1
|
Kasem Ali Sliman R, Cohen H, Shehadeh S, Batcir R, Alter YE, Cohen K, Koren I, Halabi I, Sliman H, Saied MH. Pediatric autoimmune diseases in the light of COVID-19 pandemic, A retrospective observational big data study. J Transl Autoimmun 2025; 10:100281. [PMID: 40162434 PMCID: PMC11951201 DOI: 10.1016/j.jtauto.2025.100281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/18/2025] [Accepted: 03/01/2025] [Indexed: 04/02/2025] Open
Abstract
Background The COVID-19 pandemic has raised concerns about potential links between SARS-CoV-2 infection and autoimmune diseases. This study investigated changes in the incidence rate (IR) of autoimmune diseases among children following the pandemic's onset. Methods A retrospective cross-sectional study analyzed data from Clalit Health Services, Israel's largest healthcare provider, examining the IR of different autoimmune diseases in children aged 0-18. The study compared pre-pandemic (2019) with pandemic/post-pandemic periods (2020-2023), encompassing a cohort of over 1.5 million children. Results Significant IR increases were observed across multiple autoimmune diseases. Rheumatic diseases (Juvenile Idiopathic Arthritis, Systemic Lupus Erythematosus, Henoch Schoenlein Purpura (HSP)) showed consistent increases, with HSP demonstrating the most pronounced trend. Endocrine disorders exhibited diverse patterns, with autoimmune thyroid diseases and Type 1 diabetes showing overall increases, while diabetic ketoacidosis exhibited an initial spike followed by a decline. Gastrointestinal diseases displayed heterogeneous patterns; Celiac disease and Ulcerative colitis showed general increases, Crohn's disease showed a downward trend, and autoimmune hepatitis exhibited an initial significant decrease followed by a significant increase. Dermatological conditions, including Psoriasis and Vitiligo, demonstrated consistent elevations throughout 2020-2023. Immune Thrombocytopenia Purpura showed initial decreases followed by significant increases in 2022-2023. Conclusions This comprehensive analysis reveals significant changes in pediatric autoimmune disease incidence following the COVID-19 pandemic, suggesting potential associations between SARS-CoV-2 infection and autoimmune dysregulation. The diverse patterns observed across different conditions highlight the complex interplay between viral infection and autoimmunity, emphasizing the need for continued surveillance and investigation of long-term immunological consequences of COVID-19 in pediatric populations.
Collapse
Affiliation(s)
- Rim Kasem Ali Sliman
- Technion Israel Institute of Technology, Rappaport Faculty of Medicine, Haifa 3109601, Israel
- Department of Pediatrics, Clalit Health Care Organization, Carmel Medical Center, Haifa, Israel
| | - Hilla Cohen
- Clalit Health Care Organization, Carmel Medical Center, Haifa, Israel
| | - Shereen Shehadeh
- Technion Israel Institute of Technology, Rappaport Faculty of Medicine, Haifa 3109601, Israel
- Department of Pediatrics, Clalit Health Care Organization, Carmel Medical Center, Haifa, Israel
- Infectious Disease Unit, Carmel Medical Center, Haifa, Israel
| | - Reut Batcir
- Technion Israel Institute of Technology, Rappaport Faculty of Medicine, Haifa 3109601, Israel
- Department of Pediatrics, Clalit Health Care Organization, Carmel Medical Center, Haifa, Israel
- Pediatric Gastroenterology Unit, Carmel Medical Center, Haifa, Israel
| | - Yigal Elenberg Alter
- Technion Israel Institute of Technology, Rappaport Faculty of Medicine, Haifa 3109601, Israel
- Department of Pediatrics, Clalit Health Care Organization, Carmel Medical Center, Haifa, Israel
- Pediatric Gastroenterology Unit, Carmel Medical Center, Haifa, Israel
| | - Keren Cohen
- Technion Israel Institute of Technology, Rappaport Faculty of Medicine, Haifa 3109601, Israel
- Department of Pediatrics, Clalit Health Care Organization, Carmel Medical Center, Haifa, Israel
- Pediatric Endocrine Unit, Carmel Medical Center, Haifa, Israel
| | - Ilana Koren
- Technion Israel Institute of Technology, Rappaport Faculty of Medicine, Haifa 3109601, Israel
- Department of Pediatrics, Clalit Health Care Organization, Carmel Medical Center, Haifa, Israel
- Pediatric Endocrine Unit, Carmel Medical Center, Haifa, Israel
| | - Inbal Halabi
- Technion Israel Institute of Technology, Rappaport Faculty of Medicine, Haifa 3109601, Israel
- Department of Pediatrics, Clalit Health Care Organization, Carmel Medical Center, Haifa, Israel
- Pediatric Endocrine Unit, Carmel Medical Center, Haifa, Israel
| | - Hussein Sliman
- Technion Israel Institute of Technology, Rappaport Faculty of Medicine, Haifa 3109601, Israel
- Department of Cardiology, Carmel Medical Center, Heart Center, Haifa, Israel
| | - Mohamad Hamad Saied
- Technion Israel Institute of Technology, Rappaport Faculty of Medicine, Haifa 3109601, Israel
- Department of Pediatrics, Clalit Health Care Organization, Carmel Medical Center, Haifa, Israel
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center, Utrecht, the Netherlands
| |
Collapse
|
2
|
Nehar-Belaid D, Mejías A, Xu Z, Marches R, Yerrabelli R, Chen G, Mertz S, Ye F, Sánchez PJ, Tsang JS, Aydillo T, Miorin L, Cupic A, García-Sastre A, Ucar D, Banchereau JF, Pascual V, Ramilo O. SARS-CoV-2 induced immune perturbations in infants vary with disease severity and differ from adults' responses. Nat Commun 2025; 16:4562. [PMID: 40379618 PMCID: PMC12084365 DOI: 10.1038/s41467-025-59411-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/22/2025] [Indexed: 05/19/2025] Open
Abstract
Differences in immune profiles of children and adults with COVID-19 have been previously described. However, no systematic studies have been reported from infants hospitalized with severe disease. We applied a multidimensional approach to decipher the immune responses of SARS-CoV-2 infected infants (n = 26; 10 subacute, 11 moderate and 5 severe disease; median age = 1.6 months) and matched controls (n = 14; median age = 2 months). Single cell (scRNA-seq) profiling of PBMCs revealed substantial alterations in cell composition in SARS-CoV-2 infected infants; with most cell-types switching to an interferon-stimulated gene (ISGhi) state including: (i) CD14+ monocytes co-expressing ISGs and inflammasome-related molecules, (ii) ISGhi naive CD4+ T cells, (iii) ISGhi proliferating cytotoxic CD8+ T cells, and (iv) ISGhi naive and transitional B cells. We observe increased serum concentrations of both interferons and inflammatory cytokines in infected infants. Antibody responses to SARS-CoV-2 are also consistently detected in the absence of anti-IFN autoantibodies. Compared with infected adults, infants display a similar ISG signature in monocytes but a markedly enhanced ISG signature in T and B cells. These findings provide insights into the distinct immune responses to SARS-CoV-2 in the first year of life and underscore the importance of further defining the unique features of early life immunity.
Collapse
Affiliation(s)
| | - Asunción Mejías
- Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Zhaohui Xu
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Radu Marches
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Rushil Yerrabelli
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Guo Chen
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Sara Mertz
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Fang Ye
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Pablo J Sánchez
- Department of Pediatrics, Division of Neonatology and Center for Perinatal Research, Ohio Perinatal Research Network, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - John S Tsang
- Center for Systems and Engineering Immunology, Departments of Immunobiology and Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Chan Zuckerberg Biohub NY, New Haven, CT, USA
| | - Teresa Aydillo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Anastasija Cupic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, One Gustave L. Levy Place, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Jacques F Banchereau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.
- Immunoledge LLC, Montclair, NJ, USA.
| | - Virginia Pascual
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| | - Octavio Ramilo
- Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA.
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA.
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
3
|
Park H, Wang QS, Hasegawa T, Namkoong H, Tanaka H, Koike R, Kitagawa Y, Kimura A, Imoto S, Kanai T, Fukunaga K, Ogawa S, Okada Y, Miyano S. Unraveling the COVID-19 Severity Hubs and Interplays in Inflammatory-Related RNA-Protein Networks. Int J Mol Sci 2025; 26:4412. [PMID: 40362649 PMCID: PMC12072413 DOI: 10.3390/ijms26094412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/26/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025] Open
Abstract
The rapid worldwide transmission of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to severe cases of hypoxia, acute respiratory distress syndrome, multi-organ failure, and ultimately death. Small-scale molecular interactions have been analyzed by focusing on several genes/single genes, providing important insights; however, genome-wide multi-omics comprehensive molecular interactions have not yet been well investigated with the exception of GWAS and eQTLm, both of which show genetic risks. From April of 2020 until now, we have created a Japan-wide system, initially named the Japan COVID-19 Task Force. This system has collected more than 6500 COVID-19 patients' peripheral blood and as much associated clinical information as possible from a network of more than 120 hospitals. DNA, RNA, serum, and plasma were extracted and stored in this bank. This study unravels the interplay of inflammatory gene networks that induce different COVID-19 severity levels (mild, moderate, severe, and critical) by using multi-omics data from the Japan COVID-19 Task Force. We analyze RNA and protein expressions to estimate severity-specific inflammation networks that uncover the interplay between RNA and protein networks via ligand-receptor pairs. Our large-scale RNA/protein expression data analysis reveals that the atypical chemokine receptor 2 (ACKR2) acts as a key broker linking RNA and protein inflammation networks to induce COVID-19 critical severity. ACKR2 emerges in RNA and protein inflammation networks, showing active interplay in high-severity cases and weak interactions in mild cases. The results also show severity-specific molecular interactions between interleukin (IL), cytokine receptor activity, cell adhesion, and interactions involving the CC chemokine ligand (CCL) gene family and ACKR2.
Collapse
Grants
- RS-2023-00276559 National Research Foundation of Korea
- JP-MJCR20H2, JPMJFR225Y, JPMJPR21R7, JP-MJMS2021, JPMJMS2024 Japan Science and Technology Agency
- 20CA2054 Ministry of Health, Labour and Welfare
- 22H00476, 23K14233, JP24H00009 Japan Society for the Promotion of Science
- JP23tk0124003h0001, JP24tk0124003h0002, JP20fk0108452h0001, JP21fk0108553h0001, JP22fk0108510h0001, JP23kk0305022 , JP22ek0410075, JP23km0405211, JP23km0405217, JP23ek0109594, JP23ek0410113, JP223fa627002, JP223fa627010, JP233fa627011, JP23zf01270 Japan Agency for Medical Research and Development
Collapse
Affiliation(s)
- Heewon Park
- School of Mathematics Statistics and Data Science, Sungshin Women’s University, Seoul 02844, Republic of Korea;
- M&D Data Science Center, Institute of Science Tokyo, Tokyo 113-8510, Japan
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan
| | - Qingbo S. Wang
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Takanori Hasegawa
- M&D Data Science Center, Institute of Science Tokyo, Tokyo 113-8510, Japan
| | - Ho Namkoong
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroko Tanaka
- M&D Data Science Center, Institute of Science Tokyo, Tokyo 113-8510, Japan
| | - Ryuji Koike
- Health Science Research and Development Center (HeRD), Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Akinori Kimura
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Seiya Imoto
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Tokyo 606-8507, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Yukinori Okada
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Satoru Miyano
- M&D Data Science Center, Institute of Science Tokyo, Tokyo 113-8510, Japan
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
4
|
Ghaffarpour S, Ghazanfari T, Ardestani SK, Naghizadeh MM, Vaez Mahdavi MR, Salehi M, Majd AMM, Rashidi A, Chenary MR, Mostafazadeh A, Rezaei A, Khodadadi A, Iranparast S, Khazaei HA. Cytokine profiles dynamics in COVID-19 patients: a longitudinal analysis of disease severity and outcomes. Sci Rep 2025; 15:14209. [PMID: 40269030 PMCID: PMC12019550 DOI: 10.1038/s41598-025-98505-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/11/2025] [Indexed: 04/25/2025] Open
Abstract
The outcome of the immune response depends on the content and magnitude of inflammatory mediators, the right time to start, and the duration of inflammatory responses. Patients with coronavirus disease 2019 (COVID-19) represent diverse disease severity. Understanding differences in immune responses in individuals with different disease severity levels can help elucidate disease mechanisms. Here, we serially analyzed the cytokine profiles of 809 patients with mild to critical COVID-19. The cytokine profile revealed an overall increase in IL-1β, IL-1Ra, TNF-α, IL-6, IL-2, IL-8, and IL-18 and impaired production of IFN-α and -β. Only an early rise in IL-1Ra, IL-6, and IL-2 levels was linked to worse disease outcomes. On the other hand, long-term rises in IL-1β, IL-1Ra, TNF-α, IL-6, IL-2, IL-8, and IL-18 levels were linked to worse disease outcomes. Principal component analysis identified a component, including IL-1β, TNF-α, IFN-α, and IL-12, that was associated with disease severity. Spearman analysis revealed that the correlation of IL-1β and IFN-α was entirely different between mild and critical patients. Therefore, the ratio of IL-1β to IFN-α seemed to be a suitable criterion for distinguishing critical patients from mild ones. The higher levels of the IL-1β to IFN-α ratio correlated with improved outcomes. These data point to an imbalance of IL-1β/IFNα, contributing to hyperinflammation in COVID-19.
Collapse
Affiliation(s)
- Sara Ghaffarpour
- Immunoregulation Research Center, Shahed University, Tehran, Iran
| | - Tooba Ghazanfari
- Immunoregulation Research Center, Shahed University, Tehran, Iran.
- Department of Immunology, Shahed University, Tehran, Iran.
| | - Sussan Kaboudanian Ardestani
- Immunoregulation Research Center, Shahed University, Tehran, Iran
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | | | - Mohammadreza Salehi
- Department of Infectious Diseases, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Azadeh Rashidi
- Immunoregulation Research Center, Shahed University, Tehran, Iran
| | | | - Amrollah Mostafazadeh
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Abbas Rezaei
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Khodadadi
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Iranparast
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Ali Khazaei
- Department of Immunology and Internal Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
5
|
Song Y, Lu J, Qin P, Chen H, Chen L. Interferon-I modulation and natural products: Unraveling mechanisms and therapeutic potential in severe COVID-19. Cytokine Growth Factor Rev 2025; 82:18-30. [PMID: 39261232 DOI: 10.1016/j.cytogfr.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to pose a significant global public health threat, particularly to older adults, pregnant women, and individuals with underlying chronic conditions. Dysregulated immune responses to SARS-CoV-2 infection are believed to contribute to the progression of COVID-19 in severe cases. Previous studies indicates that a deficiency in type I interferon (IFN-I) immunity accounts for approximately 15 %-20 % of patients with severe pneumonia caused by COVID-19, highlighting the potential therapeutic importance of modulating IFN-I signals. Natural products and their derivatives, due to their structural diversity and novel scaffolds, play a crucial role in drug discovery. Some of these natural products targeting IFN-I have demonstrated applications in infectious diseases and inflammatory conditions. However, the immunomodulatory potential of IFN-I in critical COVID-19 pneumonia and the natural compounds regulating the related signal pathway remain not fully understood. In this review, we offer a comprehensive assessment of the association between IFN-I and severe COVID-19, exploring its mechanisms and integrating information on natural compounds effective for IFN-I regulation. Focusing on the primary targets of IFN-I, we also summarize the regulatory mechanisms of natural products, their impact on IFNs, and their therapeutic roles in viral infections. Collectively, by synthesizing these findings, our goal is to provide a valuable reference for future research and to inspire innovative treatment strategies for COVID-19.
