1
|
Robinson-McCarthy LR, Zirckel KE, Simmons HC, Le Sage V, McCarthy KR. A replicating recombinant vesicular stomatitis virus model for dairy cattle H5N1 influenza virus glycoprotein evolution. J Virol 2025:e0038925. [PMID: 40464562 DOI: 10.1128/jvi.00389-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/24/2025] [Indexed: 06/11/2025] Open
Abstract
A panzootic of highly pathogenic avian influenza (HPAI) H5N1 viruses from clade 2.3.4.4b has triggered a multistate outbreak in US dairy cattle and an unknown number of human infections. HPAI viruses are handled in specialized biocontainment facilities. Ethical considerations limit certain evolution experiments aimed at assessing viral resistance to potential therapeutics. We have developed a replicating recombinant vesicular stomatitis virus (rVSV) where we replaced its glycoprotein with the hemagglutinin (HA) and neuraminidase (NA) genes of a 2.3.4.4b H5N1 virus (rVSV-H5N1dc2024), which enables these experiments to be performed under standard biosafety considerations. This virus grows to high titers and encodes a fluorescent reporter to track infection. We demonstrate the utility of rVSV-H5N1dc2024 in neutralization experiments, the evaluation of antibody escape, and the characterization of resistance mutations to NA inhibitors. rVSV-H5N1dc2024 or similar viruses may accelerate efforts to develop and evaluate interventions against this emerging threat to human and animal health. IMPORTANCE Highly pathogenic avian influenza H5 viruses have spread globally, established sustained transmission in mammals, and caused human infections. Research on these viruses is restricted to high biocontainment laboratories. We report the characterization and utility of a surrogate, replicating virus that displays the two key influenza virus glycoproteins, hemagglutinin and neuraminidase, and can be safely handled in most research laboratories. This virus is amenable to the evaluation of antiviral antibodies and small-molecule inhibitors and the evolution of viral resistance to these agents. This virus can enable a wider range of researchers to study H5 viruses of pandemic concern.
Collapse
Affiliation(s)
- Lindsey R Robinson-McCarthy
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kylie E Zirckel
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Holly C Simmons
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Valerie Le Sage
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kevin R McCarthy
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Elbert JA, Schuh AJ, Amman BR, Guito JC, Graziano JC, Sealy TK, Howerth EW, Towner JS. Characterization of Ravn virus viral shedding dynamics in experimentally infected Egyptian rousette bats ( Rousettus aegypticus). J Virol 2025; 99:e0004525. [PMID: 40265897 PMCID: PMC12090798 DOI: 10.1128/jvi.00045-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/27/2025] [Indexed: 04/24/2025] Open
Abstract
Marburg virus (MARV) and Ravn virus (RAVV), the only two known members of the species Orthomarburgvirus marburgense (family Filoviridae), are causative agents of Marburg virus disease, a severe viral disease that typically emerges in sub-Saharan Africa and is characterized by human-to-human transmission and high case fatalities. Despite the robust characterization of MARV experimental infection in Egyptian rousette bats (ERBs; Rousettus aegyptiacus; common name: Egyptian rousettes), a natural MARV reservoir, experimental infection with RAVV in ERBs has not been completed. Here, we experimentally infect 12 ERBs with RAVV and quantify viral loads in blood, oral swabs, and rectal swabs over a 21-day timeline with serological and cumulative shedding data and baseline clinical parameters. Compared to previously described experimental MARV infection in ERBs, these bats experimentally inoculated with RAVV had significantly higher and prolonged rectal viral shedding loads, as well as significantly prolonged oral shedding and higher peak viremia. All ERBs seroconverted by 21 days post-infection. Additionally, all ERBs demonstrated marked heterogeneity in RAVV viral shedding loads consistent with the Pareto Principle and viral "supershedders." Our results introduce the possibility of variation in transmission dynamics and subsequent spillover differences between RAVV and MARV.IMPORTANCERavn virus, along with Marburg virus, causes severe viral disease in humans with high fatality but little to no clinical disease in its reservoir host, the Egyptian rousette bat. Our findings provide important insights into how Ravn virus behaves in its natural reservoir host, showing that Ravn virus infection followed a similar timeline to Marburg virus infection, with virus detected in blood, saliva, and feces. However, Ravn virus-infected bats had higher levels of viral shedding and shed the virus for a longer period, particularly in feces, compared to Marburg virus. These differences in viral shedding may impact the spread of the virus within bat populations and potentially alter the likelihood of spillover into humans, non-human primates, and other animal species. These insights are crucial for understanding Ravn virus maintenance in its bat reservoir and improving our ability to mitigate or prevent future human outbreaks.
Collapse
Affiliation(s)
- Jessica A. Elbert
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Amy J. Schuh
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- USA Public Health Service Commissioned Corps, Rockville, Maryland, USA
| | - Brian R. Amman
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jonathan C. Guito
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - James C. Graziano
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Tara K. Sealy
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Elizabeth W. Howerth
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Jonathan S. Towner
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Dada L, Nagai E, Agrawal S, Wirchnianski AS, Wilson IA, Chandran K, Kitamura S. SuFEx-enabled high-throughput medicinal chemistry for developing potent tamoxifen analogs as Ebola virus entry inhibitors. Front Immunol 2025; 16:1533037. [PMID: 40356906 PMCID: PMC12066687 DOI: 10.3389/fimmu.2025.1533037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/25/2025] [Indexed: 05/15/2025] Open
Abstract
Ebola virus (EBOV) causes severe hemorrhagic fever with a high mortality rate in humans. In acute infection, an abnormal immune response results in excessive inflammatory cytokines and uncontrolled systemic inflammation that can result in organ damage and multi-organ failure. While vaccines and monoclonal antibody therapies are available, there is an urgent need for effective small-molecule antivirals against EBOV. Here, we report on the optimization of tamoxifen, an EBOV-glycoprotein (GP) binder that inhibits viral entry, using our Sulfur-Fluoride Exchange (SuFEx) click chemistry-based high-throughput medicinal chemistry (HTMC) strategy. Using a "Direct-to-Biology" approach, we generated a focused library of 2,496 tamoxifen analogs overnight and screened them in a cell-based pseudo-EBOV infection assay. The HTMC workflow enabled the development of a potent EBOV entry inhibitor with submicromolar EC50 cellular antiviral activity and more than 50-fold improvement in binding affinity against EBOV-GP compared to the parent compound. Our findings underscore the use of SuFEx-enabled HTMC for rapidly generating and assessing potential therapeutic candidates against viral and immune-mediated diseases in a cell-based assay.
Collapse
Affiliation(s)
- Lucas Dada
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Emiko Nagai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Sashank Agrawal
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Ariel S. Wirchnianski
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Kartik Chandran
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Seiya Kitamura
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
4
|
Haase JA, Marzi A. Molecular virulence determinants of human-pathogenic filoviruses. Adv Virus Res 2025; 121:1-29. [PMID: 40379380 DOI: 10.1016/bs.aivir.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2025]
Abstract
The Filoviridae family encompasses Ebola virus (EBOV) and Marburg virus (MARV), some of the most lethal viruses known to cause sporadic, recurring outbreaks of severe hemorrhagic fever mainly throughout central Africa. However, other lesser-known viruses also belong to the filovirus family as they are closely related, such as Bundibugyo, Reston and Taï Forest virus. These viruses differ in their virulence in humans significantly: while EBOV and MARV show lethality in humans of up to 90 %, Reston virus appears to be avirulent in humans. Here, underlying molecular factors leading to differences in virulence via changes in filovirus entry, replication and immune evasion strategies are summarized and assessed. While the filovirus glycoprotein contributes towards virulence by facilitating entry into a wide variety of tissues, differences in virus-host interactions and replication efficacies lead to measurable variances of progeny virus production. Additionally, immune evasion strategies lead to alterations in replication efficacy thus changing who has the upper hand between the virus and the host. Understanding and unraveling the contributions of these molecular determinants on filovirus virulence provide insights into the processes causing the underlying pathogenesis. It will further help to assess the pathogenicity of newly discovered filoviruses. Finally, these molecular determinants and processes present attractive targets for therapeutic intervention and development of novel antiviral countermeasures.
Collapse
Affiliation(s)
- Jil A Haase
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States.
| |
Collapse
|
5
|
Robinson-McCarthy LR, Zirckel KE, Simmons HC, Le Sage V, McCarthy KR. A replicating recombinant vesicular stomatitis virus model for dairy cattle H5N1 influenza virus glycoprotein evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640582. [PMID: 40060653 PMCID: PMC11888439 DOI: 10.1101/2025.02.27.640582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
A panzootic of highly pathogenic avian influenza (HPAI) H5N1 viruses from clade 2.3.4.4b has triggered a multistate outbreak in United States dairy cattle and an unknown number of human infections. HPAI viruses are handled in specialized biocontainment facilities. Ethical considerations limit certain experimental evolution experiments aimed at assessing viral resistance to potential therapeutics. We have developed a replicating recombinant vesicular stomatitis virus (rVSV) where we replaced its glycoprotein with the hemagglutinin (HA) and neuraminidase (NA) genes of a 2.3.4.4b H5N1 virus (rVSV-H5N1dc2024), which is free of these constraints. This virus grows to high titers and encodes a fluorescent reporter to track infection. We demonstrate the utility of rVSV-H5N1dc2024 in neutralization experiments, evaluating antibody escape and characterization of resistance mutations to NA inhibitors. rVSV-H5N1dc2024 or similar viruses may accelerate efforts to develop and evaluate interventions against this emerging threat to human and animal health.
Collapse
Affiliation(s)
- Lindsey R. Robinson-McCarthy
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kylie E. Zirckel
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Holly C. Simmons
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Valerie Le Sage
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kevin R. McCarthy
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Lasso G, Grodus M, Valencia E, DeJesus V, Liang E, Delwel I, Bortz RH, Lupyan D, Ehrlich HY, Castellanos AA, Gazzo A, Wells HL, Wacharapluesadee S, Tremeau-Bravard A, Seetahal JFR, Hughes T, Lee J, Lee MH, Sjodin AR, Geldenhuys M, Mortlock M, Navarrete-Macias I, Gilardi K, Willig MR, Nava AFD, Loh EH, Asrat M, Smiley-Evans T, Magesa WS, Zikankuba S, Wolking D, Suzán G, Ojeda-Flores R, Carrington CVF, Islam A, Epstein JH, Markotter W, Johnson CK, Goldstein T, Han BA, Mazet JAK, Jangra RK, Chandran K, Anthony SJ. Decoding the blueprint of receptor binding by filoviruses through large-scale binding assays and machine learning. Cell Host Microbe 2025; 33:294-313.e11. [PMID: 39818205 PMCID: PMC11825280 DOI: 10.1016/j.chom.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/06/2024] [Accepted: 12/11/2024] [Indexed: 01/18/2025]
Abstract
Evidence suggests that bats are important hosts of filoviruses, yet the specific species involved remain largely unidentified. Niemann-Pick C1 (NPC1) is an essential entry receptor, with amino acid variations influencing viral susceptibility and species-specific tropism. Herein, we conducted combinatorial binding studies with seven filovirus glycoproteins (GPs) and NPC1 orthologs from 81 bat species. We found that GP-NPC1 binding correlated poorly with phylogeny. By integrating binding assays with machine learning, we identified genetic factors influencing virus-receptor-binding and predicted GP-NPC1-binding avidity for additional filoviruses and bats. Moreover, combining receptor-binding avidities with bat geographic distribution and the locations of previous Ebola outbreaks allowed us to rank bats by their potential as Ebola virus hosts. This study represents a comprehensive investigation of filovirus-receptor binding in bats (1,484 GP-NPC1 pairs, 11 filoviruses, and 135 bats) and describes a multidisciplinary approach to predict susceptible species and guide filovirus host surveillance.
Collapse
Affiliation(s)
- Gorka Lasso
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA.
| | - Michael Grodus
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Estefania Valencia
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Veronica DeJesus
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Eliza Liang
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Isabel Delwel
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Rob H Bortz
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | | | - Hanna Y Ehrlich
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | - Andrea Gazzo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Heather L Wells
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Supaporn Wacharapluesadee
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | | | - Janine F R Seetahal
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502, USA
| | - Tom Hughes
- Conservation Medicine, 47000 Sungai Buloh, Selangor, Malaysia; EcoHealth Alliance, New York, NY 10018, USA
| | - Jimmy Lee
- Conservation Medicine, 47000 Sungai Buloh, Selangor, Malaysia; EcoHealth Alliance, New York, NY 10018, USA
| | - Mei-Ho Lee
- Conservation Medicine, 47000 Sungai Buloh, Selangor, Malaysia; EcoHealth Alliance, New York, NY 10018, USA
| | - Anna R Sjodin
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Marike Geldenhuys
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria 0001, South Africa
| | - Marinda Mortlock
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria 0001, South Africa
| | - Isamara Navarrete-Macias
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Kirsten Gilardi
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Michael R Willig
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA; Center for Environmental Sciences and Engineering, Institute of the Environment, University of Connecticut, Storrs, CT 06269, USA
| | - Alessandra F D Nava
- Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas & Maria Deane, Laboratório de Ecologia de Doenças Transmissíveis na Amazônia - EDTA, Manaus 69.057-070, AM, Brazil
| | - Elisabeth H Loh
- Division of Natural Sciences and Mathematics, Transylvania University, Lexington, KY 40508, USA
| | - Makda Asrat
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Tierra Smiley-Evans
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Walter S Magesa
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3021, Morogoro, Tanzania
| | - Sijali Zikankuba
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3021, Morogoro, Tanzania
| | - David Wolking
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Gerardo Suzán
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Rafael Ojeda-Flores
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Christine V F Carrington
- Department of Preclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Republic of Trinidad and Tobago
| | - Ariful Islam
- Gulbali Research Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | | | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria 0001, South Africa
| | - Christine K Johnson
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Tracey Goldstein
- One Health Institute, Colorado State University, Fort Collins, CO 80523, USA
| | - Barbara A Han
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
| | - Jonna A K Mazet
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Center of Excellence for Emerging Viral Threats, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA.
