1
|
Browne DJ, Crooks P, Smith C, Doolan DL. Differential reactivity of SARS-CoV-2 S-protein T-cell epitopes in vaccinated versus naturally infected individuals. Clin Transl Immunology 2025; 14:e70031. [PMID: 40342296 PMCID: PMC12056234 DOI: 10.1002/cti2.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/20/2025] [Accepted: 03/18/2025] [Indexed: 05/11/2025] Open
Abstract
Objectives Vaccine-induced protective immunity against SARS-CoV-2 has proved difficult to sustain. Robust T-cell responses are thought to play an important role, but T-cell responses against the SARS-CoV-2 spike protein (S-protein), the core vaccine antigen, following vaccination or natural infection are incompletely understood. Methods Herein, the reactivity of 170 putative SARS-CoV-2 S-protein CD8+ and CD4+ T-cell peptide epitopes in the same individuals prior to vaccination, after COVID-19 vaccination, and again following subsequent natural infection was assayed using a high-throughput reverse transcription-quantitative PCR (HTS-RT-qPCR) assay. Results The profile of immunoreactive SARS-CoV-2 S-protein epitopes differed between vaccination and natural infection. Vaccine-induced immunoreactive epitopes were localised primarily into two extra-domanial regions. In contrast, epitopes recognised following natural infection were spread across the antigen. Furthermore, T-cell epitopes in naïve individuals were primarily recognised in association with HLA-A, while natural infection shifted epitope associations towards HLA-B, particularly the B7 supertype. Conclusion This study provides insight into T-cell responses against the SARS-CoV-2 S-protein following vaccination and subsequent natural infection.
Collapse
Affiliation(s)
- Daniel J Browne
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsQLDAustralia
| | - Pauline Crooks
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of ImmunologyQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Corey Smith
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of ImmunologyQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
- Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Denise L Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsQLDAustralia
- Institute for Molecular BioscienceThe University of QueenslandSt LuciaQLDAustralia
| |
Collapse
|
2
|
van den Dijssel J, Konijn VAL, Duurland MC, de Jongh R, Koets L, Veldhuisen B, Raaphorst H, Turksma AW, Freen‐van Heeren JJ, Steenhuis M, Rispens T, van der Schoot CE, van Ham SM, van Lier RAW, van Gisbergen KPJM, ten Brinke A, van de Sandt CE. Age and Latent Cytomegalovirus Infection Do Not Affect the Magnitude of De Novo SARS-CoV-2-Specific CD8 + T Cell Responses. Eur J Immunol 2025; 55:e202451565. [PMID: 40071711 PMCID: PMC11898545 DOI: 10.1002/eji.202451565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 03/15/2025]
Abstract
Immunosenescence, age-related immune dysregulation, reduces immunity upon vaccinations and infections. Cytomegalovirus (CMV) infection results in declining naïve (Tnaïve) and increasing terminally differentiated (Temra) T cell populations, further aggravating immune aging. Both immunosenescence and CMV have been speculated to hamper the formation of protective T-cell immunity against novel or emerging pathogens. The SARS-CoV-2 pandemic presented a unique opportunity to examine the impact of age and/or CMV on the generation of de novo SARS-CoV-2-specific CD8+ T cell responses in 40 younger (22-40 years) and 37 older (50-66 years) convalescent individuals. Heterotetramer combinatorial coding combined with phenotypic markers were used to study 35 SARS-CoV-2 epitope-specific CD8+ T cell populations directly ex vivo. Neither age nor CMV affected SARS-CoV-2-specific CD8+ T cell frequencies, despite reduced total CD8+ Tnaïve cells in older CMV- and CMV+ individuals. Robust SARS-CoV-2-specific central memory CD8+ T (Tcm) responses were detected in younger and older adults regardless of CMV status. Our data demonstrate that immune aging and CMV status did not impact the SARS-CoV-2-specific CD8+ T cell response. However, SARS-CoV-2-specific CD8+ T cells of older CMV- individuals displayed the lowest stem cell memory (Tscm), highest Temra and PD1+ populations, suggesting that age, not CMV, may impact long-term SARS-CoV-2 immunity.
Collapse
Affiliation(s)
- Jet van den Dijssel
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamThe Netherlands
| | - Veronique A. L. Konijn
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamThe Netherlands
| | - Mariël C Duurland
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamThe Netherlands
| | - Rivka de Jongh
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamThe Netherlands
| | - Lianne Koets
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- National Screening Laboratory of SanquinResearch and Laboratory ServicesAmsterdamThe Netherlands
| | - Barbera Veldhuisen
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Immunohematology DiagnosticsSanquin Diagnostic ServicesAmsterdamThe Netherlands
| | | | | | | | - Maurice Steenhuis
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Theo Rispens
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamThe Netherlands
- Amsterdam UMC location Vrije Universiteit AmsterdamMolecular Cell Biology and ImmunologyAmsterdamThe Netherlands
| | - C Ellen van der Schoot
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - S. Marieke van Ham
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamThe Netherlands
- Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Klaas P. J. M. van Gisbergen
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamThe Netherlands
- Physiology and Cancer Programme, Champalimaud ResearchChampalimaud FoundationLisboaPortugal
| | - Anja ten Brinke
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamThe Netherlands
| | - Carolien E. van de Sandt
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamThe Netherlands
- Department of Microbiology and ImmunologyUniversity of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| |
Collapse
|
3
|
Fahnøe U, Feng S, Underwood AP, Jacobsen K, Ameri A, Blicher TH, Sølund CS, Rosenberg BR, Brix L, Weis N, Bukh J. T cell receptor usage and epitope specificity amongst CD8 + and CD4 + SARS-CoV-2-specific T cells. Front Immunol 2025; 16:1510436. [PMID: 40092978 PMCID: PMC11906682 DOI: 10.3389/fimmu.2025.1510436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/02/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has highlighted the critical importance of understanding protective long-lasting immune responses. This study investigates the epitope specificity, T cell receptor (TCR) usage, and phenotypic changes in SARS-CoV-2-specfic CD8+ and CD4+ T cells over time in convalescent individuals with COVID-19. Methods Peripheral blood mononuclear cells (PBMCs) were collected from 28 unvaccinated individuals with primary SARS-CoV-2 infection (6 identified as the D614G variant, clade 20C) and analyzed up to 12 months post-symptom onset. Antigen-specific CD8+ and CD4+ T cells were analyzed using flow cytometry and single-cell RNA sequencing (scRNAseq) using specific dextramer and antibody reagents. TCR clonotypes and activation markers were characterized to explore T cell dynamics. Results SARS-CoV-2-specific CD8+ T cells exhibited waning frequencies long-term, transitioning from memory-like to a naïve-like state. scRNAseq revealed specificity against both spike and non-spike antigens with increased CD95 and CD127 expression over time, indicating that naïve-like T cells may represent stem cell memory T cells, which are multipotent and self-renewing, likely important for long-lived immunity. TCR clonal expansion was observed mainly in memory T cells, with overlapping TCR beta chain (TRB)-complementary determining region 3 (CDR3) sequences between participants, suggesting shared public TCR epitope-specific repertoires against SARS-CoV-2. Further, unique spike-specific CD4+ T cells with high CD95 and CD127 expression were identified, which may play a crucial role in long-term protection. Discussion This study highlights epitope-specificity heterogeneity, with some immunodominant responses, and suggests a potential role for long-lived SARS-CoV-2-specific T cell immunity. Shared TCR repertoires offers insights into cross-reactive and protective T cell clones, providing valuable information for optimizing vaccine strategies against emerging SARS-CoV-2 variants. The findings underscore the critical role of cellular immunity in long-term protection against SARS-CoV-2 and emphasizes the importance of understanding T cell dynamics.
Collapse
Affiliation(s)
- Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Shan Feng
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Alexander P. Underwood
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | | | | | | | - Christina S. Sølund
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Brad R. Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| |
Collapse
|
4
|
Meza J, Glass E, Sandhu AK, Li Y, Karanika S, Fessler K, Hui Y, Schill C, Wang T, Zhang J, Bates RE, Taylor AD, Kapoor AR, Ayeh SK, Karakousis PC, Markham RB, Gordy JT. Novel Vaccines Targeting the Highly Conserved SARS-CoV-2 ORF3a Ectodomain Elicit Immunogenicity in Mouse Models. Vaccines (Basel) 2025; 13:220. [PMID: 40266087 PMCID: PMC11946519 DOI: 10.3390/vaccines13030220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND The majority of antigen-based SARS-CoV-2 (SCV2) vaccines utilized in the clinic have had the Spike protein or domains thereof as the immunogen. While the Spike protein is highly immunogenic, it is also subject to genetic drift over time, which has led to a series of variants of concern that continue to evolve, requiring yearly updates to the vaccine formulations. In this study, we investigate the potential of the N-terminal ectodomain of the ORF3a protein encoded by the orf3a gene of SCV2 to be an evolution-resistant vaccine antigen. This domain is highly conserved over time, and, unlike many other SCV2 conserved proteins, it is present on the exterior of the virion, making it accessible to antibodies. ORF3a is also important for eliciting robust anti-SARS-CoV-2 T-cell responses. METHODS We designed a DNA vaccine by fusing the N-terminal ectodomain of orf3a to macrophage-inflammatory protein 3α (MIP3α), which is a chemokine utilized in our laboratory that enhances vaccine immunogenicity by targeting an antigen to its receptor CCR6 present on immature dendritic cells. The DNA vaccine was tested in mouse immunogenicity studies, vaccinating by intramuscular (IM) electroporation and by intranasal (IN) with CpG adjuvant administrations. We also tested a peptide vaccine fusing amino acids 15-28 of the ectodomain to immunogenic carrier protein KLH, adjuvanted with Addavax. RESULTS The DNA IM route was able to induce 3a-specific splenic T-cell responses, showing proof of principle that the region can be immunogenic. The DNA IN route further showed that we could induce ORF3a-specific T-cell responses in the lung, which are critical for potential disease mitigation. The peptide vaccine elicited a robust anti-ORF3a antibody response systemically, as well as in the mucosa of the lungs and sinus cavity. CONCLUSIONS These studies collectively show that this evolutionarily stable region can be targeted by vaccination strategies, and future work will test if these vaccines, alone or in combination, can result in reduced disease burden in animal challenge models.
Collapse
Affiliation(s)
- Jacob Meza
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.M.); (A.K.S.); (Y.L.); (K.F.); (Y.H.); (C.S.); (T.W.); (J.Z.); (R.E.B.); (A.D.T.); (P.C.K.)
| | - Elizabeth Glass
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.M.); (A.K.S.); (Y.L.); (K.F.); (Y.H.); (C.S.); (T.W.); (J.Z.); (R.E.B.); (A.D.T.); (P.C.K.)
| | - Avinaash K. Sandhu
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.M.); (A.K.S.); (Y.L.); (K.F.); (Y.H.); (C.S.); (T.W.); (J.Z.); (R.E.B.); (A.D.T.); (P.C.K.)
| | - Yangchen Li
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.M.); (A.K.S.); (Y.L.); (K.F.); (Y.H.); (C.S.); (T.W.); (J.Z.); (R.E.B.); (A.D.T.); (P.C.K.)
| | - Styliani Karanika
- Center for Tuberculosis Research, Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (S.K.); (A.R.K.); (S.K.A.)
| | - Kaitlyn Fessler
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.M.); (A.K.S.); (Y.L.); (K.F.); (Y.H.); (C.S.); (T.W.); (J.Z.); (R.E.B.); (A.D.T.); (P.C.K.)
| | - Yinan Hui
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.M.); (A.K.S.); (Y.L.); (K.F.); (Y.H.); (C.S.); (T.W.); (J.Z.); (R.E.B.); (A.D.T.); (P.C.K.)
| | - Courtney Schill
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.M.); (A.K.S.); (Y.L.); (K.F.); (Y.H.); (C.S.); (T.W.); (J.Z.); (R.E.B.); (A.D.T.); (P.C.K.)
| | - Tianyin Wang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.M.); (A.K.S.); (Y.L.); (K.F.); (Y.H.); (C.S.); (T.W.); (J.Z.); (R.E.B.); (A.D.T.); (P.C.K.)
| | - Jiaqi Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.M.); (A.K.S.); (Y.L.); (K.F.); (Y.H.); (C.S.); (T.W.); (J.Z.); (R.E.B.); (A.D.T.); (P.C.K.)
| | - Rowan E. Bates
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.M.); (A.K.S.); (Y.L.); (K.F.); (Y.H.); (C.S.); (T.W.); (J.Z.); (R.E.B.); (A.D.T.); (P.C.K.)
| | - Alannah D. Taylor
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.M.); (A.K.S.); (Y.L.); (K.F.); (Y.H.); (C.S.); (T.W.); (J.Z.); (R.E.B.); (A.D.T.); (P.C.K.)
| | - Aakanksha R. Kapoor
- Center for Tuberculosis Research, Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (S.K.); (A.R.K.); (S.K.A.)
| | - Samuel K. Ayeh
- Center for Tuberculosis Research, Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (S.K.); (A.R.K.); (S.K.A.)
| | - Petros C. Karakousis
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.M.); (A.K.S.); (Y.L.); (K.F.); (Y.H.); (C.S.); (T.W.); (J.Z.); (R.E.B.); (A.D.T.); (P.C.K.)
- Center for Tuberculosis Research, Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (S.K.); (A.R.K.); (S.K.A.)
| | - Richard B. Markham
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.M.); (A.K.S.); (Y.L.); (K.F.); (Y.H.); (C.S.); (T.W.); (J.Z.); (R.E.B.); (A.D.T.); (P.C.K.)
| | - James T. Gordy
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.M.); (A.K.S.); (Y.L.); (K.F.); (Y.H.); (C.S.); (T.W.); (J.Z.); (R.E.B.); (A.D.T.); (P.C.K.)
| |
Collapse
|
5
|
Xie J, Chen DG, Chour W, Ng RH, Zhang R, Yuan D, Choi J, McKasson M, Troisch P, Smith B, Jones L, Webster A, Rasheed Y, Li S, Edmark R, Hong S, Murray KM, Logue JK, Franko NM, Lausted CG, Piening B, Algren H, Wallick J, Magis AT, Watanabe K, Mease P, Greenberg PD, Chu H, Goldman JD, Su Y, Heath JR. APMAT analysis reveals the association between CD8 T cell receptors, cognate antigen, and T cell phenotype and persistence. Nat Commun 2025; 16:1402. [PMID: 39915487 PMCID: PMC11802929 DOI: 10.1038/s41467-025-56659-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/27/2025] [Indexed: 02/09/2025] Open
Abstract
Elucidating the relationships between a class I peptide antigen, a CD8 T cell receptor (TCR) specific to that antigen, and the T cell phenotype that emerges following antigen stimulation, remains a mostly unsolved problem, largely due to the lack of large data sets that can be mined to resolve such relationships. Here, we describe Antigen-TCR Pairing and Multiomic Analysis of T-cells (APMAT), an integrated experimental-computational framework designed for the high-throughput capture and analysis of CD8 T cells, with paired antigen, TCR sequence, and single-cell transcriptome. Starting with 951 putative antigens representing a comprehensive survey of the SARS-CoV-2 viral proteome, we utilize APMAT for the capture and single cell analysis of CD8 T cells from 62 HLA A*02:01 COVID-19 participants. We leverage this comprehensive dataset to integrate with peptide antigen properties, TCR CDR3 sequences, and T cell phenotypes to show that distinct physicochemical features of the antigen-TCR pairs strongly associate with both T cell phenotype and T cell persistence. This analysis suggests that CD8 T cell phenotype following antigen stimulation is at least partially deterministic, rather than the result of stochastic biological properties.
