1
|
Lankina A, Raposo M, Hargreaves A, Atkinson C, Griffiths P, Reeves MB. Developing a Vaccine Against Human Cytomegalovirus: Identifying and Targeting HCMV's Immunological Achilles' Heel. Vaccines (Basel) 2025; 13:435. [PMID: 40432047 PMCID: PMC12115399 DOI: 10.3390/vaccines13050435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/10/2025] [Accepted: 04/18/2025] [Indexed: 05/29/2025] Open
Abstract
Human cytomegalovirus (HCMV) is a critical pathogen in immunocompromised populations, such as organ transplant recipients as well as congenitally infected neonates with immature immune systems. Despite decades of research and the growing financial burden associated with the management of HCMV, there is no licensed vaccine to date. In this review, we aim to outline the complexity of HCMV and the antigens it presents and the journey and challenges of developing an effective HCMV vaccine, as well as further highlight the recent analyses of the most successful vaccine candidate so far-gB/MF59.
Collapse
Affiliation(s)
- Anastasia Lankina
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PP, UK; (A.L.); (M.R.); (A.H.); (P.G.)
| | - Marta Raposo
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PP, UK; (A.L.); (M.R.); (A.H.); (P.G.)
| | - Alexander Hargreaves
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PP, UK; (A.L.); (M.R.); (A.H.); (P.G.)
| | - Claire Atkinson
- School of Applied and Health Sciences, London South Bank University, London SE1 0AA, UK;
| | - Paul Griffiths
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PP, UK; (A.L.); (M.R.); (A.H.); (P.G.)
| | - Matthew B. Reeves
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PP, UK; (A.L.); (M.R.); (A.H.); (P.G.)
| |
Collapse
|
2
|
Shang Z, Li X. Human cytomegalovirus: pathogenesis, prevention, and treatment. MOLECULAR BIOMEDICINE 2024; 5:61. [PMID: 39585514 PMCID: PMC11589059 DOI: 10.1186/s43556-024-00226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Human cytomegalovirus (HCMV) infection remains a significant global health challenge, particularly for immunocompromised individuals and newborns. This comprehensive review synthesizes current knowledge on HCMV pathogenesis, prevention, and treatment strategies. We examine the molecular mechanisms of HCMV entry, focusing on the structure and function of key envelope glycoproteins (gB, gH/gL/gO, gH/gL/pUL128-131) and their interactions with cellular receptors such as PDGFRα, NRP2, and THBD. The review explores HCMV's sophisticated immune evasion strategies, including interference with pattern recognition receptor signaling, modulation of antigen presentation, and regulation of NK and T cell responses. We highlight recent advancements in developing neutralizing antibodies, various vaccine strategies (live-attenuated, subunit, vector-based, DNA, and mRNA), antiviral compounds (both virus-targeted and host-targeted), and emerging cellular therapies such as TCR-T cell approaches. By integrating insights from structural biology, immunology, and clinical research, we identify critical knowledge gaps and propose future research directions. This analysis aims to stimulate cross-disciplinary collaborations and accelerate the development of more effective prevention and treatment strategies for HCMV infections, addressing a significant unmet medical need.
Collapse
Affiliation(s)
- Zifang Shang
- Research Experiment Center, Meizhou Academy of Medical Sciences, Meizhou People's Hospital, Meizhou, 514031, Guangdong, China.
- Guangdong Engineering Technological Research Center of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, 514031, Guangdong, China.
| | - Xin Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| |
Collapse
|
3
|
McCallum M, Veesler D. Computational design of prefusion-stabilized Herpesvirus gB trimers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619923. [PMID: 39484573 PMCID: PMC11526958 DOI: 10.1101/2024.10.23.619923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
In the absence of effective vaccines, human-infecting members of the Herpesvirus family cause considerable morbidity and mortality worldwide. Herpesvirus infection relies on receptor engagement by a gH/gL glycoprotein complex which induces large-scale conformational changes of the gB glycoprotein to mediate fusion of the viral and host membranes and infection. The instability of all herpesvirus gBs have hindered biochemical and functional studies, thereby limiting our understanding of the infection mechanisms of these pathogens and preventing vaccine design. Here, we computationally stabilized and structurally characterized the Epstein-Barr virus prefusion gB ectodomain trimer, providing an atomic-level description of this key therapeutic target. We show that this stabilization strategy is broadly applicable to other herpesvirus gB trimers and identified conformational intermediates supporting a previously unanticipated mechanism of gB-mediated fusion. These findings provide a blueprint to develop vaccine candidates for these pathogens with major public health burden.
Collapse
Affiliation(s)
- Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Yamaguchi K, Shimizu H, Takahashi K, Nagatomo T, Nishimura T, Matsumoto M, Koshizuka T, Mori H, Inoue N, Torikai M. Characterization of epitopes of human monoclonal antibodies against cytomegalovirus glycoprotein B for neutralization and antibody-dependent phagocytosis. Vaccine 2023; 41:4497-4507. [PMID: 37321896 DOI: 10.1016/j.vaccine.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
As congenital cytomegalovirus (CMV) infections are the leading non-genetic cause of sensorineural hearing loss and significant neurological disabilities in children, the development of CMV vaccines should be given the highest public health priority. Although MF59-adjuvanted glycoprotein B (gB) vaccine (gB/MF59) is safe and immunogenic, its efficacy in terms of protection from natural infection was around 50 % in clinical trials. Although gB/MF59 induced high antibody titers, anti-gB antibodies contributed little to the neutralization of infection. Recent studies have found that non-neutralizing functions, including antibody-dependent phagocytosis of virions and virus-infected cells, are likely to play important roles in pathogenesis and vaccine design. Previously, we isolated human monoclonal antibodies (MAbs) that reacted with the trimeric form of gB ectodomain and found that preferential epitopes for neutralization were present on Domains (Doms) I and II of gB, while there were abundant non-neutralizing antibodies targeting Dom IV. In this study, we analyzed the phagocytosis activities of these MAbs and found the following: 1) MAbs effective for phagocytosis of the virions targeted Doms I and II, 2) the MAbs effective for phagocytosis of the virions and those of virus-infected cells were generally distinct, and 3) the antibody-dependent phagocytosis showed little correlation with neutralizing activities. Taking account of the frequency and levels of neutralization and phagocytosis, incorporation of the epitopes on Doms I and II into developing vaccines is considered desirable for the prevention of viremia.
Collapse
Affiliation(s)
| | | | - Keita Takahashi
- Microbiology & Immunology, Gifu Pharmaceutical University, Japan
| | | | | | | | - Tetsuo Koshizuka
- Microbiology & Immunology, Gifu Pharmaceutical University, Japan
| | - Hiroaki Mori
- Kikuchi Research Center, KM Biologics Co., Ltd, Japan
| | - Naoki Inoue
- Microbiology & Immunology, Gifu Pharmaceutical University, Japan.
| | | |
Collapse
|
5
|
Gomes AC, Baraniak IA, McIntosh MR, Sodi I, Langstone T, Siddiqui S, Atkinson C, McLean GR, Griffiths PD, Reeves MB. A temperature-dependent virus-binding assay reveals the presence of neutralizing antibodies in human cytomegalovirus gB vaccine recipients' sera. J Gen Virol 2023; 104:001860. [PMID: 37310000 PMCID: PMC10661908 DOI: 10.1099/jgv.0.001860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/15/2023] [Indexed: 06/14/2023] Open
Abstract
Human cytomegalovirus (HCMV) remains an important cause of mortality in immune-compromised transplant patients and following congenital infection. Such is the burden, an effective vaccine strategy is considered to be of the highest priority. The most successful vaccines to date have focused on generating immune responses against glycoprotein B (gB) - a protein essential for HCMV fusion and entry. We have previously reported that an important component of the humoral immune response elicited by gB/MF59 vaccination of patients awaiting transplant is the induction of non-neutralizing antibodies that target cell-associated virus with little evidence of concomitant classical neutralizing antibodies. Here we report that a modified neutralization assay that promotes prolonged binding of HCMV to the cell surface reveals the presence of neutralizing antibodies in sera taken from gB-vaccinated patients that cannot be detected using standard assays. We go on to show that this is not a general feature of gB-neutralizing antibodies, suggesting that specific antibody responses induced by vaccination could be important. Although we can find no evidence that these neutralizing antibody responses are a correlate of protection in vivo in transplant recipients their identification demonstrates the utility of the approach in identifying these responses. We hypothesize that further characterization has the potential to aid the identification of functions within gB that are important during the entry process and could potentially improve future vaccine strategies directed against gB if they prove to be effective against HCMV at higher concentrations.
Collapse
Affiliation(s)
- Ariane C. Gomes
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Campus, London, NW3 2PP, UK
| | - Ilona A. Baraniak
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Campus, London, NW3 2PP, UK
| | - Megan R. McIntosh
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Campus, London, NW3 2PP, UK
| | - Isabella Sodi
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Campus, London, NW3 2PP, UK
| | - Toby Langstone
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Campus, London, NW3 2PP, UK
| | - Saima Siddiqui
- London Metropolitan University, School of Human Sciences, London, N7 8DB, UK
| | - Claire Atkinson
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Campus, London, NW3 2PP, UK
| | - Gary R. McLean
- London Metropolitan University, School of Human Sciences, London, N7 8DB, UK
- Imperial College London, National Heart and Lung Institute, London, W2 1PG, UK
| | - Paul D. Griffiths
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Campus, London, NW3 2PP, UK
| | - Matthew B. Reeves
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Campus, London, NW3 2PP, UK
| |
Collapse
|
6
|
Gomes AC, Baraniak IA, Lankina A, Moulder Z, Holenya P, Atkinson C, Tang G, Mahungu T, Kern F, Griffiths PD, Reeves MB. The cytomegalovirus gB/MF59 vaccine candidate induces antibodies against an antigenic domain controlling cell-to-cell spread. Nat Commun 2023; 14:1041. [PMID: 36823200 PMCID: PMC9950427 DOI: 10.1038/s41467-023-36683-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Vaccination against human cytomegalovirus (CMV) infection remains high priority. A recombinant form of a protein essential for CMV entry, glycoprotein B (gB), demonstrated partial protection in a clinical trial (NCT00299260) when delivered with the MF59 adjuvant. Although the antibody titre against gB correlated with protection poor neutralising responses against the 5 known antigenic domains (AD) of gB were evident. Here, we show that vaccination of CMV seronegative patients induces an antibody response against a region of gB we term AD-6. Responses to the polypeptide AD-6 are detected in >70% of vaccine recipients yet in <5% of naturally infected people. An AD-6 antibody binds to gB and to infected cells but not the virion directly. Consistent with this, the AD-6 antibody is non-neutralising but, instead, prevents cell-cell spread of CMV in vitro. The discovery of AD-6 responses has the potential to explain part of the protection mediated by gB vaccines against CMV following transplantation.