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA.
| | - Simon J Anthony
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
7
|
Messingham KN, Richards PT, Fleck A, Patel RA, Djurkovic M, Elliff J, Connell S, Crowe TP, Munoz Gonzalez J, Gourronc F, Dillard JA, Davey RA, Klingelhutz A, Shtanko O, Maury W. Multiple cell types support productive infection and dynamic translocation of infectious Ebola virus to the surface of human skin. SCIENCE ADVANCES 2025; 11:eadr6140. [PMID: 39742475 DOI: 10.1126/sciadv.adr6140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025]
Abstract
Ebola virus (EBOV) causes severe human disease. During late infection, EBOV virions are on the skin's surface; however, the permissive skin cell types and the route of virus translocation to the epidermal surface are unknown. We describe a human skin explant model and demonstrate that EBOV infection of human skin via basal media increases in a time-dependent and dose-dependent manner. In the dermis, cells of myeloid, endothelial, and fibroblast origin were EBOV antigen-positive whereas keratinocytes harbored virus in the epidermis. Infectious virus was detected on the apical epidermal surface within 3 days, indicating that virus propagates and traffics through the explants. Purified human fibroblasts and keratinocytes supported EBOV infection ex vivo and both cell types required the phosphatidylserine receptor, AXL, and the endosomal protein, NPC1, for virus entry. This platform identified susceptible cell types and demonstrated dynamic trafficking of EBOV virions. These findings may explain person-to-person transmission via skin contact.
Collapse
Affiliation(s)
- Kelly N Messingham
- Department of Dermatology, University of Iowa, Iowa City, IA 52242, USA
- Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Paige T Richards
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Anthony Fleck
- Department of Dermatology, University of Iowa, Iowa City, IA 52242, USA
| | - Radhika A Patel
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Marija Djurkovic
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Jonah Elliff
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Samuel Connell
- Department of Dermatology, University of Iowa, Iowa City, IA 52242, USA
| | - Tyler P Crowe
- Department of Dermatology, University of Iowa, Iowa City, IA 52242, USA
| | - Juan Munoz Gonzalez
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Francoise Gourronc
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Jacob A Dillard
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | | | - Aloysius Klingelhutz
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Olena Shtanko
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Wendy Maury
- Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
8
|
Tse AL, Acreman CM, Ricardo-Lax I, Berrigan J, Lasso G, Balogun T, Kearns FL, Casalino L, McClain GL, Chandran AM, Lemeunier C, Amaro RE, Rice CM, Jangra RK, McLellan JS, Chandran K, Miller EH. Distinct pathways for evolution of enhanced receptor binding and cell entry in SARS-like bat coronaviruses. PLoS Pathog 2024; 20:e1012704. [PMID: 39546542 PMCID: PMC11602109 DOI: 10.1371/journal.ppat.1012704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/27/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Understanding the zoonotic risks posed by bat coronaviruses (CoVs) is critical for pandemic preparedness. Herein, we generated recombinant vesicular stomatitis viruses (rVSVs) bearing spikes from divergent bat CoVs to investigate their cell entry mechanisms. Unexpectedly, the successful recovery of rVSVs bearing the spike from SHC014-CoV, a SARS-like bat CoV, was associated with the acquisition of a novel substitution in the S2 fusion peptide-proximal region (FPPR). This substitution enhanced viral entry in both VSV and coronavirus contexts by increasing the availability of the spike receptor-binding domain to recognize its cellular receptor, ACE2. A second substitution in the S1 N-terminal domain, uncovered through the rescue and serial passage of a virus bearing the FPPR substitution, further enhanced spike:ACE2 interaction and viral entry. Our findings identify genetic pathways for adaptation by bat CoVs during spillover and host-to-host transmission, fitness trade-offs inherent to these pathways, and potential Achilles' heels that could be targeted with countermeasures.
Collapse
Affiliation(s)
- Alexandra L. Tse
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Cory M. Acreman
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Inna Ricardo-Lax
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Jacob Berrigan
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Gorka Lasso
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Toheeb Balogun
- Department of Molecular Biology, University of California San Diego, La Jolla, California, United States of America
| | - Fiona L. Kearns
- Department of Molecular Biology, University of California San Diego, La Jolla, California, United States of America
| | - Lorenzo Casalino
- Department of Molecular Biology, University of California San Diego, La Jolla, California, United States of America
| | - Georgia L. McClain
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Amartya Mudry Chandran
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Charlotte Lemeunier
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Rommie E. Amaro
- Department of Molecular Biology, University of California San Diego, La Jolla, California, United States of America
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Rohit K. Jangra
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- Present address: Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Kartik Chandran
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Emily Happy Miller
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| |
Collapse
|
9
|
Ng TW, Furuyama W, Wirchnianski AS, Saavedra-Ávila NA, Johndrow CT, Chandran K, Jacobs WR, Marzi A, Porcelli SA. A viral vaccine design harnessing prior BCG immunization confers protection against Ebola virus. Front Immunol 2024; 15:1429909. [PMID: 39081315 PMCID: PMC11286471 DOI: 10.3389/fimmu.2024.1429909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
Previous studies have demonstrated the efficacy and feasibility of an anti-viral vaccine strategy that takes advantage of pre-existing CD4+ helper T (Th) cells induced by Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccination. This strategy uses immunization with recombinant fusion proteins comprised of a cell surface expressed viral antigen, such as a viral envelope glycoprotein, engineered to contain well-defined BCG Th cell epitopes, thus rapidly recruiting Th cells induced by prior BCG vaccination to provide intrastructural help to virus-specific B cells. In the current study, we show that Th cells induced by BCG were localized predominantly outside of germinal centers and promoted antibody class switching to isotypes characterized by strong Fc receptor interactions and effector functions. Furthermore, BCG vaccination also upregulated FcγR expression to potentially maximize antibody-dependent effector activities. Using a mouse model of Ebola virus (EBOV) infection, this vaccine strategy provided sustained antibody levels with strong IgG2c bias and protection against lethal challenge. This general approach can be easily adapted to other viruses, and may be a rapid and effective method of immunization against emerging pandemics in populations that routinely receive BCG vaccination.
Collapse
Affiliation(s)
- Tony W. Ng
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Wakako Furuyama
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Hamilton, MT, United States
| | - Ariel S. Wirchnianski
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Noemí A. Saavedra-Ávila
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Christopher T. Johndrow
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Andrea Marzi
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Hamilton, MT, United States
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
10
|
Tse AL, Acreman CM, Ricardo-Lax I, Berrigan J, Lasso G, Balogun T, Kearns FL, Casalino L, McClain GL, Chandran AM, Lemeunier C, Amaro RE, Rice CM, Jangra RK, McLellan JS, Chandran K, Miller EH. Distinct pathway for evolution of enhanced receptor binding and cell entry in SARS-like bat coronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600393. [PMID: 38979151 PMCID: PMC11230278 DOI: 10.1101/2024.06.24.600393] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Understanding the zoonotic risks posed by bat coronaviruses (CoVs) is critical for pandemic preparedness. Herein, we generated recombinant vesicular stomatitis viruses (rVSVs) bearing spikes from divergent bat CoVs to investigate their cell entry mechanisms. Unexpectedly, the successful recovery of rVSVs bearing the spike from SHC014, a SARS-like bat CoV, was associated with the acquisition of a novel substitution in the S2 fusion peptide-proximal region (FPPR). This substitution enhanced viral entry in both VSV and coronavirus contexts by increasing the availability of the spike receptor-binding domain to recognize its cellular receptor, ACE2. A second substitution in the spike N-terminal domain, uncovered through forward-genetic selection, interacted epistatically with the FPPR substitution to synergistically enhance spike:ACE2 interaction and viral entry. Our findings identify genetic pathways for adaptation by bat CoVs during spillover and host-to-host transmission, fitness trade-offs inherent to these pathways, and potential Achilles' heels that could be targeted with countermeasures.
Collapse
|
11
|
Ng TW, Furuyama W, Wirchnianski AS, Saavedra-Ávila NA, Johndrow CT, Chandran K, Jacobs WR, Marzi A, Porcelli SA. A viral vaccine design harnessing prior BCG immunization confers protection against Ebola virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.595735. [PMID: 38853867 PMCID: PMC11160617 DOI: 10.1101/2024.05.28.595735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Previous studies have demonstrated the efficacy and feasibility of an anti-viral vaccine strategy that takes advantage of pre-existing CD4 + helper T (Th) cells induced by Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccination. This strategy uses immunization with recombinant fusion proteins comprised of a cell surface expressed viral antigen, such as a viral envelope glycoprotein, engineered to contain well-defined BCG Th cell epitopes, thus rapidly recruiting Th cells induced by prior BCG vaccination to provide intrastructural help to virus-specific B cells. In the current study, we show that Th cells induced by BCG were localized predominantly outside of germinal centers and promoted antibody class switching to isotypes characterized by strong Fc receptor interactions and effector functions. Furthermore, BCG vaccination also upregulated FcγR expression to potentially maximize antibody-dependent effector activities. Using a mouse model of Ebola virus (EBOV) infection, this vaccine strategy provided sustained antibody levels with strong IgG2c bias and protection against lethal challenge. This general approach can be easily adapted to other viruses, and may be a rapid and effective method of immunization against emerging pandemics in populations that routinely receive BCG vaccination.
Collapse
|
12
|
Zhu Z, Han Y, Gong M, Sun B, Zhang R, Ding Q. Establishment of replication-competent vesicular stomatitis virus recapitulating SADS-CoV entry. J Virol 2024; 98:e0195723. [PMID: 38557247 PMCID: PMC11092325 DOI: 10.1128/jvi.01957-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Zoonotic coronaviruses pose a continuous threat to human health, with newly identified bat-borne viruses like swine acute diarrhea syndrome coronavirus (SADS-CoV) causing high mortality in piglets. In vitro studies indicate that SADS-CoV can infect cell lines from diverse species, including humans, highlighting its potential risk to human health. However, the lack of tools to study viral entry, along with the absence of vaccines or antiviral therapies, perpetuates this threat. To address this, we engineered an infectious molecular clone of Vesicular Stomatitis Virus (VSV), replacing its native glycoprotein (G) with SADS-CoV spike (S) and inserting a Venus reporter at the 3' leader region to generate a replication-competent rVSV-Venus-SADS S virus. Serial passages of rVSV-Venus-SADS S led to the identification of an 11-amino-acid truncation in the cytoplasmic tail of the S protein, which allowed more efficient viral propagation due to increased cell membrane anchoring of the S protein. The S protein was integrated into rVSV-Venus-SADS SΔ11 particles, susceptible to neutralization by sera from SADS-CoV S1 protein-immunized rabbits. Additionally, we found that TMPRSS2 promotes SADS-CoV spike-mediated cell entry. Furthermore, we assessed the serum-neutralizing ability of mice vaccinated with rVSV-Venus-SADS SΔ11 using a prime-boost immunization strategy, revealing effective neutralizing antibodies against SADS-CoV infection. In conclusion, we have developed a safe and practical tool for studying SADS-CoV entry and exploring the potential of a recombinant VSV-vectored SADS-CoV vaccine.IMPORTANCEZoonotic coronaviruses, like swine acute diarrhea syndrome coronavirus (SADS-CoV), pose a continual threat to human and animal health. To combat this, we engineered a safe and efficient tool by modifying the Vesicular Stomatitis Virus (VSV), creating a replication-competent rVSV-Venus-SADS S virus. Through serial passages, we optimized the virus for enhanced membrane anchoring, a key factor in viral propagation. This modified virus, rVSV-Venus-SADS SΔ11, proved susceptible to neutralization, opening avenues for potential vaccines. Additionally, our study revealed the role of TMPRSS2 in SADS-CoV entry. Mice vaccinated with rVSV-Venus-SADS SΔ11 developed potent neutralizing antibodies against SADS-CoV. In conclusion, our work presents a secure and practical tool for studying SADS-CoV entry and explores the promise of a recombinant VSV-vectored SADS-CoV vaccine.
Collapse
Affiliation(s)
- Zihui Zhu
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Yutong Han
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingli Gong
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Bo Sun
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Rong Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Ding
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
13
|
Wirchnianski AS, Nyakatura EK, Herbert AS, Kuehne AI, Abbasi SA, Florez C, Storm N, McKay LGA, Dailey L, Kuang E, Abelson DM, Wec AZ, Chakraborti S, Holtsberg FW, Shulenin S, Bornholdt ZA, Aman MJ, Honko AN, Griffiths A, Dye JM, Chandran K, Lai JR. Design and characterization of protective pan-ebolavirus and pan-filovirus bispecific antibodies. PLoS Pathog 2024; 20:e1012134. [PMID: 38603762 PMCID: PMC11037526 DOI: 10.1371/journal.ppat.1012134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/23/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Monoclonal antibodies (mAbs) are an important class of antiviral therapeutics. MAbs are highly selective, well tolerated, and have long in vivo half-life as well as the capacity to induce immune-mediated virus clearance. Their activities can be further enhanced by integration of their variable fragments (Fvs) into bispecific antibodies (bsAbs), affording simultaneous targeting of multiple epitopes to improve potency and breadth and/or to mitigate against viral escape by a single mutation. Here, we explore a bsAb strategy for generation of pan-ebolavirus and pan-filovirus immunotherapeutics. Filoviruses, including Ebola virus (EBOV), Sudan virus (SUDV), and Marburg virus (MARV), cause severe hemorrhagic fever. Although there are two FDA-approved mAb therapies for EBOV infection, these do not extend to other filoviruses. Here, we combine Fvs from broad ebolavirus mAbs to generate novel pan-ebolavirus bsAbs that are potently neutralizing, confer protection in mice, and are resistant to viral escape. Moreover, we combine Fvs from pan-ebolavirus mAbs with those of protective MARV mAbs to generate pan-filovirus protective bsAbs. These results provide guidelines for broad antiviral bsAb design and generate new immunotherapeutic candidates.