Collapse
Affiliation(s)
- Yuheng Song
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiani Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Pengcheng Qin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Henan University, Kaifeng 475001, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 200032, China
| | - Lili Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
6
|
Hu H, Guo Y, Ge F, Yin H, Zhang H, Zhou Z, Yan F, Ye Q, Wu J, Cao J, Hsieh C, Yang B. UniMap: Type-Level Integration Enhances Biological Preservation and Interpretability in Single-Cell Annotation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410790. [PMID: 40013940 PMCID: PMC12021081 DOI: 10.1002/advs.202410790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/22/2025] [Indexed: 02/28/2025]
Abstract
Integrating single-cell datasets from multiple studies provides a cost-effective way to build comprehensive cell atlases, granting deeper insights into cellular characteristics across diverse biological systems. However, current data integration methods struggle with interference in partially overlapping datasets and varying annotation granularities. Here, a multiselective adversarial network is introduced for the first time and present UniMap, which functions as a "discerner" to identify and exclude interfering cells from various data sources during dataset integration. Compared to other state-of-the-art methods, UniMap emphasizes type-level integration and proves to be the best model for preserving biological variability, achieving noticeably higher accuracy in single-cell automated annotation under various circumstances. Additionally, it enhances interpretability by revealing shared and domain-specific cell types and providing prediction confidence. The efficacy of UniMap is demonstrated in terms of identifying new cell types, creating high-resolution cell atlases, annotating cells along developmental trajectories, and performing cross-species analysis, underscoring its potential as a robust tool for single-cell research.
Collapse
Affiliation(s)
- Haitao Hu
- Institute of Pharmacology and ToxicologyZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- Polytechnic Institute of Zhejiang UniversityZhejiang UniversityHangzhou310015China
| | - Yue Guo
- Institute of Pharmacology and ToxicologyZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Fujing Ge
- Institute of Pharmacology and ToxicologyZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Hao Yin
- Institute of Pharmacology and ToxicologyZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- Polytechnic Institute of Zhejiang UniversityZhejiang UniversityHangzhou310015China
| | - Hao Zhang
- Institute of Pharmacology and ToxicologyZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- Polytechnic Institute of Zhejiang UniversityZhejiang UniversityHangzhou310015China
| | - Zhesheng Zhou
- Institute of Pharmacology and ToxicologyZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Fangjie Yan
- Institute of Pharmacology and ToxicologyZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Qing Ye
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Jialu Wu
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Ji Cao
- Institute of Pharmacology and ToxicologyZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- The Innovation Institute for Artificial Intelligence in MedicineZhejiang UniversityHangzhou310018China
- Engineering Research Center of Innovative Anticancer DrugsMinistry of EducationHangzhou310000China
- Center for Medical Research and Innovation in Digestive System TumorsMinistry of EducationHangzhou310020China
| | - Chang‐Yu Hsieh
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
- The Innovation Institute for Artificial Intelligence in MedicineZhejiang UniversityHangzhou310018China
| | - Bo Yang
- Institute of Pharmacology and ToxicologyZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- The Innovation Institute for Artificial Intelligence in MedicineZhejiang UniversityHangzhou310018China
- Engineering Research Center of Innovative Anticancer DrugsMinistry of EducationHangzhou310000China
- School of MedicineHangzhou City UniversityHangzhou310015China
| |
Collapse
|
7
|
Aljabali AAA, Obeid M, Gammoh O, El-Tanani M, Tambuwala MM. Guardians at the gate: Unraveling Type I interferon's role and challenges posed by anti-interferon antibodies in COVID-19. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 213:135-169. [PMID: 40246343 DOI: 10.1016/bs.pmbts.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The intricate interplay involving Type I interferon (IFN), anti-interferon antibodies, and COVID-19 elucidates a complex symphony within the immune system. This chapter thoroughly explores the dynamic landscape of Type I IFN, delineating its pivotal role as the guardian of the immune response. As SARS-CoV-2 engages the host, the delicate balance of IFN induction and signaling pathways is disrupted, resulting in a nuanced impact on the severity and pathogenesis of COVID-19. Clinical studies illuminate a critical link between impaired IFN response and severe outcomes, uncovering genetic factors contributing to susceptibility. Furthermore, the emergence of anti-interferon antibodies proves to be a disruptive force, compromising the immune arsenal and correlating with disease severity. Our chapter encompasses diagnostic and prognostic implications, highlighting the importance of assays in identifying levels of IFN and anti-interferon antibodies. This chapter examines the possible incorporation of interferon-related biomarkers in COVID-19 diagnostics, offering predictive insights into disease progression. On the therapeutic front, efforts to manipulate the IFN pathway undergo scrutiny, encountering complexities in light of anti-interferon antibodies. This chapter concludes by outlining prospective avenues for precision medicine, emphasizing the imperative need for a comprehensive comprehension of the IFN landscape and its intricate interaction with COVID-19.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan.
| | - Mohammad Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, United Arab Emirates
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, United Kingdom.
| |
Collapse
|
8
|
Khatun O, Kaur S, Tripathi S. Anti-interferon armamentarium of human coronaviruses. Cell Mol Life Sci 2025; 82:116. [PMID: 40074984 PMCID: PMC11904029 DOI: 10.1007/s00018-025-05605-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/15/2024] [Accepted: 01/23/2025] [Indexed: 03/14/2025]
Abstract
Cellular innate immune pathways are formidable barriers against viral invasion, creating an environment unfavorable for virus replication. Interferons (IFNs) play a crucial role in driving and regulating these cell-intrinsic innate antiviral mechanisms through the action of interferon-stimulated genes (ISGs). The host IFN response obstructs viral replication at every stage, prompting viruses to evolve various strategies to counteract or evade this response. Understanding the interplay between viral proteins and cell-intrinsic IFN-mediated immune mechanisms is essential for developing antiviral and anti-inflammatory strategies. Human coronaviruses (HCoVs), including SARS-CoV-2, MERS-CoV, SARS-CoV, and seasonal coronaviruses, encode a range of proteins that, through shared and distinct mechanisms, inhibit IFN-mediated innate immune responses. Compounding the issue, a dysregulated early IFN response can lead to a hyper-inflammatory immune reaction later in the infection, resulting in severe disease. This review provides a brief overview of HCoV replication and a detailed account of its interaction with host cellular innate immune pathways regulated by IFN.
Collapse
Affiliation(s)
- Oyahida Khatun
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| | - Sumandeep Kaur
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| | - Shashank Tripathi
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India.
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
9
|
Thieulent CJ, Balasuriya UBR, Tseng A, Crossland NA, Stephens JM, Dittmar W, Staszkiewicz J, Richt JA, Carossino M. Diabetes exacerbates SARS-CoV-2 replication through ineffective pulmonary interferon responses, delayed cell-mediated immunity, and disruption of leptin signaling. Front Cell Infect Microbiol 2025; 15:1513687. [PMID: 40125513 PMCID: PMC11925909 DOI: 10.3389/fcimb.2025.1513687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/06/2025] [Indexed: 03/25/2025] Open
Abstract
Comorbidities, including obesity and type 2 diabetes mellitus (T2DM), are associated with increased disease severity and mortality following SARS-CoV-2 infection. Here, we investigated virus-host interactions under the effects of these comorbidities in diet-induced obesity (DIO) and leptin receptor-deficient (T2DM) mice following infection with SARS-CoV-2. DIO mice, as well as their lean counterparts, showed limited susceptibility to SARS-CoV-2 infection. In contrast, T2DM mice showed exacerbated pulmonary SARS-CoV-2 replication and delayed viral clearance associated with down-regulation of innate and adaptative immune gene signatures, ineffective type I interferon response, and delayed SARS-CoV-2-specific cell-mediated immune responses. While T2DM mice showed higher and prolonged SARS-CoV-2-specific immunoglobulin isotype responses compared to their lean counterparts, neutralizing antibody levels were equivalent. By silencing the leptin receptor in vitro using a human alveolar epithelial cell line, we observed an increase in SARS-CoV-2 replication and type I interferons. Altogether, our data provides for the first time evidence that disruption of leptin receptor signaling leading to obesity and T2DM induces altered type I interferon and cell-mediated responses against SARS-CoV-2, mediating increased viral replication and delayed clearance. These data shed light on the alteration of the innate immune pathway in the lung using in-depth transcriptomic analysis and on adaptive immune responses to SARS-CoV-2 under T2DM conditions. Finally, this study provides further insight into this risk factor aggravating SARS-CoV-2 infection and understanding the underlying cellular mechanisms that could help identify potential intervention points for this at-risk population.
Collapse
MESH Headings
- Animals
- SARS-CoV-2/physiology
- SARS-CoV-2/immunology
- Mice
- COVID-19/immunology
- COVID-19/virology
- Virus Replication
- Receptors, Leptin/genetics
- Receptors, Leptin/metabolism
- Obesity/immunology
- Obesity/complications
- Signal Transduction
- Humans
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/complications
- Leptin/metabolism
- Interferon Type I/immunology
- Interferon Type I/metabolism
- Lung/immunology
- Lung/virology
- Immunity, Cellular
- Mice, Inbred C57BL
- Immunity, Innate
- Male
- Disease Models, Animal
- Antibodies, Neutralizing/blood
- Interferons
- Mice, Knockout
Collapse
Affiliation(s)
- Côme J. Thieulent
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
- Louisiana Animal Disease Diagnostic Laboratory (LSU Diagnostics), School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Udeni B. R. Balasuriya
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
- Louisiana Animal Disease Diagnostic Laboratory (LSU Diagnostics), School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Anna Tseng
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Nicholas A. Crossland
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, United States
| | - Jacqueline M. Stephens
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| | - Wellesley Dittmar
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
- Louisiana Animal Disease Diagnostic Laboratory (LSU Diagnostics), School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Jaroslaw Staszkiewicz
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| | - Juergen A. Richt
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
- Louisiana Animal Disease Diagnostic Laboratory (LSU Diagnostics), School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
10
|
Gavriilidis GI, Vasileiou V, Dimitsaki S, Karakatsoulis G, Giannakakis A, Pavlopoulos GA, Psomopoulos F. APNet, an explainable sparse deep learning model to discover differentially active drivers of severe COVID-19. Bioinformatics 2025; 41:btaf063. [PMID: 39921901 PMCID: PMC11897427 DOI: 10.1093/bioinformatics/btaf063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/18/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025] Open
Abstract
MOTIVATION Computational analyses of bulk and single-cell omics provide translational insights into complex diseases, such as COVID-19, by revealing molecules, cellular phenotypes, and signalling patterns that contribute to unfavourable clinical outcomes. Current in silico approaches dovetail differential abundance, biostatistics, and machine learning, but often overlook nonlinear proteomic dynamics, like post-translational modifications, and provide limited biological interpretability beyond feature ranking. RESULTS We introduce APNet, a novel computational pipeline that combines differential activity analysis based on SJARACNe co-expression networks with PASNet, a biologically informed sparse deep learning model, to perform explainable predictions for COVID-19 severity. The APNet driver-pathway network ingests SJARACNe co-regulation and classification weights to aid result interpretation and hypothesis generation. APNet outperforms alternative models in patient classification across three COVID-19 proteomic datasets, identifying predictive drivers and pathways, including some confirmed in single-cell omics and highlighting under-explored biomarker circuitries in COVID-19. AVAILABILITY AND IMPLEMENTATION APNet's R, Python scripts, and Cytoscape methodologies are available at https://github.com/BiodataAnalysisGroup/APNet.
Collapse
Affiliation(s)
- George I Gavriilidis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, GR57001, Greece
| | - Vasileios Vasileiou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, GR57001, Greece
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, GR68100, Greece
| | - Stella Dimitsaki
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, GR57001, Greece
| | - Georgios Karakatsoulis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, GR57001, Greece
| | - Antonis Giannakakis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, GR68100, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, GR11527, Greece
| | - Georgios A Pavlopoulos
- Institute for Fundamental Biomedical Research, BSRC “Alexander Fleming”, Vari, GR16672, Greece
- Center of New Biotechnologies & Precision Medicine, Department of Medicine, School of Health Sciences, National and Kapodistrian University of Athens, Athens, GR11528, Greece
| | - Fotis Psomopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, GR57001, Greece
| |
Collapse
|
11
|
Zhang Q, Botta R, Xu Y, Wei JCC, Tung TH. Risk of new-onset dementia following COVID-19 infection: a systematic review and meta-analysis. Age Ageing 2025; 54:afaf046. [PMID: 40037563 DOI: 10.1093/ageing/afaf046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/11/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Emerging evidence suggests coronavirus disease 2019 (COVID-19) infection may increase the risk of developing dementia, although studies have reported conflicting findings. This meta-analysis aimed to synthesise the literature on the association between COVID-19 and the risk of new-onset dementia. METHODS PubMed, Embase and Web of Science were searched for cohort studies or case-control studies that investigated new-onset dementia development among adult COVID-19 survivors compared to individuals without COVID-19 infection from inception to 9 November 2023. Studies that exclusively involved populations younger than 18 years, with known dementia or lacked adequate data about the risk of dementia were excluded. Two authors independently conducted the screening of eligible studies, data extraction and risk of bias assessment. The primary outcome was new-onset dementia following COVID-19 infection. Data were pooled using random-effects models, with hazard ratios (HRs) and 95% confidence intervals (CIs) calculated. RESULTS A total of 15 retrospective cohort studies encompassing 26 408 378 participants were included. Pooled analysis indicated COVID-19 was associated with an increased risk of new-onset dementia (HR = 1.49, 95% CI: 1.33-1.68). This risk remained elevated when compared with non-COVID cohorts (HR = 1.65, 95% CI: 1.39-1.95), and respiratory tract infection cohorts (HR = 1.29, 95% CI: 1.12-1.49), but not influenza or sepsis cohorts. Increased dementia risk was observed in both males and females, as well as in individuals older than 65 years (HR = 1.68, 95% CI: 1.48-1.90), with the risk remaining elevated for up to 24 months. CONCLUSION This meta-analysis demonstrates a significant association between COVID-19 infection and increased risk of developing new-onset dementia, which underscores the need for cognitive monitoring and early intervention for COVID-19 survivors to address potential long-term neurological impacts.
