moderate and low viral loads from clinical samples. In this study, various enrichment methods were assessed to detect SARS-CoV-2, identify lineages and define the nasal microbiome. The methods were underpinned by Oxford Nanopore long-read sequencing and variations of sequence independent single primer amplification (SISPA). The utility of the method(s) was also validated on samples from patients infected seasonal coronaviruses. The feasibility of profiling the nasal microbiome using these enrichment methods was explored. The findings shed light on the performance of different enrichment strategies and their applicability in characterising the composition of the nasal microbiome.
Collapse
Affiliation(s)
| | | | | | | | | | - Malcolm G Semple
- University of Liverpool, Liverpool, UK; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK; Alder Hey Children's Hospital, Liverpool, UK
| | | | - Tracy MacGill
- Office of Counterterrorism and Emerging Threats, U.S. Food and Drug Administration, Silver Spring, USA
| | - Todd Myers
- Office of Counterterrorism and Emerging Threats, U.S. Food and Drug Administration, Silver Spring, USA
| | - Robert Orr
- Office of Counterterrorism and Emerging Threats, U.S. Food and Drug Administration, Silver Spring, USA
| | | | - Alen Suljič
- University of Ljubljana, Ljubljana, Slovenia
| | | | | | - Miša Korva
- University of Ljubljana, Ljubljana, Slovenia
| | - Waleed AlJabr
- University of Liverpool, Liverpool, UK; King Fahad Medical City, Riyadh, Saudi Arabia
| | - Julian A Hiscox
- University of Liverpool, Liverpool, UK; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK; Agency for Science, Technology and Research (A*STAR), Singapore.
| |
Collapse
|
30
|
D'Addiego J, Wand N, Afrough B, Fletcher T, Kurosaki Y, Leblebicioglu H, Hewson R. Recovery of complete genome sequences of Crimean-Congo haemorrhagic fever virus (CCHFV) directly from clinical samples: A comparative study between targeted enrichment and metagenomic approaches. J Virol Methods 2024; 323:114833. [PMID: 37879367 DOI: 10.1016/j.jviromet.2023.114833] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/06/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Crimean-Congo haemorrhagic fever (CCHF) is the most prevalent human tick-borne viral disease, endemic to the Balkans, Africa, Middle East and Asia. There are currently no licensed vaccines or effective antivirals against CCHF. CCHF virus (CCHFV) has a negative sense segmented tripartite RNA genome consisting of the small (S), medium (M) and large (L) segments. Depending on the segment utilised for genetic affiliation, there are up to 7 circulating lineages of CCHFV. The current lack of geographical representation of CCHFV sequences in various repositories highlights a requirement for increased CCHFV sequencing capabilities in endemic regions. We have optimised and established a multiplex PCR tiling methodology for the targeted enrichment of complete genomes of Europe 1 CCHFV lineage directly from clinical samples and compared its performance to a non-targeted enrichment approach on both short-read and long-read sequencing platforms. We have found a statistically significant increase in mapped viral sequencing reads produced with our targeted enrichment approach. This has allowed us to recover near complete S segment sequences and above 90% of the M and L segment sequences for samples with Ct values as high as 31.3. This study demonstrates the superiority of a targeted enrichment approach for recovery of CCHFV genomic sequences from samples with low virus titre. CCHFV is an important vector-borne human pathogen with wide geographical distribution. The validated methodology reported here adds value to front-line public health laboratories employing genomic sequencing for CCHFV Europe 1 lineage surveillance, particularly in the Balkan and Middle Eastern territories currently monitoring the spread of the pathogen. Tracking the genomic evolution of the virus across regions improves risk assessment and directly informs the development of diagnostics, therapeutics, and vaccines.
Collapse
Affiliation(s)
- Jake D'Addiego
- UK Health Security Agency, Science Group, Porton Down, Salisbury, United Kingdom; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | - Nadina Wand
- UK Health Security Agency, Science Group, Porton Down, Salisbury, United Kingdom
| | - Babak Afrough
- UK Health Security Agency, Science Group, Porton Down, Salisbury, United Kingdom
| | - Tom Fletcher
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Yohei Kurosaki
- National Research Centre for the Control and Prevention of Infectious Diseases, Nagasaki University, Japan
| | | | - Roger Hewson
- UK Health Security Agency, Science Group, Porton Down, Salisbury, United Kingdom; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; National Research Centre for the Control and Prevention of Infectious Diseases, Nagasaki University, Japan
| |
Collapse
|
31
|
Adesina AS, Oyeyiola A, Obadare A, Igbokwe J, Abejegah C, Akhilomen P, Bangura U, Asogun D, Tobin E, Ayodeji O, Osoniyi O, Davis C, Thomson EC, Pahlmann M, Günther S, Fichet-Calvet E, Olayemi A. Circulation of Lassa virus across the endemic Edo-Ondo axis, Nigeria, with cross-species transmission between multimammate mice. Emerg Microbes Infect 2023; 12:2219350. [PMID: 37288752 PMCID: PMC10251791 DOI: 10.1080/22221751.2023.2219350] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
We phylogenetically compared sequences of the zoonotic Lassa virus (LASV) obtained from Mastomys rodents in seven localities across the highly endemic Edo and Ondo States within Nigeria. Sequencing 1641 nt from the S segment of the virus genome, we resolved clades within lineage II that were either limited to Ebudin and Okhuesan in Edo state (2g-beta) or along Owo-Okeluse-Ifon in Ondo state (2g-gamma). We also found clades within Ekpoma, a relatively large cosmopolitan town in Edo state, that extended into other localities within Edo (2g-alpha) and Ondo (2g-delta). LASV variants from M. natalensis within Ebudin and Ekpoma in Edo State (dated approximately 1961) were more ancient compared to those from Ondo state (approximately 1977), suggesting a broadly east-west virus migration across south-western Nigeria; a pattern not always consistent with LASV sequences derived from humans in the same localities. Additionally, in Ebudin and Ekpoma, LASV sequences between M. natalensis and M. erythroleucus were interspersed on the phylogenetic tree, but those from M. erythroleucus were estimated to emerge more recently (approximately 2005). Overall, our results show that LASV amplification in certain localities (reaching a prevalence as high as 76% in Okeluse), anthropogenically-aided spread of rodent-borne variants amidst the larger towns (involving communal accommodation such as student hostels), and virus-exchange between syntopic M. natalensis and M. erythroleucus rodents (as the latter, a savanna species, encroaches southward into the degraded forest) pose perpetual zoonotic hazard across the Edo-Ondo Lassa fever belt, threatening to accelerate the dissemination of the virus into non endemic areas.
