1
|
Mohammadi M, Shang J, Li Y, Rahmanudin A, Jakonis D, Berggren M, Herlogsson L, Tybrandt K. Miniaturized Soft and Stretchable Multilayer Circuits through Laser-Defined High Aspect-Ratio Printing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501175. [PMID: 40420653 DOI: 10.1002/smll.202501175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/21/2025] [Indexed: 05/28/2025]
Abstract
Stretchable electronics enable seamless integration of wearables with the human body, thereby creating new opportunities in biomedical applications. Miniaturized multilayer stretchable printed circuit boards are key for achieving high functional density circuits with minimal footprint. However, current microfabrication technologies struggle with simultaneously achieving tissue-like softness (<<1 MPa), high resolution and low sheet resistance. This study demonstrates a scalable printing method that enables ultra-soft (<0.4 MPa) stretchable conductors (>300% strain) with high-resolution (<2.5 µm width) and high aspect-ratio tracks (>1) connected by ultra-fine (20 µm) vertical-interconnect-access (VIA) for multi-layered configurations. The method is based on stencil printing into laser-defined bio-masks comprising the abundant biopolymer lignin, thereby achieving printing capabilities beyond conventional methods in a sustainable manner. Based on the unique capabilities, a miniaturized multilayer ultra-soft wireless near-field-communication temperature logger is developed. Laser-defined printing can pave the way for the next generation of ultra-soft miniaturized wearables.
Collapse
Affiliation(s)
- Mohsen Mohammadi
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 602 21, Sweden
- Wallenberg Wood Science Center, ITN, Linköping University, Norrköping, 602 21, Sweden
| | - Jin Shang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 602 21, Sweden
- Digital Systems, Smart Hardware, Printed, Bio- and Organic Electronics, RISE Research Institutes of Sweden, Södra Grytsgatan 4, Norrköping, 602 33, Sweden
| | - Yuyang Li
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 602 21, Sweden
| | - Aiman Rahmanudin
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 602 21, Sweden
- Wallenberg Wood Science Center, ITN, Linköping University, Norrköping, 602 21, Sweden
| | - Darius Jakonis
- Digital Systems, Smart Hardware, Printed, Bio- and Organic Electronics, RISE Research Institutes of Sweden, Södra Grytsgatan 4, Norrköping, 602 33, Sweden
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 602 21, Sweden
- Wallenberg Wood Science Center, ITN, Linköping University, Norrköping, 602 21, Sweden
| | - Lars Herlogsson
- Digital Systems, Smart Hardware, Printed, Bio- and Organic Electronics, RISE Research Institutes of Sweden, Södra Grytsgatan 4, Norrköping, 602 33, Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 602 21, Sweden
- Wallenberg Wood Science Center, ITN, Linköping University, Norrköping, 602 21, Sweden
| |
Collapse
|
2
|
Liu L, Gao X, Zheng S, Yao X, Ju J, Jiang L. Recent Progress on Liquid Superspreading and Its Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501734. [PMID: 40376945 DOI: 10.1002/adma.202501734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/16/2025] [Indexed: 05/18/2025]
Abstract
The dynamic spreading of liquids on solid surfaces is essential across numerous daily and industrial processes. Surfaces that enable liquid superspreading, characterized by rapid or extensive spreading, are particularly valuable due to their implications in functional film fabrication, heat management, liquid/liquid separation, and more. Recently, significant research is conducted on liquid superspreading surfaces, with microstructure-regulated surfaces gaining increasing attention. However, the deeper correlations between microstructural physical factors and the superspreading behaviors, along with the relevant applications, remain inadequately understood. This review aims to consolidate the existing knowledge from published results and stimulate further investigation by detailing structures, functionalities, and principles for constructing liquid superspreading surfaces. Examining is began by the energy balance between input and dissipation that underpins droplet spreading dynamics. Then current designs are reviewed for superspreading surfaces, with a focus on chemical and physical aspects, giving greater emphasis to the physical perspective. Additionally, several typical applications are categorized based on liquid superspreading behaviors across various fields. Finally, the prevailing challenges are highlighted and provide insights into future research directions.
Collapse
Affiliation(s)
- Lan Liu
- School of Nanoscience and Materials Engineering, Henan University, Zhengzhou, Henan, 450046, P. R. China
- Key Lab for Special Functional Materials, Ministry of Education, Zhengzhou, Henan, 450046, P. R. China
| | - Xinyu Gao
- School of Nanoscience and Materials Engineering, Henan University, Zhengzhou, Henan, 450046, P. R. China
- Key Lab for Special Functional Materials, Ministry of Education, Zhengzhou, Henan, 450046, P. R. China
| | - Shuangshuang Zheng
- School of Nanoscience and Materials Engineering, Henan University, Zhengzhou, Henan, 450046, P. R. China
- Key Lab for Special Functional Materials, Ministry of Education, Zhengzhou, Henan, 450046, P. R. China
| | - Xi Yao
- School of Nanoscience and Materials Engineering, Henan University, Zhengzhou, Henan, 450046, P. R. China
- Key Lab for Special Functional Materials, Ministry of Education, Zhengzhou, Henan, 450046, P. R. China
| | - Jie Ju
- School of Nanoscience and Materials Engineering, Henan University, Zhengzhou, Henan, 450046, P. R. China
- Key Lab for Special Functional Materials, Ministry of Education, Zhengzhou, Henan, 450046, P. R. China
- Longzihu New Energy Laboratory, Henan University, Zhengzhou, Henan, 450046, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100191, P. R. China
| |
Collapse
|
3
|
Li Y, Wang D, Feng Y, Chen X, Chen X, Liu C, Li Y, Suo L, Zhang R, Zhang X, Liu B, Wang F, Liang S, Kong L, Fu Q, Ren T, Wang T. Fluid drawing printing 3D conductive structures for flexible circuit manufacturing. MICROSYSTEMS & NANOENGINEERING 2025; 11:81. [PMID: 40355423 PMCID: PMC12069710 DOI: 10.1038/s41378-025-00936-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/18/2025] [Accepted: 03/19/2025] [Indexed: 05/14/2025]
Abstract
Three-dimensional (3D) conductive structures significantly reduce flexible circuit complexity and enhance circuit integration. Direct extrusion printing technology offers the advantages of various material applicability and high flexibility for fabricating filamentary interconnects. The printing resolution is, however, highly dependent on the needle size. A micro-printing method was proposed based on fluid drawing to fabricate freestanding 3D conductive structures. The delicate structure is drawn out under the tension when printing. The printing material is a high-viscosity ink composed of silver nanoparticles (AgNPs) and polyvinylpyrrolidone (PVP). The viscosity is controlled by evaporating the ink's solvent for drawing prints. This unique printing method utilizes a single needle, controlled by precise air pressure and speed, to construct 3D filamentary structures with varied wire widths. The 3D conductive structures exhibit superior structural retention and enhanced conductivity by thermal treatment. The drawing printing method has been successfully implemented on flexible circuits, including light-emitting diode (LED) arrays, thermal imaging displays, and multivibrator circuits. This work establishes a novel paradigm for flexible electronics manufacturing through fluid-drawing printing, achieving unprecedented customization and compatibility in fabricating 3D interconnects.
Collapse
Affiliation(s)
- Yikang Li
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Dazhi Wang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024, Dalian, China.
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, 116024, Dalian, China.
- Liaoning Huanghai Laboratory, 116024, Dalian, China.
- Ningbo Institute of Dalian University of Technology, 315000, Ningbo, China.
| | - Yiwen Feng
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024, Dalian, China
- Liaoning Huanghai Laboratory, 116024, Dalian, China
| | - Xiangji Chen
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Xu Chen
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Chang Liu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Yanteng Li
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Liujia Suo
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Ran Zhang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024, Dalian, China
- Liaoning Huanghai Laboratory, 116024, Dalian, China
| | - Xiaopeng Zhang
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, 116024, Dalian, China
| | - Ben Liu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Fengshu Wang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Shiwen Liang
- Ningbo Institute of Dalian University of Technology, 315000, Ningbo, China
| | - Lingjie Kong
- Ningbo Institute of Dalian University of Technology, 315000, Ningbo, China
| | - Qiang Fu
- Ningbo Sunny Opotech Co., Ltd, 315400, Ningbo, China
| | - Tongqun Ren
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Tiesheng Wang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024, Dalian, China.
- Liaoning Huanghai Laboratory, 116024, Dalian, China.
| |
Collapse
|
4
|
Li X, Wang J, Wang W, Zhang H, Jiao Y, Tao S, Wang Y, Ye T, Song J, Bai C, Yin H, Lu J, Li Y, Li F, He E, Li Q, Zou K, Wang H, Cao X, Wang X, Zhang Y. A Durable Metalgel Maintaining 3×10 6 S∙M ‒1 Conductivity under 1 000 000 Stretching Cycles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2420628. [PMID: 40159807 DOI: 10.1002/adma.202420628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/13/2025] [Indexed: 04/02/2025]
Abstract
Conductive elastomers are in high demand for emerging fields such as wearable electronics and soft robotics. However, it remains unavailable to realize the desired metal-level conductivity after extensive stretching cycles, which is a necessity for the above promising application. Here, a new material is presented that employs an elastic, homogeneous, and dense waterborne polyurethane network to immobilize the liquid metal continuum via electrostatic interactions. This new design enables the liquid metal continuum to deform synchronously and reversibly with the polymer network, preserving its conductive structure and significantly enhancing durability. The resulting durable metalgel exhibits conductivity of 3 × 106 S∙m-1, which remains stable after 1 000 000 stretching cycles. This work overcomes the performance limitations of current conductive elastomers and unlocks new opportunities for cutting-edge applications in wearable technology and robotics.
Collapse
Affiliation(s)
- Xusong Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Jiacheng Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Wen Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Hanting Zhang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Yiding Jiao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Songlin Tao
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yuanzhen Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Tingting Ye
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Jie Song
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Chenyu Bai
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Haotian Yin
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Jiang Lu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Yiran Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Fangyan Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Er He
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Qianming Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Kuangyi Zou
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Haidong Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Xinyin Cao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Xiaoliang Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ye Zhang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
5
|
Zhi Y, Shao Y, Xia R, Lin W, Cai D, Zhao F, Dong J, Li Q, Wang Z, Li L, Gu L, Tian P, He Z, Wang J, Ning G, Li B, Yang C, Wang H, Yu S, Yu Y. Stretchable composites with high oxide loading. Nat Commun 2025; 16:3562. [PMID: 40234430 PMCID: PMC12000554 DOI: 10.1038/s41467-025-58844-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 04/01/2025] [Indexed: 04/17/2025] Open
Abstract
Oxide/elastomer composites combine the functional attributes of metal oxides with the mechanical deformability of elastomers, but face the challenge of balancing oxide loading and stretchability as ceramic fillers decrease the entropic elasticity of polymer networks. Here, we report an interfacial composite design that enables high oxide fraction and large stretchability by minimizing the contact area yet maximizing the binding strength between the oxide and elastomer. The elongation at break for an interfacial composite with 80 vol% of oxides reaches 500%, whereas that of a regular bulk composite with the same oxide fraction is 20%. These composites are synthesized based on a Marangoni co-assembly process with tuned interfacial tension and reaction at the water-oil interface. The assembly chemistry is nearly independent of oxides' sizes, compositions, geometries, and functions, making this interfacial structure broadly applicable to optical, electric, magnetic, and thermal-conducting oxides. Compared to bulk composites, the interfacial composites deliver larger magnetic actuation, lower thermal resistance, and higher conformability with nonplanar surfaces, providing rich implications for designing intelligent and electronic systems.
Collapse
Affiliation(s)
- Yinglin Zhi
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yan Shao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Rui Xia
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Weikun Lin
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Daohang Cai
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fuxing Zhao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiufeng Dong
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qingxian Li
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zihao Wang
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Lixuan Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Long Gu
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710071, China
| | - Peng Tian
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Zhen He
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jinlong Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guiling Ning
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Baowen Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Canhui Yang
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hong Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shuhong Yu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yanhao Yu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Kim M, Park H, Kim E, Chung M, Oh JH. Photo-crosslinkable organic materials for flexible and stretchable electronics. MATERIALS HORIZONS 2025. [PMID: 40202255 DOI: 10.1039/d4mh01757a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
As technology advances to enhance human perceptual experiences of the surrounding environment, significant research on stretchable electronics is actively progressing, spanning from the synthesis of materials to their applications in fully integrated devices. A critical challenge lies in developing materials that can maintain their electrical properties under substantial stretching. Photo-crosslinkable organic materials have emerged as a promising solution due to their ability to be precisely modified with light to achieve desired properties, such as enhanced durability, stable conductivity, and micropatterning. This review examines recent research on photo-crosslinkable organic materials, focusing on their components and integration within stretchable electronic devices. We explore the essential characteristics required for each device component (insulators, semiconductors, and conductors) and explain how photo-crosslinking technology addresses these needs through its principles and implementation. Additionally, we discuss the integration and utilization of these components in real-world applications, including physical sensors, organic field-effect transistors (OFETs), and organic solar cells (OSCs). Finally, we offer a concise perspective on the future directions and potential challenges in ongoing research on photo-crosslinkable organic materials.