Collapse
MESH Headings
- Animals
- Mice
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/pharmacology
- Antibodies, Bispecific/therapeutic use
- Ebolavirus/immunology
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/prevention & control
- Hemorrhagic Fever, Ebola/virology
- Antibodies, Viral/immunology
- Humans
- Filoviridae/immunology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Monoclonal/immunology
- Female
- Mice, Inbred BALB C
- Filoviridae Infections/immunology
- Filoviridae Infections/therapy
- Filoviridae Infections/prevention & control
Collapse
Affiliation(s)
- Ariel S. Wirchnianski
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Elisabeth K. Nyakatura
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Andrew S. Herbert
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
- The Geneva Foundation, Tacoma, Washington, United States of America
| | - Ana I. Kuehne
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Shawn A. Abbasi
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
- The Geneva Foundation, Tacoma, Washington, United States of America
| | - Catalina Florez
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
- The Geneva Foundation, Tacoma, Washington, United States of America
| | - Nadia Storm
- Department of Virology, Immunology, and Microbiology; and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Lindsay G. A. McKay
- Department of Virology, Immunology, and Microbiology; and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Leandrew Dailey
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Erin Kuang
- Mapp Biopharmaceutical Inc., San Diego, California, United States of America
| | - Dafna M. Abelson
- Mapp Biopharmaceutical Inc., San Diego, California, United States of America
| | - Anna Z. Wec
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Srinjoy Chakraborti
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | | | - Sergey Shulenin
- Integrated BioTherapeutics, Inc., Rockville, Maryland, United States of America
| | | | - M. Javad Aman
- Integrated BioTherapeutics, Inc., Rockville, Maryland, United States of America
| | - Anna N. Honko
- Department of Virology, Immunology, and Microbiology; and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Anthony Griffiths
- Department of Virology, Immunology, and Microbiology; and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - John M. Dye
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Jonathan R. Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
14
|
Lennemann NJ, Corliss L, Maury W. Modification of N-Linked Glycan Sites in Viral Glycoproteins. Methods Mol Biol 2024; 2762:27-41. [PMID: 38315358 DOI: 10.1007/978-1-0716-3666-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Post-translational modification of proteins by the addition of sugar chains, or glycans, is a functionally important hallmark of proteins trafficked through the secretory system. These proteins are termed glycoproteins. Glycans are known to be important for initiating signaling through binding of cell surface receptors, facilitating protein folding, and maintaining protein stability. For pathogens, glycans can also mask vulnerable protein regions from neutralizing antibodies. Thus, there is a need to develop methods to decipher the role of specific glycans attached to proteins in order to understand their biological role. Here, we describe established methods for identifying glycosylated residues and understanding their role in protein synthesis and function using viral glycoproteins as a model.
Collapse
Affiliation(s)
- Nicholas J Lennemann
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Lochlain Corliss
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wendy Maury
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
15
|
Mittler E, Serris A, Esterman ES, Florez C, Polanco LC, O’Brien CM, Slough MM, Tynell J, Gröning R, Sun Y, Abelson DM, Wec AZ, Haslwanter D, Keller M, Ye C, Bakken RR, Jangra RK, Dye JM, Ahlm C, Rappazzo CG, Ulrich RG, Zeitlin L, Geoghegan JC, Bradfute SB, Sidoli S, Forsell MN, Strandin T, Rey FA, Herbert AS, Walker LM, Chandran K, Guardado-Calvo P. Structural and mechanistic basis of neutralization by a pan-hantavirus protective antibody. Sci Transl Med 2023; 15:eadg1855. [PMID: 37315110 PMCID: PMC11721787 DOI: 10.1126/scitranslmed.adg1855] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/18/2023] [Indexed: 06/16/2023]
Abstract
Emerging rodent-borne hantaviruses cause severe diseases in humans with no approved vaccines or therapeutics. We recently isolated a monoclonal broadly neutralizing antibody (nAb) from a Puumala virus-experienced human donor. Here, we report its structure bound to its target, the Gn/Gc glycoprotein heterodimer comprising the viral fusion complex. The structure explains the broad activity of the nAb: It recognizes conserved Gc fusion loop sequences and the main chain of variable Gn sequences, thereby straddling the Gn/Gc heterodimer and locking it in its prefusion conformation. We show that the nAb's accelerated dissociation from the divergent Andes virus Gn/Gc at endosomal acidic pH limits its potency against this highly lethal virus and correct this liability by engineering an optimized variant that sets a benchmark as a candidate pan-hantavirus therapeutic.
Collapse
Affiliation(s)
- Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alexandra Serris
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Structural Virology Unit, F-75015 Paris, France
| | | | - Catalina Florez
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
- The Geneva Foundation, Tacoma, WA 98402, USA
| | - Laura C. Polanco
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Cecilia M. O’Brien
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
- The Geneva Foundation, Tacoma, WA 98402, USA
| | - Megan M. Slough
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Janne Tynell
- Department of Clinical Microbiology, Umeå University, 90187 Umeå, Sweden
- Zoonosis Unit, Department of Virology, Medical Faculty, University of Helsinki, 00290 Helsinki, Finland
| | - Remigius Gröning
- Department of Clinical Microbiology, Umeå University, 90187 Umeå, Sweden
| | - Yan Sun
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | - Denise Haslwanter
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Chunyan Ye
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Russel R. Bakken
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Rohit K. Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John M. Dye
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Clas Ahlm
- Department of Clinical Microbiology, Umeå University, 90187 Umeå, Sweden
| | | | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
- Partner site: Hamburg-Lübeck-Borstel-Riems, German Centre for Infection Research (DZIF), 17493 Greifswald-Insel Riems, Germany
| | - Larry Zeitlin
- Mapp Biopharmaceutical Inc., San Diego, CA 92121, USA
| | | | - Steven B. Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Tomas Strandin
- Zoonosis Unit, Department of Virology, Medical Faculty, University of Helsinki, 00290 Helsinki, Finland
| | - Felix A. Rey
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Structural Virology Unit, F-75015 Paris, France
| | - Andrew S. Herbert
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | | | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Pablo Guardado-Calvo
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Structural Virology Unit, F-75015 Paris, France
| |
Collapse
|
16
|
Yuan F, Zheng A. Replicating-Competent VSV-Vectored Pseudotyped Viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:329-348. [PMID: 36920706 DOI: 10.1007/978-981-99-0113-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Vesicular stomatitis virus (VSV) is prototype virus in the family of Rhabdoviridae. Reverse genetic platform has enabled the genetic manipulation of VSV as a powerful live viral vector. Replicating-competent VSV is constructed by replacing the original VSV glycoprotein gene with heterologous envelope genes. The resulting recombinant viruses are able to replicate in permissive cells and incorporate the foreign envelope proteins on the surface of the viral particle without changing the bullet-shape morphology. Correspondingly, the cell tropism of replicating-competent VSV is determined by the foreign envelope proteins. Replicating-competent VSVs have been successfully used for selecting critical viral receptors or host factors, screening mutants that escape therapeutic antibodies, and developing VSV-based live viral vaccines.
Collapse
Affiliation(s)
- Fei Yuan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Aihua Zheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
17
|
Lu J, Gullett JM, Kanneganti TD. Filoviruses: Innate Immunity, Inflammatory Cell Death, and Cytokines. Pathogens 2022; 11:1400. [PMID: 36558734 PMCID: PMC9785368 DOI: 10.3390/pathogens11121400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Filoviruses are a group of single-stranded negative sense RNA viruses. The most well-known filoviruses that affect humans are ebolaviruses and marburgviruses. During infection, they can cause life-threatening symptoms such as inflammation, tissue damage, and hemorrhagic fever, with case fatality rates as high as 90%. The innate immune system is the first line of defense against pathogenic insults such as filoviruses. Pattern recognition receptors (PRRs), including toll-like receptors, retinoic acid-inducible gene-I-like receptors, C-type lectin receptors, AIM2-like receptors, and NOD-like receptors, detect pathogens and activate downstream signaling to induce the production of proinflammatory cytokines and interferons, alert the surrounding cells to the threat, and clear infected and damaged cells through innate immune cell death. However, filoviruses can modulate the host inflammatory response and innate immune cell death, causing an aberrant immune reaction. Here, we discuss how the innate immune system senses invading filoviruses and how these deadly pathogens interfere with the immune response. Furthermore, we highlight the experimental difficulties of studying filoviruses as well as the current state of filovirus-targeting therapeutics.
Collapse
|
18
|
Richards CM, Jabs S, Qiao W, Varanese LD, Schweizer M, Mosen PR, Riley NM, Klüssendorf M, Zengel JR, Flynn RA, Rustagi A, Widen JC, Peters CE, Ooi YS, Xie X, Shi PY, Bartenschlager R, Puschnik AS, Bogyo M, Bertozzi CR, Blish CA, Winter D, Nagamine CM, Braulke T, Carette JE. The human disease gene LYSET is essential for lysosomal enzyme transport and viral infection. Science 2022; 378:eabn5648. [PMID: 36074821 PMCID: PMC9547973 DOI: 10.1126/science.abn5648] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Lysosomes are key degradative compartments of the cell. Transport to lysosomes relies on GlcNAc-1-phosphotransferase-mediated tagging of soluble enzymes with mannose 6-phosphate (M6P). GlcNAc-1-phosphotransferase deficiency leads to the severe lysosomal storage disorder mucolipidosis II (MLII). Several viruses require lysosomal cathepsins to cleave structural proteins and thus depend on functional GlcNAc-1-phosphotransferase. Here, we used genome-scale CRISPR screens to identify Lysosomal Enzyme Trafficking factor (LYSET) as essential for infection by cathepsin-dependent viruses including SARS-CoV-2. LYSET deficiency resulted in global loss of M6P tagging and mislocalization of GlcNAc-1-phosphotransferase from the Golgi complex to lysosomes. Lyset knockout mice exhibited MLII-like phenotypes and human pathogenic LYSET alleles failed to restore lysosomal sorting defects. Thus, LYSET is required for correct functioning of the M6P trafficking machinery, and mutations in LYSET can explain the phenotype of the associated disorder.
Collapse
Affiliation(s)
- Christopher M Richards
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sabrina Jabs
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Wenjie Qiao
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lauren D Varanese
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michaela Schweizer
- Department of Electron Microscopy, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter R Mosen
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | | | - Malte Klüssendorf
- Department of Osteology and Biomechanics, Cell Biology of Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - James R Zengel
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ryan A Flynn
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA.,Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Arjun Rustagi
- Division of Infectious Disease and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - John C Widen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christine E Peters
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yaw Shin Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany.,Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Matthew Bogyo
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford, CA, USA
| | - Catherine A Blish
- Division of Infectious Disease and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Claude M Nagamine
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas Braulke
- Department of Osteology and Biomechanics, Cell Biology of Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
19
|
Das T, Yang X, Lee H, Garst EH, Valencia E, Chandran K, Im W, Hang HC. S-Palmitoylation and Sterol Interactions Mediate Antiviral Specificity of IFITMs. ACS Chem Biol 2022; 17:2109-2120. [PMID: 35861660 PMCID: PMC10597057 DOI: 10.1021/acschembio.2c00176] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Interferon-induced transmembrane proteins (IFITM1, 2, and 3) are important antiviral proteins that are active against many viruses, including influenza A virus (IAV), dengue virus (DENV), Ebola virus (EBOV), Zika virus (ZIKV), and severe acute respiratory syndrome coronavirus (SARS-CoV). IFITM proteins exhibit specificity in activity, but their distinct mechanisms of action and regulation are unclear. Since S-palmitoylation and cholesterol homeostasis are crucial for viral infections, we investigated IFITM interactions with cholesterol by photoaffinity cross-linking in mammalian cells along with molecular dynamic simulations and nuclear magnetic resonance analysis in vitro. These studies suggest that cholesterol can directly interact with S-palmitoylated IFITMs in cells and alter the conformation of IFITMs in membrane bilayers. Notably, we discovered that the S-palmitoylation levels regulate differential IFITM protein interactions with cholesterol in mammalian cells and specificity of antiviral activity toward IAV, SARS-CoV-2, and EBOV. Our studies suggest that modulation of IFITM S-palmitoylation levels and cholesterol interaction influence host susceptibility to different viruses.
Collapse
Affiliation(s)
- Tandrila Das
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, United States
- Tri-Institutional Ph.D. Program in Chemical Biology, New York, NY 10065, United States
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, United States
| | - Xinglin Yang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, United States
| | - Hwayoung Lee
- Department of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, PA 18015, United States
| | - Emma H. Garst
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, United States
- Tri-Institutional Ph.D. Program in Chemical Biology, New York, NY 10065, United States
| | - Estefania Valencia
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Wonpil Im
- Department of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, PA 18015, United States
| | - Howard C. Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, United States
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, United States
| |
Collapse
|
20
|
Yu X, Saphire EO. Development and Structural Analysis of Antibody Therapeutics for Filoviruses. Pathogens 2022; 11:pathogens11030374. [PMID: 35335698 PMCID: PMC8949092 DOI: 10.3390/pathogens11030374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
The filoviruses, including ebolaviruses and marburgviruses, are among the world’s deadliest pathogens. As the only surface-exposed protein on mature virions, their glycoprotein GP is the focus of current therapeutic monoclonal antibody discovery efforts. With recent technological developments, potent antibodies have been identified from immunized animals and human survivors of virus infections and have been characterized functionally and structurally. Structural insight into how the most successful antibodies target GP further guides vaccine development. Here we review the recent developments in the identification and characterization of neutralizing antibodies and cocktail immunotherapies.