Collapse
Affiliation(s)
- A C Gomes
- Institute of Immunity & Transplantation, UCL, London, NW3 2PP, United Kingdom
| | - I A Baraniak
- Institute of Immunity & Transplantation, UCL, London, NW3 2PP, United Kingdom
| | - A Lankina
- Institute of Immunity & Transplantation, UCL, London, NW3 2PP, United Kingdom
| | - Z Moulder
- Institute of Immunity & Transplantation, UCL, London, NW3 2PP, United Kingdom
| | - P Holenya
- JPT Peptide Technologies GmbH, Berlin, Germany
| | - C Atkinson
- Institute of Immunity & Transplantation, UCL, London, NW3 2PP, United Kingdom
| | - G Tang
- Institute of Immunity & Transplantation, UCL, London, NW3 2PP, United Kingdom
| | - T Mahungu
- Institute of Immunity & Transplantation, UCL, London, NW3 2PP, United Kingdom
| | - F Kern
- JPT Peptide Technologies GmbH, Berlin, Germany
- Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - P D Griffiths
- Institute of Immunity & Transplantation, UCL, London, NW3 2PP, United Kingdom
| | - M B Reeves
- Institute of Immunity & Transplantation, UCL, London, NW3 2PP, United Kingdom.
| |
Collapse
|
7
|
Okamoto M, Kurino R, Miura R, Takada K. A fully human neutralizing monoclonal antibody targeting a highly conserved epitope of the human cytomegalovirus glycoprotein B. PLoS One 2023; 18:e0285672. [PMID: 37192198 DOI: 10.1371/journal.pone.0285672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/27/2023] [Indexed: 05/18/2023] Open
Abstract
Human cytomegalovirus causes severe diseases in children (by congenital infection) and immunocompromised patients. Treatment with antiviral agents, such as ganciclovir, is limited by their toxicity. In this study, we investigated the effectiveness of a fully human neutralizing monoclonal antibody to inhibit human cytomegalovirus infection and viral cell-to-cell spread. We isolated a potent neutralizing antibody, EV2038 (IgG1 lambda), targeting human cytomegalovirus glycoprotein B using Epstein-Barr virus transformation. This antibody inhibited human cytomegalovirus infection by all four laboratory strains and 42 Japanese clinical isolates, including ganciclovir-resistant isolates, with a 50% inhibitory concentration (IC50) ranging from 0.013 to 0.105 μg/mL, and 90% inhibitory concentration (IC90) ranging from 0.208 to 1.026 μg/mL, in both human embryonic lung fibroblasts (MRC-5) and human retinal pigment epithelial (ARPE-19) cells. Additionally, EV2038 prevented cell-to-cell spread of eight clinical viral isolates, with IC50 values ranging from 1.0 to 3.1 μg/mL, and IC90 values ranging from 13 to 19 μg/mL, in ARPE-19 cells. EV2038 recognized three discontinuous sequences on antigenic domain 1 of glycoprotein B (amino acids 549-560, 569-576, and 625-632), which were highly conserved among 71 clinical isolates from Japan and the United States. Pharmacokinetics study in cynomolgus monkeys suggested the potential efficacy of EV2038 in vivo, the concentration of which in serum remained higher than the IC90 values of cell-to-cell spread until 28 days after intravenous injection of 10 mg/kg EV2038. Our data strongly support EV2038 as a promising candidate and novel alternative for the treatment of human cytomegalovirus infection.
Collapse
Affiliation(s)
- Miwa Okamoto
- Sapporo Laboratory, EVEC, Inc., Sapporo, Hokkaido, Japan
| | - Rika Kurino
- Sapporo Laboratory, EVEC, Inc., Sapporo, Hokkaido, Japan
| | - Ryu Miura
- Sapporo Laboratory, EVEC, Inc., Sapporo, Hokkaido, Japan
| | - Kenzo Takada
- Sapporo Laboratory, EVEC, Inc., Sapporo, Hokkaido, Japan
| |
Collapse
|
8
|
Parsons AJ, Ophir SI, Duty JA, Kraus TA, Stein KR, Moran TM, Tortorella D. Development of broadly neutralizing antibodies targeting the cytomegalovirus subdominant antigen gH. Commun Biol 2022; 5:387. [PMID: 35468974 PMCID: PMC9038728 DOI: 10.1038/s42003-022-03294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/17/2022] [Indexed: 11/08/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a β-herpesvirus that increases morbidity and mortality in immunocompromised individuals including transplant recipients and newborns. New anti-HCMV therapies are an urgent medical need for diverse patient populations. HCMV infection of a broad range of host tissues is dependent on the gH/gL/gO trimer and gH/gL/UL28/UL130/UL131A pentamer complexes on the viral envelope. We sought to develop safe and effective therapeutics against HCMV by generating broadly-neutralizing, human monoclonal antibodies (mAbs) from VelocImmune® mice immunized with gH/gL cDNA. Following high-throughput binding and neutralization screening assays, 11 neutralizing antibodies were identified with unique CDR3 regions and a high-affinity (KD 1.4-65 nM) to the pentamer complex. The antibodies bound to distinct regions within Domains 1 and 2 of gH and effectively neutralized diverse clinical strains in physiologically relevant cell types including epithelial cells, trophoblasts, and monocytes. Importantly, combined adminstration of mAbs with ganciclovir, an FDA approved antiviral, greatly limited virus dissemination. Our work identifies several anti-gH/gL mAbs and sheds light on gH neutralizing epitopes that can guide future vaccine strategies.
Collapse
Affiliation(s)
- Andrea J Parsons
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sabrina I Ophir
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - J Andrew Duty
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center of Therapeutic Antibody Development, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Thomas A Kraus
- Center of Therapeutic Antibody Development, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kathryn R Stein
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas M Moran
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center of Therapeutic Antibody Development, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
9
|
Alexander LT, Lepore R, Kryshtafovych A, Adamopoulos A, Alahuhta M, Arvin AM, Bomble YJ, Böttcher B, Breyton C, Chiarini V, Chinnam NB, Chiu W, Fidelis K, Grinter R, Gupta GD, Hartmann MD, Hayes CS, Heidebrecht T, Ilari A, Joachimiak A, Kim Y, Linares R, Lovering AL, Lunin VV, Lupas AN, Makbul C, Michalska K, Moult J, Mukherjee PK, Nutt W(S, Oliver SL, Perrakis A, Stols L, Tainer JA, Topf M, Tsutakawa SE, Valdivia‐Delgado M, Schwede T. Target highlights in CASP14: Analysis of models by structure providers. Proteins 2021; 89:1647-1672. [PMID: 34561912 PMCID: PMC8616854 DOI: 10.1002/prot.26247] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/11/2022]
Abstract
The biological and functional significance of selected Critical Assessment of Techniques for Protein Structure Prediction 14 (CASP14) targets are described by the authors of the structures. The authors highlight the most relevant features of the target proteins and discuss how well these features were reproduced in the respective submitted predictions. The overall ability to predict three-dimensional structures of proteins has improved remarkably in CASP14, and many difficult targets were modeled with impressive accuracy. For the first time in the history of CASP, the experimentalists not only highlighted that computational models can accurately reproduce the most critical structural features observed in their targets, but also envisaged that models could serve as a guidance for further studies of biologically-relevant properties of proteins.
Collapse
Affiliation(s)
- Leila T. Alexander
- Biozentrum, University of BaselBaselSwitzerland
- Computational Structural BiologySIB Swiss Institute of BioinformaticsBaselSwitzerland
| | | | | | - Athanassios Adamopoulos
- Oncode Institute and Division of BiochemistryNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Markus Alahuhta
- Bioscience Center, National Renewable Energy LaboratoryGoldenColoradoUSA
| | - Ann M. Arvin
- Department of PediatricsStanford University School of MedicineStanfordCaliforniaUSA
- Microbiology and ImmunologyStanford University School of MedicineStanfordCaliforniaUSA
| | - Yannick J. Bomble
- Bioscience Center, National Renewable Energy LaboratoryGoldenColoradoUSA
| | - Bettina Böttcher
- Biocenter and Rudolf Virchow Center, Julius‐Maximilians Universität WürzburgWürzburgGermany
| | - Cécile Breyton
- Univ. Grenoble Alpes, CNRS, CEA, Institute for Structural BiologyGrenobleFrance
| | - Valerio Chiarini
- Program in Structural Biology and BiophysicsInstitute of Biotechnology, University of HelsinkiHelsinkiFinland
| | - Naga babu Chinnam
- Department of Molecular and Cellular OncologyThe University of Texas M.D. Anderson Cancer CenterHoustonTexasUSA
| | - Wah Chiu
- Microbiology and ImmunologyStanford University School of MedicineStanfordCaliforniaUSA
- BioengineeringStanford University School of MedicineStanfordCaliforniaUSA
- Division of Cryo‐EM and Bioimaging SSRLSLAC National Accelerator LaboratoryMenlo ParkCaliforniaUSA
| | | | - Rhys Grinter
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Gagan D. Gupta
- Radiation Biology & Health Sciences DivisionBhabha Atomic Research CentreMumbaiIndia
| | - Marcus D. Hartmann
- Department of Protein EvolutionMax Planck Institute for Developmental BiologyTübingenGermany
| | - Christopher S. Hayes
- Department of Molecular, Cellular and Developmental BiologyUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
- Biomolecular Science and Engineering ProgramUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Tatjana Heidebrecht
- Oncode Institute and Division of BiochemistryNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology of the National Research Council of Italy (CNR)RomeItaly
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of ChicagoChicagoIllinoisUSA
- X‐ray Science DivisionArgonne National Laboratory, Structural Biology CenterArgonneIllinoisUSA
- Department of Biochemistry and Molecular BiologyUniversity of ChicagoChicagoIllinoisUSA
| | - Youngchang Kim
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of ChicagoChicagoIllinoisUSA
- X‐ray Science DivisionArgonne National Laboratory, Structural Biology CenterArgonneIllinoisUSA
| | - Romain Linares
- Univ. Grenoble Alpes, CNRS, CEA, Institute for Structural BiologyGrenobleFrance
| | | | - Vladimir V. Lunin
- Bioscience Center, National Renewable Energy LaboratoryGoldenColoradoUSA
| | - Andrei N. Lupas
- Department of Protein EvolutionMax Planck Institute for Developmental BiologyTübingenGermany
| | - Cihan Makbul
- Biocenter and Rudolf Virchow Center, Julius‐Maximilians Universität WürzburgWürzburgGermany
| | - Karolina Michalska
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of ChicagoChicagoIllinoisUSA
- X‐ray Science DivisionArgonne National Laboratory, Structural Biology CenterArgonneIllinoisUSA
| | - John Moult
- Department of Cell Biology and Molecular GeneticsInstitute for Bioscience and Biotechnology Research, University of MarylandRockvilleMarylandUSA
| | - Prasun K. Mukherjee
- Nuclear Agriculture & Biotechnology DivisionBhabha Atomic Research CentreMumbaiIndia
| | - William (Sam) Nutt
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of ChicagoChicagoIllinoisUSA
- X‐ray Science DivisionArgonne National Laboratory, Structural Biology CenterArgonneIllinoisUSA
| | - Stefan L. Oliver
- Department of PediatricsStanford University School of MedicineStanfordCaliforniaUSA
| | - Anastassis Perrakis
- Oncode Institute and Division of BiochemistryNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Lucy Stols
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of ChicagoChicagoIllinoisUSA
- X‐ray Science DivisionArgonne National Laboratory, Structural Biology CenterArgonneIllinoisUSA
| | - John A. Tainer
- Department of Molecular and Cellular OncologyThe University of Texas M.D. Anderson Cancer CenterHoustonTexasUSA
- Department of Cancer BiologyUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck, University College LondonLondonUK
- Centre for Structural Systems Biology, Leibniz‐Institut für Experimentelle VirologieHamburgGermany
| | - Susan E. Tsutakawa
- Molecular Biophysics and Integrated BioimagingLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | | | - Torsten Schwede
- Biozentrum, University of BaselBaselSwitzerland
- Computational Structural BiologySIB Swiss Institute of BioinformaticsBaselSwitzerland
| |
Collapse
|
10
|
Liu Y, Heim KP, Che Y, Chi X, Qiu X, Han S, Dormitzer PR, Yang X. Prefusion structure of human cytomegalovirus glycoprotein B and structural basis for membrane fusion. SCIENCE ADVANCES 2021; 7:7/10/eabf3178. [PMID: 33674318 PMCID: PMC7935361 DOI: 10.1126/sciadv.abf3178] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/21/2021] [Indexed: 05/12/2023]
Abstract
Human cytomegalovirus (HCMV) causes congenital disease with long-term morbidity. HCMV glycoprotein B (gB) transitions irreversibly from a metastable prefusion to a stable postfusion conformation to fuse the viral envelope with a host cell membrane during entry. We stabilized prefusion gB on the virion with a fusion inhibitor and a chemical cross-linker, extracted and purified it, and then determined its structure to 3.6-Å resolution by electron cryomicroscopy. Our results revealed the structural rearrangements that mediate membrane fusion and details of the interactions among the fusion loops, the membrane-proximal region, transmembrane domain, and bound fusion inhibitor that stabilized gB in the prefusion state. The structure rationalizes known gB antigenic sites. By analogy to successful vaccine antigen engineering approaches for other viral pathogens, the high-resolution prefusion gB structure provides a basis to develop stabilized prefusion gB HCMV vaccine antigens.