Collapse
Affiliation(s)
- Jingyi Xie
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195, USA
| | - Daniel G Chen
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - William Chour
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Rachel H Ng
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Rongyu Zhang
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Dan Yuan
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Jongchan Choi
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | | | | | - Brett Smith
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Lesley Jones
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | | | - Yusuf Rasheed
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Sarah Li
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Rick Edmark
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Sunga Hong
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Kim M Murray
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Jennifer K Logue
- Department of Medicine, Allergy and Infectious Diseases, University of Washington, Seattle, WA, 98109, USA
| | - Nicholas M Franko
- Department of Medicine, Allergy and Infectious Diseases, University of Washington, Seattle, WA, 98109, USA
| | | | - Brian Piening
- Providence Health & Services, Seattle, WA, 99109, USA
| | - Heather Algren
- Providence Health & Services, Seattle, WA, 99109, USA
- Providence Swedish Medical Center, Seattle, WA, 98122, USA
| | - Julie Wallick
- Providence Health & Services, Seattle, WA, 99109, USA
- Providence Swedish Medical Center, Seattle, WA, 98122, USA
| | | | - Kino Watanabe
- Department of Medicine, Allergy and Infectious Diseases, University of Washington, Seattle, WA, 98109, USA
| | - Phil Mease
- Providence Swedish Medical Center, Seattle, WA, 98122, USA
| | - Philip D Greenberg
- Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Medicine, Allergy and Infectious Diseases, University of Washington, Seattle, WA, 98109, USA
- Department of Immunology, University of Washington, Seattle, WA, 98109, USA
| | - Helen Chu
- Department of Medicine, Allergy and Infectious Diseases, University of Washington, Seattle, WA, 98109, USA
| | - Jason D Goldman
- Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Medicine, Allergy and Infectious Diseases, University of Washington, Seattle, WA, 98109, USA
- Providence Health & Services, Seattle, WA, 99109, USA
- Providence Swedish Medical Center, Seattle, WA, 98122, USA
| | - Yapeng Su
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - James R Heath
- Institute for Systems Biology, Seattle, WA, 98109, USA.
| |
Collapse
|
6
|
He R, Meng L, Sun Y, Wang J, Wang S, Liu Y, Fei L, Wang Z, Zhang Q, Wu Y, Chen Y, Diao B. Screening for immunodominant epitopes of SARS-CoV-2 based on CD8 + T cell responses from individuals with HLA-A homozygous alleles. Mol Immunol 2025; 178:52-63. [PMID: 39864283 DOI: 10.1016/j.molimm.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/15/2025] [Accepted: 01/19/2025] [Indexed: 01/28/2025]
Abstract
PURPOSE SARS-CoV-2-specific CD8+ cytotoxic T lymphocytes (CTLs) are crucial in viral clearance, disease progression, and reinfection control. However, numerous SARS-CoV-2 immunodominant CTL epitopes theoretically are still unidentified due to the genetic polymorphism of human leukocyte antigen class I (HLA-I) molecules. METHODS The CTL epitopes of SARS-CoV-2 were predicted by the epitope affinity and immunogenicity prediction platforms: the NetMHCpan and the PromPPD. Individuals with HLA-A homozygous alleles were screened from 252 COVID-19 vaccinees, including the Ad5-nCoV vaccine (CanSino, n = 183) and the CoronaVac inactivated vaccine (Sinovac, n = 69) using MiSeqDx™ generation sequencing, and their PBMCs were further stimulated by the predicted peptides to screen the immunodominant epitopes according to the secretion of IFN-γ from CD8+ T cells. Peptide-MHC tetramers were constructed and used to detect the frequency of antigen specific CTLs in vivo. RESULTS Individuals with HLA-A homozygous alleles including HLA-A*01 (n = 1), -A*02 (n = 9), - A*03 and -A*11 (n = 12), and -A*24 (n = 7) supertypes were selected. Twelve immunodominant CTL epitopes for these HLA-A allotypes were finally screened based on the frequency of IFN-γ+CD8+ T cells in homozygous individuals. The SARS-CoV-2 specific CTLs from Omicron variant infected patients were successfully evaluated by these novel peptide-HLA tetramers. CONCLUSION A set of immunodominant CTL epitopes of SARS-CoV-2 was identified, and the antigen-specific CD8+ T cells in viral infected patients or COVID-19 vaccinees could be rapidly detected by a mixture of the peptide-MHC tetramers.
Collapse
Affiliation(s)
- Rui He
- School of Medicine, Chongqing University, Chongqing 400030, PR China; Institute of Immunology, PLA, The Army Medical University, Chongqing 400038, PR China
| | - Lingxin Meng
- Institute of Immunology, PLA, The Army Medical University, Chongqing 400038, PR China
| | - Yuting Sun
- Institute of Immunology, PLA, The Army Medical University, Chongqing 400038, PR China
| | - Jingsong Wang
- Institute of Immunology, PLA, The Army Medical University, Chongqing 400038, PR China
| | - Shufeng Wang
- Institute of Immunology, PLA, The Army Medical University, Chongqing 400038, PR China
| | - Yueping Liu
- Institute of Immunology, PLA, The Army Medical University, Chongqing 400038, PR China; Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, Hubei 430015, PR China
| | - Lei Fei
- Institute of Immunology, PLA, The Army Medical University, Chongqing 400038, PR China
| | - Zhongfang Wang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China
| | - Qinggao Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning 116622, PR China
| | - Yuzhang Wu
- Institute of Immunology, PLA, The Army Medical University, Chongqing 400038, PR China
| | - Yongwen Chen
- Institute of Immunology, PLA, The Army Medical University, Chongqing 400038, PR China; Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning 116622, PR China.
| | - Bo Diao
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, Hubei 430015, PR China.
| |
Collapse
|
7
|
Zhao Y, He C, Peng M, Li M, Liu X, Han X, Fu Q, Wu Y, Yue F, Yan C, Zhao G, Shen C. Large-Scale Screening of CD4 + T-Cell Epitopes From SARS-CoV-2 Proteins and the Universal Detection of SARS-CoV-2 Specific T Cells for Northeast Asian Population. J Med Virol 2025; 97:e70241. [PMID: 39977358 DOI: 10.1002/jmv.70241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/09/2024] [Accepted: 01/25/2025] [Indexed: 02/22/2025]
Abstract
The polymorphism of human leukocyte antigens in the Northeast Asian populations and the lack of broad-spectrum T-cell epitopes covering this cohort markedly limited the development of T cell-directed vaccines against SARS-CoV-2 infection, and also hampered the universal detection of SARS-CoV-2 specific T cells. In this study, 93 CD4+ T-cell epitopes restricted by 12 prevalent HLA-DRB1 allotypes, which covering over 80% Chinese and Northeast Asian populations, were identified from the S, E, M, N and RdRp proteins of SARS-CoV-2 by in silico prediction, DC-peptide-PBL coculture experiment, and immunization in HLA-A2/DR1 transgenic mice. Furthermore, by using validated 215 CD8+ T cell epitope peptides and 123 CD4+ T-cell epitope peptides covering Northeast Asian cohort, the universal ELISpot detection systems of SARS-CoV-2 specific CD8+ T cells and CD4+ T cells were established, for the first time, and followed by the tests for 50 unexposed and 100 convalescent samples. The median of spot-forming units for CD8+ T cells and CD4+ T cells were 68 and 15, respectively, in the unexposed donors, but were 137 and 52 in the convalescent donors 6 months after recovery while 128 and 47 in the convalescent donors 18 months after recovery. This work initially provided the broad-spectrum CD4+ T-cell epitope library of SARS-CoV-2 for the design of T cell-directed vaccines and the universal T cell detection tool tailoring to Northeast Asian population, and confirmed the long-term memory T cell immunity after SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Chengtao He
- Nanjing Red Cross Blood Center, Nanjing, China
| | - Min Peng
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Min Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Laboratory of Advanced Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Xiaotao Liu
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Xuelian Han
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Laboratory of Advanced Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Qiang Fu
- Nanjing Red Cross Blood Center, Nanjing, China
| | - Yandan Wu
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Fangping Yue
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Chunguang Yan
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Laboratory of Advanced Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Chuanlai Shen
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
8
|
Sun Y, Gao Y, Su T, Zhang L, Zhou H, Zhang J, Sun H, Bai J, Jiang P. Nanoparticle Vaccine Triggers Interferon-Gamma Production and Confers Protective Immunity against Porcine Reproductive and Respiratory Syndrome Virus. ACS NANO 2025; 19:852-870. [PMID: 39757928 DOI: 10.1021/acsnano.4c12212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
The swine industry annually suffers significant economic losses caused by porcine reproductive and respiratory syndrome virus (PRRSV). Because the available commercial vaccines have limited protective efficacy against epidemic PRRSV, there is an urgent need for innovative solutions. Nanoparticle vaccines induce robust immune responses and have become a promising direction in vaccine development. In this study, we designed and produced a self-assembling nanoparticle vaccine derived from thermophilic archaeal ferritin to combat epidemic PRRSV. First, multiple T cell epitopes targeting viral structural proteins were identified by IFN-γ screening after PRRSV infection. Three different self-assembled nanoparticles with epitopes targeting viral GP3, GP4, and GP5 proteins were constructed and mixed to generate a FeCocktail vaccine. Experiments showed that the FeCocktail vaccine effectively activated CD4+ and CD8+ T cells and effector memory T cells in mice. Piglets immunized with the FeCocktail vaccine generated specific antibodies and exhibited increased levels of PRRSV-specific IFN-γ produced by functional CD4+ and CD8+ cells. The FeCocktail also provided protective efficacy against PRRSV challenge, including mitigation of clinical symptoms, reduction of viral loads in serum and lungs, and the alleviation of lung tissue damage. In conclusion, this study offers a promising candidate vaccine for combating epidemic PRRSV, and affirms the utility of nanoparticle protein as a platform for next-generation PRRSV vaccine development.
Collapse
Affiliation(s)
- Yangyang Sun
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanni Gao
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Tongjian Su
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lujie Zhang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haoran Zhou
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Zhang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haifeng Sun
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Bai
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Ping Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
9
|
Xie J, Chen DG, Chour W, Ng RH, Zhang R, Yuan D, Choi J, McKasson M, Troisch P, Smith B, Jones L, Webster A, Rasheed Y, Li S, Edmark R, Hong S, Murray KM, Logue JK, Franko NM, Lausted CG, Piening B, Algren H, Wallick J, Magis AT, Watanabe K, Mease P, Greenberg PD, Chu H, Goldman JD, Su Y, Heath JR. APMAT analysis reveals the association between CD8 T cell receptors, cognate antigen, and T cell phenotype and persistence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631993. [PMID: 39829843 PMCID: PMC11741388 DOI: 10.1101/2025.01.08.631993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Elucidating the relationships between a class I peptide antigen, a CD8 T cell receptor (TCR) specific to that antigen, and the T cell phenotype that emerges following antigen stimulation, remains a mostly unsolved problem, largely due to the lack of large data sets that can be mined to resolve such relationships. Here, we describe Antigen-TCR Pairing and Multiomic Analysis of T-cells (APMAT), an integrated experimental-computational framework designed for the high-throughput capture and analysis of CD8 T cells, with paired antigen, TCR sequence, and single-cell transcriptome. Starting with 951 putative antigens representing a comprehensive survey of the SARS-CoV-2 viral proteome, we utilize APMAT for the capture and single cell analysis of CD8 T cells from 62 HLA A*02:01 COVID-19 participants. We leverage this unique, comprehensive dataset to integrate with peptide antigen properties, TCR CDR3 sequences, and T cell phenotypes to show that distinct physicochemical features of the antigen-TCR pairs strongly associate with both T cell phenotype and T cell persistence. This analysis suggests that CD8+ T cell phenotype following antigen stimulation is at least partially deterministic, rather than the result of stochastic biological properties.
Collapse
Affiliation(s)
- Jingyi Xie
- Institute of Systems Biology, Seattle, WA, 98109, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195, USA
| | - Daniel G. Chen
- Institute of Systems Biology, Seattle, WA, 98109, USA
- Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - William Chour
- Institute of Systems Biology, Seattle, WA, 98109, USA
| | - Rachel H. Ng
- Institute of Systems Biology, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Rongyu Zhang
- Institute of Systems Biology, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Dan Yuan
- Institute of Systems Biology, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Jongchan Choi
- Institute of Systems Biology, Seattle, WA, 98109, USA
| | | | | | - Brett Smith
- Institute of Systems Biology, Seattle, WA, 98109, USA
| | - Lesley Jones
- Institute of Systems Biology, Seattle, WA, 98109, USA
| | | | - Yusuf Rasheed
- Institute of Systems Biology, Seattle, WA, 98109, USA
| | - Sarah Li
- Institute of Systems Biology, Seattle, WA, 98109, USA
| | - Rick Edmark
- Institute of Systems Biology, Seattle, WA, 98109, USA
| | - Sunga Hong
- Institute of Systems Biology, Seattle, WA, 98109, USA
| | - Kim M. Murray
- Institute of Systems Biology, Seattle, WA, 98109, USA
| | - Jennifer K. Logue
- Department of Medicine, Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Nicholas M. Franko
- Department of Medicine, Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | | | - Brian Piening
- Providence Health & Services, Seattle, WA, 99109, USA
| | - Heather Algren
- Providence Health & Services, Seattle, WA, 99109, USA
- Providence Swedish Medical Center, Seattle, WA, 98122, USA
| | - Julie Wallick
- Providence Health & Services, Seattle, WA, 99109, USA
- Providence Swedish Medical Center, Seattle, WA, 98122, USA
| | | | - Kino Watanabe
- Department of Medicine, Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Phil Mease
- Providence Swedish Medical Center, Seattle, WA, 98122, USA
| | - Philip D. Greenberg
- Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Medicine, Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Helen Chu
- Department of Medicine, Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Jason D. Goldman
- Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Medicine, Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
- Providence Health & Services, Seattle, WA, 99109, USA
- Providence Swedish Medical Center, Seattle, WA, 98122, USA
| | - Yapeng Su
- Institute of Systems Biology, Seattle, WA, 98109, USA
- Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- These authors jointly-supervised the work
| | - James R. Heath
- Institute of Systems Biology, Seattle, WA, 98109, USA
- These authors jointly-supervised the work
- Corresponding author, Leading contact
| |
Collapse
|
10
|
Pais R, Nagraj AK, Patel R, Gavade A, Momin M, Scheele J, Seiz W, Patil J. Amino Acids Frequency and Interaction Trends: Comprehensive Analysis of Experimentally Validated Viral Antigen-Antibody Complexes. Mol Biotechnol 2025:10.1007/s12033-024-01361-w. [PMID: 39775710 DOI: 10.1007/s12033-024-01361-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025]
Abstract
Antibodies have specific binding capabilities and therapeutic potential for treating various diseases, including viral infections. The amino acid composition of the hypervariable complementarity determining regions (CDR) loops and the framework regions (FR) are the determining factors for the affinity and therapeutic efficacy of the antibodies. In this study selected and curated, 77 viral antigen-human antibody complexes from Protein data bank from the Thera-SAbdab database were analyzed. The results revealed diversity indices within specific CDR regions, amino acid frequencies, paratope-epitope interactions, bond formations, and bond types among the analyzed viral Ag-Ab complexes. The finding revealed that Ser, Gly, Tyr, Thr, and Phe are prominently present in the antibody CDRs. Analysis of CDR profiles indicated an average amino acid diversity of 60-80% in heavy chain CDRs and 45-60% in light chain CDRs. Aromatic residues, particularly Tyr, Phe, and Trp showed significant involvement in the paratope-epitope interactions in the heavy chain, while Tyr, Ser, and Thr were key contributors in the light chain. Furthermore, the study examined the occurrence of amino acids in both light and heavy chains of viral Ag- human Ab complexes, analyzing the presence of amino acids as single residues, dipeptides and tripeptides. The analysis is crucial for enhancing the antibody engineering processes including, design, optimization, affinity enhancement, and overall antibody development.
Collapse
Affiliation(s)
- Roylan Pais
- Innoplexus Consulting Services Pvt Ltd, Floor 7Th, Midas Tower, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Anil Kumar Nagraj
- Innoplexus Consulting Services Pvt Ltd, Floor 7Th, Midas Tower, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Riya Patel
- Innoplexus Consulting Services Pvt Ltd, Floor 7Th, Midas Tower, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Akshata Gavade
- Innoplexus Consulting Services Pvt Ltd, Floor 7Th, Midas Tower, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Mohasin Momin
- Innoplexus Consulting Services Pvt Ltd, Floor 7Th, Midas Tower, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Juergen Scheele
- Innoplexus AG, Frankfurter Str. 27, 65760, Eschborn, Germany
| | - Werner Seiz
- Innoplexus AG, Frankfurter Str. 27, 65760, Eschborn, Germany
| | - Jaspal Patil
- Innoplexus Consulting Services Pvt Ltd, Floor 7Th, Midas Tower, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India.
| |
Collapse
|
11
|
Wang H, Gao H, Li M, Cheng L, Zhang X, Zhang X, Zhan H, Liu Y, Wang Y, Ren J, Hu D, He F, Dai E, Li Y, Yu X. Proteome-Wide Analysis of Antibody Responses in Asymptomatic Omicron BA.2-Infected Individuals at the Amino Acid Resolution. J Proteome Res 2025; 24:189-201. [PMID: 39661118 DOI: 10.1021/acs.jproteome.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Humoral immunity plays a critical role in clearing SARS-CoV-2 during viral invasion. However, the proteome-wide characteristics of antibody responses in individuals infected with Omicron variant, both asymptomatic and symptomatic, remain poorly understood. We profiled the serum antibodies from 108 individuals, including healthy controls and those infected with Omicron BA.2, using a SARS-CoV-2 proteome microarray at the amino acid resolution. We constructed a landscape of B-cell epitopes across the SARS-CoV-2 proteome in symptomatic and asymptomatic individuals. Immunodominant epitopes were mainly derived from S, N, Nsp3, M, and ORF3a proteins, with some epitopes overlapping with T-cell epitopes. Using machine learning, we identified a proteomic signature capable of distinguishing asymptomatic individuals from healthy controls in both training and validation cohorts, achieving AUCs of 0.988 and 0.857, respectively. These findings provide crucial immunological insights into BA.2 infections of the Omicron and have implications for future COVID-19 diagnostics and therapeutics.