Collapse
Affiliation(s)
- Minsung Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Hayeong Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Eunjin Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Minji Chung
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Joon Hak Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
7
|
Li D, Cui TR, Liu JH, Shao WC, Liu X, Chen ZK, Xu ZG, Li X, Xu SY, Xie ZY, Jian JM, Wang X, Tao LQ, Wu XM, Cheng ZW, Dong ZR, Liu HF, Yang Y, Zhou J, Ren TL. Motion-unrestricted dynamic electrocardiogram system utilizing imperceptible electronics. Nat Commun 2025; 16:3259. [PMID: 40188239 PMCID: PMC11972297 DOI: 10.1038/s41467-025-58390-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 03/13/2025] [Indexed: 04/07/2025] Open
Abstract
Electrocardiogram (ECG) plays a vital role in the prevention, diagnosis, and prognosis of cardiovascular diseases (CVDs). However, the lack of a user-friendly and accurate long-term dynamic electrocardiogram (DCG) device in motion has made it challenging to perform many daily cardiovascular risk screenings and assessments, such as sudden cardiac arrest, resulting in additional economic burdens on society. Here, we present a motion-unrestricted dynamic electrocardiogram (MU-DCG) system, which employs skin-conformal, imperceptible electronics for long-term, comfortable, and accurate 12-lead DCG monitoring. To facilitate assembly for use on the skin, the MU-DCG system features a pressure-activated flexible skin socket for stably soft-connecting the on-skin soft module and the off-skin stiff module during dynamic movements. Crucially, blinded cardiologist evaluations confirm minimal motion artifacts in MU-DCG-acquired ECG signals. Our results demonstrate that the MU-DCG system, with large-area, ultra-thin on-skin electrodes/leads, and an off-skin module, accomplishes anti-motion interference acquisition and in-situ analysis while retaining wearing imperceptibility.
Collapse
Affiliation(s)
- Ding Li
- School of Integrated Circuit, Tsinghua University, Beijing, China
| | - Tian-Rui Cui
- School of Integrated Circuit, Tsinghua University, Beijing, China
| | - Jia-Hao Liu
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Wan-Cheng Shao
- School of Integrated Circuit, Tsinghua University, Beijing, China
| | - Xiao Liu
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhi-Kang Chen
- School of Integrated Circuit, Tsinghua University, Beijing, China
| | - Zi-Gan Xu
- School of Integrated Circuit, Tsinghua University, Beijing, China
| | - Xin Li
- School of Integrated Circuit, Tsinghua University, Beijing, China
| | - Shuo-Yan Xu
- School of Integrated Circuit, Tsinghua University, Beijing, China
| | - Zi-Yi Xie
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Jin-Ming Jian
- School of Integrated Circuit, Tsinghua University, Beijing, China
| | - Xu Wang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu-Qi Tao
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Xiao-Ming Wu
- School of Integrated Circuit, Tsinghua University, Beijing, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Zhong-Wei Cheng
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zi-Rui Dong
- School of Integrated Circuit, Tsinghua University, Beijing, China
| | - Hou-Fang Liu
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China.
| | - Yi Yang
- School of Integrated Circuit, Tsinghua University, Beijing, China.
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China.
| | - Jun Zhou
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China.
| | - Tian-Ling Ren
- School of Integrated Circuit, Tsinghua University, Beijing, China.
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China.
| |
Collapse
|
8
|
Ahmed AA, Alegret N, Almeida B, Alvarez-Puebla R, Andrews AM, Ballerini L, Barrios-Capuchino JJ, Becker C, Blick RH, Bonakdar S, Chakraborty I, Chen X, Cheon J, Chilla G, Coelho Conceicao AL, Delehanty J, Dulle M, Efros AL, Epple M, Fedyk M, Feliu N, Feng M, Fernández-Chacón R, Fernandez-Cuesta I, Fertig N, Förster S, Garrido JA, George M, Guse AH, Hampp N, Harberts J, Han J, Heekeren HR, Hofmann UG, Holzapfel M, Hosseinkazemi H, Huang Y, Huber P, Hyeon T, Ingebrandt S, Ienca M, Iske A, Kang Y, Kasieczka G, Kim DH, Kostarelos K, Lee JH, Lin KW, Liu S, Liu X, Liu Y, Lohr C, Mailänder V, Maffongelli L, Megahed S, Mews A, Mutas M, Nack L, Nakatsuka N, Oertner TG, Offenhäusser A, Oheim M, Otange B, Otto F, Patrono E, Peng B, Picchiotti A, Pierini F, Pötter-Nerger M, Pozzi M, Pralle A, Prato M, Qi B, Ramos-Cabrer P, Genger UR, Ritter N, Rittner M, Roy S, Santoro F, Schuck NW, Schulz F, Şeker E, Skiba M, Sosniok M, Stephan H, Wang R, Wang T, Wegner KD, Weiss PS, Xu M, Yang C, Zargarian SS, Zeng Y, Zhou Y, Zhu D, Zierold R, Parak WJ. Interfacing with the Brain: How Nanotechnology Can Contribute. ACS NANO 2025; 19:10630-10717. [PMID: 40063703 PMCID: PMC11948619 DOI: 10.1021/acsnano.4c10525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 03/26/2025]
Abstract
Interfacing artificial devices with the human brain is the central goal of neurotechnology. Yet, our imaginations are often limited by currently available paradigms and technologies. Suggestions for brain-machine interfaces have changed over time, along with the available technology. Mechanical levers and cable winches were used to move parts of the brain during the mechanical age. Sophisticated electronic wiring and remote control have arisen during the electronic age, ultimately leading to plug-and-play computer interfaces. Nonetheless, our brains are so complex that these visions, until recently, largely remained unreachable dreams. The general problem, thus far, is that most of our technology is mechanically and/or electrically engineered, whereas the brain is a living, dynamic entity. As a result, these worlds are difficult to interface with one another. Nanotechnology, which encompasses engineered solid-state objects and integrated circuits, excels at small length scales of single to a few hundred nanometers and, thus, matches the sizes of biomolecules, biomolecular assemblies, and parts of cells. Consequently, we envision nanomaterials and nanotools as opportunities to interface with the brain in alternative ways. Here, we review the existing literature on the use of nanotechnology in brain-machine interfaces and look forward in discussing perspectives and limitations based on the authors' expertise across a range of complementary disciplines─from neuroscience, engineering, physics, and chemistry to biology and medicine, computer science and mathematics, and social science and jurisprudence. We focus on nanotechnology but also include information from related fields when useful and complementary.
Collapse
Affiliation(s)
- Abdullah
A. A. Ahmed
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Department
of Physics, Faculty of Applied Science, Thamar University, Dhamar 87246, Yemen
| | - Nuria Alegret
- Biogipuzkoa
HRI, Paseo Dr. Begiristain
s/n, 20014 Donostia-San
Sebastián, Spain
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Bethany Almeida
- Department
of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Ramón Alvarez-Puebla
- Universitat
Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, 08010 Barcelona, Spain
| | - Anne M. Andrews
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- Neuroscience
Interdepartmental Program, University of
California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience
& Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
- California
Nanosystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Laura Ballerini
- Neuroscience
Area, International School for Advanced
Studies (SISSA/ISAS), Trieste 34136, Italy
| | | | - Charline Becker
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Robert H. Blick
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Shahin Bonakdar
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- National
Cell Bank Department, Pasteur Institute
of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Indranath Chakraborty
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- School
of Nano Science and Technology, Indian Institute
of Technology Kharagpur, Kharagpur 721302, India
| | - Xiaodong Chen
- Innovative
Center for Flexible Devices (iFLEX), Max Planck − NTU Joint
Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jinwoo Cheon
- Institute
for Basic Science Center for Nanomedicine, Seodaemun-gu, Seoul 03722, Korea
- Advanced
Science Institute, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
- Department
of Chemistry, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| | - Gerwin Chilla
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - James Delehanty
- U.S. Naval
Research Laboratory, Washington, D.C. 20375, United States
| | - Martin Dulle
- JCNS-1, Forschungszentrum
Jülich, 52428 Jülich, Germany
| | | | - Matthias Epple
- Inorganic
Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen, Germany
| | - Mark Fedyk
- Center
for Neuroengineering and Medicine, UC Davis, Sacramento, California 95817, United States
| | - Neus Feliu
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Miao Feng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Rafael Fernández-Chacón
- Instituto
de Biomedicina de Sevilla (IBiS), Hospital
Universitario Virgen del Rocío/Consejo Superior de Investigaciones
Científicas/Universidad de Sevilla, 41013 Seville, Spain
- Departamento
de Fisiología Médica y Biofísica, Facultad de
Medicina, Universidad de Sevilla, CIBERNED,
ISCIII, 41013 Seville, Spain
| | | | - Niels Fertig
- Nanion
Technologies GmbH, 80339 München, Germany
| | | | - Jose A. Garrido
- ICREA, 08010 Barcelona, Spain
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Bellaterra, Spain
| | | | - Andreas H. Guse
- The Calcium
Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Norbert Hampp
- Fachbereich
Chemie, Universität Marburg, 35032 Marburg, Germany
| | - Jann Harberts
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Drug Delivery,
Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne
Centre for Nanofabrication, Victorian Node
of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Jili Han
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Hauke R. Heekeren
- Executive
University Board, Universität Hamburg, 20148 Hamburg Germany
| | - Ulrich G. Hofmann
- Section
for Neuroelectronic Systems, Department for Neurosurgery, University Medical Center Freiburg, 79108 Freiburg, Germany
- Faculty
of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Malte Holzapfel
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | | | - Yalan Huang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Patrick Huber
- Institute
for Materials and X-ray Physics, Hamburg
University of Technology, 21073 Hamburg, Germany
- Center
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Taeghwan Hyeon
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sven Ingebrandt
- Institute
of Materials in Electrical Engineering 1, RWTH Aachen University, 52074 Aachen, Germany
| | - Marcello Ienca
- Institute
for Ethics and History of Medicine, School of Medicine and Health, Technische Universität München (TUM), 81675 München, Germany
| | - Armin Iske
- Fachbereich
Mathematik, Universität Hamburg, 20146 Hamburg, Germany
| | - Yanan Kang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - Dae-Hyeong Kim
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kostas Kostarelos
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Bellaterra, Spain
- Centre
for Nanotechnology in Medicine, Faculty of Biology, Medicine &
Health and The National Graphene Institute, University of Manchester, Manchester M13 9PL, United
Kingdom
| | - Jae-Hyun Lee
- Institute
for Basic Science Center for Nanomedicine, Seodaemun-gu, Seoul 03722, Korea
- Advanced
Science Institute, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| | - Kai-Wei Lin
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Sijin Liu
- State Key
Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Yang Liu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Christian Lohr
- Fachbereich
Biologie, Universität Hamburg, 20146 Hamburg, Germany
| | - Volker Mailänder
- Department
of Dermatology, Center for Translational Nanomedicine, Universitätsmedizin der Johannes-Gutenberg,
Universität Mainz, 55131 Mainz, Germany
- Max Planck
Institute for Polymer Research, Ackermannweg 10, 55129 Mainz, Germany
| | - Laura Maffongelli
- Institute
of Medical Psychology, University of Lübeck, 23562 Lübeck, Germany
| | - Saad Megahed
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Physics
Department, Faculty of Science, Al-Azhar
University, 4434104 Cairo, Egypt
| | - Alf Mews
- Fachbereich
Chemie, Universität Hamburg, 20146 Hamburg, Germany
| | - Marina Mutas
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Leroy Nack
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Nako Nakatsuka
- Laboratory
of Chemical Nanotechnology (CHEMINA), Neuro-X
Institute, École Polytechnique Fédérale de Lausanne
(EPFL), Geneva CH-1202, Switzerland
| | - Thomas G. Oertner
- Institute
for Synaptic Neuroscience, University Medical
Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Andreas Offenhäusser
- Institute
of Biological Information Processing - Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Martin Oheim
- Université
Paris Cité, CNRS, Saints Pères
Paris Institute for the Neurosciences, 75006 Paris, France
| | - Ben Otange
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Ferdinand Otto
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Enrico Patrono
- Institute
of Physiology, Czech Academy of Sciences, Prague 12000, Czech Republic
| | - Bo Peng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - Filippo Pierini
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Monika Pötter-Nerger
- Head and
Neurocenter, Department of Neurology, University
Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maria Pozzi
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Arnd Pralle
- University
at Buffalo, Department of Physics, Buffalo, New York 14260, United States
| | - Maurizio Prato
- CIC biomaGUNE, Basque Research and Technology
Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Bing Qi
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- School
of Life Sciences, Southern University of
Science and Technology, Shenzhen, 518055, China
| | - Pedro Ramos-Cabrer
- CIC biomaGUNE, Basque Research and Technology
Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Ute Resch Genger
- Division
Biophotonics, Federal Institute for Materials Research and Testing
(BAM), 12489 Berlin, Germany
| | - Norbert Ritter
- Executive
Faculty Board, Faculty for Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20345 Hamburg, Germany
| | - Marten Rittner
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Sathi Roy
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
- Department
of Mechanical Engineering, Indian Institute
of Technology Kharagpur, Kharagpur 721302, India
| | - Francesca Santoro
- Institute
of Biological Information Processing - Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
- Faculty
of Electrical Engineering and Information Technology, RWTH Aachen, 52074 Aachen, Germany
| | - Nicolas W. Schuck
- Institute
of Psychology, Universität Hamburg, 20146 Hamburg, Germany
- Max Planck
Research Group NeuroCode, Max Planck Institute
for Human Development, 14195 Berlin, Germany
- Max Planck
UCL Centre for Computational Psychiatry and Ageing Research, 14195 Berlin, Germany
| | - Florian Schulz
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Erkin Şeker
- University
of California, Davis, Davis, California 95616, United States
| | - Marvin Skiba
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Martin Sosniok
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Holger Stephan
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, 01328 Dresden, Germany
| | - Ruixia Wang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Ting Wang
- State Key
Laboratory of Organic Electronics and Information Displays & Jiangsu
Key Laboratory for Biosensors, Institute of Advanced Materials (IAM),
Jiangsu National Synergetic Innovation Center for Advanced Materials
(SICAM), Nanjing University of Posts and
Telecommunications, Nanjing 210023, China
| | - K. David Wegner
- Division
Biophotonics, Federal Institute for Materials Research and Testing
(BAM), 12489 Berlin, Germany
| | - Paul S. Weiss
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- California
Nanosystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Ming Xu
- State Key
Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chenxi Yang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Seyed Shahrooz Zargarian
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Yuan Zeng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Yaofeng Zhou
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Dingcheng Zhu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- College
of Material, Chemistry and Chemical Engineering, Key Laboratory of
Organosilicon Chemistry and Material Technology, Ministry of Education,
Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, China
| | - Robert Zierold
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | |
Collapse
|
9
|
Huang C, Zhou C, Zhao C, Zhang P. Recent Advances in Superspreading-Based Confined Synthesis and Assembly of Functional Nanomaterials. ACS NANO 2025; 19:10766-10778. [PMID: 40094218 DOI: 10.1021/acsnano.4c17878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The rapid and complete spreading of liquids on surfaces, which is defined as superspreading, is of great importance in academic research and practical applications. The strong shear flow force during the superspreading process and the obtained confined stable and homogeneous thin liquid layers have great potential in the assembly of functional nanomaterials and confined synthesis. This review aims to summarize the fundamental understanding and emerging applications of superspreading-based confined synthesis and assembly of functional nanomaterials. First, several typical superspreading processes are briefly introduced, followed by highlighting the unique properties and design principles. Then, details about the confined superspreading liquid layers for highly efficient synthesis of functional thin films and the superspreading-induced shear flow to assembly nanomaterials into high-quality nanocomposite materials are presented. The following section then describes the emerging applications of the fabricated functional thin films and nanocomposites. Finally, an outlook for future development is also proposed.