Collapse
Affiliation(s)
- Adetunji Samuel Adesina
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile Ife, Osun State, Nigeria
| | - Akinlabi Oyeyiola
- Natural History Museum, Obafemi Awolowo University, Ile Ife, Osun State, Nigeria
| | - Adeoba Obadare
- Natural History Museum, Obafemi Awolowo University, Ile Ife, Osun State, Nigeria
| | - Joseph Igbokwe
- Department of Zoology, Obafemi Awolowo University, Ile Ife, Osun State, Nigeria
| | | | | | - Umaru Bangura
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Danny Asogun
- Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Ekaete Tobin
- Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | | | - Omolaja Osoniyi
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile Ife, Osun State, Nigeria
| | - Chris Davis
- Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Emma C Thomson
- Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Meike Pahlmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Ayodeji Olayemi
- Natural History Museum, Obafemi Awolowo University, Ile Ife, Osun State, Nigeria
| |
Collapse
|
32
|
Mateo M, Baize S. [Recent advances in the development of vaccines against hemorrhagic fevers caused by arenaviruses]. Med Sci (Paris) 2023; 39:855-861. [PMID: 38018929 DOI: 10.1051/medsci/2023162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Arenaviruses are a global threat, causing thousands of deaths each year in several countries around the world. Despite strong efforts in the development of vaccine candidates, vaccines against Lassa fever or Bolivian and Venezuelan hemorrhagic fevers are yet to be licensed for a use in humans. In this synthesis, we present the arenaviruses causing fatal diseases in humans and the main vaccine candidates that have been developed over the past decades with an emphasis on the measles-Lassa vaccine, the first Lassa vaccine ever tested in humans, and on the MOPEVAC platform that can potentially be used as a pan-arenavirus vaccine platform.
Collapse
Affiliation(s)
- Mathieu Mateo
- Institut Pasteur, Université Paris Cité, Unité de biologie des infections virales émergentes, Paris, France - Centre international de recherche en infectiologie (CIRI), université de Lyon, Inserm U1111, école normale supérieure de Lyon, université Lyon 1, CNRS UMR5308, 69-007, Lyon, France
| | - Sylvain Baize
- Institut Pasteur, Université Paris Cité, Unité de biologie des infections virales émergentes, Paris, France - Centre international de recherche en infectiologie (CIRI), université de Lyon, Inserm U1111, école normale supérieure de Lyon, université Lyon 1, CNRS UMR5308, 69-007, Lyon, France
| |
Collapse
|
33
|
Zhu X, Zhao L, Huang L, Yang W, Wang L, Yu R. cgMSI: pathogen detection within species from nanopore metagenomic sequencing data. BMC Bioinformatics 2023; 24:387. [PMID: 37821827 PMCID: PMC10568937 DOI: 10.1186/s12859-023-05512-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 10/02/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Metagenomic sequencing is an unbiased approach that can potentially detect all the known and unidentified strains in pathogen detection. Recently, nanopore sequencing has been emerging as a highly potential tool for rapid pathogen detection due to its fast turnaround time. However, identifying pathogen within species is nontrivial for nanopore sequencing data due to the high sequencing error rate. RESULTS We developed the core gene alleles metagenome strain identification (cgMSI) tool, which uses a two-stage maximum a posteriori probability estimation method to detect pathogens at strain level from nanopore metagenomic sequencing data at low computational cost. The cgMSI tool can accurately identify strains and estimate relative abundance at 1× coverage. CONCLUSIONS We developed cgMSI for nanopore metagenomic pathogen detection within species. cgMSI is available at https://github.com/ZHU-XU-xmu/cgMSI .
Collapse
Affiliation(s)
- Xu Zhu
- School of Informatics, Xiamen University, Xiamen, Fujian, China
| | - Lili Zhao
- Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Lihong Huang
- Computer Management Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | | | - Liansheng Wang
- School of Informatics, Xiamen University, Xiamen, Fujian, China.
- National Institute for Data Science in Health and Medicine, Informatics, Xiamen University, Xiamen, Fujian, China.
| | - Rongshan Yu
- School of Informatics, Xiamen University, Xiamen, Fujian, China.
- National Institute for Data Science in Health and Medicine, Informatics, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
34
|
Sharma S, Pannu J, Chorlton S, Swett JL, Ecker DJ. Threat Net: A Metagenomic Surveillance Network for Biothreat Detection and Early Warning. Health Secur 2023; 21:347-357. [PMID: 37367195 DOI: 10.1089/hs.2022.0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Early detection of novel pathogens can prevent or substantially mitigate biological incidents, including pandemics. Metagenomic next-generation sequencing (mNGS) of symptomatic clinical samples may enable detection early enough to contain outbreaks, limit international spread, and expedite countermeasure development. In this article, we propose a clinical mNGS architecture we call "Threat Net," which focuses on the hospital emergency department as a high-yield surveillance location. We develop a susceptible-exposed-infected-removed (SEIR) simulation model to estimate the effectiveness of Threat Net in detecting novel respiratory pathogen outbreaks. Our analysis serves to quantify the value of routine clinical mNGS for respiratory pandemic detection by estimating the cost and epidemiological effectiveness at differing degrees of hospital coverage across the United States. We estimate that a biological threat detection network such as Threat Net could be deployed across hospitals covering 30% of the population in the United States. Threat Net would cost between $400 million and $800 million annually and have a 95% chance of detecting a novel respiratory pathogen with traits of SARS-CoV-2 after 10 emergency department presentations and 79 infections across the United States. Our analyses suggest that implementing Threat Net could help prevent or substantially mitigate the spread of a respiratory pandemic pathogen in the United States.
Collapse
Affiliation(s)
- Siddhanth Sharma
- Siddhanth Sharma, MD MPH, is a Public Health Registrar, Metropolitan Communicable Disease Control, Perth, Australia
| | - Jaspreet Pannu
- Jaspreet Pannu, MD, is a Resident Physician, Department of Medicine, Stanford University School of Medicine, Stanford, CA. Johns Hopkins Center for Health Security, Baltimore, MD
| | - Sam Chorlton
- Sam Chorlton, MD, D(ABMM), is Chief Executive Officer, BugSeq Bioinformatics, Vancouver, Canada
| | - Jacob L Swett
- Jacob L. Swett, DPhil, is Cofounder, altLabs, Inc., Berkeley, CA
| | - David J Ecker
- David J. Ecker, PhD, is Vice President of Strategic Innovation, Ionis Pharmaceuticals, Carlsbad, CA
| |
Collapse
|
35
|
Urban L, Perlas A, Francino O, Martí‐Carreras J, Muga BA, Mwangi JW, Boykin Okalebo L, Stanton JL, Black A, Waipara N, Fontsere C, Eccles D, Urel H, Reska T, Morales HE, Palmada‐Flores M, Marques‐Bonet T, Watsa M, Libke Z, Erkenswick G, van Oosterhout C. Real-time genomics for One Health. Mol Syst Biol 2023; 19:e11686. [PMID: 37325891 PMCID: PMC10407731 DOI: 10.15252/msb.202311686] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023] Open
Abstract
The ongoing degradation of natural systems and other environmental changes has put our society at a crossroad with respect to our future relationship with our planet. While the concept of One Health describes how human health is inextricably linked with environmental health, many of these complex interdependencies are still not well-understood. Here, we describe how the advent of real-time genomic analyses can benefit One Health and how it can enable timely, in-depth ecosystem health assessments. We introduce nanopore sequencing as the only disruptive technology that currently allows for real-time genomic analyses and that is already being used worldwide to improve the accessibility and versatility of genomic sequencing. We showcase real-time genomic studies on zoonotic disease, food security, environmental microbiome, emerging pathogens, and their antimicrobial resistances, and on environmental health itself - from genomic resource creation for wildlife conservation to the monitoring of biodiversity, invasive species, and wildlife trafficking. We stress why equitable access to real-time genomics in the context of One Health will be paramount and discuss related practical, legal, and ethical limitations.