Collapse
Affiliation(s)
- Hongye Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Huixia Gao
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang 050021, China
| | - Mansheng Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Linlin Cheng
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Xin Zhang
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang 050021, China
| | - Xiaomei Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Haoting Zhan
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Yongmei Liu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Yuling Wang
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang 050021, China
| | - Jing Ren
- ProteomicsEra Medical Co., Ltd, Beijing 102206, China
| | - Di Hu
- ProteomicsEra Medical Co., Ltd, Beijing 102206, China
| | - Fuchu He
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Erhei Dai
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang 050021, China
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Xiaobo Yu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
12
|
Kovalchik KA, Hamelin DJ, Kubiniok P, Bourdin B, Mostefai F, Poujol R, Paré B, Simpson SM, Sidney J, Bonneil É, Courcelles M, Saini SK, Shahbazy M, Kapoor S, Rajesh V, Weitzen M, Grenier JC, Gharsallaoui B, Maréchal L, Wu Z, Savoie C, Sette A, Thibault P, Sirois I, Smith MA, Decaluwe H, Hussin JG, Lavallée-Adam M, Caron E. Machine learning-enhanced immunopeptidomics applied to T-cell epitope discovery for COVID-19 vaccines. Nat Commun 2024; 15:10316. [PMID: 39609459 PMCID: PMC11604954 DOI: 10.1038/s41467-024-54734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
Next-generation T-cell-directed vaccines for COVID-19 focus on establishing lasting T-cell immunity against current and emerging SARS-CoV-2 variants. Precise identification of conserved T-cell epitopes is critical for designing effective vaccines. Here we introduce a comprehensive computational framework incorporating a machine learning algorithm-MHCvalidator-to enhance mass spectrometry-based immunopeptidomics sensitivity. MHCvalidator identifies unique T-cell epitopes presented by the B7 supertype, including an epitope from a + 1-frameshift in a truncated Spike antigen, supported by ribosome profiling. Analysis of 100,512 COVID-19 patient proteomes shows Spike antigen truncation in 0.85% of cases, revealing frameshifted viral antigens at the population level. Our EpiTrack pipeline tracks global mutations of MHCvalidator-identified CD8 + T-cell epitopes from the BNT162b4 vaccine. While most vaccine epitopes remain globally conserved, an immunodominant A*01-associated epitope mutates in Delta and Omicron variants. This work highlights SARS-CoV-2 antigenic features and emphasizes the importance of continuous adaptation in T-cell vaccine development.
Collapse
Affiliation(s)
- Kevin A Kovalchik
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - David J Hamelin
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
- Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
- Mila-Quebec AI Institute, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Peter Kubiniok
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Benoîte Bourdin
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Fatima Mostefai
- Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
- Mila-Quebec AI Institute, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Raphaël Poujol
- Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
| | - Bastien Paré
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Shawn M Simpson
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Éric Bonneil
- Institute of Research in Immunology and Cancer, Montreal, QC, Canada
| | | | - Sunil Kumar Saini
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mohammad Shahbazy
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Saketh Kapoor
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Vigneshwar Rajesh
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Maya Weitzen
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | | | - Bayrem Gharsallaoui
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Loïze Maréchal
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Zhaoguan Wu
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Christopher Savoie
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Pierre Thibault
- Institute of Research in Immunology and Cancer, Montreal, QC, Canada
- Department of Chemistry, Université de Montréal, Montreal, QC, Canada
| | - Isabelle Sirois
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Martin A Smith
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Hélène Decaluwe
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
- Microbiology, Infectiology and Immunology Department, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Pediatric Immunology and Rheumatology Division, Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Julie G Hussin
- Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada.
- Mila-Quebec AI Institute, Montreal, QC, Canada.
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
| | - Mathieu Lavallée-Adam
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada.
| | - Etienne Caron
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada.
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Yale Center for Immuno-Oncology, Yale Center for Systems and Engineering Immunology, Yale Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
13
|
Bozkus CC, Brown M, Velazquez L, Thomas M, Wilson EA, O’Donnell T, Ruchnewitz D, Geertz D, Bykov Y, Kodysh J, Oguntuyo KY, Roudko V, Hoyos D, Srivastava KD, Kleiner G, Alshammary H, Karekar N, McClain C, Gopal R, Nie K, Del Valle D, Delbeau-Zagelbaum D, Rodriguez D, Setal J, The Mount Sinai COVID-19 Biobank Team, Carroll E, Wiesendanger M, Gulko PS, Charney A, Merad M, Kim-Schulze S, Lee B, Wajnberg A, Simon V, Greenbaum BD, Chowell D, Vabret N, Luksza M, Bhardwaj N. T cell epitope mapping reveals immunodominance of evolutionarily conserved regions within SARS-CoV-2 proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619918. [PMID: 39484455 PMCID: PMC11527131 DOI: 10.1101/2024.10.23.619918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
As SARS-CoV-2 variants continue to emerge capable of evading neutralizing antibodies, it has become increasingly important to fully understand the breadth and functional profile of T cell responses to determine their impact on the immune surveillance of variant strains. Here, sampling healthy individuals, we profiled the kinetics and polyfunctionality of T cell immunity elicited by mRNA vaccination. Modeling of anti-spike T cell responses against ancestral and variant strains of SARS-CoV-2 suggested that epitope immunodominance and cross-reactivity are major predictive determinants of T cell immunity. To identify immunodominant epitopes across the viral proteome, we generated a comprehensive map of CD4+ and CD8+ T cell epitopes within non-spike proteins that induced polyfunctional T cell responses in convalescent patients. We found that immunodominant epitopes mainly resided within regions that were minimally disrupted by mutations in emerging variants. Conservation analysis across historical human coronaviruses combined with in silico alanine scanning mutagenesis of non-spike proteins underscored the functional importance of mutationally-constrained immunodominant regions. Collectively, these findings identify immunodominant T cell epitopes across the mutationally-constrained SARS-CoV-2 proteome, potentially providing immune surveillance against emerging variants, and inform the design of next-generation vaccines targeting antigens throughout SARS-CoV-2 proteome for broader and more durable protection.
Collapse
Affiliation(s)
- Cansu Cimen Bozkus
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Parker Institute of Cancer Immunotherapy, San Francisco, CA, USA
| | - Matthew Brown
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Parker Institute of Cancer Immunotherapy, San Francisco, CA, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leandra Velazquez
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcus Thomas
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric A. Wilson
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Timothy O’Donnell
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Denis Ruchnewitz
- Institute for Biological Physics, University of Cologne, 50937 Cologne, Germany
| | - Douglas Geertz
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yonina Bykov
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julia Kodysh
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kasopefoluwa Y. Oguntuyo
- The Department of Medicine, The Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vladimir Roudko
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Hoyos
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Komal D. Srivastava
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giulio Kleiner
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hala Alshammary
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Neha Karekar
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher McClain
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ramya Gopal
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kai Nie
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diane Del Valle
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Denise Rodriguez
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Setal
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Emily Carroll
- The Department of Medicine, The Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Margrit Wiesendanger
- The Department of Medicine, The Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Percio S. Gulko
- The Department of Medicine, The Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander Charney
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ania Wajnberg
- The Department of Medicine, The Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin D Greenbaum
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Diego Chowell
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicolas Vabret
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marta Luksza
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nina Bhardwaj
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Parker Institute of Cancer Immunotherapy, San Francisco, CA, USA
| |
Collapse
|
14
|
Deng S, Xu Z, Hu J, Yang Y, Zhu F, Liu Z, Zhang H, Wu S, Jin T. The molecular mechanisms of CD8 + T cell responses to SARS-CoV-2 infection mediated by TCR-pMHC interactions. Front Immunol 2024; 15:1468456. [PMID: 39450171 PMCID: PMC11499136 DOI: 10.3389/fimmu.2024.1468456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Cytotoxic CD8+ T lymphocytes (CTLs) have been implicated in the severity of COVID-19. The TCR-pMHC ternary complex, formed by the T cell receptor (TCR) and peptide-MHC (major histocompatibility complex), constitutes the molecular basis of CTL responses against SARS-CoV-2. While numerous studies have been conducted on T cell immunity, the molecular mechanisms underlying CTL-mediated immunity against SARS-CoV-2 infection have not been well elaborated. In this review, we described the association between HLA variants and different immune responses to SARS-CoV-2 infection, which may lead to varying COVID-19 outcomes. We also summarized the specific TCR repertoires triggered by certain SARS-CoV-2 CTL epitopes, which might explain the variations in disease outcomes among different patients. Importantly, we have highlighted the primary strategies used by SARS-CoV-2 variants to evade T-cell killing: disrupting peptide-MHC binding, TCR recognition, and antigen processing. This review provides valuable insights into the molecule mechanism of CTL responses during SARS-CoV-2 infection, aiding efforts to control the pandemic and prepare for future challenges.
Collapse
Affiliation(s)
- Shasha Deng
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhihao Xu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jing Hu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yunru Yang
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fang Zhu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhuan Liu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, China
- Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| |
Collapse
|
15
|
Kumar S, Nan L, Kalodimou G, Jany S, Freudenstein A, Brandmüller C, Müller K, Girl P, Ehmann R, Guggemos W, Seilmaier M, Wendtner CM, Volz A, Sutter G, Fux R, Tscherne A. Implementation of an Immunoassay Based on the MVA-T7pol-Expression System for Rapid Identification of Immunogenic SARS-CoV-2 Antigens: A Proof-of-Concept Study. Int J Mol Sci 2024; 25:10898. [PMID: 39456680 PMCID: PMC11508112 DOI: 10.3390/ijms252010898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The emergence of hitherto unknown viral pathogens presents a great challenge for researchers to develop effective therapeutics and vaccines within a short time to avoid an uncontrolled global spread, as seen during the coronavirus disease 2019 (COVID-19) pandemic. Therefore, rapid and simple methods to identify immunogenic antigens as potential therapeutical targets are urgently needed for a better pandemic preparedness. To address this problem, we chose the well-characterized Modified Vaccinia virus Ankara (MVA)-T7pol expression system to establish a workflow to identify immunogens when a new pathogen emerges, generate candidate vaccines, and test their immunogenicity in an animal model. By using this system, we detected severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) nucleoprotein (N)-, and spike (S)-specific antibodies in COVID-19 patient sera, which is in line with the current literature and our observations from previous immunogenicity studies. Furthermore, we detected antibodies directed against the SARS-CoV-2-membrane (M) and -ORF3a proteins in COVID-19 patient sera and aimed to generate recombinant MVA candidate vaccines expressing either the M or ORF3a protein. When testing our candidate vaccines in a prime-boost immunization regimen in humanized HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-knockout mice, we were able to demonstrate M- and ORF3a-specific cellular and humoral immune responses. Hence, the established workflow using the MVA-T7pol expression system represents a rapid and efficient tool to identify potential immunogenic antigens and provides a basis for future development of candidate vaccines.
Collapse
Affiliation(s)
- Satendra Kumar
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
| | - Liangliang Nan
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
| | - Georgia Kalodimou
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany (R.E.)
| | - Sylvia Jany
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
| | - Astrid Freudenstein
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
| | - Christine Brandmüller
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
| | - Katharina Müller
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany (R.E.)
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
| | - Philipp Girl
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany (R.E.)
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
- Chair of Bacteriology and Mycology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany
| | - Rosina Ehmann
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany (R.E.)
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
| | - Wolfgang Guggemos
- Munich Clinic Schwabing, Academic Teaching Hospital, Ludwig Maximilians University Munich (LMU Munich), 80804 Munich, Germany; (W.G.); (M.S.)
| | - Michael Seilmaier
- Munich Clinic Schwabing, Academic Teaching Hospital, Ludwig Maximilians University Munich (LMU Munich), 80804 Munich, Germany; (W.G.); (M.S.)
| | - Clemens-Martin Wendtner
- Medical Clinic III, University Hospital, Ludwig Maximilians University Munich (LMU Munich), 80336 Munich, Germany;
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- German Center for Infection Research, Partner Site Hannover-Braunschweig, 30559 Hannover, Germany
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany (R.E.)
| | - Robert Fux
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
| | - Alina Tscherne
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany (R.E.)
| |
Collapse
|
16
|
Vránová L, Poláková I, Vaníková Š, Saláková M, Musil J, Vaníčková M, Vencálek O, Holub M, Bohoněk M, Řezáč D, Dresler J, Tachezy R, Šmahel M. Multiparametric analysis of the specific immune response against SARS-CoV-2. Infect Dis (Lond) 2024; 56:851-869. [PMID: 38805304 DOI: 10.1080/23744235.2024.2358379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/24/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND SARS-CoV-2, which causes COVID-19, has killed more than 7 million people worldwide. Understanding the development of postinfectious and postvaccination immune responses is necessary for effective treatment and the introduction of appropriate antipandemic measures. OBJECTIVES We analysed humoral and cell-mediated anti-SARS-CoV-2 immune responses to spike (S), nucleocapsid (N), membrane (M), and open reading frame (O) proteins in individuals collected up to 1.5 years after COVID-19 onset and evaluated immune memory. METHODS Peripheral blood mononuclear cells and serum were collected from patients after COVID-19. Sampling was performed in two rounds: 3-6 months after infection and after another year. Most of the patients were vaccinated between samplings. SARS-CoV-2-seronegative donors served as controls. ELISpot assays were used to detect SARS-CoV-2-specific T and B cells using peptide pools (S, NMO) or recombinant proteins (rS, rN), respectively. A CEF peptide pool consisting of selected viral epitopes was applied to assess the antiviral T-cell response. SARS-CoV-2-specific antibodies were detected via ELISA and a surrogate virus neutralisation assay. RESULTS We confirmed that SARS-CoV-2 infection induces the establishment of long-term memory IgG+ B cells and memory T cells. We also found that vaccination enhanced the levels of anti-S memory B and T cells. Multivariate comparison also revealed the benefit of repeated vaccination. Interestingly, the T-cell response to CEF was lower in patients than in controls. CONCLUSION This study supports the importance of repeated vaccination for enhancing immunity and suggests a possible long-term perturbation of the overall antiviral immune response caused by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Lucie Vránová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ingrid Poláková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Šárka Vaníková
- Department of Immunomonitoring and Flow Cytometry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Martina Saláková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Jan Musil
- Department of Immunomonitoring and Flow Cytometry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Marie Vaníčková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ondřej Vencálek
- Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacky University in Olomouc, Olomouc, Czech Republic
| | - Michal Holub
- Department of Infectious Diseases, First Faculty of Medicine, Military University Hospital Prague and Charles University, Prague, Czech Republic
| | - Miloš Bohoněk
- Department of Hematology and Blood Transfusion, Military University Hospital Prague, Prague, Czech Republic
- Faculty of Biomedical Engineering, Czech Technical University, Prague, Czech Republic
| | - David Řezáč
- Department of Infectious Diseases, First Faculty of Medicine, Military University Hospital Prague and Charles University, Prague, Czech Republic
| | - Jiří Dresler
- Military Health Institute, Military Medical Agency, Prague, Czech Republic
| | - Ruth Tachezy
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Michal Šmahel
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
17
|
Notarbartolo S. T-Cell Immune Responses to SARS-CoV-2 Infection and Vaccination. Vaccines (Basel) 2024; 12:1126. [PMID: 39460293 PMCID: PMC11511197 DOI: 10.3390/vaccines12101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
The innate and adaptive immune systems collaborate to detect SARS-CoV-2 infection, minimize the viral spread, and kill infected cells, ultimately leading to the resolution of the infection. The adaptive immune system develops a memory of previous encounters with the virus, providing enhanced responses when rechallenged by the same pathogen. Such immunological memory is the basis of vaccine function. Here, we review the current knowledge on the immune response to SARS-CoV-2 infection and vaccination, focusing on the pivotal role of T cells in establishing protective immunity against the virus. After providing an overview of the immune response to SARS-CoV-2 infection, we describe the main features of SARS-CoV-2-specific CD4+ and CD8+ T cells, including cross-reactive T cells, generated in patients with different degrees of COVID-19 severity, and of Spike-specific CD4+ and CD8+ T cells induced by vaccines. Finally, we discuss T-cell responses to SARS-CoV-2 variants and hybrid immunity and conclude by highlighting possible strategies to improve the efficacy of COVID-19 vaccination.
Collapse
Affiliation(s)
- Samuele Notarbartolo
- Infectious Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
18
|
Mahncke C, Schmiedeke F, Simm S, Kaderali L, Bröker BM, Seifert U, Cammann C. DiscovEpi: automated whole proteome MHC-I-epitope prediction and visualization. BMC Bioinformatics 2024; 25:310. [PMID: 39333860 PMCID: PMC11438315 DOI: 10.1186/s12859-024-05931-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Antigen presentation is a central step in initiating and shaping the adaptive immune response. To activate CD8+ T cells, pathogen-derived peptides are presented on the cell surface of antigen-presenting cells bound to major histocompatibility complex (MHC) class I molecules. CD8+ T cells that recognize these complexes with their T cell receptor are activated and ideally eliminate infected cells. Prediction of putative peptides binding to MHC class I (MHC-I) is crucial for understanding pathogen recognition in specific immune responses and for supporting drug and vaccine design. There are reliable databases for epitope prediction algorithms available however they primarily focus on the prediction of epitopes in single immunogenic proteins. RESULTS We have developed the tool DiscovEpi to establish an interface between whole proteomes and epitope prediction. The tool allows the automated identification of all potential MHC-I-binding peptides within a proteome and calculates the epitope density and average binding score for every protein, a protein-centric approach. DiscovEpi provides a convenient interface between automated multiple sequence extraction by organism and cell compartment from the database UniProt for subsequent epitope prediction via NetMHCpan. Furthermore, it allows ranking of proteins by their predicted immunogenicity on the one hand and comparison of different proteomes on the other. By applying the tool, we predict a higher immunogenic potential of membrane-associated proteins of SARS-CoV-2 compared to those of influenza A based on the presented metrics epitope density and binding score. This could be confirmed visually by comparing the epitope maps of the influenza A strain and SARS-CoV-2. CONCLUSION Automated prediction of whole proteomes and the subsequent visualization of the location of putative epitopes on sequence-level facilitate the search for putative immunogenic proteins or protein regions and support the study of adaptive immune responses and vaccine design.
