1
|
Sáez-Llorens X, DeAntonio R, Low JGH, Kosalaraksa P, Dean H, Sharma M, Tricou V, Biswal S. TAK-003: development of a tetravalent dengue vaccine. Expert Rev Vaccines 2025; 24:324-338. [PMID: 40207772 DOI: 10.1080/14760584.2025.2490295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 03/13/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
INTRODUCTION Dengue incidence has increased over the past few decades. One tetravalent dengue vaccine based on a yellow fever backbone has been approved, but due to increased risk of severe disease in dengue-naïve recipients, its use is limited to individuals with prior dengue exposure. AREAS COVERED We summarize the clinical development of TAK-003, a tetravalent dengue vaccine based on a live-attenuated DENV-2 backbone. We discuss vaccine development and preclinical and clinical work leading to a commercially available formulation. TAK-003 is approved in several countries and the WHO-SAGE recommend TAK-003 to be considered for public programs in high transmission areas for individuals aged 6-16 years. Finally, we discuss the potential role of TAK-003 as part of an integrated multimodal strategy for dengue prevention. EXPERT OPINION TAK-003 has been assessed in a comprehensive clinical development program; demonstrating sustained efficacy and safety against all four serotypes in baseline seropositive individuals, and against DENV-1 and DENV-2 in seronegative individuals, and has been well tolerated. Effectiveness in a real world setting and safety will be monitored in ongoing and future studies, particularly for DENV-3 and DENV-4, together with the impact of a booster dose. Overall, TAK-003 shows promise as a new tool for dengue prevention.
Collapse
Affiliation(s)
- Xavier Sáez-Llorens
- Department of Infectious Diseases, Hospital del Niño Dr. José Renán Esquivel, Panama City, Panama
- Cevaxin The Panama Clinic, Panama City, Panama
- Sistema Nacional de Investigación, Senacyt, Panama City, Panama
| | - Rodrigo DeAntonio
- Cevaxin The Panama Clinic, Panama City, Panama
- Sistema Nacional de Investigación, Senacyt, Panama City, Panama
| | - Jenny Guek Hong Low
- Department of Infectious Diseases, Singapore General Hospital, Singapore
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
| | - Pope Kosalaraksa
- Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Hansi Dean
- Vaccine Business Unit, Takeda Vaccines Inc., Cambridge, MA, USA
| | - Mayuri Sharma
- Vaccine Business Unit, Takeda Vaccines Inc., Cambridge, MA, USA
| | - Vianney Tricou
- Vaccine Business Unit, Takeda Pharmaceuticals International AG, Zürich, Switzerland
| | - Shibadas Biswal
- Vaccine Business Unit, Takeda Vaccines Inc., Cambridge, MA, USA
| |
Collapse
|
2
|
Dong S, Tavadia M, Dong QA, Dimopoulos G. Engineered antibody-mediated broad-spectrum suppression of human arboviruses in the Aedes aegypti vector. Commun Biol 2025; 8:709. [PMID: 40335671 PMCID: PMC12059017 DOI: 10.1038/s42003-025-08133-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/24/2025] [Indexed: 05/09/2025] Open
Abstract
Mosquito-borne orthoflaviviruses such as dengue and Zika viruses, and alphaviruses such as chikungunya viruses continue to pose global health threats, necessitating innovative vector control strategies. Small antibodies (sAb) such as single-chain variable fragments (scFv) and single-domain antibodies (sdAb) against dengue and chikungunya viral proteins have been applied to neutralize viral infections in mouse and human primary cells. Here, we explored the use of these protective sAbs for the development of transgenic mosquito-based arboviral disease control strategies. We expressed scFv against orthoflaviviruses and sdAb against alphaviruses using a dual bloodmeal-inducible midgut-specific promoter, AeG12, achieving strong expression of both orthoflavivirus scFv and alphavirus sdAb in Aedes aegypti midguts. The presence of sAbs significantly reduced mosquito midgut infections with multiple orthoflaviviruses and alphaviruses, such as dengue, Zika, chikungunya and Mayaro viruses, thus compromising viral transmission by the transgenic mosquitoes. We further augmented virus-blocking by co-expression of sAbs and the siRNA pathway factor Dcr2, proving the utility of combinatorial virus targeting by mechanistically independent antiviral effectors. Our results demonstrate the potential of expressing broadly neutralizing sAbs in mosquitoes, particularly in combination with enhancing endogenous antiviral pathways, as a promising strategy to reduce arbovirus transmission by mosquitoes.
Collapse
Affiliation(s)
- Shengzhang Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Mihra Tavadia
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Qiran Amy Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
3
|
Tang H, Evers TMJ, Babaei M, Mashaghi A. Revealing Mechanopathology Induced by Dengue NS1 Using Organ Chips and Single-Cell Force Spectroscopy. ACS Biomater Sci Eng 2025; 11:2448-2455. [PMID: 40131123 PMCID: PMC12001184 DOI: 10.1021/acsbiomaterials.4c02410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/26/2025]
Abstract
Capillary leakage is a hallmark of severe dengue, yet its precise mechanisms remain elusive. Emerging evidence highlights the dengue virus's targeting of mechanically active endothelial cells as a key contributor to dengue shock syndrome. The viral nonstructural protein 1 (NS1) has been identified as a central player, disrupting endothelial integrity and inducing vascular hyperpermeability independently of pro-inflammatory cytokines. This study provides a direct assessment of NS1-induced endothelial pathology by combining single-cell force spectroscopy and a microvessel-on-a-chip platform. We demonstrate that NS1 significantly alters endothelial cell mechanics, reducing cell stiffness and compromising junctional integrity, thereby directly linking these mechanical alterations to vascular dysfunction. These findings establish a framework for understanding the mechano-pathology of dengue and offer a platform for developing targeted therapeutic strategies to mitigate severe disease outcomes.
Collapse
Affiliation(s)
| | | | - Mehrad Babaei
- Medical Systems Biophysics and Bioengineering,
Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, 2334CC Leiden, The Netherlands
| | - Alireza Mashaghi
- Medical Systems Biophysics and Bioengineering,
Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, 2334CC Leiden, The Netherlands
| |
Collapse
|
4
|
Wang S, Thitilertdecha P, Khowawisetsut L, Maneesawat T, Chuansumrit A, Chokephaibulkit K, Pattanapanyasat K, Onlamoon N. Dengue Viral Infection Induces Alteration of CD95 Expression in B Cell Subsets with Potential Involvement of Dengue Viral Non-Structural Protein 1. Viruses 2025; 17:541. [PMID: 40284984 PMCID: PMC12031515 DOI: 10.3390/v17040541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/05/2025] [Accepted: 04/05/2025] [Indexed: 04/29/2025] Open
Abstract
Little is known about the regulation of B cell subpopulations in association with programmed cell death during dengue virus (DENV) infection. Therefore, blood samples from dengue-infected patients and healthy donors were obtained for B cell subset characterization and the analysis of pro-apoptotic CD95 expression in these cell subsets. The results showed that the activated memory (AM) subset in the patients remained unchanged compared to the healthy donors. In contrast, tissue memory (TM) and antibody-secreting cells (ASCs) were notably increased, whereas naïve cells and resting memory (RM) cells were considerably decreased. Although the ASCs maintained comparably high levels of CD95 expression in both groups, significantly increased percentages of CD95-expressing cells in the other B cell subsets were found in the patients. When B cells from the healthy donors were treated with DENV non-structural protein 1 (NS1), the results showed that the NS1 protein at 2 µg/mL could induce CD95 expression and the exposure of phosphatidylserine on the cell membrane in most B cell subsets, except for the RM. This study demonstrates that DENV infection could induce CD95 expression in both activated and resting B cell subsets in all patients. The results also suggest a potential mechanism of apoptotic regulation in B cell subsets through the increased CD95 expression caused by the interaction between the B cells and the NS1 protein.
Collapse
Affiliation(s)
- Siyu Wang
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Premrutai Thitilertdecha
- Siriraj Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (P.T.); (T.M.)
- Biomedical Research Incubator Unit, Research Group and Research Network Division, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Ladawan Khowawisetsut
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Theeraporn Maneesawat
- Siriraj Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (P.T.); (T.M.)
- Biomedical Research Incubator Unit, Research Group and Research Network Division, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Ampaiwan Chuansumrit
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Kulkanya Chokephaibulkit
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Kovit Pattanapanyasat
- Biomedical Research Incubator Unit, Research Group and Research Network Division, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Nattawat Onlamoon
- Siriraj Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (P.T.); (T.M.)
- Biomedical Research Incubator Unit, Research Group and Research Network Division, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| |
Collapse
|
5
|
Nanda JD, Yeh TM, Satria RD, Jhan MK, Wang YT, Lin YL, Sufriyana H, Su ECY, Lin CF, Ho TS. Dengue virus non-structural protein 1 binding to thrombin as a dengue severity marker: Comprehensive patient analysis in south Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025; 58:198-208. [PMID: 39730269 DOI: 10.1016/j.jmii.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 07/26/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND Previously we identified a complex of non-structural protein (NS) 1 - Thrombin (NST) in dengue infected patients. Here, we investigated how the concentration of NS1 and NST differ in various dengue severity levels as well as their demographic and clinical features. Several comorbid (hypertension, diabetes, and chronic renal failure) often found in dengue patients were also measured and analyzed. METHODS A total of 86 dengue patients (52 not severe and 34 severe), were enrolled and had their blood taken. Blood samples were further verified for clinical blood parameters, including liver and renal function tests and serologic assays (NS1 and NST). Patients' severity was grouped based on WHO 2009 classification, which separates patients into dengue without warning signs (DNWS), dengue with warning signs (DWWS), and severe dengue (SD). DWWS is explained as DNWS with warning signs (persistent abdominal pain, persistent vomiting, liver enlargement, bleeding (any kind), fatigue, and restlessness). SD are those with severe plasma leakage, severe bleeding, or severe organ impairment. Multivariate regression analysis was used to predict the role of NST on the dengue severity development and receiver operating characteristic (AUROC) test was utilized to evaluate separability. RESULTS The analysis revealed that NS1 significantly impacts the disease outcome (p 0.018, OR = 2.467 (1.171-5.197)) but not beyond the effect through NST (p 0.108, OR = 0.085 (0.004-1.719)). We also prove that NST was a better severity biomarker compared to NS1, as it can predict progression from DNWS to DWWS (AUC: NS1 = 0.771∗∗, NST = 0.81∗∗) and SD (AUC: NS1 = 0.607, NST = 0.754∗) significantly. CONCLUSIONS This finding suggests the importance of NST in mediating the NS1 effect to promote dengue severity progression and its promising capability as an acute stage dengue severity biomarker.
Collapse
Affiliation(s)
- Josephine Diony Nanda
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Departement of Parasitology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Trai-Ming Yeh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Rahmat Dani Satria
- Department of Clinical Pathology and Laboratory Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia; Clinical Laboratory Installation, Dr. Sardjito Central General Hospital, Yogyakarta, 55281, Indonesia
| | - Ming-Kai Jhan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Yung-Ting Wang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Ya-Lan Lin
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan; Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - Herdiantri Sufriyana
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Department of Medical Physiology, Faculty of Medicine, Universitas Nahdlatul Ulama Surabaya, Surabaya, Indonesia
| | - Emily Chia-Yu Su
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chiou-Feng Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Core Laboratory of Immune Monitoring, Office of Research & Development, Taipei Medical University, Taipei, 110, Taiwan.
| | - Tzong-Shiann Ho
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan; Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan; Department of Pediatrics, National Cheng Kung University Hospital Dou-Liou Branch, College of Medicine, National Cheng Kung University, Yunlin 640, Taiwan.
| |
Collapse
|
6
|
Muller DA, Choo JJY, McElnea C, Duyen HTL, Wills B, Young PR. Kinetics of NS1 and anti-NS1 IgG following dengue infection reveals likely early formation of immune complexes in secondary infected patients. Sci Rep 2025; 15:6684. [PMID: 39994315 PMCID: PMC11850851 DOI: 10.1038/s41598-025-91099-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/18/2025] [Indexed: 02/26/2025] Open
Abstract
Dengue virus (DENV) is a major health concern throughout the world infecting up to 390 million people globally each year. Infection with any one of the four DENV serotypes produces a spectrum of clinical illness ranging from a mild undifferentiated febrile disease through to severe dengue involving fever and haemorrhage. There is currently no antiviral treatment for dengue and only one licensed vaccine with limited distribution. This study characterises the kinetics of the serological dengue biomarker, NS1, and the appearance of anti-NS1 IgG, anti-E IgM and anti-E IgG responses in patients with primary and secondary infections. Blood samples were collected daily from a cohort of 52 Vietnamese patients during the acute phase of disease. NS1 was detected in 85% of patient samples from disease onset with detection decreasing throughout the acute phase of disease. Anti-NS1 IgG detected from the fourth day of illness and anti-E IgM and IgG from the third day of illness, were all observed to increase throughout the course of the disease. During secondary infection, NS1 levels rapidly decrease with the increasing levels of anti-NS1 IgG, suggesting the possibility of NS1 immune complex formation and a potential role in the pathogenesis of the severe forms of disease associated with secondary infections.