Collapse
Affiliation(s)
- Xiaoying Yu
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA;
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA;
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Correspondence: ; Tel.: +1-858-752-6791
| |
Collapse
|
21
|
Milligan JC, Davis CW, Yu X, Ilinykh PA, Huang K, Halfmann PJ, Cross RW, Borisevich V, Agans KN, Geisbert JB, Chennareddy C, Goff AJ, Piper AE, Hui S, Shaffer KCL, Buck T, Heinrich ML, Branco LM, Crozier I, Holbrook MR, Kuhn JH, Kawaoka Y, Glass PJ, Bukreyev A, Geisbert TW, Worwa G, Ahmed R, Saphire EO. Asymmetric and non-stoichiometric glycoprotein recognition by two distinct antibodies results in broad protection against ebolaviruses. Cell 2022; 185:995-1007.e18. [PMID: 35303429 PMCID: PMC10204903 DOI: 10.1016/j.cell.2022.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/22/2021] [Accepted: 02/18/2022] [Indexed: 12/22/2022]
Abstract
Several ebolaviruses cause outbreaks of severe disease. Vaccines and monoclonal antibody cocktails are available to treat Ebola virus (EBOV) infections, but not Sudan virus (SUDV) or other ebolaviruses. Current cocktails contain antibodies that cross-react with the secreted soluble glycoprotein (sGP) that absorbs virus-neutralizing antibodies. By sorting memory B cells from EBOV infection survivors, we isolated two broadly reactive anti-GP monoclonal antibodies, 1C3 and 1C11, that potently neutralize, protect rodents from disease, and lack sGP cross-reactivity. Both antibodies recognize quaternary epitopes in trimeric ebolavirus GP. 1C11 bridges adjacent protomers via the fusion loop. 1C3 has a tripartite epitope in the center of the trimer apex. One 1C3 antigen-binding fragment anchors simultaneously to the three receptor-binding sites in the GP trimer, and separate 1C3 paratope regions interact differently with identical residues on the three protomers. A cocktail of both antibodies completely protected nonhuman primates from EBOV and SUDV infections, indicating their potential clinical value.
Collapse
Affiliation(s)
- Jacob C Milligan
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Carl W Davis
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Xiaoying Yu
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Philipp A Ilinykh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX, 77550, USA
| | - Kai Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX, 77550, USA
| | - Peter J Halfmann
- Division of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Robert W Cross
- Galveston National Laboratory, Galveston, TX, 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Viktoriya Borisevich
- Galveston National Laboratory, Galveston, TX, 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Krystle N Agans
- Galveston National Laboratory, Galveston, TX, 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Joan B Geisbert
- Galveston National Laboratory, Galveston, TX, 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Chakravarthy Chennareddy
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Arthur J Goff
- Virology Division, United States Army Research Institute for Infectious Disease, Fort Detrick, Frederick, MD 21702, USA
| | - Ashley E Piper
- Virology Division, United States Army Research Institute for Infectious Disease, Fort Detrick, Frederick, MD 21702, USA
| | - Sean Hui
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Kelly C L Shaffer
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Tierra Buck
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | | | | | - Ian Crozier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Michael R Holbrook
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Yoshihiro Kawaoka
- Division of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA; Department of Microbiology and Immunology, Division of Virology, Institute of Medical Science, Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Pamela J Glass
- Virology Division, United States Army Research Institute for Infectious Disease, Fort Detrick, Frederick, MD 21702, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX, 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas W Geisbert
- Galveston National Laboratory, Galveston, TX, 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Gabriella Worwa
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA.
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA.
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
22
|
Mittler E, Wec AZ, Tynell J, Guardado-Calvo P, Wigren-Byström J, Polanco LC, O’Brien CM, Slough MM, Abelson DM, Serris A, Sakharkar M, Pehau-Arnaudet G, Bakken RR, Geoghegan JC, Jangra RK, Keller M, Zeitlin L, Vapalahti O, Ulrich RG, Bornholdt ZA, Ahlm C, Rey FA, Dye JM, Bradfute SB, Strandin T, Herbert AS, Forsell MN, Walker LM, Chandran K. Human antibody recognizing a quaternary epitope in the Puumala virus glycoprotein provides broad protection against orthohantaviruses. Sci Transl Med 2022; 14:eabl5399. [PMID: 35294259 PMCID: PMC9805701 DOI: 10.1126/scitranslmed.abl5399] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The rodent-borne hantavirus Puumala virus (PUUV) and related agents cause hemorrhagic fever with renal syndrome (HFRS) in humans. Other hantaviruses, including Andes virus (ANDV) and Sin Nombre virus, cause a distinct zoonotic disease, hantavirus cardiopulmonary syndrome (HCPS). Although these infections are severe and have substantial case fatality rates, no FDA-approved hantavirus countermeasures are available. Recent work suggests that monoclonal antibodies may have therapeutic utility. We describe here the isolation of human neutralizing antibodies (nAbs) against tetrameric Gn/Gc glycoprotein spikes from PUUV-experienced donors. We define a dominant class of nAbs recognizing the "capping loop" of Gn that masks the hydrophobic fusion loops in Gc. A subset of nAbs in this class, including ADI-42898, bound Gn/Gc complexes but not Gn alone, strongly suggesting that they recognize a quaternary epitope encompassing both Gn and Gc. ADI-42898 blocked the cell entry of seven HCPS- and HFRS-associated hantaviruses, and single doses of this nAb could protect Syrian hamsters and bank voles challenged with the highly virulent HCPS-causing ANDV and HFRS-causing PUUV, respectively. ADI-42898 is a promising candidate for clinical development as a countermeasure for both HCPS and HFRS, and its mode of Gn/Gc recognition informs the development of broadly protective hantavirus vaccines.
Collapse
Affiliation(s)
- Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine; Bronx, NY 10461, USA
| | | | - Janne Tynell
- Department of Clinical Microbiology, Umeå University; Umeå, Sweden.,Zoonosis Unit, Department of Virology, University of Helsinki; Helsinki, Finland
| | - Pablo Guardado-Calvo
- Structural Virology Unit, Department of Virology, Institut Pasteur; Paris 75724, France
| | | | - Laura C. Polanco
- Department of Microbiology and Immunology, Albert Einstein College of Medicine; Bronx, NY 10461, USA
| | - Cecilia M. O’Brien
- U.S. Army Medical Research Institute of Infectious Diseases; Fort Detrick, MD 21702, USA.,The Geneva Foundation; Tacoma, WA 98402, USA
| | - Megan M. Slough
- Department of Microbiology and Immunology, Albert Einstein College of Medicine; Bronx, NY 10461, USA
| | | | - Alexandra Serris
- Structural Virology Unit, Department of Virology, Institut Pasteur; Paris 75724, France
| | | | - Gerard Pehau-Arnaudet
- Structural Virology Unit, Department of Virology, Institut Pasteur; Paris 75724, France
| | - Russell R. Bakken
- U.S. Army Medical Research Institute of Infectious Diseases; Fort Detrick, MD 21702, USA
| | | | - Rohit K. Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine; Bronx, NY 10461, USA
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health; 17493 Greifswald-Insel Riems, Germany
| | - Larry Zeitlin
- Mapp Biopharmaceutical, Inc.; San Diego, CA 92121, USA
| | - Olli Vapalahti
- Zoonosis Unit, Department of Virology, University of Helsinki; Helsinki, Finland.,Veterinary Biosciences, Veterinary Faculty, University of Helsinki; Helsinki, Finland
| | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health; 17493 Greifswald-Insel Riems, Germany.,Deutsches Zentrum für Infektionsforschung, Partner site Hamburg-Lübeck-Borstel-Riems; Greifswald-Insel Riems, Germany
| | | | - Clas Ahlm
- Department of Clinical Microbiology, Umeå University; Umeå, Sweden
| | - Felix A. Rey
- Structural Virology Unit, Department of Virology, Institut Pasteur; Paris 75724, France
| | - John M. Dye
- U.S. Army Medical Research Institute of Infectious Diseases; Fort Detrick, MD 21702, USA
| | - Steven B. Bradfute
- University of New Mexico Health Science Center, Center for Global Health, Department of Internal Medicine; Albuquerque, NM 87131, USA
| | - Tomas Strandin
- Zoonosis Unit, Department of Virology, University of Helsinki; Helsinki, Finland.,Correspondence: (T.S.), (A.S.H.), (M.N.E.F.), (L.M.W.), (K.C.)
| | - Andrew S. Herbert
- U.S. Army Medical Research Institute of Infectious Diseases; Fort Detrick, MD 21702, USA.,The Geneva Foundation; Tacoma, WA 98402, USA.,Correspondence: (T.S.), (A.S.H.), (M.N.E.F.), (L.M.W.), (K.C.)
| | - Mattias N.E. Forsell
- Department of Clinical Microbiology, Umeå University; Umeå, Sweden.,Correspondence: (T.S.), (A.S.H.), (M.N.E.F.), (L.M.W.), (K.C.)
| | - Laura M. Walker
- Adimab, LLC; Lebanon, NH 03766, USA.,Adagio Therapeutics, Inc.; Waltham, MA 02451, USA.,Correspondence: (T.S.), (A.S.H.), (M.N.E.F.), (L.M.W.), (K.C.)
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine; Bronx, NY 10461, USA.,Correspondence: (T.S.), (A.S.H.), (M.N.E.F.), (L.M.W.), (K.C.)
| |
Collapse
|
23
|
Abstract
Lymphocytic choriomeningitis virus (LCMV) is the prototypic arenavirus and has been utilized for decades as a model to understand the host immune response against viral infection. LCMV infection can lead to fatal meningitis in immunocompromised people and can lead to congenital birth defects and spontaneous abortion if acquired during pregnancy. Using a genetic screen, we uncover host factors involved in LCMV entry that were previously unknown and are candidate therapeutic targets to combat LCMV infection. This study expands our understanding of the entry pathway of LCMV, revealing that its glycoprotein switches from utilizing the known receptor α-DG and heparan sulfate at the plasma membrane to binding the lysosomal mucin CD164 at pH levels found in endolysosomal compartments, facilitating membrane fusion. Lymphocytic choriomeningitis virus (LCMV) is a rodent-borne zoonotic arenavirus that causes congenital abnormalities and can be fatal for transplant recipients. Using a genome-wide loss-of-function screen, we identify host factors required for LCMV entry into cells. We identify the lysosomal mucin CD164, glycosylation factors, the heparan sulfate biosynthesis machinery, and the known receptor alpha-dystroglycan (α-DG). Biochemical analysis revealed that the LCMV glycoprotein binds CD164 at acidic pH and requires a sialylated glycan at residue N104. We demonstrate that LCMV entry proceeds by the virus switching binding from heparan sulfate or α-DG at the plasma membrane to CD164 prior to membrane fusion, thus identifying additional potential targets for therapeutic intervention.
Collapse
|
24
|
Haslwanter D, Lasso G, Wec AZ, Furtado ND, Raphael LMS, Tse AL, Sun Y, Stransky S, Pedreño-Lopez N, Correia CA, Bornholdt ZA, Sakharkar M, Avelino-Silva VI, Moyer CL, Watkins DI, Kallas EG, Sidoli S, Walker LM, Bonaldo MC, Chandran K. Genotype-specific features reduce the susceptibility of South American yellow fever virus strains to vaccine-induced antibodies. Cell Host Microbe 2022; 30:248-259.e6. [PMID: 34998466 PMCID: PMC10067022 DOI: 10.1016/j.chom.2021.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/01/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022]
Abstract
The resurgence of yellow fever in South America has prompted vaccination against the etiologic agent, yellow fever virus (YFV). Current vaccines are based on a live-attenuated YF-17D virus derived from a virulent African isolate. The capacity of these vaccines to induce neutralizing antibodies against the vaccine strain is used as a surrogate for protection. However, the sensitivity of genetically distinct South American strains to vaccine-induced antibodies is unknown. We show that antiviral potency of the polyclonal antibody response in vaccinees is attenuated against an emergent Brazilian strain. This reduction was attributable to amino acid changes at two sites in central domain II of the glycoprotein E, including multiple changes at the domain I-domain II hinge, which are unique to and shared among most South American YFV strains. Our findings call for a reevaluation of current approaches to YFV immunological surveillance in South America and suggest approaches for updating vaccines.
Collapse
Affiliation(s)
- Denise Haslwanter
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Bronx, NY 10461, USA
| | - Gorka Lasso
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Bronx, NY 10461, USA
| | | | - Nathália Dias Furtado
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-360 Rio de Janeiro, Brazil
| | - Lidiane Menezes Souza Raphael
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-360 Rio de Janeiro, Brazil
| | - Alexandra L Tse
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Bronx, NY 10461, USA
| | - Yan Sun
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Núria Pedreño-Lopez
- Department of Pathology, The George Washington University, Washington, DC 20037, USA
| | - Carolina Argondizo Correia
- Laboratório de Imunologia Clínica e Alergia, Faculdade de Medicina, Universidade de São Paulo, 01246-903 São Paulo, Brazil
| | | | | | - Vivian I Avelino-Silva
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina, Universidade de São Paulo, 01246-903 São Paulo, Brazil
| | | | - David I Watkins
- Department of Pathology, The George Washington University, Washington, DC 20037, USA
| | - Esper G Kallas
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina, Universidade de São Paulo, 01246-903 São Paulo, Brazil
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Laura M Walker
- Adimab, LLC, Lebanon, NH 03766, USA; Adagio Therapeutics Inc., Waltham, MA 02451, USA
| | - Myrna C Bonaldo
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-360 Rio de Janeiro, Brazil.
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Bronx, NY 10461, USA.
| |
Collapse
|
25
|
Ebola Virus Entry Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:155-170. [DOI: 10.1007/978-981-16-8702-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Das T, Yang X, Lee H, Garst E, Valencia E, Chandran K, Im W, Hang H. S-palmitoylation and sterol interactions mediate antiviral specificity of IFITM isoforms. RESEARCH SQUARE 2021:rs.3.rs-1179000. [PMID: 34981045 PMCID: PMC8722608 DOI: 10.21203/rs.3.rs-1179000/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Interferon-induced transmembrane proteins (IFITM1, 2 and 3) are important antiviral proteins that are active against many viruses, including influenza A virus (IAV), dengue virus (DENV), Ebola virus (EBOV), Zika virus (ZIKV) and severe acute respiratory syndrome coronavirus (SARS-CoV). IFITMs exhibit isoform-specific activity, but their distinct mechanisms of action and regulation are unclear. Since S -palmitoylation and cholesterol homeostasis are crucial for viral infections, we investigated IFITM interactions with cholesterol by molecular dynamic stimulations, nuclear magnetic resonance analysis in vitro and photoaffinity crosslinking in mammalian cells. These studies suggest that cholesterol can alter the conformation of IFITMs in membrane bilayers and directly interact with S -palmitoylated IFITMs in cells. Notably, we discovered that the S -palmitoylation levels regulate differential IFITM isoform interactions with cholesterol in mammalian cells and specificity of antiviral activity towards IAV, SARS-CoV-2 and EBOV. Our studies suggest that modulation of IFITM S -palmitoylation levels and cholesterol interaction may influence host susceptibility to different viruses.