Collapse
Affiliation(s)
- Lara Urban
- Helmholtz AI, Helmholtz Zentrum MuenchenNeuherbergGermany
- Helmholtz Pioneer Campus, Helmholtz Zentrum MuenchenNeuherbergGermany
- School of Life Sciences, Technical University of MunichFreisingGermany
| | - Albert Perlas
- Helmholtz AI, Helmholtz Zentrum MuenchenNeuherbergGermany
- Helmholtz Pioneer Campus, Helmholtz Zentrum MuenchenNeuherbergGermany
| | - Olga Francino
- Nano1Health SL, Parc de Recerca UABCampus Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Joan Martí‐Carreras
- Nano1Health SL, Parc de Recerca UABCampus Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Brenda A Muga
- Department of AnatomyUniversity of OtagoDunedinNew Zealand
| | | | | | | | - Amanda Black
- Bioprotection AotearoaLincoln UniversityLincolnNew Zealand
| | | | - Claudia Fontsere
- Center for Evolutionary HologenomicsThe Globe Institute, University of CopenhagenCopenhagenDenmark
| | - David Eccles
- Hugh Green Cytometry CentreMalaghan Institute of Medical ResearchWellingtonNew Zealand
| | - Harika Urel
- Helmholtz AI, Helmholtz Zentrum MuenchenNeuherbergGermany
- Helmholtz Pioneer Campus, Helmholtz Zentrum MuenchenNeuherbergGermany
- School of Life Sciences, Technical University of MunichFreisingGermany
| | - Tim Reska
- Helmholtz AI, Helmholtz Zentrum MuenchenNeuherbergGermany
- Helmholtz Pioneer Campus, Helmholtz Zentrum MuenchenNeuherbergGermany
- School of Life Sciences, Technical University of MunichFreisingGermany
| | - Hernán E Morales
- Center for Evolutionary HologenomicsThe Globe Institute, University of CopenhagenCopenhagenDenmark
- Department of Biology, Ecology BuildingLund UniversityLundSweden
| | - Marc Palmada‐Flores
- Institute of Evolutionary BiologyUniversitat Pompeu Fabra‐CSIC, PRBBBarcelonaSpain
| | - Tomas Marques‐Bonet
- Institute of Evolutionary BiologyUniversitat Pompeu Fabra‐CSIC, PRBBBarcelonaSpain
- Catalan Institution of Research and Advanced Studies (ICREA)BarcelonaSpain
- CNAGCentre of Genomic AnalysisBarcelonaSpain
- Institut Català de Paleontologia Miquel CrusafontUniversitat Autònoma de BarcelonaBarcelonaSpain
| | | | - Zane Libke
- Instituto Nacional de BiodiversidadQuitoEcuador
- Fundación Sumak Kawsay In SituCantón MeraEcuador
| | | | | |
Collapse
|
36
|
Oguzie JU, Petros BA, Oluniyi PE, Mehta SB, Eromon PE, Nair P, Adewale-Fasoro O, Ifoga PD, Odia I, Pastusiak A, Gbemisola OS, Aiyepada JO, Uyigue EA, Edamhande AP, Blessing O, Airende M, Tomkins-Tinch C, Qu J, Stenson L, Schaffner SF, Oyejide N, Ajayi NA, Ojide K, Ogah O, Abejegah C, Adedosu N, Ayodeji O, Liasu AA, Okogbenin S, Okokhere PO, Park DJ, Folarin OA, Komolafe I, Ihekweazu C, Frost SDW, Jackson EK, Siddle KJ, Sabeti PC, Happi CT. Metagenomic surveillance uncovers diverse and novel viral taxa in febrile patients from Nigeria. Nat Commun 2023; 14:4693. [PMID: 37542071 PMCID: PMC10403498 DOI: 10.1038/s41467-023-40247-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/10/2023] [Indexed: 08/06/2023] Open
Abstract
Effective infectious disease surveillance in high-risk regions is critical for clinical care and pandemic preemption; however, few clinical diagnostics are available for the wide range of potential human pathogens. Here, we conduct unbiased metagenomic sequencing of 593 samples from febrile Nigerian patients collected in three settings: i) population-level surveillance of individuals presenting with symptoms consistent with Lassa Fever (LF); ii) real-time investigations of outbreaks with suspected infectious etiologies; and iii) undiagnosed clinically challenging cases. We identify 13 distinct viruses, including the second and third documented cases of human blood-associated dicistrovirus, and a highly divergent, unclassified dicistrovirus that we name human blood-associated dicistrovirus 2. We show that pegivirus C is a common co-infection in individuals with LF and is associated with lower Lassa viral loads and favorable outcomes. We help uncover the causes of three outbreaks as yellow fever virus, monkeypox virus, and a noninfectious cause, the latter ultimately determined to be pesticide poisoning. We demonstrate that a local, Nigerian-driven metagenomics response to complex public health scenarios generates accurate, real-time differential diagnoses, yielding insights that inform policy.
Collapse
Affiliation(s)
- Judith U Oguzie
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Brittany A Petros
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, 02139, USA
- Harvard/MIT MD-PhD Program, Boston, MA, 02115, USA
- Systems, Synthetic, and Quantitative Biology PhD Program, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Paul E Oluniyi
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Samar B Mehta
- Department of Medicine, University of Maryland Medical Center, Baltimore, MA, USA
| | - Philomena E Eromon
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Parvathy Nair
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Opeoluwa Adewale-Fasoro
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Peace Damilola Ifoga
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Ikponmwosa Odia
- Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | | | - Otitoola Shobi Gbemisola
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | | | | | | | - Osiemi Blessing
- Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Michael Airende
- Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Christopher Tomkins-Tinch
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - James Qu
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Liam Stenson
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Nicholas Oyejide
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Nnenna A Ajayi
- Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Nigeria
| | - Kingsley Ojide
- Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Nigeria
| | - Onwe Ogah
- Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Nigeria
| | | | | | | | | | | | | | - Daniel J Park
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Onikepe A Folarin
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Isaac Komolafe
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | | | - Simon D W Frost
- Microsoft Premonition, Redmond, WA, USA
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Katherine J Siddle
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA.
| | - Pardis C Sabeti
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| | - Christian T Happi
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria.
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria.
- Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| |
Collapse
|
37
|
Kim PY, Kim AY, Newman JJ, Cella E, Bishop TC, Huwe PJ, Uchakina ON, McKallip RJ, Mack VL, Hill MP, Ogungbe IV, Adeyinka O, Jones S, Ware G, Carroll J, Sawyer JF, Densmore KH, Foster M, Valmond L, Thomas J, Azarian T, Queen K, Kamil JP. A collaborative approach to improving representation in viral genomic surveillance. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001935. [PMID: 37467165 PMCID: PMC10355392 DOI: 10.1371/journal.pgph.0001935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/05/2023] [Indexed: 07/21/2023]
Abstract
The lack of routine viral genomic surveillance delayed the initial detection of SARS-CoV-2, allowing the virus to spread unfettered at the outset of the U.S. epidemic. Over subsequent months, poor surveillance enabled variants to emerge unnoticed. Against this backdrop, long-standing social and racial inequities have contributed to a greater burden of cases and deaths among minority groups. To begin to address these problems, we developed a new variant surveillance model geared toward building 'next generation' genome sequencing capacity at universities in or near rural areas and engaging the participation of their local communities. The resulting genomic surveillance network has generated more than 1,000 SARS-CoV-2 genomes to date, including the first confirmed case in northeast Louisiana of Omicron, and the first and sixth confirmed cases in Georgia of the emergent BA.2.75 and BQ.1.1 variants, respectively. In agreement with other studies, significantly higher viral gene copy numbers were observed in Delta variant samples compared to those from Omicron BA.1 variant infections, and lower copy numbers were seen in asymptomatic infections relative to symptomatic ones. Collectively, the results and outcomes from our collaborative work demonstrate that establishing genomic surveillance capacity at smaller academic institutions in rural areas and fostering relationships between academic teams and local health clinics represent a robust pathway to improve pandemic readiness.
Collapse
Affiliation(s)
- Paul Y. Kim
- Department of Biological Sciences, Grambling State University, Grambling, LA, United States of America
| | - Audrey Y. Kim
- Department of Biological Sciences, Grambling State University, Grambling, LA, United States of America
| | - Jamie J. Newman
- School of Biological Sciences, Louisiana Tech University, Ruston, LA, United States of America
| | - Eleonora Cella
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States of America
| | - Thomas C. Bishop
- Physics and Chemistry Programs, Louisiana Tech University, Ruston, LA, United States of America
| | - Peter J. Huwe
- Mercer University School of Medicine, Macon, GA, United States of America
| | - Olga N. Uchakina
- Mercer University School of Medicine, Macon, GA, United States of America
| | - Robert J. McKallip
- Mercer University School of Medicine, Macon, GA, United States of America
| | - Vance L. Mack
- Mercer Medicine, Macon, GA, United States of America
| | | | - Ifedayo Victor Ogungbe
- Department of Chemistry, Jackson State University, Jackson, MS, United States of America
| | - Olawale Adeyinka
- Department of Chemistry, Jackson State University, Jackson, MS, United States of America
| | - Samuel Jones
- Health Services Center, Jackson State University, Jackson, MS, United States of America
| | - Gregory Ware
- Center of Excellence for Emerging Viral Threats, Louisiana State University Health Shreveport, Shreveport, LA, United States of America
| | - Jennifer Carroll
- Center of Excellence for Emerging Viral Threats, Louisiana State University Health Shreveport, Shreveport, LA, United States of America
| | - Jarrod F. Sawyer
- Center of Excellence for Emerging Viral Threats, Louisiana State University Health Shreveport, Shreveport, LA, United States of America
| | - Kenneth H. Densmore
- Center of Excellence for Emerging Viral Threats, Louisiana State University Health Shreveport, Shreveport, LA, United States of America
| | - Michael Foster
- School of Biological Sciences, Louisiana Tech University, Ruston, LA, United States of America
| | - Lescia Valmond
- Department of Biological Sciences, Grambling State University, Grambling, LA, United States of America
| | - John Thomas
- Department of Biological Sciences, Grambling State University, Grambling, LA, United States of America
| | - Taj Azarian
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States of America
| | - Krista Queen
- Center of Excellence for Emerging Viral Threats, Louisiana State University Health Shreveport, Shreveport, LA, United States of America
| | - Jeremy P. Kamil
- Center of Excellence for Emerging Viral Threats, Louisiana State University Health Shreveport, Shreveport, LA, United States of America
- Department of Microbiology and Immunology, Louisiana State University Health Shreveport, Shreveport, LA, United States of America
| |
Collapse
|
38
|
Kipp EJ, Lindsey LL, Khoo B, Faulk C, Oliver JD, Larsen PA. Metagenomic surveillance for bacterial tick-borne pathogens using nanopore adaptive sampling. Sci Rep 2023; 13:10991. [PMID: 37419899 PMCID: PMC10328957 DOI: 10.1038/s41598-023-37134-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/16/2023] [Indexed: 07/09/2023] Open
Abstract
Technological and computational advancements in the fields of genomics and bioinformatics are providing exciting new opportunities for pathogen discovery and genomic surveillance. In particular, single-molecule nucleotide sequence data originating from Oxford Nanopore Technologies (ONT) sequencing platforms can be bioinformatically leveraged, in real-time, for enhanced biosurveillance of a vast array of zoonoses. The recently released nanopore adaptive sampling (NAS) strategy facilitates immediate mapping of individual nucleotide molecules to a given reference as each molecule is being sequenced. User-defined thresholds then allow for the retention or rejection of specific molecules, informed by the real-time reference mapping results, as they are physically passing through a given sequencing nanopore. Here, we show how NAS can be used to selectively sequence DNA of multiple bacterial tick-borne pathogens circulating in wild populations of the blacklegged tick vector, Ixodes scapularis.
Collapse
Affiliation(s)
- Evan J Kipp
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota-Twin Cities, St. Paul, MN, USA.
| | - Laramie L Lindsey
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota-Twin Cities, St. Paul, MN, USA
| | - Benedict Khoo
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Christopher Faulk
- Department of Animal Science, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota-Twin Cities, St. Paul, MN, USA
| | - Jonathan D Oliver
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Peter A Larsen
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota-Twin Cities, St. Paul, MN, USA
| |
Collapse
|
39
|
Oestereich L, Müller-Kräuter H, Pallasch E, Strecker T. Passive Transfer of Animal-Derived Polyclonal Hyperimmune Antibodies Provides Protection of Mice from Lethal Lassa Virus Infection. Viruses 2023; 15:1436. [PMID: 37515124 PMCID: PMC10384048 DOI: 10.3390/v15071436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Lassa virus (LASV) can cause severe acute systemic infection in humans. No approved antiviral drugs or vaccines are currently available. Antibody-based therapeutics are considered a promising treatment strategy in the management of LASV disease. METHODS We used chimeric Ifnar-/- C57BL/6 (Ifnar-/- Bl6) mice, a lethal LASV mouse model, to evaluate the protective efficacy of polyclonal antibodies purified from sera of rabbits hyperimmunized with virus-like particles displaying native-like LASV glycoprotein GP spikes. RESULTS Polyclonal anti-LASV GP antibodies provided 100% protection against lethal LASV infection in a pre- and post-exposure treatment setting and prevented LASV disease. Treatment also significantly lowered viremia level and virus load in organs. When treatment was initiated at the onset of symptoms, the hyperimmune antibodies provided partial protection and increased the survival rate by 80%. CONCLUSIONS Our findings support the consideration of animal-derived hyperimmune antibodies targeting GP as an effective treatment option for highly pathogenic LASV.