Collapse
Affiliation(s)
- Yuhang Liu
- Discovery Sciences, Pfizer Inc., Groton, CT 06340, USA.
| | - Kyle P Heim
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY 10965, USA
| | - Ye Che
- Discovery Sciences, Pfizer Inc., Groton, CT 06340, USA
| | - Xiaoyuan Chi
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY 10965, USA
| | - Xiayang Qiu
- Discovery Sciences, Pfizer Inc., Groton, CT 06340, USA
| | - Seungil Han
- Discovery Sciences, Pfizer Inc., Groton, CT 06340, USA
| | - Philip R Dormitzer
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY 10965, USA.
| | - Xinzhen Yang
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY 10965, USA
| |
Collapse
|
11
|
Oliver SL, Xing Y, Chen DH, Roh SH, Pintilie GD, Bushnell DA, Sommer MH, Yang E, Carfi A, Chiu W, Arvin AM. The N-terminus of varicella-zoster virus glycoprotein B has a functional role in fusion. PLoS Pathog 2021; 17:e1008961. [PMID: 33411789 PMCID: PMC7817050 DOI: 10.1371/journal.ppat.1008961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/20/2021] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Varicella-zoster virus (VZV) is a medically important alphaherpesvirus that induces fusion of the virion envelope and the cell membrane during entry, and between cells to form polykaryocytes within infected tissues during pathogenesis. All members of the Herpesviridae, including VZV, have a conserved core fusion complex composed of glycoproteins, gB, gH and gL. The ectodomain of the primary fusogen, gB, has five domains, DI-V, of which DI contains the fusion loops needed for fusion function. We recently demonstrated that DIV is critical for fusion initiation, which was revealed by a 2.8Å structure of a VZV neutralizing mAb, 93k, bound to gB and mutagenesis of the gB-93k interface. To further assess the mechanism of mAb 93k neutralization, the binding site of a non-neutralizing mAb to gB, SG2, was compared to mAb 93k using single particle cryogenic electron microscopy (cryo-EM). The gB-SG2 interface partially overlapped with that of gB-93k but, unlike mAb 93k, mAb SG2 did not interact with the gB N-terminus, suggesting a potential role for the gB N-terminus in membrane fusion. The gB ectodomain structure in the absence of antibody was defined at near atomic resolution by single particle cryo-EM (3.9Å) of native, full-length gB purified from infected cells and by X-ray crystallography (2.4Å) of the transiently expressed ectodomain. Both structures revealed that the VZV gB N-terminus (aa72-114) was flexible based on the absence of visible structures in the cryo-EM or X-ray crystallography data but the presence of gB N-terminal peptides were confirmed by mass spectrometry. Notably, N-terminal residues 109KSQD112 were predicted to form a small α-helix and alanine substitution of these residues abolished cell-cell fusion in a virus-free assay. Importantly, transferring the 109AAAA112 mutation into the VZV genome significantly impaired viral propagation. These data establish a functional role for the gB N-terminus in membrane fusion broadly relevant to the Herpesviridae.
Collapse
Affiliation(s)
- Stefan L. Oliver
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| | - Yi Xing
- GSK Vaccines, Cambridge, Massachusetts, United States of America
| | - Dong-Hua Chen
- Structural Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Soung Hun Roh
- Department of Biological Sciences, Institute of Molecular Biology & Genetics, Seoul National University, Seoul, Korea
| | - Grigore D. Pintilie
- Bioengineering, Stanford University School of Medicine, Stanford, California, United States of America
| | - David A. Bushnell
- Structural Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Marvin H. Sommer
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Edward Yang
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Andrea Carfi
- GSK Vaccines, Cambridge, Massachusetts, United States of America
| | - Wah Chiu
- Bioengineering, Stanford University School of Medicine, Stanford, California, United States of America
- Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Division of Cryo-EM and Bioimaging SSRL, SLAC National Accelerator Laboratory, Menlo Park, California, United States of America
| | - Ann M. Arvin
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
- Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
12
|
A glycoprotein B-neutralizing antibody structure at 2.8 Å uncovers a critical domain for herpesvirus fusion initiation. Nat Commun 2020; 11:4141. [PMID: 32811830 PMCID: PMC7435202 DOI: 10.1038/s41467-020-17911-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/21/2020] [Indexed: 11/24/2022] Open
Abstract
Members of the Herpesviridae, including the medically important alphaherpesvirus varicella-zoster virus (VZV), induce fusion of the virion envelope with cell membranes during entry, and between cells to form polykaryocytes in infected tissues. The conserved glycoproteins, gB, gH and gL, are the core functional proteins of the herpesvirus fusion complex. gB serves as the primary fusogen via its fusion loops, but functions for the remaining gB domains remain unexplained. As a pathway for biological discovery of domain function, our approach used structure-based analysis of the viral fusogen together with a neutralizing antibody. We report here a 2.8 Å cryogenic-electron microscopy structure of native gB recovered from VZV-infected cells, in complex with a human monoclonal antibody, 93k. This high-resolution structure guided targeted mutagenesis at the gB-93k interface, providing compelling evidence that a domain spatially distant from the gB fusion loops is critical for herpesvirus fusion, revealing a potential new target for antiviral therapies. Herpesvirus virions have an outer lipid membrane dotted with glycoproteins that enable fusion with cell membranes to initiate entry and establish infection. Here the authors elucidate the structural mechanism of a neutralizing antibody derived from a patient infected by the herpesvirus varicella-zoster virus and targeted to its fusogen, glycoprotein-B.
Collapse
|
13
|
Past and ongoing adaptation of human cytomegalovirus to its host. PLoS Pathog 2020; 16:e1008476. [PMID: 32384127 PMCID: PMC7239485 DOI: 10.1371/journal.ppat.1008476] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 05/20/2020] [Accepted: 03/13/2020] [Indexed: 12/18/2022] Open
Abstract
Cytomegaloviruses (order Herpesvirales) display remarkable species-specificity as a result of long-term co-evolution with their mammalian hosts. Human cytomegalovirus (HCMV) is exquisitely adapted to our species and displays high genetic diversity. We leveraged information on inter-species divergence of primate-infecting cytomegaloviruses and intra-species diversity of clinical isolates to provide a genome-wide picture of HCMV adaptation across different time-frames. During adaptation to the human host, core viral genes were commonly targeted by positive selection. Functional characterization of adaptive mutations in the primase gene (UL70) indicated that selection favored amino acid replacements that decrease viral replication in human fibroblasts, suggesting evolution towards viral temperance. HCMV intra-species diversity was largely governed by immune system-driven selective pressure, with several adaptive variants located in antigenic domains. A significant excess of positively selected sites was also detected in the signal peptides (SPs) of viral proteins, indicating that, although they are removed from mature proteins, SPs can contribute to viral adaptation. Functional characterization of one of these SPs indicated that adaptive variants modulate the timing of cleavage by the signal peptidase and the dynamics of glycoprotein intracellular trafficking. We thus used evolutionary information to generate experimentally-testable hypotheses on the functional effect of HCMV genetic diversity and we define modulators of viral phenotypes. Human cytomegalovirus (HCMV), which represents the most common infectious cause of birth defects, is perfectly adapted to infect humans. We performed a two-tier analysis of HCMV evolution, by describing selective events that occurred during HCMV adaptation to our species and by identifying more recently emerged adaptive variants in clinical isolates. We show that distinct viral genes were targeted by natural selection over different time frames and we generate a catalog of adaptive variants that represent candidate determinants of viral phenotypic variation. As a proof of concept, we show that adaptive changes in the viral primase modulate viral growth in vitro and that selected variants in the UL144 signal peptide affect glycoprotein intracellular trafficking.
Collapse
|
14
|
Baraniak I, Gomes AC, Sodi I, Langstone T, Rothwell E, Atkinson C, Pichon S, Piras-Douce F, Griffiths PD, Reeves MB. Seronegative patients vaccinated with cytomegalovirus gB-MF59 vaccine have evidence of neutralising antibody responses against gB early post-transplantation. EBioMedicine 2019; 50:45-54. [PMID: 31735553 PMCID: PMC6921368 DOI: 10.1016/j.ebiom.2019.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human cytomegalovirus (HCMV) causes a ubiquitous infection which can pose a significant threat for immunocompromised individuals, such as those undergoing solid organ transplant (SOT). Arguably, the most successful vaccine studied to date is the recombinant glycoprotein-B (gB) with MF59 adjuvant which, in 3 Phase II trials, demonstrated 43-50% efficacy in preventing HCMV acquisition in seronegative healthy women or adolescents and reduction in virological parameters after SOT. However, the mechanism of vaccine protection in seronegative recipients remains undefined. METHODS We evaluated samples from the cohort of seronegative SOT patients enroled in the Phase II glycoprotein-B/MF59 vaccine trial who received organs from seropositive donors. Samples after SOT (0-90 days) were tested by real-time quantitative PCR for HCMV DNA. Anti-gB antibody levels were measured by ELISA. Neutralization was measured as a decrease in infectivity for fibroblast cell cultures revealed by expression of immediate-early antigens. FINDINGS Serological analyses revealed a more rapid increase in the humoral response against gB post transplant in vaccine recipients than in those randomised to receive placebo. Importantly, a number of patient sera displayed HCMV neutralising responses - neutralisation which was abrogated by pre-absorbing the sera with recombinant gB. INTERPRETATION We hypothesise that the vaccine primed the immune system of seronegative recipients which, when further challenged with virus at time of transplant, allowed the host to mount rapid immunological humoral responses even under conditions of T cell immune suppression during transplantation.
Collapse
Affiliation(s)
- Ilona Baraniak
- Institute for Immunity and Transplantation, UCL, Royal Free Campus, London NW3 2PF, United Kingdom
| | - Ariane C Gomes
- Institute for Immunity and Transplantation, UCL, Royal Free Campus, London NW3 2PF, United Kingdom
| | - Isabella Sodi
- Institute for Immunity and Transplantation, UCL, Royal Free Campus, London NW3 2PF, United Kingdom
| | - Toby Langstone
- Institute for Immunity and Transplantation, UCL, Royal Free Campus, London NW3 2PF, United Kingdom
| | - Emily Rothwell
- Institute for Immunity and Transplantation, UCL, Royal Free Campus, London NW3 2PF, United Kingdom
| | - Claire Atkinson
- Institute for Immunity and Transplantation, UCL, Royal Free Campus, London NW3 2PF, United Kingdom
| | - Sylvie Pichon
- Clinical Development, Sanofi Pasteur, Marcy l'Etoile, France
| | | | - Paul D Griffiths
- Institute for Immunity and Transplantation, UCL, Royal Free Campus, London NW3 2PF, United Kingdom
| | - Matthew B Reeves
- Institute for Immunity and Transplantation, UCL, Royal Free Campus, London NW3 2PF, United Kingdom.
| |
Collapse
|
15
|
Chéneau C, Coulon F, Porkolab V, Fieschi F, Laurant S, Razanajaona-Doll D, Pin JJ, Borst EM, Messerle M, Bressollette-Bodin C, Halary F. Fine Mapping the Interaction Between Dendritic Cell-Specific Intercellular Adhesion Molecule (ICAM)-3-Grabbing Nonintegrin and the Cytomegalovirus Envelope Glycoprotein B. J Infect Dis 2019; 218:490-503. [PMID: 29648611 PMCID: PMC6049025 DOI: 10.1093/infdis/jiy194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/03/2018] [Indexed: 12/22/2022] Open
Abstract
Background Human cytomegalovirus (HCMV) is a leading cause of virally induced congenital disorders and morbidities in immunocompromised individuals, ie, transplant, cancer, or acquired immune deficiency syndrome patients. Human cytomegalovirus infects virtually all cell types through the envelope glycoprotein complex gH/gL/gO with or without a contribution of the pentameric gH/gL/pUL128L. Together with gH/gL, the HCMV envelope glycoprotein B (gB) contributes to the viral fusion machinery. Methods We previously showed that gB is a ligand for the C-type lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) contributing to HCMV attachment to and infection of DC-SIGN-expressing cells. However, the features of the DC-SIGN/gB interaction remain unclear. To address this point, the role of glycans on gB and the consequences of mutagenesis and antibody-mediated blockades on both partners were examined in this study. Results We identified DC-SIGN amino acid residues involved in this interaction through an extensive mutagenesis study. We also showed the importance of high-mannose N-glycans decorating the asparagine residue at position 208, demonstrating that the antigenic domain 5 on gB is involved in the interaction with DC-SIGN. Finally, antibody-mediated blockades allowed us to identify DC-SIGN as a major HCMV attachment receptor on monocyte-derived dendritic cells. Conclusions Taken together, these results have permitted us to fine-map the interaction between DC-SIGN and HCMV gB.