Collapse
Affiliation(s)
- David A Muller
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jovin J Y Choo
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Catriona McElnea
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- AnteoTech, Eight Mile Plains, Brisbane, QLD, 4113, Australia
| | - Huynh T L Duyen
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Bridget Wills
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
7
|
Michita RT, Tran LB, Bark SJ, Kumar D, Toner SA, Jose J, Mysorekar IU, Narayanan A. Zika virus NS1 drives tunneling nanotube formation for mitochondrial transfer and stealth transmission in trophoblasts. Nat Commun 2025; 16:1803. [PMID: 39979240 PMCID: PMC11842757 DOI: 10.1038/s41467-025-56927-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/05/2025] [Indexed: 02/22/2025] Open
Abstract
Zika virus (ZIKV) is unique among orthoflaviviruses in its vertical transmission capacity in humans, yet the underlying mechanisms remain incompletely understood. Here, we show that ZIKV induces tunneling nanotubes (TNTs) in placental trophoblasts which facilitate transfer of viral particles, proteins, mitochondria, and RNA to neighboring uninfected cells. TNT formation is driven exclusively via ZIKV non-structural protein 1 (NS1). Specifically, the N-terminal 1-50 amino acids of membrane-bound ZIKV NS1 are necessary for triggering TNT formation in host cells. Trophoblasts infected with TNT-deficient ZIKVΔTNT mutant virus elicited a robust antiviral IFN-λ 1/2/3 response relative to WT ZIKV, suggesting TNT-mediated trafficking allows ZIKV cell-to-cell transmission camouflaged from host defenses. Using affinity purification-mass spectrometry of cells expressing wild-type NS1 or non-TNT forming NS1, we found mitochondrial proteins are dominant NS1-interacting partners. We demonstrate that ZIKV infection or NS1 expression induces elevated mitochondria levels in trophoblasts and that mitochondria are siphoned via TNTs from healthy to ZIKV-infected cells. Together our findings identify a stealth mechanism that ZIKV employs for intercellular spread among placental trophoblasts, evasion of antiviral interferon response, and the hijacking of mitochondria to augment its propagation and survival and offers a basis for novel therapeutic developments targeting these interactions to limit ZIKV dissemination.
Collapse
Affiliation(s)
- Rafael T Michita
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Long B Tran
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Steven J Bark
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Deepak Kumar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shay A Toner
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA
| | - Indira U Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Huffington Centre on Aging, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Anoop Narayanan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA.
| |
Collapse
|
8
|
Pahmeier F, Monticelli SR, Feng X, Hjorth CK, Wang A, Kuehne AI, Bakken RR, Batchelor TG, Lee SE, Middlecamp M, Stuart L, Duarte-Neto AN, Abelson DM, McLellan JS, Biering SB, Herbert AS, Chandran K, Harris E. Antibodies targeting Crimean-Congo hemorrhagic fever virus GP38 limit vascular leak and viral spread. Sci Transl Med 2025; 17:eadq5928. [PMID: 39970234 DOI: 10.1126/scitranslmed.adq5928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/09/2024] [Accepted: 01/17/2025] [Indexed: 02/21/2025]
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a priority pathogen transmitted by tick bites, with no vaccines or specific therapeutics approved to date. Severe disease manifestations include hemorrhage, endothelial dysfunction, and multiorgan failure. Infected cells release the viral glycoprotein GP38, whose extracellular function is presently unknown. GP38 is considered an important target for vaccine and therapeutic design because GP38-specific antibodies can protect against severe disease in animal models, albeit through an unknown mechanism of action. Here, we showed that GP38 induces endothelial barrier dysfunction in vitro by disrupting the endothelial glycocalyx layer and triggering hyperpermeability. We also demonstrated that GP38 alone can cause vascular leak in a mouse model. We found that CCHFV infection leads to vascular leak in vivo, which was exacerbated by exogenous administration of GP38, facilitating dissemination of CCHFV into target tissues such as the liver. Protective antibodies that recognized specific antigenic sites on GP38, but not a protective neutralizing antibody binding the structural protein Gc, potently inhibited endothelial hyperpermeability in vitro and vascular leak in vivo during CCHFV infection. This work uncovers a function of the circulating viral protein GP38 as a viral toxin in CCHFV pathogenesis and elucidates a potential mode of action of nonneutralizing yet protective GP38-specific antibodies.
Collapse
Affiliation(s)
- Felix Pahmeier
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
- Infectious Diseases and Immunity Graduate Group, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Stephanie R Monticelli
- Viral Immunology Branch, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
- Geneva Foundation, Tacoma, WA 98402, USA
| | - Xinyi Feng
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Christy K Hjorth
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Albert Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ana I Kuehne
- Viral Immunology Branch, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Russell R Bakken
- Viral Immunology Branch, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Thomas G Batchelor
- Viral Immunology Branch, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
- Oak Ridge Institute of Science Education, Oak Ridge, TN 37830, USA
| | - Saeyoung E Lee
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | | | - Lauren Stuart
- Mapp Biopharmaceutical Inc., San Diego, CA 92121, USA
| | - Amaro N Duarte-Neto
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, 05409-011 SP, Brazil
| | | | - Jason S McLellan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Scott B Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrew S Herbert
- Viral Immunology Branch, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
9
|
Yan K, Mao L, Lan J, Xiao Z. Advancements in dengue vaccines: A historical overview and pro-spects for following next-generation candidates. J Microbiol 2025; 63:e2410018. [PMID: 40044132 DOI: 10.71150/jm.2410018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/06/2025] [Indexed: 05/13/2025]
Abstract
Dengue, caused by four serotypes of dengue viruses (DENV-1 to DENV-4), is the most prevalent and widely mosquito-borne viral disease affecting humans. Dengue virus (DENV) infection has been reported in over 100 countries, and approximately half of the world's population is now at risk. The paucity of universally licensed DENV vaccines highlights the urgent need to address this public health concern. Action and atten-tion to antibody-dependent enhancement increase the difficulty of vaccine development. With the worsen-ing dengue fever epidemic, Dengvaxia® (CYD-TDV) and Qdenga® (TAK-003) have been approved for use in specific populations in affected areas. However, these vaccines do not provide a balanced immune response to all four DENV serotypes and the vaccination cannot cover all populations. There is still a need to develop a safe, broad-spectrum, and effective vaccine to address the increasing number of dengue cases worldwide. This review provides an overview of the existing DENV vaccines, as well as potential candidates for future studies on DENV vaccine development, and discusses the challenges and possible solutions in the field.
Collapse
Affiliation(s)
- Kai Yan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Lingjing Mao
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection Chinese Academy of Sciences, Shanghai, P. R. China
- University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Jiaming Lan
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection Chinese Academy of Sciences, Shanghai, P. R. China
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
10
|
Mielcarska MB, Rouse BT. Viruses and the Brain-A Relationship Prone to Trouble. Viruses 2025; 17:203. [PMID: 40006958 PMCID: PMC11860391 DOI: 10.3390/v17020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Neurological disorders, some of which are associated with viral infections, are growing due to the aging and expanding population. Despite strong defenses of the central nervous system, some viruses have evolved ways to breach them, which often result in dire consequences. In this review, we recount the various ways by which different viruses can enter the CNS, and we describe the consequences of such invasions. Consequences may manifest as acute disease, such as encephalitis, meningitis, or result in long-term effects, such as neuromuscular dysfunction, as occurs in poliomyelitis. We discuss evidence for viral involvement in the causation of well-known chronic neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, as well as vascular dementia in the elderly. We also describe the approaches currently available to control a few of the neural viral infections. These include antivirals that are effective against human immunodeficiency virus and herpes simplex virus, as well as vaccines valuable for controlling rabies virus, poliomyelitis virus, and some flavivirus infections. There is an urgent need to better understand, at a molecular level, how viruses contribute to acute and, especially, chronic neurological diseases and to develop more precise and effective vaccines and therapies.
Collapse
Affiliation(s)
- Matylda Barbara Mielcarska
- Department of Preclinical Sciences, Institute of Veterinary Sciences, Warsaw University of Life Sciences–SGGW, Jana Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
11
|
Stegeman SK, Kourko O, Amsden H, Pellizzari Delano IE, Mamatis JE, Roth M, Colpitts CC, Gee K. RNA Viruses, Toll-Like Receptors, and Cytokines: The Perfect Storm? J Innate Immun 2025; 17:126-153. [PMID: 39820070 PMCID: PMC11845175 DOI: 10.1159/000543608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/13/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND The interactions between viruses and the host immune response are nuanced and intricate. The cytokine response arguably plays a central role in dictating the outcome of virus infection, balancing inflammation, and healing, which is crucial to resolving infection without destructive immunopathologies. SUMMARY Early innate immune responses are key to the generation of a beneficial or detrimental immune response. These initial responses are regulated by a plethora of surface bound, endosomal, and cytoplasmic innate immune receptors known as pattern recognition receptors. Of these, the Toll-like receptors (TLRs) play an important role in the induction of cytokines during virus infection. Recognizing pathogen-associated molecular patterns (PAMPs) such as viral proteins and/or nucleotide sequences, the TLRs act as sentinels for the initiation and propagation of immune responses. KEY MESSAGES TLRs are important receptors for initiating the innate response to single-stranded RNA (ssRNA) viruses like influenza A virus (IAV), severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1), SARS-CoV-2, Middle East respiratory syndrome coronavirus, dengue virus, and Ebola virus. Infection with these viruses is also associated with aberrant expression of proinflammatory cytokines that contribute to a harmful cytokine storm response. Herein we discuss the connections between these ssRNA viruses, cytokine storm, and the roles of TLRs. BACKGROUND The interactions between viruses and the host immune response are nuanced and intricate. The cytokine response arguably plays a central role in dictating the outcome of virus infection, balancing inflammation, and healing, which is crucial to resolving infection without destructive immunopathologies. SUMMARY Early innate immune responses are key to the generation of a beneficial or detrimental immune response. These initial responses are regulated by a plethora of surface bound, endosomal, and cytoplasmic innate immune receptors known as pattern recognition receptors. Of these, the Toll-like receptors (TLRs) play an important role in the induction of cytokines during virus infection. Recognizing pathogen-associated molecular patterns (PAMPs) such as viral proteins and/or nucleotide sequences, the TLRs act as sentinels for the initiation and propagation of immune responses. KEY MESSAGES TLRs are important receptors for initiating the innate response to single-stranded RNA (ssRNA) viruses like influenza A virus (IAV), severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1), SARS-CoV-2, Middle East respiratory syndrome coronavirus, dengue virus, and Ebola virus. Infection with these viruses is also associated with aberrant expression of proinflammatory cytokines that contribute to a harmful cytokine storm response. Herein we discuss the connections between these ssRNA viruses, cytokine storm, and the roles of TLRs.
Collapse
Affiliation(s)
- Sophia K Stegeman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Olena Kourko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Heather Amsden
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | | - John E Mamatis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Madison Roth
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Che C Colpitts
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
12
|
Castro-Trujillo S, Mejía WR, Segura K, Castro-Meneses J, Vega R, Salgado D, Fonseca CE, Ortiz ÁM, Perdomo-Celis F, Bosch I, Narváez CF. A low pre-existing anti-NS1 humoral immunity to DENV is associated with microcephaly development after gestational ZIKV exposure. PLoS Negl Trop Dis 2025; 19:e0012193. [PMID: 39761322 PMCID: PMC11723597 DOI: 10.1371/journal.pntd.0012193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 01/10/2025] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Gestational Zika virus (ZIKV) infection is associated with the development of congenital Zika syndrome (CZS), which includes microcephaly and fetal demise. The magnitude and quality of orthoflavivirus-specific humoral immunity have been previously linked to the development of CZS. However, the role of ZIKV NS1-specific humoral immunity in mothers and children with prenatal ZIKV exposure and CZS remains undefined. In addition, considering that most of the at-risk population lives in dengue virus (DENV)-endemic areas, it is not clear what is the association between pre-existing DENV NS1-specific humoral immunity and CZS. METHODS Here, we studied 328 mothers and children with a clinical diagnosis and seropositivity for ZIKV infection during pregnancy, included during the 2015-2016 ZIKV epidemic in Colombia. We also performed clinical evaluation and pediatric neurological follow-up. The relative levels of circulating NS1-specific IgM and IgG against ZIKV and DENV were evaluated in mothers and children, and the association with the development of microcephaly was analyzed. RESULTS DENV and ZIKV IgG-NS1 antibodies in pregnant women were placentally transferred, and this passage and its duration in children depended on the maternal levels of the antibodies. We reported that higher concentrations of pre-existing DENV, but not ZIKV IgG-NS1 antibodies, were associated with a reduced risk of CZS-related microcephaly. Also, we observed that the IgM-NS1 response in infants is long-term and has a minor association with poor outcomes. CONCLUSIONS The development of microcephaly in children prenatally exposed to ZIKV is associated with low plasma levels of placentally transferred, pre-existing DENV IgG-NS1 antibodies. These data are compatible with a protective role of anti-NS1 IgG antibodies against ZIKV infection during pregnancy and highlight the promising role of NS1 as an orthoflavivirus vaccine target in high-risk populations.