Collapse
Affiliation(s)
- Lisa Oestereich
- Department of Virology, Bernhard-Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infectious Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany
| | | | - Elisa Pallasch
- Department of Virology, Bernhard-Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infectious Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany
| | - Thomas Strecker
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany
| |
Collapse
|
40
|
Hill V, Githinji G, Vogels CBF, Bento AI, Chaguza C, Carrington CVF, Grubaugh ND. Toward a global virus genomic surveillance network. Cell Host Microbe 2023; 31:861-873. [PMID: 36921604 PMCID: PMC9986120 DOI: 10.1016/j.chom.2023.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The COVID-19 pandemic galvanized the field of virus genomic surveillance, demonstrating its utility for public health. Now, we must harness the momentum that led to increased infrastructure, training, and political will to build a sustainable global genomic surveillance network for other epidemic and endemic viruses. We suggest a generalizable modular sequencing framework wherein users can easily switch between virus targets to maximize cost-effectiveness and maintain readiness for new threats. We also highlight challenges associated with genomic surveillance and when global inequalities persist. We propose solutions to mitigate some of these issues, including training and multilateral partnerships. Exploring alternatives to clinical sequencing can also reduce the cost of surveillance programs. Finally, we discuss how establishing genomic surveillance would aid control programs and potentially provide a warning system for outbreaks, using a global respiratory virus (RSV), an arbovirus (dengue virus), and a regional zoonotic virus (Lassa virus) as examples.
Collapse
Affiliation(s)
- Verity Hill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| | - George Githinji
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya; Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA; Yale Institute for Global Health, Yale University, New Haven, CT, USA
| | - Ana I Bento
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, IN, USA; The Rockefeller Foundation, New York, NY, USA
| | - Chrispin Chaguza
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA; Yale Institute for Global Health, Yale University, New Haven, CT, USA
| | - Christine V F Carrington
- Department of Preclinical Sciences, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA; Yale Institute for Global Health, Yale University, New Haven, CT, USA; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA; Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
41
|
Perrett HR, Brouwer PJM, Hurtado J, Newby ML, Liu L, Müller-Kräuter H, Müller Aguirre S, Burger JA, Bouhuijs JH, Gibson G, Messmer T, Schieffelin JS, Antanasijevic A, Boons GJ, Strecker T, Crispin M, Sanders RW, Briney B, Ward AB. Structural conservation of Lassa virus glycoproteins and recognition by neutralizing antibodies. Cell Rep 2023; 42:112524. [PMID: 37209096 PMCID: PMC10242449 DOI: 10.1016/j.celrep.2023.112524] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 05/22/2023] Open
Abstract
Lassa fever is an acute hemorrhagic fever caused by the zoonotic Lassa virus (LASV). The LASV glycoprotein complex (GPC) mediates viral entry and is the sole target for neutralizing antibodies. Immunogen design is complicated by the metastable nature of recombinant GPCs and the antigenic differences among phylogenetically distinct LASV lineages. Despite the sequence diversity of the GPC, structures of most lineages are lacking. We present the development and characterization of prefusion-stabilized, trimeric GPCs of LASV lineages II, V, and VII, revealing structural conservation despite sequence diversity. High-resolution structures and biophysical characterization of the GPC in complex with GP1-A-specific antibodies suggest their neutralization mechanisms. Finally, we present the isolation and characterization of a trimer-preferring neutralizing antibody belonging to the GPC-B competition group with an epitope that spans adjacent protomers and includes the fusion peptide. Our work provides molecular detail information on LASV antigenic diversity and will guide efforts to design pan-LASV vaccines.
Collapse
Affiliation(s)
- Hailee R Perrett
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Philip J M Brouwer
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jonathan Hurtado
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA; Center for Viral Systems Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Maddy L Newby
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | | - Judith A Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers. Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam 1105 AZ, the Netherlands
| | - Joey H Bouhuijs
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers. Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam 1105 AZ, the Netherlands
| | - Grace Gibson
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Terrence Messmer
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - John S Schieffelin
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Aleksandar Antanasijevic
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; Department of Chemical Biology and Drug Discovery, Utrecht University, Utrecht 3584 CG, the Netherlands
| | - Thomas Strecker
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers. Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam 1105 AZ, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Bryan Briney
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA; Center for Viral Systems Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
42
|
Chapman R, Jones L, D'Angelo A, Suliman A, Anwar M, Bagby S. Nanopore-Based Metagenomic Sequencing in Respiratory Tract Infection: A Developing Diagnostic Platform. Lung 2023; 201:171-179. [PMID: 37009923 PMCID: PMC10067523 DOI: 10.1007/s00408-023-00612-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/14/2023] [Indexed: 04/04/2023]
Abstract
Respiratory tract infection (RTI) remains a significant cause of morbidity and mortality across the globe. The optimal management of RTI relies upon timely pathogen identification via evaluation of respiratory samples, a process which utilises traditional culture-based methods to identify offending microorganisms. This process can be slow and often prolongs the use of broad-spectrum antimicrobial therapy, whilst also delaying the introduction of targeted therapy as a result. Nanopore sequencing (NPS) of respiratory samples has recently emerged as a potential diagnostic tool in RTI. NPS can identify pathogens and antimicrobial resistance profiles with greater speed and efficiency than traditional sputum culture-based methods. Increased speed to pathogen identification can improve antimicrobial stewardship by reducing the use of broad-spectrum antibiotic therapy, as well as improving overall clinical outcomes. This new technology is becoming more affordable and accessible, with some NPS platforms requiring minimal sample preparation and laboratory infrastructure. However, questions regarding clinical utility and how best to implement NPS technology within RTI diagnostic pathways remain unanswered. In this review, we introduce NPS as a technology and as a diagnostic tool in RTI in various settings, before discussing the advantages and limitations of NPS, and finally what the future might hold for NPS platforms in RTI diagnostics.