Collapse
Affiliation(s)
- Cheng Huang
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572024, China
| | - Can Zhou
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Chuangqi Zhao
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Pengchao Zhang
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572024, China
| |
Collapse
|
10
|
Calderón Moreno JM, Chelu M, Popa M. Eco-Friendly Conductive Hydrogels: Towards Green Wearable Electronics. Gels 2025; 11:220. [PMID: 40277656 PMCID: PMC12026593 DOI: 10.3390/gels11040220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025] Open
Abstract
The rapid advancement of wearable electronics has catalyzed the development of flexible, lightweight, and highly conductive materials. Among these, conductive hydrogels have emerged as promising candidates due to their tissue-like properties, which can minimize the mechanical mismatch between flexible devices and biological tissues and excellent electrical conductivity, stretchability and biocompatibility. However, the environmental impact of synthetic components and production processes in conventional conductive hydrogels poses significant challenges to their sustainable application. This review explores recent advances in eco-friendly conductive hydrogels used in healthcare, focusing on their design, fabrication, and applications in green wearable electronics. Emphasis is placed on the use of natural polymers, bio-based crosslinkers, and green synthesis methods to improve sustainability while maintaining high performance. We discuss the incorporation of conductive polymers and carbon-based nanomaterials into environmentally benign matrices. Additionally, the article highlights strategies for improving the biodegradability, recyclability, and energy efficiency of these materials. By addressing current limitations and future opportunities, this review aims to provide a comprehensive understanding of environmentally friendly conductive hydrogels as a basis for the next generation of sustainable wearable technologies.
Collapse
Affiliation(s)
- José María Calderón Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania;
| | - Mariana Chelu
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania;
| | | |
Collapse
|
11
|
Zhuang Q, Yao K, Song X, Zhang Q, Zhang C, Wang H, Yang R, Zhao G, Li S, Shu H, Huang Q, Chai Y, Yu X, Zheng Z. An ICU-grade breathable cardiac electronic skin for health, diagnostics, and intraoperative and postoperative monitoring. SCIENCE ADVANCES 2025; 11:eadu3146. [PMID: 40106548 PMCID: PMC11922033 DOI: 10.1126/sciadv.adu3146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/13/2025] [Indexed: 03/22/2025]
Abstract
Cardiovascular digital health technologies potentially outperform traditional clinical equipment through their noninvasive, on-body, and portable monitoring with mass cardiac data beyond the confines of inpatient settings. However, existing cardiovascular wearables have difficulty with providing medical-grade accuracy with a chronically comfortable and stable patient/consumer device interface for reliable clinical decision-making. Here, we develop an intensive care unit (ICU)-grade breathable cardiac electronic skin system (BreaCARES) for real-time, wireless, continuous, and comfortable cardiac care. BreaCARES enables a novel digital cardiac care platform for health care, outpatient diagnostics, stable intraoperative monitoring during heart surgery, and continuous and comfortable inpatient postoperative cardiac care, exhibiting ICU-grade accuracy while having superior anti-interference stability, portability, and long-term on-skin biocompatibility to the clinically and commercially available cardiac monitors in cardiovascular ICUs.
Collapse
Affiliation(s)
- Qiuna Zhuang
- Laboratory for Advanced Interfacial Materials and Devices, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xian Song
- Laboratory for Advanced Interfacial Materials and Devices, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Chi Zhang
- Laboratory for Advanced Interfacial Materials and Devices, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Huiming Wang
- Laboratory for Advanced Interfacial Materials and Devices, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Ruofan Yang
- Laboratory for Advanced Interfacial Materials and Devices, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Guangyao Zhao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Shanghang Li
- Anesthesiology Department of Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Southern Medical University, Guangzhou, China
| | - Haihua Shu
- Anesthesiology Department of Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Southern Medical University, Guangzhou, China
| | - Qiyao Huang
- Research Institute for Intelligent Wearable Systems (RI-IWEAR), Hong Kong Polytechnic University, Hong Kong SAR, China
- School of Fashion and Textiles, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yunfei Chai
- Anesthesiology Department of Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Southern Medical University, Guangzhou, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong Science Park, Hong Kong SAR, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Hong Kong SAR, China
- Institute of Digital Medicine, City University of Hong Kong, Hong Kong SAR, China
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong SAR, China
- Research Institute for Intelligent Wearable Systems (RI-IWEAR), Hong Kong Polytechnic University, Hong Kong SAR, China
- Research Institute for Smart Energy (RISE), Hong Kong Polytechnic University, Hong Kong SAR, China
- Soft Electronics Research Centre, PolyU-Wenzhou Technology and Innovation Research Institute, Wenzhou, Zhejiang Province, China
- PolyU-Daya Bay Technology and Innovation Research Institute, Huizhou, Guangdong Province, China
| |
Collapse
|
12
|
Song Y, Chen K, Chen S, Zhang L, Wang Y, Wu K, Xu C, Li B, Zhang J, Liu G, Sun J. Stretchable and adhesive bilayers for electrical interfacing. MATERIALS HORIZONS 2025; 12:1981-1991. [PMID: 39744932 DOI: 10.1039/d4mh01166j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Integrated stretchable devices, containing soft modules, rigid modules, and encapsulation modules, are of potential use in implantable bioelectronics and wearable devices. However, such systems often suffer from electrical deterioration due to debonding failure at the connection between rigid and soft modules induced by severe stress concentration, limiting their practical implementation. Here, we report a highly conductive and adhesive bilayer interface that can reliably connect soft-soft modules and soft-rigid modules together by simply pressing without conductive pastes. This interface configuration features a nanoscale styrene-ethylene-butylene-styrene (SEBS) elastomer layer and a SEBS-liquid metal (LM) composite layer. The top SEBS layer enables a strong adhesion with different modules. The connections between soft-soft and soft-rigid modules can be stretched to high strains of 400% and 250%, respectively. Coupling electron tunneling through an ultrathin SEBS layer with LM particle networks in a SEBS-LM composite layer renders continuous pathways for electrical conductivity. Such a bilayer interface exhibits a strain-insensitive high conductivity (3.7 × 105 S m-1) over a wide strain range from 0 to 680%, which can be facilely fabricated in a self-organized manner by sedimentation of LM particles. We present a proof-of-concept demonstration of this bilayer interface as an electrode, interconnect, and self-solder for monitoring physiological signals.
Collapse
Affiliation(s)
- Yuli Song
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Kai Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Shimeng Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Linyuan Zhang
- School of Biomedical Engineering, The Fourth Military Medical University, Xi'an, 710032, P. R. China.
| | - Yaqiang Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Kai Wu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Canhua Xu
- School of Biomedical Engineering, The Fourth Military Medical University, Xi'an, 710032, P. R. China.
| | - Bo Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Jinyu Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Gang Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Jun Sun
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| |
Collapse
|
13
|
Ni Y, Li B, Chu C, Wang S, Jia Y, Cao S, Neisiany RE, He C, Chen S, You Z. One-step fabrication of ultrathin porous Janus membrane within seconds for waterproof and breathable electronic skin. Sci Bull (Beijing) 2025; 70:712-721. [PMID: 39837718 DOI: 10.1016/j.scib.2024.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/14/2024] [Accepted: 12/24/2024] [Indexed: 01/23/2025]
Abstract
It remains a challenge for a simple and scalable method to fabricate ultrathin porous Janus membranes for stretchable on-skin electronics. Here, we propose a one-step droplet spreading phase separation strategy to prepare an ultrathin and easily collected Janus thermoplastic polyurethane (TPU) membrane within seconds. The metal-ion solvation structure mitigated migration kinetics to delay TPU solution demixing, promoting the further penetration of the coagulating solvent. Consequently, the developed membranes, with an average preparation rate of 25.2 cm2 s-1, had a thickness of 5 μm, and the water vapor transmission rate was determined to be 663 g m-2 d-1. The small pore layer having an average pore size of 1.7 μm effectively blocked external liquid water. The porous Janus TPU membrane coated by liquid metal served as a building block to develop a new generation of monolithic stretchable electronics with simultaneous high permeability and waterproofness.
Collapse
Affiliation(s)
- Yufeng Ni
- State Key Laboratory of Advanced Fiber Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Shanghai Key Laboratory of Lightweight Composite, Donghua University, Shanghai 201620, China
| | - Bing Li
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Chengzhen Chu
- State Key Laboratory of Advanced Fiber Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Shanghai Key Laboratory of Lightweight Composite, Donghua University, Shanghai 201620, China
| | - Shaofan Wang
- State Key Laboratory of Advanced Fiber Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Shanghai Key Laboratory of Lightweight Composite, Donghua University, Shanghai 201620, China
| | - Yujie Jia
- State Key Laboratory of Advanced Fiber Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Shanghai Key Laboratory of Lightweight Composite, Donghua University, Shanghai 201620, China
| | - Shichun Cao
- State Key Laboratory of Advanced Fiber Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Shanghai Key Laboratory of Lightweight Composite, Donghua University, Shanghai 201620, China
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar, 9617976487, Iran; Biotechnology Centre, Silesian University of Technology, Gliwice, 44-100, Poland
| | - Chuanglong He
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Shuo Chen
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Zhengwei You
- State Key Laboratory of Advanced Fiber Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Shanghai Key Laboratory of Lightweight Composite, Donghua University, Shanghai 201620, China.
| |
Collapse
|
14
|
Feng Z, Li J, Yang P, Xu X, Wang D, Li J, Zhang C, Li J, Zhang H, Zou G, Chen X. Dynamic multimodal information encryption combining programmable structural coloration and switchable circularly polarized luminescence. Nat Commun 2025; 16:2264. [PMID: 40050269 PMCID: PMC11885572 DOI: 10.1038/s41467-025-57649-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/26/2025] [Indexed: 03/09/2025] Open
Abstract
Multimodal optical-materials are highly desirable due to their advantages in enhancing information security, though independent modulation is challenging, especially accurately controlling the orthogonal relationship between the structural coloration (SC) and fluorescence (FL) pattern. Herein, we report a strategy which combines programmable structural coloration and switchable circularly polarized luminescence (CPL) for multimodal information encryption. Using photomask with aligned grating, programmable periodic patterns are fabricated on a polydiacetylene (PDA) gel film, which produces image in tunable structural colors. Introducing a chiral fluorescence layer containing perovskite nanocrystals and twisted-stacking Ag nanowires (NWs) bilayers, which provides stimuli-responsive FL and CPL with high dissymmetry factor (glum, up to 1.3). Importantly, the structural coloration information and FL patterns (including CPL pattern) can be independently modulated without mutual interference, even selectively concealed or exposed by varying microstructure design of the cross-linked PDA gel or by acetonitrile treatment.
Collapse
Affiliation(s)
- Zeyu Feng
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Jialei Li
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Peng Yang
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
- Suzhou Laboratory, Suzhou, Jiangsu, China
| | - Xiangxiang Xu
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Di Wang
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiahe Li
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Chutian Zhang
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Jingguo Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Hongli Zhang
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China.
| | - Gang Zou
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China.
- Suzhou Laboratory, Suzhou, Jiangsu, China.
| | - Xin Chen
- Suzhou Laboratory, Suzhou, Jiangsu, China.
| |
Collapse
|
15
|
Shin Y, Lee HS, Kim JU, An YH, Kim YS, Hwang NS, Kim DH. Functional-hydrogel-based electronic-skin patch for accelerated healing and monitoring of skin wounds. Biomaterials 2025; 314:122802. [PMID: 39255530 DOI: 10.1016/j.biomaterials.2024.122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 09/12/2024]
Abstract
Conductive hydrogels feature reasonable electrical performance as well as tissue-like mechanical softness, thus positioning them as promising material candidates for soft bio-integrated electronics. Despite recent advances in materials and their processing technologies, however, facile patterning and monolithic integration of functional hydrogels (e.g., conductive, low-impedance, adhesive, and insulative hydrogels) for all-hydrogel-based soft bioelectronics still poses significant challenges. Here, we report material design, fabrication, and integration strategies for an electronic-skin (e-skin) patch based on functional hydrogels. The e-skin patch was fabricated by using photolithography-compatible functional hydrogels, such as poly(2-hydroxyethyl acrylate) (PHEA) hydrogel (substrate), Ag flake hydrogel (interconnection; conductivity: ∼571.43 S/cm), poly(3,4-ethylenedioxythiophene:polystyrene) (PEDOT:PSS) hydrogel (working electrode; impedance: ∼69.84 Ω @ 1 Hz), polydopamine (PDA) hydrogel (tissue adhesive; shear strength: ∼725.1 kPa), and poly(vinyl alcohol) (PVA) hydrogel (encapsulation). The properties of these functional hydrogels closely resemble those of human tissues in terms of water content and Young's modulus, enabling stable tissue-device interfacing in dynamically changing physiological environments. We demonstrated the efficacy of the e-skin patch through its application to accelerated healing and monitoring of skin wounds in mouse models - efficient fibroblast migration, proliferation, and differentiation promoted by electric field (EF) stimulation and iontophoretic drug delivery, and monitoring of the accelerated healing process through impedance mapping. The all-hydrogel-based e-skin patch is expected to create new opportunities for various clinically-relevant tissue interfacing applications.