Collapse
Affiliation(s)
- C Mahncke
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, 17475, Greifswald, Germany
- Research Unit Emerging Viruses, Leibniz Institute of Virology, 20251, Hamburg, Germany
| | - F Schmiedeke
- Institute of Immunology, University Medicine Greifswald, 17475, Greifswald, Germany
| | - S Simm
- Institute of Bioinformatics, University Medicine Greifswald, 17475, Greifswald, Germany
- Institute of Bioanalytics, University of Applied Sciences Coburg, 96450, Coburg, Germany
| | - L Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, 17475, Greifswald, Germany
| | - B M Bröker
- Institute of Immunology, University Medicine Greifswald, 17475, Greifswald, Germany
| | - U Seifert
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, 17475, Greifswald, Germany
| | - C Cammann
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, 17475, Greifswald, Germany.
| |
Collapse
|
19
|
Macchia I, La Sorsa V, Ciervo A, Ruspantini I, Negri D, Borghi M, De Angelis ML, Luciani F, Martina A, Taglieri S, Durastanti V, Altavista MC, Urbani F, Mancini F. T Cell Peptide Prediction, Immune Response, and Host-Pathogen Relationship in Vaccinated and Recovered from Mild COVID-19 Subjects. Biomolecules 2024; 14:1217. [PMID: 39456150 PMCID: PMC11505848 DOI: 10.3390/biom14101217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
COVID-19 remains a significant threat, particularly to vulnerable populations. The emergence of new variants necessitates the development of treatments and vaccines that induce both humoral and cellular immunity. This study aimed to identify potentially immunogenic SARS-CoV-2 peptides and to explore the intricate host-pathogen interactions involving peripheral immune responses, memory profiles, and various demographic, clinical, and lifestyle factors. Using in silico and experimental methods, we identified several CD8-restricted SARS-CoV-2 peptides that are either poorly studied or have previously unreported immunogenicity: fifteen from the Spike and three each from non-structural proteins Nsp1-2-3-16. A Spike peptide, LA-9, demonstrated a 57% response rate in ELISpot assays using PBMCs from 14 HLA-A*02:01 positive, vaccinated, and mild-COVID-19 recovered subjects, indicating its potential for diagnostics, research, and multi-epitope vaccine platforms. We also found that younger individuals, with fewer vaccine doses and longer intervals since infection, showed lower anti-Spike (ELISA) and anti-Wuhan neutralizing antibodies (pseudovirus assay), higher naïve T cells, and lower central memory, effector memory, and CD4hiCD8low T cells (flow cytometry) compared to older subjects. In our cohort, a higher prevalence of Vδ2-γδ and DN T cells, and fewer naïve CD8 T cells, seemed to correlate with strong cellular and lower anti-NP antibody responses and to associate with Omicron infection, absence of confusional state, and habitual sporting activity.
Collapse
Affiliation(s)
- Iole Macchia
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.M.); (M.L.D.A.); (S.T.)
| | - Valentina La Sorsa
- Research Promotion and Coordination Service, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Alessandra Ciervo
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.C.); (D.N.); (M.B.); (F.M.)
| | - Irene Ruspantini
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Donatella Negri
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.C.); (D.N.); (M.B.); (F.M.)
| | - Martina Borghi
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.C.); (D.N.); (M.B.); (F.M.)
| | - Maria Laura De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.M.); (M.L.D.A.); (S.T.)
| | - Francesca Luciani
- National Center for the Control and Evaluation of Medicines, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.L.); (A.M.)
| | - Antonio Martina
- National Center for the Control and Evaluation of Medicines, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.L.); (A.M.)
| | - Silvia Taglieri
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.M.); (M.L.D.A.); (S.T.)
| | - Valentina Durastanti
- Neurology Unit, San Filippo Neri Hospital, ASL RM1, 00135 Rome, Italy; (V.D.); (M.C.A.)
| | | | - Francesca Urbani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.M.); (M.L.D.A.); (S.T.)
| | - Fabiola Mancini
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.C.); (D.N.); (M.B.); (F.M.)
| |
Collapse
|
20
|
Olp MD, Laufer VA, Valesano AL, Zimmerman A, Woodside KJ, Lu Y, Lauring AS, Cusick MF. HLA-C Peptide Repertoires as Predictors of Clinical Response during Early SARS-CoV-2 Infection. Life (Basel) 2024; 14:1181. [PMID: 39337964 PMCID: PMC11433606 DOI: 10.3390/life14091181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
The human leukocyte antigen (HLA) system plays a pivotal role in the immune response to viral infections, mediating the presentation of viral peptides to T cells and influencing both the strength and specificity of the host immune response. Variations in HLA genotypes across individuals lead to differences in susceptibility to viral infection and severity of illness. This study uses observations from the early phase of the COVID-19 pandemic to explore how specific HLA class I molecules affect clinical responses to SARS-CoV-2 infection. By analyzing paired high-resolution HLA types and viral genomic sequences from 60 patients, we assess the relationship between predicted HLA class I peptide binding repertoires and infection severity as measured by the sequential organ failure assessment score. This approach leverages functional convergence across HLA-C alleles to identify relationships that may otherwise be inaccessible due to allelic diversity and limitations in sample size. Surprisingly, our findings show that severely symptomatic infection in this cohort is associated with disproportionately abundant binding of SARS-CoV-2 structural and non-structural protein epitopes by patient HLA-C molecules. In addition, the extent of overlap between a given patient's predicted HLA-C and HLA-A peptide binding repertoires correlates with worse prognoses in this cohort. The findings highlight immunologic mechanisms linking HLA-C molecules with the human response to viral pathogens that warrant further investigation.
Collapse
Affiliation(s)
- Michael D Olp
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Vincent A Laufer
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Andrew L Valesano
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Andrea Zimmerman
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Kenneth J Woodside
- Sharing Hope of South Carolina, Charleston, SC 29414, USA
- Gift of Life Michigan, Ann Arbor, MI 48108, USA
- Academia Invisus LLC, Ann Arbor, MI 48107, USA
| | - Yee Lu
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adam S Lauring
- Division of Infectious Diseases, Department of Internal Medicine and Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew F Cusick
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| |
Collapse
|
21
|
Hajnik RL, Plante JA, Reddy Bonam S, Rafael GH, Liang Y, Hazell NC, Walker J, Reyna RA, Walker DH, Alameh MG, Weissman D, Weaver SC, Plante KS, Hu H. Broad protection and respiratory immunity of dual mRNA vaccination against SARS-CoV-2 variants. NPJ Vaccines 2024; 9:160. [PMID: 39232020 PMCID: PMC11374988 DOI: 10.1038/s41541-024-00957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
While first-generation, spike (S)-based COVID-19 vaccines were effective against early SARS-CoV-2 strains, the rapid evolution of novel Omicron subvariants have substantially reduced vaccine efficacy. As such, broadly protective vaccines against SARS-CoV-2 are needed to prevent future viral emergence. In addition, it remains less clear whether peripheral immunization, especially with mRNA vaccines, elicits effective respiratory immunity. Our group has developed a nucleoside-modified mRNA vaccine expressing the nucleocapsid (N) protein of the ancestral SARS-CoV-2 virus and has tested its use in combination with the S-based mRNA vaccine (mRNA-S). In this study, we examined efficacy of mRNA-N alone or in combination with mRNA-S (mRNA-S+N) against more immune evasive Omicron variants in hamsters. Our data show that mRNA-N alone induces a modest but significant protection against BA.5 and that dual mRNA-S+N vaccination confers complete protection against both BA.5 and BQ.1, preventing detection of virus in the hamster lungs. Analysis of respiratory immune response in mice shows that intramuscular mRNA-S+N immunization effectively induces respiratory S- and N-specific T cell responses in the lungs and in bronchoalveolar lavage (BAL), as well as antigen-specific binding IgG in BAL. Together, our data further support mRNA-S+N as a potential pan-COVID-19 vaccine for broad protection against current and emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Renee L Hajnik
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jessica A Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Grace H Rafael
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nicholas C Hazell
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jordyn Walker
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Rachel A Reyna
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - David H Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Mohamad-Gabriel Alameh
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Penn Institute for RNA Innovation, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Penn Institute for RNA Innovation, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Kenneth S Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA.
| | - Haitao Hu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
22
|
Davis SK, Jia F, Wright QG, Islam MT, Bean A, Layton D, Williams DT, Lynch SE. Defining correlates of protection for mammalian livestock vaccines against high-priority viral diseases. Front Immunol 2024; 15:1397780. [PMID: 39100679 PMCID: PMC11294087 DOI: 10.3389/fimmu.2024.1397780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/28/2024] [Indexed: 08/06/2024] Open
Abstract
Enhancing livestock biosecurity is critical to safeguard the livelihoods of farmers, global and local economies, and food security. Vaccination is fundamental to the control and prevention of exotic and endemic high-priority infectious livestock diseases. Successful implementation of vaccination in a biosecurity plan is underpinned by a strong understanding of correlates of protection-those elements of the immune response that can reliably predict the level of protection from viral challenge. While correlates of protection have been successfully characterized for many human viral vaccines, for many high-priority livestock viral diseases, including African swine fever and foot and mouth disease, they remain largely uncharacterized. Current literature provides insights into potential correlates of protection that should be assessed during vaccine development for these high-priority mammalian livestock viral diseases. Establishment of correlates of protection for biosecurity purposes enables immune surveillance, rationale for vaccine development, and successful implementation of livestock vaccines as part of a biosecurity strategy.
Collapse
Affiliation(s)
- Samantha K. Davis
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Martín-Martín C, del Riego ES, Castiñeira JRV, Zapico-Gonzalez MS, Rodríguez-Pérez M, Corte-Iglesias V, Saiz ML, Diaz-Bulnes P, Escudero D, Suárez-Alvarez B, López-Larrea C. Assessing Predictive Value of SARS-CoV-2 Epitope-Specific CD8 + T-Cell Response in Patients with Severe Symptoms. Vaccines (Basel) 2024; 12:679. [PMID: 38932408 PMCID: PMC11209605 DOI: 10.3390/vaccines12060679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Specific T cell responses against SARS-CoV-2 provided an overview of acquired immunity during the pandemic. Anti-SARS-CoV-2 immunity determines the severity of acute illness, but also might be related to the possible persistence of symptoms (long COVID). We retrospectively analyzed ex vivo longitudinal CD8+ T cell responses in 26 COVID-19 patients diagnosed with severe disease, initially (1 month) and long-term (10 months), and in a cohort of 32 vaccinated healthcare workers without previous SARS-CoV-2 infection. We used peptide-human leukocyte antigen (pHLA) dextramers recognizing 26 SARS-CoV-2-derived epitopes of viral and other non-structural proteins. Most patients responded to at least one of the peptides studied, mainly derived from non-structural ORF1ab proteins. After 10 months follow-up, CD8+ T cell responses were maintained at long term and reaction against certain epitopes (A*01:01-ORF1ab1637) was still detected and functional, showing a memory-like phenotype (CD127+ PD-1+). The total number of SARS-CoV-2-specific CD8+ T cells was significantly associated with protection against long COVID in these patients. Compared with vaccination, infected patients showed a less effective immune response to spike protein-derived peptides restricted by HLA. So, the A*01:01-S865 and A*24:02-S1208 dextramers were only recognized in vaccinated individuals. We conclude that initial SARS-CoV-2-specific CD8+ T cell response could be used as a marker to understand the evolution of severe disease and post-acute sequelae after SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Cristina Martín-Martín
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
| | - Estefanía Salgado del Riego
- Service of Intensive Medicine, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (E.S.d.R.); (D.E.)
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain
| | - Jose R. Vidal Castiñeira
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
- Immunology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | | | - Mercedes Rodríguez-Pérez
- Microbiology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (M.S.Z.-G.); (M.R.-P.)
- Translational Microbiology, Health Research Institute of Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Viviana Corte-Iglesias
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
- Immunology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Maria Laura Saiz
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
| | - Paula Diaz-Bulnes
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
| | - Dolores Escudero
- Service of Intensive Medicine, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (E.S.d.R.); (D.E.)
- Translational Microbiology, Health Research Institute of Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Beatriz Suárez-Alvarez
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
| | - Carlos López-Larrea
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
| |
Collapse
|
24
|
Bean DJ, Monroe J, Liang YM, Borberg E, Senussi Y, Swank Z, Chalise S, Walt D, Weinberg J, Sagar M. Heterotypic immunity from prior SARS-CoV-2 infection but not COVID-19 vaccination associates with lower endemic coronavirus incidence. Sci Transl Med 2024; 16:eado7588. [PMID: 38865483 PMCID: PMC11565543 DOI: 10.1126/scitranslmed.ado7588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Immune responses from prior severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and COVID-19 vaccination mitigate disease severity, but they do not fully prevent subsequent infections, especially from genetically divergent strains. We examined the incidence of and immune differences against human endemic coronaviruses (eCoVs) as a proxy for response against future genetically heterologous coronaviruses (CoVs). We assessed differences in symptomatic eCoV and non-CoV respiratory disease incidence among those with known prior SARS-CoV-2 infection or previous COVID-19 vaccination but no documented SARS-CoV-2 infection or neither exposure. Retrospective cohort analyses suggest that prior SARS-CoV-2 infection, but not previous COVID-19 vaccination alone, associates with a lower incidence of subsequent symptomatic eCoV infection. There was no difference in non-CoV incidence, implying that the observed difference was eCoV specific. In a second cohort where both cellular and humoral immunity were measured, those with prior SARS-CoV-2 spike protein exposure had lower eCoV-directed neutralizing antibodies, suggesting that neutralization is not responsible for the observed decreased eCoV disease. The three groups had similar cellular responses against the eCoV spike protein and nucleocapsid antigens. However, CD8+ T cell responses to the nonstructural eCoV proteins nsp12 and nsp13 were higher in individuals with previous SARS-CoV-2 infection as compared with the other groups. This association between prior SARS-CoV-2 infection and decreased incidence of eCoV disease may therefore be due to a boost in CD8+ T cell responses against eCoV nsp12 and nsp13, suggesting that incorporation of nonstructural viral antigens in a future pan-CoV vaccine may improve vaccine efficacy.
Collapse
Affiliation(s)
- David J. Bean
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Janet Monroe
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Yan Mei Liang
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Ella Borberg
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Yasmeen Senussi
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Zoe Swank
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Sujata Chalise
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - David Walt
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Janice Weinberg
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Manish Sagar
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
25
|
Zhang J, Yue C, Lin Y, Tian J, Guo Y, Zhang D, Guo Y, Ye B, Chai Y, Qi J, Zhao Y, Gao GF, Sun Z, Liu J. Uncommon P1 Anchor-featured Viral T Cell Epitope Preference within HLA-A*2601 and HLA-A*0101 Individuals. Immunohorizons 2024; 8:415-430. [PMID: 38885041 PMCID: PMC11220742 DOI: 10.4049/immunohorizons.2400026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/09/2024] [Indexed: 06/20/2024] Open
Abstract
The individual HLA-related susceptibility to emerging viral diseases such as COVID-19 underscores the importance of understanding how HLA polymorphism influences peptide presentation and T cell recognition. Similar to HLA-A*0101, which is one of the earliest identified HLA alleles among the human population, HLA-A*2601 possesses a similar characteristic for the binding peptide and acts as a prevalent allomorph in HLA-I. In this study, we found that, compared with HLA-A*0101, HLA-A*2601 individuals exhibit distinctive features for the T cell responses to SARS-CoV-2 and influenza virus after infection and/or vaccination. The heterogeneous T cell responses can be attributed to the distinct preference of HLA-A*2601 and HLA-A*0101 to T cell epitope motifs with negative-charged residues at the P1 and P3 positions, respectively. Furthermore, we determined the crystal structures of the HLA-A*2601 complexed to four peptides derived from SARS-CoV-2 and human papillomavirus, with one structure of HLA-A*0101 for comparison. The shallow pocket C of HLA-A*2601 results in the promiscuous presentation of peptides with "switchable" bulged conformations because of the secondary anchor in the median portion. Notably, the hydrogen bond network formed between the negative-charged P1 anchors and the HLA-A*2601-specific residues lead to a "closed" conformation and solid placement for the P1 secondary anchor accommodation in pocket A. This insight sheds light on the intricate relationship between HLA I allelic allomorphs, peptide binding, and the immune response and provides valuable implications for understanding disease susceptibility and potential vaccine design.