Collapse
Affiliation(s)
- Qianru Zhang
- Department of Rheumatology and Immunology, Tsinghua University Affiliated Beijing Tsinghua Changgung Hospital, Beijing, China
- Harvard Medical School, Boston, MA 02115-6027, USA
| | | | - Ying Xu
- Tsinghua University, Beijing, China
- Evidence-based Medicine Center, Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang, China
| | - James Cheng-Chung Wei
- Department of Allergy, Immunology & Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Nursing, Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- China Medical University Hospital - Graduate Institute of Integrated Medicine, Taichung, Taiwan
- Office of Research and Development, Asia University, Taichung, Taiwan
| | - Tao-Hsin Tung
- Evidence-based Medicine Center, Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang, China
| |
Collapse
|
12
|
Jiang L, Dalgarno C, Papalexi E, Mascio I, Wessels HH, Yun H, Iremadze N, Lithwick-Yanai G, Lipson D, Satija R. Systematic reconstruction of molecular pathway signatures using scalable single-cell perturbation screens. Nat Cell Biol 2025; 27:505-517. [PMID: 40011560 PMCID: PMC12083445 DOI: 10.1038/s41556-025-01622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 01/21/2025] [Indexed: 02/28/2025]
Abstract
Recent advancements in functional genomics have provided an unprecedented ability to measure diverse molecular modalities, but predicting causal regulatory relationships from observational data remains challenging. Here, we leverage pooled genetic screens and single-cell sequencing (Perturb-seq) to systematically identify the targets of signalling regulators in diverse biological contexts. We demonstrate how Perturb-seq is compatible with recent and commercially available advances in combinatorial indexing and next-generation sequencing, and perform more than 1,500 perturbations split across six cell lines and five biological signalling contexts. We introduce an improved computational framework (Mixscale) to address cellular variation in perturbation efficiency, alongside optimized statistical methods to learn differentially expressed gene lists and conserved molecular signatures. Finally, we demonstrate how our Perturb-seq derived gene lists can be used to precisely infer changes in signalling pathway activation for in vivo and in situ samples. Our work enhances our understanding of signalling regulators and their targets, and lays a computational framework towards the data-driven inference of an 'atlas' of perturbation signatures.
Collapse
Affiliation(s)
| | | | - Efthymia Papalexi
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Isabella Mascio
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | | | | | | | | | | | - Rahul Satija
- New York Genome Center, New York, NY, USA.
- Center for Genomics and Systems Biology, New York University, New York, NY, USA.
| |
Collapse
|
13
|
Cai C, Pham TNQ, Adam D, Brochiero E, Cohen ÉA. Sensing of SARS-CoV-2-infected cells by plasmacytoid dendritic cells is modulated via an interplay between CD54/ICAM-1 and CD11a/LFA-1 α L integrin. J Virol 2025; 99:e0123524. [PMID: 39804090 PMCID: PMC11852802 DOI: 10.1128/jvi.01235-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/13/2024] [Indexed: 02/26/2025] Open
Abstract
SARS-CoV-2 infection induces interferon (IFN) response by plasmacytoid dendritic cells (pDCs), but the underlying mechanisms are poorly defined. Here, we show that the bulk of the IFN-I release comes from pDC sensing of infected cells and not cell-free virions. Physical contact (or conjugates) between pDCs and infected cells is mediated through CD54-CD11a engagement, and such conjugate formation is required for efficient IFN-I production. Interestingly, CD11a is inducible on infected epithelial cells when they are co-cultured with PBMCs, thus allowing for potentially bidirectional cross-talks between CD54 and CD11a, which further amplify the sensing. SARS-CoV-2 variants of concern (VOCs) are sensed less efficiently than the Wuhan ancestral strain (LSPQ1), but the mechanisms driving the defect are different among the VOCs. CD11a induction on infected cells is correlated with their ability to form cell conjugates with pDCs. Impaired sensing of the Alpha variant is linked to reduced CD11a induction on infected cells and to fewer conjugates formed with pDCs. Collectively, our findings provide new insights into how SARS-CoV-2-infected cells are sensed by pDCs and reveal that this process is targeted by some VOCs to limit IFN-I production. IMPORTANCE Type I interferons (IFN-I) represent an important component of the host's innate defense against initial SARS-CoV-2 infections. Plasmacytoid dendritic cells (pDCs) produce large quantities of IFN-I upon recognition of viral particles or infected cells. This study shows that pDCs sense infected cells more efficiently than viral particles, leading to a higher production of IFN-I. Physical contact between a pDC and an infected cell is critical to this process; the interaction is mediated via CD11a and ICAM-1 complex and potentially is bidirectional. SARS-CoV-2 variants of concern (VOCs) have evolved to limit the IFN response through different mechanisms. For the Alpha variant, reduced level of CD11a on infected cells is linked to less contact with pDCs and decreased IFN-I release. Overall, our study characterizes some of the early steps involved in pDC-mediated response against SARS-CoV-2 infection and shows that these processes are targeted by VOCs to likely limit IFN-I response and enhance viral spread.
Collapse
Affiliation(s)
- ChenRongRong Cai
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Tram N. Q. Pham
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Damien Adam
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Emmanuelle Brochiero
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Éric A. Cohen
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
14
|
Gunawardene CD, Wong LYR. Betacoronavirus internal protein: role in immune evasion and viral pathogenesis. J Virol 2025; 99:e0135324. [PMID: 39760492 PMCID: PMC11852921 DOI: 10.1128/jvi.01353-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Betacoronaviruses express a small internal (I) protein that is encoded by the same subgenomic RNA (sgRNA) as the nucleocapsid (N) protein. Translation of the +1 reading frame of the N sgRNA through leaky ribosomal scanning leads to expression of the I protein. The I protein is an accessory protein reported to evade host innate immune responses during coronavirus infection. Previous studies have shown that the I proteins of severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2, and Middle East respiratory syndrome coronavirus suppress type I interferon production by distinct mechanisms. In this review, we summarize the current knowledge on the I proteins of betacoronaviruses from different subgenera, with emphasis on its function and role in pathogenesis.
Collapse
Affiliation(s)
- Chaminda D. Gunawardene
- Center for Virus-Host Innate Immunity, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Lok-Yin Roy Wong
- Center for Virus-Host Innate Immunity, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
15
|
Hatayama Y, Miyakawa K, Kimura Y, Horikawa K, Hirahata K, Kimura H, Kato H, Goto A, Ryo A. Identification of Putative Serum Autoantibodies Associated with Post-Acute Sequelae of COVID-19 via Comprehensive Protein Array Analysis. Int J Mol Sci 2025; 26:1751. [PMID: 40004214 PMCID: PMC11855120 DOI: 10.3390/ijms26041751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
Post-acute sequelae of SARS-CoV-2 infection (PASC), commonly known as "Long COVID", represents a significant clinical challenge characterized by persistent symptoms following acute COVID-19 infection. We conducted a comprehensive retrospective cohort study to identify serum autoantibody biomarkers associated with PASC. Initial screening using a protein bead array comprising approximately 20,000 human proteins identified several candidate PASC-associated autoantibodies. Subsequent validation by enzyme-linked immunosorbent assay (ELISA) in an expanded cohort-consisting of PASC patients, non-PASC COVID-19 convalescents, and pre-pandemic healthy controls-revealed two promising biomarkers: autoantibodies targeting PITX2 and FBXO2. PITX2 autoantibodies demonstrated high accuracy in distinguishing PASC patients from both non-PASC convalescents (area under the curve [AUC] = 0.891) and healthy controls (AUC = 0.866), while FBXO2 autoantibodies showed moderate accuracy (AUC = 0.762 and 0.786, respectively). Notably, the levels of these autoantibodies were associated with several PASC symptoms, including fever, dyspnea, palpitations, loss of appetite, and brain fog. The identification of PITX2 and FBXO2 autoantibodies as biomarkers not only enhances our understanding of PASC pathophysiology but also provides promising candidates for further investigation.
Collapse
Affiliation(s)
- Yasuyoshi Hatayama
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama 208-0011, Japan;
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan;
| | - Kei Miyakawa
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan;
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Musashimurayama 208-0011, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan; (Y.K.); (K.H.)
| | - Kazuo Horikawa
- Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan; (Y.K.); (K.H.)
| | | | - Hirokazu Kimura
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, Takasaki 370-0006, Japan;
| | - Hideaki Kato
- Infection Prevention and Control Department, Yokohama City University Hospital, Yokohama 236-0004, Japan;
| | - Atsushi Goto
- Department of Public Health, Yokohama City University School of Medicine, Yokohama 236-0004, Japan;
| | - Akihide Ryo
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama 208-0011, Japan;
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan;
| |
Collapse
|
16
|
Li Y, Zou H, Ma L, Hu D, Long H, Lin J, Luo Z, Zhou Y, Liao F, Wang X, Meng Y, Wang W, Li G, Zhang Z. Fuzheng Jiedu decoction alleviates H1N1 virus-induced acute lung injury in mice by suppressing the NLRP3 inflammasome activation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119314. [PMID: 39746408 DOI: 10.1016/j.jep.2024.119314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Severe influenza, marked by excessive cytokine production, is a major contributor to death in hospitalized individuals. Fuzheng Jiedu decoction (FZJDD), an effective traditional Chinese herbal recipe, has demonstrated promising results in combating the COVID-19 pandemic by reducing mortality and improving Symptoms, and has exhibited anti-inflammatory properties in both clinical trials and laboratory research. Given that pneumonia is a common outcome of SARS-CoV-2 and H1N1 virus infections, we hypothesized that FZJDD may also have therapeutic effects on influenza-related pneumonia and acute lung injury (ALI). AIM OF THE STUDY This research sought to explore the impact and underlying mechanisms of FZJDD on ALI caused by the H1N1 virus in mice. MATERIALS AND METHODS FZJDD was characterized using UHPLC-MS/MS. A mouse model infected with H1N1 virus was used to examine the therapeutic and protective benefits of FZJDD in a living organism, by monitoring body weight fluctuations, lung index, histopathological changes, lung injury scores, and survival rates. Lung tissues underwent haematoxylin-eosin staining, western blotting, qRT-PCR and plaque reduction assay. Blood serum was gathered to assess levels of IL-1β, IL-6, TNF-α through ELISA testing. The impact of FZJDD on the NLRP3 inflammasome was further evaluated in macrophages. RESULTS FZJDD treatment significantly mitigated weight loss, reduced lung index, alleviated histopathological injury, and improved the survival rates in mice with H1N1 virus-induced ALI, demonstrating a protective effect against influenza virus infection. qRT-PCR and Western blot assays revealed that FZJDD treatment ameliorated the hyperinflammatory response caused by the H1N1 virus in lung tissue by suppressing NLRP3 inflammasome activation, without impacting viral replication. In vitro experiments additionally verified that FZJDD treatment can suppress the activation of the NLRP3 inflammasome triggered by the H1N1 virus. CONCLUSION Our findings demonstrate that FZJDD treatment can mitigate ALI caused by H1N1 virus and enhance the survival rate in mice, while it doesn't lower viral titers in the lungs. FZJDD achieves these outcomes by curbing excessive inflammation and blocking the activation of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Yuting Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Haimei Zou
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Lin Ma
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Dingwen Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Haishan Long
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jingnan Lin
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Ziqing Luo
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ye Zhou
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Feng Liao
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xianyang Wang
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yu Meng
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wenbiao Wang
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Geng Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, 519031, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| | - Zhongde Zhang
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, 519031, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
17
|
Ammons DT, Harris RA, Chow L, Dow S. Characterization of canine tumor-infiltrating leukocyte transcriptomic signatures reveals conserved expression patterns with human osteosarcoma. Cancer Immunol Immunother 2025; 74:105. [PMID: 39932553 PMCID: PMC11813853 DOI: 10.1007/s00262-025-03950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/20/2025] [Indexed: 02/14/2025]
Abstract
Immune cells play key roles in host responses to malignant tumors. The selective pressure that immune cells elicit on tumors promotes immune escape, while tumor-associated modulation of immune cells creates an environment favorable to tumor growth and progression. In this study we used publicly available single-cell RNA sequencing (scRNA-seq) data from the translationally relevant canine osteosarcoma (OS) model to compare tumor-infiltrating immune cells to circulating leukocytes. Through computational analysis we investigated the differences in cell type proportions and how the OS TME impacted infiltrating immune cell transcriptomic profiles relative to circulating leukocytes. Differential abundance analysis revealed increased proportions of follicular helper T cells, regulatory T cells, and mature regulatory dendritic cells (mregDCs) in the OS TME. Differential gene expression analysis identified exhaustion markers (LAG3, HAVCR2, PDCD1) to be upregulated in CD4 and CD8 T cells within the OS TME. Comparisons of B cell gene expression profiles revealed an enrichment of protein processing and endoplasmic reticulum pathways, suggesting infiltrating B cells were activated following tumor infiltration. Gene expression changes within myeloid cells identified increased expression of immune suppressive molecules (CD274, OSM, MSR1) in the OS TME, indicating the TME skews myeloid cells toward an immunosuppressive phenotype. Comparisons to human literature and analysis of human scRNA-seq data revealed conserved transcriptomic responses to tumor infiltration, while also identifying species differences. Overall, the analysis presented here provides new insights into how the OS TME impacts the transcriptional programs of major immune cell populations in dogs and acts as a resource for comparative immuno-oncology research.
Collapse
Affiliation(s)
- Dylan T Ammons
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| | - R Adam Harris
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Lyndah Chow
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Steven Dow
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
18
|
Chen H, Li Y, Yuan L, Liu F, Sun Q, Luo Q, Lei Y, Hou Y, Li J, Cai L, Tang S. Age-related immune response disparities between adults and children with severe COVID-19: a case-control study in China. Front Microbiol 2025; 16:1525051. [PMID: 39967737 PMCID: PMC11832681 DOI: 10.3389/fmicb.2025.1525051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Background Elucidation of immune response differences is critical for uncovering underlying mechanisms and developing potential intervention measures among adults and children with COVID-19. Methods In this retrospective study, we analyzed serum biochemical markers and cytokine profiles among adults and children with COVID-19 in the First People's Hospital of Chenzhou in Hunan, China from 1 December 2022 to 13 February 2023. A case-control study was conducted using propensity score matching (PSM) to mitigate possible confounding factors. Results The significant differences observed included lymphocyte exhaustion, an increased neutrophil-to-lymphocyte (NEU/LYM) ratio, high levels of C-reactive protein (CRP), and a cytokine storm, characterized by high levels of Th1 proinflammatory cytokines, including interleukin 1β (IL-1β), IL-6, IL-8, interferon type I (IFN-γ), and tumor necrosis factor (TNF-α) in the lung among severe adult COVID-19 patients. Additionally, systemic immune responses were observed in children with COVID-19. Conclusion Significant differences in immune responses between adults and children with COVID-19 highlight the different mechanisms and potential intervention measures of COVID-19.