Collapse
Affiliation(s)
- Yoonsoo Shin
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea; School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun Su Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea; School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong-Uk Kim
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young-Hyeon An
- BioMax/N-Bio Institute, Institute of Bio Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ye-Sol Kim
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea; BioMax/N-Bio Institute, Institute of Bio Engineering, Seoul National University, Seoul, 08826, Republic of Korea; Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea; School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
16
|
Xi X, Lv L, Gong X, Zhang Z, Gao Y, Xia Y, Wan S, Wu X, Chen H, Yang D, Zeng Y, Sheng H, Li T, Dong A. Emergence of Voronoi-Patterned Cellular Membranes via Confinement Transformation of Self-Assembled Metal-Organic Frameworks. J Am Chem Soc 2025; 147:6983-6994. [PMID: 39937632 DOI: 10.1021/jacs.4c17866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
The self-assembly of nanoparticles allows the fabrication of complex, nature-inspired architectures. Among these, Voronoi tessellations─intricate patterns found in many natural systems such as insect wings and plant tissues─have broad implications across materials science, biology, and geography. However, replicating these irregular yet organized features at the nanoscale through nanoparticle self-assembly remains challenging. Here, we introduce a confinement transformation method to generate two-dimensional (2D) Voronoi patterns by converting metal-organic frameworks, specifically zeolitic imidazolate framework-8 (ZIF-8), into layered hydroxides. The process begins with the self-assembly of ZIF-8 particles into densely packed monolayers at the liquid-air interface, driven by the Marangoni effect. Subsequent Ni2+-induced etching converts the floating ZIF-8 monolayer into a freestanding membrane composed of interconnected polygonal cells, closely resembling the geometric characteristics of Voronoi tessellations. We systematically investigate the parameters affecting the transformation of ZIF-8 particles, shedding light on the mechanism governing Voronoi pattern formation. Mechanical testing and simulations demonstrate that the resulting cellular membranes exhibit enhanced stress distribution and crack resistance, attributed to their Voronoi-patterned architecture. These robust, monolithic membranes composed of Ni-based hydroxides, when serving as catalyst support materials, can synergistically enhance the intrinsic activity of Pt catalysts for alkaline hydrogen evolution reaction by facilitating water dissociation. This work presents a promising approach for creating nature-inspired materials with optimal stress management, superior mechanical properties, and potential catalytic applications.
Collapse
Affiliation(s)
- Xiangyun Xi
- State Key Laboratory of Molecule Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Longfei Lv
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Xiaoli Gong
- State Key Laboratory of Molecule Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Zhebin Zhang
- State Key Laboratory of Molecule Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yifan Gao
- State Key Laboratory of Molecule Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yan Xia
- State Key Laboratory of Molecule Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Siyu Wan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Xuesong Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Hushui Chen
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Dong Yang
- State Key Laboratory of Molecule Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yuwen Zeng
- State Key Laboratory of Molecule Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Hongyuan Sheng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Tongtao Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Angang Dong
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| |
Collapse
|
17
|
Chen M, Luan H, Du Z, Huo X, Liu Z, Zhang J, Han F, Yu J, Mao P, Han M. Unveiling Ultrafast Vibration Detection from Nanostructures: Cluster Arrays Achieving Precise Responses without Direct Interparticle Mechanical Interaction. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39993931 DOI: 10.1021/acsami.4c21432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Sensitive materials assembled with nanostructures respond to subjected mechanical stimuli by modulating the internal electron transport through their intrinsic deformation. However, this deformation inherently entails a sufficient delay to overcome mechanical interactions between nanostructures to propagate within materials, thereby limiting the timely responsiveness of sensitive materials to ultrafast mechanical stimuli. Here, we propose a novel sensing array composed of isolated clusters, where majority of the clusters maintain nanoscale separations from each other. These interparticle separations effectively eliminate direct mechanical interactions within clusters, permitting the sensing array to respond to ultrafast deformations without additional delay. Furthermore, the nanoscale separations facilitate electron transport between clusters via quantum tunneling, achieving an ultrasensitive response to subtle mechanical stimuli. This engineered cluster array can be developed for vibration-sensing applications, capable of detecting a wide frequency range from 0.1 Hz to 60 kHz, providing characterizations of vibration details including amplitude, phase, and symmetry. The broad measurement range and precise detecting capability ensure that cluster array-based devices can find extensive applications such as mechanical inspections and medical diagnostics.
Collapse
Affiliation(s)
- Minrui Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
- National Laboratory of Solid-State Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P.R. China
| | - Huaiyang Luan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Zhengyang Du
- National Laboratory of Solid-State Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P.R. China
| | - Xianliang Huo
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Zhiqin Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Jin Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Fang Han
- Zhejiang Guwei Technology Company Limited, Hangzhou 311122, P.R. China
| | - Jianjun Yu
- Zhejiang Guwei Technology Company Limited, Hangzhou 311122, P.R. China
| | - Peng Mao
- National Laboratory of Solid-State Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P.R. China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, P.R. China
| | - Min Han
- National Laboratory of Solid-State Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P.R. China
| |
Collapse
|
18
|
Belay AN, Guo R, Ahmadian Koudakan P, Pan S. Biointerface engineering of flexible and wearable electronics. Chem Commun (Camb) 2025; 61:2858-2877. [PMID: 39838849 DOI: 10.1039/d4cc06078d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Biointerface sensing is a cutting-edge interdisciplinary field that merges conceptual and practical aspects. Wearable bioelectronics enable efficient interaction and close contact with biological components such as tissues and organs, paving the way for a wide range of medical applications, including personal health monitoring and medical intervention. To be applicable in real-world settings, the patches must be stable and adhere to the skin without causing discomfort or allergies in both wet and dry conditions, as well as other desirable features such as being ultra-soft, thin, flexible, and stretchable. Biosensors have emerged as promising tools primarily used to directly detect biological and electrophysiological signals, enhancing the efficacy of personalized medical treatments and enabling accurate tracking of human well-being. This review highlights the engineering of skin-tissue surfaces/interfaces and their interactions with wearable patches, aiming for both a broad and in-depth understanding of the mechanical and physicochemical properties required for the advancement of flexible and wearable skin patches. Specifically, the advantages of flexible bioelectronics and sensors with optimized surface geometry for long-term diagnosis are discussed. This insight aims to guide the future development of functional materials that can interact with human tissue in a controlled manner. Finally, we provide perspectives on the challenges and potential applications of biointerface engineering in wearable devices.
Collapse
Affiliation(s)
- Alebel Nibret Belay
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
- Department of Chemistry, College of Science, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
| | - Rui Guo
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | | | - Shuaijun Pan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
- Department of Chemical Engineering, University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
19
|
Zhan J, Kong Y, Zhou X, Gong H, Chen Q, Zhang X, Zhang J, Wang Y, Huang W. 3D printing of wearable sensors with strong stretchability for myoelectric rehabilitation. Biomater Sci 2025; 13:1021-1032. [PMID: 39815832 DOI: 10.1039/d4bm01434k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Myoelectric biofeedback (EMG-BF) is a widely recognized and effective method for treating movement disorders caused by impaired nerve function. However, existing EMG-feedback devices are almost entirely located in large medical centers, which greatly limits patient accessibility. To address this critical limitation, there is an urgent need to develop a portable, cost-effective, and real-time monitoring device that can transcend the existing barriers to the treatment of EMG-BF. Our proposed solution leverages polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) as core materials, ingeniously incorporating wood pulp nano celluloses (CNF-P)-Na+ to enhance the structural integrity. Additionally, the inclusion of nano-silica particles further augments the sensor's capabilities, enabling the creation of a stress-sensitive mineral ionization hydrogel sensor. This innovative approach not only capitalizes on the superior rheological properties of the materials but also, through advanced 3D printing technology, facilitates the production of a micro-scale structural hydrogel sensor with unparalleled sensitivity, stability, and durability. The potential of this sensor in the realm of human motion detection is nothing short of extraordinary. This development can potentially improve the treatment landscape for EMG-BF offering patients more convenient and efficient therapeutic options.
Collapse
Affiliation(s)
- Jianan Zhan
- Department of Human Anatomy, School of Basic Medical Sciences Guangdong Medical University, 524000, Zhanjiang, China.
| | - Yueying Kong
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001, Hengyang, China
| | - Xi Zhou
- Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Haihuan Gong
- Department of Periodontics, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| | - Qiwei Chen
- Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Xianlin Zhang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Jiankai Zhang
- Department of Human Anatomy, School of Basic Medical Sciences Guangdong Medical University, 524000, Zhanjiang, China.
| | - Yilin Wang
- Department of Human Anatomy, College of Basic Medical Science, China Medical University, 110122, Shenyang, China.
| | - Wenhua Huang
- Department of Human Anatomy, School of Basic Medical Sciences Guangdong Medical University, 524000, Zhanjiang, China.
- Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001, Hengyang, China
| |
Collapse
|
20
|
Nan Z, Wei W, Lin Z, Yuan R, Zhang M, Zhang J, Ouyang J, Chang J, Li H, Hao Y. Electromagnetic Functions Modulation of Recycled By-Products by Heterodimensional Structure. NANO-MICRO LETTERS 2025; 17:137. [PMID: 39913057 PMCID: PMC11803013 DOI: 10.1007/s40820-025-01659-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/02/2025] [Indexed: 02/07/2025]
Abstract
One of the significant technological challenges in safeguarding electronic devices pertains to the modulation of electromagnetic (EM) wave jamming and the recycling of defensive shields. The synergistic effect of heterodimensional materials can effectively enable the manipulation of EM waves by altering the nanostructure. Here we propose a novel approach for upcycling by-products of silver nanowires that can fabricate shape-tunable aerogels which enable the modulation of its interaction with microwaves by heterodimensional structure of by-products. By-product heterodimensionality was used to design EM-wave-jamming-dissipation structures and therefore two typical tunable aerogel forms were studied. The first tunable form was aerogel film, which shielded EM interference (EMI shielding effectiveness (EMI SE) > 89 dB) and the second tunable form was foam, which performed dual EM functions (SE > 30 dB& reflective loss (RL) < -35 dB, effective absorption bandwidth (EAB) > 6.7 GHz). We show that secondary recycled aerogels retain nearly all of their EM protection properties, making this type of closed-loop cycle an appealing option. Our findings pave the way for the development of adaptive EM functions with nanoscale regulation in a green and closed-loop cycle, and they shed light on the fundamental understanding of microwave interactions with heterodimensional structures.
Collapse
Affiliation(s)
- Ze Nan
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, School of Microelectronics, Xidian University, Xi'an, 710071, People's Republic of China
| | - Wei Wei
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, School of Microelectronics, Xidian University, Xi'an, 710071, People's Republic of China.
| | - Zhenhua Lin
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, School of Microelectronics, Xidian University, Xi'an, 710071, People's Republic of China
| | - Ruimei Yuan
- State Key Laboratory of Solidification Processing, Shaanxi Province Key Laboratory of Fiber Reinforced Light Composite Materials, Carbon/Carbon Composites Research Center, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
- Advanced Interdisciplinary Research Center for Flexible Electronics, Xidian University, Xi'an, 710071, People's Republic of China
| | - Miao Zhang
- Advanced Interdisciplinary Research Center for Flexible Electronics, Xidian University, Xi'an, 710071, People's Republic of China
| | - Jincheng Zhang
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, School of Microelectronics, Xidian University, Xi'an, 710071, People's Republic of China
- Advanced Interdisciplinary Research Center for Flexible Electronics, Xidian University, Xi'an, 710071, People's Republic of China
| | - Jianyong Ouyang
- Department of Materials Science and Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore, 117574, Singapore.
| | - Jingjing Chang
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, School of Microelectronics, Xidian University, Xi'an, 710071, People's Republic of China.
- Advanced Interdisciplinary Research Center for Flexible Electronics, Xidian University, Xi'an, 710071, People's Republic of China.
| | - Hejun Li
- State Key Laboratory of Solidification Processing, Shaanxi Province Key Laboratory of Fiber Reinforced Light Composite Materials, Carbon/Carbon Composites Research Center, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Yue Hao
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, School of Microelectronics, Xidian University, Xi'an, 710071, People's Republic of China
- Advanced Interdisciplinary Research Center for Flexible Electronics, Xidian University, Xi'an, 710071, People's Republic of China
| |
Collapse
|
21
|
Yu R, Wu L, Yang Z, Wu J, Chen H, Pan S, Zhu M. Dynamic Liquid Metal-Microfiber Interlocking Enables Highly Conductive and Strain-insensitive Metastructured Fibers for Wearable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415268. [PMID: 39690796 DOI: 10.1002/adma.202415268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/30/2024] [Indexed: 12/19/2024]
Abstract
Stretchable fibers with high conductivity are vital components for smart textiles and wearable electronics. However, embedding solid conductive materials in polymers significantly reduces conductive pathways when stretched, causing a sharp drop in conductivity. Here, a stretchable metastructured fiber with dynamic liquid metal-microfiber interlocking interface is reported to realize highly conductive yet ultrastable conductance. The Cu-EGaIn mixture is partially embedded within the porous microfiber mat, thereby enabling its roll-up into a spiral-layered metastructured fiber with self-compensating conductive pathways. The metastructured fiber shows outstanding performance, including high conductivity of 1.5 × 106 S m-1, large stretchability up to 629%, and ultrastable conductance with only 16% relative resistance change at 100% strain, which far surpasses the theoretical value. Moreover, these fibers have served as versatile platforms for wearable temperature-visualizing electrothermal fiber heaters and fully stretchable smart sensing-display fabrics. This dynamic solid-liquid interfacial interlocking strategy is promising for stretchable electronics.