Collapse
Affiliation(s)
- Jianing Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Can Yue
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yin Lin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Jinmin Tian
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuanyuan Guo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Danni Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yaxin Guo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Beiwei Ye
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Chai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yingze Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - George F. Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
26
|
Almanzar G, Koosha K, Vogt T, Stein A, Ziegler L, Asam C, Weps M, Schwägerl V, Richter L, Hepp N, Fuchs A, Wagenhäuser I, Reusch J, Krone M, Geldmacher C, Protzer U, Steininger P, Überla K, Wagner R, Liese J, Prelog M. Hybrid immunity by two COVID-19 mRNA vaccinations and one breakthrough infection provides a robust and balanced cellular immune response as basic immunity against severe acute respiratory syndrome coronavirus 2. J Med Virol 2024; 96:e29739. [PMID: 38899449 DOI: 10.1002/jmv.29739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/22/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
This longitudinal prospective controlled multicenter study aimed to monitor immunity generated by three exposures caused by breakthrough infections (BTI) after COVID-19-vaccination considering pre-existing cell-mediated immunity to common-corona-viruses (CoV) which may impact cellular reactivity against SARS-CoV-2. Anti-SARS-CoV-2-spike-IgG antibodies (anti-S-IgG) and cellular reactivity against Spike-(S)- and nucleocapsid-(N)-proteins were determined in fully-vaccinated (F) individuals who either experienced BTI (F+BTI) or had booster vaccination (F+Booster) compared to partially vaccinated (P+BTI) and unvaccinated (U) from 1 to 24 weeks post PCR-confirmed infection. High avidity anti-S-IgG were found in F+BTI compared to U, the latter exhibiting increased long-lasting pro-inflammatory cytokines to S-stimulation. CoV was associated with higher cellular reactivity in U, whereas no association was seen in F. The study illustrates the induction of significant S-specific cellular responses in F+BTI building-up basic immunity by three exposures. Only U seem to benefit from pre-existing CoV immunity but demonstrated inflammatory immune responses compared to F+BTI who immunologically benefit from enhanced humoral and cellular immunity after BTI. This study demonstrates that individuals with hybrid immunity from COVID-19-vaccination and BTI acquire a stable humoral and cellular immune response that is maintained for at least 6 months. Our findings corroborate recommendations by health authorities to build on basic immunity by three S-protein exposures.
Collapse
Affiliation(s)
- Giovanni Almanzar
- Department of Pediatrics, Pediatric Rheumatology/Special Immunology, University Hospital Würzburg, Würzburg, Germany
| | - Kimia Koosha
- Department of Pediatrics, Pediatric Rheumatology/Special Immunology, University Hospital Würzburg, Würzburg, Germany
| | - Tim Vogt
- Department of Pediatrics, Pediatric Rheumatology/Special Immunology, University Hospital Würzburg, Würzburg, Germany
| | - Astrid Stein
- Department of Pediatrics, Pediatric Rheumatology/Special Immunology, University Hospital Würzburg, Würzburg, Germany
| | - Lars Ziegler
- Department of Pediatrics, Pediatric Rheumatology/Special Immunology, University Hospital Würzburg, Würzburg, Germany
| | - Claudia Asam
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Manuela Weps
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Valeria Schwägerl
- Department of Pediatrics, Pediatric Rheumatology/Special Immunology, University Hospital Würzburg, Würzburg, Germany
| | - Lorena Richter
- Department of Pediatrics, Pediatric Rheumatology/Special Immunology, University Hospital Würzburg, Würzburg, Germany
| | - Nicola Hepp
- Department of Pediatrics, Pediatric Rheumatology/Special Immunology, University Hospital Würzburg, Würzburg, Germany
| | - Andre Fuchs
- Internal Medicine III-Gastroenterology and Infectious Diseases, University Hospital of Augsburg, Augsburg, Germany
| | - Isabell Wagenhäuser
- Institute for Hygiene and Microbiology, Julius-Maximilian-Universität Würzburg, Würzburg, Germany
| | - Julia Reusch
- Institute for Hygiene and Microbiology, Julius-Maximilian-Universität Würzburg, Würzburg, Germany
| | - Manuel Krone
- Institute for Hygiene and Microbiology, Julius-Maximilian-Universität Würzburg, Würzburg, Germany
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Ulrike Protzer
- School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany
- German Center for Infection Research, Institute of Virology, Helmholtz Munich, Munich Partner Site, Munich, Germany
| | - Philipp Steininger
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ralf Wagner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Johannes Liese
- Department of Pediatrics, Pediatric Rheumatology/Special Immunology, University Hospital Würzburg, Würzburg, Germany
| | - Martina Prelog
- Department of Pediatrics, Pediatric Rheumatology/Special Immunology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
27
|
Delmonte OM, Oguz C, Dobbs K, Myint-Hpu K, Palterer B, Abers MS, Draper D, Truong M, Kaplan IM, Gittelman RM, Zhang Y, Rosen LB, Snow AL, Dalgard CL, Burbelo PD, Imberti L, Sottini A, Quiros-Roldan E, Castelli F, Rossi C, Brugnoni D, Biondi A, Bettini LR, D'Angio M, Bonfanti P, Anderson MV, Saracino A, Chironna M, Di Stefano M, Fiore JR, Santantonio T, Castagnoli R, Marseglia GL, Magliocco M, Bosticardo M, Pala F, Shaw E, Matthews H, Weber SE, Xirasagar S, Barnett J, Oler AJ, Dimitrova D, Bergerson JRE, McDermott DH, Rao VK, Murphy PM, Holland SM, Lisco A, Su HC, Lionakis MS, Cohen JI, Freeman AF, Snyder TM, Lack J, Notarangelo LD. Perturbations of the T-cell receptor repertoire in response to SARS-CoV-2 in immunocompetent and immunocompromised individuals. J Allergy Clin Immunol 2024; 153:1655-1667. [PMID: 38154666 PMCID: PMC11162338 DOI: 10.1016/j.jaci.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Functional T-cell responses are essential for virus clearance and long-term protection after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, whereas certain clinical factors, such as older age and immunocompromise, are associated with worse outcome. OBJECTIVE We sought to study the breadth and magnitude of T-cell responses in patients with coronavirus disease 2019 (COVID-19) and in individuals with inborn errors of immunity (IEIs) who had received COVID-19 mRNA vaccine. METHODS Using high-throughput sequencing and bioinformatics tools to characterize the T-cell receptor β repertoire signatures in 540 individuals after SARS-CoV-2 infection, 31 IEI recipients of COVID-19 mRNA vaccine, and healthy controls, we quantified HLA class I- and class II-restricted SARS-CoV-2-specific responses and also identified several HLA allele-clonotype motif associations in patients with COVID-19, including a subcohort of anti-type 1 interferon (IFN-1)-positive patients. RESULTS Our analysis revealed that elderly patients with COVID-19 with critical disease manifested lower SARS-CoV-2 T-cell clonotype diversity as well as T-cell responses with reduced magnitude, whereas the SARS-CoV-2-specific clonotypes targeted a broad range of HLA class I- and class II-restricted epitopes across the viral proteome. The presence of anti-IFN-I antibodies was associated with certain HLA alleles. Finally, COVID-19 mRNA immunization induced an increase in the breadth of SARS-CoV-2-specific clonotypes in patients with IEIs, including those who had failed to seroconvert. CONCLUSIONS Elderly individuals have impaired capacity to develop broad and sustained T-cell responses after SARS-CoV-2 infection. Genetic factors may play a role in the production of anti-IFN-1 antibodies. COVID-19 mRNA vaccines are effective in inducing T-cell responses in patients with IEIs.
Collapse
Affiliation(s)
- Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Cihan Oguz
- Integrated Data Sciences Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Katherine Myint-Hpu
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Boaz Palterer
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michael S Abers
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Deborah Draper
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Meng Truong
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | | | | | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Lindsey B Rosen
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Andrew L Snow
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md; Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Md
| | - Clifton L Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, Md; The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, Md
| | - Peter D Burbelo
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Md
| | - Luisa Imberti
- Section of Microbiology, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Alessandra Sottini
- Section of Microbiology, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Eugenia Quiros-Roldan
- Department of Infectious and Tropical Diseases, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Francesco Castelli
- Department of Infectious and Tropical Diseases, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Camillo Rossi
- Direzione Sanitaria, ASST Spedali Civili, Brescia, Italy
| | - Duilio Brugnoni
- Laboratorio Analisi Chimico-Cliniche, ASST Spedali Civili, Brescia, Italy
| | - Andrea Biondi
- Pediatric Department and Centro Tettamanti-European Reference Network on Paediatric Cancer, European Reference Network on Haematological Diseases, and European Reference Network on Hereditary Metabolic Disorders, University of Milano-Bicocca-Fondazione MBBM, Monza, Italy
| | - Laura Rachele Bettini
- Pediatric Department and Centro Tettamanti-European Reference Network on Paediatric Cancer, European Reference Network on Haematological Diseases, and European Reference Network on Hereditary Metabolic Disorders, University of Milano-Bicocca-Fondazione MBBM, Monza, Italy
| | - Mariella D'Angio
- Pediatric Department and Centro Tettamanti-European Reference Network on Paediatric Cancer, European Reference Network on Haematological Diseases, and European Reference Network on Hereditary Metabolic Disorders, University of Milano-Bicocca-Fondazione MBBM, Monza, Italy
| | - Paolo Bonfanti
- Department of Infectious Diseases, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Megan V Anderson
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Annalisa Saracino
- Clinic of Infectious Diseases, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, University of Bari, Bari, Italy
| | - Maria Chironna
- Hygiene Section, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Mariantonietta Di Stefano
- Department of Medical and Surgical Sciences, Section of Infectious Diseases, University of Foggia, Foggia, Italy
| | - Jose Ramon Fiore
- Department of Medical and Surgical Sciences, Section of Infectious Diseases, University of Foggia, Foggia, Italy
| | - Teresa Santantonio
- Department of Medical and Surgical Sciences, Section of Infectious Diseases, University of Foggia, Foggia, Italy
| | - Riccardo Castagnoli
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gian Luigi Marseglia
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mary Magliocco
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Elana Shaw
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Helen Matthews
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Sarah E Weber
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Sandhya Xirasagar
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jason Barnett
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Andrew J Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Dimana Dimitrova
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Md
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - David H McDermott
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - V Koneti Rao
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Andrea Lisco
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michail S Lionakis
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | | | - Justin Lack
- Integrated Data Sciences Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
28
|
Sundebo Meldgaard T, Viborg N, Suarez Hernandez S, Vazquez Albacete D, Tamhane T, Reker Hadrup S. Validation of novel conditional ligands and large-scale detection of antigen-specific T cells for H-2D d and H-2K d. Sci Rep 2024; 14:12292. [PMID: 38811654 PMCID: PMC11136991 DOI: 10.1038/s41598-024-62938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
The UV-mediated peptide exchange has enabled the generation of multiple different MHC multimer specificities in parallel, surpassing tedious individual refolding of MHC molecules with peptide ligands. Murine models are acknowledged as an effective tool for preclinical research to advance our understanding of immunological mechanisms, with the potential translatability of key learnings from mouse models to the clinic. The common inbred mouse strain BALB/c is frequently used in immunological research. However, for the BALB/c histocompatibility (H)-2 alleles availability of conditional ligand has been limited. To overcome this challenge, we design and experimentally validate conditional ligands restricted to murine MHC class I alleles H2Dd and H2Kd. In addition, we demonstrate the ability of the three H2d molecules and two additional C57BL/6 H2b molecules folded in-house with conditional ligands to generate fluorescently labeled peptide-H2 tetramers that allow staining of antigen-specific CD8+ T cells in splenocyte samples. Finally, we generate large peptide-H-2 multimer libraries with a DNA-barcode labeling system for high-throughput interrogation of CD8+ T cell specificity in murine splenocyte samples. Consequently, the described techniques will contribute to our understanding of the antigen-specific CD8+ T cell repertoire in murine preclinical models of various diseases.
Collapse
Affiliation(s)
- Trine Sundebo Meldgaard
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
- Novo Nordisk, Copenhagen, Denmark
| | - Nadia Viborg
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
- Evaxion Biotech, Hørsholm, Denmark
| | - Sara Suarez Hernandez
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
- RIVM National Institute for Public Health and the Environment, Utrecht, The Netherlands
| | - Dario Vazquez Albacete
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
- Novonesis, Copenhagen, Denmark
| | - Tripti Tamhane
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Sine Reker Hadrup
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
29
|
Ahn YM, Maddumage JC, Grant EJ, Chatzileontiadou DS, Perera WG, Baker BM, Szeto C, Gras S. The impact of SARS-CoV-2 spike mutation on peptide presentation is HLA allomorph-specific. Curr Res Struct Biol 2024; 7:100148. [PMID: 38742159 PMCID: PMC11089313 DOI: 10.1016/j.crstbi.2024.100148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/11/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024] Open
Abstract
CD8+ T cells are crucial for viral elimination and recovery from viral infection. Nonetheless, the current understanding of the T cell response to SARS-CoV-2 at the antigen level remains limited. The Spike protein is an external structural protein that is prone to mutations, threatening the efficacy of current vaccines. Therefore, we have characterised the immune response towards the immunogenic Spike-derived peptide (S976-984, VLNDILSRL), restricted to the HLA-A*02:01 molecule, which is mutated in both Alpha (S982A) and Omicron BA.1 (L981F) variants of concern. We determined that the mutation in the Alpha variant (S982A) impacted both the stability and conformation of the peptide, bound to HLA-A*02:01, in comparison to the original S976-984. We identified a longer and overlapping immunogenic peptide (S975-984, SVLNDILSRL) that could be presented by HLA-A*02:01, HLA-A*11:01 and HLA-B*13:01 allomorphs. We showed that S975-specific CD8+ T cells were weakly cross-reactive to the mutant peptides despite their similar conformations when presented by HLA-A*11:01. Altogether, our results show that the impact of SARS-CoV-2 mutations on peptide presentation is HLA allomorph-specific, and that post vaccination there are T cells able to react and cross-react towards the variant of concern peptides.
Collapse
Affiliation(s)
- You Min Ahn
- Infection & Immunity Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Agriculture (SABE), La Trobe University, Bundoora, Victoria, Australia
| | - Janesha C. Maddumage
- Infection & Immunity Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Agriculture (SABE), La Trobe University, Bundoora, Victoria, Australia
| | - Emma J. Grant
- Infection & Immunity Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Agriculture (SABE), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Demetra S.M. Chatzileontiadou
- Infection & Immunity Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Agriculture (SABE), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - W.W.J. Gihan Perera
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Brian M. Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Christopher Szeto
- Infection & Immunity Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Agriculture (SABE), La Trobe University, Bundoora, Victoria, Australia
- Australian Synchrotron, ANSTO, Clayton, Victoria, Australia
| | - Stephanie Gras
- Infection & Immunity Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Agriculture (SABE), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
30
|
Kristensen NP, Dionisio E, Bentzen AK, Tamhane T, Kemming JS, Nos G, Voss LF, Hansen UK, Lauer GM, Hadrup SR. Simultaneous analysis of pMHC binding and reactivity unveils virus-specific CD8 T cell immunity to a concise epitope set. SCIENCE ADVANCES 2024; 10:eadm8951. [PMID: 38608022 PMCID: PMC11014448 DOI: 10.1126/sciadv.adm8951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/12/2024] [Indexed: 04/14/2024]
Abstract
CD8 T cells provide immunity to virus infection through recognition of epitopes presented by peptide major histocompatibility complexes (pMHCs). To establish a concise panel of widely recognized T cell epitopes from common viruses, we combined analysis of TCR down-regulation upon stimulation with epitope-specific enumeration based on barcode-labeled pMHC multimers. We assess CD8 T cell binding and reactivity for 929 previously reported epitopes in the context of 1 of 25 HLA alleles representing 29 viruses. The prevalence and magnitude of CD8 T cell responses were evaluated in 48 donors and reported along with 137 frequently recognized virus epitopes, many of which were underrepresented in the public domain. Eighty-four percent of epitope-specific CD8 T cell populations demonstrated reactivity to peptide stimulation, which was associated with effector and long-term memory phenotypes. Conversely, nonreactive T cell populations were associated primarily with naive phenotypes. Our analysis provides a reference map of epitopes for characterizing CD8 T cell responses toward common human virus infections.
Collapse
Affiliation(s)
- Nikolaj Pagh Kristensen
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Edoardo Dionisio
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Amalie Kai Bentzen
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Tripti Tamhane
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Janine Sophie Kemming
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Grigorii Nos
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Lasse Frank Voss
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Ulla Kring Hansen
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Georg Michael Lauer
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Sine Reker Hadrup
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| |
Collapse
|
31
|
Slieker RC, Warmerdam DO, Vermeer MH, van Doorn R, Heemskerk MHM, Scheeren FA. Reassessing human MHC-I genetic diversity in T cell studies. Sci Rep 2024; 14:7966. [PMID: 38575727 PMCID: PMC10995142 DOI: 10.1038/s41598-024-58777-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/03/2024] [Indexed: 04/06/2024] Open
Abstract
The Major Histocompatibility Complex class I (MHC-I) system plays a vital role in immune responses by presenting antigens to T cells. Allele specific technologies, including recombinant MHC-I technologies, have been extensively used in T cell analyses for COVID-19 patients and are currently used in the development of immunotherapies for cancer. However, the immense diversity of MHC-I alleles presents challenges. The genetic diversity serves as the foundation of personalized medicine, yet it also poses a potential risk of exacerbating healthcare disparities based on MHC-I alleles. To assess potential biases, we analysed (pre)clinical publications focusing on COVID-19 studies and T cell receptor (TCR)-based clinical trials. Our findings reveal an underrepresentation of MHC-I alleles associated with Asian, Australian, and African descent. Ensuring diverse representation is vital for advancing personalized medicine and global healthcare equity, transcending genetic diversity. Addressing this disparity is essential to unlock the full potential of T cells for enhancing diagnosis and treatment across all individuals.