Collapse
Affiliation(s)
- Hongliang Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
- Department of Clinical Microbiology Laboratory, The First People's Hospital of Chenzhou, Chenzhou, China
| | - Yuan Li
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Liping Yuan
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fen Liu
- Department of Clinical Microbiology Laboratory, The First People's Hospital of Chenzhou, Chenzhou, China
| | - Qian Sun
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
- Wenzhou Center for Disease Control and Prevention, Wenzhou, Zhejiang, China
| | - Qingkai Luo
- Department of Clinical Microbiology Laboratory, The First People's Hospital of Chenzhou, Chenzhou, China
| | - Yefei Lei
- Department of Clinical Microbiology Laboratory, The First People's Hospital of Chenzhou, Chenzhou, China
| | - Yinglan Hou
- Department of Clinical Microbiology Laboratory, The First People's Hospital of Chenzhou, Chenzhou, China
| | - Jiayan Li
- Department of Clinical Microbiology Laboratory, The First People's Hospital of Chenzhou, Chenzhou, China
| | - Liang Cai
- Hunan Provincial Center for Disease Control and Prevention, Hunan, China
| | - Shixing Tang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Ramamonjiharisoa MBM, Liu S. Biological Significance and Therapeutic Promise of Programmed Ribosomal Frameshifting. Int J Mol Sci 2025; 26:1294. [PMID: 39941062 PMCID: PMC11818727 DOI: 10.3390/ijms26031294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/24/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
Programmed Ribosomal Frameshifting (PRF) is a mechanism that alters the mRNA reading frame during translation, resulting in the production of out-of-frame proteins. PRF plays crucial roles in maintaining cellular homeostasis and contributes significantly to disease pathogenesis, particularly in viral infections. Notably, PRF can induce immune responses in the SARS-CoV-2 mRNA vaccine, further extending its biological significance. These multiple aspects of PRF highlight its potential as a therapeutic target. Since PRF efficiency can be modulated by cellular factors, its expression or silencing is context-dependent. Therefore, a deeper understanding of PRF is essential for harnessing its therapeutic potential. This review explores PRF biological significance in disease and homeostasis. Such knowledge would serve as a foundation to advance therapeutic strategies targeting PRF modulation, especially in viral infections and vaccine development.
Collapse
Affiliation(s)
- Miora Bruna Marielle Ramamonjiharisoa
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Wuhan 430068, China;
- Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Sen Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Wuhan 430068, China;
- Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
20
|
Bertini CD, Khawaja F, Sheshadri A. Coronavirus Disease-2019 in the Immunocompromised Host. Rheum Dis Clin North Am 2025; 51:123-138. [PMID: 39550101 DOI: 10.1016/j.rdc.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2024]
Abstract
Immunocompromised hosts, which encompass a diverse population of persons with malignancies, human immunodeficiency virus disease, solid organ, and hematologic transplants, autoimmune diseases, and primary immunodeficiencies, bear a significant burden of the morbidity and mortality due to coronavirus disease-2019 (COVID-19). Immunocompromised patients who develop COVID-19 have a more severe illness, higher hospitalization rates, and higher mortality rates than immunocompetent patients. There are no well-defined treatment strategies that are specific to immunocompromised patients and vaccines, monoclonal antibodies, and convalescent plasma are variably effective. This review focuses on the specific impact of COVID-19 in immunocompromised patients and the gaps in knowledge that require further study.
Collapse
Affiliation(s)
- Christopher D Bertini
- Department of Internal Medicine, UTHealth Houston McGovern Medical School, 6431 Fannin, MSB 1.150, Houston, TX 77030, USA
| | - Fareed Khawaja
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1469, Houston, TX 77030, USA
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street Unit 1462, Houston, TX 77030, USA.
| |
Collapse
|
21
|
Mao Y, Guo A, Zhang Y, Lai J, Yuan D, Zhang H, Diao W, Chen W, Yan F. Baricitinib treatment for hospitalized patients with severe COVID-19 on invasive mechanical ventilation: a propensity score-matched and retrospective analysis. Front Med (Lausanne) 2025; 12:1445809. [PMID: 39911872 PMCID: PMC11794113 DOI: 10.3389/fmed.2025.1445809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025] Open
Abstract
Introduction Baricitinib is a selective inhibitor of Janus kinase (JAK)1 and JAK2, which is associated with clinical improvement in non-severe COVID-19 patients. But in severe COVID-19 patients, the effectiveness of baricitinib is still controversial. Methods A propensity score-matched and retrospective study was conducted to evaluate the effectiveness of baricitinib in severe COVID-19 patients requiring invasive mechanical ventilation (IMV). Results A total number of 48 patients treated with baricitinib were included, and 48 patients were assigned to control group by propensity score matching. The mean ages were high in both group (baricitinib group vs. control group: 78.80 ± 9.04 vs. 82.57 ± 9.27), and most were unvaccinated (62.5% vs. 66.7%. Baricitinib group had a higher proportion of patients with hypertension (73.9% vs. 45.5%, p = 0.006). Control group had higher level of creatine kinase-myocardial band (247.50 vs. 104.50, p = 0.021). Patients in the baricitinib group were more likely to receive nirmatrelvir/ritonavir (39.6% vs. 16.7%, p = 0.017) and intravenous immunoglobin (14.6% vs. 0, p = 0.007). Baricitinib group had significantly lower all-cause 28-days mortality than control group (72.9% vs. 89.6%, p = 0.004). Conclusion The present study revealed baricitinib reduced 28-days mortality in severe COVID-19 patients on IMV. The effectiveness of baricitinib in treating patients with severe COVID-19 on IMV needs to be further investigated through future studies.
Collapse
Affiliation(s)
- Yanxiong Mao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Anyi Guo
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Zhang
- Department of Scientific Research, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianxing Lai
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dian Yuan
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hao Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenqi Diao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weisong Chen
- Department of Respiratory, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, China
| | - Fugui Yan
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Jeon S, Jeon Y, Lim JY, Kim Y, Cha B, Kim W. Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets. Signal Transduct Target Ther 2025; 10:4. [PMID: 39757214 DOI: 10.1038/s41392-024-02070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 01/07/2025] Open
Abstract
Cells orchestrate their processes through complex interactions, precisely organizing biomolecules in space and time. Recent discoveries have highlighted the crucial role of biomolecular condensates-membrane-less assemblies formed through the condensation of proteins, nucleic acids, and other molecules-in driving efficient and dynamic cellular processes. These condensates are integral to various physiological functions, such as gene expression and intracellular signal transduction, enabling rapid and finely tuned cellular responses. Their ability to regulate cellular signaling pathways is particularly significant, as it requires a careful balance between flexibility and precision. Disruption of this balance can lead to pathological conditions, including neurodegenerative diseases, cancer, and viral infections. Consequently, biomolecular condensates have emerged as promising therapeutic targets, with the potential to offer novel approaches to disease treatment. In this review, we present the recent insights into the regulatory mechanisms by which biomolecular condensates influence intracellular signaling pathways, their roles in health and disease, and potential strategies for modulating condensate dynamics as a therapeutic approach. Understanding these emerging principles may provide valuable directions for developing effective treatments targeting the aberrant behavior of biomolecular condensates in various diseases.
Collapse
Affiliation(s)
- Soyoung Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Yeram Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Ji-Youn Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Yujeong Kim
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Boksik Cha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea.
| | - Wantae Kim
- Department of Life Science, University of Seoul, Seoul, South Korea.
| |
Collapse
|
23
|
Lee I, Lupfer CR. Lessons Learned From Clinical Trials of Immunotherapeutics for COVID-19. Immunol Rev 2025; 329:e13422. [PMID: 39548889 DOI: 10.1111/imr.13422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024]
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus was arguably one of the worst public health disasters of the last 100 years. As many infectious disease experts were focused on influenza, MERS, ZIKA, or Ebola as potential pandemic-causing agents, SARS-CoV-2 appeared to come from nowhere and spread rapidly. As with any zoonotic agent, the initial pathogen was able to transmit to a new host (humans), but it was poorly adapted to the immune environment of the new host and resulted in a maladapted immune response. As the host-pathogen interaction evolved, subsequent variants of SARS-CoV-2 became less pathogenic and acquired immunity in the host provided protection, at least partial protection, to new variants. As the host-pathogen interaction has changed since the beginning of the pandemic, it is possible the clinical results discussed here may not be applicable today as they were at the start of the pandemic. With this caveat in mind, we present an overview of the immune response of severe COVID-19 from a clinical research perspective and examine clinical trials utilizing immunomodulating agents to further elucidate the importance of hyperinflammation as a factor contributing to severe COVID-19 disease.
Collapse
Affiliation(s)
- Inyeong Lee
- R&D Department, QoolAbs, Carlsbad, California, USA
| | | |
Collapse
|
24
|
Feng S, Huang L, Pournara AV, Huang Z, Yang X, Zhang Y, Brazma A, Shi M, Papatheodorou I, Miao Z. Alleviating batch effects in cell type deconvolution with SCCAF-D. Nat Commun 2024; 15:10867. [PMID: 39738054 PMCID: PMC11686230 DOI: 10.1038/s41467-024-55213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
Cell type deconvolution methods can impute cell proportions from bulk transcriptomics data, revealing changes in disease progression or organ development. But benchmarking studies often use simulated bulk data from the same source as the reference, which limits its application scenarios. This study examines batch effects in deconvolution and introduces SCCAF-D, a computational workflow that ensures a Pearson Correlation Coefficient above 0.75 across simulated and real bulk data for various tissue types. Applied to non-alcoholic fatty liver disease, SCCAF-D unveils meaningful insights into changes in cell proportions during disease progression.
Collapse
Grants
- This work was supported by the Natural Science Foundation of China (32270707), the National Key R&D Programs of China (2023YFF1204700, 2023YFF1204701, 2021YFF1200900, 2021YFF1200903), the R&D Programs of Guangzhou Laboratory, Grant No. GZNL2024A01002, GZNL2023A01006, SRPG22-003, SRPG22-006, SRPG22-007, HWYQ23-003, YW-YFYJ0102.
Collapse
Affiliation(s)
- Shuo Feng
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Liangfeng Huang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
- Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Anna Vathrakokoili Pournara
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Ziliang Huang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Xinlu Yang
- Department of Obstetrics and Gynaecology, Harbin Red Cross Central Hospital, Harbin, 150001, China
| | - Yongjian Zhang
- Harbin Medical University the Sixth Affiliated Hospital, Harbin, 150023, China
| | - Alvis Brazma
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Ming Shi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
| | - Irene Papatheodorou
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK.
- Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UA, UK.
| | - Zhichao Miao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China.
- Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Genome Campus, Cambridge, CB10 1SD, UK.
| |
Collapse
|
25
|
Emami MR, Brimble MA, Espinoza A, Owens J, Whiteley LO, Casinghino S, Lanz TA, Farahat PK, Pellegrini M, Young CS, Thomas PG, McNally EM, Villalta SA, Schattgen SA, Spencer MJ. Single cell and TCR analysis of immune cells from AAV gene therapy-dosed Duchenne muscular dystrophy patients. Mol Ther Methods Clin Dev 2024; 32:101349. [PMID: 39524974 PMCID: PMC11546459 DOI: 10.1016/j.omtm.2024.101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024]
Abstract
Clinical trials for Duchenne muscular dystrophy (DMD) are assessing the therapeutic efficacy of systemically delivered adeno-associated virus (AAV) carrying a modified DMD transgene. High vector doses (>1E14 vg/kg) are needed to globally transduce skeletal muscles; however, such doses trigger immune-related adverse events. Mitigating these immune responses is crucial for widespread application of AAV-based therapies. We used single-cell RNA sequencing and T cell receptor (TCR) sequencing on peripheral blood mononuclear cells from five participants prior to, and after, dosing. One subject in the high-dose cohort experienced thrombotic microangiopathy (TMA). Few changes in cell frequencies occurred after treatment; however, differential gene expression demonstrated induction of interferon response genes in most T cell types. T cell clonotype and clumping analysis showed the expansion or appearance of groups of related TCR sequences in the post-treatment samples. Three of these expanded clumps could be assigned to prior human herpesvirus infections, two of which were present in the participant that exhibited TMA. These data provide insight on the mechanistic basis of human immune-AAV interactions and lay a foundation for improved understanding of why TMA arises in some patients and not others.
Collapse
Affiliation(s)
- Michael R. Emami
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- MyoGene Bio, San Diego, CA 92121, USA
| | - Mark A. Brimble
- Department of Host-Microbe Interactions, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Alejandro Espinoza
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jane Owens
- Pfizer Inc., Rare Disease Research Unit, Cambridge, MA 02139, USA
| | | | - Sandra Casinghino
- Pfizer Inc., Drug Safety Research & Development, Groton, CT 06340, USA
| | - Thomas A. Lanz
- Pfizer Inc., Drug Safety Research & Development, Groton, CT 06340, USA
| | - Philip K. Farahat
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, and the Institute for Quantitative and Computational Biosciences – The Collaboratory, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Paul G. Thomas
- Department of Host-Microbe Interactions, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - S. Armando Villalta
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Stefan A. Schattgen
- Department of Host-Microbe Interactions, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Melissa J. Spencer
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
26
|
Li H, Zong Y, Li J, Zhou Z, Chang Y, Shi W, Guo J. Research trends and hotspots on global influenza and inflammatory response based on bibliometrics. Virol J 2024; 21:313. [PMID: 39623458 PMCID: PMC11613568 DOI: 10.1186/s12985-024-02588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
The influenza virus is considered as a kind of significant zoonotic infectious disease identified to date, with severe infections in humans characterized by excessive inflammation and tissue damage, usually resulting in serious complications. Although the molecular mechanisms underlying inflammation after influenza infection have been extensively studied, bibliometric analysis on the research hotspots and developing trends in this field has not been published heretofore. Articles related to influenza and inflammatory response were retrieved from the Web of Science Core Collection (WoSCC) database (1992-2024) and analyzed using various visualization tools. Finally, this study collected a total of 2,176 relevant articles, involving 13,184 researchers, 2,647 institutions, 78 countries/regions, and published in 723 journals. Most articles were published in the United States (928 articles), China (450 articles) and the United Kingdom (158 articles). Ross Vlahos was the most productive author. Furthermore, some journals, such as PLoS One and Frontiers in Immunology, made much contribution to the topic. The future research trends include airway stem cells and neuroendocrine cells as new directions for the treatment of influenza complications, as well as measures related to prevention, treatment, and research and development based on the COVID-19 pandemic. Through bibliometric analysis and summary of inflammatory response of influenza-related articles, this study ultimately summarizes new directions for preventing and treating influenza.