Collapse
Affiliation(s)
- Rouhui Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Liang Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhonghua Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Huifang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Shaowu Pan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
22
|
Tian Y, Wang J, Chen H, Lin H, Wu S, Zhang Y, Tian M, Meng J, Saeed W, Liu W, Chen X. Electrospun multifunctional nanofibers for advanced wearable sensors. Talanta 2025; 283:127085. [PMID: 39490308 DOI: 10.1016/j.talanta.2024.127085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/11/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
The multifunctional extension of fiber-based wearable sensors determines their integration and sustainable development, with electrospinning technology providing reliable, efficient, and scalable support for fabricating these sensors. Despite numerous studies on electrospun fiber-based wearable sensors, further attention is needed to leverage composite structural engineering for functionalizing electrospun fibers. This paper systematically reviews the research progress on fiber-based multifunctional wearable sensors in terms of design concept, device fabrication, mechanism exploration, and application potential. Firstly, the basics of electrospinning are briefly introduced, including its development, principles, parameters, and material selection. Tactile sensors, as crucial components of wearable sensors, are discussed in detail, encompassing their performance parameters, transduction mechanisms, and preparation strategies for pressure, strain, temperature, humidity, and bioelectrical signal sensors. The main focus of the article is on the latest research progress in multifunctional sensing design concepts, multimodal decoupling mechanisms, sensing mechanisms, and functional extensions. These extensions include multimodal sensing, self-healing, energy harvesting, personal thermal management, EMI shielding, antimicrobial properties, and other capabilities. Furthermore, the review assesses existing challenges and outlines future developments for multifunctional wearable sensors, highlighting the need for continued research and innovation.
Collapse
Affiliation(s)
- Ye Tian
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China; School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China; The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Junhao Wang
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Haojie Chen
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Haibin Lin
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Shulei Wu
- Key Laboratory of Polymer Materials and Products, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, 350118, People's Republic of China
| | - Yifan Zhang
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Meng Tian
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Jiaqi Meng
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Waqas Saeed
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Wei Liu
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Xing Chen
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
23
|
Jing H, Dan J, Wei H, Guo T, Xu Z, Jiang Y, Liu Y. Sign-Switchable Poisson's Ratio Design for Bimodal Strain-to-Electrical Signal Transducing Device. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413774. [PMID: 39641220 DOI: 10.1002/adma.202413774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Stretchable electronic devices that conduct strain-related electronic performances have drawn extensive attention, functioning as mechanical sensors, actuators, and stretchable conductors. Although strain-insensitive or strain-responsive nature is well-achieved separately, it remains challenging to combine these two characteristics in one single device, which will offer versatile adaptability in various working situations. Herein, a hybrid material with sign-switchable Poisson's ratio (SSPR) is developed by combining a phase-change gel based reentrantreentrant honeycomb pattern and a polydimethylsiloxane film. The phase-change gel featuring thermally-regulated Young's modulus enables the hybrid material to switch between negative and positive Poisson's ratios. After integrating with a pre-stretched silver nanowires film, the obtained stretchable device performs bimodal strain-to-electrical signal transducing (Bi-SET) functions, in which the SSPR-dominated strain-resistance response switches between strain-dependent and strain-insensitive behaviors. As a proof of concept, a mode-switchable grasping system is constructed using a Bi-SET device-based controller, enabling the adaptation of grasping behaviors to various target objects.
Collapse
Affiliation(s)
- Houchao Jing
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Junyan Dan
- School of Software, Shandong University, Jinan, Shandong, 250101, China
| | - Hua Wei
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Tongkun Guo
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Zhijun Xu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Ying Jiang
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, Taipa, Macau, 999078, China
| | - Yaqing Liu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
- Research Center of Biomedical Sensing Engineering Technology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
24
|
Lai J, Xiao L, Zhu B, Xie L, Jiang H. 3D printable and myoelectrically sensitive hydrogel for smart prosthetic hand control. MICROSYSTEMS & NANOENGINEERING 2025; 11:15. [PMID: 39833177 PMCID: PMC11747008 DOI: 10.1038/s41378-024-00825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/21/2024] [Accepted: 09/23/2024] [Indexed: 01/22/2025]
Abstract
Surface electromyogram (sEMG) serves as a means to discern human movement intentions, achieved by applying epidermal electrodes to specific body regions. However, it is difficult to obtain high-fidelity sEMG recordings in areas with intricate curved surfaces, such as the body, because regular sEMG electrodes have stiff structures. In this study, we developed myoelectrically sensitive hydrogels via 3D printing and integrated them into a stretchable, flexible, and high-density sEMG electrodes array. This electrode array offered a series of excellent human-machine interface (HMI) features, including conformal adherence to the skin, high electron-to-ion conductivity (and thus lower contact impedance), and sustained stability over extended periods. These attributes render our electrodes more conducive than commercial electrodes for long-term wearing and high-fidelity sEMG recording at complicated skin interfaces. Systematic in vivo studies were used to investigate its efficacy to control a prosthetic hand by decoding sEMG signals from the human hand via a multiple-channel readout circuit and a sophisticated artificial intelligence algorithm. Our findings demonstrate that the 3D printed gel myoelectric sensing system enables real-time and highly precise control of a prosthetic hand.
Collapse
Affiliation(s)
- Jinxin Lai
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Longya Xiao
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Beichen Zhu
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Longhan Xie
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 511442, P. R. China.
| | - Hongjie Jiang
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 511442, P. R. China.
| |
Collapse
|
25
|
Pang B, Liu Z, Gao Y, Li X, Wang S, Qi M, Zhao X, Fan R, Xu D, Cullen PJ, Zhou R. Enhanced Anticancer Efficacy of Alkaline Plasma-Activated Water through Augmented RONS Production. ACS APPLIED MATERIALS & INTERFACES 2025; 17:467-483. [PMID: 39692225 DOI: 10.1021/acsami.4c16518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Despite notable advances in anticancer drug development, their manufacture and use pose environmental and health risks due to toxic byproducts, drug residue contamination, and cytotoxicity to normal cells. Therefore, developing cost-effective anticancer treatments with fewer toxic side effects and higher selectivity is essential to the advancement of highly effective anticancer therapies. Plasma-activated water (PAW) offers a green alternative to conventional chemical treatments as it reverts to water within days. However, the limited duration and dose of reactive oxygen and nitrogen species (RONS) in acidified PAW restrict its clinical deployment and the full understanding of their mechanism. In this study, we propose alkaline PAW as an innovative enhancement of the RONS technology. The alkaline PAW generated markedly superior RONS, with about 10 times higher levels of NO2-, H2O2, and ONOO-/O2•- than acidic PAW. The possible RONS generation pathways in alkaline PAW are analyzed by scavengers. In conventional acidic PAW, 70% of the H2O2 concentration is contributed by •OH but only about 20% in alkaline PAW. ONOO- is mainly formed through the reaction of O2•- with NO in alkaline pH, while in acidic PAW, it mainly forms from NO2- and H2O2. The results unveiled the synergistic and formidable anticancer effects of alkaline PAW against cancer cells, typified by an increase in intracellular ROS/RNS levels. Furthermore, alkaline PAW injection also effectively prevented xenograft tumor growth in mice. We systematically investigated this high-dose anticancer solution without using noble gases, toxic reagents, or extra energy consumption and successfully demonstrated the possibility of alkaline PAW being an effective and environmentally friendly therapeutic technology. The activity is closely linked to the RONS dose, and the generation pathway provides much-needed insight into the fundamental aspects of PAW chemistry required for the optimization of the biochemical activity of PAW.
Collapse
Affiliation(s)
- Bolun Pang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Zhijie Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yuting Gao
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xin Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Sitao Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Miao Qi
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xinyi Zhao
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Runze Fan
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Dehui Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Patrick J Cullen
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW 2006, Australia
| | - Renwu Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
26
|
Dai S, Zhang X, Liu X, Tian X, Cui B, Pang I, Luo H, Liu D, He X, Chen X, Zhang J, Wang Z, Huang J, Zhang S. Vertical-Structure Overcomes the Strain Limit of Stretchable Organic Electrochemical Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413951. [PMID: 39582297 DOI: 10.1002/adma.202413951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/13/2024] [Indexed: 11/26/2024]
Abstract
Intrinsically stretchable organic electrochemical transistors (IS-OECTs), utilizing organic mixed ionic-electronic conductors (OMIECs) as their channel materials, have drawn great attention recently because of their potential to enable seamless integration between bioelectronic devices and living systems. However, the fabrication of IS-OECTs presents challenges due to the limited availability of OMIEC materials that possess the desired combination of mechanical and electrical properties. In this work, 1) we report the first successful fabrication of a vertical intrinsically stretchable OECT (VIS-OECT), achieved by using elastoadhesive electrodes; 2) we experimentally proved that vertical architecture can push the strain limit of an IS-OECT from 20% to 50%; and 3) the above finding introduces an unconventional design concept: the strain limit of an IS-OECT can surpass the intrinsic stretchability of the constituent OMIECs by employing vertical structure.
Collapse
Affiliation(s)
- Shilei Dai
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Xinran Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Xu Liu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Xinyu Tian
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Binbin Cui
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Ivo Pang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Haixuan Luo
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Dingyao Liu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Xuecheng He
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Xiaonan Chen
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Junyao Zhang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Zhongrui Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Jia Huang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Shiming Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
27
|
Kim M, Hong S, Khan R, Park JJ, In JB, Ko SH. Recent Advances in Nanomaterial-Based Biosignal Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405301. [PMID: 39610205 DOI: 10.1002/smll.202405301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/26/2024] [Indexed: 11/30/2024]
Abstract
Recent research for medical fields, robotics, and wearable electronics aims to utilize biosignal sensors to gather bio-originated information and generate new values such as evaluating user well-being, predicting behavioral patterns, and supporting disease diagnosis and prevention. Notably, most biosignal sensors are designed for body placement to directly acquire signals, and the incorporation of nanomaterials such as metal-based nanoparticles or nanowires, carbon-based or polymer-based nanomaterials-offering stretchability, high surface-to-volume ratio, and tunability for various properties-enhances their adaptability for such applications. This review categorizes nanomaterial-based biosignal sensors into three types and analyzes them: 1) biophysical sensors that detect deformation such as folding, stretching, and even pulse, 2) bioelectric sensors that capture electric signal originating from human body such as heart and nerves, and 3) biochemical sensors that catch signals from bio-originated fluids such as sweat, saliva and blood. Then, limitations and improvements to nanomaterial-based biosignal sensors is depicted. Lastly, it is highlighted on deep learning-based signal processing and human-machine interface applications, which can enhance the potential of biosignal sensors. Through this paper, it is aim to provide an understanding of nanomaterial-based biosignal sensors, outline the current state of the technology, discuss the challenges that be addressed, and suggest directions for development.
Collapse
Affiliation(s)
- Minwoo Kim
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangwoo Hong
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Rizwan Khan
- Soft Energy Systems and Laser Applications Laboratory, School of Mechanical Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jung Jae Park
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung Bin In
- Soft Energy Systems and Laser Applications Laboratory, School of Mechanical Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
- Department of Intelligent Energy and Industry, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research / Institute of Advanced Machines and Design, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
28
|
Liu R, Wang S, Zhou Z, Zhang K, Wang G, Chen C, Long Y. Materials in Radiative Cooling Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2401577. [PMID: 38497602 PMCID: PMC11733833 DOI: 10.1002/adma.202401577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Radiative cooling (RC) is a carbon-neutral cooling technology that utilizes thermal radiation to dissipate heat from the Earth's surface to the cold outer space. Research in the field of RC has garnered increasing interest from both academia and industry due to its potential to drive sustainable economic and environmental benefits to human society by reducing energy consumption and greenhouse gas emissions from conventional cooling systems. Materials innovation is the key to fully exploit the potential of RC. This review aims to elucidate the materials development with a focus on the design strategy including their intrinsic properties, structural formations, and performance improvement. The main types of RC materials, i.e., static-homogeneous, static-composite, dynamic, and multifunctional materials, are systematically overviewed. Future trends, possible challenges, and potential solutions are presented with perspectives in the concluding part, aiming to provide a roadmap for the future development of advanced RC materials.
Collapse
Affiliation(s)
- Rong Liu
- Department of Electronic EngineeringThe Chinese University of Hong KongNew TerritoriesHong Kong SAR999077China
| | - Shancheng Wang
- Department of Electronic EngineeringThe Chinese University of Hong KongNew TerritoriesHong Kong SAR999077China
| | - Zhengui Zhou
- Department of Electronic EngineeringThe Chinese University of Hong KongNew TerritoriesHong Kong SAR999077China
| | - Keyi Zhang
- Department of Electronic EngineeringThe Chinese University of Hong KongNew TerritoriesHong Kong SAR999077China
| | - Guanya Wang
- Department of Electronic EngineeringThe Chinese University of Hong KongNew TerritoriesHong Kong SAR999077China
| | - Changyuan Chen
- Department of Electronic EngineeringThe Chinese University of Hong KongNew TerritoriesHong Kong SAR999077China
| | - Yi Long
- Department of Electronic EngineeringThe Chinese University of Hong KongNew TerritoriesHong Kong SAR999077China
| |
Collapse
|
29
|
Liu H, Li H, Wang Y, Liu Y, Xiao L, Guo W, Lin Y, Wang H, Wang T, Yan H, Lai S, Chen Y, Mou Z, Chen L, Luo Y, Liu GS, Zhang X. Machine-Learning Mental-Fatigue-Measuring μm-Thick Elastic Epidermal Electronics (MMMEEE). NANO LETTERS 2024; 24:16221-16230. [PMID: 39604089 DOI: 10.1021/acs.nanolett.4c02474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Electrophysiological (EP) signals are key biomarkers for monitoring mental fatigue (MF) and general health, but state-of-the-art wearable EP-based MF monitoring systems are bulky and require user-specific, labeled data. Ultrathin epidermal electrodes with high performance are ideal for constructing imperceptive EP sensing systems; however, the lack of a simple and scalable fabrication delays their application in MF recognition. Here, we report a facile, scalable printing-welding-transferring strategy (PWT) for printing μm-thickness micropatterned silver nanowires (AgNWs)/sticky polydimethylsiloxane, welding the AgNWs via plasmonic effect, and transferring the electrode to skin as tattoos. The PWT provides electrodes with conformability, comfort, and stability for EP sensing. Leveraging the facile and scalable PWT, we develop plug-and-play wireless multimodal epidermal electronics integrated with an unsupervised transfer learning (UTL) scheme for MF recognition across various users. The UTL adaptively minimizes the intersubject difference and achieves high accuracy, without demand of expensive computation and labels from target users.