Collapse
Affiliation(s)
- Sebastián Castro-Trujillo
- División de Inmunología, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - William R. Mejía
- Área de Pediatría, Departamento de Ciencias Clínicas, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
- Servicio de Pediatría, Hospital Universitario de Neiva, Neiva, Huila, Colombia
| | - Katherine Segura
- División de Inmunología, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Juanita Castro-Meneses
- División de Inmunología, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
- Programa de Biología Aplicada, Facultad de Ciencias Exactas y Naturales, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - Rocío Vega
- Área de Pediatría, Departamento de Ciencias Clínicas, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
- Servicio de Pediatría, Hospital Universitario de Neiva, Neiva, Huila, Colombia
| | - Doris Salgado
- Área de Pediatría, Departamento de Ciencias Clínicas, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
- Servicio de Pediatría, Hospital Universitario de Neiva, Neiva, Huila, Colombia
| | - Carlos E. Fonseca
- Servicio de Pediatría, Hospital Universitario de Neiva, Neiva, Huila, Colombia
| | - Ángela M. Ortiz
- Área de Pediatría, Departamento de Ciencias Clínicas, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
- Servicio de Pediatría, Hospital Universitario de Neiva, Neiva, Huila, Colombia
| | - Federico Perdomo-Celis
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Irene Bosch
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Carlos F. Narváez
- División de Inmunología, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
- Área de Pediatría, Departamento de Ciencias Clínicas, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
| |
Collapse
|
13
|
Premazzi Papa M, Mendoza-Torres E, Sun P, Encinales L, Goulet J, Defang G, Vihasi J, Cheng Y, Suchowiecki K, Rosales W, Amdur R, Porras-Ramirez A, Rico-Mendoza A, Herrera Gomez C, Nicholes S, Zuluaga I, Halstead L, Halstead S, Simon G, Porter K, Lynch RM, Chang AY. Dengue NS1 Antibodies Are Associated With Clearance of Viral Nonstructural Protein-1. J Infect Dis 2024; 230:e1226-e1234. [PMID: 38842497 PMCID: PMC11646586 DOI: 10.1093/infdis/jiae299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Dengue vascular permeability syndrome is the primary cause of death in severe dengue infections. The protective versus potentially pathogenic role of dengue nonstructural protein-1 (NS1) antibodies are not well understood. The main goal of this analysis was to characterize the relationship between free NS1 concentration and NS1 antibody titers in primary and secondary dengue infection to better understand the presence and duration of NS1 antibody complexes in clinical dengue infections. METHODS Hospitalized participants with acute dengue infection were recruited from Northern Colombia between 2018 and 2020. Symptom assessment, including dengue signs and symptoms, chart review, and blood collection, was performed. Primary versus secondary dengue was assessed serologically. NS1 titers and anti-NS1 antibodies were measured daily. RESULTS Patients with secondary infection had higher antibody titers than those in primary infection, and there was a negative correlation between anti-NS1 antibody titer and NS1 protein. We demonstrate that in a subset of secondary infection, there were indeed NS1 antigen-antibody complexes on the admission day during the febrile phase that were not detectable by the recovery phase. Furthermore, dengue infection status was associated with higher circulating sialidases. DISCUSSION The negative correlation between antibody and protein suggests that antibodies may play a role in clearing this viral protein.
Collapse
Affiliation(s)
- Michelle Premazzi Papa
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, District of Columbia, USA
| | - Evelyn Mendoza-Torres
- Grupo de Investigación Avanzada en Biomedicina, Universidad Libre de Colombia, Barranquilla, Atlántico, Colombia
| | - Peifang Sun
- Directorate for Defense Infectious Diseases, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Liliana Encinales
- Department of Medicine, Allied Research Society Colombia, Barranquilla, Atlántico, Colombia
| | - Joseph Goulet
- Department of Emergency Medicine, Yale School of Medicine, West Haven, Connecticut, USA
| | - Gabriel Defang
- Directorate for Defense Infectious Diseases, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Jani Vihasi
- Henry Jackson Foundation, Bethesda, Maryland, USA
| | | | - Karol Suchowiecki
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Wendy Rosales
- Grupo de Investigación Avanzada en Biomedicina, Universidad Libre de Colombia, Barranquilla, Atlántico, Colombia
| | - Richard Amdur
- Department of Quantitative Intelligence, Institute for Health Systems Science, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | | | - Alejandro Rico-Mendoza
- Grupo de Medicina Comunitaria y Salud Colectiva, Universidad El Bosque, Bogotá, Colombia
| | - Carlos Herrera Gomez
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Samuel Nicholes
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, District of Columbia, USA
| | - Ivan Zuluaga
- Clínica Iberoamérica, Universidad Libre de Barranquilla, Barranquilla, Atlántico, Colombia
| | - Liam Halstead
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Scott Halstead
- Department of Medicine, Infectious Diseases Division, Uniformed Services University, Bethesda, Maryland, USA
| | - Gary Simon
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Kevin Porter
- Directorate for Defense Infectious Diseases, Naval Medical Research Center, Silver Spring, Maryland, USA
- Department of Medicine, Infectious Diseases Division, Uniformed Services University, Bethesda, Maryland, USA
| | - Rebecca M Lynch
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, District of Columbia, USA
| | - Aileen Y Chang
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, District of Columbia, USA
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
14
|
Puerta-Guardo H, Biering SB, Castillo-Rojas B, DiBiasio-White MJ, Lo NT, Espinosa DA, Warnes CM, Wang C, Cao T, Glasner DR, Beatty PR, Kuhn RJ, Harris E. Flavivirus NS1-triggered endothelial dysfunction promotes virus dissemination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.625931. [PMID: 39651279 PMCID: PMC11623691 DOI: 10.1101/2024.11.29.625931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The Flaviviridae are a family of viruses that include the important arthropod-borne human pathogens dengue virus (DENV), West Nile virus, Zika virus, Japanese encephalitis virus, and yellow fever virus. Flavivirus nonstructural protein 1 (NS1) is essential for virus replication but is also secreted from virus-infected cells. Extracellular NS1 acts as a virulence factor during flavivirus infection in multiple ways, including triggering endothelial dysfunction and vascular leak via interaction with endothelial cells. While the role of NS1 in inducing vascular leak and exacerbating pathogenesis is well appreciated, if and how NS1-triggered endothelial dysfunction promotes virus infection remains obscure. Flaviviruses have a common need to disseminate from circulation into specific tissues where virus-permissive cells reside. Tissue-specific dissemination is associated with disease manifestations of a given flavivirus, but mechanisms dictating virus dissemination are unclear. Here we show that NS1-mediated endothelial dysfunction promotes virus dissemination in vitro and in vivo . In mouse models of DENV infection, we show that anti-NS1 antibodies decrease virus dissemination, while the addition of exogenous NS1 promotes virus dissemination. Using an in vitro system, we show that NS1 promotes virus dissemination in two distinct ways: (1) promoting crossing of barriers and (2) increasing infectivity of target cells in a tissue- and virus-specific manner. The capacity of NS1 to modulate infectivity correlates with a physical association between virions and NS1, suggesting a potential NS1-virion interaction. Taken together, our study indicates that flavivirus NS1 promotes virus dissemination across endothelial barriers, providing an evolutionary basis for virus-triggered vascular leak. Author Summary The Flaviviridae contain numerous medically important human pathogens that cause potentially life-threatening infections. Over half of the world's population is at risk of flavivirus infection, and this number is expected to increase as climate change expands the habitats of the arthropod vectors that transmit these flaviviruses. There are few effective vaccines and no therapeutics approved for prevention or treatment of flavivirus infection, respectively. Given these challenges, understanding how and why flaviviruses cause pathogenesis is critical for identifying targets for therapeutic intervention. The secreted nonstructural protein 1 (NS1) of flaviviruses is a conserved virulence factor that triggers endothelial dysfunction in a tissue-specific manner. It is unknown if this endothelial dysfunction provides any benefit for virus infection. Here we provide evidence that NS1-triggered endothelial dysfunction facilitates virus crossing of endothelial barriers and augments infection of target cells in vitro and promotes virus dissemination in vivo . This study provides an evolutionary explanation for flaviviruses evolving the capacity to trigger barrier dysfunction and highlights NS1 and the pathways governing endothelial dysfunction, as therapeutic targets to prevent flavivirus dissemination.
Collapse
|
15
|
Wahaab A, Zhang Y, Liu K, Rasgon JL, Kang L, Hameed M, Li C, Anwar MN, Zhang Y, Shoaib A, Li B, Qiu Y, Wei J, Ma Z. NS2B-D55E and NS2B-E65D Variations Are Responsible for Differences in NS2B-NS3 Protease Activities Between Japanese Encephalitis Virus Genotype I and III in Fluorogenic Peptide Model. Int J Mol Sci 2024; 25:12680. [PMID: 39684391 DOI: 10.3390/ijms252312680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Japanese encephalitis virus (JEV) NS2B-NS3 is a protein complex composed of NS3 proteases and an NS2B co-factor. The N-terminal protease domain (180 residues) of NS3 (NS3(pro)) interacts directly with a central 40-amino acid hydrophilic domain of NS2B (NS2B(H)) to form an active serine protease. In this study, the recombinant NS2B(H)-NS3(pro) proteases were prepared in E. coli and used to compare the enzymatic activity between genotype I (GI) and III (GIII) NS2B-NS3 proteases. The GI NS2B(H)-NS3(pro) was able to cleave the sites at the internal C, NS2A/NS2B, NS2B/NS3, and NS3/NS4A junctions that were identical to the sites proteolytically processed by GIII NS2B(H)-NS3(pro). Analysis of the enzymatic activity of recombinant NS2B(H)-NS3(pro) proteases using a model of fluorogenic peptide substrate revealed that the proteolytical processing activity of GIII NS2B(H)-NS3(pro) was significantly higher than that of GI NS2B(H)-NS3(pro). There were eight amino acid variations between GI and GIII NS2B(H)-NS3(pro), which may be responsible for the difference in enzymatic activities between GI and GIII proteases. Therefore, recombinant mutants were generated by exchanging the NS2B(H) and NS3(pro) domains between GI and GIII NS2B(H)-NS3(pro) and subjected to protease activity analysis. Substitution of NS2B(H) significantly altered the protease activities, as compared to the parental NS2B(H)-NS3(pro), suggesting that NS2B(H) played an essential role in the regulation of NS3(pro) protease activity. To further identify the amino acids responsible for the difference in protease activities, multiple substitution mutants including the individual and combined mutations at the variant residues 55 and 65 of NS2B(H) were generated and subjected to protease activity analysis. Replacement of NS2B-55 and NS2B-65 of GI to GIII significantly increased the enzymatic activity of GI NS2B(H)-NS3(pro) protease, whereas mutation of NS2B-55 and NS2B-65 of GIII to GI remarkably reduced the enzymatic activity of GIII NS2B(H)-NS3(pro) protease. Overall, these data demonstrated that NS2B-55 and NS2B-65 variations in the hydrophilic domain of NS2B co-contributed to the difference in NS2B(H)-NS3(pro) protease activities between GI and GIII. However, it will be crucial to explore these mutations in other in vivo and/or in vitro models. Collectively, these observations will be useful for understanding the replication of JEV GI and GIII viruses.