Collapse
Affiliation(s)
- Hui Li
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yanping Zong
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jiajie Li
- Key Laboratory of Xin'an Medical Education, Anhui University of Traditional Chinese Medicine, Hefei, 230012, China
| | - Zheng Zhou
- Key Laboratory of Xin'an Medical Education, Anhui University of Traditional Chinese Medicine, Hefei, 230012, China
| | - Yonglong Chang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Weibing Shi
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China.
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China.
| | - Jinchen Guo
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
27
|
Kirk NM, Liang Y, Ly H. Pathogenesis and virulence of coronavirus disease: Comparative pathology of animal models for COVID-19. Virulence 2024; 15:2316438. [PMID: 38362881 PMCID: PMC10878030 DOI: 10.1080/21505594.2024.2316438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/04/2024] [Indexed: 02/17/2024] Open
Abstract
Animal models that can replicate clinical and pathologic features of severe human coronavirus infections have been instrumental in the development of novel vaccines and therapeutics. The goal of this review is to summarize our current understanding of the pathogenesis of coronavirus disease 2019 (COVID-19) and the pathologic features that can be observed in several currently available animal models. Knowledge gained from studying these animal models of SARS-CoV-2 infection can help inform appropriate model selection for disease modelling as well as for vaccine and therapeutic developments.
Collapse
Affiliation(s)
- Natalie M. Kirk
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| | - Yuying Liang
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| |
Collapse
|
28
|
Raza ML, Imam MH, Zehra W, Jamil S. Neuro-inflammatory pathways in COVID-19-induced central nervous system injury: Implications for prevention and treatment strategies. Exp Neurol 2024; 382:114984. [PMID: 39368535 DOI: 10.1016/j.expneurol.2024.114984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/15/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
This review explores the neuroinflammatory pathways underlying COVID-19-induced central nervous system (CNS) injury, with a focus on mechanisms of brain damage and strategies for prevention. A comprehensive literature review was conducted to summarize current knowledge on the pathways by which SARS-CoV-2 reaches the brain, the neuroinflammatory responses triggered by viral infection, neurological symptoms and long COVID. Results: We discuss the mechanisms of neuroinflammation in COVID-19, including blood-brain barrier disruption, cytokine storm, microglial activation, and peripheral immune cell infiltration. Additionally, we highlight potential strategies for preventing CNS injury, including pharmacological interventions, immunomodulatory therapies, and lifestyle modifications. Conclusively, Understanding the neuroinflammatory pathways in COVID-19-induced CNS injury is crucial for developing effective prevention and treatment strategies to protect brain health during and after viral infection.
Collapse
Affiliation(s)
- Muhammad Liaquat Raza
- Department of Infection Prevention & Control, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| | | | | | - Subia Jamil
- Faculty of Pharmacy, Jinnah University for Women, University, Karachi, Pakistan
| |
Collapse
|
29
|
de Castro MV, Cariste LM, Almeida RR, Sasahara GL, Silva MVR, Soares FB, Coria VR, Naslavsky MS, Santos KS, Cunha-Neto E, Kalil J, Zatz M. Potential protective role of interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) in COVID-19. Front Cell Infect Microbiol 2024; 14:1464581. [PMID: 39664492 PMCID: PMC11631949 DOI: 10.3389/fcimb.2024.1464581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/07/2024] [Indexed: 12/13/2024] Open
Abstract
The COVID-19 pandemic has prompted a quest to understand why certain individuals remain uninfected or asymptomatic despite repetitive exposure to SARS-CoV-2. Here, we focused on six exposed females residing with their symptomatic and reinfected SARS-CoV-2 PCR-positive COVID-19 partners. Peripheral blood mononuclear cell samples from couples were analysed for poly (I:C)-induced mRNA expression of type I/III interferons and interferon-stimulated genes (ISGs). Remarkably, we found a significant upregulation of the ISG interferon-inducible protein with tetrapeptide repeats 3 (IFIT3) gene exclusively in exposed uninfected or asymptomatic females, suggesting a potential role in protective immunity against symptomatic COVID-19.
Collapse
Affiliation(s)
- Mateus V. de Castro
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, SP, Brazil
| | - Leonardo M. Cariste
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
- Instutute on Investigation in Immunology, - Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Rafael R. Almeida
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
- Instutute on Investigation in Immunology, - Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Greyce L. Sasahara
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
- Instutute on Investigation in Immunology, - Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Monize V. R. Silva
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, SP, Brazil
| | - Flávia B. Soares
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, SP, Brazil
| | - Vivian R. Coria
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, SP, Brazil
| | - Michel S. Naslavsky
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, SP, Brazil
| | - Keity S. Santos
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
- Instutute on Investigation in Immunology, - Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
- Instutute on Investigation in Immunology, - Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Jorge Kalil
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
- Instutute on Investigation in Immunology, - Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
30
|
Oh DS, Kim E, Normand R, Lu G, Shook LL, Lyall A, Jasset O, Demidkin S, Gilbert E, Kim J, Akinwunmi B, Tantivit J, Tirard A, Arnold BY, Slowikowski K, Goldberg MB, Filbin MR, Hacohen N, Nguyen LH, Chan AT, Yu XG, Li JZ, Yonker L, Fasano A, Perlis RH, Pasternak O, Gray KJ, Choi GB, Drew DA, Sen P, Villani AC, Edlow AG, Huh JR. SARS-CoV-2 infection elucidates features of pregnancy-specific immunity. Cell Rep 2024; 43:114933. [PMID: 39504241 PMCID: PMC11724703 DOI: 10.1016/j.celrep.2024.114933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/30/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
Pregnancy is a risk factor for increased severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory infections, but the mechanisms underlying this risk are poorly understood. To gain insight into the role of pregnancy in modulating immune responses at baseline and upon SARS-CoV-2 infection, we collected peripheral blood mononuclear cells and plasma from 226 women, including 152 pregnant individuals and 74 non-pregnant women. We find that SARS-CoV-2 infection is associated with altered T cell responses in pregnant women, including a clonal expansion of CD4-expressing CD8+ T cells, diminished interferon responses, and profound suppression of monocyte function. We also identify shifts in cytokine and chemokine levels in the sera of pregnant individuals, including a robust increase of interleukin-27, known to drive T cell exhaustion. Our findings reveal nuanced pregnancy-associated immune responses, which may contribute to the increased susceptibility of pregnant individuals to viral respiratory infection.
Collapse
Affiliation(s)
- Dong Sun Oh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Eunha Kim
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; BK21 Graduate Program, Department of Biomedical Sciences and Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Rachelly Normand
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02129, USA; Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Guangqing Lu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Lydia L Shook
- Department of Obstetrics, Gynecology and Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Amanda Lyall
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Olyvia Jasset
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Stepan Demidkin
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Emily Gilbert
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Joon Kim
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Babatunde Akinwunmi
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jessica Tantivit
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02129, USA; Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alice Tirard
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02129, USA; Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Benjamin Y Arnold
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02129, USA; Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kamil Slowikowski
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02129, USA; Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Marcia B Goldberg
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Michael R Filbin
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nir Hacohen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Long H Nguyen
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Xu G Yu
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jonathan Z Li
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Lael Yonker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Roy H Perlis
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kathryn J Gray
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA 98195, USA
| | - Gloria B Choi
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David A Drew
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Pritha Sen
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02129, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA; Transplant, Oncology, and Immunocompromised Host Group, Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alexandra-Chloé Villani
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02129, USA; Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Andrea G Edlow
- Department of Obstetrics, Gynecology and Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Jun R Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
31
|
Babcock BR, Kosters A, Eddins DJ, Donaire MSB, Sarvadhavabhatla S, Pae V, Beltran F, Murray VW, Gill G, Xie G, Dobosh BS, Giacalone VD, Tirouvanziam RM, Ramonell RP, Jenks SA, Sanz I, Lee FEH, Roan NR, Lee SA, Ghosn EEB. Transient anti-interferon autoantibodies in the airways are associated with recovery from COVID-19. Sci Transl Med 2024; 16:eadq1789. [PMID: 39504354 PMCID: PMC11924959 DOI: 10.1126/scitranslmed.adq1789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
Preexisting anti-interferon-α (anti-IFN-α) autoantibodies in blood are associated with susceptibility to life-threatening COVID-19. However, it is unclear whether anti-IFN-α autoantibodies in the airways, the initial site of infection, can also determine disease outcomes. In this study, we developed a multiparameter technology, FlowBEAT, to quantify and profile the isotypes of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and anti-IFN-α antibodies in longitudinal samples collected over 20 months from the airways and blood of 129 donors spanning mild to severe COVID-19. We found that nasal IgA1 anti-IFN-α autoantibodies were induced after infection onset in more than 70% of mild and moderate COVID-19 cases and were associated with robust anti-SARS-CoV-2 immunity, fewer symptoms, and efficient recovery. Nasal anti-IFN-α autoantibodies followed the peak of host IFN-α production and waned with disease recovery, revealing a regulated balance between IFN-α and anti-IFN-α response. In contrast, systemic IgG1 anti-IFN-α autoantibodies appeared later and were detected only in a subset of patients with elevated systemic inflammation and worsening symptoms. These data reveal a protective role for nasal anti-IFN-α in the immunopathology of COVID-19 and suggest that anti-IFN-α autoantibodies may serve a homeostatic function to regulate host IFN-α after viral infection in the respiratory mucosa.
Collapse
Affiliation(s)
- Benjamin R Babcock
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA 30322, USA
| | - Astrid Kosters
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA 30322, USA
| | - Devon J Eddins
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA 30322, USA
| | - Maria Sophia Baluyot Donaire
- Division of HIV, Infectious Diseases & Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Sannidhi Sarvadhavabhatla
- Division of HIV, Infectious Diseases & Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Vivian Pae
- Division of HIV, Infectious Diseases & Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Fiona Beltran
- Division of HIV, Infectious Diseases & Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Victoria W Murray
- Division of HIV, Infectious Diseases & Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Gurjot Gill
- Division of HIV, Infectious Diseases & Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Guorui Xie
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brian S Dobosh
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
| | | | | | - Richard P Ramonell
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA 30322, USA
| | - Scott A Jenks
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA 30322, USA
| | - Ignacio Sanz
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA 30322, USA
| | - F Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA 30322, USA
| | - Nadia R Roan
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sulggi A Lee
- Division of HIV, Infectious Diseases & Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Eliver E B Ghosn
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| |
Collapse
|
32
|
Aqillouch S, Zerrad C, Laazaazia O, Ouladlahsen A, El Bissati K, Akarid K, Pineau P, Benjelloun S, Ezzikouri S. Genetic variations in Interferon-Induced with Helicase C Domain 1: Impact on COVID-19 risk and severity in the Moroccan population. Hum Immunol 2024; 85:111149. [PMID: 39342923 DOI: 10.1016/j.humimm.2024.111149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND The clinical spectrum of COVID-19 varies considerably, ranging from asymptomatic cases to severe disease and even death. This variability can partly be attributed to genetic differences in genes associated with inflammation and immune responses. Among these genes, Interferon Induced with Helicase C Domain 1 (IFIH1), which codes for a cytoplasmic sensor, plays a crucial role in detecting SARS-CoV-2 viral RNA and initiating the antiviral interferon (IFN) response, thereby constituting a key element of innate immune defense. AIM This study aims to examine the association between genetic variants in the IFIH1 gene and susceptibility to, as well as the severity of, COVID-19 in the Moroccan population. MATERIALS AND METHODS We conducted a case-control study involving 299 COVID-19 positive patients (149 severe, 150 benign) and 145 uninfected-SARS-CoV-2 controls. We determined the genotypes of two functional variants, rs1990760 (Ala946Thr) and rs3747517 (His843Arg), in the IFIH1 gene using predesigned TaqMan real-time allelic discrimination assay. RESULTS Our results indicated that the TT genotype of rs1990760 was associated with increased susceptibility to SARS-CoV-2 under a recessive model (odds ratio [OR] = 2.22, 95 % confidence interval [CI] 1.28-3.84, P=0.003). Conversely, the CT genotype appeared to confer protection against SARS-CoV-2 infection (OR=0.58, 95 % CI 0.38-0.91, P=0.016) and COVID-19 severity (OR=0.56, 95 % CI 0.34-0.91, P=0.019). No significant association was found between rs3747517 and the risk of hospitalization or infection susceptibility. CONCLUSION These findings underscore the significance of genetic variability in the IFIH1 gene in shaping individual responses to SARS-CoV-2 in the Moroccan population.
Collapse
Affiliation(s)
- Safaa Aqillouch
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca 20360, Morocco; Biochemistry, Biotechnology and Immunophysiopathology Research Team, Health and Environment Laboratory, Ain Chock Faculty of Sciences, Hassan II University of Casablanca 20000, Morocco
| | - Chaimaa Zerrad
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca 20360, Morocco
| | - Oumaima Laazaazia
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca 20360, Morocco
| | - Ahd Ouladlahsen
- Service des Maladies Infectieuses, CHU Ibn Rochd, Casablanca 20360, Morocco; Faculté de médecine et de pharmacie, Université Hassan II, Casablanca 20360, Morocco
| | - Kamal El Bissati
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Khadija Akarid
- Biochemistry, Biotechnology and Immunophysiopathology Research Team, Health and Environment Laboratory, Ain Chock Faculty of Sciences, Hassan II University of Casablanca 20000, Morocco
| | - Pascal Pineau
- Institut Pasteur, Université Paris Cité, Unité "Organisation Nucléaire et Oncogenèse", INSERM U993, Paris, France
| | - Soumaya Benjelloun
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca 20360, Morocco
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca 20360, Morocco.
| |
Collapse
|
33
|
Levine D, Rizvi SA, Lévy S, Pallikkavaliyaveetil N, Zhang D, Chen X, Ghadermarzi S, Wu R, Zheng Z, Vrkic I, Zhong A, Raskin D, Han I, de Oliveira Fonseca AH, Caro JO, Karbasi A, Dhodapkar RM, van Dijk D. Cell2Sentence: Teaching Large Language Models the Language of Biology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.11.557287. [PMID: 39554079 PMCID: PMC11565894 DOI: 10.1101/2023.09.11.557287] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
We introduce Cell2Sentence (C2S), a novel method to directly adapt large language models to a biological context, specifically single-cell transcriptomics. By transforming gene expression data into "cell sentences," C2S bridges the gap between natural language processing and biology. We demonstrate cell sentences enable the finetuning of language models for diverse tasks in biology, including cell generation, complex celltype annotation, and direct data-driven text generation. Our experiments reveal that GPT-2, when fine-tuned with C2S, can generate biologically valid cells based on cell type inputs, and accurately predict cell types from cell sentences. This illustrates that language models, through C2S fine-tuning, can acquire a significant understanding of single-cell biology while maintaining robust text generation capabilities. C2S offers a flexible, accessible framework to integrate natural language processing with transcriptomics, utilizing existing models and libraries for a wide range of biological applications.