Collapse
Affiliation(s)
- Coraline Chéneau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, France.,Institut de Transplantation Urologie Néphrologie, Centre Hospitalier Universitaire (CHU) Nantes, France
| | - Flora Coulon
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, France.,Institut de Transplantation Urologie Néphrologie, Centre Hospitalier Universitaire (CHU) Nantes, France
| | - Vanessa Porkolab
- Université Grenoble Alpes, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Institute de Biologie Structurale, Grenoble, France
| | - Franck Fieschi
- Université Grenoble Alpes, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Institute de Biologie Structurale, Grenoble, France
| | | | | | | | - Eva Maria Borst
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Céline Bressollette-Bodin
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, France.,Institut de Transplantation Urologie Néphrologie, Centre Hospitalier Universitaire (CHU) Nantes, France.,Service de Virologie Clinique, CHU Hotel Dieu, Nantes, France
| | - Franck Halary
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, France.,Institut de Transplantation Urologie Néphrologie, Centre Hospitalier Universitaire (CHU) Nantes, France
| |
Collapse
|
16
|
A Native Human Monoclonal Antibody Targeting HCMV gB (AD-2 Site I). Int J Mol Sci 2018; 19:ijms19123982. [PMID: 30544903 PMCID: PMC6321246 DOI: 10.3390/ijms19123982] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/04/2018] [Accepted: 12/08/2018] [Indexed: 12/22/2022] Open
Abstract
Hyperimmune globulin (HIG) has shown efficacy against human cytomegalovirus (HCMV) for both transplant and congenital transmission indications. Replicating that activity with a monoclonal antibody (mAb) offers the potential for improved consistency in manufacturing, lower infusion volume, and improved pharmacokinetics, as well as reduced risk of off-target reactivity leading to toxicity. HCMV pathology is linked to its broad cell tropism. The glycoprotein B (gB) envelope protein is important for infections in all cell types. Within gB, the antigenic determinant (AD)-2 Site I is qualitatively more highly-conserved than any other region of the virus. TRL345, a high affinity (Kd = 50 pM) native human mAb to this site, has shown efficacy in neutralizing the infection of fibroblasts, endothelial and epithelial cells, as well as specialized placental cells including trophoblast progenitor cells. It has also been shown to block the infection of placental fragments grown ex vivo, and to reduce syncytial spread in fibroblasts in vitro. Manufacturing and toxicology preparation for filing an IND (investigational new drug) application with the US Food and Drug Administration (FDA) are expected to be completed in mid-2019.
Collapse
|
17
|
Alt M, Falk J, Eis-Hübinger AM, Kropff B, Sinzger C, Krawczyk A. Detection of antibody-secreting cells specific for the cytomegalovirus and herpes simplex virus surface antigens. J Immunol Methods 2018; 462:13-22. [PMID: 30056033 PMCID: PMC7094464 DOI: 10.1016/j.jim.2018.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/29/2018] [Accepted: 07/25/2018] [Indexed: 11/24/2022]
Abstract
Infections with the herpes simplex virus (HSV) and the human cytomegalovirus (HCMV) can lead to life-threatening diseases, particularly in immunosuppressed patients. Furthermore, HSV infections at birth (herpes neonatorum) can result in a disseminated disease associated with a fatal multiorgan failure. Congenital HCMV infections can result in miscarriage, serious birth defects or developmental disabilities. Antibody-based interventions with hyperimmunoglobulins showed encouraging results in clinical studies, but clearly need to be improved. The isolation of highly neutralizing monoclonal antibodies is a promising strategy to establish potent therapy options against HSV and HCMV infections. Monoclonal antibodies are commonly isolated from hybridomas or EBV-immortalized B-cell clones. The screening procedure to identify virus-specific cells from a cell mixture is a challenging step, since most of the highly neutralizing antibodies target complex conformational epitopes on the virus surface. Conventional assays such as ELISA are based on purified viral proteins and inappropriate to display complex epitopes. To overcome this obstacle, we have established two full-virus based methods that allow screening for cells and antibodies targeting complex conformational epitopes on viral surface antigens. The methods are suitable to detect surface antigen-specific cells from a cell mixture and may facilitate the isolation of highly neutralizing antibodies against HSV and HCMV.
Collapse
Affiliation(s)
- Mira Alt
- Institute for Virology, University Hospital of Essen, 45147 Essen, Germany
| | - Jessica Falk
- Institute for Virology, University Hospital of Ulm, 89081 Ulm, Germany
| | | | - Barbara Kropff
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Christian Sinzger
- Institute for Virology, University Hospital of Ulm, 89081 Ulm, Germany
| | - Adalbert Krawczyk
- Institute for Virology, University Hospital of Essen, 45147 Essen, Germany.
| |
Collapse
|
18
|
Protection from cytomegalovirus viremia following glycoprotein B vaccination is not dependent on neutralizing antibodies. Proc Natl Acad Sci U S A 2018; 115:6273-6278. [PMID: 29686064 PMCID: PMC6004462 DOI: 10.1073/pnas.1800224115] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) is an important pathogen in transplant patients and in congenital infection. Previously, we demonstrated that vaccination with a recombinant viral glycoprotein B (gB)/MF59 adjuvant formulation before solid organ transplant reduced viral load parameters post transplant. Reduced posttransplant viremia was directly correlated with antibody titers against gB consistent with a humoral response against gB being important. Here we show that sera from the vaccinated seronegative patients displayed little evidence of a neutralizing antibody response against cell-free HCMV in vitro. Additionally, sera from seronegative vaccine recipients had minimal effect on the replication of a strain of HCMV engineered to be cell-associated in a viral spread assay. Furthermore, although natural infection can induce antibody-dependent cellular cytotoxicity (ADCC) responses, serological analysis of seronegative vaccinees again presented no evidence of a substantial ADCC-promoting antibody response being generated de novo. Finally, analyses for responses against major antigenic domains of gB following vaccination were variable, and their pattern was distinct compared with natural infection. Taken together, these data argue that the protective effect elicited by the gB vaccine is via a mechanism of action in seronegative vaccinees that cannot be explained by neutralization or the induction of ADCC. More generally, these data, which are derived from a human challenge model that demonstrated that the gB vaccine is protective, highlight the need for more sophisticated analyses of new HCMV vaccines over and above the quantification of an ability to induce potent neutralizing antibody responses in vitro.
Collapse
|
19
|
Di Palma F, Tramontano A. Dynamics behind affinity maturation of an anti-HCMV antibody family influencing antigen binding. FEBS Lett 2017; 591:2936-2950. [PMID: 28771696 DOI: 10.1002/1873-3468.12774] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/18/2017] [Accepted: 07/24/2017] [Indexed: 12/24/2022]
Abstract
The investigation of antibody affinity maturation and its effects on antigen binding is important with respect to understanding the regulation of the immune response. To shed light on this crucial process, we analyzed two Igs neutralizing the human cytomegalovirus: the primary germline antibody M2J1 and its related mature antibody 8F9. Both antibodies target the AD-2S1 epitope of the gB envelope protein and are considered to establish similar interactions with the cognate antigen. We used molecular dynamics simulations to understand the effect of mutations on the antibody-antigen interactions. The results provide a qualitative explanation for the increased 8F9 peptide affinity compared with that of M2J1. The emerging atomistic-detailed description of these complexes reveals the molecular effects of the somatic hypermutations occurring during affinity maturation.
Collapse
Affiliation(s)
| | - Anna Tramontano
- Department of Physics, Sapienza - Università di Roma, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Roma, Italy
| |
Collapse
|
20
|
Gardner TJ, Stein KR, Duty JA, Schwarz TM, Noriega VM, Kraus T, Moran TM, Tortorella D. Functional screening for anti-CMV biologics identifies a broadly neutralizing epitope of an essential envelope protein. Nat Commun 2016; 7:13627. [PMID: 27966523 PMCID: PMC5171902 DOI: 10.1038/ncomms13627] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/20/2016] [Indexed: 12/30/2022] Open
Abstract
The prototypic β-herpesvirus human cytomegalovirus (CMV) establishes life-long persistence within its human host. The CMV envelope consists of various protein complexes that enable wide viral tropism. More specifically, the glycoprotein complex gH/gL/gO (gH-trimer) is required for infection of all cell types, while the gH/gL/UL128/130/131a (gH-pentamer) complex imparts specificity in infecting epithelial, endothelial and myeloid cells. Here we utilize state-of-the-art robotics and a high-throughput neutralization assay to screen and identify monoclonal antibodies (mAbs) targeting the gH glycoproteins that display broad-spectrum properties to inhibit virus infection and dissemination. Subsequent biochemical characterization reveals that the mAbs bind to gH-trimer and gH-pentamer complexes and identify the antibodies' epitope as an 'antigenic hot spot' critical for virus entry. The mAbs inhibit CMV infection at a post-attachment step by interacting with a highly conserved central alpha helix-rich domain. The platform described here provides the framework for development of effective CMV biologics and vaccine design strategies.
Collapse
Affiliation(s)
- Thomas J. Gardner
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Kathryn R. Stein
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - J. Andrew Duty
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Center for Therapeutic Antibody Development, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Toni M. Schwarz
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Vanessa M. Noriega
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Thomas Kraus
- Center for Therapeutic Antibody Development, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Thomas M. Moran
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Center for Therapeutic Antibody Development, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
21
|
Virion Glycoprotein-Mediated Immune Evasion by Human Cytomegalovirus: a Sticky Virus Makes a Slick Getaway. Microbiol Mol Biol Rev 2016; 80:663-77. [PMID: 27307580 DOI: 10.1128/mmbr.00018-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The prototypic herpesvirus human cytomegalovirus (CMV) exhibits the extraordinary ability to establish latency and maintain a chronic infection throughout the life of its human host. This is even more remarkable considering the robust adaptive immune response elicited by infection and reactivation from latency. In addition to the ability of CMV to exist in a quiescent latent state, its persistence is enabled by a large repertoire of viral proteins that subvert immune defense mechanisms, such as NK cell activation and major histocompatibility complex antigen presentation, within the cell. However, dissemination outside the cell presents a unique existential challenge to the CMV virion, which is studded with antigenic glycoprotein complexes targeted by a potent neutralizing antibody response. The CMV virion envelope proteins, which are critical mediators of cell attachment and entry, possess various characteristics that can mitigate the humoral immune response and prevent viral clearance. Here we review the CMV glycoprotein complexes crucial for cell attachment and entry and propose inherent properties of these proteins involved in evading the CMV humoral immune response. These include viral glycoprotein polymorphism, epitope competition, Fc receptor-mediated endocytosis, glycan shielding, and cell-to-cell spread. The consequences of CMV virion glycoprotein-mediated immune evasion have a major impact on persistence of the virus in the population, and a comprehensive understanding of these evasion strategies will assist in designing effective CMV biologics and vaccines to limit CMV-associated disease.
Collapse
|
22
|
Finnefrock AC, Freed DC, Tang A, Li F, He X, Wu C, Nahas D, Wang D, Fu TM. Preclinical evaluations of peptide-conjugate vaccines targeting the antigenic domain-2 of glycoprotein B of human cytomegalovirus. Hum Vaccin Immunother 2016; 12:2106-2112. [PMID: 26986197 DOI: 10.1080/21645515.2016.1164376] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The Antigenic Domain 2 (AD-2) is a short region near the N-terminus of glycoprotein B of human cytomegalovirus (HCMV). AD-2 has been shown to contain linear epitopes that are targets for neutralizing monoclonal antibodies from human subjects with natural HCMV infection. However, AD-2 appears to be masked by the adjacent immunodominant AD-1 region. We assessed a serum panel from HCMV-seropositive individuals and found a wide range of antibody titers to AD-2; these did not correlate to serum neutralization. To expose potential epitopes in AD-2, we constructed a series of AD-2 peptide-conjugate vaccines. Mice were immunized 3 times and produced high and sustained antibody titers to AD-2 peptides, but neutralization was weak even after a single boost with whole HCMV virions. Rabbits were likewise immunized with AD-2 peptide vaccines, and produced a robust antibody response, but neutralization was inferior to a recombinant gB vaccine with an oil-in-water adjuvant. These results highlight the challenges of developing a peptide-based vaccine specific to the HCMV gB AD-2 region.