Collapse
Affiliation(s)
- Abdul Wahaab
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- The Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Yan Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jason L Rasgon
- The Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Lei Kang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Muddassar Hameed
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Chenxi Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Muhammad Naveed Anwar
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yanbing Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Anam Shoaib
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| |
Collapse
|
16
|
Zhu Y, He W, Hu R, Liu X, Li M, Liu Y. Sindbis Virus Replicon-Based SARS-CoV-2 and Dengue Combined Vaccine Candidates Elicit Immune Responses and Provide Protective Immunity in Mice. Vaccines (Basel) 2024; 12:1292. [PMID: 39591194 PMCID: PMC11599113 DOI: 10.3390/vaccines12111292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Since its emergence in 2019, the rapid spread of SARS-CoV-2 led to the global pandemic. Recent large-scale dengue fever outbreaks overlapped with the COVID-19 pandemic, leading to increased cases of co-infection and posing severe public health risks. Accordingly, the development of effective combined SARS-CoV-2 and dengue virus (DENV) vaccines is necessary to control the spread and prevalence of both viruses. Methods: In this study, we designed Sindbis virus (SINV) replicon-based SARS-CoV-2 and DENV chimeric vaccines using two delivery strategies: DNA-launched self-replicating RNA replicon (DREP) and viral replicon particle (VRP) systems. Results: Cellular and animal experiments confirmed that the vaccines effectively produced viral proteins and elicited strong immunogenicity. These vaccines induced robust immune responses and neutralizing activity against live SARS-CoV-2, DENV1, and DENV2 viruses. In addition, passively transferred sera from BALB/c mice immunized with these vaccines into AG129 mice provided significant protection against lethal DENV2 challenge. The transferred sera protected the mice from physical symptoms, reduced viral loads in the kidney, spleen, liver, and intestine, and prevented DENV2-induced vascular leakage in these tissues. Conclusions: Therefore, combined vaccines based on the SINV replicon system are promising candidates for pandemic control. These results lay a foundation for further development of a safe and effective combination vaccine against SARS-CoV-2 and DENV.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuan Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Y.Z.); (W.H.); (R.H.); (X.L.); (M.L.)
| |
Collapse
|
17
|
Witte P, Venturini S, Meyer H, Zeller A, Christ M. Dengue Fever—Diagnosis, Risk Stratification, and Treatment. DEUTSCHES ARZTEBLATT INTERNATIONAL 2024; 121:773-778. [PMID: 39297280 PMCID: PMC12036110 DOI: 10.3238/arztebl.m2024.0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 02/04/2025]
Abstract
BACKGROUND Dengue fever is a common infectious disease in the tropical and subtropical zones, with more than 100 million symptomatic cases per year. Mosquitoes of the genus Aedes (Aedes aegypti, Aedes albopticus) are vectors of the disease, and their spread has led to rising case numbers around the world. Physicians in Europe, too, are increasingly being confronted by this challenge. METHODS This review is based on the findings of a selective search in international publication databases, as well as on the WHO guideline of 2009 and the current recommendations of the Robert Koch Institute. RESULTS Dengue fever takes a mild course in more than 90% of cases. Severe dengue fever, up to and including shock and/or mucosal hemorrhages, is rare and carries a mortality of 1-5%. The disease characteristically takes a triphasic course (febrile phase, critical phase, recovery phase). It is diagnosed by the direct demonstration of the pathogen (e.g., with the reverse transcriptase polymerase chain reaction [RT-PCR] up to day 5 of the illness) or by serology. Patients are classified into one of three risk groups depending on their findings and comorbidities and are then treated either as outpatients or in the hospital. The treatment is symptomatic, as no treatment directed against the cause of the disease is available. The key measures are adequate volume replacement and, in patients with hemorrhage, the transfusion of blood products. Preventive steps include vaccination after a documented initial infection and the meticulous avoidance of mosquito bites. CONCLUSION Climate change and global mobility have led to a worldwide increase in dengue fever. The disease only rarely takes a severe course. In such cases, rapid symptomatic treatment as needed is the key to the avoidance of severe complications.
Collapse
Affiliation(s)
- Paul Witte
- Multidisciplinary Emergency Center, Cantonal Hospital of Lucerne, Lucerne, Switzerland
| | - Stefan Venturini
- Multidisciplinary Emergency Center, Cantonal Hospital of Lucerne, Lucerne, Switzerland
| | - Helene Meyer
- General Internal Medicine, Cantonal Hospital of Lucerne, Lucerne, Switzerland
| | - Andreas Zeller
- University Center for Primary Care Medicine Basel, University of Basel, Basel, Switzerland
| | - Michael Christ
- Multidisciplinary Emergency Center, Cantonal Hospital of Lucerne, Lucerne, Switzerland
| |
Collapse
|
18
|
Apoorva, Kumar A, Singh SK. Dengue virus NS1 hits hard at the barrier integrity of human cerebral microvascular endothelial cells via cellular microRNA dysregulations. Tissue Barriers 2024:2424628. [PMID: 39508307 DOI: 10.1080/21688370.2024.2424628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024] Open
Abstract
Dengue virus (DENV) infections are commonly reported in the tropical and subtropical regions of the world. DENV is reported to exploit various strategies to cross the blood-brain barrier. The NS1 protein of DENV plays an important role in viral neuropathogenesis, resulting in endothelial hyperpermeability and cytokine-induced vascular leak. miRNAs are short non-coding RNAs that play an important role in post-transcriptional gene regulations. However, no comprehensive information about the involvement of miRNAs in DENV-NS1-mediated neuropathogenesis has been explored to date. We observed that DENV-NS1 significantly alters the cellular miRNome of human cerebral microvascular endothelial cells in a bystander fashion. Subsequent target prediction and pathway enrichment analysis indicated that these microRNAs and their corresponding target genes are involved in pathways associated with blood-brain barrier dysfunction such as "Adherens junction" and "Tight junction". Additionally, several miRNA-mRNA pairs were also found to be involved in cellular signaling pathways related to cytokine production, for instance, "Jak-STAT signaling pathway", "Chemokine signaling pathway", "IL-17 signaling pathway", "NF-κB signaling pathway", and "Viral protein interaction with cytokine and cytokine receptor". The dysregulated production of inflammatory cytokines is reported to compromise BBB permeability. This study is the first report to demonstrate that DENV-NS1-mediated miRNA perturbations are crucial in compromising endothelial barrier integrity. It also offers insights into potential therapeutic targets to mitigate DENV-NS1-induced vascular permeability and inflammation.
Collapse
Affiliation(s)
- Apoorva
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Atul Kumar
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sunit K Singh
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, New Delhi, India
- Delhi School of Public Health, University of Delhi, New Delhi, India
| |
Collapse
|
19
|
Chua CLL, Morales RF, Chia PY, Yeo TW, Teo A. Neutrophils - an understudied bystander in dengue? Trends Microbiol 2024; 32:1132-1142. [PMID: 38749772 DOI: 10.1016/j.tim.2024.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 11/08/2024]
Abstract
Dengue is a mosquito-borne viral disease which causes significant morbidity and mortality each year. Previous research has proposed several mechanisms of pathogenicity that mainly involve the dengue virus and host humoral immunity. However, innate immune cells, such as neutrophils, may also play an important role in dengue, albeit a much less defined role. In this review, we discuss the emerging roles of neutrophils in dengue and their involvement in pathologies associated with severe dengue. We also describe the potential use of several neutrophil proteins as biomarkers for severe dengue. These studies suggest that neutrophils are important players in dengue, and a better understanding of neutrophil-dengue biology is urgently needed.
Collapse
Affiliation(s)
- Caroline Lin Lin Chua
- School of Biosciences, Faculty of Health and Medicine Sciences, Taylor's University, Subang Jaya, Malaysia
| | | | - Po Ying Chia
- National Centre for Infectious Diseases, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Tsin Wen Yeo
- National Centre for Infectious Diseases, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Andrew Teo
- National Centre for Infectious Diseases, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Department of Medicine, The Doherty Institute, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
20
|
Carneiro PH, Jimenez-Posada EV, Lopes E, Mohana-Borges R, Biering SB, Harris E. The ApoA1-mimetic peptide 4F blocks flavivirus NS1-triggered endothelial dysfunction and protects against lethal dengue virus challenge. Antiviral Res 2024; 231:106002. [PMID: 39260777 DOI: 10.1016/j.antiviral.2024.106002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/11/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Flavivirus infections result in a variety of outcomes, from clinically inapparent infections to severe, sometimes fatal cases characterized by hemorrhagic manifestations and vascular leakage leading to shock (dengue), meningomyeloencephalitis (West Nile), and congenital abnormalities (Zika). Although there are approved vaccines against several flaviviruses, potentially enhancing cross-reactive immune responses have complicated the development and implementation of vaccines against dengue and Zika viruses, and no specific therapeutics currently exist. The flavivirus nonstructural protein 1 (NS1) is a promising antiviral target because it is a conserved multifunctional virulence factor that directly triggers vascular leak. We previously showed that interactions between NS1 and the ApoA1 lipoprotein modulate DENV infection. Here, we evaluated the potential of the ApoA1-mimetic peptide, 4F, to interfere with endothelial dysfunction mediated by the NS1 protein of dengue, Zika, and West Nile flaviviruses. In an in vitro model consisting of human endothelial cell monolayers, 4F inhibited NS1-induced hyperpermeability, as measured by a transendothelial electrical resistance assay, and prevented NS1-triggered disruption of the endothelial glycocalyx layer. We also demonstrate that treatment with 4F inhibited NS1 interaction with endothelial cells. Finally, we show that 4F protects against lethal DENV challenge in a mouse model, reducing morbidity and mortality in a dose-dependent manner. Our data demonstrate the potential of 4F to inhibit flavivirus NS1-mediated pathology and severe dengue disease in mice and suggest that 4F can also serve as a molecular tool to probe different NS1 functions in vitro and in vivo.
Collapse
Affiliation(s)
- Pedro H Carneiro
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA; Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - E Vanessa Jimenez-Posada
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Eduarda Lopes
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Ronaldo Mohana-Borges
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Scott B Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA; Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
21
|
Wajeeha AW, Mukhtar M, Zaidi NUSS. Unlocking Hope: Paving the Way for a Cutting-Edge Multi-Epitope Dengue Virus Vaccine. Mol Biotechnol 2024:10.1007/s12033-024-01294-4. [PMID: 39388049 DOI: 10.1007/s12033-024-01294-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Dengue fever is a significant health issue in Pakistan, demanding a vaccine effective against all the viral strains. This study employs reverse vaccinology to develop potential dengue vaccine candidates (DVAX I-III). The study thoroughly examined conserved areas of dengue virus serotypes 1-4's structural and non-structural proteins. Key viral proteins were analyzed to find antigenic peptides, which were incorporated into vaccine candidates and potentiated with adjuvants. Computational methods predicted peptide structures and evaluated their binding to immune receptors TLR 2, TLR 4, HLA *A1101, and DRB*401. A molecular dynamics simulation lasting 100 ns of the DVAX II-TLR4 complex at different time intervals clearly indicated that the ligand is attached to the receptor. Normal mode analysis assessed the stability and flexibility of these interactions. Encouragingly, all three vaccine candidates demonstrated favorable interactions with these immune receptors and the potential to induce a robust immune response. These findings suggest their safety and warrant further in vivo studies to evaluate their efficacy for clinical development.
Collapse
Affiliation(s)
- Amtul Wadood Wajeeha
- Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Mamuna Mukhtar
- Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Najam Us Sahar Sadaf Zaidi
- Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
- Department of Biological and Health Sciences, Pak-Austria Fachhochschule Institute of Applied Sciences and Technology, Khanpur Road, Mang Haripur, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
22
|
Porier DL, Adam A, Kang L, Michalak P, Tupik J, Santos MA, Tanelus M, López K, Auguste DI, Lee C, Allen IC, Wang T, Auguste AJ. Humoral and T-cell-mediated responses to an insect-specific flavivirus-based Zika virus vaccine candidate. PLoS Pathog 2024; 20:e1012566. [PMID: 39388457 PMCID: PMC11495591 DOI: 10.1371/journal.ppat.1012566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 10/22/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
Flaviviruses represent a significant global health threat and relatively few licensed vaccines exist to protect against them. Insect-specific flaviviruses (ISFVs) are incapable of replication in humans and have emerged as a novel and promising tool for flavivirus vaccine development. ISFV-based flavivirus vaccines have shown exceptional safety, immunogenicity, and efficacy, however, a detailed assessment of the correlates of protection and immune responses induced by these vaccines are still needed for vaccine optimization. Here, we explore the mechanisms of protective immunity induced by a previously created pre-clinical Zika virus (ZIKV) vaccine candidate, called Aripo/Zika (ARPV/ZIKV). In brief, immunocompromised IFN-αβR-/- mice passively immunized with ARPV/ZIKV immune sera experienced protection after lethal ZIKV challenge, although this protection was incomplete. ARPV/ZIKV-vaccinated IFN-αβR-/- mice depleted of CD4+ or CD8+ T-cells at the time of ZIKV challenge showed no morbidity or mortality. However, the adoptive transfer of ARPV/ZIKV-primed T-cells into recipient IFN-αβR-/- mice resulted in a two-day median increase in survival time compared to controls. Altogether, these results suggest that ARPV/ZIKV-induced protection is primarily mediated by neutralizing antibodies at the time of challenge and that T-cells may play a comparatively minor but cumulative role in the protection observed. Lastly, ARPV/ZIKV-vaccinated Tcra KO mice, which are deficient in T-cell responses, experienced significant mortality post-challenge. These results suggest that ARPV/ZIKV-induced cell-mediated responses are critical for development of protective immune responses at vaccination. Despite the strong focus on neutralizing antibody responses to novel flavivirus vaccine candidates, these results suggest that cell-mediated responses induced by ISFV-based vaccines remain important to overall protective responses.
Collapse
Affiliation(s)
- Danielle L. Porier
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Awadalkareem Adam
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lin Kang
- Department of Biomedical Research, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States of America
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
- College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, United States of America
| | - Pawel Michalak
- Department of Biomedical Research, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States of America
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Juselyn Tupik
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
| | - Matthew A. Santos
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Manette Tanelus
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Krisangel López
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Dawn I. Auguste
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Christy Lee
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Albert J. Auguste
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
23
|
Malavige GN, Ogg GS. Immune responses and severe dengue: what have we learned? Curr Opin Infect Dis 2024; 37:349-356. [PMID: 39079180 DOI: 10.1097/qco.0000000000001040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
PURPOSE OF REVIEW With the marked rise in dengue globally, developing well tolerated and effective vaccines and therapeutics is becoming more important. Here we discuss the recent developments in the understanding of immune mechanisms that lead to severe dengue and the learnings from the past, that can help us to find therapeutic targets, prognostic markers, and vaccines to prevent development of severe disease. RECENT FINDINGS The extent and duration of viraemia often appears to be associated with clinical disease severity but with some variability. However, there also appear to be significant differences in the kinetics of viraemia and nonstructural protein 1 (NS1) antigenemia and pathogenicity between different serotypes and genotypes of the DENV. These differences may have significant implications for development of treatments and in inducing robust immunity through dengue vaccines. Although generally higher levels of neutralizing antibodies are thought to protect against infection and severe disease, there have been exceptions and the specificity, breadth and functionality of the antibody responses are likely to be important. SUMMARY Although there have been many advances in our understanding of dengue pathogenesis, viral and host factors associated with occurrence of severe dengue, vascular leak and the immune correlates of protection remain poorly understood.