Collapse
Affiliation(s)
- Daniel Levine
- Department of Computer Science, Yale University, New Haven, CT, USA
| | - Syed Asad Rizvi
- Department of Computer Science, Yale University, New Haven, CT, USA
| | - Sacha Lévy
- Department of Computer Science, Yale University, New Haven, CT, USA
| | | | - David Zhang
- Department of Computer Science, Yale University, New Haven, CT, USA
| | - Xingyu Chen
- Department of Computer Science, Yale University, New Haven, CT, USA
| | - Sina Ghadermarzi
- Department of Computer Science, Yale University, New Haven, CT, USA
| | - Ruiming Wu
- School of Engineering Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Zihe Zheng
- Department of Computer Science, Yale University, New Haven, CT, USA
| | - Ivan Vrkic
- School of Computer and Communication Sciences, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Anna Zhong
- Department of Computer Science, Yale University, New Haven, CT, USA
| | - Daphne Raskin
- Department of Computer Science, Yale University, New Haven, CT, USA
| | - Insu Han
- Department of Computer Science, Yale University, New Haven, CT, USA
| | | | - Josue Ortega Caro
- Department of Computer Science, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Amin Karbasi
- Department of Computer Science, Yale University, New Haven, CT, USA
- Google
- Yale Institute for Foundations of Data Science, New Haven, CT, USA
- Yale School of Engineering and Applied Science, New Haven, CT, USA
| | - Rahul M. Dhodapkar
- Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
- Department of Internal Medicine (Cardiology), Yale School of Medicine, New Haven, CT, USA
| | - David van Dijk
- Department of Computer Science, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Yale Institute for Foundations of Data Science, New Haven, CT, USA
- Department of Internal Medicine (Cardiology), Yale School of Medicine, New Haven, CT, USA
- Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, USA
- Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, USA
| |
Collapse
|
34
|
Yang M, Chen Y, Feng C, Zhang M, Wang H, Zheng Y, Li X. Single-cell RNA sequencing uncovers molecular mechanisms of intravenous immunoglobulin plus methylprednisolone in Kawasaki disease: attenuated monocyte-driven inflammation and improved NK cell cytotoxicity. Front Immunol 2024; 15:1455925. [PMID: 39524437 PMCID: PMC11543420 DOI: 10.3389/fimmu.2024.1455925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Intravenous immunoglobulin (IVIG) plus methylprednisolone as initial intensive therapy or additional therapy in Kawasaki disease (KD) has been used in clinical practice. However, its molecular and cellular mechanism is unclear. Methods We performed single-cell analysis on 14 peripheral blood mononuclear cell (PBMC) samples obtained from 7 KD patients who received either IVIG monotherapy or IVIG plus methylprednisolone therapy. This encompassed 4 samples from KD patients collected before and after IVIG treatment, as well as 3 samples from KD patients before and after IVIG plus methylprednisolone therapy. Results Both IVIG monotherapy and IVIG plus methylprednisolone therapy can increase lymphocyte counts (e.g. CD4+T, CD8+T, and gdT cells) to address lymphopenia. They can also decrease monocyte counts and repress the expression of S100A12, NLRP3, and genes associated with immune-cell migration in monocytes. IVIG combined with methylprednisolone downregulates more monocyte-driven inflammatory pathways than IVIG alone. Additionally, this combination uniquely enhances NK cell cytotoxicity by modulating receptor homeostasis, while significantly upregulating interferon-related genes in CD4+ T cells, CD8+ T cells, and B cells, particularly type I interferons. Conclusion The combination of IVIG with methylprednisolone attenuated monocyte-driven inflammation and improved NK cell cytotoxicity which might provide clues for pediatricians to consider treatment options for children with KD. Whether the monocyte-driven hyperinflammatory state and NK cell function can be indicators for the clinical choice of IVIG with methylprednisolone therapy in KD needs further investigation.
Collapse
Affiliation(s)
- Minna Yang
- Department of Cardiovascular Medicine, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
| | - Yeshi Chen
- Department of Cardiovascular Medicine, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
| | - Chenhui Feng
- Department of Cardiovascular Medicine, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
| | - Mingming Zhang
- Department of Cardiovascular Medicine, Children’s Hospital Capital Institute of Pediatrics, Beijing, China
| | - Hongmao Wang
- Department of Cardiovascular Medicine, Children’s Hospital Capital Institute of Pediatrics, Beijing, China
| | - Yang Zheng
- Department of Cardiovascular Medicine, Peking Union Medical College Graduate School, Beijing, China
| | - Xiaohui Li
- Department of Cardiovascular Medicine, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
- Department of Cardiovascular Medicine, Children’s Hospital Capital Institute of Pediatrics, Beijing, China
- Department of Cardiovascular Medicine, Peking Union Medical College Graduate School, Beijing, China
| |
Collapse
|
35
|
Hamidah B, Pakpahan C, Wulandari L, Tinduh D, Wibawa T, Prakoeswa CRS, Oceandy D. Expression of interferon-stimulated genes, but not polymorphisms in the interferon α/β receptor 2 gene, is associated with coronavirus disease 2019 mortality. Heliyon 2024; 10:e39002. [PMID: 39435115 PMCID: PMC11492585 DOI: 10.1016/j.heliyon.2024.e39002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Excessive inflammatory response is a hallmark of severe COVID-19. This study investigated the associations between interferon-stimulated genes (ISGs) expression, genetic variation in the interferon α/β receptor 2 (IFNAR2) gene, and COVID-19 mortality. We investigated 67 patients with moderate-to-severe COVID-19. Of them, 22 patients (32.8 %) died because of COVID-19. We examined the expression of ISGs in total RNA of peripheral whole blood. We observed a significant increase in the expression of all ISGs examined in non-surviving patients, indicating a heightened interferon type I signaling activation in non-survived patients. Subsequently, we analyzed whether the increase in ISGs expression was correlated with polymorphism within the IFNAR2 gene. Intriguingly, no significant association was observed between IFNAR2 gene polymorphism and COVID-19 mortality. Similarly, no association was noted between the IFNAR2 and ISGs expression levels. Overall, our data showed that higher ISGs expression, which presumably indicates heightened interferon type I activation, is associated with COVID-19 mortality.
Collapse
Affiliation(s)
- Berliana Hamidah
- Department of Biomedical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Cennikon Pakpahan
- Department of Biomedical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Laksmi Wulandari
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga/Dr Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Damayanti Tinduh
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Universitas Airlangga/Dr Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Tri Wibawa
- Department of Microbiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Cita Rosita Sigit Prakoeswa
- Department of Dermatology, Venerology and Aesthetics, Faculty of Medicine, Universitas Airlangga / Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
36
|
Hameed M, Hossain MS, Daamen AR, Lipsky PE, Weger-Lucarelli J. Granulocyte colony-stimulating factor protects against arthritogenic alphavirus pathogenesis in a type I IFN-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617470. [PMID: 39416071 PMCID: PMC11482922 DOI: 10.1101/2024.10.09.617470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Arthritogenic alphaviruses cause disease characterized by fever, rash, and incapacitating joint pain. Alphavirus infection stimulates robust inflammatory responses in infected hosts, leading to the upregulation of several cytokines, including granulocyte colony-stimulating factor (G-CSF). G-CSF is secreted by endothelial cells, fibroblasts, macrophages, and monocytes and binds to colony stimulating factor 3 receptor (CSF3R, also known as G-CSFR) on the surface of myeloid cells. G-CSFR signaling initiates proliferation, differentiation, and maturation of myeloid cells, especially neutrophils. Importantly, G-CSF has been found at high levels in both the acute and chronic phases of chikungunya disease; however, the role of G-CSF in arthritogenic alphavirus disease remains unexplored. Here, we sought to test the effect of G-CSF on chikungunya virus (CHIKV) and Mayaro virus (MAYV) infection using G-CSFR-deficient mice (G-CSFR-/-). We observed sustained weight loss in G-CSFR-/- mice following viand MAYV infection compared to wild-type mice. Furthermore, G-CSFR-/- mice had a significantly higher percentage of inflammatory monocytes and reduction in neutrophils throughout infection. The difference in weight loss in G-CSFR-/- mice induced by alphavirus infection was corrected by blocking type I IFN signaling. In summary, these studies show that type I IFN signaling contributes to G-CSFR mediated control of arthritogenic alphavirus disease.
Collapse
Affiliation(s)
- Muddassar Hameed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Department of Pathology & Immunology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Md Shakhawat Hossain
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Andrea R. Daamen
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, United States
| | - Peter E. Lipsky
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, United States
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
37
|
Shi Q, Zhang P, Hu Q, Zhang T, Hou R, Yin S, Zou Y, Chen F, Jiao S, Si L, Zheng B, Chen Y, Zhan T, Liu Y, Zhu W, Qi N. Role of TOMM34 on NF-κB activation-related hyperinflammation in severely ill patients with COVID-19 and influenza. EBioMedicine 2024; 108:105343. [PMID: 39276680 PMCID: PMC11418153 DOI: 10.1016/j.ebiom.2024.105343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Highly pathogenic respiratory RNA viruses such as SARS-CoV-2 and its associated syndrome COVID-19 pose a tremendous threat to the global public health. Innate immune responses to SARS-CoV-2 depend mainly upon the NF-κB-mediated inflammation. Identifying unknown host factors driving the NF-κB activation and inflammation is crucial for the development of immune intervention strategies. METHODS Published single-cell RNA sequencing (scRNA-seq) data was used to analyze the differential transcriptome profiles of bronchoalveolar lavage (BAL) cells between healthy individuals (n = 27) and patients with severe COVID-19 (n = 21), as well as the differential transcriptome profiles of peripheral blood mononuclear cells (PBMCs) between healthy individuals (n = 22) and severely ill patients with COVID-19 (n = 45) or influenza (n = 16). Loss-of-function and gain-of-function assays were performed in diverse viruses-infected cells and male mice models to identify the role of TOMM34 in antiviral innate immunity. FINDINGS TOMM34, together with a list of genes encoding pro-inflammatory cytokines and antiviral immune proteins, was transcriptionally upregulated in circulating monocytes, lung epithelium and innate immune cells from individuals with severe COVID-19 or influenza. Deficiency of TOMM34/Tomm34 significantly impaired the type I interferon responses and NF-κB-mediated inflammation in various human/murine cell lines, murine bone marrow-derived macrophages (BMDMs) and in vivo. Mechanistically, TOMM34 recruits TRAF6 to facilitate the K63-linked polyubiquitination of NEMO upon viral infection, thus promoting the downstream NF-κB activation. INTERPRETATION In this study, viral induction of TOMM34 is positively correlated with the hyperinflammation in severely ill patients with COVID-19 and influenza. Our findings also highlight the physiological role of TOMM34 in the innate antiviral signallings. FUNDING A full list of funding sources can be found in the acknowledgements section.
Collapse
Affiliation(s)
- Qiwen Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Pengfei Zhang
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
| | - Qingtao Hu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Tianxin Zhang
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
| | - Ruixia Hou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shengxiang Yin
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
| | - Yilin Zou
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
| | - Fenghua Chen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Shuang Jiao
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
| | - Lanlan Si
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Bangjin Zheng
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
| | - Yichao Chen
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
| | - Tingzhu Zhan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yongxiang Liu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China.
| | - Wenting Zhu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China.
| | - Nan Qi
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China; Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China.
| |
Collapse
|
38
|
Chang SH, Jung S, Chae JJ, Kim JY, Kim SU, Choi JY, Han HJ, Kim HT, Kim HJ, Kim HJ, Park WY, Sparks JA, Lee EY, Lee JS. Therapeutic single-cell landscape: methotrexate exacerbates interstitial lung disease by compromising the stemness of alveolar epithelial cells under systemic inflammation. EBioMedicine 2024; 108:105339. [PMID: 39303666 PMCID: PMC11437874 DOI: 10.1016/j.ebiom.2024.105339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Interstitial lung disease (ILD) poses a serious threat in patients with rheumatoid arthritis (RA). However, the impact of cornerstone drugs, including methotrexate (MTX) and TNF inhibitor, on RA-associated ILD (RA-ILD) remains controversial. METHODS Using an SKG mouse model and single-cell transcriptomics, we investigated the effects of MTX and TNF blockade on ILD. FINDINGS Our study revealed that MTX exacerbates pulmonary inflammation by promoting immune cell infiltration, Th17 activation, and fibrosis. In contrast, TNF inhibitor ameliorates these features and inhibits ILD progression. Analysis of data from a human RA-ILD cohort revealed that patients with ILD progression had persistently higher systemic inflammation than those without progression, particularly among the subgroup undergoing MTX treatment. INTERPRETATION These findings highlight the need for personalized therapeutic approaches in RA-ILD, given the divergent outcomes of MTX and TNF inhibitor. FUNDING This work was funded by GENINUS Inc., and the National Research Foundation of Korea, and Seoul National University Hospital.
Collapse
Affiliation(s)
- Sung Hae Chang
- Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, 31151, South Korea
| | - Seyoung Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jeong Jun Chae
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea
| | - Jeong Yeon Kim
- Inocras, Inc., San Diego, CA, 92121, USA; Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Seon Uk Kim
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Ji Yong Choi
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hye-Jeong Han
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Hyun Taek Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Hak-Jae Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Hyun Je Kim
- Department of Biomedical Science, Seoul National University, Seoul, 03080, Republic of Korea
| | - Woong Yang Park
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Jeffrey A Sparks
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Eun Young Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Jeong Seok Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Inocras, Inc., San Diego, CA, 92121, USA.
| |
Collapse
|
39
|
Shang C, Yu J, Zou S, Li H, Cao B. Functional evaluation of TMEM176B and its predictive role for severe respiratory viral infection through integrated analysis of single-cell and bulk RNA-sequencing. J Med Virol 2024; 96:e29954. [PMID: 39377494 DOI: 10.1002/jmv.29954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/05/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024]
Abstract
Transmembrane protein 176B (TMEM176B), localized mainly on the endosomal membrane, has been reported as an immune regulatory factor in malignant diseases. However, the biological function of this molecule remains undetermined during respiratory viral infections. To investigate the functions and prognostic value of this gene, six gene sets were selected from the Gene Expression Omnibus database for research. First, the function of TMEM176B and its co-expressed genes were evaluated at different levels (cell, peripheral blood, lung tissue). Afterwards, a machine learning algorithm was utilized to analyze the relationship between TMEM176B and its interacting genes with prognosis. After importance evaluation and variable screening, a prognostic model was established. Finally, the reliability of the model was further verified through external data sets. In vitro experiments were conducted to validate the function of TMEM176B. TMEM176B and its co-expressed genes are involved in multiple processes such as inflammasome activation, myeloid immune cell development, and immune cell infiltration. Machine learning further screened 27 interacting gene modules including TMEM176B as prognostic models for severe respiratory viral infections, with the area under the ROC curve (AUCs) of 0.986 and 0.905 in derivation and external validation sets, respectively. We further confirmed that viral load as well as NLRP3 activation and cell death were significantly enhanced in TMEM176B-/- THP-1-differentiated macrophages via in vitro experiments. Our study revealed that TMEM176B is involved in a wide range of biological functions in respiratory viral infections and has potential prognostic value, which is expected to bring new insights into the clinical management of severe respiratory viral infection hosts.