Collapse
Affiliation(s)
| | | | | | | | | | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | | | | |
Collapse
|
27
|
Wirchnianski AS, Wec AZ, Nyakatura EK, Herbert AS, Slough MM, Kuehne AI, Mittler E, Jangra RK, Teruya J, Dye JM, Lai JR, Chandran K. Two Distinct Lysosomal Targeting Strategies Afford Trojan Horse Antibodies With Pan-Filovirus Activity. Front Immunol 2021; 12:729851. [PMID: 34721393 PMCID: PMC8551868 DOI: 10.3389/fimmu.2021.729851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Multiple agents in the family Filoviridae (filoviruses) are associated with sporadic human outbreaks of highly lethal disease, while others, including several recently identified agents, possess strong zoonotic potential. Although viral glycoprotein (GP)-specific monoclonal antibodies have demonstrated therapeutic utility against filovirus disease, currently FDA-approved molecules lack antiviral breadth. The development of broadly neutralizing antibodies has been challenged by the high sequence divergence among filovirus GPs and the complex GP proteolytic cleavage cascade that accompanies filovirus entry. Despite this variability in the antigenic surface of GP, all filoviruses share a site of vulnerability-the binding site for the universal filovirus entry receptor, Niemann-Pick C1 (NPC1). Unfortunately, this site is shielded in extracellular GP and only uncovered by proteolytic cleavage by host proteases in late endosomes and lysosomes, which are generally inaccessible to antibodies. To overcome this obstacle, we previously developed a 'Trojan horse' therapeutic approach in which engineered bispecific antibodies (bsAbs) coopt viral particles to deliver GP:NPC1 interaction-blocking antibodies to their endo/lysosomal sites of action. This approach afforded broad protection against members of the genus Ebolavirus but could not neutralize more divergent filoviruses. Here, we describe next-generation Trojan horse bsAbs that target the endo/lysosomal GP:NPC1 interface with pan-filovirus breadth by exploiting the conserved and widely expressed host cation-independent mannose-6-phosphate receptor for intracellular delivery. Our work highlights a new avenue for the development of single therapeutics protecting against all known and newly emerging filoviruses.
Collapse
Affiliation(s)
- Ariel S. Wirchnianski
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Anna Z. Wec
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Elisabeth K. Nyakatura
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Andrew S. Herbert
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
- The Geneva Foundation, Tacoma, WA, United States
| | - Megan M. Slough
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ana I. Kuehne
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Rohit K. Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jonathan Teruya
- Antibody Discovery and Research group, Mapp Biopharmaceutical, San Diego, CA, United States
| | - John M. Dye
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Jonathan R. Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
28
|
A Naturally Occurring Polymorphism in the Base of Sudan Virus Glycoprotein Decreases Glycoprotein Stability in a Species-Dependent Manner. J Virol 2021; 95:e0107321. [PMID: 34232742 DOI: 10.1128/jvi.01073-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sudan virus (SUDV) is one of five filoviruses that compose the genus Ebolavirus that has been responsible for episodic outbreaks in Central Africa. While the SUDV glycoprotein (GP) structure has been solved, GP residues that affect SUDV entry have not been extensively examined; many of the entry characteristics of SUDV GP are inferred from studies with the Zaire Ebola virus (EBOV) GP. Here, we investigate the effect on virus entry of a naturally occurring polymorphism in SUDV GP. Two of the earliest SUDV isolates contain glutamine at residue 95 (Q95) within the base region of GP1, whereas more recent SUDV isolates and GPs from all other ebolaviruses carry lysine at this position (K95). A K95Q change dramatically decreased titers of pseudovirions bearing SUDV GP, whereas the K95Q substitution in EBOV GP had no effect on titer. We evaluated virus entry to identify SUDV GP Q95-specific entry defects. The presence of Q95 in either EBOV or SUDV GP resulted in enhanced sensitivity of GP to proteolytic processing, yet this could not account for the SUDV-specific decrease in GP Q95 infectivity. We found that SUDV GP Q95 pseudovirions were more sensitive to imipramine, a GP-destabilizing antiviral. In contrast, SUDV GP K95 was more stable, requiring elevated temperatures to inhibit virus infection. Thus, the residue present at GP 95 has a critical role in stabilizing the SUDV glycoprotein, whereas this polymorphism has no effect on EBOV GP stability. These results provide novel insights into filovirus species-specific GP structure that affects virus infectivity. IMPORTANCE Filovirus outbreaks are associated with significant morbidity and mortality. Understanding the structural constraints of filoviral GPs that control virus entry into cells is critical for rational development of novel antivirals to block infection. Here, we identify a naturally occurring glutamine (Q) to lysine (K) polymorphism at residue 95 as a critical determinant of Sudan virus GP stability but not Zaire Ebola virus GP stability. We propose that glutamine at residue 95 in Sudan virus GP mediates decreased virus entry, thereby reducing infectivity. Our findings highlight a unique structural characteristic of Sudan virus GP that affects GP-mediated functionality. Further, it provides a cautionary note for the development of future broad-spectrum filovirus antivirals.
Collapse
|
29
|
Vesicular Stomatitis Virus Chimeras Expressing the Oropouche Virus Glycoproteins Elicit Protective Immune Responses in Mice. mBio 2021; 12:e0046321. [PMID: 34340542 PMCID: PMC8406270 DOI: 10.1128/mbio.00463-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oropouche virus (OROV) infection of humans is associated with a debilitating febrile illness that can progress to meningitis or encephalitis. First isolated from a forest worker in Trinidad and Tobago in 1955, the arbovirus OROV has since been detected throughout the Amazon basin with an estimated 500,000 human infections over 60 years. Like other members of the family Peribunyaviridae, the viral genome exists as 3 single-stranded negative-sense RNA segments. The medium-sized segment encodes a viral glycoprotein complex (GPC) that is proteolytically processed into two viral envelope proteins, Gn and Gc, responsible for attachment and membrane fusion. There are no therapeutics or vaccines to combat OROV infection, and we have little understanding of protective immunity to infection. Here, we generated a replication competent chimeric vesicular stomatitis virus (VSV), in which the endogenous glycoprotein was replaced by the GPC of OROV. Serum from mice immunized by intramuscular injection with VSV-OROV specifically neutralized wild-type OROV, and using peptide arrays we mapped multiple epitopes within an N-terminal variable region of Gc recognized by the immune sera. VSV-OROV lacking this variable region of Gc was also immunogenic in mice producing neutralizing sera that recognize additional regions of Gc. Challenge of both sets of immunized mice with wild-type OROV shows that the VSV-OROV chimeras reduce wild-type viral infection and suggest that antibodies that recognize the variable N terminus of Gc afford less protection than those that target more conserved regions of Gc. IMPORTANCE Oropouche virus (OROV), an orthobunyavirus found in Central and South America, is an emerging public health challenge that causes debilitating febrile illness. OROV is transmitted by arthropods, and increasing mobilization has the potential to significantly increase the spread of OROV globally. Despite this, no therapeutics or vaccines have been developed to combat infection. Using vesicular stomatitis (VSV) as a backbone, we developed a chimeric virus bearing the OROV glycoproteins (VSV-OROV) and tested its ability to elicit a neutralizing antibody response. Our results demonstrate that VSV-OROV produces a strong neutralizing antibody response that is at least partially targeted to the N-terminal region of Gc. Importantly, vaccination with VSV-OROV reduces viral loads in mice challenged with wild-type virus. These data provide novel evidence that targeting the OROV glycoproteins may be an effective vaccination strategy to combat OROV infection.
Collapse
|
30
|
Dieterle ME, Solà-Riera C, Ye C, Goodfellow SM, Mittler E, Kasikci E, Bradfute SB, Klingström J, Jangra RK, Chandran K. Genetic depletion studies inform receptor usage by virulent hantaviruses in human endothelial cells. eLife 2021; 10:e69708. [PMID: 34232859 PMCID: PMC8263056 DOI: 10.7554/elife.69708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Hantaviruses are RNA viruses with known epidemic threat and potential for emergence. Several rodent-borne hantaviruses cause zoonoses accompanied by severe illness and death. However, assessments of zoonotic risk and the development of countermeasures are challenged by our limited knowledge of the molecular mechanisms of hantavirus infection, including the identities of cell entry receptors and their roles in influencing viral host range and virulence. Despite the long-standing presumption that β3/β1-containing integrins are the major hantavirus entry receptors, rigorous genetic loss-of-function evidence supporting their requirement, and that of decay-accelerating factor (DAF), is lacking. Here, we used CRISPR/Cas9 engineering to knockout candidate hantavirus receptors, singly and in combination, in a human endothelial cell line that recapitulates the properties of primary microvascular endothelial cells, the major targets of viral infection in humans. The loss of β3 integrin, β1 integrin, and/or DAF had little or no effect on entry by a large panel of hantaviruses. By contrast, loss of protocadherin-1, a recently identified entry receptor for some hantaviruses, substantially reduced hantavirus entry and infection. We conclude that major host molecules necessary for endothelial cell entry by PCDH1-independent hantaviruses remain to be discovered.
Collapse
Affiliation(s)
- Maria Eugenia Dieterle
- Department of Microbiology and Immunology, Albert Einstein College of MedicineBronxUnited States
| | - Carles Solà-Riera
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska InstitutetStockholmSweden
| | - Chunyan Ye
- University of New Mexico Health Science Center, Center for Global Health, Department of Internal MedicineAlbuquerqueUnited States
| | - Samuel M Goodfellow
- University of New Mexico Health Science Center, Center for Global Health, Department of Internal MedicineAlbuquerqueUnited States
| | - Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of MedicineBronxUnited States
| | - Ezgi Kasikci
- Department of Microbiology and Immunology, Albert Einstein College of MedicineBronxUnited States
| | - Steven B Bradfute
- University of New Mexico Health Science Center, Center for Global Health, Department of Internal MedicineAlbuquerqueUnited States
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska InstitutetStockholmSweden
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of MedicineBronxUnited States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of MedicineBronxUnited States
| |
Collapse
|
31
|
Potential pharmacological strategies targeting the Niemann-Pick C1 receptor and Ebola virus glycoprotein interaction. Eur J Med Chem 2021; 223:113654. [PMID: 34175537 DOI: 10.1016/j.ejmech.2021.113654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/27/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Niemann-Pick C1 (NPC1) receptor is an intracellular protein located in late endosomes and lysosomes whose main function is to regulate intracellular cholesterol trafficking. Besides being postulated as necessary for the infection of highly pathogenic viruses in which the integrity of cholesterol transport is required, this protein also allows the entry of the Ebola virus (EBOV) into the host cells acting as an intracellular receptor. EBOV glycoprotein (EBOV-GP) interaction with NPC1 at the endosomal membrane triggers the release of the viral material into the host cell, starting the infective cycle. Disruption of the NPC1/EBOV-GP interaction could represent an attractive strategy for the development of drugs aimed at inhibiting viral entry and thus infection. Some of the today available EBOV inhibitors were proposed to interrupt this interaction, but molecular and structural details about their mode of action are still preliminary thus more efforts are needed to properly address these points. Here, we provide a critical discussion of the potential of NPC1 and its interaction with EBOV-GP as a therapeutic target for viral infections.
Collapse
|
32
|
Wang Y, Howell KA, Brannan J, Agans KN, Turner HL, Wirchnianski AS, Kailasan S, Fusco M, Galkin A, Chiang CI, Zhao X, Saphire EO, Chandran K, Ward AB, Dye JM, Aman MJ, Geisbert TW, Li Y. Prominent Neutralizing Antibody Response Targeting the Ebolavirus Glycoprotein Subunit Interface Elicited by Immunization. J Virol 2021; 95:JVI.01907-20. [PMID: 33536172 PMCID: PMC8103683 DOI: 10.1128/jvi.01907-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/13/2021] [Indexed: 12/21/2022] Open
Abstract
The severe death toll caused by the recent outbreak of Ebola virus disease reinforces the importance of developing ebolavirus prevention and treatment strategies. Here, we have explored the immunogenicity of a novel immunization regimen priming with vesicular stomatitis virus particles bearing Sudan Ebola virus (SUDV) glycoprotein (GP) that consists of GP1 & GP2 subunits and boosting with soluble SUDV GP in macaques, which developed robust neutralizing antibody (nAb) responses following immunizations. Moreover, EB46, a protective nAb isolated from one of the immune macaques, is found to target the GP1/GP2 interface, with GP-binding mode and neutralization mechanism similar to a number of ebolavirus nAbs from human and mouse, indicating that the ebolavirus GP1/GP2 interface is a common immunological target in different species. Importantly, selected immune macaque polyclonal sera showed nAb specificity similar to EB46 at substantial titers, suggesting that the GP1/GP2 interface region is a viable target for ebolavirus vaccine.Importance: The elicitation of sustained neutralizing antibody (nAb) responses against diverse ebolavirus strains remains as a high priority for the vaccine field. The most clinically advanced rVSV-ZEBOV vaccine could elicit moderate nAb responses against only one ebolavirus strain, EBOV, among the five ebolavirus strains, which last less than 6 months. Boost immunization strategies are desirable to effectively recall the rVSV vector-primed nAb responses to prevent infections in prospective epidemics, while an in-depth understanding of the specificity of immunization-elicited nAb responses is essential for improving vaccine performance. Here, using non-human primate animal model, we demonstrated that booster immunization with a stabilized trimeric soluble form of recombinant glycoprotein derived from the ebolavirus Sudan strain following the priming rVSV vector immunization led to robust nAb responses that substantially map to the subunit interface of ebolavirus glycoprotein, a common B cell repertoire target of multiple species including primates and rodents.