Collapse
Affiliation(s)
- Adam C Finnefrock
- a Merck Research Laboratories, Merck and Companies, Incorporated , Kenilworth , NJ , USA
| | - Daniel C Freed
- a Merck Research Laboratories, Merck and Companies, Incorporated , Kenilworth , NJ , USA
| | - Aimin Tang
- a Merck Research Laboratories, Merck and Companies, Incorporated , Kenilworth , NJ , USA
| | - Fengsheng Li
- a Merck Research Laboratories, Merck and Companies, Incorporated , Kenilworth , NJ , USA
| | - Xi He
- a Merck Research Laboratories, Merck and Companies, Incorporated , Kenilworth , NJ , USA
| | - Chengwei Wu
- a Merck Research Laboratories, Merck and Companies, Incorporated , Kenilworth , NJ , USA
| | - Debbie Nahas
- a Merck Research Laboratories, Merck and Companies, Incorporated , Kenilworth , NJ , USA
| | - Dai Wang
- a Merck Research Laboratories, Merck and Companies, Incorporated , Kenilworth , NJ , USA
| | - Tong-Ming Fu
- a Merck Research Laboratories, Merck and Companies, Incorporated , Kenilworth , NJ , USA
| |
Collapse
|
23
|
Crystal Structure of the Human Cytomegalovirus Glycoprotein B. PLoS Pathog 2015; 11:e1005227. [PMID: 26484870 PMCID: PMC4617298 DOI: 10.1371/journal.ppat.1005227] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/23/2015] [Indexed: 12/21/2022] Open
Abstract
Human cytomegalovirus (HCMV), a dsDNA, enveloped virus, is a ubiquitous pathogen that establishes lifelong latent infections and caused disease in persons with compromised immune systems, e.g., organ transplant recipients or AIDS patients. HCMV is also a leading cause of congenital viral infections in newborns. Entry of HCMV into cells requires the conserved glycoprotein B (gB), thought to function as a fusogen and reported to bind signaling receptors. gB also elicits a strong immune response in humans and induces the production of neutralizing antibodies although most anti-gB Abs are non-neutralizing. Here, we report the crystal structure of the HCMV gB ectodomain determined to 3.6-Å resolution, which is the first atomic-level structure of any betaherpesvirus glycoprotein. The structure of HCMV gB resembles the postfusion structures of HSV-1 and EBV homologs, establishing it as a new member of the class III viral fusogens. Despite structural similarities, each gB has a unique domain arrangement, demonstrating structural plasticity of gB that may accommodate virus-specific functional requirements. The structure illustrates how extensive glycosylation of the gB ectodomain influences antibody recognition. Antigenic sites that elicit neutralizing antibodies are more heavily glycosylated than those that elicit non-neutralizing antibodies, which suggest that HCMV gB uses glycans to shield neutralizing epitopes while exposing non-neutralizing epitopes. This glycosylation pattern may have evolved to direct the immune response towards generation of non-neutralizing antibodies thus helping HCMV to avoid clearance. HCMV gB structure provides a starting point for elucidation of its antigenic and immunogenic properties and aid in the design of recombinant vaccines and monoclonal antibody therapies. Human cytomegalovirus (HCMV) establishes lifelong infection in a majority of the world’s population and causes disease in neonates and the immunocompromised patients such as organ transplant recipients or persons with AIDS. There is no vaccine against HCMV, and current HCMV antivirals are toxic and an increasing prevalence of resistance. Glycoprotein B (gB), displayed on the viral surface is a major viral immunogen and is necessary for viral penetration into cells. The crystal structure of gB reported here provides a detailed 3D map of gB. A thick glycan layer covers a large surface area, which may explain why anti-gB neutralizing antibodies are relatively rare. The structure is expected to aid in the development of a HCMV vaccine and monoclonal antibody therapies.
Collapse
|
24
|
Ohlin M, Söderberg-Nauclér C. Human antibody technology and the development of antibodies against cytomegalovirus. Mol Immunol 2015; 67:153-70. [DOI: 10.1016/j.molimm.2015.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 02/08/2023]
|
25
|
Chandramouli S, Ciferri C, Nikitin PA, Caló S, Gerrein R, Balabanis K, Monroe J, Hebner C, Lilja AE, Settembre EC, Carfi A. Structure of HCMV glycoprotein B in the postfusion conformation bound to a neutralizing human antibody. Nat Commun 2015; 6:8176. [PMID: 26365435 PMCID: PMC4579600 DOI: 10.1038/ncomms9176] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/27/2015] [Indexed: 12/23/2022] Open
Abstract
Human cytomegalovirus (HCMV) poses a significant threat to immunocompromised individuals and neonates infected in utero. Glycoprotein B (gB), the herpesvirus fusion protein, is a target for neutralizing antibodies and a vaccine candidate due to its indispensable role in infection. Here we show the crystal structure of the HCMV gB ectodomain bound to the Fab fragment of 1G2, a neutralizing human monoclonal antibody isolated from a seropositive subject. The gB/1G2 interaction is dominated by aromatic residues in the 1G2 heavy chain CDR3 protruding into a hydrophobic cleft in the gB antigenic domain 5 (AD-5). Structural analysis and comparison with HSV gB suggest the location of additional neutralizing antibody binding sites on HCMV gB. Finally, immunoprecipitation experiments reveal that 1G2 can bind to HCMV virion gB suggesting that its epitope is exposed and accessible on the virus surface. Our data will support the development of vaccines and therapeutic antibodies against HCMV infection. Cytomegalovirus is a danger to individuals with compromised immune systems and neonates infected in utero. Here the authors show the structure of a neutralizing antibody-bound viral fusion protein glycoprotein B, supporting the development of therapeutic antibodies and vaccines.
Collapse
Affiliation(s)
| | - Claudio Ciferri
- GSK Vaccines, 45 Sidney Street, Cambridge, Massachusetts 02139, USA
| | - Pavel A Nikitin
- Novartis Institutes for Biomedical Research, Emeryville, California 94608, USA
| | - Stefano Caló
- GSK Vaccines, Via Fiorentina 1, Siena 53100, Italy
| | - Rachel Gerrein
- GSK Vaccines, 45 Sidney Street, Cambridge, Massachusetts 02139, USA
| | - Kara Balabanis
- GSK Vaccines, 45 Sidney Street, Cambridge, Massachusetts 02139, USA
| | - James Monroe
- GSK Vaccines, 45 Sidney Street, Cambridge, Massachusetts 02139, USA
| | - Christy Hebner
- Novartis Institutes for Biomedical Research, Emeryville, California 94608, USA
| | - Anders E Lilja
- GSK Vaccines, 45 Sidney Street, Cambridge, Massachusetts 02139, USA
| | - Ethan C Settembre
- Novartis Influenza Vaccines, 45 Sidney Street, Cambridge, Massachusetts 02139, USA
| | - Andrea Carfi
- GSK Vaccines, 45 Sidney Street, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
26
|
A high-affinity native human antibody neutralizes human cytomegalovirus infection of diverse cell types. Antimicrob Agents Chemother 2014; 59:1558-68. [PMID: 25534746 DOI: 10.1128/aac.04295-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the most common infection causing poor outcomes among transplant recipients. Maternal infection and transplacental transmission are major causes of permanent birth defects. Although no active vaccines to prevent HCMV infection have been approved, passive immunization with HCMV-specific immunoglobulin has shown promise in the treatment of both transplant and congenital indications. Antibodies targeting the viral glycoprotein B (gB) surface protein are known to neutralize HCMV infectivity, with high-affinity binding being a desirable trait, both to compete with low-affinity antibodies that promote the transmission of virus across the placenta and to displace nonneutralizing antibodies binding nearby epitopes. Using a miniaturized screening technology to characterize secreted IgG from single human B lymphocytes, 30 antibodies directed against gB were previously cloned. The most potent clone, TRL345, is described here. Its measured affinity was 1 pM for the highly conserved site I of the AD-2 epitope of gB. Strain-independent neutralization was confirmed for 15 primary HCMV clinical isolates. TRL345 prevented HCMV infection of placental fibroblasts, smooth muscle cells, endothelial cells, and epithelial cells, and it inhibited postinfection HCMV spread in epithelial cells. The potential utility for preventing congenital transmission is supported by the blockage of HCMV infection of placental cell types central to virus transmission to the fetus, including differentiating cytotrophoblasts, trophoblast progenitor cells, and placental fibroblasts. Further, TRL345 was effective at controlling an ex vivo infection of human placental anchoring villi. TRL345 has been utilized on a commercial scale and is a candidate for clinical evaluation.
Collapse
|
27
|
Ohlin M. A new look at a poorly immunogenic neutralization epitope on cytomegalovirus glycoprotein B. Is there cause for antigen redesign? Mol Immunol 2014; 60:95-102. [PMID: 24802891 DOI: 10.1016/j.molimm.2014.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 11/25/2022]
Abstract
The immune response is able to control cytomegalovirus infection in most subjects. However, in some patient groups the virus is not well contained resulting in disease and severe morbidity. The development of efficacious vaccines is therefore a high priority. Antibodies may contribute to protection against disease caused by CMV but the most efficient targets for protective humoral immunity are not precisely known. Glycoprotein B (gB) is a protein that is targeted by virus-neutralizing antibodies. One epitope on gB, AD-2, is poorly immunogenic following natural infection and vaccination. It is consequently not effectively exploited as a target for antibodies by the immune system. However, antibodies specific for this epitope, when they develop, display important functional activities that may play a role in protection against infection. In this study critical features of human antibody recognition of this epitope are re-assessed based on structural and immunochemical data. The analysis suggests that the immune system may only be able to develop an AD-2 specific antibody response through rare, very specific rearrangement events that by chance create a naïve B cell that can be recruited into an AD-2 specific immune response. These results reinvigorate the notion that if we are to be able to effectively exploit AD-2 specific humoral immunity we need to readdress the nature of the antigen incorporated into vaccines so as to more effectively recruit B cells into the response against this epitope.
Collapse
Affiliation(s)
- Mats Ohlin
- Dept. of Immunotechnology, Lund University, Medicon Village, Building 406, S-22381 Lund, Sweden.
| |
Collapse
|
28
|
Zydek M, Petitt M, Fang-Hoover J, Adler B, Kauvar LM, Pereira L, Tabata T. HCMV infection of human trophoblast progenitor cells of the placenta is neutralized by a human monoclonal antibody to glycoprotein B and not by antibodies to the pentamer complex. Viruses 2014; 6:1346-64. [PMID: 24651029 PMCID: PMC3970154 DOI: 10.3390/v6031346] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 02/27/2014] [Accepted: 02/27/2014] [Indexed: 12/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the major viral cause of congenital infection and birth defects. Primary maternal infection often results in virus transmission, and symptomatic babies can have permanent neurological deficiencies and deafness. Congenital infection can also lead to intrauterine growth restriction, a defect in placental transport. HCMV replicates in primary cytotrophoblasts (CTBs), the specialized cells of the placenta, and inhibits differentiation/invasion. Human trophoblast progenitor cells (TBPCs) give rise to the mature cell types of the chorionic villi, CTBs and multi-nucleated syncytiotrophoblasts (STBs). Here we report that TBPCs are fully permissive for pathogenic and attenuated HCMV strains. Studies with a mutant virus lacking a functional pentamer complex (gH/gL/pUL128-131A) showed that virion entry into TBPCs is independent of the pentamer. In addition, infection is blocked by a potent human neutralizing monoclonal antibody (mAb), TRL345, reactive with glycoprotein B (gB), but not mAbs to the pentamer proteins pUL130/pUL131A. Functional studies revealed that neutralization of infection preserved the capacity of TBPCs to differentiate and assemble into trophospheres composed of CTBs and STBs in vitro. Our results indicate that mAbs to gB protect trophoblast progenitors of the placenta and could be included in antibody treatments developed to suppress congenital infection and prevent disease.