Collapse
Affiliation(s)
- Congcong Shang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jiapei Yu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Shumei Zou
- National Institute for Viral Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory for Medical Virology, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hui Li
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Bin Cao
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China
| |
Collapse
|
40
|
Safaei M, Goodarzi A, Abpeikar Z, Farmani AR, Kouhpayeh SA, Najafipour S, Jafari Najaf Abadi MH. Determination of key hub genes in Leishmaniasis as potential factors in diagnosis and treatment based on a bioinformatics study. Sci Rep 2024; 14:22537. [PMID: 39342024 PMCID: PMC11438978 DOI: 10.1038/s41598-024-73779-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
Leishmaniasis is an infectious disease caused by protozoan parasites from different species of leishmania. The disease is transmitted by female sandflies that carry these parasites. In this study, datasets on leishmaniasis published in the GEO database were analyzed and summarized. The analysis in all three datasets (GSE43880, GSE55664, and GSE63931) used in this study has been performed on the skin wounds of patients infected with a clinical form of leishmania (Leishmania braziliensis), and biopsies have been taken from them. To identify differentially expressed genes (DEGs) between leishmaniasis patients and controls, the robust rank aggregation (RRA) procedure was applied. We performed gene functional annotation and protein-protein interaction (PPI) network analysis to demonstrate the putative functionalities of the DEGs. The study utilized Molecular Complex Detection (MCODE), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) to detect molecular complexes within the protein-protein interaction (PPI) network and conduct analyses on the identified functional modules. The CytoHubba plugin's results were paired with RRA analysis to determine the hub genes. Finally, the interaction between miRNAs and hub genes was predicted. Based on the RRA integrated analysis, 407 DEGs were identified (263 up-regulated genes and 144 down-regulated genes). The top three modules were listed after creating the PPI network via the MCODE plug. Seven hub genes were found using the CytoHubba app and RRA: CXCL10, GBP1, GNLY, GZMA, GZMB, NKG7, and UBD. According to our enrichment analysis, these functional modules were primarily associated with immune pathways, cytokine activity/signaling pathways, and inflammation pathways. However, a UBD hub gene is interestingly involved in the ubiquitination pathways of pathogenesis. The mirNet database predicted the hub gene's interaction with miRNAs, and results revealed that several miRNAs, including mir-146a-5p, crucial in fighting pathogenesis. The key hub genes discovered in this work may be considered as potential biomarkers in diagnosis, development of agonists/antagonist, novel vaccine design, and will greatly contribute to clinical studies in the future.
Collapse
Affiliation(s)
- Mohsen Safaei
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Arash Goodarzi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Zahra Abpeikar
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Ahmad Reza Farmani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Seyed Amin Kouhpayeh
- Department of Pharmacology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Sohrab Najafipour
- Department of Microbiology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohammad Hassan Jafari Najaf Abadi
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran.
- Research Center for Health Technology Assessment and Medical Informatics, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
41
|
Xie Y, Yang J, Ouyang JF, Petretto E. scPanel: a tool for automatic identification of sparse gene panels for generalizable patient classification using scRNA-seq datasets. Brief Bioinform 2024; 25:bbae482. [PMID: 39350339 PMCID: PMC11442147 DOI: 10.1093/bib/bbae482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) technologies can generate transcriptomic profiles at a single-cell resolution in large patient cohorts, facilitating discovery of gene and cellular biomarkers for disease. Yet, when the number of biomarker genes is large, the translation to clinical applications is challenging due to prohibitive sequencing costs. Here, we introduce scPanel, a computational framework designed to bridge the gap between biomarker discovery and clinical application by identifying a sparse gene panel for patient classification from the cell population(s) most responsive to perturbations (e.g. diseases/drugs). scPanel incorporates a data-driven way to automatically determine a minimal number of informative biomarker genes. Patient-level classification is achieved by aggregating the prediction probabilities of cells associated with a patient using the area under the curve score. Application of scPanel to scleroderma, colorectal cancer, and COVID-19 datasets resulted in high patient classification accuracy using only a small number of genes (<20), automatically selected from the entire transcriptome. In the COVID-19 case study, we demonstrated cross-dataset generalizability in predicting disease state in an external patient cohort. scPanel outperforms other state-of-the-art gene selection methods for patient classification and can be used to identify parsimonious sets of reliable biomarker candidates for clinical translation.
Collapse
Affiliation(s)
- Yi Xie
- Programme in Cardiovascular and Metabolic Disorders, Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jianfei Yang
- The School of Mechanical and Aerospace Engineering and the School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798, Singapore
| | - John F Ouyang
- Programme in Cardiovascular and Metabolic Disorders, Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Enrico Petretto
- Programme in Cardiovascular and Metabolic Disorders, Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
42
|
Romeo PH, Conquet L, Messiaen S, Pascal Q, Moreno SG, Bravard A, Bernardino-Sgherri J, Dereuddre-Bosquet N, Montagutelli X, Le Grand R, Petit V, Ferri F. Multiple Mechanisms of Action of Sulfodyne ®, a Natural Antioxidant, against Pathogenic Effects of SARS-CoV-2 Infection. Antioxidants (Basel) 2024; 13:1083. [PMID: 39334742 PMCID: PMC11429452 DOI: 10.3390/antiox13091083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Few therapeutic options are available to treat COVID-19. The KEAP1/NRF2 pathway, the major redox-responsive pathway, has emerged as a potential therapeutic target for COVID-19 as it regulates redox homeostasis and inflammation that are altered during SARS-CoV-2 infection. Here, we characterized the effects of NRF2-agonist Sulfodyne®, a stabilized natural Sulforaphane, in cellular and animal models of SARS-CoV-2 infection. In pulmonary or colonic epithelial cell lines, Sulfodyne® elicited a more efficient inhibition of SARS-CoV-2 replication than NRF2-agonists DMF and CDDO. This antiviral activity was not dependent on NRF2 but was associated with the regulation of several metabolic pathways, including the inhibition of ER stress and mTOR signaling, which are activated during SARS-CoV-2 infection. Sulfodyne® also decreased SARS-CoV-2 mediated inflammatory responses by inhibiting the delayed induction of IFNB1 and type I IFN-stimulated genes in infected epithelial cell lines and by reducing the activation of human by-stander monocytes recruited after SARS-CoV-2 infection. In K18-hACE2 mice infected with SARS-CoV-2, Sulfodyne® treatment reduced both early lung viral load and disease severity by fine-tuning IFN-beta levels. Altogether, these results provide evidence for multiple mechanisms that underlie the antiviral and anti-inflammatory activities of Sulfodyne® and pinpoint Sulfodyne® as a potent therapeutic agent against pathogenic effects of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Paul-Henri Romeo
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris Cité, Inserm, CEA, 92265 Fontenay-aux-Roses, France
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Laurine Conquet
- Mouse Genetics Laboratory, Université Paris Cité, Institut Pasteur, 75724 Paris, France
| | - Sébastien Messiaen
- Laboratory on Development of the Gonads (LDG/IRCM), Université Paris Cité, Inserm, CEA, 92265 Fontenay-aux-Roses, France
- Laboratory on Development of the Gonads (LDG/IRCM), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Quentin Pascal
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Stéphanie G Moreno
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris Cité, Inserm, CEA, 92265 Fontenay-aux-Roses, France
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Anne Bravard
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris Cité, Inserm, CEA, 92265 Fontenay-aux-Roses, France
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Jacqueline Bernardino-Sgherri
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris Cité, Inserm, CEA, 92265 Fontenay-aux-Roses, France
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Nathalie Dereuddre-Bosquet
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Xavier Montagutelli
- Mouse Genetics Laboratory, Université Paris Cité, Institut Pasteur, 75724 Paris, France
| | - Roger Le Grand
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Vanessa Petit
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris Cité, Inserm, CEA, 92265 Fontenay-aux-Roses, France
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Federica Ferri
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris Cité, Inserm, CEA, 92265 Fontenay-aux-Roses, France
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| |
Collapse
|
43
|
Ngo C, Garrec C, Tomasello E, Dalod M. The role of plasmacytoid dendritic cells (pDCs) in immunity during viral infections and beyond. Cell Mol Immunol 2024; 21:1008-1035. [PMID: 38777879 PMCID: PMC11364676 DOI: 10.1038/s41423-024-01167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Type I and III interferons (IFNs) are essential for antiviral immunity and act through two different but complimentary pathways. First, IFNs activate intracellular antimicrobial programs by triggering the upregulation of a broad repertoire of viral restriction factors. Second, IFNs activate innate and adaptive immunity. Dysregulation of IFN production can lead to severe immune system dysfunction. It is thus crucial to identify and characterize the cellular sources of IFNs, their effects, and their regulation to promote their beneficial effects and limit their detrimental effects, which can depend on the nature of the infected or diseased tissues, as we will discuss. Plasmacytoid dendritic cells (pDCs) can produce large amounts of all IFN subtypes during viral infection. pDCs are resistant to infection by many different viruses, thus inhibiting the immune evasion mechanisms of viruses that target IFN production or their downstream responses. Therefore, pDCs are considered essential for the control of viral infections and the establishment of protective immunity. A thorough bibliographical survey showed that, in most viral infections, despite being major IFN producers, pDCs are actually dispensable for host resistance, which is achieved by multiple IFN sources depending on the tissue. Moreover, primary innate and adaptive antiviral immune responses are only transiently affected in the absence of pDCs. More surprisingly, pDCs and their IFNs can be detrimental in some viral infections or autoimmune diseases. This makes the conservation of pDCs during vertebrate evolution an enigma and thus raises outstanding questions about their role not only in viral infections but also in other diseases and under physiological conditions.
Collapse
Affiliation(s)
- Clémence Ngo
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Clémence Garrec
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Elena Tomasello
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.
| | - Marc Dalod
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.
| |
Collapse
|
44
|
Xu D, Qin X. Type I Interferonopathy among Non-Elderly Female Patients with Post-Acute Sequelae of COVID-19. Viruses 2024; 16:1369. [PMID: 39339845 PMCID: PMC11435747 DOI: 10.3390/v16091369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
The pathophysiological mechanisms of the post-acute sequelae of COVID-19 (PASC) remain unclear. Sex differences not only exist in the disease severity of acute SARS-CoV-2 infection but also in the risk of suffering from PASC. Women have a higher risk of suffering from PASC and a longer time to resolution than men. To explore the possible immune mechanisms of PASC among non-elderly females, we mined single-cell transcriptome data from peripheral blood samples of non-elderly female patients with PASC and acute SARS-CoV-2 infection, together with age- and gender-matched non-PASC and healthy controls available from the Gene Expression Omnibus database. By comparing the differences, we found that a CD14+ monocyte subset characterized by higher expression of signal transducers and activators of transcription 2 (STAT2) (CD14+STAT2high) was notably increased in the PASC patients compared with the non-PASC individuals. The transcriptional factor (TF) activity analysis revealed that STAT2 and IRF9 were the key TFs determining the function of CD14+STAT2high monocytes. STAT2 and IRF9 are TFs exclusively involving type I and III interferon (IFN) signaling pathways, resulting in uncontrolled IFN-I signaling activation and type I interferonopathy. Furthermore, increased expression of common interferon-stimulated genes (ISGs) has also been identified in most monocyte subsets among the non-elderly female PASC patients, including IFI6, IFITM3, IFI44L, IFI44, EPSTI1, ISG15, and MX1. This study reveals a featured CD14+STAT2high monocyte associated with uncontrolled IFN-I signaling activation, which is indicative of a possible type I interferonopathy in the non-elderly female patients with PASC.
Collapse
Affiliation(s)
- Donghua Xu
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA 70433, USA;
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Xuebin Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA 70433, USA;
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
45
|
Kenny G, Saini G, Gaillard CM, Negi R, Alalwan D, Garcia Leon A, McCann K, Tinago W, Kelly C, Cotter AG, de Barra E, Horgan M, Yousif O, Gautier V, Landay A, McAuley D, Feeney ER, O'Kane C, Mallon PWG. Early inflammatory profiles predict maximal disease severity in COVID-19: An unsupervised cluster analysis. Heliyon 2024; 10:e34694. [PMID: 39144942 PMCID: PMC11320140 DOI: 10.1016/j.heliyon.2024.e34694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Background The inflammatory changes that underlie the heterogeneous presentations of COVID-19 remain incompletely understood. In this study we aimed to identify inflammatory profiles that precede the development of severe COVID-19, that could serve as targets for optimised delivery of immunomodulatory therapies and provide insights for the development of new therapies. Methods We included individuals sampled <10 days from COVID-19 symptom onset, recruited from both inpatient and outpatient settings. We measured 61 biomarkers in plasma, including markers of innate immune and T cell activation, coagulation, tissue repair and lung injury. We used principal component analysis and hierarchical clustering to derive biomarker clusters, and ordinal logistic regression to explore associations between cluster membership and maximal disease severity, adjusting for known risk factors for severe COVID-19. Results In 312 individuals, median (IQR) 7 (4-9) days from symptom onset, we found four clusters. Cluster 1 was characterised by low overall inflammation, cluster 2 was characterised by higher levels of growth factors and markers of endothelial activation (EGF, VEGF, PDGF, TGFα, PAI-1 and p-selectin). Cluster 3 and 4 both had higher overall inflammation. Cluster 4 had the highest levels of most markers including markers of innate immune activation (IL6, procalcitonin, CRP, TNFα), and coagulation (D-dimer, TPO), in contrast cluster 3 had the highest levels of alveolar epithelial injury markers (RAGE, ST2), but relative downregulation of growth factors and endothelial activation markers, suggesting a dysfunctional inflammatory pattern. In unadjusted and adjusted analysis, compared to cluster 1, cluster 3 had the highest odds of progressing to more severe disease (unadjusted OR (95%CI) 9.02 (4.53-17.96), adjusted OR (95%CI) 6.02 (2.70-13.39)). Conclusion Early inflammatory profiles predicted subsequent maximal disease severity independent of risk factors for severe COVID-19. A cluster with downregulation of growth factors and endothelial activation markers, and early evidence of alveolar epithelial injury, had the highest risk of severe COVID-19.