Collapse
Affiliation(s)
- Robert Chapman
- Princess Alexandra Hospital, Hamstel Road, Harlow, CM20 1QX, UK.
| | - Luke Jones
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Alberto D'Angelo
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Ahmed Suliman
- Princess Alexandra Hospital, Hamstel Road, Harlow, CM20 1QX, UK
| | - Muhammad Anwar
- Princess Alexandra Hospital, Hamstel Road, Harlow, CM20 1QX, UK
| | - Stefan Bagby
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
43
|
Polatoğlu I, Oncu‐Oner T, Dalman I, Ozdogan S. COVID-19 in early 2023: Structure, replication mechanism, variants of SARS-CoV-2, diagnostic tests, and vaccine & drug development studies. MedComm (Beijing) 2023; 4:e228. [PMID: 37041762 PMCID: PMC10082934 DOI: 10.1002/mco2.228] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 04/13/2023] Open
Abstract
Coronavirus Disease-19 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome-coronaviruses-2 (SARS-CoV-2), a highly pathogenic and transmissible coronavirus. Most cases of COVID-19 have mild to moderate symptoms, including cough, fever, myalgias, and headache. On the other hand, this coronavirus can lead to severe complications and death in some cases. Therefore, vaccination is the most effective tool to prevent and eradicate COVID-19 disease. Also, rapid and effective diagnostic tests are critical in identifying cases of COVID-19. The COVID-19 pandemic has a dynamic structure on the agenda and contains up-to-date developments. This article has comprehensively discussed the most up-to-date pandemic situation since it first appeared. For the first time, not only the structure, replication mechanism, and variants of SARS-CoV-2 (Alpha, Beta, Gamma, Omicron, Delta, Epsilon, Kappa, Mu, Eta, Zeta, Theta, lota, Lambda) but also all the details of the pandemic, such as how it came out, how it spread, current cases, what precautions should be taken, prevention strategies, the vaccines produced, the tests developed, and the drugs used are reviewed in every aspect. Herein, the comparison of diagnostic tests for SARS-CoV-2 in terms of procedure, accuracy, cost, and time has been presented. The mechanism, safety, efficacy, and effectiveness of COVID-19 vaccines against SARS-CoV-2 variants have been evaluated. Drug studies, therapeutic targets, various immunomodulators, and antiviral molecules applied to patients with COVID-19 have been reviewed.
Collapse
Affiliation(s)
- Ilker Polatoğlu
- Department of BioengineeringManisa Celal Bayar UniversityYunusemreManisaTurkey
| | - Tulay Oncu‐Oner
- Department of BioengineeringManisa Celal Bayar UniversityYunusemreManisaTurkey
| | - Irem Dalman
- Department of BioengineeringEge UniversityBornovaIzmirTurkey
| | - Senanur Ozdogan
- Department of BioengineeringManisa Celal Bayar UniversityYunusemreManisaTurkey
| |
Collapse
|
44
|
Yang C, Lo T, Nip KM, Hafezqorani S, Warren RL, Birol I. Characterization and simulation of metagenomic nanopore sequencing data with Meta-NanoSim. Gigascience 2023; 12:giad013. [PMID: 36939007 PMCID: PMC10025935 DOI: 10.1093/gigascience/giad013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/19/2023] [Accepted: 02/17/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Nanopore sequencing is crucial to metagenomic studies as its kilobase-long reads can contribute to resolving genomic structural differences among microbes. However, sequencing platform-specific challenges, including high base-call error rate, nonuniform read lengths, and the presence of chimeric artifacts, necessitate specifically designed analytical algorithms. The use of simulated datasets with characteristics that are true to the sequencing platform under evaluation is a cost-effective way to assess the performance of bioinformatics tools with the ground truth in a controlled environment. RESULTS Here, we present Meta-NanoSim, a fast and versatile utility that characterizes and simulates the unique properties of nanopore metagenomic reads. It improves upon state-of-the-art methods on microbial abundance estimation through a base-level quantification algorithm. Meta-NanoSim can simulate complex microbial communities composed of both linear and circular genomes and can stream reference genomes from online servers directly. Simulated datasets showed high congruence with experimental data in terms of read length, error profiles, and abundance levels. We demonstrate that Meta-NanoSim simulated data can facilitate the development of metagenomic algorithms and guide experimental design through a metagenome assembly benchmarking task. CONCLUSIONS The Meta-NanoSim characterization module investigates read features, including chimeric information and abundance levels, while the simulation module simulates large and complex multisample microbial communities with different abundance profiles. All trained models and the software are freely accessible at GitHub: https://github.com/bcgsc/NanoSim.
Collapse
Affiliation(s)
- Chen Yang
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 4S6, Canada
- Bioinformatics Graduate Program, University of British Columbia, Genome Sciences Centre, BCCA 100-570 West 7th Avenue, Vancouver, BC, V5Z 4S6, Canada
| | - Theodora Lo
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 4S6, Canada
- Bioinformatics Graduate Program, University of British Columbia, Genome Sciences Centre, BCCA 100-570 West 7th Avenue, Vancouver, BC, V5Z 4S6, Canada
| | - Ka Ming Nip
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 4S6, Canada
- Bioinformatics Graduate Program, University of British Columbia, Genome Sciences Centre, BCCA 100-570 West 7th Avenue, Vancouver, BC, V5Z 4S6, Canada
| | - Saber Hafezqorani
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 4S6, Canada
- Bioinformatics Graduate Program, University of British Columbia, Genome Sciences Centre, BCCA 100-570 West 7th Avenue, Vancouver, BC, V5Z 4S6, Canada
| | - René L Warren
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 4S6, Canada
| | - Inanc Birol
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Life Sciences Centre Room 1364 – 2350 Health Science Mall Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
45
|
Xu Y, Liu T, Li Y, Wei X, Wang Z, Fang M, Zhang Y, Zhang H, Zhang L, Zhang J, Xu J, Tian Y, He N, Zhang Y, Wang Y, Yao M, Pang B, Wang S, Wen H, Kou Z. Transmission of SARS-CoV-2 Omicron Variant under a Dynamic Clearance Strategy in Shandong, China. Microbiol Spectr 2023; 11:e0463222. [PMID: 36916974 PMCID: PMC10101114 DOI: 10.1128/spectrum.04632-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
SARS-CoV-2 Omicron caused a large wave of COVID-19 cases in China in spring 2022. Shandong was one of the most affected regions during this epidemic yet was also among those areas that were able to quickly contain the transmission. We aimed to investigate the origin, genetic diversity, and transmission patterns of the Omicron epidemic in Shandong under a dynamic clearance strategy. We generated 1,149 Omicron sequences, performed phylogenetic analysis, and interpreted results in the context of available epidemiological information. We observed that there were multiple introductions of distinct Omicron sublineages into Shandong from foreign countries and other regions in China, while a small number of introductions led to majority of local cases. We found evidence suggesting that some local clusters were potentially associated with foreign imported cases. Superspreading events and cryptic transmissions contributed to the rapid spread of this epidemic. We identified a BA.1.1 genome with the R493Q reversion mutation in the spike receptor binding domain, potentially associated with an escape from vaccine and Omicron infection elicited neutralizing immunity. Our findings illustrated how the dynamic clearance strategy constrained this epidemic's size, duration, and geographical distribution. IMPORTANCE Starting in March 2022, the Omicron epidemic caused a large wave of COVID-19 cases in China. Shandong was one of the most affected regions during this epidemic but was also among those areas that were able to quickly contain the transmission. We investigated the origin, genetic diversity, and transmission patterns of Omicron epidemic in Shandong under a dynamic clearance strategy. We found that there were multiple introductions of distinct Omicron sublineages into Shandong from foreign countries and other regions in China, while a small number of introductions led to most local cases. We found evidence suggesting that some local clusters were associated with foreign imported cases. Superspreading events and cryptic transmissions contributed to the rapid spread of this epidemic. Our study illustrated the transmission patterns of Omicron epidemic in Shandong and provided a looking glass onto this epidemic in China.