Collapse
Affiliation(s)
- Gathsaurie Neelika Malavige
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Graham S Ogg
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
He Y, Shen M, Wang X, Yin A, Liu B, Zhu J, Zhang Z. Suppression of Interferon Response and Antiviral Strategies of Bunyaviruses. Trop Med Infect Dis 2024; 9:205. [PMID: 39330894 PMCID: PMC11435552 DOI: 10.3390/tropicalmed9090205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
The order Bunyavirales belongs to the class of Ellioviricetes and is classified into fourteen families. Some species of the order Bunyavirales pose potential threats to human health. The continuously increasing research reveals that various viruses within this order achieve immune evasion in the host through suppressing interferon (IFN) response. As the types and nodes of the interferon response pathway are continually updated or enriched, the IFN suppression mechanisms and target points of different virus species within this order are also constantly enriched and exhibit variations. For instance, Puumala virus (PUUV) and Tula virus (TULV) can inhibit IFN response through their functional NSs inhibiting downstream factor IRF3 activity. Nevertheless, the IFN suppression mechanisms of Dabie bandavirus (DBV) and Guertu virus (GTV) are mostly mediated by viral inclusion bodies (IBs) or filamentous structures (FSs). Currently, there are no effective drugs against several viruses belonging to this order that pose significant threats to society and human health. While the discovery, development, and application of antiviral drugs constitute a lengthy process, our focus on key targets in the IFN response suppression process of the virus leads to potential antiviral strategies, which provide references for both basic research and practical applications.
Collapse
Affiliation(s)
- Yingying He
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (Y.H.); (M.S.); (X.W.); (A.Y.); (B.L.)
- Department of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Min Shen
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (Y.H.); (M.S.); (X.W.); (A.Y.); (B.L.)
- Department of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Xiaohe Wang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (Y.H.); (M.S.); (X.W.); (A.Y.); (B.L.)
- Department of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Anqi Yin
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (Y.H.); (M.S.); (X.W.); (A.Y.); (B.L.)
- Department of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Bingyan Liu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (Y.H.); (M.S.); (X.W.); (A.Y.); (B.L.)
| | - Jie Zhu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (Y.H.); (M.S.); (X.W.); (A.Y.); (B.L.)
| | - Zhenhua Zhang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (Y.H.); (M.S.); (X.W.); (A.Y.); (B.L.)
| |
Collapse
|
25
|
Dayarathna S, Senadheera B, Jeewandara C, Dissanayake M, Bary F, Ogg GS, Malavige GN. Dengue NS1 interaction with lipids alters its pathogenic effects on monocyte derived macrophages. J Biomed Sci 2024; 31:86. [PMID: 39232783 PMCID: PMC11373103 DOI: 10.1186/s12929-024-01077-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND While dengue NS1 antigen has been shown to be associated with disease pathogenesis in some studies, it has not been linked in other studies, with the reasons remaining unclear. NS1 antigen levels in acute dengue are often associated with increased disease severity, but there has been a wide variation in results based on past dengue infection and infecting dengue virus (DENV) serotype. As NS1 engages with many host lipids, we hypothesize that the type of NS1-lipid interactions alters its pathogenicity. METHODS Primary human monocyte derived macrophages (MDMs) were co-cultured with NS1 alone or with HDL, LDL, LPS and/or platelet activating factor (PAF) from individuals with a history of past dengue fever (DF = 8) or dengue haemorrhagic fever (DHF = 8). IL-1β levels were measured in culture supernatants, and gene expression analysis carried out in MDMs. Monocyte subpopulations were assessed by flow cytometry. Hierarchical cluster analysis with Euclidean distance calculations were used to differentiate clusters. Differentially expressed variables were extracted and a classifier model was developed to differentiate between past DF and DHF. RESULTS Significantly higher levels of IL-1β were seen in culture supernatants when NS1 was co-cultured with LDL (p = 0.01, median = 45.69 pg/ml), but lower levels when NS1 was co-cultured with HDL (p = 0.05, median = 4.617 pg/ml). MDMs of those with past DHF produced higher levels of IL-1β when NS1 was co-cultured with PAF (p = 0.02). MDMs of individuals with past DHF, were significantly more likely to down-regulate RPLP2 gene expression when macrophages were co-cultured with either PAF alone, or NS1 combined with PAF, or NS1 combined with LDL. When NS1 was co-cultured with PAF, HDL or LDL two clusters were detected based on IL10 expression, but these did not differentiate those with past DF or DHF. CONCLUSIONS As RPLP2 is important in DENV replication, regulating cellular stress responses and immune responses and IL-10 is associated with severe disease, it would be important to further explore how differential expression of RPLP2 and IL-10 could lead to disease pathogenesis based on NS1 and lipid interactions.
Collapse
Affiliation(s)
- Shashika Dayarathna
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Bhagya Senadheera
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Chandima Jeewandara
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Madushika Dissanayake
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Farha Bary
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Graham S Ogg
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Gathsaurie Neelika Malavige
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
26
|
Singha S, Nath N, Sarma V, Barman K, Sharma GC, Saikia L, Baruah S. Identification of Immunodominant Epitopes of Dengue Virus 2 Envelope and NS1 Proteins: Evaluating the Diagnostic Potential of a Synthetic Peptide. Mol Diagn Ther 2024; 28:633-643. [PMID: 38980575 DOI: 10.1007/s40291-024-00728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND AND OBJECTIVE Dengue is a major infectious disease with potential for outbreaks and epidemics. A specific and sensitive diagnosis is a prerequisite for clinical management of the disease. We designed our study to identify epitopes on the Dengue virus (DENV) envelope (E) and non-structural protein 1 (NS1) with potential for diagnosis. METHODS Serology and immunoinformatic approaches were employed. We collected DENV-positive, DENV-negative and Japanese encephalitis virus-positive samples from collaborating hospitals in 2019 and 2022-2023. Seropositive peptides in 15-18 mer peptide arrays of E and NS1 proteins of DENV2 were determined by an indirect enzyme-linked immunosorbent assay. B-cell linear and conformational epitopes were predicted using BepiPred2.0 and ElliPro, respectively. A consensus recombinant peptide was designed, synthesised and evaluated for its diagnostic potential using patient sera. RESULTS Eight peptides of E protein and six peptides of NS1 protein were identified to be the most frequently recognised by Dengue-positive patients. These peptide sequences were compared with B-cell epitope regions and found to be overlapped with predicted B-cell linear and conformational epitopes. EP11 and NSP15 showed a 100% amino acid sequence overlap with B-cell epitopes. EP1 and NSP15 had 14 whereas EP28, EP31, EP60 16, NSP12 and NSP32 had more than 15 interacting interface residues with a neutralising antibody, suggesting a strength of interaction. Interestingly, potential epitopes identified were localised on the surface of proteins as visualised by PyMOL. Validation with a recombined synthetic peptide yielded 92.3% sensitivity and 91.42% specificity. CONCLUSIONS Immunodominant regions identified by serology and computationally predicted epitopes overlapped, thereby showing the robustness of the methodology and the peptide designed for diagnosis.
Collapse
Affiliation(s)
- Sushmita Singha
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur Assam, 784028, India
| | - Neena Nath
- Gauhati Medical College and Hospital, Bhangagarh, Guwahati, Assam, India
| | - Vaishali Sarma
- Gauhati Medical College and Hospital, Bhangagarh, Guwahati, Assam, India
| | - Kangkana Barman
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur Assam, 784028, India
| | - Gurumayum Chourajit Sharma
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur Assam, 784028, India
| | - Lahari Saikia
- Gauhati Medical College and Hospital, Bhangagarh, Guwahati, Assam, India
| | - Shashi Baruah
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur Assam, 784028, India.
| |
Collapse
|
27
|
Nasar S, Iftikhar S, Saleem R, Nadeem MS, Ali M. The N and C-terminal deleted variant of the dengue virus NS1 protein is a potential candidate for dengue vaccine development. Sci Rep 2024; 14:18883. [PMID: 39143088 PMCID: PMC11324946 DOI: 10.1038/s41598-024-65593-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/21/2024] [Indexed: 08/16/2024] Open
Abstract
NS1 is an elusive dengue protein, involved in viral replication, assembly, pathogenesis, and immune evasion. Its levels in blood plasm are positively related to disease severity like thrombocytopenia, hemorrhage, and vascular leakage. Despite its pathogenic roles, NS1 is being used in various vaccine formulations due to its sequence conservancy, ability to produce protective antibodies and low risk for inducing antibody-dependent enhancement. In this study, we have used bioinformatics tools and reported literature to develop an NS1 variant (dNS1). Molecular docking studies were performed to evaluate the receptor-binding ability of the NS1 and dNS1 with TLR4. NS1 and dNS1 (153 to 312 amino acid region) genes were cloned, expressed and protein was purified followed by refolding. Docking studies showed the binding of NS1 and dNS1 with the TLR4 receptor which suggests that N and C-terminal sequences of NS1 are not critical for receptor binding. Antibodies against NS1 and dNS1 were raised in rabbits and binding affinity of anti-dNS1 anti-NS1 sera was evaluated against both NS1 and dNS1. Similar results were observed through western blotting which highlight that N and C-terminal deletion of NS1 does not compromise the immunogenic potential of dNS1 hence, supports its use in future vaccine formulations as a substitute for NS1.
Collapse
Affiliation(s)
- Sitara Nasar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Saima Iftikhar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
| | - Rida Saleem
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | | | - Muhammad Ali
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
28
|
Aregay A, Slunečko J, Korva M, Bogovic P, Resman Rus K, Knap N, Beicht J, Kubinski M, Saletti G, Avšič-Županc T, Steffen I, Strle F, Osterhaus ADME, Rimmelzwaan GF. Tick-borne encephalitis vaccine breakthrough infections induce aberrant T cell and antibody responses to non-structural proteins. NPJ Vaccines 2024; 9:141. [PMID: 39112523 PMCID: PMC11306791 DOI: 10.1038/s41541-024-00936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
Tick-borne encephalitis virus (TBEV) vaccine breakthrough (VBT) infections are not uncommon in endemic areas. The clinical and immunological outcomes have been poorly investigated. We assessed the magnitude and specificity of virus-specific antibody and T cell responses after TBE in previously vaccinated subjects and compared the results with those of unvaccinated TBE patients and study subjects that received vaccination without VBT infection. Symptomatic TBEV infection of unvaccinated study subjects induced virus-specific antibody responses to the E protein and non-structural protein 1 (NS1) as well as T cell responses to structural and other non-structural (NS) proteins. After VBT infections, significantly impaired NS1-specific antibody responses were observed, while the virus-specific T cell responses to the NS proteins were relatively strong. VBT infection caused predominantly moderate to severe disease during hospitalization. The level of TBEV EDIII- and NS1-specific antibodies in unvaccinated convalescent patients inversely correlated with TBE severity and neurological symptoms early after infection.
Collapse
Affiliation(s)
- Amare Aregay
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jan Slunečko
- Institute for Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miša Korva
- Institute for Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Bogovic
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Katarina Resman Rus
- Institute for Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Knap
- Institute for Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jana Beicht
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Mareike Kubinski
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Giulietta Saletti
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Tatjana Avšič-Županc
- Institute for Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Imke Steffen
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Franc Strle
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| |
Collapse
|
29
|
Goh JZH, De Hayr L, Khromykh AA, Slonchak A. The Flavivirus Non-Structural Protein 5 (NS5): Structure, Functions, and Targeting for Development of Vaccines and Therapeutics. Vaccines (Basel) 2024; 12:865. [PMID: 39203991 PMCID: PMC11360482 DOI: 10.3390/vaccines12080865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
Flaviviruses, including dengue (DENV), Zika (ZIKV), West Nile (WNV), Japanese encephalitis (JEV), yellow fever (YFV), and tick-borne encephalitis (TBEV) viruses, pose a significant global emerging threat. With their potential to cause widespread outbreaks and severe health complications, the development of effective vaccines and antiviral therapeutics is imperative. The flaviviral non-structural protein 5 (NS5) is a highly conserved and multifunctional protein that is crucial for viral replication, and the NS5 protein of many flaviviruses has been shown to be a potent inhibitor of interferon (IFN) signalling. In this review, we discuss the functions of NS5, diverse NS5-mediated strategies adopted by flaviviruses to evade the host antiviral response, and how NS5 can be a target for the development of vaccines and antiviral therapeutics.