Collapse
Affiliation(s)
- Martin Zydek
- Department of Cell and Tissue Biology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| | - Matthew Petitt
- Department of Cell and Tissue Biology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| | - June Fang-Hoover
- Department of Cell and Tissue Biology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| | - Barbara Adler
- Division of Virology, Max von Pettenkofer-Institute, Ludwig-Maximilians-University Munich, Pettenkoferstr. 9A, D-80336 Munich, Germany.
| | - Lawrence M Kauvar
- Trellis Bioscience, LLC, 2-B Corporate Drive, South San Francisco, CA 94080, USA.
| | - Lenore Pereira
- Department of Cell and Tissue Biology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| | - Takako Tabata
- Department of Cell and Tissue Biology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
29
|
McCutcheon KM, Gray J, Chen NY, Liu K, Park M, Ellsworth S, Tripp RA, Tompkins SM, Johnson SK, Samet S, Pereira L, Kauvar LM. Multiplexed screening of natural humoral immunity identifies antibodies at fine specificity for complex and dynamic viral targets. MAbs 2014; 6:460-73. [PMID: 24492306 DOI: 10.4161/mabs.27760] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Viral entry targets with therapeutic neutralizing potential are subject to multiple escape mechanisms, including antigenic drift, immune dominance of functionally irrelevant epitopes, and subtle variations in host cell mechanisms. A surprising finding of recent years is that potent neutralizing antibodies to viral epitopes independent of strain exist, but are poorly represented across the diverse human population. Identifying these antibodies and understanding the biology mediating the specific immune response is thus difficult. An effective strategy for meeting this challenge is to incorporate multiplexed antigen screening into a high throughput survey of the memory B cell repertoire from immune individuals. We used this approach to discover suites of cross-clade antibodies directed to conformational epitopes in the stalk region of the influenza A hemagglutinin (HA) protein and to select high-affinity anti-peptide antibodies to the glycoprotein B (gB) of human cytomegalovirus. In each case, our screens revealed a restricted VH and VL germline usage, including published and previously unidentified gene families. The in vivo evolution of paratope specificity with optimal neutralizing activity was understandable after correlating biological activities with kinetic binding and epitope recognition. Iterative feedback between antigen probe design based on structure and function information with high throughput multiplexed screening demonstrated a generally applicable strategy for efficient identification of safe, native, finely tuned antibodies with the potential for high genetic barriers to viral escape.
Collapse
Affiliation(s)
| | | | | | - Keyi Liu
- Trellis Biosciences; South San Francisco, CA USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Frenzel K, Lehmann J, Krüger DH, Martin-Parras L, Uharek L, Hofmann J. Combination of immunoglobulins and natural killer cells in the context of CMV and EBV infection. Med Microbiol Immunol 2013; 203:115-23. [PMID: 24337366 DOI: 10.1007/s00430-013-0321-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 12/02/2013] [Indexed: 11/25/2022]
Abstract
Cytomegalovirus (CMV)-specific hyperimmunoglobulin (CMV-HIG) is used to treat and prevent CMV infection in immunocompromised patients, and anti-CD20 monoclonal antibody is successfully used in the treatment for post-transplant lymphoproliferative disease caused by Epstein-Barr virus (EBV). Two immunological approaches have been suggested to further improve the control of viral reproduction in patients with active disease: first, the use of monoclonal antibodies with specificity against viral epitopes and second, coadministration of cells with the capacity to promote antibody-dependent cell-mediated cytotoxicity. Here, we have evaluated the effectiveness of these strategies in vitro (alone and in combination) with neutralization and cytotoxicity assays. Our results indicate that monoclonal antibodies (in particular SM5-1) can be as effective as CMV-HIG in neutralizing-cell-free CMV. Moreover, our data indicate that antibody-mediated elimination (either by moAb or by HIG) of EBV-infected cells can be significantly enhanced by NK cells. Using human NK cells that have been purified, cultured and expanded under GMP conditions, we were able to demonstrate that the combination of NK cells and antibodies could represent a feasible and highly effective clinical approach to achieve control of EBV infections. Especially in leukopenic patients with low numbers of ADCC-promoting cells, the combination of adoptively transferred NK cells and antiviral antibodies offers a promising strategy that should be tested in clinical trials.
Collapse
Affiliation(s)
- K Frenzel
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité University Medicine, Charitéplatz 1, 10117, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Jacob CL, Lamorte L, Sepulveda E, Lorenz IC, Gauthier A, Franti M. Neutralizing antibodies are unable to inhibit direct viral cell-to-cell spread of human cytomegalovirus. Virology 2013; 444:140-7. [PMID: 23849792 DOI: 10.1016/j.virol.2013.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/03/2013] [Accepted: 06/05/2013] [Indexed: 12/17/2022]
Abstract
Infection with human cytomegalovirus (CMV) during pregnancy is the most common cause of congenital disorders, and can lead to severe life-long disabilities with associated high cost of care. Since there is no vaccine or effective treatment, current efforts are focused on identifying potent neutralizing antibodies. A panel of CMV monoclonal antibodies identified from patent applications, was synthesized and expressed in order to reproduce data from the literature showing that anti-glycoprotein B antibodies neutralized virus entry into all cell types and that anti-pentameric complex antibodies are highly potent in preventing virus entry into epithelial cells. It had not been established whether antibodies could prevent subsequent rounds of infection that are mediated primarily by direct cell-to-cell transmission. A thorough validation of a plaque reduction assay to monitor cell-to-cell spread led to the conclusion that neutralizing antibodies do not significantly inhibit plaque formation or reduce plaque size when they are added post-infection.
Collapse
Affiliation(s)
- Christian L Jacob
- Boehringer Ingelheim (Canada) Ltd., 2100 Rue Cunard, Laval, Québec, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Characterization of a discontinuous neutralizing epitope on glycoprotein B of human cytomegalovirus. J Virol 2013; 87:8927-39. [PMID: 23740990 DOI: 10.1128/jvi.00434-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitously distributed pathogen that causes severe disease in immunosuppressed patients and newborn infants infected in utero. The viral envelope glycoprotein B (gB) is an attractive molecule for active vaccination and passive immunoprophylaxis and therapy. Using human monoclonal antibodies (MAbs), we have recently identified antigenic region 4 (AD-4) on gB as an important target for neutralizing antibodies. AD-4 is formed by a discontinuous sequence comprising amino acids 121 to 132 and 344 to 438 of gB of HCMV strain AD169. To map epitopes for human antibodies on this protein domain, we used a three-dimensional (3D) model of HCMV gB to identify surface-exposed amino acids on AD-4 and selected juxtaposed residues for alanine scans. A tyrosine (Y) at position 364 and a lysine (K) at position 379 (the YK epitope), which are immediate neighbors on the AD-4 surface, were found to be essential for binding of the human MAbs. Recognition of AD-4 by sera from HCMV-infected individuals also was largely dependent on these two residues, indicating a general importance for the antibody response against AD-4. A panel of AD-4 recombinant viruses harboring mutations at the crucial antibody binding sites was generated. The viruses showed significantly reduced susceptibility to neutralization by AD-4-specific MAbs or polyclonal AD-4-specific antibodies, indicating that the YK epitope is dominant for the AD-4-specific neutralizing antibody response during infection. To our knowledge, this is the first molecular identification of a functional discontinuous epitope on HCMV gB. Induction of antibodies specific for this epitope may be a desirable goal following vaccination with gB.
Collapse
|
33
|
Lilja AE, Mason PW. The next generation recombinant human cytomegalovirus vaccine candidates—Beyond gB. Vaccine 2012; 30:6980-90. [DOI: 10.1016/j.vaccine.2012.09.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/07/2012] [Accepted: 09/22/2012] [Indexed: 11/16/2022]
|
34
|
Kropff B, Burkhardt C, Schott J, Nentwich J, Fisch T, Britt W, Mach M. Glycoprotein N of human cytomegalovirus protects the virus from neutralizing antibodies. PLoS Pathog 2012; 8:e1002999. [PMID: 23133379 PMCID: PMC3486915 DOI: 10.1371/journal.ppat.1002999] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 09/11/2012] [Indexed: 11/19/2022] Open
Abstract
Herpes viruses persist in the infected host and are transmitted between hosts in the presence of a fully functional humoral immune response, suggesting that they can evade neutralization by antiviral antibodies. Human cytomegalovirus (HCMV) encodes a number of polymorphic highly glycosylated virion glycoproteins (g), including the essential envelope glycoprotein, gN. We have tested the hypothesis that glycosylation of gN contributes to resistance of the virus to neutralizing antibodies. Recombinant viruses carrying deletions in serine/threonine rich sequences within the glycosylated surface domain of gN were constructed in the genetic background of HCMV strain AD169. The deletions had no influence on the formation of the gM/gN complex and in vitro replication of the respective viruses compared to the parent virus. The gN-truncated viruses were significantly more susceptible to neutralization by a gN-specific monoclonal antibody and in addition by a number of gB- and gH-specific monoclonal antibodies. Sera from individuals previously infected with HCMV also more efficiently neutralized gN-truncated viruses. Immunization of mice with viruses that expressed the truncated forms of gN resulted in significantly higher serum neutralizing antibody titers against the homologous strain that was accompanied by increased antibody titers against known neutralizing epitopes on gB and gH. Importantly, neutralization activity of sera from animals immunized with gN-truncated virus did not exhibit enhanced neutralizing activity against the parental wild type virus carrying the fully glycosylated wild type gN. Our results indicate that the extensive glycosylation of gN could represent a potentially important mechanism by which HCMV neutralization by a number of different antibody reactivities can be inhibited. Herpes viruses are transmitted between individuals in cell free form and successful spread benefits from mechanisms that limit the loss of infectivity by the activity of virus neutralizing antibodies. Human cytomegalovirus (HCMV) is an important pathogen and understanding how the virus can evade antiviral antibodies may be clinically relevant. HCMV particles contain a number of highly polymorphic, extensively glycosylated envelope proteins, one of which is glycoprotein N (gN). This protein is essential for replication of HCMV. We have hypothesized that the extensive glycosylation of gN may serve as a tool to evade neutralization by antiviral antibodies. Recombinant viruses were generated expressing gN proteins with reduced glycan modification. The loss of glycan modification had no detectable influence on the in vitro replication of the respective viruses. However, the recombinant viruses containing under-glycosylated forms of gN were significantly more susceptible to neutralization by a diverse array of antibody reactivities. Immunization of mice with viruses carrying fewer glycan modification induced significantly higher antibody titers against the homologous virus; however, the neutralization titers against the fully glycosylated virions, were not enhanced. Our results indicate that glycosylation of gN of HCMV represents a potentially important mechanism for evasion of antibody-mediated neutralization by a number of different antibody specificities.
Collapse
Affiliation(s)
- Barbara Kropff
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Germany
| | - Christiane Burkhardt
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Germany
| | - Juliane Schott
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Germany
| | - Jens Nentwich
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Germany
| | - Tanja Fisch
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Germany
| | - William Britt
- Department of Pediatrics, University of Alabama Birmingham, Birmingham, Alabama, United States of America
| | - Michael Mach
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Germany
- * E-mail:
| |
Collapse
|
35
|
Manley K, Anderson J, Yang F, Szustakowski J, Oakeley EJ, Compton T, Feire AL. Human cytomegalovirus escapes a naturally occurring neutralizing antibody by incorporating it into assembling virions. Cell Host Microbe 2012; 10:197-209. [PMID: 21925108 DOI: 10.1016/j.chom.2011.07.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/01/2011] [Accepted: 07/20/2011] [Indexed: 01/31/2023]
Abstract
Human cytomegalovirus (CMV) is a common but difficult to treat infection of immunocompromised patients. MSL-109 is a human monoclonal IgG isolated from a CMV seropositive individual that recognizes the viral glycoprotein H (gH) surface antigen complexes that mediate entry. Although MSL-109 blocks CMV infection in vitro, it lacked sufficient efficacy in human trials, and CMV isolated from treated patients suggested the evolution of MSL-109 resistance. To understand how CMV escapes MSL-109, we characterized a MSL-109-resistant CMV strain. Our results elucidate a nongenetic escape mechanism in which the antibody is selectively taken up by infected cells and incorporated into assembling virions in a dose-dependent manner. The resistant virus then utilizes the Fc domain of the incorporated antibody to infect naive nonimmune cells. This resistance mechanism may explain the clinical failure of MSL-109, illustrate a general mechanism of viral antibody escape, and inform antiviral vaccine and therapeutic development.