Collapse
Affiliation(s)
- Roderick C Slieker
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniël O Warmerdam
- Centre for Future Affordable & Sustainable Therapy Development (FAST), The Hague, The Netherlands
| | - Maarten H Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Dermatology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ferenc A Scheeren
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
32
|
Borch A, Carri I, Reynisson B, Alvarez HMG, Munk KK, Montemurro A, Kristensen NP, Tvingsholm SA, Holm JS, Heeke C, Moss KH, Hansen UK, Schaap-Johansen AL, Bagger FO, de Lima VAB, Rohrberg KS, Funt SA, Donia M, Svane IM, Lassen U, Barra C, Nielsen M, Hadrup SR. IMPROVE: a feature model to predict neoepitope immunogenicity through broad-scale validation of T-cell recognition. Front Immunol 2024; 15:1360281. [PMID: 38633261 PMCID: PMC11021644 DOI: 10.3389/fimmu.2024.1360281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/07/2024] [Indexed: 04/19/2024] Open
Abstract
Background Mutation-derived neoantigens are critical targets for tumor rejection in cancer immunotherapy, and better tools for neoepitope identification and prediction are needed to improve neoepitope targeting strategies. Computational tools have enabled the identification of patient-specific neoantigen candidates from sequencing data, but limited data availability has hindered their capacity to predict which of the many neoepitopes will most likely give rise to T cell recognition. Method To address this, we make use of experimentally validated T cell recognition towards 17,500 neoepitope candidates, with 467 being T cell recognized, across 70 cancer patients undergoing immunotherapy. Results We evaluated 27 neoepitope characteristics, and created a random forest model, IMPROVE, to predict neoepitope immunogenicity. The presence of hydrophobic and aromatic residues in the peptide binding core were the most important features for predicting neoepitope immunogenicity. Conclusion Overall, IMPROVE was found to significantly advance the identification of neoepitopes compared to other current methods.
Collapse
Affiliation(s)
- Annie Borch
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Ibel Carri
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Birkir Reynisson
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Heli M. Garcia Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Kamilla K. Munk
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | | | | - Siri A. Tvingsholm
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Jeppe Sejerø Holm
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Christina Heeke
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Keith Henry Moss
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Ulla Kring Hansen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | | | | | | | | - Samuel A. Funt
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Marco Donia
- National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark
| | - Ulrik Lassen
- Department of Oncology, Phase 1 Unit, Rigshospitalet, Copenhagen, Denmark
| | - Carolina Barra
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Morten Nielsen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Sine Reker Hadrup
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
33
|
Rudar J, Kruczkiewicz P, Vernygora O, Golding GB, Hajibabaei M, Lung O. Sequence signatures within the genome of SARS-CoV-2 can be used to predict host source. Microbiol Spectr 2024; 12:e0358423. [PMID: 38436242 PMCID: PMC10986507 DOI: 10.1128/spectrum.03584-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/11/2024] [Indexed: 03/05/2024] Open
Abstract
We conducted an in silico analysis to better understand the potential factors impacting host adaptation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in white-tailed deer, humans, and mink due to the strong evidence of sustained transmission within these hosts. Classification models trained on single nucleotide and amino acid differences between samples effectively identified white-tailed deer-, human-, and mink-derived SARS-CoV-2. For example, the balanced accuracy score of Extremely Randomized Trees classifiers was 0.984 ± 0.006. Eighty-eight commonly identified predictive mutations are found at sites under strong positive and negative selective pressure. A large fraction of sites under selection (86.9%) or identified by machine learning (87.1%) are found in genes other than the spike. Some locations encoded by these gene regions are predicted to be B- and T-cell epitopes or are implicated in modulating the immune response suggesting that host adaptation may involve the evasion of the host immune system, modulation of the class-I major-histocompatibility complex, and the diminished recognition of immune epitopes by CD8+ T cells. Our selection and machine learning analysis also identified that silent mutations, such as C7303T and C9430T, play an important role in discriminating deer-derived samples across multiple clades. Finally, our investigation into the origin of the B.1.641 lineage from white-tailed deer in Canada discovered an additional human sequence from Michigan related to the B.1.641 lineage sampled near the emergence of this lineage. These findings demonstrate that machine-learning approaches can be used in combination with evolutionary genomics to identify factors possibly involved in the cross-species transmission of viruses and the emergence of novel viral lineages.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible virus capable of infecting and establishing itself in human and wildlife populations, such as white-tailed deer. This fact highlights the importance of developing novel ways to identify genetic factors that contribute to its spread and adaptation to new host species. This is especially important since these populations can serve as reservoirs that potentially facilitate the re-introduction of new variants into human populations. In this study, we apply machine learning and phylogenetic methods to uncover biomarkers of SARS-CoV-2 adaptation in mink and white-tailed deer. We find evidence demonstrating that both non-synonymous and silent mutations can be used to differentiate animal-derived sequences from human-derived ones and each other. This evidence also suggests that host adaptation involves the evasion of the immune system and the suppression of antigen presentation. Finally, the methods developed here are general and can be used to investigate host adaptation in viruses other than SARS-CoV-2.
Collapse
Affiliation(s)
- Josip Rudar
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
- Department of Integrative Biology & Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Peter Kruczkiewicz
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Oksana Vernygora
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - G. Brian Golding
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Mehrdad Hajibabaei
- Department of Integrative Biology & Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Oliver Lung
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
34
|
van den Dijssel J, Duurland MC, Konijn VA, Kummer LY, Hagen RR, Kuijper LH, Wieske L, van Dam KP, Stalman EW, Steenhuis M, Geerdes DM, Mok JY, Kragten AH, Menage C, Koets L, Veldhuisen B, Verstegen NJ, van der Schoot CE, van Esch WJ, D'Haens GR, Löwenberg M, Volkers AG, Rispens T, Kuijpers TW, Eftimov F, van Gisbergen KP, van Ham SM, Ten Brinke A, van de Sandt CE. mRNA-1273 vaccinated inflammatory bowel disease patients receiving TNF inhibitors develop broad and robust SARS-CoV-2-specific CD8 + T cell responses. J Autoimmun 2024; 144:103175. [PMID: 38387105 DOI: 10.1016/j.jaut.2024.103175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
SARS-CoV-2-specific CD8+ T cells recognize conserved viral peptides and in the absence of cross-reactive antibodies form an important line of protection against emerging viral variants as they ameliorate disease severity. SARS-CoV-2 mRNA vaccines induce robust spike-specific antibody and T cell responses in healthy individuals, but their effectiveness in patients with chronic immune-mediated inflammatory disorders (IMIDs) is less well defined. These patients are often treated with systemic immunosuppressants, which may negatively affect vaccine-induced immunity. Indeed, TNF inhibitor (TNFi)-treated inflammatory bowel disease (IBD) patients display reduced ability to maintain SARS-CoV-2 antibody responses post-vaccination, yet the effects on CD8+ T cells remain unclear. Here, we analyzed the impact of IBD and TNFi treatment on mRNA-1273 vaccine-induced CD8+ T cell responses compared to healthy controls in SARS-CoV-2 experienced and inexperienced patients. CD8+ T cells were analyzed for their ability to recognize 32 SARS-CoV-2-specific epitopes, restricted by 10 common HLA class I allotypes using heterotetramer combinatorial coding. This strategy allowed in-depth ex vivo profiling of the vaccine-induced CD8+ T cell responses using phenotypic and activation markers. mRNA vaccination of TNFi-treated and untreated IBD patients induced robust spike-specific CD8+ T cell responses with a predominant central memory and activated phenotype, comparable to those in healthy controls. Prominent non-spike-specific CD8+ T cell responses were observed in SARS-CoV-2 experienced donors prior to vaccination. Non-spike-specific CD8+ T cells persisted and spike-specific CD8+ T cells notably expanded after vaccination in these patient cohorts. Our data demonstrate that regardless of TNFi treatment or prior SARS-CoV-2 infection, IBD patients benefit from vaccination by inducing a robust spike-specific CD8+ T cell response.
Collapse
Affiliation(s)
- Jet van den Dijssel
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Mariël C Duurland
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands; Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Veronique Al Konijn
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands; Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Laura Yl Kummer
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands; Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ruth R Hagen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Lisan H Kuijper
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands; Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Luuk Wieske
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands; Department of Clinical Neurophysiology, St Antonius Hospital, Nieuwegein, Netherlands
| | - Koos Pj van Dam
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Eileen W Stalman
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Maurice Steenhuis
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | | - Juk Yee Mok
- Sanquin Reagents B.V., Amsterdam, Netherlands
| | | | - Charlotte Menage
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands; Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Lianne Koets
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; National Screening Laboratory of Sanquin, Research and Laboratory Services, Amsterdam, Netherlands
| | - Barbera Veldhuisen
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Department of Immunohematology Diagnostics, Sanquin Diagnostic Services, Amsterdam, Netherlands
| | - Niels Jm Verstegen
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands; Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | | | - Geert Ram D'Haens
- Department of Gastroenterology and Hepatology, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Mark Löwenberg
- Department of Gastroenterology and Hepatology, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Adriaan G Volkers
- Department of Gastroenterology and Hepatology, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Theo Rispens
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands; Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, University of Amsterdam, Amsterdam, Netherlands
| | - Filip Eftimov
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Klaas Pjm van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - S Marieke van Ham
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands; Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Swammerdam Institute for Life Sciences, University of Amsterdam, Netherlands
| | - Anja Ten Brinke
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands; Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Carolien E van de Sandt
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands; Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
35
|
Coulon PG, Prakash S, Dhanushkodi NR, Srivastava R, Zayou L, Tifrea DF, Edwards RA, Figueroa CJ, Schubl SD, Hsieh L, Nesburn AB, Kuppermann BD, Bahraoui E, Vahed H, Gil D, Jones TM, Ulmer JB, BenMohamed L. High frequencies of alpha common cold coronavirus/SARS-CoV-2 cross-reactive functional CD4 + and CD8 + memory T cells are associated with protection from symptomatic and fatal SARS-CoV-2 infections in unvaccinated COVID-19 patients. Front Immunol 2024; 15:1343716. [PMID: 38605956 PMCID: PMC11007208 DOI: 10.3389/fimmu.2024.1343716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/08/2024] [Indexed: 04/13/2024] Open
Abstract
Background Cross-reactive SARS-CoV-2-specific memory CD4+ and CD8+ T cells are present in up to 50% of unexposed, pre-pandemic, healthy individuals (UPPHIs). However, the characteristics of cross-reactive memory CD4+ and CD8+ T cells associated with subsequent protection of asymptomatic coronavirus disease 2019 (COVID-19) patients (i.e., unvaccinated individuals who never develop any COVID-19 symptoms despite being infected with SARS-CoV-2) remains to be fully elucidated. Methods This study compares the antigen specificity, frequency, phenotype, and function of cross-reactive memory CD4+ and CD8+ T cells between common cold coronaviruses (CCCs) and SARS-CoV-2. T-cell responses against genome-wide conserved epitopes were studied early in the disease course in a cohort of 147 unvaccinated COVID-19 patients who were divided into six groups based on the severity of their symptoms. Results Compared to severely ill COVID-19 patients and patients with fatal COVID-19 outcomes, the asymptomatic COVID-19 patients displayed significantly: (i) higher rates of co-infection with the 229E alpha species of CCCs (α-CCC-229E); (ii) higher frequencies of cross-reactive functional CD134+CD137+CD4+ and CD134+CD137+CD8+ T cells that cross-recognized conserved epitopes from α-CCCs and SARS-CoV-2 structural, non-structural, and accessory proteins; and (iii) lower frequencies of CCCs/SARS-CoV-2 cross-reactive exhausted PD-1+TIM3+TIGIT+CTLA4+CD4+ and PD-1+TIM3+TIGIT+CTLA4+CD8+ T cells, detected both ex vivo and in vitro. Conclusions These findings (i) support a crucial role of functional, poly-antigenic α-CCCs/SARS-CoV-2 cross-reactive memory CD4+ and CD8+ T cells, induced following previous CCCs seasonal exposures, in protection against subsequent severe COVID-19 disease and (ii) provide critical insights into developing broadly protective, multi-antigen, CD4+, and CD8+ T-cell-based, universal pan-Coronavirus vaccines capable of conferring cross-species protection.
Collapse
Affiliation(s)
- Pierre-Gregoire Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Nisha R. Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Delia F. Tifrea
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Robert A. Edwards
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Cesar J. Figueroa
- Department of Surgery, Divisions of Trauma, Burns and Critical Care, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Sebastian D. Schubl
- Department of Surgery, Divisions of Trauma, Burns and Critical Care, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Lanny Hsieh
- Department of Medicine, Division of Infectious Diseases and Hospitalist Program, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Baruch D. Kuppermann
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | | | - Hawa Vahed
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Daniel Gil
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Trevor M. Jones
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Jeffrey B. Ulmer
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
- Université Paul Sabatier, Infinity, Inserm, Toulouse, France
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
- Institute for Immunology, The University of California Irvine, School of Medicine, Irvine, CA, United States
| |
Collapse
|
36
|
Xing M, Hu G, Wang X, Wang Y, He F, Dai W, Wang X, Niu Y, Liu J, Liu H, Zhang X, Xu J, Cai Q, Zhou D. An intranasal combination vaccine induces systemic and mucosal immunity against COVID-19 and influenza. NPJ Vaccines 2024; 9:64. [PMID: 38509167 PMCID: PMC10954707 DOI: 10.1038/s41541-024-00857-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Despite prolonged surveillance and interventions, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses continue to pose a severe global health burden. Thus, we developed a chimpanzee adenovirus-based combination vaccine, AdC68-HATRBD, with dual specificity against SARS-CoV-2 and influenza virus. When used as a standalone vaccine, intranasal immunization with AdC68-HATRBD induced comprehensive and potent immune responses consisting of immunoglobin (Ig) G, mucosal IgA, neutralizing antibodies, and memory T cells, which protected the mice from BA.5.2 and pandemic H1N1 infections. When used as a heterologous booster, AdC68-HATRBD markedly improved the protective immune response of the licensed SARS-CoV-2 or influenza vaccine. Therefore, whether administered intranasally as a standalone or booster vaccine, this combination vaccine is a valuable strategy to enhance the overall vaccine efficacy by inducing robust systemic and mucosal immune responses, thereby conferring dual lines of immunological defenses for these two viruses.
Collapse
Affiliation(s)
- Man Xing
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Gaowei Hu
- MOE&NHC&CAMS Key Laboratory of Medical Molecular, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiang Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yihan Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Furong He
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Weiqian Dai
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xinyu Wang
- MOE&NHC&CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yixin Niu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Jiaojiao Liu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Hui Liu
- Chengdu Kanghua Biological Products Co., Ltd, Chengdu, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| | - Qiliang Cai
- MOE&NHC&CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Dongming Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
37
|
Underwood AP, Sølund C, Jacobsen K, Binderup A, Fernandez-Antunez C, Mikkelsen LS, Inekci D, Villadsen SL, Castruita JAS, Pinholt M, Fahnøe U, Ramirez S, Brix L, Weis N, Bukh J. Neutralizing antibody and CD8 + T cell responses following BA.4/5 bivalent COVID-19 booster vaccination in adults with and without prior exposure to SARS-CoV-2. Front Immunol 2024; 15:1353353. [PMID: 38571939 PMCID: PMC10987722 DOI: 10.3389/fimmu.2024.1353353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/08/2024] [Indexed: 04/05/2024] Open
Abstract
As severe acute respiratory coronavirus 2 (SARS-CoV-2) variants continue to emerge, it is important to characterize immune responses against variants which can inform on protection efficacies following booster vaccination. In this study, neutralizing breadth and antigen-specific CD8+ T cell responses were analyzed in both infection-naïve and infection-experienced individuals following administration of a booster bivalent Wuhan-Hu-1+BA.4/5 Comirnaty® mRNA vaccine. Significantly higher neutralizing titers were found after this vaccination compared to the pre-third booster vaccination time point. Further, neutralizing breadth to omicron variants, including BA.1, BA.2, BA.5, BQ.1 and XBB.1, was found to be boosted following bivalent vaccination. SARS-CoV-2-specific CD8+ T cells were identified, but with no evidence that frequencies were increased following booster vaccinations. Spike protein-specific CD8+ T cells were the only responses detected after vaccination and non-spike-specific CD8+ T cells were only detected after infection. Both spike-specific and non-spike-specific CD8+ T cells were found at much lower frequencies than CD8+ T cells specific to cytomegalovirus (CMV), Epstein-Barr virus (EBV) and influenza (Flu). Taken together, these results show that the bivalent Wuhan-Hu-1+BA.4/5 Comirnaty® mRNA vaccine boosted the breadth of neutralization to newer SARS-CoV-2 variants and that vaccination is able to induce spike protein-specific CD8+ T cell responses, which are maintained longitudinally.