Collapse
Affiliation(s)
- Yimeng Wang
- Institute for Bioscience and Biotechnology Research, Rockville, MD
| | | | - Jennifer Brannan
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD
| | - Krystle N Agans
- Galveston National Laboratory and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
- Galveston National Laboratory and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA
| | - Ariel S Wirchnianski
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY
| | | | - Marnie Fusco
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Andrey Galkin
- Institute for Bioscience and Biotechnology Research, Rockville, MD
- La Jolla Institute for Immunology, La Jolla, CA
| | - Chi-I Chiang
- Institute for Bioscience and Biotechnology Research, Rockville, MD
| | - Xuelian Zhao
- Institute for Bioscience and Biotechnology Research, Rockville, MD
| | | | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA
| | - John M Dye
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD
| | | | - Thomas W Geisbert
- Galveston National Laboratory and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
- Galveston National Laboratory and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - Yuxing Li
- Institute for Bioscience and Biotechnology Research, Rockville, MD
- Department of Microbiology and Immunology and Center of Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD
- Department of Microbiology and Immunology and Center of Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
33
|
Li T, Li Z, Deans EE, Mittler E, Liu M, Chandran K, Ivanovic T. The shape of pleomorphic virions determines resistance to cell-entry pressure. Nat Microbiol 2021; 6:617-629. [PMID: 33737748 DOI: 10.1038/s41564-021-00877-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 02/10/2021] [Indexed: 11/09/2022]
Abstract
Many enveloped animal viruses produce a variety of particle shapes, ranging from small spherical to long filamentous types. Characterization of how the shape of the virion affects infectivity has been difficult because the shape is only partially genetically encoded, and most pleomorphic virus structures have no selective advantage in vitro. Here, we apply virus fractionation using low-force sedimentation, as well as antibody neutralization coupled with RNAScope, single-particle membrane fusion experiments and stochastic simulations to evaluate the effects of differently shaped influenza A viruses and influenza viruses pseudotyped with Ebola glycoprotein on the infection of cells. Our results reveal that the shape of the virus particles determines the probability of both virus attachment and membrane fusion when viral glycoprotein activity is compromised. The larger contact interface between a cell and a larger particle offers a greater probability that several active glycoproteins are adjacent to each other and can cooperate to induce membrane merger. Particles with a length of tens of micrometres can fuse even when 95% of the glycoproteins are inactivated. We hypothesize that non-genetically encoded variable particle shapes enable pleomorphic viruses to overcome selective pressure and may enable adaptation to infection of cells by emerging viruses such as Ebola. Our results suggest that therapeutics targeting filamentous virus particles could overcome antiviral drug resistance and immune evasion in pleomorphic viruses.
Collapse
Affiliation(s)
- Tian Li
- Biochemistry Department, Brandeis University, Waltham, MA, USA
| | - Zhenyu Li
- Biochemistry Department, Brandeis University, Waltham, MA, USA
| | - Erin E Deans
- Biochemistry Department, Brandeis University, Waltham, MA, USA
| | - Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Meisui Liu
- Biochemistry Department, Brandeis University, Waltham, MA, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Tijana Ivanovic
- Biochemistry Department, Brandeis University, Waltham, MA, USA.
| |
Collapse
|
34
|
A Glycoprotein Mutation That Emerged during the 2013-2016 Ebola Virus Epidemic Alters Proteolysis and Accelerates Membrane Fusion. mBio 2021; 12:mBio.03616-20. [PMID: 33593971 PMCID: PMC8545129 DOI: 10.1128/mbio.03616-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genomic surveillance of viral isolates during the 2013–2016 Ebola virus epidemic in Western Africa, the largest and most devastating filovirus outbreak on record, revealed several novel mutations. The responsible strain, named Makona, carries an A-to-V substitution at position 82 (A82V) in the glycoprotein (GP), which is associated with enhanced infectivity in vitro. Here, we investigated the mechanistic basis for this enhancement as well as the interplay between A82V and a T-to-I substitution at residue 544 of GP, which also modulates infectivity in cell culture. We found that both 82V and 544I destabilize GP, with the residue at position 544 impacting overall stability, while 82V specifically destabilizes proteolytically cleaved GP. Both residues also promote faster kinetics of lipid mixing of the viral and host membranes in live cells, individually and in tandem, which correlates with faster times to fusion following colocalization with the viral receptor Niemann-Pick C1 (NPC1). Furthermore, GPs bearing 82V are more sensitive to proteolysis by cathepsin L (CatL), a key host factor for viral entry. Intriguingly, CatL processed 82V variant GPs to a novel product with a molecular weight of approximately 12,000 (12K), which we hypothesize corresponds to a form of GP that is pre-triggered for fusion. We thus propose a model in which 82V promotes more efficient GP processing by CatL, leading to faster viral fusion kinetics and higher levels of infectivity.
Collapse
|
35
|
Direct Intracellular Visualization of Ebola Virus-Receptor Interaction by In Situ Proximity Ligation. mBio 2021; 12:mBio.03100-20. [PMID: 33436438 PMCID: PMC7844541 DOI: 10.1128/mbio.03100-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Ebola virus causes episodic but increasingly frequent outbreaks of severe disease in Middle Africa, as shown by the recently overcome second largest outbreak on record in the Democratic Republic of Congo. Despite considerable effort, FDA-approved antifiloviral therapeutics or targeted interventions are not available yet. Ebola virus (EBOV) entry into host cells comprises stepwise and extensive interactions of the sole viral surface glycoprotein (GP) with multiple host factors. During the intricate process, following virus uptake and trafficking to late endosomal/lysosomal compartments, GP is proteolytically processed to cleaved GP (GPCL) by the endosomal proteases cathepsin B and L, unmasking GP’s receptor-binding site. Engagement of GPCL with the universal filoviral intracellular receptor Niemann-Pick C1 (NPC1) eventually culminates in fusion between viral and cellular membranes, cytoplasmic escape of the viral nucleocapsid, and subsequent infection. Mechanistic delineation of the indispensable GPCL-NPC1-binding step has been severely hampered by the unavailability of a robust cell-based assay assessing interaction of GPCL with full-length endosomal NPC1. Here, we describe a novel in situ assay to monitor GPCL-NPC1 engagement in intact, infected cells. Visualization of the subcellular localization of binding complexes is based on the principle of DNA-assisted, antibody-mediated proximity ligation. Virus-receptor binding monitored by proximity ligation was contingent on GP’s proteolytic cleavage and was sensitive to perturbations in the GPCL-NPC1 interface. Our assay also specifically decoupled detection of virus-receptor binding from steps post-receptor binding, such as membrane fusion and infection. Testing of multiple FDA-approved small-molecule inhibitors revealed that drug treatments inhibited virus entry and GPCL-NPC1 recognition by distinctive mechanisms. Together, here we present a newly established proximity ligation assay, which will allow us to dissect cellular and viral requirements for filovirus-receptor binding and to delineate the mechanisms of action of inhibitors on filovirus entry in a cell-based system.
Collapse
|
36
|
Lassa-VSV chimeric virus targets and destroys human and mouse ovarian cancer by direct oncolytic action and by initiating an anti-tumor response. Virology 2020; 555:44-55. [PMID: 33453650 DOI: 10.1016/j.virol.2020.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/18/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022]
Abstract
Ovarian cancer is the third most common female cancer, with poor survival in later stages of metastatic spread. We test a chimeric virus consisting of genes from Lassa and vesicular stomatitis viruses, LASV-VSV; the native VSV glycoprotein is replaced by the Lassa glycoprotein, greatly reducing neurotropism. Human ovarian cancer cells in immunocompromised nude mice were lethal in controls. Chemotherapeutic paclitaxel and cisplatin showed modest cancer inhibition and survival extension. In contrast, a single intraperitoneal injection of LASV-VSV selectively infected and killed ovarian cancer cells, generating long-term survival. Mice with human ovarian cancer cells in brain showed rapid deterioration; LASV-VSV microinjection into brain blocked cancer growth, and generated long-term survival. Treatment of immunocompetent mice with infected mouse ovarian cancer cells blocked growth of non-infected ovarian cancer cells peritoneally and in brain. These results suggest LASV-VSV is a viable candidate for further study and may be of use in the treatment of ovarian cancer.
Collapse
|
37
|
Bruchez A, Sha K, Johnson J, Chen L, Stefani C, McConnell H, Gaucherand L, Prins R, Matreyek KA, Hume AJ, Mühlberger E, Schmidt EV, Olinger GG, Stuart LM, Lacy-Hulbert A. MHC class II transactivator CIITA induces cell resistance to Ebola virus and SARS-like coronaviruses. Science 2020; 370:241-247. [PMID: 32855215 PMCID: PMC7665841 DOI: 10.1126/science.abb3753] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/20/2020] [Indexed: 01/01/2023]
Abstract
Recent outbreaks of Ebola virus (EBOV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have exposed our limited therapeutic options for such diseases and our poor understanding of the cellular mechanisms that block viral infections. Using a transposon-mediated gene-activation screen in human cells, we identify that the major histocompatibility complex (MHC) class II transactivator (CIITA) has antiviral activity against EBOV. CIITA induces resistance by activating expression of the p41 isoform of invariant chain CD74, which inhibits viral entry by blocking cathepsin-mediated processing of the Ebola glycoprotein. We further show that CD74 p41 can block the endosomal entry pathway of coronaviruses, including SARS-CoV-2. These data therefore implicate CIITA and CD74 in host defense against a range of viruses, and they identify an additional function of these proteins beyond their canonical roles in antigen presentation.
Collapse
MESH Headings
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/physiology
- Betacoronavirus/physiology
- COVID-19
- Cell Line, Tumor
- Coronavirus Infections/immunology
- Coronavirus Infections/virology
- DNA Transposable Elements
- Ebolavirus/physiology
- Endosomes/virology
- Genetic Testing
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/virology
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/physiology
- Host-Pathogen Interactions/genetics
- Host-Pathogen Interactions/immunology
- Humans
- Nuclear Proteins/genetics
- Nuclear Proteins/physiology
- Pandemics
- Pneumonia, Viral/immunology
- Pneumonia, Viral/virology
- SARS-CoV-2
- Trans-Activators/genetics
- Trans-Activators/physiology
- Transcription, Genetic
- Virus Internalization
Collapse
Affiliation(s)
- Anna Bruchez
- Benaroya Research Institute, Seattle, WA 98101, USA
| | - Ky Sha
- Benaroya Research Institute, Seattle, WA 98101, USA
| | - Joshua Johnson
- National Institute of Allergy and Infectious Diseases (NIAID) Integrated Research Facility, Frederick, MD 21702, USA
| | - Li Chen
- Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | - Rachel Prins
- Benaroya Research Institute, Seattle, WA 98101, USA
| | - Kenneth A Matreyek
- Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
| | - Adam J Hume
- Boston University School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | - Elke Mühlberger
- Boston University School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | | | - Gene G Olinger
- National Institute of Allergy and Infectious Diseases (NIAID) Integrated Research Facility, Frederick, MD 21702, USA
- Boston University School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
- MRIGlobal, Gaithersburg, MD 20878, USA
| | - Lynda M Stuart
- Benaroya Research Institute, Seattle, WA 98101, USA
- Bill and Melinda Gates Foundation, Seattle, WA 98109, USA
| | - Adam Lacy-Hulbert
- Benaroya Research Institute, Seattle, WA 98101, USA.
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
38
|
A Virion-Based Assay for Glycoprotein Thermostability Reveals Key Determinants of Filovirus Entry and Its Inhibition. J Virol 2020; 94:JVI.00336-20. [PMID: 32611759 DOI: 10.1128/jvi.00336-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/26/2020] [Indexed: 11/20/2022] Open
Abstract
Ebola virus (EBOV) entry into cells is mediated by its spike glycoprotein (GP). Following attachment and internalization, virions traffic to late endosomes where GP is cleaved by host cysteine proteases. Cleaved GP then binds its cellular receptor, Niemann-Pick C1. In response to an unknown cellular trigger, GP undergoes conformational rearrangements that drive fusion of viral and endosomal membranes. The temperature-dependent stability (thermostability) of the prefusion conformers of class I viral fusion glycoproteins, including those of filovirus GPs, has provided insights into their propensity to undergo fusion-related rearrangements. However, previously described assays have relied on soluble glycoprotein ectodomains. Here, we developed a simple enzyme-linked immunosorbent assay (ELISA)-based assay that uses the temperature-dependent loss of conformational epitopes to measure thermostability of GP embedded in viral membranes. The base and glycan cap subdomains of all filovirus GPs tested suffered a concerted loss of prefusion conformation at elevated temperatures but did so at different temperature ranges, indicating virus-specific differences in thermostability. Despite these differences, all of these GPs displayed reduced thermostability upon cleavage to GP conformers (GPCL). Surprisingly, acid pH enhanced, rather than decreased, GP thermostability, suggesting it could enhance viral survival in hostile endo/lysosomal compartments. Finally, we confirmed and extended previous findings that some small-molecule inhibitors of filovirus entry destabilize EBOV GP and uncovered evidence that the most potent inhibitors act through multiple mechanisms. We establish the epitope-loss ELISA as a useful tool for studies of filovirus entry, engineering of GP variants with enhanced stability for use in vaccine development, and discovery of new stability-modulating antivirals.IMPORTANCE The development of Ebola virus countermeasures is challenged by our limited understanding of cell entry, especially at the step of membrane fusion. The surface-exposed viral protein, GP, mediates membrane fusion and undergoes major structural rearrangements during this process. The stability of GP at elevated temperatures (thermostability) can provide insights into its capacity to undergo these rearrangements. Here, we describe a new assay that uses GP-specific antibodies to measure GP thermostability under a variety of conditions relevant to viral entry. We show that proteolytic cleavage and acid pH have significant effects on GP thermostability that shed light on their respective roles in viral entry. We also show that the assay can be used to study how small-molecule entry inhibitors affect GP stability. This work provides a simple and readily accessible assay to engineer stabilized GP variants for antiviral vaccines and to discover and improve drugs that act by modulating GP stability.