Collapse
Affiliation(s)
- Grace Kenny
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Gurvin Saini
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
| | - Colette Marie Gaillard
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
| | - Riya Negi
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
| | - Dana Alalwan
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
| | - Alejandro Garcia Leon
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
| | - Kathleen McCann
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Willard Tinago
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
| | - Christine Kelly
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Aoife G. Cotter
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Eoghan de Barra
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mary Horgan
- Department of Infectious Diseases, Cork University Hospital, Wilton, Cork, Ireland
| | - Obada Yousif
- Department of Endocrinology, Wexford General Hospital, Wexford, Ireland
| | - Virginie Gautier
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
| | - Alan Landay
- Department of Internal Medicine, Rush University, Chicago, IL, USA
| | | | - Eoin R. Feeney
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| | | | - Patrick WG. Mallon
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
46
|
Xu H, Zhang X, Wang X, Li B, Yu H, Quan Y, Jiang Y, You Y, Wang Y, Wen M, Liu J, Wang M, Zhang B, Li Y, Zhang X, Lu Q, Yu CY, Cao X. Cellular spermine targets JAK signaling to restrain cytokine-mediated autoimmunity. Immunity 2024; 57:1796-1811.e8. [PMID: 38908373 DOI: 10.1016/j.immuni.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/06/2023] [Accepted: 05/30/2024] [Indexed: 06/24/2024]
Abstract
Prolonged activation of the type I interferon (IFN-I) pathway leads to autoimmune diseases such as systemic lupus erythematosus (SLE). Metabolic regulation of cytokine signaling is critical for cellular homeostasis. Through metabolomics analyses of IFN-β-activated macrophages and an IFN-stimulated-response-element reporter screening, we identified spermine as a metabolite brake for Janus kinase (JAK) signaling. Spermine directly bound to the FERM and SH2 domains of JAK1 to impair JAK1-cytokine receptor interaction, thus broadly suppressing JAK1 phosphorylation triggered by cytokines IFN-I, IFN-II, interleukin (IL)-2, and IL-6. Peripheral blood mononuclear cells (PBMCs) from individuals with SLE showing decreased spermine concentrations exhibited enhanced IFN-I and lupus gene signatures. Spermine treatment attenuated autoimmune pathogenesis in SLE and psoriasis mice and reduced IFN-I signaling in monocytes from individuals with SLE. We synthesized a spermine derivative (spermine derivative 1 [SD1]) and showed that it had a potent immunosuppressive function. Our findings reveal spermine as a metabolic checkpoint for cellular homeostasis and a potential immunosuppressive molecule for controlling autoimmune disease.
Collapse
Affiliation(s)
- Henan Xu
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; Frontiers Research Center for Cell Responses, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiao Zhang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xin Wang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Bo Li
- Frontiers Research Center for Cell Responses, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hang Yu
- Institute of Materia Medical, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yuan Quan
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yan Jiang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yuling You
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yan Wang
- Institute of Materia Medical, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Mingyue Wen
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Juan Liu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Navy Medical University, Shanghai 200433, China
| | - Min Wang
- Department of Rheumatology, Beijing Hospital, Beijing 100730, China
| | - Bo Zhang
- Department of Dermatology, Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yixian Li
- CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, Beijing 100730, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Chu-Yi Yu
- CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuetao Cao
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; Frontiers Research Center for Cell Responses, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China; National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Navy Medical University, Shanghai 200433, China.
| |
Collapse
|
47
|
Li Y, Tang L, Wang F, Gao C, Yang Q, Luo L, Wei J, Tang Q, Qi M. Hub genes identification and validation of ferroptosis in SARS-CoV-2 induced ARDS: perspective from transcriptome analysis. Front Immunol 2024; 15:1407924. [PMID: 39170609 PMCID: PMC11335500 DOI: 10.3389/fimmu.2024.1407924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction Acute Respiratory Distress Syndrome (ARDS) poses a significant health challenge due to its high incidence and mortality rates. The emergence of SARS-CoV-2 has added complexity, with evidence suggesting a correlation between COVID-19 induced ARDS and post-COVID symptoms. Understanding the underlying mechanisms of ARDS in COVID-19 patients is crucial for effective clinical treatment. Method To investigate the potential role of ferroptosis in SARS-CoV-2 induced ARDS, we conducted a comprehensive analysis using bioinformatics methods. Datasets from the Gene Expression Omnibus (GEO) were utilized, focusing on COVID-19 patients with varying ARDS severity. We employed weighted gene co-expression network analysis (WGCNA), differential gene expression analysis, and single-cell sequencing to identify key genes associated with ferroptosis in ARDS. Hub genes were validated using additional GEO datasets and cell experiment. Result The analysis discerned 916 differentially expressed genes in moderate/severe ARDS patients compared to non-critical individuals. Weighted Gene Co-expression Network Analysis (WGCNA) unveiled two modules that exhibited a positive correlation with ARDS, subsequently leading to the identification of 15 hub genes associated with ferroptosis. Among the noteworthy hub genes were MTF1, SAT1, and TXN. Protein-protein interaction analysis, and pathway analysis further elucidated their roles. Immune infiltrating analysis highlighted associations between hub genes and immune cells. Validation in additional datasets confirmed the upregulation of MTF1, SAT1, and TXN in SARS-CoV-2-induced ARDS. This was also demonstrated by qRT-PCR results in the BEAS-2B cells vitro model, suggesting their potential as diagnostic indicators. Discussion This study identifies MTF1, SAT1, and TXN as hub genes associated with ferroptosis in SARS-CoV-2-induced ARDS. These findings provide novel insights into the molecular mechanisms underlying ARDS in COVID-19 patients and offer potential targets for immune therapy and targeted treatment. Further experimental validation is warranted to solidify these findings and explore therapeutic interventions for ARDS in the context of COVID-19.
Collapse
Affiliation(s)
- Yutang Li
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
- The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Li Tang
- The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chencheng Gao
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Qi Yang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Liyu Luo
- College of Sports Medicine and Physical Therapy, Beijing Sport University, Beijing, China
| | - Jiahang Wei
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Qiuyun Tang
- Department of Oncology, Health Center of Chicheng Town, Suining, China
| | - Mingran Qi
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
48
|
Eltobgy M, Johns F, Farkas D, Leuenberger L, Cohen SP, Ho K, Karow S, Swoope G, Pannu S, Horowitz JC, Mallampalli RK, Englert JA, Bednash JS. Longitudinal transcriptomic analysis reveals persistent enrichment of iron homeostasis and erythrocyte function pathways in severe COVID-19 ARDS. Front Immunol 2024; 15:1397629. [PMID: 39161760 PMCID: PMC11330807 DOI: 10.3389/fimmu.2024.1397629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
Introduction The acute respiratory distress syndrome (ARDS) is a common complication of severe COVID-19 and contributes to patient morbidity and mortality. ARDS is a heterogeneous syndrome caused by various insults, and results in acute hypoxemic respiratory failure. Patients with ARDS from COVID-19 may represent a subgroup of ARDS patients with distinct molecular profiles that drive disease outcomes. Here, we hypothesized that longitudinal transcriptomic analysis may identify distinct dynamic pathobiological pathways during COVID-19 ARDS. Methods We identified a patient cohort from an existing ICU biorepository and established three groups for comparison: 1) patients with COVID-19 ARDS that survived hospitalization (COVID survivors, n = 4), 2) patients with COVID-19 ARDS that did not survive hospitalization (COVID non-survivors, n = 5), and 3) patients with ARDS from other causes as a control group (ARDS controls, n = 4). RNA was isolated from peripheral blood mononuclear cells (PBMCs) at 4 time points (Days 1, 3, 7, and 10 following ICU admission) and analyzed by bulk RNA sequencing. Results We first compared transcriptomes between groups at individual timepoints and observed significant heterogeneity in differentially expressed genes (DEGs). Next, we utilized the likelihood ratio test to identify genes that exhibit different patterns of change over time between the 3 groups and identified 341 DEGs across time, including hemoglobin subunit alpha 2 (HBA1, HBA2), hemoglobin subunit beta (HBB), von Willebrand factor C and EGF domains (VWCE), and carbonic anhydrase 1 (CA1), which all demonstrated persistent upregulation in the COVID non-survivors compared to COVID survivors. Of the 341 DEGs, 314 demonstrated a similar pattern of persistent increased gene expression in COVID non-survivors compared to survivors, associated with canonical pathways of iron homeostasis signaling, erythrocyte interaction with oxygen and carbon dioxide, erythropoietin signaling, heme biosynthesis, metabolism of porphyrins, and iron uptake and transport. Discussion These findings describe significant differences in gene regulation during patient ICU course between survivors and non-survivors of COVID-19 ARDS. We identified multiple pathways that suggest heme and red blood cell metabolism contribute to disease outcomes. This approach is generalizable to larger cohorts and supports an approach of longitudinal sampling in ARDS molecular profiling studies, which may identify novel targetable pathways of injury and resolution.
Collapse
Affiliation(s)
- Moemen Eltobgy
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, United States
| | - Finny Johns
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, United States
| | - Daniela Farkas
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, United States
| | - Laura Leuenberger
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, United States
| | - Sarah P. Cohen
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, United States
| | - Kevin Ho
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, United States
| | - Sarah Karow
- Clinical Trials Management Office, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Gabrielle Swoope
- Clinical Trials Management Office, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Sonal Pannu
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, United States
| | - Jeffrey C. Horowitz
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, United States
| | - Rama K. Mallampalli
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, United States
| | - Joshua A. Englert
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, United States
| | - Joseph S. Bednash
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, United States
- The Center for RNA Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
49
|
Sakr AA, Mohamed AA, Ahmed AE, Abdelhaleem AA, Samir HH, Elkady MA, Hasona NA. Biochemical implication of acetylcholine, histamine, IL-18, and interferon-alpha as diagnostic biomarkers in hepatitis C virus, coronavirus disease 2019, and dual hepatitis C virus-coronavirus disease 2019 patients. J Med Virol 2024; 96:e29857. [PMID: 39145590 DOI: 10.1002/jmv.29857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/17/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
Globally, hepatitis C virus (HCV) and coronavirus disease 2019 (COVID-19) are the most common causes of death due to the lack of early predictive and diagnostic tools. Therefore, research for a new biomarker is crucial. Inflammatory biomarkers are critical central players in the pathogenesis of viral infections. IL-18, produced by macrophages in early viral infections, triggers inflammatory biomarkers and interferon production, crucial for viral host defense. Finding out IL-18 function can help understand COVID-19 pathophysiology and predict disease prognosis. Histamine and its receptors regulate allergic lung responses, with H1 receptor inhibition potentially reducing inflammation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. angiotensin-converting enzyme 2 (ACE-2) receptors on cholangiocytes suggest liver involvement in SARS-CoV-2 infection. The current study presents the potential impact of circulating acetylcholine, histamine, IL-18, and interferon-Alpha as diagnostic tools in HCV, COVID-19, and dual HCV-COVID-19 pathogenesis. The current study was a prospective cross-section conducted on 188 participants classified into the following four groups: Group 1 COVID-19 (n = 47), Group 2 HCV (n = 47), and Group 3 HCV-COVID-19 patients (n = 47), besides the healthy control Group 4 (n = 47). The levels of acetylcholine, histamine, IL-18, and interferon-alpha were assayed using the ELISA method. Liver and kidney functions within all groups showed a marked alteration compared to the healthy control group. Our statistical analysis found that individuals with dual infection with HCV-COVID-19 had high ferritin levels compared to other biomarkers while those with COVID-19 infection had high levels of D-Dimer. The histamine, acetylcholine, and IL-18 biomarkers in both COVID-19 and dual HCV-COVID-19 groups have shown discriminatory power, making them potential diagnostic tests for infection. These three biomarkers showed satisfactory performance in identifying HCV infection. The IFN-Alpha test performed well in the HCV-COVID-19 group and was fair in the COVID-19 group, but it had little discriminative value in the HCV group. Moreover, our findings highlighted the pivotal role of acetylcholine, histamine, IL-18, and interferon-Alpha in HCV, COVID-19, and dual HCV-COVID-19 infection. Circulating levels of acetylcholine, histamine, IL-18, and interferon-Alpha can be potential early indicators for HCV, COVID-19, and dual HCV-COVID-19 infection. We acknowledge that further large multicenter experimental studies are needed to further investigate the role biomarkers play in influencing the likelihood of infection to confirm and extend our observations and to better understand and ultimately prevent or treat these diseases.
Collapse
Affiliation(s)
- Amany Awad Sakr
- Department of Biotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Amal Ahmed Mohamed
- Biochemistry and Molecular Biology Department, National Hepatology and Tropical Medicine Research Institute (NHTMRI), Cairo, Egypt
| | - Amr E Ahmed
- Department of Biotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed A Abdelhaleem
- Tropical Department, National Hepatology and Tropical Medicine Research Institute (NHTMRI), Cairo, Egypt
| | - Hussein H Samir
- Nephrology Unit, Internal Medicine Department, School of Medicine, Cairo University, Giza, Egypt
| | | | - Nabil A Hasona
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
50
|
Jia R, Li Z, Hu S, Chang H, Zeng M, Liu P, Lu L, Xu M, Zhai X, Qian M, Xu J. Immunological characterization and comparison of children with COVID-19 from their adult counterparts at single-cell resolution. Front Immunol 2024; 15:1358725. [PMID: 39148728 PMCID: PMC11325098 DOI: 10.3389/fimmu.2024.1358725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction The immunological characteristics that could protect children with coronavirus disease 2019 (COVID-19) from severe or fatal illnesses have not been fully understood yet. Methods Here, we performed single-cell RNA sequencing (scRNA-seq) analysis on peripheral blood samples of 15 children (8 with COVID-19) and compared them to 18 adults (13 with COVID-19). Results The child-adult integrated single cell data indicated that children with the disease presented a restrained response to type I interferon in most of the major immune cell types, along with suppression of upstream interferon regulatory factor and toll-like receptor expression in monocytes, which was confirmed by in vitro interferon stimulation assays. Unlike adult patients, children with COVID-19 showed lower frequencies of activated proinflammatory CD14+ monocytes, possibly explaining the rareness of cytokine storm in them. Notably, natural killer (NK) cells in pediatric patients displayed potent cytotoxicity with a rich expression of cytotoxic molecules and upregulated cytotoxic pathways, whereas the cellular senescence, along with the Notch signaling pathway, was significantly downregulated in NK cells, all suggesting more robust cytotoxicity in NK cells of children than adult patients that was further confirmed by CD107a degranulation assays. Lastly, a modest adaptive immune response was evident with more naïve T cells but less activated and proliferated T cells while less naïve B cells but more activated B cells in children over adult patients. Conclusion Conclusively, this preliminary study revealed distinct cell frequency and activation status of major immune cell types, particularly more robust NK cell cytotoxicity in PBMC that might help protect children from severe COVID-19.
Collapse
Affiliation(s)
- Ran Jia
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Zifeng Li
- Department of Hematology and Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Shiwen Hu
- Department of Hematology and Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Hailing Chang
- Department of Infectious Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Mei Zeng
- Department of Infectious Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Pengcheng Liu
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Lijuan Lu
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Menghua Xu
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xiaowen Zhai
- Department of Hematology and Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Maoxiang Qian
- Institute of Pediatrics and Department of Hematology and Oncology, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| |
Collapse
|