Collapse
Affiliation(s)
| | | | | | - Andrii Slonchak
- Australian Infectious Diseases Research Center, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Z.H.G.); (L.D.H.); (A.A.K.)
| |
Collapse
|
30
|
Morgan RN, Ismail NSM, Alshahrani MY, Aboshanab KM. Multi-epitope peptide vaccines targeting dengue virus serotype 2 created via immunoinformatic analysis. Sci Rep 2024; 14:17645. [PMID: 39085250 PMCID: PMC11291903 DOI: 10.1038/s41598-024-67553-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
The Middle East has witnessed a greater spread of infectious Dengue viruses, with serotype 2 (DENV-2) being the most prevalent form. Through this work, multi-epitope peptide vaccines against DENV-2 that target E and nonstructural (NS1) proteins were generated through an immunoinformatic approach. MHC class I and II and LBL epitopes among NS1 and envelope E proteins sequences were predicted and their antigenicity, toxicity, and allergenicity were investigated. Studies of the population coverage denoted the high prevalence of NS1 and envelope-E epitopes among different countries where DENV-2 endemic. Further, both the CTL and HTL epitopes retrieved from NS1 epitopes exhibited high conservancies' percentages with other DENV serotypes (1, 3, and 4). Three vaccine constructs were created and the expected immune responses for the constructs were estimated using C-IMMSIM and HADDOCK (against TLR 2,3,4,5, and 7). Molecular dynamics simulation for vaccine construct 2 with TLR4 denoted high binding affinity and stability of the construct with the receptor which might foretell favorable in vivo interaction and immune responses.
Collapse
Affiliation(s)
- Radwa N Morgan
- Drug Radiation Research Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Nasser S M Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, 9088, Abha, Saudi Arabia
| | - Khaled M Aboshanab
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Abbassia, POB: 11566, Cairo, 11566, Egypt.
| |
Collapse
|
31
|
Dayarathna S, Senadheera B, Jeewandara C, Dissanayaka M, Bary F, Ogg GS, Malavige GN. Dengue NS1 interaction with lipids alters its pathogenic effects on monocyte derived macrophages. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.24.24307786. [PMID: 38854029 PMCID: PMC11160833 DOI: 10.1101/2024.05.24.24307786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background While dengue NS1 antigen has been shown to be associated with disease pathogenesis in some studies, it has not been linked in other studies, with the reasons remaining unclear. NS1 antigen levels in acute dengue are often associated with increased disease severity, but there have been a wide variation in results based on past dengue infection and infecting dengue virus (DENV) serotype. As NS1 engages with many host lipids, we hypothesize that the type of NS1-lipid interactions alters its pathogenicity. Methods Primary human monocyte derived macrophages (MDMs) were co-cultured with NS1 alone or with HDL, LDL, LPS and/or platelet activating factor (PAF) from individuals with a history of past dengue fever (DF=8) or dengue haemorrhagic fever (DHF=8). IL-1β levels were measured in culture supernatants, and gene expression analysis carried out in MDMs. Monocyte subpopulations were assessed by flow cytometry. Hierarchical cluster analysis with Euclidean distance calculations were used to differentiate clusters. Differentially expressed variables were extracted and a classifier model was developed to differentiate between past DF and DHF. Results Significantly higher levels of IL-1β were seen in culture supernatants when NS1 was co-cultured with LDL (p=0.01), but with lower levels with HDL (p=0.05). MDMs of those past DHF produced more IL-1β when NS1 with PAF (p=0.02). MDMs of individuals with past DHF, were significantly more likely to down-regulate RPLP2 gene expression when macrophages were co-cultured with either PAF alone, or NS1 combined with PAF, or NS1 combined with LDL. When NS1 was co-cultured with PAF, HDL or LDL two clusters were detected based on IL10 expression, but these did not differentiate those with past DF or DHF. Conclusions As RPLP2 is important in DENV replication and in regulating cellular stress responses and immune responses and IL-10 is associated with severe disease, it would be important to further explore how differential expression of RPLP2 and IL-10 could lead to disease pathogenesis based on NS1 and lipid interactions.
Collapse
Affiliation(s)
- Shashika Dayarathna
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
| | - Bhagya Senadheera
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
| | - Chandima Jeewandara
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
| | - Madushika Dissanayaka
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
| | - Farha Bary
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
| | - Graham S Ogg
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Gathsaurie Neelika Malavige
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Prof. Neelika Malavige DPhil (Oxon), FRCP (Lond), FRCPath (UK), Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka.
| |
Collapse
|
32
|
Chew BLA, Ngoh ANQ, Phoo WW, Chan KWK, Ser Z, Tulsian NK, Lim SS, Weng MJG, Watanabe S, Choy MM, Low J, Ooi EE, Ruedl C, Sobota RM, Vasudevan SG, Luo D. Secreted dengue virus NS1 from infection is predominantly dimeric and in complex with high-density lipoprotein. eLife 2024; 12:RP90762. [PMID: 38787378 PMCID: PMC11126310 DOI: 10.7554/elife.90762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Severe dengue infections are characterized by endothelial dysfunction shown to be associated with the secreted nonstructural protein 1 (sNS1), making it an attractive vaccine antigen and biotherapeutic target. To uncover the biologically relevant structure of sNS1, we obtained infection-derived sNS1 (isNS1) from dengue virus (DENV)-infected Vero cells through immunoaffinity purification instead of recombinant sNS1 (rsNS1) overexpressed in insect or mammalian cell lines. We found that isNS1 appeared as an approximately 250 kDa complex of NS1 and ApoA1 and further determined the cryoEM structures of isNS1 and its complex with a monoclonal antibody/Fab. Indeed, we found that the major species of isNS1 is a complex of the NS1 dimer partially embedded in a high-density lipoprotein (HDL) particle. Crosslinking mass spectrometry studies confirmed that the isNS1 interacts with the major HDL component ApoA1 through interactions that map to the NS1 wing and hydrophobic domains. Furthermore, our studies demonstrated that the sNS1 in sera from DENV-infected mice and a human patient form a similar complex as isNS1. Our results report the molecular architecture of a biological form of sNS1, which may have implications for the molecular pathogenesis of dengue.
Collapse
Affiliation(s)
- Bing Liang Alvin Chew
- Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore
- NTU Institute of Structural Biology, Nanyang Technological UniversitySingaporeSingapore
| | - AN Qi Ngoh
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
| | - Wint Wint Phoo
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and ResearchSingaporeSingapore
| | - Kitti Wing Ki Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
| | - Zheng Ser
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and ResearchSingaporeSingapore
| | - Nikhil K Tulsian
- Department of Biological Sciences, National University of SingaporeSingaporeSingapore
- Singapore Centre for Life Sciences, Department of Biochemistry, National University of SingaporeSingaporeSingapore
| | - Shiao See Lim
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
| | - Mei Jie Grace Weng
- Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore
- NTU Institute of Structural Biology, Nanyang Technological UniversitySingaporeSingapore
| | - Satoru Watanabe
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
| | - Milly M Choy
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
| | - Jenny Low
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
- Department of Infectious Diseases, Singapore General HospitalSingaporeSingapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
- Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Saw Swee Hock School of Public Health, National University of SingaporeSingaporeSingapore
| | - Christiane Ruedl
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and ResearchSingaporeSingapore
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
- Department of Microbiology and Immunology, National University of SingaporeSingaporeSingapore
- Institute for Glycomics (G26), Griffith University Gold Coast CampusSouthportAustralia
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore
- NTU Institute of Structural Biology, Nanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
33
|
Malavige GN, Ogg GS. Molecular mechanisms in the pathogenesis of dengue infections. Trends Mol Med 2024; 30:484-498. [PMID: 38582622 DOI: 10.1016/j.molmed.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/08/2024]
Abstract
Dengue is the most rapidly emerging climate-sensitive infection, and morbidity/mortality and disease incidence are rising markedly, leading to healthcare systems being overwhelmed. There are currently no specific treatments for dengue or prognostic markers to identify those who will progress to severe disease. Owing to an increase in the burden of illness and a change in epidemiology, many patients experience severe disease. Our limited understanding of the complex mechanisms of disease pathogenesis has significantly hampered the development of safe and effective treatments, vaccines, and biomarkers. We discuss the molecular mechanisms of dengue pathogenesis, the gaps in our knowledge, and recent advances, as well as the most crucial questions to be answered to enable the development of therapeutics, biomarkers, and vaccines.
Collapse
Affiliation(s)
- Gathsaurie Neelika Malavige
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka; Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| | - Graham S Ogg
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka; Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
34
|
Ghosal M, Rakshit T, Bhattacharya S, Bhattacharyya S, Satpati P, Senapati D. E-Protein Protonation Titration-Induced Single-Particle Chemical Force Spectroscopy for Microscopic Understanding and pI Estimation of Infectious DENV. J Phys Chem B 2024; 128:3133-3144. [PMID: 38512319 DOI: 10.1021/acs.jpcb.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The ionization state of amino acids on the outer surface of a virus regulates its physicochemical properties toward the sorbent surface. Serologically different strains of the dengue virus (DENV) show different extents of infectivity depending upon their interactions with a receptor on the host cell. To understand the structural dependence of E-protein protonation over its sequence dependence, we have followed E-protein titration kinetics both experimentally and theoretically for two differentially infected dengue serotypes, namely, DENV-2 and DENV-4. We have performed E-protein protonation titration-induced single-particle chemical force spectroscopy using an atomic force microscope (AFM) to measure the surface chemistry of DENV in physiological aqueous solutions not only to understand the charge distribution dynamics on the virus surface but also to estimate the isoelectric point (pI) accurately for infectious dengue viruses. Cryo-EM structure-based theoretical pI calculations of the DENV-2 surface protein were shown to be consistent with the evaluated pI value from force spectroscopy measurements. We also highlighted here the role of the microenvironment around the titrable residues (in the 3D-folded structure of the protein) in altering the pKa. This is a comprehensive study to understand how the cumulative charge distribution on the outer surface of a specific serotype of DENV regulates a prominent role of infectivity over minute changes at the genetic level.
Collapse
Affiliation(s)
- Manorama Ghosal
- Chemical Sciences Division, Saha Institute of Nuclear Physics (SINP), A CI of Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, WB 700064, India
| | - Tatini Rakshit
- Department of Chemistry, School of Natural Sciences (SNS), Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP 201314, India
| | - Shreya Bhattacharya
- Computational Biology Lab, Department of Bioscience & Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Sankar Bhattacharyya
- NCR Biotech Science Cluster, Translational Health Science and Technology Institute (THSTI), Faridabad-Gurugram Expressway, PO Box 4, Faridabad-Gurugram HR-121001, India
| | - Priyadarshi Satpati
- Computational Biology Lab, Department of Bioscience & Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Dulal Senapati
- Chemical Sciences Division, Saha Institute of Nuclear Physics (SINP), A CI of Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, WB 700064, India
| |
Collapse
|
35
|
Wong MP, Juan EYW, Pahmeier F, Chelluri SS, Wang P, Castillo-Rojas B, Blanc SF, Biering SB, Vance RE, Harris E. The inflammasome pathway is activated by dengue virus non-structural protein 1 and is protective during dengue virus infection. PLoS Pathog 2024; 20:e1012167. [PMID: 38662771 DOI: 10.1371/journal.ppat.1012167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/07/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024] Open
Abstract
Dengue virus (DENV) is a medically important flavivirus causing an estimated 50-100 million dengue cases annually, some of whom progress to severe disease. DENV non-structural protein 1 (NS1) is secreted from infected cells and has been implicated as a major driver of dengue pathogenesis by inducing endothelial barrier dysfunction. However, less is known about how DENV NS1 interacts with immune cells and what role these interactions play. Here we report that DENV NS1 can trigger activation of inflammasomes, a family of cytosolic innate immune sensors that respond to infectious and noxious stimuli, in mouse and human macrophages. DENV NS1 induces the release of IL-1β in a caspase-1 dependent manner. Additionally, we find that DENV NS1-induced inflammasome activation is independent of the NLRP3, Pyrin, and AIM2 inflammasome pathways, but requires CD14. Intriguingly, DENV NS1-induced inflammasome activation does not induce pyroptosis and rapid cell death; instead, macrophages maintain cellular viability while releasing IL-1β. Lastly, we show that caspase-1/11-deficient, but not NLRP3-deficient, mice are more susceptible to lethal DENV infection. Together, these results indicate that the inflammasome pathway acts as a sensor of DENV NS1 and plays a protective role during infection.
Collapse
Affiliation(s)
- Marcus P Wong
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
- Infectious Diseases and Immunity Graduate Group, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Evan Y W Juan
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Felix Pahmeier
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
- Infectious Diseases and Immunity Graduate Group, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Sai S Chelluri
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Phoebe Wang
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Bryan Castillo-Rojas
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Sophie F Blanc
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Scott B Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Russell E Vance
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology University of California, Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
- Infectious Diseases and Immunity Graduate Group, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
36
|
Akter R, Tasneem F, Das S, Soma MA, Georgakopoulos-Soares I, Juthi RT, Sazed SA. Approaches of dengue control: vaccine strategies and future aspects. Front Immunol 2024; 15:1362780. [PMID: 38487527 PMCID: PMC10937410 DOI: 10.3389/fimmu.2024.1362780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
Dengue, caused by the dengue virus (DENV), affects millions of people worldwide every year. This virus has two distinct life cycles, one in the human and another in the mosquito, and both cycles are crucial to be controlled. To control the vector of DENV, the mosquito Aedes aegypti, scientists employed many techniques, which were later proved ineffective and harmful in many ways. Consequently, the attention shifted to the development of a vaccine; researchers have targeted the E protein, a surface protein of the virus and the NS1 protein, an extracellular protein. There are several types of vaccines developed so far, such as live attenuated vaccines, recombinant subunit vaccines, inactivated virus vaccines, viral vectored vaccines, DNA vaccines, and mRNA vaccines. Along with these, scientists are exploring new strategies of developing improved version of the vaccine by employing recombinant DNA plasmid against NS1 and also aiming to prevent the infection by blocking the DENV life cycle inside the mosquitoes. Here, we discussed the aspects of research in the field of vaccines until now and identified some prospects for future vaccine developments.