Collapse
Affiliation(s)
- Kate Manley
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Human cytomegalovirus activation of ERK and myeloid cell leukemia-1 protein correlates with survival of latently infected cells. Proc Natl Acad Sci U S A 2011; 109:588-93. [PMID: 22203987 DOI: 10.1073/pnas.1114966108] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The ability of human CMV (HCMV) to enter and establish a latent infection in myeloid cells is crucial for survival and transmission in the human population. Initial pathogen binding and entry triggers a number of antiviral responses, including the activation of proapoptotic cell death pathways, which must be countered during latency establishment. However, mechanisms responsible for a prosurvival state in myeloid cells upon latent HCMV infection remain completely undefined. We hypothesized that the cellular antiapoptotic machinery must be initially activated by HCMV to promote early survival events upon entry. Here we show that HCMV transiently protects nonpermissive myeloid cells from chemical and virus entry induced cell death by up-regulating a key myeloid cell survival gene, myeloid cell leukemia (MCL)-1 protein. The induction of MCL-1 expression was independent of viral gene expression but dependent on activation of the ERK-MAPK pathway by viral glycoprotein B. Inhibition of ERK-MAPK signaling, inhibition of HCMV fusion, antibody-mediated neutralization of glycoprotein B signaling or expression of a shRNA against MCL-1 all correlated with increased cell death in response to virus infection or chemical stimulation. Finally we show that activation of ERK-MAPK signaling impacts on long-term latency and reactivation in hematopoietic cells. Thus, HCMV primes myeloid cells for from the initial virus-cell encounter. Given the importance of ERK and MCL-1 for myeloid cell survival, the successful establishment of HCMV latency in myeloid progenitors begins at the point of virus entry.
Collapse
|
37
|
Human anti-V3 HIV-1 monoclonal antibodies encoded by the VH5-51/VL lambda genes define a conserved antigenic structure. PLoS One 2011; 6:e27780. [PMID: 22164215 PMCID: PMC3229485 DOI: 10.1371/journal.pone.0027780] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/25/2011] [Indexed: 02/04/2023] Open
Abstract
Preferential usage of immunoglobulin (Ig) genes that encode antibodies (Abs) against various pathogens is rarely observed and the nature of their dominance is unclear in the context of stochastic recombination of Ig genes. The hypothesis that restricted usage of Ig genes predetermines the antibody specificity was tested in this study of 18 human anti-V3 monoclonal Abs (mAbs) generated from unrelated individuals infected with various subtypes of HIV-1, all of which preferentially used pairing of the VH5-51 and VL lambda genes. Crystallographic analysis of five VH5-51/VL lambda-encoded Fabs complexed with various V3 peptides revealed a common three dimensional (3D) shape of the antigen-binding sites primarily determined by the four complementarity determining regions (CDR) for the heavy (H) and light (L) chains: specifically, the H1, H2, L1 and L2 domains. The CDR H3 domain did not contribute to the shape of the binding pocket, as it had different lengths, sequences and conformations for each mAb. The same shape of the binding site was further confirmed by the identical backbone conformation exhibited by V3 peptides in complex with Fabs which fully adapted to the binding pocket and the same key contact residues, mainly germline-encoded in the heavy and light chains of five Fabs. Finally, the VH5-51 anti-V3 mAbs recognized an epitope with an identical 3D structure which is mimicked by a single mimotope recognized by the majority of VH5-51-derived mAbs but not by other V3 mAbs. These data suggest that the identification of preferentially used Ig genes by neutralizing mAbs may define conserved epitopes in the diverse virus envelopes. This will be useful information for designing vaccine immunogen inducing cross-neutralizing Abs.
Collapse
|
38
|
Carlsson F, Trilling M, Perez F, Ohlin M. A dimerized single-chain variable fragment system for the assessment of neutralizing activity of phage display-selected antibody fragments specific for cytomegalovirus. J Immunol Methods 2011; 376:69-78. [PMID: 22154743 DOI: 10.1016/j.jim.2011.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/23/2011] [Accepted: 11/23/2011] [Indexed: 11/18/2022]
Abstract
Cytomegalovirus (CMV) causes severe sequelae in congenitally infected newborns and may cause life-threatening disease in immuno-deficient patients. Recent findings demonstrate the possibility to alleviate the disease by infusing intravenous immunoglobulin G (IgG) preparations, indicating that antibodies are an effective therapeutic option. Modern molecular methodologies, like phage display, allow for the development of specific antibodies targeting virtually any antigen, including those of CMV. However, such methodologies do not in general result in products that by themselves mediate biological activity. To facilitate a semi-high-throughput approach for functional screening in future efforts to develop efficacious antibodies against CMV, we have integrated two different approaches to circumvent potential bottlenecks in such efforts. Firstly, we explored an approach that permits easy transfer of antibody fragment encoding genes from commonly used phage display vectors into vectors for the production of divalent immunoglobulins. Secondly, we demonstrate that such proteins can be applied in a novel reporter-based neutralization assay to establish a proof-of-concept workflow for the generation of neutralizing antibodies against CMV. We validated our approach by showing that divalent antibodies raised against the antigenic domain (AD)-2 region of gB effectively neutralized three different CMV strains (AD169, Towne and TB40/E), whereas two antibodies against the AD-1 region of gB displayed minor neutralizing capabilities. In conclusion, the methods investigated in this proof-of-concept study enables for a semi-high-throughput workflow in the screening and investigation of biological active antibodies.
Collapse
Affiliation(s)
- Fredrika Carlsson
- Department of Immunotechnology, Lund University, BMC D13, SE-221 84 Lund, Sweden.
| | | | | | | |
Collapse
|
39
|
Ishibashi K, Yamaguchi O, Suzutani T. Reinfection of cytomegalovirus in renal transplantation. Fukushima J Med Sci 2011; 57:1-10. [PMID: 21701077 DOI: 10.5387/fms.57.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cytomegalovirus (CMV) is the most important pathogen affecting the outcome of renal transplantation. Reinfection of CMV can occur in CMV-seropositive donors and CMV seropositive recipients (D+/R+) settings because the protection against CMV conferred by preexisting immunity is limited due to its strain-dependent immune responses. To analyze the influence of CMV reinfection in renal transplantation, ELISA using fusion proteins encompassing epitope of glycoprotein H(gH) from both AD169 and Towne strains was employed before transplantation. The CMV-gH seropositive rate increased with increases in age and the rate of samples which contained antibodies against both AD169 and Towne were significantly high in the age of 50 years or over. Antibodies from HLA-DR10 and DR11 were associated with a significantly lower response rate against CMV-gH. In renal transplantation, the high degrees of antigenemia and high incidences of CMV disease are more prevalent in the CMV gH antibody-mismatched group in D+/R+ setting. The nucleotide sequence of the region of the gH epitope in the CMV-DNA extracted from the transplant recipients who showed high degree of antigenemia revealed the CMV reinfection from the donors. As a CMV indirect effect, the incidence of acute rejection in the mismatched gH antibody group was higher than that observed in the matched and D+/R- groups. The adverse events were more likely to occur in cases of D+/R+ renal transplantation with mismatched strain-specific antibodies which would indicates the risk of CMV reinfection after transplantation.
Collapse
Affiliation(s)
- Kei Ishibashi
- Department of Urology, Department of Microbiology, Fukushima Medical University, Fukushima, Japan.
| | | | | |
Collapse
|
40
|
Glauser DL, Kratz AS, Gillet L, Stevenson PG. A mechanistic basis for potent, glycoprotein B-directed gammaherpesvirus neutralization. J Gen Virol 2011; 92:2020-2033. [PMID: 21593277 PMCID: PMC3353389 DOI: 10.1099/vir.0.032177-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 05/13/2011] [Indexed: 11/18/2022] Open
Abstract
Glycoprotein B (gB) is a conserved, essential component of gammaherpes virions and so potentially vulnerable to neutralization. However, few good gB-specific neutralizing antibodies have been identified. Here, we show that murid herpesvirus 4 is strongly neutralized by mAbs that recognize an epitope close to one of the gB fusion loops. Antibody binding did not stop gB interacting with its cellular ligands or initiating its fusion-associated conformation change, but did stop gB resolving stably to its post-fusion form, and so blocked membrane fusion to leave virions stranded in late endosomes. The conservation of gB makes this mechanism a possible general route to gammaherpesvirus neutralization.
Collapse
Affiliation(s)
- Daniel L. Glauser
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Anne-Sophie Kratz
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Laurent Gillet
- Immunology-Vaccinology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Philip G. Stevenson
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
41
|
Pötzsch S, Spindler N, Wiegers AK, Fisch T, Rücker P, Sticht H, Grieb N, Baroti T, Weisel F, Stamminger T, Martin-Parras L, Mach M, Winkler TH. B cell repertoire analysis identifies new antigenic domains on glycoprotein B of human cytomegalovirus which are target of neutralizing antibodies. PLoS Pathog 2011; 7:e1002172. [PMID: 21852946 PMCID: PMC3154849 DOI: 10.1371/journal.ppat.1002172] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 06/05/2011] [Indexed: 12/15/2022] Open
Abstract
Human cytomegalovirus (HCMV), a herpesvirus, is a ubiquitously distributed pathogen that causes severe disease in immunosuppressed patients and infected newborns. Efforts are underway to prepare effective subunit vaccines and therapies including antiviral antibodies. However, current vaccine efforts are hampered by the lack of information on protective immune responses against HCMV. Characterizing the B-cell response in healthy infected individuals could aid in the design of optimal vaccines and therapeutic antibodies. To address this problem, we determined, for the first time, the B-cell repertoire against glycoprotein B (gB) of HCMV in different healthy HCMV seropositive individuals in an unbiased fashion. HCMV gB represents a dominant viral antigenic determinant for induction of neutralizing antibodies during infection and is also a component in several experimental HCMV vaccines currently being tested in humans. Our findings have revealed that the vast majority (>90%) of gB-specific antibodies secreted from B-cell clones do not have virus neutralizing activity. Most neutralizing antibodies were found to bind to epitopes not located within the previously characterized antigenic domains (AD) of gB. To map the target structures of these neutralizing antibodies, we generated a 3D model of HCMV gB and used it to identify surface exposed protein domains. Two protein domains were found to be targeted by the majority of neutralizing antibodies. Domain I, located between amino acids (aa) 133–343 of gB and domain II, a discontinuous domain, built from residues 121–132 and 344–438. Analysis of a larger panel of human sera from HCMV seropositive individuals revealed positivity rates of >50% against domain I and >90% against domain II, respectively. In accordance with previous nomenclature the domains were designated AD-4 (Dom II) and AD-5 (Dom I), respectively. Collectively, these data will contribute to optimal vaccine design and development of antibodies effective in passive immunization. The development of antibodies is a major defense mechanism against viruses. Understanding the repertoire of antiviral antibodies induced during infection is a necessary prerequisite to defining the protective activities of an antiviral antibody response. The isolation of antigen specific memory B cells and subsequent stimulation to antibody producing cells provides a powerful tool to study the antibody repertoire in infected individuals. We have used this approach to analyze the antibody repertoire against glycoprotein B (gB) of human cytomegalovirus (HCMV), a major antigen for the induction of antiviral antibodies during infection and a constituent of experimental vaccines in humans. We find in different infected individuals that the vast majority of gB-specific B cells produce antibodies that cannot neutralize free virus. Antibodies with antiviral capacity target two domains of gB that have not been previously identified. The identification of these new antigenic domains was possible with the aid of a 3D molecular model of HCMV gB. Our results will be useful for vaccine development since comparison of the immune response after natural infection with that induced by vaccination can be readily accomplished. Moreover, neutralizing human monoclonal antibodies could constitute powerful therapeutics to combat the infection in populations at risk for HCMV disease.