Collapse
Affiliation(s)
- Yifei Xu
- Department of Microbiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Suzhou Research Institute of Shandong University, Suzhou, Jiangsu, China
| | - Ti Liu
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Yan Li
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Xuemin Wei
- Department of Microbiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhaoguo Wang
- Qingdao Center for Disease Control and Prevention, Qingdao, Shandong, China
| | - Ming Fang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Yuwei Zhang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Huaning Zhang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Lifang Zhang
- Binzhou Center for Disease Control and Prevention, Binzhou, Shandong, China
| | - Jinbo Zhang
- Weihai Center for Disease Control and Prevention, Weihai, Shandong, China
| | - Jin Xu
- Zibo Center for Disease Control and Prevention, Zibo, Shandong, China
| | - Yunlong Tian
- Yantai Center for Disease Control and Prevention, Yantai, Shandong, China
| | - Nianzheng He
- Department of Microbiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yuhan Zhang
- Department of Microbiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yao Wang
- Department of Microbiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mingxiao Yao
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Bo Pang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Shuang Wang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Hongling Wen
- Department of Microbiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zengqiang Kou
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| |
Collapse
|
46
|
Mateo M, Reynard S, Pietrosemoli N, Perthame E, Journeaux A, Noy K, Germain C, Carnec X, Picard C, Borges-Cardoso V, Hortion J, Lopez-Maestre H, Regnard P, Fellmann L, Vallve A, Barron S, Jourjon O, Lacroix O, Duthey A, Dirheimer M, Daniau M, Legras-Lachuer C, Carbonnelle C, Raoul H, Tangy F, Baize S. Rapid protection induced by a single-shot Lassa vaccine in male cynomolgus monkeys. Nat Commun 2023; 14:1352. [PMID: 36906645 PMCID: PMC10008018 DOI: 10.1038/s41467-023-37050-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/22/2023] [Indexed: 03/13/2023] Open
Abstract
Lassa fever hits West African countries annually in the absence of licensed vaccine to limit the burden of this viral hemorrhagic fever. We previously developed MeV-NP, a single-shot vaccine protecting cynomolgus monkeys against divergent strains one month or more than a year before Lassa virus infection. Given the limited dissemination area during outbreaks and the risk of nosocomial transmission, a vaccine inducing rapid protection could be useful to protect exposed people during outbreaks in the absence of preventive vaccination. Here, we test whether the time to protection can be reduced after immunization by challenging measles virus pre-immune male cynomolgus monkeys sixteen or eight days after a single shot of MeV-NP. None of the immunized monkeys develop disease and they rapidly control viral replication. Animals immunized eight days before the challenge are the best controllers, producing a strong CD8 T-cell response against the viral glycoprotein. A group of animals was also vaccinated one hour after the challenge, but was not protected and succumbed to the disease as the control animals. This study demonstrates that MeV-NP can induce a rapid protective immune response against Lassa fever in the presence of MeV pre-existing immunity but can likely not be used as therapeutic vaccine.
Collapse
Affiliation(s)
- Mathieu Mateo
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007, Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007, Lyon, France
| | - Stéphanie Reynard
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007, Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007, Lyon, France
| | - Natalia Pietrosemoli
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Emeline Perthame
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Alexandra Journeaux
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007, Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007, Lyon, France
| | - Kodie Noy
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007, Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007, Lyon, France
| | - Clara Germain
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007, Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007, Lyon, France
| | - Xavier Carnec
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007, Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007, Lyon, France
| | - Caroline Picard
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007, Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007, Lyon, France
| | - Virginie Borges-Cardoso
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007, Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007, Lyon, France
| | - Jimmy Hortion
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007, Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007, Lyon, France
| | - Hélène Lopez-Maestre
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Pierrick Regnard
- SILABE, Université de Strasbourg, fort Foch, Niederhausbergen, France
| | - Lyne Fellmann
- SILABE, Université de Strasbourg, fort Foch, Niederhausbergen, France
| | - Audrey Vallve
- Laboratoire P4 INSERM - Jean Mérieux, INSERM US003, 69007, Lyon, France
| | - Stéphane Barron
- Laboratoire P4 INSERM - Jean Mérieux, INSERM US003, 69007, Lyon, France
| | - Ophélie Jourjon
- Laboratoire P4 INSERM - Jean Mérieux, INSERM US003, 69007, Lyon, France
| | - Orianne Lacroix
- Laboratoire P4 INSERM - Jean Mérieux, INSERM US003, 69007, Lyon, France
| | - Aurélie Duthey
- Laboratoire P4 INSERM - Jean Mérieux, INSERM US003, 69007, Lyon, France
| | - Manon Dirheimer
- INSERM, Délégation Régionale Auvergne Rhône-Alpes, 69500, Bron, France
| | | | | | | | - Hervé Raoul
- Laboratoire P4 INSERM - Jean Mérieux, INSERM US003, 69007, Lyon, France
| | - Frédéric Tangy
- Vaccine Innovation Laboratory, Institut Pasteur, 75015, Paris, France
| | - Sylvain Baize
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007, Lyon, France. .,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007, Lyon, France.
| |
Collapse
|
47
|
Li Y. Genetic basis underlying Lassa fever endemics in the Mano River region, West Africa. Virology 2023; 579:128-136. [PMID: 36669329 DOI: 10.1016/j.virol.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Lassa fever (LF), a haemorrhagic fever disease caused by Lassa virus (LASV), is a serious public health burden in West Africa. The Mano River region (Sierra Leone, Guinea, Liberia, and Côte d'Ivoire) has been an endemic focus of the disease over the past decades. Here, we deciphered the genetic basis underlying LF endemics in this region. Clade model and type I functional divergence analyses revealed that the major LASV group, Kenema sub-clade, which is currently circulating in the Eastern Province of Sierra Leone, has been affected by different selective pressure compared to isolates from the other areas with effects on the viral RNA-dependent RNA polymerase (L protein) and probably nucleoprotein (NP). Further, contingency analysis showed that, in the early endemic, the sub-clade has undergone adaptive diversification via acceleration of amino acid substitutions in L protein. These findings highlight the key viral factor and local adaptation regarding the endemicity of LF.