Collapse
|
39
|
Kang YL, Chou YY, Rothlauf PW, Liu Z, Soh TK, Cureton D, Case JB, Chen RE, Diamond MS, Whelan SPJ, Kirchhausen T. Inhibition of PIKfyve kinase prevents infection by Zaire ebolavirus and SARS-CoV-2. Proc Natl Acad Sci U S A 2020; 117:20803-20813. [PMID: 32764148 PMCID: PMC7456157 DOI: 10.1073/pnas.2007837117] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Virus entry is a multistep process. It initiates when the virus attaches to the host cell and ends when the viral contents reach the cytosol. Genetically unrelated viruses can subvert analogous subcellular mechanisms and use similar trafficking pathways for successful entry. Antiviral strategies targeting early steps of infection are therefore appealing, particularly when the probability for successful interference through a common step is highest. We describe here potent inhibitory effects on content release and infection by chimeric vesicular stomatitis virus (VSV) containing the envelope proteins of Zaire ebolavirus (VSV-ZEBOV) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (VSV-SARS-CoV-2) elicited by Apilimod and Vacuolin-1, small-molecule inhibitors of the main endosomal phosphatidylinositol-3-phosphate/phosphatidylinositol 5-kinase, PIKfyve. We also describe potent inhibition of SARS-CoV-2 strain 2019-nCoV/USA-WA1/2020 by Apilimod. These results define tools for studying the intracellular trafficking of pathogens elicited by inhibition of PIKfyve kinase and suggest the potential for targeting this kinase in developing small-molecule antivirals against SARS-CoV-2.
Collapse
Affiliation(s)
- Yuan-Lin Kang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Yi-Ying Chou
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Paul W Rothlauf
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110
- Program in Virology, Harvard Medical School, Boston, MA 02115
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110
| | - Timothy K Soh
- Program in Virology, Harvard Medical School, Boston, MA 02115
| | - David Cureton
- Program in Virology, Harvard Medical School, Boston, MA 02115
- Boehringer Ingelheim Animal Health, Inc. Duluth, GA 30096
| | - James Brett Case
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| | - Rita E Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis, MO 63110
| | - Michael S Diamond
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis, MO 63110
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110;
| | - Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115;
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
40
|
Burn Aschner C, Loh LN, Galen B, Delwel I, Jangra RK, Garforth SJ, Chandran K, Almo S, Jacobs WR, Ware CF, Herold BC. HVEM signaling promotes protective antibody-dependent cellular cytotoxicity (ADCC) vaccine responses to herpes simplex viruses. Sci Immunol 2020; 5:eaax2454. [PMID: 32817296 PMCID: PMC7673108 DOI: 10.1126/sciimmunol.aax2454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 01/20/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022]
Abstract
Herpes simplex virus (HSV) glycoprotein D (gD) not only is required for virus entry and cell-to-cell spread but also binds the host immunomodulatory molecule, HVEM, blocking interactions with its ligands. Natural infection primarily elicits neutralizing antibodies targeting gD, but subunit protein vaccines designed to induce this response have failed clinically. In contrast, preclinical studies demonstrate that an HSV-2 single-cycle strain deleted in gD, ΔgD-2, induces primarily non-neutralizing antibodies that activate Fcγ receptors (FcγRs) to mediate antibody-dependent cellular cytotoxicity (ADCC). These studies were designed to test the hypothesis that gD interferes with ADCC through engagement of HVEM. Immunization of Hvem-/- mice with ΔgD-2 resulted in significant reduction in HSV-specific IgG2 antibodies, the subclass associated with FcγR activation and ADCC, compared with wild-type controls. This translated into a parallel reduction in active and passive vaccine protection. A similar decrease in ADCC titers was observed in Hvem-/- mice vaccinated with an alternative HSV vaccine candidate (dl5-29) or an unrelated vesicular stomatitis virus-vectored vaccine. Unexpectedly, not only did passive transfer of immune serum from ΔgD-2-vaccinated Hvem-/- mice fail to protect wild-type mice but transfer of immune serum from ΔgD-2-vaccinated wild-type mice failed to protect Hvem-/- mice. Immune cells isolated from Hvem-/- mice were impaired in FcγR activation, and, conversely, addition of gD protein or anti-HVEM antibodies to in vitro murine or human FcγR activation assays inhibited the response. These findings uncover a previously unrecognized role for HVEM signaling in generating and mediating ADCC and an additional HSV immune evasion strategy.
Collapse
Affiliation(s)
- Clare Burn Aschner
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Lip Nam Loh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Benjamin Galen
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Isabel Delwel
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Scott J Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Steven Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - William R Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Carl F Ware
- Infectious and Inflammatory Diseases Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Betsy C Herold
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
41
|
Dieterle ME, Haslwanter D, Bortz RH, Wirchnianski AS, Lasso G, Vergnolle O, Abbasi SA, Fels JM, Laudermilch E, Florez C, Mengotto A, Kimmel D, Malonis RJ, Georgiev G, Quiroz J, Barnhill J, Pirofski LA, Daily JP, Dye JM, Lai JR, Herbert AS, Chandran K, Jangra RK. A Replication-Competent Vesicular Stomatitis Virus for Studies of SARS-CoV-2 Spike-Mediated Cell Entry and Its Inhibition. Cell Host Microbe 2020; 28:486-496.e6. [PMID: 32738193 PMCID: PMC7332447 DOI: 10.1016/j.chom.2020.06.020] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
There is an urgent need for vaccines and therapeutics to prevent and treat COVID-19. Rapid SARS-CoV-2 countermeasure development is contingent on the availability of robust, scalable, and readily deployable surrogate viral assays to screen antiviral humoral responses, define correlates of immune protection, and down-select candidate antivirals. Here, we generate a highly infectious recombinant vesicular stomatitis virus (VSV) bearing the SARS-CoV-2 spike glycoprotein S as its sole entry glycoprotein and show that this recombinant virus, rVSV-SARS-CoV-2 S, closely resembles SARS-CoV-2 in its entry-related properties. The neutralizing activities of a large panel of COVID-19 convalescent sera can be assessed in a high-throughput fluorescent reporter assay with rVSV-SARS-CoV-2 S, and neutralization of rVSV-SARS-CoV-2 S and authentic SARS-CoV-2 by spike-specific antibodies in these antisera is highly correlated. Our findings underscore the utility of rVSV-SARS-CoV-2 S for the development of spike-specific therapeutics and for mechanistic studies of viral entry and its inhibition. Highly infectious recombinant VSV expressing SARS-CoV-2 spike (S) was generated rVSV-SARS-CoV-2 S resembles SARS-CoV-2 in entry and inhibitor or antibody sensitivity rVSV-SARS-CoV-2 S affords rapid screens and forward-genetic analyses of antivirals
Collapse
Affiliation(s)
- M Eugenia Dieterle
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Denise Haslwanter
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert H Bortz
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ariel S Wirchnianski
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gorka Lasso
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Olivia Vergnolle
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Shawn A Abbasi
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - J Maximilian Fels
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ethan Laudermilch
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Catalina Florez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Chemistry and Life Science, United States Military Academy at West Point, West Point, NY 10996, USA
| | - Amanda Mengotto
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Duncan Kimmel
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Ryan J Malonis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - George Georgiev
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jose Quiroz
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Jason Barnhill
- Department of Chemistry and Life Science, United States Military Academy at West Point, West Point, NY 10996, USA
| | - Liise-Anne Pirofski
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Johanna P Daily
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - John M Dye
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Jonathan R Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andrew S Herbert
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; The Geneva Foundation, 917 Pacific Avenue, Tacoma, WA 98402, USA.
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
42
|
Kang YL, Chou YY, Rothlauf PW, Liu Z, Soh TK, Cureton D, Case JB, Chen RE, Diamond MS, Whelan SPJ, Kirchhausen T. Inhibition of PIKfyve kinase prevents infection by Zaire ebolavirus and SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32511398 DOI: 10.1101/2020.04.21.053058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Virus entry is a multistep process. It initiates when the virus attaches to the host cell and ends when the viral contents reach the cytosol. Genetically unrelated viruses can subvert analogous subcellular mechanisms and use similar trafficking pathways for successful entry. Antiviral strategies targeting early steps of infection are therefore appealing, particularly when the probability for successful interference through a common step is highest. We describe here potent inhibitory effects on content release and infection by chimeric VSV containing the envelope proteins of Zaire ebolavirus (VSV-ZEBOV) or SARS-CoV-2 (VSV-SARS-CoV-2) elicited by Apilimod and Vacuolin-1, small molecule inhibitors of the main endosomal Phosphatidylinositol-3-Phosphate/Phosphatidylinositol 5-Kinase, PIKfyve. We also describe potent inhibition of SARS-CoV-2 strain 2019-nCoV/USA-WA1/2020 by Apilimod. These results define new tools for studying the intracellular trafficking of pathogens elicited by inhibition of PIKfyve kinase and suggest the potential for targeting this kinase in developing small-molecule antivirals against SARS-CoV-2.
Collapse
|
43
|
Ng TW, Wirchnianski AS, Wec AZ, Fels JM, Johndrow CT, Saunders KO, Liao HX, Chan J, Jacobs WR, Chandran K, Porcelli SA. Exploiting Pre-Existing CD4 + T Cell Help from Bacille Calmette-Guérin Vaccination to Improve Antiviral Antibody Responses. THE JOURNAL OF IMMUNOLOGY 2020; 205:425-437. [PMID: 32513849 DOI: 10.4049/jimmunol.2000191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
The continuing emergence of viral pathogens and their rapid spread into heavily populated areas around the world underscore the urgency for development of highly effective vaccines to generate protective antiviral Ab responses. Many established and newly emerging viral pathogens, including HIV and Ebola viruses, are most prevalent in regions of the world in which Mycobacterium tuberculosis infection remains endemic and vaccination at birth with M. bovis bacille Calmette-Guérin (BCG) is widely used. We have investigated the potential for using CD4+ T cells arising in response to BCG as a source of help for driving Ab responses against viral vaccines. To test this approach, we designed vaccines comprised of protein immunogens fused to an immunodominant CD4+ T cell epitope of the secreted Ag 85B protein of BCG. Proof-of-concept experiments showed that the presence of BCG-specific Th cells in previously BCG-vaccinated mice had a dose-sparing effect for subsequent vaccination with fusion proteins containing the Ag 85B epitope and consistently induced isotype switching to the IgG2c subclass. Studies using an Ebola virus glycoprotein fused to the Ag 85B epitope showed that prior BCG vaccination promoted high-affinity IgG1 responses that neutralized viral infection. The design of fusion protein vaccines with the ability to recruit BCG-specific CD4+ Th cells may be a useful and broadly applicable approach to generating improved vaccines against a range of established and newly emergent viral pathogens.
Collapse
Affiliation(s)
- Tony W Ng
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Ariel S Wirchnianski
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Anna Z Wec
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461.,Adimab, Lebanon, NH 03766
| | - J Maximilian Fels
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Christopher T Johndrow
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Kevin O Saunders
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710; and
| | - Hua-Xin Liao
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710; and
| | - John Chan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461.,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461
| | - William R Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Steven A Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461; .,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
44
|
Dieterle ME, Haslwanter D, Bortz RH, Wirchnianski AS, Lasso G, Vergnolle O, Abbasi SA, Fels JM, Laudermilch E, Florez C, Mengotto A, Kimmel D, Malonis RJ, Georgiev G, Quiroz J, Barnhill J, Pirofski LA, Daily JP, Dye JM, Lai JR, Herbert AS, Chandran K, Jangra RK. A replication-competent vesicular stomatitis virus for studies of SARS-CoV-2 spike-mediated cell entry and its inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.05.20.105247. [PMID: 32511365 PMCID: PMC7263493 DOI: 10.1101/2020.05.20.105247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There is an urgent need for vaccines and therapeutics to prevent and treat COVID-19. Rapid SARS-CoV-2 countermeasure development is contingent on the availability of robust, scalable, and readily deployable surrogate viral assays to screen antiviral humoral responses, and define correlates of immune protection, and to down-select candidate antivirals. Here, we describe a highly infectious recombinant vesicular stomatitis virus bearing the SARS-CoV-2 spike glycoprotein S as its sole entry glycoprotein that closely resembles the authentic agent in its entry-related properties. We show that the neutralizing activities of a large panel of COVID-19 convalescent sera can be assessed in high-throughput fluorescent reporter assay with rVSV-SARS-CoV-2 S and that neutralization of the rVSV and authentic SARS-CoV-2 by spike-specific antibodies in these antisera is highly correlated. Our findings underscore the utility of rVSV-SARS-CoV-2 S for the development of spike-specific vaccines and therapeutics and for mechanistic studies of viral entry and its inhibition.