Collapse
Affiliation(s)
- Runa Akter
- Department of Pharmacy, Independent University Bangladesh, Dhaka, Bangladesh
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Faria Tasneem
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Shuvo Das
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | | | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Rifat Tasnim Juthi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Saiful Arefeen Sazed
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
37
|
Elliott KC, Mattapallil JJ. Zika Virus-A Reemerging Neurotropic Arbovirus Associated with Adverse Pregnancy Outcomes and Neuropathogenesis. Pathogens 2024; 13:177. [PMID: 38392915 PMCID: PMC10892292 DOI: 10.3390/pathogens13020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Zika virus (ZIKV) is a reemerging flavivirus that is primarily spread through bites from infected mosquitos. It was first discovered in 1947 in sentinel monkeys in Uganda and has since been the cause of several outbreaks, primarily in tropical and subtropical areas. Unlike earlier outbreaks, the 2015-2016 epidemic in Brazil was characterized by the emergence of neurovirulent strains of ZIKV strains that could be sexually and perinatally transmitted, leading to the Congenital Zika Syndrome (CZS) in newborns, and Guillain-Barre Syndrome (GBS) along with encephalitis and meningitis in adults. The immune response elicited by ZIKV infection is highly effective and characterized by the induction of both ZIKV-specific neutralizing antibodies and robust effector CD8+ T cell responses. However, the structural similarities between ZIKV and Dengue virus (DENV) lead to the induction of cross-reactive immune responses that could potentially enhance subsequent DENV infection, which imposes a constraint on the development of a highly efficacious ZIKV vaccine. The isolation and characterization of antibodies capable of cross-neutralizing both ZIKV and DENV along with cross-reactive CD8+ T cell responses suggest that vaccine immunogens can be designed to overcome these constraints. Here we review the structural characteristics of ZIKV along with the evidence of neuropathogenesis associated with ZIKV infection and the complex nature of the immune response that is elicited by ZIKV infection.
Collapse
Affiliation(s)
- Kenneth C. Elliott
- Department of Microbiology & Immunology, The Henry M Jackson Foundation for Military Medicine, Uniformed Services University, Bethesda, MD 20814, USA
- Department of Microbiology & Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Joseph J. Mattapallil
- Department of Microbiology & Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
38
|
Latanova A, Karpov V, Starodubova E. Extracellular Vesicles in Flaviviridae Pathogenesis: Their Roles in Viral Transmission, Immune Evasion, and Inflammation. Int J Mol Sci 2024; 25:2144. [PMID: 38396820 PMCID: PMC10889558 DOI: 10.3390/ijms25042144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The members of the Flaviviridae family are becoming an emerging threat for public health, causing an increasing number of infections each year and requiring effective treatment. The consequences of these infections can be severe and include liver inflammation with subsequent carcinogenesis, endothelial damage with hemorrhage, neuroinflammation, and, in some cases, death. The mechanisms of Flaviviridae pathogenesis are being actively investigated, but there are still many gaps in their understanding. Extracellular vesicles may play important roles in these mechanisms, and, therefore, this topic deserves detailed research. Recent data have revealed the involvement of extracellular vesicles in steps of Flaviviridae pathogenesis such as transmission, immune evasion, and inflammation, which is critical for disease establishment. This review covers recent papers on the roles of extracellular vesicles in the pathogenesis of Flaviviridae and includes examples of clinical applications of the accumulated data.
Collapse
Affiliation(s)
- Anastasia Latanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.K.); (E.S.)
| | | | | |
Collapse
|
39
|
Shoushtari M, Rismani E, Salehi-Vaziri M, Azadmanesh K. Structure-based evaluation of the envelope domain III-nonstructural protein 1 (EDIII-NS1) fusion as a dengue virus vaccine candidate. J Biomol Struct Dyn 2024:1-19. [PMID: 38319049 DOI: 10.1080/07391102.2024.2311350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/23/2024] [Indexed: 02/07/2024]
Abstract
The lack of effective medicines or vaccines, combined with climate change and other environmental factors, annually subjects a significant proportion of the world's inhabitants to the risk of dengue virus (DENV) infection. These conditions increase the likelihood of exposure to mosquito-borne diseases such as dengue fever. Hence, many research approaches tend to develop efficient vaccine candidates against the dengue virus. Therefore, we used immunoinformatics and bioinformatics to design a construction for developing a candidate vaccine against dengue virus serotypes. In this study, the in silico structure, containing the non-structural protein 1 region (NS1) (consensus and epitope), the envelope domain III protein (EDIII) as the structural part of the virus construction, and the bc-loop of envelope domain II (EDII) as the neutralizing and protected epitope, were employed. We utilized in silico tools to enhance the immunogenicity and effectiveness of dengue virus vaccine candidates. Evaluations included refining and validating physicochemical characteristics, B and T-cell epitopes, homology modeling, and the three-dimensional structure to assess the designed vaccine's quality. In silico results for tertiary structure prediction and validation revealed high-quality modeling for all vaccine constructs. Additionally, the instructed model demonstrated stability throughout molecular dynamics simulation. The results of the immune simulation suggested that the titers of IgG and IgM could be raised to desirable values following injection into in vivo models. It can be concluded that the designed construct effectively induce humoral and cellular immunity and can be proposed as effective vaccine candidate against four dengue serotypes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Elham Rismani
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mostafa Salehi-Vaziri
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
40
|
Coelho SVA, Augusto FM, de Arruda LB. Potential Pathways and Pathophysiological Implications of Viral Infection-Driven Activation of Kallikrein-Kinin System (KKS). Viruses 2024; 16:245. [PMID: 38400022 PMCID: PMC10892958 DOI: 10.3390/v16020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Microcirculatory and coagulation disturbances commonly occur as pathological manifestations of systemic viral infections. Research exploring the role of the kallikrein-kinin system (KKS) in flavivirus infections has recently linked microvascular dysfunctions to bradykinin (BK)-induced signaling of B2R, a G protein-coupled receptor (GPCR) constitutively expressed by endothelial cells. The relevance of KKS activation as an innate response to viral infections has gained increasing attention, particularly after the reports regarding thrombogenic events during COVID-19. BK receptor (B2R and B1R) signal transduction results in vascular permeability, edema formation, angiogenesis, and pain. Recent findings unveiling the role of KKS in viral pathogenesis include evidence of increased activation of KKS with elevated levels of BK and its metabolites in both intravascular and tissue milieu, as well as reports demonstrating that virus replication stimulates BKR expression. In this review, we will discuss the mechanisms triggered by virus replication and by virus-induced inflammatory responses that may stimulate KKS. We also explore how KKS activation and BK signaling may impact virus pathogenesis and further discuss the potential therapeutic application of BKR antagonists in the treatment of hemorrhagic and respiratory diseases.
Collapse
Affiliation(s)
- Sharton Vinícius Antunes Coelho
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | | | - Luciana Barros de Arruda
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
41
|
Caetano CCS, Azamor T, Meyer NM, Onwubueke C, Calabrese CM, Calabrese LH, Visperas A, Piuzzi NS, Husni ME, Foo SS, Chen W. Mechanistic insights into bone remodelling dysregulation by human viral pathogens. Nat Microbiol 2024; 9:322-335. [PMID: 38316931 PMCID: PMC11045166 DOI: 10.1038/s41564-023-01586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/12/2023] [Indexed: 02/07/2024]
Abstract
Bone-related diseases (osteopathologies) associated with human virus infections have increased around the globe. Recent findings have highlighted the intricate interplay between viral infection, the host immune system and the bone remodelling process. Viral infections can disrupt bone homeostasis, contributing to conditions such as arthritis and soft tissue calcifications. Osteopathologies can occur after arbovirus infections such as chikungunya virus, dengue virus and Zika virus, as well as respiratory viruses, such as severe acute respiratory syndrome coronavirus 2 and enteroviruses such as Coxsackievirus B. Here we explore how human viruses dysregulate bone homeostasis, detailing viral factors, molecular mechanisms, host immune response changes and bone remodelling that ultimately result in osteopathologies. We highlight model systems and technologies to advance mechanistic understanding of viral-mediated bone alterations. Finally, we propose potential prophylactic and therapeutic strategies, introduce 'osteovirology' as a research field highlighting the underestimated roles of viruses in bone-related diseases, and discuss research avenues for further investigation.
Collapse
Affiliation(s)
- Camila C S Caetano
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tamiris Azamor
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nikki M Meyer
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Chineme Onwubueke
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Cassandra M Calabrese
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, OH, USA
| | - Leonard H Calabrese
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, OH, USA
| | - Anabelle Visperas
- Department of Orthopedic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Nicolas S Piuzzi
- Department of Orthopedic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - M Elaine Husni
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, OH, USA
| | - Suan-Sin Foo
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Weiqiang Chen
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
42
|
Abstract
Flaviviruses such as dengue, Zika, and West Nile viruses are highly concerning pathogens that pose significant risks to public health. The NS1 protein is conserved among flaviviruses and is synthesized as a part of the flavivirus polyprotein. It plays a critical role in viral replication, disease progression, and immune evasion. Post-translational modifications influence NS1's stability, secretion, antigenicity, and interactions with host factors. NS1 protein forms extensive interactions with host cellular proteins allowing it to affect vital processes such as RNA processing, gene expression regulation, and cellular homeostasis, which in turn influence viral replication, disease pathogenesis, and immune responses. NS1 acts as an immune evasion factor by delaying complement-dependent lysis of infected cells and contributes to disease pathogenesis by inducing endothelial cell damage and vascular leakage and triggering autoimmune responses. Anti-NS1 antibodies have been shown to cross-react with host endothelial cells and platelets, causing autoimmune destruction that is hypothesized to contribute to disease pathogenesis. However, in contrast, immunization of animal models with the NS1 protein confers protection against lethal challenges from flaviviruses such as dengue and Zika viruses. Understanding the multifaceted roles of NS1 in flavivirus pathogenesis is crucial for effective disease management and control. Therefore, further research into NS1 biology, including its host protein interactions and additional roles in disease pathology, is imperative for the development of strategies and therapeutics to combat flavivirus infections successfully. This Review provides an in-depth exploration of the current available knowledge on the multifaceted roles of the NS1 protein in the pathogenesis of flaviviruses.
Collapse
Affiliation(s)
- Dayangi R Perera
- Department of Chemistry, Faculty of Science, University of Colombo, Sri Lanka 00300
| | - Nadeeka D Ranadeva
- Department of Biomedical Science, Faculty of Health Sciences, KIU Campus Sri Lanka 10120
| | - Kavish Sirisena
- Department of Chemistry, Faculty of Science, University of Colombo, Sri Lanka 00300
- Section of Genetics, Institute for Research and Development in Health and Social Care, Sri Lanka 10120
| | | |
Collapse
|
43
|
Cowell E, Jaber H, Kris LP, Fitzgerald MG, Sanders VM, Norbury AJ, Eyre NS, Carr JM. Vav proteins do not influence dengue virus replication but are associated with induction of phospho-ERK, IL-6, and viperin mRNA following DENV infection in vitro. Microbiol Spectr 2024; 12:e0239123. [PMID: 38054722 PMCID: PMC10782993 DOI: 10.1128/spectrum.02391-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Dengue disease is characterized by an inflammatory-mediated immunopathology, with elevated levels of circulating factors including TNF-α and IL-6. If the damaging inflammatory pathways could be blocked without loss of antiviral responses or exacerbating viral replication, then this would be of potential therapeutic benefit. The study here has investigated the Vav guanine exchange factors as a potential alternative signaling pathway that may drive dengue virus (DENV)-induced inflammatory responses, with a focus on Vav1 and 2. While Vav proteins were positively associated with mRNA for inflammatory cytokines, blocking Vav signaling didn't affect DENV replication but prevented DENV-induction of p-ERK and enhanced IL-6 (inflammatory) and viperin (antiviral) mRNA. These initial data suggest that Vav proteins could be a target that does not compromise control of viral replication and should be investigated further for broader impact on host inflammatory responses, in settings such as antibody-dependent enhancement of infection and in different cell types.