Collapse
Affiliation(s)
- Haogeng Liu
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Haichuan Li
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Yexiong Wang
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Yan Liu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Lizhi Xiao
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Weidong Guo
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Yaoguang Lin
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Hongteng Wang
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Tianqi Wang
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Haiwang Yan
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yaofei Chen
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Key Laboratory of Visible Light Communications of Guangzhou, Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Zongxia Mou
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Lei Chen
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Key Laboratory of Visible Light Communications of Guangzhou, Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Yunhan Luo
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Key Laboratory of Visible Light Communications of Guangzhou, Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Gui-Shi Liu
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Key Laboratory of Visible Light Communications of Guangzhou, Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Xingcai Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
30
|
Kim J, Cha GD, Kim M, Lee S, Sunwoo S, Kim D. Soft Cardiac Patch Using a Bifacial Architecture of Adhesive/Low‐Impedance Hydrogel Nanocomposites and Highly Conductive Elastomer Nanocomposites. ADVANCED NANOBIOMED RESEARCH 2024. [DOI: 10.1002/anbr.202400143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Soft implantable multichannel cardiac electrode arrays that establish direct monolithic interfaces with the heart are key components for advanced cardiac monitoring and electrical modulation. A significant technological advancement in this area is the development of stretchable conductive nanocomposites, fabricated through the integration of metallic nanomaterials and elastic polymers, aimed at achieving both high electrical conductivity and mechanical elasticity. Despite these advances, further progress in material performance and device designs is required to ensure seamless, reliable, biocompatible, and high‐fidelity cardiac interfacing. Herein, the development of a soft multichannel cardiac patch based on a bifacial architecture of adhesive/low‐impedance hydrogel nanocomposites and highly conductive elastomer nanocomposites is reported. The bifacial design facilitates the integration of the cardiac patch between the heart and other tissues/organs can be achieved. The hydrogel nanocomposite layer, positioned on the epicardial side, provides stable adhesion to the target cardiac tissue and enables low‐impedance biocompatible interfacing with the heart, while the elastomer nanocomposite layer, positioned on the opposite side, offers high electrical conductivity for facile electrophysiological signal transfer and a low‐friction surface minimizing unwanted interactions with surrounding tissues. The effectiveness of this bifacial patch in multiple applications involving various cardiac signal recordings and electromechanical modulation demonstrations is showcased.
Collapse
Affiliation(s)
- Jeeyoung Kim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Gi Doo Cha
- Department of Systems Biotechnology Chung‐Ang University Ansung 17546 Republic of Korea
| | - Minsung Kim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Seung‐Pyo Lee
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- Division of Cardiology Department of Internal Medicine Seoul National University Hospital Seoul 03080 Republic of Korea
- Department of Internal Medicine Seoul National University College of Medicine Seoul 03080 Republic of Korea
| | - Sung‐Hyuk Sunwoo
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- Department of Chemical Engineering Kumoh National Institute of Technology Gumi 39177 Republic of Korea
| | - Dae‐Hyeong Kim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
31
|
Li Y, Xia M, Zhou J, Hu L, Du Y. Recent advances in gold Janus nanomaterials: Preparation and application. Adv Colloid Interface Sci 2024; 334:103315. [PMID: 39454268 DOI: 10.1016/j.cis.2024.103315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/02/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Gold Janus nanomaterials have a tremendous significance for the novel bifunctional materials, significantly expanding the application scope of gold nanomaterials, especially Janus gold-thiol coordination polymer due to their exceptional biological characteristics, stability, plasmon effect, etc. The recent research on Janus gold nanoparticles and monolayer films of preparation and application has been summarized and in this review. To begin, we briefly introduce overview of Janus nanomaterials which received intense attention, outline current research trends, and detail the preparation and application of gold nanomaterials. Subsequently, we present comprehensively detailing fabrication strategies and applications of Janus gold nanoparticles. Additionally, we survey recent studies on the Janus gold nano-thickness films and point out the outstanding advantage of application on the tunable surface plasmon resonance, high sensitivity of surface-enhanced Raman scattering and electrical analysis fields. Finally, we discuss the emerging trends in Janus gold nanomaterials and address the associated challenges, thereby providing a comprehensive overview of this area of research.
Collapse
Affiliation(s)
- Yunbo Li
- School of Materials Science & Engineering, Shanghai University, Shanghai 200444, China.
| | - Minqiang Xia
- School of Materials Science & Engineering, Shanghai University, Shanghai 200444, China
| | - Jiahang Zhou
- School of Materials Science & Engineering, Shanghai University, Shanghai 200444, China
| | - Lingui Hu
- School of Materials Science & Engineering, Shanghai University, Shanghai 200444, China
| | - Yixuan Du
- School of Materials Science & Engineering, Bayreuth Universität, Bayreuth, 95445, Germany.
| |
Collapse
|
32
|
Dong J, Hou J, Peng Y, Zhang Y, Liu H, Long J, Park S, Liu T, Huang Y. Breathable and Stretchable Epidermal Electronics for Health Management: Recent Advances and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409071. [PMID: 39420650 DOI: 10.1002/adma.202409071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/07/2024] [Indexed: 10/19/2024]
Abstract
Advanced epidermal electronic devices, capable of real-time monitoring of physical, physiological, and biochemical signals and administering appropriate therapeutics, are revolutionizing personalized healthcare technology. However, conventional portable electronic devices are predominantly constructed from impermeable and rigid materials, which thus leads to the mechanical and biochemical disparities between the devices and human tissues, resulting in skin irritation, tissue damage, compromised signal-to-noise ratio (SNR), and limited operational lifespans. To address these limitations, a new generation of wearable on-skin electronics built on stretchable and porous substrates has emerged. These substrates offer significant advantages including breathability, conformability, biocompatibility, and mechanical robustness, thus providing solutions for the aforementioned challenges. However, given their diverse nature and varying application scenarios, the careful selection and engineering of suitable substrates is paramount when developing high-performance on-skin electronics tailored to specific applications. This comprehensive review begins with an overview of various stretchable porous substrates, specifically focusing on their fundamental design principles, fabrication processes, and practical applications. Subsequently, a concise comparison of various methods is offered to fabricate epidermal electronics by applying these porous substrates. Following these, the latest advancements and applications of these electronics are highlighted. Finally, the current challenges are summarized and potential future directions in this dynamic field are explored.
Collapse
Affiliation(s)
- Jiancheng Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jiayu Hou
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yidong Peng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yuxi Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Haoran Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jiayan Long
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yunpeng Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
33
|
Kim BQ, Kim JQ, Yoon H, Lee E, Choi SQ, Kim K. Active Stratification of Colloidal Mixtures for Asymmetric Multilayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404348. [PMID: 39150055 PMCID: PMC11673404 DOI: 10.1002/smll.202404348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Stratified films offer high performance and multifunctionality, yet achieving fully stratified films remains a challenge. The layer-by-layer method, involving the sequential deposition of each layer, has been commonly utilized for stratified film fabrication. However, this approach is time-consuming, labor-intensive, and prone to leaving defects within the film. Alternatively, the self-stratification process exploiting a drying binary colloidal mixture is intensively developed recently, but it relies on strict operating conditions, typically yielding a heterogeneous interlayer. In this study, an active interfacial stratification process for creating completely stratified nanoparticle (NP) films is introduced. The technique leverages NPs with varying interfacial activity at the air-water interface. With the help of depletion pressure, the lateral compression of NP mixtures at the interface induces individual desorption of less interfacial active NPs into the subphase, while more interfacial active NPs remain at the interface. This simple compression leads to nearly perfect stratified NP films with controllability, universality, and scalability. Combined with a solvent annealing process, the active stratification process enables the fabrication of stratified films comprising a polymeric layer atop a NP layer. This work provides insightful implications for designing drug encapsulation and controlled release, as well as manufacturing transparent and flexible electrodes.
Collapse
Affiliation(s)
- Baekmin Q. Kim
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Jongmin Q. Kim
- Interface Materials and Chemical Engineering Research CenterKorea Research Institute of Chemical Technology (KRICT)Daejeon34114Republic of Korea
| | - Hojoon Yoon
- Department of Chemical and Biomolecular EngineeringSeoul National University of Science and Technology (SeoulTech)Seoul01811Republic of Korea
| | - EunSuk Lee
- Department of Chemical and Biomolecular EngineeringSeoul National University of Science and Technology (SeoulTech)Seoul01811Republic of Korea
| | - Siyoung Q. Choi
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- KAIST Institute for the NanocenturyKAISTDaejeon34141Republic of Korea
| | - KyuHan Kim
- Department of Chemical and Biomolecular EngineeringSeoul National University of Science and Technology (SeoulTech)Seoul01811Republic of Korea
| |
Collapse
|
34
|
Muhammed Ajmal C, Jeong J, Cheon S, Majee MK, Yang H, Baik S. Absence of Additional Stretching-Induced Electron Scattering in Highly Conductive Cross-linked Nanocomposites with Negligible Tunneling Barrier Height and Width. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409337. [PMID: 39467158 DOI: 10.1002/advs.202409337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/14/2024] [Indexed: 10/30/2024]
Abstract
The intrinsic resistance of stretchable materials is dependent on strain, following Ohm's law. Here the invariable resistance of highly conductive cross-linked nanocomposites over 53% strain is reported, where additional electron scattering is absent with stretching. The in situ generated uniformly dispersed small silver nanosatellite particles (diameter = 3.6 nm) realize a short tunneling barrier width of 4.1 nm in cross-linked silicone rubber matrix. Furthermore, the barrier height can be precisely controlled by the gap state energy level modulation in silicone rubber using cross-linkers. The negligible barrier height (0.01 eV) and short barrier width, achieved by the silver nanosatellite particles in cross-linked silicone rubber, dramatically increase the electrical conductivity (51 710 S cm-1) by more than 4 orders of magnitude. The high conductance is also maintained over 53% strain. The quantum tunneling behavior is observed when the barrier height is increased, following the Simmons approximation theory. The transport becomes diffusive, following Ohm's law, when the barrier width is increased beyond 10.3 nm. This study provides a novel strain-invariant resistance mechanism in highly conductive cross-linked nanocomposites.
Collapse
Affiliation(s)
- C Muhammed Ajmal
- Center for Nanotubes and Nanostructured Composites, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Juyeong Jeong
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seongsu Cheon
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - M K Majee
- Center for Nanotubes and Nanostructured Composites, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Heejun Yang
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seunghyun Baik
- Center for Nanotubes and Nanostructured Composites, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
35
|
Hou Z, He Y, Qu L, Zhang X, Fan T, Miao J. Core-Sheath Heterogenous Interlocked Stretchable Conductive Fiber Induced by Adhesive MXene Modulated Interfacial Soldering. NANO LETTERS 2024; 24:15142-15150. [PMID: 39555726 DOI: 10.1021/acs.nanolett.4c04731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Whereas high electrical conductivity and mechanical stretchability are both essentially required for flexible electronics, simultaneously achieving them remains a great challenge due to the "trade-off" effect. Herein, an ultrastretchable conductor with core-sheath heterogeneous interlocked structure was developed, induced by interfacial soldering silver nanowires (AgNWs) which gradually evolved into elastic conductive fiber. Adhesive polydopamine-functionalized MXene (PDM) was proposed as an interfacial solder to assemble AgNWs along fibers while induced strong cold-welding effect soldered them into superelastic interconnected network. In situ coaxial heterogeneous interlocking between core AgNWs and sheath PDM network gradually formed during the interfacial soldering process, which enables elastic conductor simultaneously owning large mechanical stretchability and high electrical conductivity. Stretchable conductive fiber with core-sheath heterogeneous interlocking structure not only exhibits excellent electrical conductivity (1.13 × 105 S/m) but also could maintain stability (ΔR/R0 < 0.19) even under large mechanical deformations (300%). Ultrastretchable fibrous conductor with core-sheath heterogeneous interlocked microstructure induced by adhesive PDM interfacial soldering holds great promise in soft electronics.
Collapse
Affiliation(s)
- Zhichao Hou
- Shandong Key Laboratory of Medical and Health Textile Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles & Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Yifan He
- Shandong Key Laboratory of Medical and Health Textile Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles & Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Lijun Qu
- Shandong Key Laboratory of Medical and Health Textile Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles & Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P. R. China
| | - Tingting Fan
- Shandong Key Laboratory of Medical and Health Textile Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles & Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Jinlei Miao
- Shandong Key Laboratory of Medical and Health Textile Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles & Clothing, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
36
|
Gao L, Zhang J, Wang L, Zhang D, Li F, Shen H, Hu BL, Li RW. Highly elastic relaxor ferroelectrics for wearable energy storage. MATERIALS HORIZONS 2024; 11:6150-6157. [PMID: 39354842 DOI: 10.1039/d4mh00998c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Polymer-based relaxor ferroelectrics with high dielectric constant are pivotal in cutting-edge electronic devices, power systems, and miniaturized pulsed electronics. The surge in flexible electronics technology has intensified the demand for elastic ferroelectric materials that exhibit excellent electrical properties and mechanical resilience, particularly for wearable devices and flexible displays. However, as an indispensable component, intrinsic elastomers featuring high dielectric constant and outstanding resilience specifically tailored for elastic energy storage remain undeveloped. Elastification of relaxor ferroelectric materials presents a promising strategy to obtain high-dielectric elastomers. In this study, we present a strain-insensitive, high elastic relaxor ferroelectric material prepared via peroxide crosslinking of a poly(vinylidene fluoride) (PVDF)-based copolymer at low temperature, which exhibits an intrinsic high dielectric constant (∼20 at 100 Hz) alongside remarkable thermal, chemical, and mechanical stability. This relaxor ferroelectric elastomer maintains a stable energy density (>8 J cm-3) and energy storage efficiency (>75%) under strains ranging from 0 to 80%. This strain-insensitive, high elastic relaxor ferroelectric elastomer holds significant potential for flexible electronic applications, offering superior performance in soft robotics, smart clothing, smart textiles, and electronic skin.