Collapse
Affiliation(s)
- Alexander P. Underwood
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Christina Sølund
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | | | - Alekxander Binderup
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Carlota Fernandez-Antunez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Lotte S. Mikkelsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | | | - Signe Lysemose Villadsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Jose A. S. Castruita
- Department of Clinical Microbiology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Mette Pinholt
- Department of Clinical Microbiology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | | | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| |
Collapse
|
38
|
Gomez-Zepeda D, Arnold-Schild D, Beyrle J, Declercq A, Gabriels R, Kumm E, Preikschat A, Łącki MK, Hirschler A, Rijal JB, Carapito C, Martens L, Distler U, Schild H, Tenzer S. Thunder-DDA-PASEF enables high-coverage immunopeptidomics and is boosted by MS 2Rescore with MS 2PIP timsTOF fragmentation prediction model. Nat Commun 2024; 15:2288. [PMID: 38480730 PMCID: PMC10937930 DOI: 10.1038/s41467-024-46380-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 02/26/2024] [Indexed: 03/17/2024] Open
Abstract
Human leukocyte antigen (HLA) class I peptide ligands (HLAIps) are key targets for developing vaccines and immunotherapies against infectious pathogens or cancer cells. Identifying HLAIps is challenging due to their high diversity, low abundance, and patient individuality. Here, we develop a highly sensitive method for identifying HLAIps using liquid chromatography-ion mobility-tandem mass spectrometry (LC-IMS-MS/MS). In addition, we train a timsTOF-specific peak intensity MS2PIP model for tryptic and non-tryptic peptides and implement it in MS2Rescore (v3) together with the CCS predictor from ionmob. The optimized method, Thunder-DDA-PASEF, semi-selectively fragments singly and multiply charged HLAIps based on their IMS and m/z. Moreover, the method employs the high sensitivity mode and extended IMS resolution with fewer MS/MS frames (300 ms TIMS ramp, 3 MS/MS frames), doubling the coverage of immunopeptidomics analyses, compared to the proteomics-tailored DDA-PASEF (100 ms TIMS ramp, 10 MS/MS frames). Additionally, rescoring boosts the HLAIps identification by 41.7% to 33%, resulting in 5738 HLAIps from as little as one million JY cell equivalents, and 14,516 HLAIps from 20 million. This enables in-depth profiling of HLAIps from diverse human cell lines and human plasma. Finally, profiling JY and Raji cells transfected to express the SARS-CoV-2 spike protein results in 16 spike HLAIps, thirteen of which have been reported to elicit immune responses in human patients.
Collapse
Affiliation(s)
- David Gomez-Zepeda
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany.
- Helmholtz Institute for Translational Oncology Mainz (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ, Mainz, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, Division 191, Heidelberg, Germany.
| | - Danielle Arnold-Schild
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Julian Beyrle
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
- Helmholtz Institute for Translational Oncology Mainz (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ, Mainz, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division 191, Heidelberg, Germany
| | - Arthur Declercq
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Ralf Gabriels
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Elena Kumm
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Annica Preikschat
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Mateusz Krzysztof Łącki
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Aurélie Hirschler
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC UMR 7178, University of Strasbourg, CNRS, ProFI - FR2048, Strasbourg, France
| | - Jeewan Babu Rijal
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC UMR 7178, University of Strasbourg, CNRS, ProFI - FR2048, Strasbourg, France
| | - Christine Carapito
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC UMR 7178, University of Strasbourg, CNRS, ProFI - FR2048, Strasbourg, France
| | - Lennart Martens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Ute Distler
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Hansjörg Schild
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany.
- Helmholtz Institute for Translational Oncology Mainz (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ, Mainz, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, Division 191, Heidelberg, Germany.
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University, Mainz, Germany.
| |
Collapse
|
39
|
Yin R, Melton S, Huseby ES, Kardar M, Chakraborty AK. How persistent infection overcomes peripheral tolerance mechanisms to cause T cell-mediated autoimmune disease. Proc Natl Acad Sci U S A 2024; 121:e2318599121. [PMID: 38446856 PMCID: PMC10945823 DOI: 10.1073/pnas.2318599121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024] Open
Abstract
T cells help orchestrate immune responses to pathogens, and their aberrant regulation can trigger autoimmunity. Recent studies highlight that a threshold number of T cells (a quorum) must be activated in a tissue to mount a functional immune response. These collective effects allow the T cell repertoire to respond to pathogens while suppressing autoimmunity due to circulating autoreactive T cells. Our computational studies show that increasing numbers of pathogenic peptides targeted by T cells during persistent or severe viral infections increase the probability of activating T cells that are weakly reactive to self-antigens (molecular mimicry). These T cells are easily re-activated by the self-antigens and contribute to exceeding the quorum threshold required to mount autoimmune responses. Rare peptides that activate many T cells are sampled more readily during severe/persistent infections than in acute infections, which amplifies these effects. Experiments in mice to test predictions from these mechanistic insights are suggested.
Collapse
Affiliation(s)
- Rose Yin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Samuel Melton
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Eric S. Huseby
- Basic Pathology, Department of Pathology, University of Massachusetts Medical School, Worcester, MA01655
| | - Mehran Kardar
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Arup K. Chakraborty
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
40
|
Eggenhuizen PJ, Ooi JD. The Influence of Cross-Reactive T Cells in COVID-19. Biomedicines 2024; 12:564. [PMID: 38540178 PMCID: PMC10967880 DOI: 10.3390/biomedicines12030564] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 01/22/2025] Open
Abstract
Memory T cells form from the adaptive immune response to historic infections or vaccinations. Some memory T cells have the potential to recognise unrelated pathogens like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and generate cross-reactive immune responses. Notably, such T cell cross-reactivity has been observed between SARS-CoV-2 and other human coronaviruses. T cell cross-reactivity has also been observed between SARS-CoV-2 variants from unrelated microbes and unrelated vaccinations against influenza A, tuberculosis and measles, mumps and rubella. Extensive research and debate is underway to understand the mechanism and role of T cell cross-reactivity and how it relates to Coronavirus disease 2019 (COVID-19) outcomes. Here, we review the evidence for the ability of pre-existing memory T cells to cross-react with SARS-CoV-2. We discuss the latest findings on the impact of T cell cross-reactivity and the extent to which it can cross-protect from COVID-19.
Collapse
Affiliation(s)
- Peter J. Eggenhuizen
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC 3800, Australia
| | | |
Collapse
|
41
|
Nesamari R, Omondi MA, Baguma R, Höft MA, Ngomti A, Nkayi AA, Besethi AS, Magugu SFJ, Mosala P, Walters A, Clark GM, Mennen M, Skelem S, Adriaanse M, Grifoni A, Sette A, Keeton RS, Ntusi NAB, Riou C, Burgers WA. Post-pandemic memory T cell response to SARS-CoV-2 is durable, broadly targeted, and cross-reactive to the hypermutated BA.2.86 variant. Cell Host Microbe 2024; 32:162-169.e3. [PMID: 38211583 PMCID: PMC10901529 DOI: 10.1016/j.chom.2023.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024]
Abstract
Ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution has given rise to recombinant Omicron lineages that dominate globally (XBB.1), as well as the emergence of hypermutated variants (BA.2.86). In this context, durable and cross-reactive T cell immune memory is critical for continued protection against severe COVID-19. We examined T cell responses to SARS-CoV-2 approximately 1.5 years since Omicron first emerged. We describe sustained CD4+ and CD8+ spike-specific T cell memory responses in healthcare workers in South Africa (n = 39) who were vaccinated and experienced at least one SARS-CoV-2 infection. Spike-specific T cells are highly cross-reactive with all Omicron variants tested, including BA.2.86. Abundant nucleocapsid and membrane-specific T cells are detectable in most participants. The bulk of SARS-CoV-2-specific T cell responses have an early-differentiated phenotype, explaining their persistent nature. Overall, hybrid immunity leads to the accumulation of spike and non-spike T cells evident 3.5 years after the start of the pandemic, with preserved recognition of highly mutated SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Rofhiwa Nesamari
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Millicent A Omondi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Richard Baguma
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Maxine A Höft
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Amkele Ngomti
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Anathi A Nkayi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Asiphe S Besethi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Siyabulela F J Magugu
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Paballo Mosala
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Avril Walters
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Gesina M Clark
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Mathilda Mennen
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa; Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; South African Medical Research Council Extramural Unit on Intersection of Non-communicable Disease and Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Sango Skelem
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa; Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; South African Medical Research Council Extramural Unit on Intersection of Non-communicable Disease and Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Marguerite Adriaanse
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa; Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; South African Medical Research Council Extramural Unit on Intersection of Non-communicable Disease and Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Alba Grifoni
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Roanne S Keeton
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Ntobeko A B Ntusi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa; Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; South African Medical Research Council Extramural Unit on Intersection of Non-communicable Disease and Infectious Diseases, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa.
| | - Wendy A Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
42
|
You C, Jiang S, Ding Y, Ye S, Zou X, Zhang H, Li Z, Chen F, Li Y, Ge X, Guo X. RNA barcode segments for SARS-CoV-2 identification from HCoVs and SARSr-CoV-2 lineages. Virol Sin 2024; 39:156-168. [PMID: 38253258 PMCID: PMC10877444 DOI: 10.1016/j.virs.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen responsible for coronavirus disease 2019 (COVID-19), continues to evolve, giving rise to more variants and global reinfections. Previous research has demonstrated that barcode segments can effectively and cost-efficiently identify specific species within closely related populations. In this study, we designed and tested RNA barcode segments based on genetic evolutionary relationships to facilitate the efficient and accurate identification of SARS-CoV-2 from extensive virus samples, including human coronaviruses (HCoVs) and SARSr-CoV-2 lineages. Nucleotide sequences sourced from NCBI and GISAID were meticulously selected and curated to construct training sets, encompassing 1733 complete genome sequences of HCoVs and SARSr-CoV-2 lineages. Through genetic-level species testing, we validated the accuracy and reliability of the barcode segments for identifying SARS-CoV-2. Subsequently, 75 main and subordinate species-specific barcode segments for SARS-CoV-2, located in ORF1ab, S, E, ORF7a, and N coding sequences, were intercepted and screened based on single-nucleotide polymorphism sites and weighted scores. Post-testing, these segments exhibited high recall rates (nearly 100%), specificity (almost 30% at the nucleotide level), and precision (100%) performance on identification. They were eventually visualized using one and two-dimensional combined barcodes and deposited in an online database (http://virusbarcodedatabase.top/). The successful integration of barcoding technology in SARS-CoV-2 identification provides valuable insights for future studies involving complete genome sequence polymorphism analysis. Moreover, this cost-effective and efficient identification approach also provides valuable reference for future research endeavors related to virus surveillance.
Collapse
Affiliation(s)
- Changqiao You
- College of Biology, Hunan University, Changsha, 410082, China
| | - Shuai Jiang
- College of Biology, Hunan University, Changsha, 410082, China
| | - Yunyun Ding
- College of Biology, Hunan University, Changsha, 410082, China
| | - Shunxing Ye
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaoxiao Zou
- College of Biology, Hunan University, Changsha, 410082, China
| | - Hongming Zhang
- College of Biology, Hunan University, Changsha, 410082, China
| | - Zeqi Li
- College of Biology, Hunan University, Changsha, 410082, China
| | - Fenglin Chen
- College of Biology, Hunan University, Changsha, 410082, China
| | - Yongliang Li
- College of Biology, Hunan University, Changsha, 410082, China.
| | - Xingyi Ge
- College of Biology, Hunan University, Changsha, 410082, China.
| | - Xinhong Guo
- College of Biology, Hunan University, Changsha, 410082, China.
| |
Collapse
|
43
|
Dos Santos Alves RP, Timis J, Miller R, Valentine K, Pinto PBA, Gonzalez A, Regla-Nava JA, Maule E, Nguyen MN, Shafee N, Landeras-Bueno S, Olmedillas E, Laffey B, Dobaczewska K, Mikulski Z, McArdle S, Leist SR, Kim K, Baric RS, Ollmann Saphire E, Elong Ngono A, Shresta S. Human coronavirus OC43-elicited CD4 + T cells protect against SARS-CoV-2 in HLA transgenic mice. Nat Commun 2024; 15:787. [PMID: 38278784 PMCID: PMC10817949 DOI: 10.1038/s41467-024-45043-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
SARS-CoV-2-reactive T cells are detected in some healthy unexposed individuals. Human studies indicate these T cells could be elicited by the common cold coronavirus OC43. To directly test this assumption and define the role of OC43-elicited T cells that are cross-reactive with SARS-CoV-2, we develop a model of sequential infections with OC43 followed by SARS-CoV-2 in HLA-B*0702 and HLA-DRB1*0101 Ifnar1-/- transgenic mice. We find that OC43 infection can elicit polyfunctional CD8+ and CD4+ effector T cells that cross-react with SARS-CoV-2 peptides. Furthermore, pre-exposure to OC43 reduces subsequent SARS-CoV-2 infection and disease in the lung for a short-term in HLA-DRB1*0101 Ifnar1-/- transgenic mice, and a longer-term in HLA-B*0702 Ifnar1-/- transgenic mice. Depletion of CD4+ T cells in HLA-DRB1*0101 Ifnar1-/- transgenic mice with prior OC43 exposure results in increased viral burden in the lung but no change in virus-induced lung damage following infection with SARS-CoV-2 (versus CD4+ T cell-sufficient mice), demonstrating that the OC43-elicited SARS-CoV-2 cross-reactive T cell-mediated cross-protection against SARS-CoV-2 is partially dependent on CD4+ T cells. These findings contribute to our understanding of the origin of pre-existing SARS-CoV-2-reactive T cells and their effects on SARS-CoV-2 clinical outcomes, and also carry implications for development of broadly protective betacoronavirus vaccines.
Collapse
Affiliation(s)
| | - Julia Timis
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Robyn Miller
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kristen Valentine
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Andrew Gonzalez
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Jose Angel Regla-Nava
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Microbiology and Pathology, University Center for Health Science (CUCS), University of Guadalajara, Guadalajara, 44340, Mexico
| | - Erin Maule
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Michael N Nguyen
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Norazizah Shafee
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Sara Landeras-Bueno
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Eduardo Olmedillas
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Brett Laffey
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Katarzyna Dobaczewska
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Sara McArdle
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth Kim
- Histopathology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Annie Elong Ngono
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA.
| | - Sujan Shresta
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA.
| |
Collapse
|
44
|
Prakash S, Dhanushkodi NR, Zayou L, Ibraim IC, Quadiri A, Coulon PG, Tifrea DF, Suzer B, Shaik AM, Chilukuri A, Edwards RA, Singer M, Vahed H, Nesburn AB, Kuppermann BD, Ulmer JB, Gil D, Jones TM, BenMohamed L. Cross-protection induced by highly conserved human B, CD4 +, and CD8 + T-cell epitopes-based vaccine against severe infection, disease, and death caused by multiple SARS-CoV-2 variants of concern. Front Immunol 2024; 15:1328905. [PMID: 38318166 PMCID: PMC10839970 DOI: 10.3389/fimmu.2024.1328905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic has created one of the largest global health crises in almost a century. Although the current rate of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections has decreased significantly, the long-term outlook of COVID-19 remains a serious cause of morbidity and mortality worldwide, with the mortality rate still substantially surpassing even that recorded for influenza viruses. The continued emergence of SARS-CoV-2 variants of concern (VOCs), including multiple heavily mutated Omicron sub-variants, has prolonged the COVID-19 pandemic and underscores the urgent need for a next-generation vaccine that will protect from multiple SARS-CoV-2 VOCs. METHODS We designed a multi-epitope-based coronavirus vaccine that incorporated B, CD4+, and CD8+ T- cell epitopes conserved among all known SARS-CoV-2 VOCs and selectively recognized by CD8+ and CD4+ T-cells from asymptomatic COVID-19 patients irrespective of VOC infection. The safety, immunogenicity, and cross-protective immunity of this pan-variant SARS-CoV-2 vaccine were studied against six VOCs using an innovative triple transgenic h-ACE-2-HLA-A2/DR mouse model. RESULTS The pan-variant SARS-CoV-2 vaccine (i) is safe , (ii) induces high frequencies of lung-resident functional CD8+ and CD4+ TEM and TRM cells , and (iii) provides robust protection against morbidity and virus replication. COVID-19-related lung pathology and death were caused by six SARS-CoV-2 VOCs: Alpha (B.1.1.7), Beta (B.1.351), Gamma or P1 (B.1.1.28.1), Delta (lineage B.1.617.2), and Omicron (B.1.1.529). CONCLUSION A multi-epitope pan-variant SARS-CoV-2 vaccine bearing conserved human B- and T- cell epitopes from structural and non-structural SARS-CoV-2 antigens induced cross-protective immunity that facilitated virus clearance, and reduced morbidity, COVID-19-related lung pathology, and death caused by multiple SARS-CoV-2 VOCs.