Collapse
Affiliation(s)
- Evangeline Cowell
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Hawraa Jaber
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Luke P. Kris
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Madeleine G. Fitzgerald
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Valeria M. Sanders
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Aidan J. Norbury
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Nicholas S. Eyre
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Jillian M. Carr
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| |
Collapse
|
44
|
Bonhomme D, Cavaillon JM, Werts C. The dangerous liaisons in innate immunity involving recombinant proteins and endotoxins: Examples from the literature and the Leptospira field. J Biol Chem 2024; 300:105506. [PMID: 38029965 PMCID: PMC10777017 DOI: 10.1016/j.jbc.2023.105506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
Endotoxins, also known as lipopolysaccharides (LPS), are essential components of cell walls of diderm bacteria such as Escherichia coli. LPS are microbe-associated molecular patterns that can activate pattern recognition receptors. While trying to investigate the interactions between proteins and host innate immunity, some studies using recombinant proteins expressed in E. coli reported interaction and activation of immune cells. Here, we set out to provide information on endotoxins that are highly toxic to humans and bind to numerous molecules, including recombinant proteins. We begin by outlining the history of the discovery of endotoxins, their receptors and the associated signaling pathways that confer extreme sensitivity to immune cells, acting alone or in synergy with other microbe-associated molecular patterns. We list the various places where endotoxins have been found. Additionally, we warn against the risk of data misinterpretation due to endotoxin contamination in recombinant proteins, which is difficult to estimate with the Limulus amebocyte lysate assay, and cannot be completely neutralized (e.g., treatment with polymyxin B or heating). We further illustrate our point with examples of recombinant heat-shock proteins and viral proteins from severe acute respiratory syndrome coronavirus 2, dengue and HIV, for which endotoxin contamination has eventually been shown to be responsible for the inflammatory roles previously ascribed. We also critically appraised studies on recombinant Leptospira proteins regarding their putative inflammatory roles. Finally, to avoid these issues, we propose alternatives to express recombinant proteins in nonmicrobial systems. Microbiologists wishing to undertake innate immunity studies with their favorite pathogens should be aware of these difficulties.
Collapse
Affiliation(s)
- Delphine Bonhomme
- Institut Pasteur, Université Cité Paris, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, France
| | | | - Catherine Werts
- Institut Pasteur, Université Cité Paris, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, France.
| |
Collapse
|
45
|
Tejo AM, Hamasaki DT, Menezes LM, Ho YL. Severe dengue in the intensive care unit. JOURNAL OF INTENSIVE MEDICINE 2024; 4:16-33. [PMID: 38263966 PMCID: PMC10800775 DOI: 10.1016/j.jointm.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/19/2023] [Accepted: 07/24/2023] [Indexed: 01/25/2024]
Abstract
Dengue fever is considered the most prolific vector-borne disease in the world, with its transmission rate increasing more than eight times in the last two decades. While most cases present mild to moderate symptoms, 5% of patients can develop severe disease. Although the mechanisms are yet not fully comprehended, immune-mediated activation leading to excessive cytokine expression is suggested as a cause of the two main findings in critical patients: increased vascular permeability that may shock and thrombocytopenia, and coagulopathy that can induce hemorrhage. The risk factors of severe disease include previous infection by a different serotype, specific genotypes associated with more efficient replication, certain genetic polymorphisms, and comorbidities such as diabetes, obesity, and cardiovascular disease. The World Health Organization recommends careful monitoring and prompt hospitalization of patients with warning signs or propensity for severe disease to reduce mortality. This review aims to update the diagnosis and management of patients with severe dengue in the intensive care unit.
Collapse
Affiliation(s)
- Alexandre Mestre Tejo
- Intensive Care Unit, Department of Intensive Medicine of the Cancer Institute of the State of São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Debora Toshie Hamasaki
- Transfusion Medicine and Cell Therapy Department, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Letícia Mattos Menezes
- Intensive Care Unit of Infectious Disease Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Yeh-Li Ho
- Intensive Care Unit of Infectious Disease Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
46
|
Malavige GN, Sjö P, Singh K, Piedagnel JM, Mowbray C, Estani S, Lim SCL, Siquierra AM, Ogg GS, Fraisse L, Ribeiro I. Facing the escalating burden of dengue: Challenges and perspectives. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0002598. [PMID: 38100392 PMCID: PMC10723676 DOI: 10.1371/journal.pgph.0002598] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Dengue is the most rapidly emerging mosquito-borne infection and, due to climate change and unplanned urbanization, it is predicted that the global burden of dengue will rise further as the infection spreads to new geographical locations. Dengue-endemic countries are often unable to cope with such increases, with health care facilities becoming overwhelmed during each dengue season. Furthermore, although dengue has been predominantly a childhood illness in the past, it currently mostly affects adults in many countries, with higher incidence of severe disease and mortality rates in pregnant women and in those with comorbidities. As there is currently no specific treatment for dengue and no early biomarker to identify those who will progress to develop vascular leakage, all individuals with dengue are closely monitored in case they need fluid management. Furthermore, diagnosing patients with acute dengue is challenging due to the similarity of clinical symptoms during early illness and poor sensitivity and specificity of point-of-care diagnostic tests. Novel vector control methods, such as the release of Wolbachia-infected mosquitoes, have shown promising results by reducing vector density and dengue incidence in clinical trial settings. A new dengue vaccine, TAK-003, had an efficacy of 61.2% against virologically confirmed dengue, 84.1% efficacy against hospitalizations and a 70% efficacy against development of dengue haemorrhagic fever (DHF) at 54 months. While vaccines and mosquito control methods are welcome, they alone are unlikely to fully reduce the burden of dengue, and a treatment for dengue is therefore essential. Several novel antiviral drugs are currently being evaluated along with drugs that inhibit host mediators, such as mast cell products. Although viral proteins such as NS1 contribute to the vascular leak observed in severe dengue, the host immune response to the viral infection also plays a significant role in progression to severe disease. There is an urgent need to discover safe and effective treatments for dengue to prevent disease progression.
Collapse
Affiliation(s)
- Gathsaurie Neelika Malavige
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Peter Sjö
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Kavita Singh
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | | | - Charles Mowbray
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Sergio Estani
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | | | | | - Graham S. Ogg
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Laurent Fraisse
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Isabela Ribeiro
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| |
Collapse
|
47
|
Mysorekar I, Michita R, Tran L, Bark S, Kumar D, Toner S, Jose J, Narayanan A. Zika Virus NS1 Drives Tunneling Nanotube Formation for Mitochondrial Transfer, Enhanced Survival, Interferon Evasion, and Stealth Transmission in Trophoblasts. RESEARCH SQUARE 2023:rs.3.rs-3674059. [PMID: 38106210 PMCID: PMC10723532 DOI: 10.21203/rs.3.rs-3674059/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Zika virus (ZIKV) infection continues to pose a significant public health concern due to limited available preventive measures and treatments. ZIKV is unique among flaviviruses in its vertical transmission capacity (i.e., transmission from mother to fetus) yet the underlying mechanisms remain incompletely understood. Here, we show that both African and Asian lineages of ZIKV induce tunneling nanotubes (TNTs) in placental trophoblasts and multiple other mammalian cell types. Amongst investigated flaviviruses, only ZIKV strains trigger TNTs. We show that ZIKV-induced TNTs facilitate transfer of viral particles, proteins, and RNA to neighboring uninfected cells. ZIKV TNT formation is driven exclusively via its non-structural protein 1 (NS1); specifically, the N-terminal region (50 aa) of membrane-bound NS1 is necessary and sufficient for triggering TNT formation in host cells. Using affinity purification-mass spectrometry of cells infected with wild-type NS1 or non-TNT forming NS1 (pNS1ΔTNT) proteins, we found mitochondrial proteins are dominant NS1-interacting partners, consistent with the elevated mitochondrial mass we observed in infected trophoblasts. We demonstrate that mitochondria are siphoned via TNTs from healthy to ZIKV-infected cells, both homotypically and heterotypically, and inhibition of mitochondrial respiration reduced viral replication in trophoblast cells. Finally, ZIKV strains lacking TNT capabilities due to mutant NS1 elicited a robust antiviral IFN-λ 1/2/3 response, indicating ZIKV's TNT-mediated trafficking also allows ZIKV cell-cell transmission that is camouflaged from host defenses. Together, our findings identify a new stealth mechanism that ZIKV employs for intercellular spread among placental trophoblasts, evasion of antiviral interferon response, and the hijacking of mitochondria to augment its propagation and survival. Discerning the mechanisms of ZIKV intercellular strategies offers a basis for novel therapeutic developments targeting these interactions to limit its dissemination.
Collapse
|
48
|
Pliego Zamora A, Kim J, Vajjhala PR, Thygesen SJ, Watterson D, Modhiran N, Bielefeldt-Ohmann H, Stacey KJ. Kinetics of severe dengue virus infection and development of gut pathology in mice. J Virol 2023; 97:e0125123. [PMID: 37850747 PMCID: PMC10688336 DOI: 10.1128/jvi.01251-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
IMPORTANCE Dengue virus, an arbovirus, causes an estimated 100 million symptomatic infections annually and is an increasing threat as the mosquito range expands with climate change. Dengue epidemics are a substantial strain on local economies and health infrastructure, and an understanding of what drives severe disease may enable treatments to help reduce hospitalizations. Factors exacerbating dengue disease are debated, but gut-related symptoms are much more frequent in severe than mild cases. Using mouse models of dengue infection, we have shown that inflammation and damage are earlier and more severe in the gut than in other tissues. Additionally, we observed impairment of the gut mucus layer and propose that breakdown of the barrier function exacerbates inflammation and promotes severe dengue disease. This idea is supported by recent data from human patients showing elevated bacteria-derived molecules in dengue patient serum. Therapies aiming to maintain gut integrity may help to abrogate severe dengue disease.
Collapse
Affiliation(s)
- Adriana Pliego Zamora
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Jaehyeon Kim
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Parimala R. Vajjhala
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Sara J. Thygesen
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
| | - Katryn J. Stacey
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
49
|
Basheer A, Jamal SB, Alzahrani B, Faheem M. Development of a tetravalent subunit vaccine against dengue virus through a vaccinomics approach. Front Immunol 2023; 14:1273838. [PMID: 38045699 PMCID: PMC10690774 DOI: 10.3389/fimmu.2023.1273838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023] Open
Abstract
Dengue virus infection (DVI) is a mosquito-borne disease that can lead to serious morbidity and mortality. Dengue fever (DF) is a major public health concern that affects approximately 3.9 billion people each year globally. However, there is no vaccine or drug available to deal with DVI. Dengue virus consists of four distinct serotypes (DENV1-4), each raising a different immunological response. In the present study, we designed a tetravalent subunit multi-epitope vaccine, targeting proteins including the structural protein envelope domain III (EDIII), precursor membrane proteins (prM), and a non-structural protein (NS1) from each serotype by employing an immunoinformatic approach. Only conserved sequences obtained through a multiple sequence alignment were used for epitope mapping to ensure efficacy against all serotypes. The epitopes were shortlisted based on an IC50 value <50, antigenicity, allergenicity, and a toxicity analysis. In the final vaccine construct, overall, 11 B-cell epitopes, 10 HTL epitopes, and 10 CTL epitopes from EDIII, prM, and NS1 proteins targeting all serotypes were selected and joined via KK, AAY, and GGGS linkers, respectively. We incorporated a 45-amino-acid-long B-defensins adjuvant in the final vaccine construct for a better immunogenic response. The vaccine construct has an antigenic score of 0.79 via VaxiJen and is non-toxic and non-allergenic. Our refined vaccine structure has a Ramachandran score of 96.4%. The vaccine has shown stable interaction with TLR3, which has been validated by 50 ns of molecular dynamics (MD) simulation. Our findings propose that a designed multi-epitope vaccine has substantial potential to elicit a strong immune response against all dengue serotypes without causing any adverse effects. Furthermore, the proposed vaccine can be experimentally validated as a probable vaccine, suggesting it may serve as an effective preventative measure against dengue virus infection.
Collapse
Affiliation(s)
- Amina Basheer
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
| | - Syed Babar Jamal
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakakah, Saudi Arabia
| | - Muhammad Faheem
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
50
|
Kuhn RJ, Barrett ADT, Desilva AM, Harris E, Kramer LD, Montgomery RR, Pierson TC, Sette A, Diamond MS. A Prototype-Pathogen Approach for the Development of Flavivirus Countermeasures. J Infect Dis 2023; 228:S398-S413. [PMID: 37849402 PMCID: PMC10582523 DOI: 10.1093/infdis/jiad193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/28/2023] [Indexed: 10/19/2023] Open
Abstract
Flaviviruses are a genus within the Flaviviridae family of positive-strand RNA viruses and are transmitted principally through mosquito and tick vectors. These viruses are responsible for hundreds of millions of human infections worldwide per year that result in a range of illnesses from self-limiting febrile syndromes to severe neurotropic and viscerotropic diseases and, in some cases, death. A vaccine against the prototype flavivirus, yellow fever virus, has been deployed for 85 years and is highly effective. While vaccines against some medically important flaviviruses are available, others have proven challenging to develop. The emergence and spread of flaviviruses, including dengue virus and Zika virus, demonstrate their pandemic potential. This review highlights the gaps in knowledge that need to be addressed to allow for the rapid development of vaccines against emerging flaviviruses in the future.
Collapse
Affiliation(s)
- Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Alan D T Barrett
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Aravinda M Desilva
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Laura D Kramer
- School of Public Health, State University of New York at Albany, Albany, New York, USA
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Theodore C Pierson
- Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, University of California in San Diego, San Diego, California, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
- Department of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|