Collapse
Affiliation(s)
- Yan Li
- College of Animal Science and Technology, Sichuan Agricultural University, People's Republic of China.
| |
Collapse
|
48
|
Xia Y, Li X, Wu Z, Nie C, Cheng Z, Sun Y, Liu L, Zhang T. Strategies and tools in illumina and nanopore-integrated metagenomic analysis of microbiome data. IMETA 2023; 2:e72. [PMID: 38868337 PMCID: PMC10989838 DOI: 10.1002/imt2.72] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 06/14/2024]
Abstract
Metagenomic strategy serves as the foundation for the ecological exploration of novel bioresources (e.g., industrial enzymes and bioactive molecules) and biohazards (e.g., pathogens and antibiotic resistance genes) in natural and engineered microbial systems across multiple disciplines. Recent advancements in sequencing technology have fostered rapid development in the field of microbiome research where an increasing number of studies have applied both illumina short reads (SRs) and nanopore long reads (LRs) sequencing in their metagenomic workflow. However, given the high complexity of an environmental microbiome data set and the bioinformatic challenges caused by the unique features of these sequencing technologies, integrating SRs and LRs is not as straightforward as one might assume. The fast renewal of existing tools and growing diversity of new algorithms make access to this field even more difficult. Therefore, here we systematically summarized the complete workflow from DNA extraction to data processing strategies for applying illumina and nanopore-integrated metagenomics in the investigation in environmental microbiomes. Overall, this review aims to provide a timely knowledge framework for researchers that are interested in or are struggling with the SRs and LRs integration in their metagenomic analysis. The discussions presented will facilitate improved ecological understanding of community functionalities and assembly of natural, engineered, and human microbiomes, benefiting researchers from multiple disciplines.
Collapse
Affiliation(s)
- Yu Xia
- School of Environmental Science and Engineering, College of EngineeringSouthern University of Science and TechnologyShenzhenChina
- State Environmental Protection Key Laboratory of Integrated Surface Water‐Groundwater Pollution Control, School of Environmental Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Xiang Li
- School of Environmental Science and Engineering, College of EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Ziqi Wu
- School of Environmental Science and Engineering, College of EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Cailong Nie
- School of Environmental Science and Engineering, College of EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Zhanwen Cheng
- School of Environmental Science and Engineering, College of EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Yuhong Sun
- School of Environmental Science and Engineering, College of EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Lei Liu
- Environmental Microbiome Engineering and Biotechnology LaboratoryThe University of Hong KongHong Kong SARChina
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology LaboratoryThe University of Hong KongHong Kong SARChina
| |
Collapse
|
49
|
Aloke C, Obasi NA, Aja PM, Emelike CU, Egwu CO, Jeje O, Edeogu CO, Onisuru OO, Orji OU, Achilonu I. Combating Lassa Fever in West African Sub-Region: Progress, Challenges, and Future Perspectives. Viruses 2023; 15:146. [PMID: 36680186 PMCID: PMC9864412 DOI: 10.3390/v15010146] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Lassa fever (LF) is a rodent-borne disease that threatens human health in the sub-region of West Africa where the zoonotic host of Lassa virus (LASV) is predominant. Currently, treatment options for LF are limited and since no preventive vaccine is approved for its infectivity, there is a high mortality rate in endemic areas. This narrative review explores the transmission, pathogenicity of LASV, advances, and challenges of different treatment options. Our findings indicate that genetic diversity among the different strains of LASV and their ability to circumvent the immune system poses a critical challenge to the development of LASV vaccines/therapeutics. Thus, understanding the biochemistry, physiology and genetic polymorphism of LASV, mechanism of evading host immunity are essential for development of effective LASV vaccines/therapeutics to combat this lethal viral disease. The LASV nucleoprotein (NP) is a novel target for therapeutics as it functions significantly in several aspects of the viral life cycle. Consequently, LASV NP inhibitors could be employed as effective therapeutics as they will potentially inhibit LASV replication. Effective preventive control measures, vaccine development, target validation, and repurposing of existing drugs, such as ribavirin, using activity or in silico-based and computational bioinformatics, would aid in the development of novel drugs for LF management.
Collapse
Affiliation(s)
- Chinyere Aloke
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa
- Department of Medical Biochemistry, Alex Ekwueme Federal University Ndufu-Alike, Abakaliki PMB 1010, Ebonyi State, Nigeria
| | - Nwogo Ajuka Obasi
- Department of Medical Biochemistry, Alex Ekwueme Federal University Ndufu-Alike, Abakaliki PMB 1010, Ebonyi State, Nigeria
| | - Patrick Maduabuchi Aja
- Department of Biochemistry, Faculty of Biological Sciences, Ebonyi State University, Abakaliki PMB 053, Ebonyi State, Nigeria
- Department of Biochemistry, Faculty of Medicine, Mbarara University of Science and Technology (MUST), Mbarara P.O. Box 1410, Uganda
- Department of Medical Biochemistry, Kampala International University, Bushenyi, Ishaka P.O. Box 71, Uganda
| | - Chinedum Uche Emelike
- Department of Physiology, Alex Ekwueme Federal University Ndufu-Alike, Abakaliki PMB 1010, Ebonyi State, Nigeria
| | - Chinedu Ogbonnia Egwu
- Department of Medical Biochemistry, Alex Ekwueme Federal University Ndufu-Alike, Abakaliki PMB 1010, Ebonyi State, Nigeria
| | - Olamide Jeje
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa
| | - Chuks Oswald Edeogu
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Ebonyi State University, Abakaliki PMB 053, Ebonyi State, Nigeria
| | - Olalekan Olugbenga Onisuru
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa
| | - Obasi Uche Orji
- Department of Biochemistry, Faculty of Biological Sciences, Ebonyi State University, Abakaliki PMB 053, Ebonyi State, Nigeria
| | - Ikechukwu Achilonu
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa
| |
Collapse
|
50
|
Mammarenavirus Genetic Diversity and Its Biological Implications. Curr Top Microbiol Immunol 2023; 439:265-303. [PMID: 36592249 DOI: 10.1007/978-3-031-15640-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Members of the family Arenaviridae are classified into four genera: Antennavirus, Hartmanivirus, Mammarenavirus, and Reptarenavirus. Reptarenaviruses and hartmaniviruses infect (captive) snakes and have been shown to cause boid inclusion body disease (BIBD). Antennaviruses have genomes consisting of 3, rather than 2, segments, and were discovered in actinopterygian fish by next-generation sequencing but no biological isolate has been reported yet. The hosts of mammarenaviruses are mainly rodents and infections are generally asymptomatic. Current knowledge about the biology of reptarenaviruses, hartmaniviruses, and antennaviruses is very limited and their zoonotic potential is unknown. In contrast, some mammarenaviruses are associated with zoonotic events that pose a threat to human health. This review will focus on mammarenavirus genetic diversity and its biological implications. Some mammarenaviruses including lymphocytic choriomeningitis virus (LCMV) are excellent experimental model systems for the investigation of acute and persistent viral infections, whereas others including Lassa (LASV) and Junin (JUNV) viruses, the causative agents of Lassa fever (LF) and Argentine hemorrhagic fever (AHF), respectively, are important human pathogens. Mammarenaviruses were thought to have high degree of intra-and inter-species amino acid sequence identities, but recent evidence has revealed a high degree of mammarenavirus genetic diversity in the field. Moreover, closely related mammarenavirus can display dramatic phenotypic differences in vivo. These findings support a role of genetic variability in mammarenavirus adaptability and pathogenesis. Here, we will review the molecular biology of mammarenaviruses, phylogeny, and evolution, as well as the quasispecies dynamics of mammarenavirus populations and their biological implications.
Collapse
|