Collapse
Affiliation(s)
- Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Nisha R. Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Izabela Coimbra Ibraim
- High Containment Facility, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Pierre Gregoire Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Delia F. Tifrea
- Department of Pathology and Laboratory Medicine, School of Medicine, the University of California Irvine, Irvine, CA, United States
| | - Berfin Suzer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Amin Mohammed Shaik
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Amruth Chilukuri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Robert A. Edwards
- Department of Pathology and Laboratory Medicine, School of Medicine, the University of California Irvine, Irvine, CA, United States
| | - Mahmoud Singer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Hawa Vahed
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Baruch D. Kuppermann
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Jeffrey B. Ulmer
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Daniel Gil
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Trevor M. Jones
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
- Division of Infectious Diseases and Hospitalist Program, Department of Medicine, School of Medicine, the University of California Irvine, Irvine, CA, United States
- Institute for Immunology; University of California Irvine, School of Medicine, Irvine, CA, United States
| |
Collapse
|
45
|
Meyer M, Parpoulas C, Barthélémy T, Becker JP, Charoentong P, Lyu Y, Börsig S, Bulbuc N, Tessmer C, Weinacht L, Ibberson D, Schmidt P, Pipkorn R, Eichmüller SB, Steinberger P, Lindner K, Poschke I, Platten M, Fröhling S, Riemer AB, Hassel JC, Roberti MP, Jäger D, Zörnig I, Momburg F. MediMer: a versatile do-it-yourself peptide-receptive MHC class I multimer platform for tumor neoantigen-specific T cell detection. Front Immunol 2024; 14:1294565. [PMID: 38239352 PMCID: PMC10794645 DOI: 10.3389/fimmu.2023.1294565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/28/2023] [Indexed: 01/22/2024] Open
Abstract
Peptide-loaded MHC class I (pMHC-I) multimers have revolutionized our capabilities to monitor disease-associated T cell responses with high sensitivity and specificity. To improve the discovery of T cell receptors (TCR) targeting neoantigens of individual tumor patients with recombinant MHC molecules, we developed a peptide-loadable MHC class I platform termed MediMer. MediMers are based on soluble disulfide-stabilized β2-microglobulin/heavy chain ectodomain single-chain dimers (dsSCD) that can be easily produced in large quantities in eukaryotic cells and tailored to individual patients' HLA allotypes with only little hands-on time. Upon transient expression in CHO-S cells together with ER-targeted BirA biotin ligase, biotinylated dsSCD are purified from the cell supernatant and are ready to use. We show that CHO-produced dsSCD are free of endogenous peptide ligands. Empty dsSCD from more than 30 different HLA-A,B,C allotypes, that were produced and validated so far, can be loaded with synthetic peptides matching the known binding criteria of the respective allotypes, and stored at low temperature without loss of binding activity. We demonstrate the usability of peptide-loaded dsSCD multimers for the detection of human antigen-specific T cells with comparable sensitivities as multimers generated with peptide-tethered β2m-HLA heavy chain single-chain trimers (SCT) and wild-type peptide-MHC-I complexes prior formed in small-scale refolding reactions. Using allotype-specific, fluorophore-labeled competitor peptides, we present a novel dsSCD-based peptide binding assay capable of interrogating large libraries of in silico predicted neoepitope peptides by flow cytometry in a high-throughput and rapid format. We discovered rare T cell populations with specificity for tumor neoepitopes and epitopes from shared tumor-associated antigens in peripheral blood of a melanoma patient including a so far unreported HLA-C*08:02-restricted NY-ESO-1-specific CD8+ T cell population. Two representative TCR of this T cell population, which could be of potential value for a broader spectrum of patients, were identified by dsSCD-guided single-cell sequencing and were validated by cognate pMHC-I multimer staining and functional responses to autologous peptide-pulsed antigen presenting cells. By deploying the technically accessible dsSCD MHC-I MediMer platform, we hope to significantly improve success rates for the discovery of personalized neoepitope-specific TCR in the future by being able to also cover rare HLA allotypes.
Collapse
Affiliation(s)
- Marten Meyer
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Immunity, DKFZ, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Christina Parpoulas
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Titouan Barthélémy
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonas P. Becker
- Division of Immunotherapy and Immunoprevention, DKFZ, Heidelberg, Germany
- German Center for Infection Research (DZIF) Partner Site Heidelberg, Heidelberg, Germany
| | - Pornpimol Charoentong
- Clinical Cooperation Unit Applied Tumor Immunity, DKFZ, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (Bioquant), Heidelberg University, Heidelberg, Germany
| | - Yanhong Lyu
- Clinical Cooperation Unit Applied Tumor Immunity, DKFZ, Heidelberg, Germany
| | - Selina Börsig
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Nadja Bulbuc
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Tessmer
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Immunity, DKFZ, Heidelberg, Germany
| | - Lisa Weinacht
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Ibberson
- Deep Sequencing Core Facility, Heidelberg University, Heidelberg, Germany
| | - Patrick Schmidt
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- GMP and T Cell Therapy, DKFZ, Heidelberg, Germany
| | | | | | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology, Medical University of Vienna, Vienna, Austria
| | - Katharina Lindner
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, DKFZ, Heidelberg, Germany
- Immune Monitoring Unit, NCT Heidelberg and DKFZ, Heidelberg, Germany
| | - Isabel Poschke
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, DKFZ, Heidelberg, Germany
- Immune Monitoring Unit, NCT Heidelberg and DKFZ, Heidelberg, Germany
| | - Michael Platten
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, DKFZ, Heidelberg, Germany
- Immune Monitoring Unit, NCT Heidelberg and DKFZ, Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, Core Center, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neuroscience (MCTN), Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute at the University Medical Center, Mannheim, Germany
- Helmholtz Institute for Translational Oncology, Mainz (HI-TRON Mainz), Mainz, Germany
| | - Stefan Fröhling
- German Cancer Consortium (DKTK), DKFZ, Core Center, Heidelberg, Germany
- Division of Translational Medical Oncology, NCT Heidelberg and DKFZ, Heidelberg, Germany
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Angelika B. Riemer
- Division of Immunotherapy and Immunoprevention, DKFZ, Heidelberg, Germany
- German Center for Infection Research (DZIF) Partner Site Heidelberg, Heidelberg, Germany
| | - Jessica C. Hassel
- Section of DermatoOncology, Department of Dermatology and NCT, Heidelberg University Hospital, Heidelberg, Germany
| | - Maria Paula Roberti
- Clinical Cooperation Unit Applied Tumor Immunity, DKFZ, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Dirk Jäger
- Clinical Cooperation Unit Applied Tumor Immunity, DKFZ, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Inka Zörnig
- Clinical Cooperation Unit Applied Tumor Immunity, DKFZ, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Frank Momburg
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
46
|
Markov NS, Ren Z, Senkow KJ, Grant RA, Gao CA, Malsin ES, Sichizya L, Kihshen H, Helmin KA, Jovisic M, Arnold JM, Pérez-Leonor XG, Abdala-Valencia H, Swaminathan S, Nwaezeapu J, Kang M, Rasmussen L, Ozer EA, Lorenzo-Redondo R, Hultquist JF, Simons LM, Rios-Guzman E, Misharin AV, Wunderink RG, Budinger GS, Singer BD, Morales-Nebreda L, The NU SCRIPT Study Investigators. A distinctive evolution of alveolar T cell responses is associated with clinical outcomes in unvaccinated patients with SARS-CoV-2 pneumonia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571479. [PMID: 38168346 PMCID: PMC10760069 DOI: 10.1101/2023.12.13.571479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Pathogen clearance and resolution of inflammation in patients with pneumonia require an effective local T cell response. Nevertheless, local T cell activation may drive lung injury, particularly during prolonged episodes of respiratory failure characteristic of severe SARS-CoV-2 pneumonia. While T cell responses in the peripheral blood are well described, the evolution of T cell phenotypes and molecular signatures in the distal lung of patients with severe pneumonia caused by SARS-CoV-2 or other pathogens is understudied. Accordingly, we serially obtained 432 bronchoalveolar lavage fluid samples from 273 patients with severe pneumonia and respiratory failure, including 74 unvaccinated patients with COVID-19, and performed flow cytometry, transcriptional, and T cell receptor profiling on sorted CD8+ and CD4+ T cell subsets. In patients with COVID-19 but not pneumonia secondary to other pathogens, we found that early and persistent enrichment in CD8+ and CD4+ T cell subsets correlated with survival to hospital discharge. Activation of interferon signaling pathways early after intubation for COVID-19 was associated with favorable outcomes, while activation of NF-κB-driven programs late in disease was associated with poor outcomes. Patients with SARS-CoV-2 pneumonia whose alveolar T cells preferentially targeted the Spike and Nucleocapsid proteins tended to experience more favorable outcomes than patients whose T cells predominantly targeted the ORF1ab polyprotein complex. These results suggest that in patients with severe SARS-CoV-2 pneumonia, alveolar T cell interferon responses targeting structural SARS-CoV-2 proteins characterize patients who recover, yet these responses progress to NF-κB activation against non-structural proteins in patients who go on to experience poor clinical outcomes.
Collapse
Affiliation(s)
- Nikolay S. Markov
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Ziyou Ren
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Karolina J. Senkow
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Rogan A. Grant
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Catherine A. Gao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Elizabeth S. Malsin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Lango Sichizya
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Hermon Kihshen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Kathryn A. Helmin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Milica Jovisic
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Jason M. Arnold
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | | | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Suchitra Swaminathan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Julu Nwaezeapu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Mengjia Kang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Luke Rasmussen
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Egon A. Ozer
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Ramon Lorenzo-Redondo
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Lacy M. Simons
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Estefany Rios-Guzman
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Alexander V. Misharin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Richard G. Wunderink
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - G.R. Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Benjamin D. Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Luisa Morales-Nebreda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | | |
Collapse
|
47
|
Gayvert K, McKay S, Lim WK, Baum A, Kyratsous C, Copin R, Atwal GS. Evolutionary trajectory of SARS-CoV-2 genome shifts during widespread vaccination and emergence of Omicron variant. NPJ VIRUSES 2023; 1:5. [PMID: 40295667 PMCID: PMC11721106 DOI: 10.1038/s44298-023-00007-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/25/2023] [Indexed: 04/30/2025]
Abstract
Understanding the adaptation of SARS-CoV-2 is critical for the development of effective treatments against this exceptionally successful human pathogen. To predict the emergence of new variants that may escape host immunity or increase virulence, it is important to characterize the biological forces driving its evolution. We conducted a comprehensive population genetic study of over thirteen million SARS-CoV-2 genome sequences, collected over a timeframe of ~3 years, to investigate these forces. Our analysis revealed that during the first year of the pandemic (2020 to 2021), the SARS-CoV-2 genome was subject to strong conservation, with only 3.6% of sites under diversifying pressure in the receptor binding domain (RBD) of the Spike protein. However, we observed a sharp increase in the diversification of the RBD during 2021 (8.1% of sites under diversifying pressure up to 2022), indicating selective pressures that promote the accumulation of mutations. This period coincided with broad viral infection and adoption of vaccination worldwide, and we observed the acquisition of mutations that later defined the Omicron lineages in independent SARS-CoV-2 strains, suggesting that diversifying selection at these sites could have led to their fixation in Omicron lineages by convergent evolution. Since the emergence of Omicron, we observed a further decrease in the conservation of structural genes, including M, N, and the spike proteins (13.1% of RBD sites under diversifying pressure up to 2023), and identified new sites defining future potential emerging strains. Our results exhibit that ongoing rapid antigenic evolution continues to produce new high-frequency functional variants. Sites under selection are critical for virus fitness, and currently known T cell epitope sequences are highly conserved. Altogether, our study provides a comprehensive dynamic map of sites under selection and conservation across the entirety of the SARS-CoV-2 genome.
Collapse
Affiliation(s)
| | - Sheldon McKay
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10091, USA
| | - Wei Keat Lim
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10091, USA
| | - Alina Baum
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10091, USA
| | | | - Richard Copin
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10091, USA.
| | | |
Collapse
|
48
|
Hogan MJ, Maheshwari N, Begg BE, Nicastri A, Hedgepeth EJ, Muramatsu H, Pardi N, Miller MA, Reilly SP, Brossay L, Lynch KW, Ternette N, Eisenlohr LC. Cryptic MHC-E epitope from influenza elicits a potent cytolytic T cell response. Nat Immunol 2023; 24:1933-1946. [PMID: 37828378 PMCID: PMC12116205 DOI: 10.1038/s41590-023-01644-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
The extent to which unconventional forms of antigen presentation drive T cell immunity is unknown. By convention, CD8 T cells recognize viral peptides, or epitopes, in association with classical major histocompatibility complex (MHC) class I, or MHC-Ia, but immune surveillance can, in some cases, be directed against peptides presented by nonclassical MHC-Ib, in particular the MHC-E proteins (Qa-1 in mice and HLA-E in humans); however, the overall importance of nonclassical responses in antiviral immunity remains unclear. Similarly uncertain is the importance of 'cryptic' viral epitopes, defined as those undetectable by conventional mapping techniques. Here we used an immunopeptidomic approach to search for unconventional epitopes that drive T cell responses in mice infected with influenza virus A/Puerto Rico/8/1934. We identified a nine amino acid epitope, termed M-SL9, that drives a co-immunodominant, cytolytic CD8 T cell response that is unconventional in two major ways: first, it is presented by Qa-1, and second, it has a cryptic origin, mapping to an unannotated alternative reading frame product of the influenza matrix gene segment. Presentation and immunogenicity of M-SL9 are dependent on the second AUG codon of the positive sense matrix RNA segment, suggesting translation initiation by leaky ribosomal scanning. During influenza virus A/Puerto Rico/8/1934 infection, M-SL9-specific T cells exhibit a low level of egress from the lungs and strong differentiation into tissue-resident memory cells. Importantly, we show that M-SL9/Qa-1-specific T cells can be strongly induced by messenger RNA vaccination and that they can mediate antigen-specific cytolysis in vivo. Our results demonstrate that noncanonical translation products can account for an important fraction of the T cell repertoire and add to a growing body of evidence that MHC-E-restricted T cells could have substantial therapeutic value.
Collapse
Affiliation(s)
- Michael J Hogan
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Nikita Maheshwari
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Bridget E Begg
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Annalisa Nicastri
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Emma J Hedgepeth
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael A Miller
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
- Century Therapeutics, Philadelphia, PA, USA
| | - Shanelle P Reilly
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicola Ternette
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Laurence C Eisenlohr
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
49
|
Xing M, Wang Y, Wang X, Liu J, Dai W, Hu G, He F, Zhao Q, Li Y, Sun L, Wang Y, Du S, Dong Z, Pang C, Hu Z, Zhang X, Xu J, Cai Q, Zhou D. Broad-spectrum vaccine via combined immunization routes triggers potent immunity to SARS-CoV-2 and its variants. J Virol 2023; 97:e0072423. [PMID: 37706688 PMCID: PMC10617383 DOI: 10.1128/jvi.00724-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/09/2023] [Indexed: 09/15/2023] Open
Abstract
IMPORTANCE The development of broad-spectrum SARS-CoV-2 vaccines will reduce the global economic and public health stress from the COVID-19 pandemic. The use of conserved T-cell epitopes in combination with spike antigen that induce humoral and cellular immune responses simultaneously may be a promising strategy to further enhance the broad spectrum of COVID-19 vaccine candidates. Moreover, this research suggests that the combined vaccination strategies have the ability to induce both effective systemic and mucosal immunity, which may represent promising strategies for maximizing the protective efficacy of respiratory virus vaccines.
Collapse
Affiliation(s)
- Man Xing
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yihan Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xinyu Wang
- MOE&NHC&CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiaojiao Liu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Weiqian Dai
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Gaowei Hu
- MOE&NHC&CAMS Key Laboratory of Medical Molecular, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Furong He
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qian Zhao
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lingjin Sun
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuyan Wang
- MOE&NHC&CAMS Key Laboratory of Medical Molecular, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shujuan Du
- MOE&NHC&CAMS Key Laboratory of Medical Molecular, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongwei Dong
- MOE&NHC&CAMS Key Laboratory of Medical Molecular, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chongjie Pang
- Department of Infectious Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhidong Hu
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qiliang Cai
- MOE&NHC&CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dongming Zhou
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
50
|
Bean DJ, Monroe J, Liang YM, Borberg E, Senussi Y, Swank Z, Chalise S, Walt D, Weinberg J, Sagar M. Heterotypic responses against nsp12/nsp13 from prior SARS-CoV-2 infection associates with lower subsequent endemic coronavirus incidence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563621. [PMID: 37961343 PMCID: PMC10634759 DOI: 10.1101/2023.10.23.563621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Immune responses from prior SARS-CoV-2 infection and COVID-19 vaccination do not prevent re-infections and may not protect against future novel coronaviruses (CoVs). We examined the incidence of and immune differences against human endemic CoVs (eCoV) as a proxy for response against future emerging CoVs. Assessment was among those with known SARS-CoV-2 infection, COVID-19 vaccination but no documented SARS-CoV-2 infection, or neither exposure. Retrospective cohort analyses suggest that prior SARS-CoV-2 infection, but not COVID-19 vaccination alone, protects against subsequent symptomatic eCoV infection. CD8+ T cell responses to the non-structural eCoV proteins, nsp12 and nsp13, were significantly higher in individuals with previous SARS-CoV-2 infection as compared to the other groups. The three groups had similar cellular responses against the eCoV spike and nucleocapsid, and those with prior spike exposure had lower eCoV-directed neutralizing antibodies. Incorporation of non-structural viral antigens in a future pan-CoV vaccine may improve protection against future heterologous CoV infections.
Collapse
Affiliation(s)
- David J. Bean
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - Janet Monroe
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - Yan Mei Liang
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - Ella Borberg
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| | - Yasmeen Senussi
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| | - Zoe Swank
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| | - Sujata Chalise
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| | - David Walt
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| | - Janice Weinberg
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Manish Sagar
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| |
Collapse
|