Collapse
Affiliation(s)
- Liang Gao
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, P. R. China, 315201.
| | - Jiaqi Zhang
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, P. R. China
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, P. R. China
| | - Linping Wang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, P. R. China, 315201.
| | - Dongyang Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, P. R. China, 315201.
| | - Fangzhou Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, P. R. China, 315201.
| | - Haoyu Shen
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, P. R. China, 315201.
| | - Ben-Lin Hu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, P. R. China, 315201.
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, P. R. China, 315201.
| |
Collapse
|
37
|
Li W, Li Y, Song Z, Wang YX, Hu W. PEDOT-based stretchable optoelectronic materials and devices for bioelectronic interfaces. Chem Soc Rev 2024; 53:10575-10603. [PMID: 39254255 DOI: 10.1039/d4cs00541d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The rapid development of wearable and implantable electronics has enabled the real-time transmission of electrophysiological signals in situ, thus allowing the precise monitoring and regulation of biological functions. Devices based on organic materials tend to have low moduli and intrinsic stretchability, making them ideal choices for the construction of seamless bioelectronic interfaces. In this case, as an organic ionic-electronic conductor, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has low impedance to offer a high signal-to-noise ratio for monitoring bioelectrical signals, which has become one of the most promising conductive polymers. However, the initial conductivity and stretchability of pristine PEDOT:PSS are insufficient to meet the application requirements, and there is a trade-off between their improvement. In addition, PEDOT:PSS has poor stability in aqueous environments due to the hygroscopicity of the PSS chains, which severely limits its long-term applications in water-rich bioelectronic interfaces. Considering the growing demands of multi-function integration, the high-resolution fabrication of electronic devices is urgent. It is a great challenge to maintain both electrical and mechanical performance after miniaturization, particularly at feature sizes below 100 μm. In this review, we focus on the combined improvement in the conductivity and stretchability of PEDOT:PSS, as well as the corresponding mechanisms in detail. Also, we summarize the effective strategies to improve the stability of PEDOT:PSS in aqueous environments, which plays a vital role in long-term applications. Finally, we introduce the reliable micropatterning technologies and PEDOT:PSS-based stretchable optoelectronic devices applied at bio-interfaces.
Collapse
Affiliation(s)
- Weizhen Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Yiming Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Ziyu Song
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Yi-Xuan Wang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
38
|
Yao K, Zhuang Q, Zhang Q, Zhou J, Yiu CK, Zhang J, Ye D, Yang Y, Wong KW, Chow L, Huang T, Qiu Y, Jia S, Li Z, Zhao G, Zhang H, Zhu J, Huang X, Li J, Gao Y, Wang H, Li J, Huang Y, Li D, Zhang B, Wang J, Chen Z, Guo G, Zheng Z, Yu X. A fully integrated breathable haptic textile. SCIENCE ADVANCES 2024; 10:eadq9575. [PMID: 39423259 PMCID: PMC11488569 DOI: 10.1126/sciadv.adq9575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Wearable haptics serve as an enhanced media to connect humans and VR/robots. The inevitable sweating issue in all wearables creates a bottleneck for wearable haptics, as the sweat/moisture accumulated in the skin/device interface can substantially affect feedback accuracy, comfortability, and create hygienic problems. Nowadays, wearable haptics typically gain performance at the cost of sacrificing the breathability, comfort, and biocompatibility. Here, we developed a fully integrated breathable haptic textile (FIBHT) to solve these trade-off issues, where the FIBHT exhibits high-level integration of 128 pixels over the palm, great stretchability of 400%, and superior permeability of over 657 g/m2/day (moisture) and 40 mm/s (air). It is a stand-alone haptic system totally composed of stretchable, breathable, and bioadhesive materials, which empowers it with precise, sweating/movement-insensitive and dynamic feedback, and makes FIBHT powerful for virtual touching in broad scenarios.
Collapse
Affiliation(s)
- Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Qiuna Zhuang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Jingkun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong Science Park, Hong Kong SAR, China
| | - Chun Ki Yiu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong Science Park, Hong Kong SAR, China
| | - Jianpeng Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Denglin Ye
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Yawen Yang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Ki Wan Wong
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Lung Chow
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Tao Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuze Qiu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Shengxin Jia
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong Science Park, Hong Kong SAR, China
| | - Zhiyuan Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Guangyao Zhao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Hehua Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Jingyi Zhu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Jian Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong Science Park, Hong Kong SAR, China
| | - Yuyu Gao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Huiming Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jiyu Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong Science Park, Hong Kong SAR, China
| | - Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Dengfeng Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Binbin Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong Science Park, Hong Kong SAR, China
| | - Jiachen Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Guihuan Guo
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Zijian Zheng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Research Institute for Intelligent Wearable Systems (RI-IWEAR), The Hong Kong Polytechnic University, Hong Kong SAR, China
- Research Institute for Smart Energy (RI-RISE), The Hong Kong Polytechnic University, Hong Kong SAR, China
- Soft Electronics Research Centre, PolyU-Wenzhou Technology and Innovation Research Institute, Wenzhou, Zhejiang Province, China
- The Hong Kong Polytechnic University-Daya Bay Technology and Innovation Research Institute, Huizhou, Guangdong Province, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong Science Park, Hong Kong SAR, China
- Institute of Digital Medicine, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
39
|
Zhang M, Yang Y, Hu H, Zhao S, Song W, Karim N, Hu H. High-Performance Stretchable Strain Sensors Based on Auxetic Fabrics for Human Motion Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49845-49855. [PMID: 39248467 DOI: 10.1021/acsami.4c13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Wearable strain sensors play a pivotal role in real-time human motion detection and health monitoring. Traditional fabric-based strain sensors, typically with a positive Poisson's ratio, face challenges in maintaining sensitivity and comfort during human motion due to conflicting resistance changes in different strain directions. In this work, high-performance stretchable strain sensors are developed based on graphene-modified auxetic fabrics (GMAF) for human motion detection in smart wearable devices. The proposed GMAF sensors, with a negative Poisson's ratio achieved through commercially available warp-knitting technology, exhibit an 8-fold improvement in sensitivity compared to conventional plain fabric sensors. The unique auxetic fabric structure enhances sensitivity by synchronizing resistance changes in both wale and course directions. The GMAF sensors demonstrate excellent washability, showing only slight degradation in auxeticity and an acceptable increase in resistance after 10 standard wash cycles. The GMAF sensors maintain stability under different strain levels and various motion frequencies, emphasizing their dynamic performance. The sensors exhibit superior conformability to joint movements, which effectively monitor a full range of motions, including joint bending, sports activities, and subtle actions like coughing and swallowing. The research underscores a promising approach to achieve industrial-scale production of wearable sensors with improved performance and comfort through fabric structure design.
Collapse
Affiliation(s)
- Minglonghai Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Yadie Yang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Huiming Hu
- School of Art and Design, Guangdong University of Technology, Guangzhou 510062, China
| | - Shuaiquan Zhao
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Wenfang Song
- School of Art and Design, Guangdong University of Technology, Guangzhou 510062, China
| | - Nazmul Karim
- Nottingham School of Art and Design, Nottingham Trent University, Shakespeare Street, Nottingham NG1 4GG, U.K
| | - Hong Hu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| |
Collapse
|
40
|
Chen Y, Song K, Li Z, Su Y, Yu L, Chen B, Huang Q, Da L, Han Z, Zhou Y, Zhu X, Xu J, Dong R. Antifouling Asymmetric Block Copolymer Nanofilms via Freestanding Interfacial Polymerization for Efficient and Sustainable Water Purification. Angew Chem Int Ed Engl 2024; 63:e202408345. [PMID: 38888253 DOI: 10.1002/anie.202408345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Membrane materials that resist nonspecific or specific adsorption are urgently required in widespread practical applications, such as water purification, food processing, and life sciences. In water purification, inevitable membrane fouling not only limits membrane separation performance, leading to a decline in both permeance and selectivity, but also remarkably increases operation requirements, and augments extra maintenance costs and higher energy consumption. In this work, we report a freestanding interfacial polymerization (IP) fabrication strategy for in situ creation of asymmetric block copolymer (BCP) nanofilms with antifouling properties, greatly outperforming the conventional surface post-modification approaches. The resultant free-standing asymmetric BCP nanofilms with highly-dense, highly-hydrophilic polyethylene glycol (PEG) brushes on one side, can be readily formed via a typical IP process of a well-defined double-hydrophilic BCP composed of a highly-efficient antifouling PEG block and a membrane-forming multiamine block. The asymmetric BCP nanofilms have been applied for efficient and sustainable natural water purification, demonstrating extraordinary antifouling capabilities accompanied with superior separation performance far beyond commercial polyamide nanofiltration membranes. The antifouling behaviors of asymmetric BCP nanofilms derived from the combined effect of the hydration layer, electrostatic repulsion and steric hindrance were further elucidated by water flux and fouling resistance in combination with all-atom molecular dynamics (MD) simulation. This work opens up a new avenue for the large-scale and low-cost creation of broad-spectrum, asymmetric membrane materials with diverse functional "defect-free" surfaces in real-world applications.
Collapse
Affiliation(s)
- Yu Chen
- Key Laboratory of Systems Biomedicine (Ministry of Education) Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education) College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Kaiyuan Song
- Key Laboratory of Systems Biomedicine (Ministry of Education) Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ziying Li
- Key Laboratory of Systems Biomedicine (Ministry of Education) Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yue Su
- School of Chemistry and Chemical Engineering Frontiers Science Centre for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Li Yu
- Key Laboratory of Systems Biomedicine (Ministry of Education) Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Baiyang Chen
- Key Laboratory of Systems Biomedicine (Ministry of Education) Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qijing Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education) Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lintai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education) Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zeguang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education) Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering Frontiers Science Centre for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering Frontiers Science Centre for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jia Xu
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education) College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Ruijiao Dong
- Key Laboratory of Systems Biomedicine (Ministry of Education) Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
41
|
Lim C, Lee S, Kang H, Cho YS, Yeom DH, Sunwoo SH, Park C, Nam S, Kim JH, Lee SP, Kim DH, Hyeon T. Highly Conductive and Stretchable Hydrogel Nanocomposite Using Whiskered Gold Nanosheets for Soft Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407931. [PMID: 39129342 DOI: 10.1002/adma.202407931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/02/2024] [Indexed: 08/13/2024]
Abstract
The low electrical conductivity of conductive hydrogels limits their applications as soft conductors in bioelectronics. This low conductivity originates from the high water content of hydrogels, which impedes facile carrier transport between conductive fillers. This study presents a highly conductive and stretchable hydrogel nanocomposite comprising whiskered gold nanosheets. A dry network of whiskered gold nanosheets is fabricated and then incorporated into the wet hydrogel matrices. The whiskered gold nanosheets preserve their tight interconnection in hydrogels despite the high water content, providing a high-quality percolation network even under stretched states. Regardless of the type of hydrogel matrix, the gold-hydrogel nanocomposites exhibit a conductivity of ≈520 S cm-1 and a stretchability of ≈300% without requiring a dehydration process. The conductivity reaches a maximum of ≈3304 S cm-1 when the density of the dry gold network is controlled. A gold-adhesive hydrogel nanocomposite, which can achieve conformal adhesion to moving organ surfaces, is fabricated for bioelectronics demonstrations. The adhesive hydrogel electrode outperforms elastomer-based electrodes in in vivo epicardial electrogram recording, epicardial pacing, and sciatic nerve stimulation.
Collapse
Affiliation(s)
- Chaehong Lim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seunghwan Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyejeong Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Ye Seul Cho
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Da-Hae Yeom
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea
| | - Chansul Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seonghyeon Nam
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Seung-Pyo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
42
|
Nam S, Cha GD, Sunwoo SH, Jeong JH, Kang H, Park OK, Lee KY, Oh S, Hyeon T, Choi SH, Lee SP, Kim DH. Needle-Like Multifunctional Biphasic Microfiber for Minimally Invasive Implantable Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404101. [PMID: 38842504 DOI: 10.1002/adma.202404101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/14/2024] [Indexed: 06/07/2024]
Abstract
Implantable bioelectronics has attracted significant attention in electroceuticals and clinical medicine for precise diagnosis and efficient treatment of target diseases. However, conventional rigid implantable devices face challenges such as poor tissue-device interface and unavoidable tissue damage during surgical implantation. Despite continuous efforts to utilize various soft materials to address such issues, their practical applications remain limited. Here, a needle-like stretchable microfiber composed of a phase-convertible liquid metal (LM) core and a multifunctional nanocomposite shell for minimally invasive soft bioelectronics is reported. The sharp tapered microfiber can be stiffened by freezing akin to a conventional needle to penetrate soft tissue with minimal incision. Once implanted in vivo where the LM melts, unlike conventional stiff needles, it regains soft mechanical properties, which facilitate a seamless tissue-device interface. The nanocomposite incorporating with functional nanomaterials exhibits both low impedance and the ability to detect physiological pH, providing biosensing and stimulation capabilities. The fluidic LM embedded in the nanocomposite shell enables high stretchability and strain-insensitive electrical properties. This multifunctional biphasic microfiber conforms to the surfaces of the stomach, muscle, and heart, offering a promising approach for electrophysiological recording, pH sensing, electrical stimulation, and radiofrequency ablation in vivo.