Collapse
Affiliation(s)
- M. Eugenia Dieterle
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Denise Haslwanter
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Robert H. Bortz
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Ariel S. Wirchnianski
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Gorka Lasso
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Olivia Vergnolle
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Shawn A. Abbasi
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - J. Maximilian Fels
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Ethan Laudermilch
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Catalina Florez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Chemistry and Life Science, United States Military Academy at West Point, West Point, NY 10996, USA
| | - Amanda Mengotto
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, New York, NY 10461, USA
| | - Duncan Kimmel
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, New York, NY 10461, USA
| | - Ryan J. Malonis
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - George Georgiev
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jose Quiroz
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, New York, NY 10461, USA
| | - Jason Barnhill
- Department of Chemistry and Life Science, United States Military Academy at West Point, West Point, NY 10996, USA
| | - Liise-anne Pirofski
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, New York, NY 10461, USA
| | - Johanna P. Daily
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, New York, NY 10461, USA
| | - John M. Dye
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Jonathan R. Lai
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Andrew S. Herbert
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
- The Geneva Foundation, 917 Pacific Avenue, Tacoma, WA 98402, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Rohit K. Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
45
|
Mucin-Like Domain of Ebola Virus Glycoprotein Enhances Selective Oncolytic Actions against Brain Tumors. J Virol 2020; 94:JVI.01967-19. [PMID: 32051271 DOI: 10.1128/jvi.01967-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/03/2020] [Indexed: 01/24/2023] Open
Abstract
Given that the Ebola virus (EBOV) infects a wide array of organs and cells yet displays a relative lack of neurotropism, we asked whether a chimeric vesicular stomatitis virus (VSV) expressing the EBOV glycoprotein (GP) might selectively target brain tumors. The mucin-like domain (MLD) of the EBOV GP may enhance virus immune system evasion. Here, we compared chimeric VSVs in which EBOV GP replaces the VSV glycoprotein, thereby reducing the neurotoxicity associated with wild-type VSV. A chimeric VSV expressing the full-length EBOV GP (VSV-EBOV) containing the MLD was substantially more effective and safer than a parallel construct with an EBOV GP lacking the MLD (VSV-EBOVΔMLD). One-step growth, reverse transcription-quantitative PCR, and Western blotting assessments showed that VSV-EBOVΔMLD produced substantially more progeny faster than VSV-EBOV. Using immunodeficient SCID mice, we focused on targeting human brain tumors with these VSV-EBOVs. Similar to the findings of our previous study in which we used an attenuated VSV-EBOV with no MLD that expressed green fluorescent protein (GFP) (VSV-EBOVΔMLD-GFP), VSV-EBOVΔMLD without GFP targeted glioma but yielded only a modest extension of survival. In contrast, VSV-EBOV containing the MLD showed substantially better targeting and elimination of brain tumors after intravenous delivery and increased the survival of brain tumor-bearing mice. Despite the apparent destruction of most tumor cells by VSV-EBOVΔMLD, the virus remained active within the SCID mouse brain and showed widespread infection of normal brain cells. In contrast, VSV-EBOV eliminated the tumors and showed relatively little infection of normal brain cells. Parallel experiments with direct intracranial virus infection generated similar results. Neither VSV-EBOV nor VSV-EBOVΔMLD showed substantive infection of the brains of normal immunocompetent mice.IMPORTANCE The Ebola virus glycoprotein contains a mucin-like domain which may play a role in immune evasion. Chimeric vesicular stomatitis viruses with the EBOV glycoprotein substituted for the VSV glycoprotein show greater safety and efficacy in targeting brain tumors in immunodeficient mice when the MLD was expressed within the EBOV glycoprotein than when EBOV lacked the mucin-like domain.
Collapse
|
46
|
Brook CE, Boots M, Chandran K, Dobson AP, Drosten C, Graham AL, Grenfell BT, Müller MA, Ng M, Wang LF, van Leeuwen A. Accelerated viral dynamics in bat cell lines, with implications for zoonotic emergence. eLife 2020; 9:48401. [PMID: 32011232 PMCID: PMC7064339 DOI: 10.7554/elife.48401] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 02/02/2020] [Indexed: 01/10/2023] Open
Abstract
Bats host virulent zoonotic viruses without experiencing disease. A mechanistic understanding of the impact of bats’ virus hosting capacities, including uniquely constitutive immune pathways, on cellular-scale viral dynamics is needed to elucidate zoonotic emergence. We carried out virus infectivity assays on bat cell lines expressing induced and constitutive immune phenotypes, then developed a theoretical model of our in vitro system, which we fit to empirical data. Best fit models recapitulated expected immune phenotypes for representative cell lines, supporting robust antiviral defenses in bat cells that correlated with higher estimates for within-host viral propagation rates. In general, heightened immune responses limit pathogen-induced cellular morbidity, which can facilitate the establishment of rapidly-propagating persistent infections within-host. Rapidly-transmitting viruses that have evolved with bat immune systems will likely cause enhanced virulence following emergence into secondary hosts with immune systems that diverge from those unique to bats. Bats can carry viruses that are deadly to other mammals without themselves showing serious symptoms. In fact, bats are natural reservoirs for viruses that have some of the highest fatality rates of any viruses that people acquire from wild animals – including rabies, Ebola and the SARS coronavirus. Bats have a suite of antiviral defenses that keep the amount of virus in check. For example, some bats have an antiviral immune response called the interferon pathway perpetually switched on. In most other mammals, having such a hyper-vigilant immune response would cause harmful inflammation. Bats, however, have adapted anti-inflammatory traits that protect them from such harm, include the loss of certain genes that normally promote inflammation. However, no one has previously explored how these unique antiviral defenses of bats impact the viruses themselves. Now, Brook et al. have studied this exact question using bat cells grown in the laboratory. The experiments made use of cells from one bat species – the black flying fox – in which the interferon pathway is always on, and another – the Egyptian fruit bat – in which this pathway is only activated during an infection. The bat cells were infected with three different viruses, and then Brook et al. observed how the interferon pathway helped keep the infections in check, before creating a computer model of this response. The experiments and model helped reveal that the bats’ defenses may have a potential downside for other animals, including humans. In both bat species, the strongest antiviral responses were countered by the virus spreading more quickly from cell to cell. This suggests that bat immune defenses may drive the evolution of faster transmitting viruses, and while bats are well protected from the harmful effects of their own prolific viruses, other creatures like humans are not. The findings may help to explain why bats are often the source for viruses that are deadly in humans. Learning more about bats' antiviral defenses and how they drive virus evolution may help scientists develop better ways to predict, prevent or limit the spread of viruses from bats to humans. More studies are needed in bats to help these efforts. In the meantime, the experiments highlight the importance of warning people to avoid direct contact with wild bats.
Collapse
Affiliation(s)
- Cara E Brook
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States.,Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
| | - Mike Boots
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, United States
| | - Andrew P Dobson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
| | - Bryan T Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States.,Fogarty International Center, National Institutes of Health, Bethesda, United States
| | - Marcel A Müller
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russian Federation
| | - Melinda Ng
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, United States
| | - Lin-Fa Wang
- Emerging Infectious Diseases Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Anieke van Leeuwen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States.,Royal Netherlands Institute for Sea Research, Department of Coastal Systems, and Utrecht University, Den Burg, Netherlands
| |
Collapse
|
47
|
Development of an antibody cocktail for treatment of Sudan virus infection. Proc Natl Acad Sci U S A 2020; 117:3768-3778. [PMID: 32015126 DOI: 10.1073/pnas.1914985117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antibody-based therapies are a promising treatment option for managing ebolavirus infections. Several Ebola virus (EBOV)-specific and, more recently, pan-ebolavirus antibody cocktails have been described. Here, we report the development and assessment of a Sudan virus (SUDV)-specific antibody cocktail. We produced a panel of SUDV glycoprotein (GP)-specific human chimeric monoclonal antibodies (mAbs) using both plant and mammalian expression systems and completed head-to-head in vitro and in vivo evaluations. Neutralizing activity, competitive binding groups, and epitope specificity of SUDV mAbs were defined before assessing protective efficacy of individual mAbs using a mouse model of SUDV infection. Of the mAbs tested, GP base-binding mAbs were more potent neutralizers and more protective than glycan cap- or mucin-like domain-binding mAbs. No significant difference was observed between plant and mammalian mAbs in any of our in vitro or in vivo evaluations. Based on in vitro and rodent testing, a combination of two SUDV-specific mAbs, one base binding (16F6) and one glycan cap binding (X10H2), was down-selected for assessment in a macaque model of SUDV infection. This cocktail, RIID F6-H2, provided protection from SUDV infection in rhesus macaques when administered at 50 mg/kg on days 4 and 6 postinfection. RIID F6-H2 is an effective postexposure SUDV therapy and provides a potential treatment option for managing human SUDV infection.
Collapse
|
48
|
Analysis of Resistance of Ebola Virus Glycoprotein-Driven Entry Against MDL28170, An Inhibitor of Cysteine Cathepsins. Pathogens 2019; 8:pathogens8040192. [PMID: 31618932 PMCID: PMC6963435 DOI: 10.3390/pathogens8040192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/26/2019] [Accepted: 10/12/2019] [Indexed: 12/14/2022] Open
Abstract
Ebola virus (EBOV) infection can cause severe and frequently fatal disease in human patients. The EBOV glycoprotein (GP) mediates viral entry into host cells. For this, GP depends on priming by the pH-dependent endolysosomal cysteine proteases cathepsin B (CatB) and, to a lesser degree, cathepsin L (CatL), at least in most cell culture systems. However, there is limited information on whether and how EBOV-GP can acquire resistance to CatB/L inhibitors. Here, we addressed this question using replication-competent vesicular stomatitis virus bearing EBOV-GP. Five passages of this virus in the presence of the CatB/CatL inhibitor MDL28170 were sufficient to select resistant viral variants and sequencing revealed that all GP sequences contained a V37A mutation, which, in the context of native GP, is located in the base of the GP surface unit. In addition, some GP sequences harbored mutation S195R in the receptor-binding domain. Finally, mutational analysis demonstrated that V37A but not S195R conferred resistance against MDL28170 and other CatB/CatL inhibitors. Collectively, a single amino acid substitution in GP is sufficient to confer resistance against CatB/CatL inhibitors, suggesting that usage of CatB/CatL inhibitors for antiviral therapy may rapidly select for resistant viral variants.
Collapse
|
49
|
A Hyperstabilizing Mutation in the Base of the Ebola Virus Glycoprotein Acts at Multiple Steps To Abrogate Viral Entry. mBio 2019; 10:mBio.01408-19. [PMID: 31289183 PMCID: PMC6747718 DOI: 10.1128/mbio.01408-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ebola virus (EBOV) causes highly lethal disease outbreaks against which no FDA-approved countermeasures are available. Although many host factors exploited by EBOV for cell entry have been identified, including host cell surface phosphatidylserine receptors, endosomal cysteine proteases, and the lysosomal cholesterol trafficking protein NPC1, key questions remain. Specifically, late entry steps culminating in viral membrane fusion remain enigmatic. Here, we investigated a set of glycoprotein (GP) mutants previously hypothesized to be entry defective and identified one mutation, R64A, that abolished infection with no apparent impact on GP expression, folding, or viral incorporation. R64A profoundly thermostabilized EBOV GP and rendered it highly resistant to proteolysis in vitro Forward-genetics and cell entry studies strongly suggested that R64A's effects on GP thermostability and proteolysis arrest viral entry at least at two distinct steps: the first upstream of NPC1 binding and the second at a late entry step downstream of fusion activation. Concordantly, toremifene, a small-molecule entry inhibitor previously shown to bind and destabilize GP, may selectively enhance the infectivity of viral particles bearing GP(R64A) at subinhibitory concentrations. R64A provides a valuable tool to further define the interplay between GP stability, proteolysis, and viral membrane fusion; to explore the rational design of stability-modulating antivirals; and to spur the development of next-generation Ebola virus vaccines with improved stability.IMPORTANCE Ebola virus is a medically relevant virus responsible for outbreaks of severe disease in western and central Africa, with mortality rates reaching as high as 90%. Despite considerable effort, there are currently no FDA-approved therapeutics or targeted interventions available, highlighting the need of development in this area. Host-cell invasion represents an attractive target for antivirals, and several drug candidates have been identified; however, our limited understanding of the complex viral entry process challenges the development of such entry-targeting drugs. Here, we report on a glycoprotein mutation that abrogates viral entry and provides insights into the final steps of this process. In addition, the hyperstabilized phenotype of this mutant makes it useful as a tool in the discovery and design of stability-modulating antivirals and next-generation vaccines against Ebola virus.
Collapse
|
50
|
Fénéant L, Szymańska-de Wijs KM, Nelson EA, White JM. An exploration of conditions proposed to trigger the Ebola virus glycoprotein for fusion. PLoS One 2019; 14:e0219312. [PMID: 31276481 PMCID: PMC6611598 DOI: 10.1371/journal.pone.0219312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/20/2019] [Indexed: 01/06/2023] Open
Abstract
Ebolaviruses continue to inflict horrific disease and instill fear. The 2013-2016 outbreak in Western Africa caused unfathomable morbidity and mortality (over 11,000 deaths), and the second largest outbreak is on-going in the Democratic Republic of the Congo. The first stage of an Ebolavirus infection is entry, culminating in delivery of the viral genome into the cytoplasm to initiate replication. Among enveloped viruses, Ebolaviruses use a complex entry pathway: they bind to attachment factors on cell surfaces, are engulfed by macropinocytosis, and traffic through the endosomal system. En route, the receptor binding subunit of the glycoprotein (GP) is reduced from ~130 to ~19 kDa by cathepsins. This event allows cleaved GP (GPcl) to bind to Niemann-Pick C1 (NPC1), its endosomal receptor. The virus then fuses with a late endosomal membrane, but how this occurs remains a subject of debate. An early, but standing, observation is that entry of particles bearing GPcl is inhibited by agents that raise endosomal pH or inhibit cysteine proteases, suggesting the need for an additional factor(s). Yet, some have concluded that NPC1 is sufficient to trigger the fusion activity of GPcl. Here, we re-examined this question using sensitive cell-cell and pseudovirus-cell fusion assays. We did not observe detectable GPcl-mediated fusion with NPC1 or its GPcl binding domain at any pH tested, while robust fusion was consistently observed with GP from lymphocytic choriomeningitis virus at low pH. Addition of proposed fusion-enhancing factors-cations (Ca++ and K+), a reducing agent, the anionic lipid Bis(Monoacylglycero)Phosphate, and a mixture of cathepsins B and L-did not induce detectable fusion. Our findings are in line with the earlier proposal that an additional factor is required to trigger the full fusion activity of GPcl after binding to NPC1. We discuss caveats to our study and what the missing factor(s) might be.
Collapse
Affiliation(s)
- Lucie Fénéant
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | | | - Elizabeth A. Nelson
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Judith M. White
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|