Collapse
Affiliation(s)
- Sonja Pötzsch
- Nikolaus-Fiebiger-Zentrum für Molekulare Medizin Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | - Nadja Spindler
- Institut für Klinische und Molekulare Virologie Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | - Anna-Katharina Wiegers
- Institut für Klinische und Molekulare Virologie Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | - Tanja Fisch
- Nikolaus-Fiebiger-Zentrum für Molekulare Medizin Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | - Pia Rücker
- Institut für Biochemie, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | - Heinrich Sticht
- Institut für Biochemie, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | - Nina Grieb
- Nikolaus-Fiebiger-Zentrum für Molekulare Medizin Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | - Tina Baroti
- Nikolaus-Fiebiger-Zentrum für Molekulare Medizin Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | - Florian Weisel
- Nikolaus-Fiebiger-Zentrum für Molekulare Medizin Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | - Thomas Stamminger
- Institut für Klinische und Molekulare Virologie Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | | | - Michael Mach
- Institut für Klinische und Molekulare Virologie Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
- * E-mail:
| | - Thomas H. Winkler
- Nikolaus-Fiebiger-Zentrum für Molekulare Medizin Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| |
Collapse
|
42
|
Hu J, Meng X, Zhao H, Zhang X, Gao H, Yang M, Ma Y, Li M, Ma W, Fan J. Association of human cytomegalovirus viremia with human leukocyte antigens in liver transplantation recipients. Acta Biochim Biophys Sin (Shanghai) 2011; 43:576-81. [PMID: 21680603 DOI: 10.1093/abbs/gmr043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human cytomegalovirus (HCMV) reactivation is a common complication after liver transplantation (LT). Here, we investigated whether human leukocyte antigen (HLA)-matching was related to HCMV infection and subsequent graft failure after LT for hepatitis B virus cirrhosis. This retrospective study reviewed 91 LT recipients. All the patients were grouped according to HLA-A, HLA-B, and HLA-DR locus matching. Clinical data were collected, including complete HLA-typing, HCMV viremia, graft failure, and the time of HCMV viremia. HLA typing was performed using a sequence-specific primer-polymerase chain reaction kit. HCMV was detected by pp65 antigenemia using a commercial kit. The incidence of HCMV infection post-LT was 81.32%. Graft failure was observed in 16 of 91 (17.6%) patients during the 4-year study. The incidence of HCMV viremia was 100% (5/5), 91.4% (32/35), and 72.5% (37/51) in HLA-A two locus, one locus, and zero locus compatibility, respectively. Nevertheless, the degree of the HLA-A, HLA-B, or HLA-DR match did not influence the time of HCMV viremia, graft failure, or the time of graft failure after a diagnosis of HCMV viremia (all P > 0.05). An interesting discovery was that the risk of HCMV viremia tended to be higher in patients with better HLA-A compatibility. Graft failure, time of HCMV viremia, and graft failure after a diagnosis of HCMV viremia appear to be independent of HLA allele compatibility.
Collapse
Affiliation(s)
- Jianhua Hu
- State key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Reinhard H, Le VTK, Ohlin M, Hengel H, Trilling M. Exploitation of herpesviral transactivation allows quantitative reporter gene-based assessment of virus entry and neutralization. PLoS One 2011; 6:e14532. [PMID: 21264213 PMCID: PMC3022015 DOI: 10.1371/journal.pone.0014532] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 12/06/2010] [Indexed: 01/12/2023] Open
Abstract
Herpesviral entry is a highly elaborated process requiring many proteins to act in precise conjunction. Neutralizing antibodies interfere with this process to abrogate viral infection. Based on promoter transactivation of a reporter gene we established a novel method to quantify herpesvirus entry and neutralization by antibodies. Following infection with mouse and human cytomegalovirus and Herpes simplex virus 1 we observed promoter transactivation resulting in substantial luciferase expression (>1000-fold). No induction was elicited by UV-inactivated viruses. The response was MOI-dependent and immunoblots confirmed a correlation between luciferase induction and pp72-IE1 expression. Monoclonal antibodies, immune sera and purified immunoglobulin preparations decreased virus-dependent luciferase induction dose-dependently, qualifying this approach as surrogate virus neutralization test. Besides the reduced hands-on time, this assay allows analysis of herpesvirus entry in semi-permissive and non-adherent cells, which were previously non-assessable but play significant roles in herpesvirus pathology.
Collapse
Affiliation(s)
- Henrike Reinhard
- Institute for Virology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Vu Thuy Khanh Le
- Institute for Virology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Mats Ohlin
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Hartmut Hengel
- Institute for Virology, Heinrich-Heine-University, Düsseldorf, Germany
- * E-mail: (HH); (MT)
| | - Mirko Trilling
- Institute for Virology, Heinrich-Heine-University, Düsseldorf, Germany
- * E-mail: (HH); (MT)
| |
Collapse
|
44
|
May JS, Stevenson PG. Vaccination with murid herpesvirus-4 glycoprotein B reduces viral lytic replication but does not induce detectable virion neutralization. J Gen Virol 2010; 91:2542-52. [PMID: 20519454 PMCID: PMC3052599 DOI: 10.1099/vir.0.023085-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 05/31/2010] [Indexed: 01/17/2023] Open
Abstract
Herpesviruses characteristically disseminate from immune hosts. Therefore in the context of natural infection, antibody neutralizes them poorly. Murid herpesvirus-4 (MuHV-4) provides a tractable model with which to understand gammaherpesvirus neutralization. MuHV-4 virions blocked for cell binding by immune sera remain infectious for IgG-Fc receptor(+) myeloid cells, so broadly neutralizing antibodies must target the virion fusion complex - glycoprotein B (gB) or gH/gL. While gB-specific neutralizing antibodies are rare, its domains I+II (gB-N) contain at least one potent neutralization epitope. Here, we tested whether immunization with recombinant gB presenting this epitope could induce neutralizing antibodies in naive mice and protect them against MuHV-4 challenge. Immunizing with the full-length gB extracellular domain induced a strong gB-specific antibody response and reduced MuHV-4 lytic replication but did not induce detectable neutralization. gB-N alone, which more selectively displayed pre-fusion epitopes including neutralization epitopes, also failed to induce neutralizing responses, and while viral lytic replication was again reduced this depended completely on IgG Fc receptors. gB and gB-N also boosted neutralizing responses in only a minority of carrier mice. Therefore, it appears that neutralizing epitopes on gB are intrinsically difficult for the immune response to target.
Collapse
Affiliation(s)
- Janet S May
- Division of Virology, Department of Pathology, University of Cambridge, UK
| | | |
Collapse
|
45
|
Isolation of human monoclonal antibodies that potently neutralize human cytomegalovirus infection by targeting different epitopes on the gH/gL/UL128-131A complex. J Virol 2009; 84:1005-13. [PMID: 19889756 DOI: 10.1128/jvi.01809-09] [Citation(s) in RCA: 286] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a widely circulating pathogen that causes severe disease in immunocompromised patients and infected fetuses. By immortalizing memory B cells from HCMV-immune donors, we isolated a panel of human monoclonal antibodies that neutralized at extremely low concentrations (90% inhibitory concentration [IC(90)] values ranging from 5 to 200 pM) HCMV infection of endothelial, epithelial, and myeloid cells. With the single exception of an antibody that bound to a conserved epitope in the UL128 gene product, all other antibodies bound to conformational epitopes that required expression of two or more proteins of the gH/gL/UL128-131A complex. Antibodies against gB, gH, or gM/gN were also isolated and, albeit less potent, were able to neutralize infection of both endothelial-epithelial cells and fibroblasts. This study describes unusually potent neutralizing antibodies against HCMV that might be used for passive immunotherapy and identifies, through the use of such antibodies, novel antigenic targets in HCMV for the design of immunogens capable of eliciting previously unknown neutralizing antibody responses.
Collapse
|
46
|
Axelsson F, Persson J, Moreau E, Côté MH, Lamarre A, Ohlin M. Novel antibody specificities targeting glycoprotein B of cytomegalovirus identified by molecular library technology. N Biotechnol 2009; 25:429-36. [DOI: 10.1016/j.nbt.2009.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 05/06/2009] [Accepted: 05/07/2009] [Indexed: 01/08/2023]
|
47
|
Germline V-genes sculpt the binding site of a family of antibodies neutralizing human cytomegalovirus. EMBO J 2008; 27:2592-602. [PMID: 18772881 DOI: 10.1038/emboj.2008.179] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Accepted: 08/13/2008] [Indexed: 12/31/2022] Open
Abstract
Immunoglobulin genes are generated somatically through specialized mechanisms resulting in a vast repertoire of antigen-binding sites. Despite the stochastic nature of these processes, the V-genes that encode most of the antigen-combining site are under positive evolutionary selection, raising the possibility that V-genes have been selected to encode key structural features of binding sites of protective antibodies against certain pathogens. Human, neutralizing antibodies to human cytomegalovirus that bind the AD-2S1 epitope on its gB envelope protein repeatedly use a pair of well-conserved, germline V-genes IGHV3-30 and IGKV3-11. Here, we present crystallographic, kinetic and thermodynamic analyses of the binding site of such an antibody and that of its primary immunoglobulin ancestor. These show that these germline V-genes encode key side chain contacts with the viral antigen and thereby dictate key structural features of the hypermutated, high-affinity neutralizing antibody. V-genes may thus encode an innate, protective immunological memory that targets vulnerable, invariant sites on multiple pathogens.
Collapse
|
48
|
Ishibashi K, Tokumoto T, Shirakawa H, Hashimoto K, Kushida N, Yanagida T, Shishido K, Aikawa K, Yamaguchi O, Toma H, Tanabe K, Suzutani T. Strain-specific seroepidemiology and reinfection of cytomegalovirus. Microbes Infect 2008; 10:1363-9. [PMID: 18761415 DOI: 10.1016/j.micinf.2008.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 07/14/2008] [Accepted: 08/04/2008] [Indexed: 11/24/2022]
Abstract
Although there have been some reports describing the serostatus of cytomegalovirus, strain-specific antibody responses and their distribution remain unknown. In this study, ELISA using fusion proteins encompassing epitope of glycoprotein H from both AD169 and Towne strains was used to test 352 blood donors. Of these 352 donors, 207 were analyzed for strain-specific glycoprotein H antibodies. Of the 44 donors whose serum contained antibodies against both AD169 and Towne, 27 (60%) were aged 50 years or over (p = 0.0003). This may indicate serological evidence of reinfection with cytomegalovirus in the elder population. The nucleotide sequence analysis of cytomegalovirus glycoprotein H from the peripheral blood of the cytomegalovirus-positive renal transplant recipients showed that our strain-specific ELISA can reveal cytomegalovirus reinfection after transplantation.
Collapse
Affiliation(s)
- Kei Ishibashi
- Department of Microbiology, Fukushima Medical University, Fukushima, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gillet L, Colaco S, Stevenson PG. Glycoprotein B switches conformation during murid herpesvirus 4 entry. J Gen Virol 2008; 89:1352-1363. [PMID: 18474550 PMCID: PMC2886948 DOI: 10.1099/vir.0.83519-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 02/07/2008] [Indexed: 11/18/2022] Open
Abstract
Herpesviruses are ancient pathogens that infect all vertebrates. The most conserved component of their entry machinery is glycoprotein B (gB), yet how gB functions is unclear. A striking feature of the murid herpesvirus 4 (MuHV-4) gB is its resistance to neutralization. Here, we show by direct visualization of infected cells that the MuHV-4 gB changes its conformation between extracellular virions and those in late endosomes, where capsids are released. Specifically, epitopes on its N-terminal cell-binding domain become inaccessible, whilst non-N-terminal epitopes are revealed, consistent with structural changes reported for the vesicular stomatitis virus glycoprotein G. Inhibitors of endosomal acidification blocked the gB conformation switch. They also blocked capsid release and the establishment of infection, implying that the gB switch is a key step in entry. Neutralizing antibodies could only partially inhibit the switch. Their need to engage a less vulnerable, upstream form of gB, because its fusion form is revealed only in endosomes, helps to explain why gB-directed MuHV-4 neutralization is so difficult.
Collapse
Affiliation(s)
- Laurent Gillet
- Division of Virology, Department of Pathology, University of Cambridge, UK
| | - Susanna Colaco
- Division of Virology, Department of Pathology, University of Cambridge, UK
| | - Philip G Stevenson
- Division of Virology, Department of Pathology, University of Cambridge, UK
| |
Collapse
|
50
|
Dessain SK, Adekar SP, Berry JD. Exploring the native human antibody repertoire to create antiviral therapeutics. Curr Top Microbiol Immunol 2008; 317:155-83. [PMID: 17990793 PMCID: PMC7121815 DOI: 10.1007/978-3-540-72146-8_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Native human antibodies are defined as those that arise naturally as the result of the functioning of an intact human immune system. The utility of native antibodies for the treatment of human viral diseases has been established through experience with hyperimmune human globulins. Native antibodies, as a class, differ in some respects from those obtained by recombinant library methods (phage or transgenic mouse) and possess distinct properties that may make them ideal therapeutics for human viral diseases. Methods for cloning native human antibodies have been beset by technical problems, yet many antibodies specific for viral antigens have been cloned. In the present review, we discuss native human antibodies and ongoing improvements in cloning methods that should facilitate the creation of novel, potent antiviral therapeutics obtained from the native human antibody repertoire.
Collapse
Affiliation(s)
- Scott K. Dessain
- Thomas Jefferson University, 1015 Walnut St, 19107 Philadelphia, PA USA
| | | | | |
Collapse
|