Collapse
Affiliation(s)
- Seonghyeon Nam
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gi Doo Cha
- Department of Systems Biotechnology, Chung-Ang University, Ansung, 17546, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea
| | - Jae Hwan Jeong
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Hyejeong Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Ok Kyu Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Kyeong-Yeon Lee
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Seil Oh
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Hong Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Seung-Pyo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
43
|
Gao L, Wang L, Hu BL. Highly elastic relaxor ferroelectric via peroxide crosslinking. Chem Sci 2024:d4sc04641b. [PMID: 39246340 PMCID: PMC11376081 DOI: 10.1039/d4sc04641b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024] Open
Abstract
Relaxor ferroelectrics are well-known for their high dielectric constants, low dielectric losses, and excellent electromechanical properties, making them valuable for various electronic devices. Despite recent efforts to enhance the durability of ferroelectrics through chemical cross-linking, achieving elasticity in relaxor ferroelectric materials remains a significant challenge. These materials inherently possess traits such as low crystallinity and small crystal size, while chemical crosslinking tends to diminish polymer crystallinity considerably. Thus, a key obstacle to making relaxor ferroelectric polymers elastic lies in safeguarding their crystalline regions from the effects of slight crosslinking. To tackle this issue, we selected P(VDF-CTFE-DB) with highly reactive C[double bond, length as m-dash]C double bonds as crosslinking sites, reducing the amount of cross-linking agents added and thereby lessening their impact on crystallinity. Through peroxide crosslinking, we transformed linear P(VDF-CTFE-DB) into a network structure, successfully producing a resilient relaxor ferroelectric material with maintained polarization intensity for ferroelectricity. Notably, this elastic relaxor ferroelectric was synthesized at relatively low temperatures, exhibiting a remarkable dielectric constant, superior resilience, fatigue resistance, and a stable ferroelectric response even under strains of up to 80%. Our approach paves the way for developing low-cost, high-dielectric-constant elastomers suitable for wearable electronics and related applications.
Collapse
Affiliation(s)
- Liang Gao
- Research Center for Advanced Interdisciplinary Sciences, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences Beijing 100049 China
| | - Linping Wang
- Research Center for Advanced Interdisciplinary Sciences, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| | - Ben-Lin Hu
- Research Center for Advanced Interdisciplinary Sciences, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
44
|
Huang Y, Yao K, Zhang Q, Huang X, Chen Z, Zhou Y, Yu X. Bioelectronics for electrical stimulation: materials, devices and biomedical applications. Chem Soc Rev 2024; 53:8632-8712. [PMID: 39132912 DOI: 10.1039/d4cs00413b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Bioelectronics is a hot research topic, yet an important tool, as it facilitates the creation of advanced medical devices that interact with biological systems to effectively diagnose, monitor and treat a broad spectrum of health conditions. Electrical stimulation (ES) is a pivotal technique in bioelectronics, offering a precise, non-pharmacological means to modulate and control biological processes across molecular, cellular, tissue, and organ levels. This method holds the potential to restore or enhance physiological functions compromised by diseases or injuries by integrating sophisticated electrical signals, device interfaces, and designs tailored to specific biological mechanisms. This review explains the mechanisms by which ES influences cellular behaviors, introduces the essential stimulation principles, discusses the performance requirements for optimal ES systems, and highlights the representative applications. From this review, we can realize the potential of ES based bioelectronics in therapy, regenerative medicine and rehabilitation engineering technologies, ranging from tissue engineering to neurological technologies, and the modulation of cardiovascular and cognitive functions. This review underscores the versatility of ES in various biomedical contexts and emphasizes the need to adapt to complex biological and clinical landscapes it addresses.
Collapse
Affiliation(s)
- Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
45
|
Jeon J, Park JW. Stretchable Electrodes for Interconnects in Soft Electronics. NANO LETTERS 2024; 24:9553-9560. [PMID: 39041723 DOI: 10.1021/acs.nanolett.4c02107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Soft electronics have significantly enhanced user convenience and data accuracy in wearable devices, implantable devices, and human-machine interfaces. However, a persistent challenge in their development has been the disconnection between the rigid and soft components of devices due to the substantial difference in modulus and stretchability. To address this issue, establishing a durable and flexible connection that smoothly links components of varying stiffness to signal-capturing sections with a lower stiffness is essential. In this study, we developed a novel stretchable interconnect that strongly adheres to various materials, facilitating electrical connections effortlessly by applying minimal finger pressure. Capable of stretching up to 1000% while maintaining electrical integrity, this interconnect proves its applicability across multiple domains, including electrocardiogram (ECG), electromyography (EMG), and stretchable light-emitting diode (LED) circuits. Its versatility is further demonstrated through its compatibility with various manufacturing techniques such as 3D printing, painting, and spin coating, highlighting its adaptability in soft electronics.
Collapse
Affiliation(s)
- Jiwan Jeon
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jin-Woo Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
46
|
Xu Y, Ye Z, Zhao G, Fei Q, Chen Z, Li J, Yang M, Ren Y, Berigan B, Ling Y, Qian X, Shi L, Ozden I, Xie J, Gao W, Chen PY, Yan Z. Phase-separated porous nanocomposite with ultralow percolation threshold for wireless bioelectronics. NATURE NANOTECHNOLOGY 2024; 19:1158-1167. [PMID: 38684805 PMCID: PMC11330368 DOI: 10.1038/s41565-024-01658-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/25/2024] [Indexed: 05/02/2024]
Abstract
Realizing the full potential of stretchable bioelectronics in wearables, biomedical implants and soft robotics necessitates conductive elastic composites that are intrinsically soft, highly conductive and strain resilient. However, existing composites usually compromise electrical durability and performance due to disrupted conductive paths under strain and rely heavily on a high content of conductive filler. Here we present an in situ phase-separation method that facilitates microscale silver nanowire assembly and creates self-organized percolation networks on pore surfaces. The resultant nanocomposites are highly conductive, strain insensitive and fatigue tolerant, while minimizing filler usage. Their resilience is rooted in multiscale porous polymer matrices that dissipate stress and rigid conductive fillers adapting to strain-induced geometry changes. Notably, the presence of porous microstructures reduces the percolation threshold (Vc = 0.00062) by 48-fold and suppresses electrical degradation even under strains exceeding 600%. Theoretical calculations yield results that are quantitatively consistent with experimental findings. By pairing these nanocomposites with near-field communication technologies, we have demonstrated stretchable wireless power and data transmission solutions that are ideal for both skin-interfaced and implanted bioelectronics. The systems enable battery-free wireless powering and sensing of a range of sweat biomarkers-with less than 10% performance variation even at 50% strain. Ultimately, our strategy offers expansive material options for diverse applications.
Collapse
Affiliation(s)
- Yadong Xu
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Zhilu Ye
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Ganggang Zhao
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA
| | - Qihui Fei
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
| | - Zehua Chen
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
| | - Jiahong Li
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Minye Yang
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Yichong Ren
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Benton Berigan
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
| | - Yun Ling
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA
| | - Xiaoyan Qian
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
| | - Lin Shi
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
| | - Ilker Ozden
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| | - Pai-Yen Chen
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, USA.
| | - Zheng Yan
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA.
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA.
- Materials Science and Engineering Institute, University of Missouri, Columbia, MO, USA.
- NextGen Precision Health, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
47
|
Ding Y, Xiong S, Sun L, Wang Y, Zhou Y, Li Y, Peng J, Fukuda K, Someya T, Liu R, Zhang X. Metal nanowire-based transparent electrode for flexible and stretchable optoelectronic devices. Chem Soc Rev 2024; 53:7784-7827. [PMID: 38953906 DOI: 10.1039/d4cs00080c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
High-quality transparent electrodes are indispensable components of flexible optoelectronic devices as they guarantee sufficient light transparency and electrical conductivity. Compared to commercial indium tin oxide, metal nanowires are considered ideal candidates as flexible transparent electrodes (FTEs) owing to their superior optoelectronic properties, excellent mechanical flexibility, solution treatability, and higher compatibility with semiconductors. However, certain key challenges associated with material preparation and device fabrication remain for the practical application of metal nanowire-based electrodes. In this review, we discuss state-of-the-art solution-processed metal nanowire-based FTEs and their applications in flexible and stretchable optoelectronic devices. Specifically, the important properties of FTEs and a cost-benefit analysis of existing technologies are introduced, followed by a summary of the synthesis strategy, key properties, and fabrication technologies of the nanowires. Subsequently, we explore the applications of metal-nanowire-based FTEs in different optoelectronic devices including solar cells, photodetectors, and light-emitting diodes. Finally, the current status, future challenges, and emerging strategies in this field are presented.
Collapse
Affiliation(s)
- Yu Ding
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
| | - Sixing Xiong
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Lulu Sun
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yiying Wang
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Yinhua Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yaowen Li
- College of Chemistry, Soochow University, Suzhou 215123, P. R. China
| | - Jun Peng
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Kenjiro Fukuda
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takao Someya
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ruiyuan Liu
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Xiaohong Zhang
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| |
Collapse
|
48
|
Wang Z, Xiao M, Li Z, Wang X, Li F, Yang H, Chen Y, Zhu Z. Microneedle Patches-Integrated Transdermal Bioelectronics for Minimally Invasive Disease Theranostics. Adv Healthc Mater 2024; 13:e2303921. [PMID: 38341619 DOI: 10.1002/adhm.202303921] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Wearable epidermal electronics with non- or minimally-invasive characteristics can collect, transduce, communicate, and interact with accessible physicochemical health indicators on the skin. However, due to the stratum corneum layer, rich information about body health is buried under the skin stratum corneum layer, for example, in the skin interstitial fluid. Microneedle patches are typically designed with arrays of special microsized needles of length within 1000 µm. Such characteristics potentially enable the access and sample of biomolecules under the skin or give therapeutical treatment painlessly and transdermally. Integrating microneedle patches with various electronics allows highly efficient transdermal bioelectronics, showing their great promise for biomedical and healthcare applications. This comprehensive review summarizes and highlights the recent progress on integrated transdermal bioelectronics based on microneedle patches. The design criteria and state-of-the-art fabrication techniques for such devices are initially discussed. Next, devices with different functions, including but not limited to health monitoring, drug delivery, and therapeutical treatment, are highlighted in detail. Finally, key issues associated with current technologies and future opportunities are elaborated to sort out the state of recent research, point out potential bottlenecks, and provide future research directions.
Collapse
Affiliation(s)
- Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Min Xiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Xinghao Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Fangjie Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Huayuan Yang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- Health Industry Innovation Center, Xin-Huangpu Joint Innovation Institute of Chinese Medicine, 81 Xiangxue Middle Avenue, Huangpu District, Guangzhou, Guangdong Province, 510799, China
| |
Collapse
|
49
|
Koo JH, Lee YJ, Kim HJ, Matusik W, Kim DH, Jeong H. Electronic Skin: Opportunities and Challenges in Convergence with Machine Learning. Annu Rev Biomed Eng 2024; 26:331-355. [PMID: 38959390 DOI: 10.1146/annurev-bioeng-103122-032652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Recent advancements in soft electronic skin (e-skin) have led to the development of human-like devices that reproduce the skin's functions and physical attributes. These devices are being explored for applications in robotic prostheses as well as for collecting biopotentials for disease diagnosis and treatment, as exemplified by biomedical e-skins. More recently, machine learning (ML) has been utilized to enhance device control accuracy and data processing efficiency. The convergence of e-skin technologies with ML is promoting their translation into clinical practice, especially in healthcare. This review highlights the latest developments in ML-reinforced e-skin devices for robotic prostheses and biomedical instrumentations. We first describe technological breakthroughs in state-of-the-art e-skin devices, emphasizing technologies that achieve skin-like properties. We then introduce ML methods adopted for control optimization and pattern recognition, followed by practical applications that converge the two technologies. Lastly, we briefly discuss the challenges this interdisciplinary research encounters in its clinical and industrial transition.
Collapse
Affiliation(s)
- Ja Hoon Koo
- Department of Semiconductor Systems Engineering and Institute of Semiconductor and System IC, Sejong University, Seoul, Republic of Korea
| | - Young Joong Lee
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Hye Jin Kim
- Center for Nanoparticle Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Wojciech Matusik
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, Republic of Korea;
| | - Hyoyoung Jeong
- Department of Electrical and Computer Engineering, University of California, Davis, California, USA;
| |
Collapse
|
50
|
Su R, Zhang R, Wang Y, Li Z, Zhang L, Ma S, Li X, Ma F, Fu H. Simulated skin model for in vitro evaluation of insertion performance of microneedles: design, development, and application verification. Comput Methods Biomech Biomed Engin 2024:1-10. [PMID: 38946229 DOI: 10.1080/10255842.2024.2372621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
Microneedles, as a new efficient and safe transdermal drug delivery technology, has a wide range of applications in drug delivery, vaccination, medical cosmetology, and diagnostics. The degree of microneedles penetration into the skin determines the reliability of the delivery dose, but its evaluation is not yet well-established, which is one of the major constraints in the commercialization of microneedles. In this paper, a novel visual simulated skin model was developed with reference to the physical properties of real skin. The simulated skin model was well-designed and its prescription was optimized to make the thickness, hardness, elasticity, and other parameters close to those of real skin. It not only meets the need to assess the degree of insertion of microneedles but also provides a visual observation of the insertion state of microneedles.
Collapse
Affiliation(s)
- Rui Su
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing, China
| | - Ruipeng Zhang
- Institute for Emergency and Disaster Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuan Wang
- WiDi Microdelivery Medical Technology (Hangzhou) Co., Ltd., Hangzhou, China
| | - Zhipeng Li
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing, China
| | - Li Zhang
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing, China
| | - Shichao Ma
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing, China
| | - Xuemei Li
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing, China
| | - Fengsen Ma
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing, China
- WiDi Microdelivery Medical Technology (Hangzhou) Co., Ltd., Hangzhou, China
- Micro-nano Scale Biomedical Engineering Laboratory, Institute for Frontiers and Interdisciplinary Sciences, Zhejiang University of Technology, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Quantum Precision Measurement, Hangzhou, China
| | - Hongyang Fu
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|