1
|
Visciano ML, Gohain N, Sherburn R, Orlandi C, Flinko R, Dashti A, Lewis GK, Tolbert WD, Pazgier M. Induction of Fc-Mediated Effector Functions Against a Stabilized Inner Domain of HIV-1 gp120 Designed to Selectively Harbor the A32 Epitope Region. Front Immunol 2019; 10:677. [PMID: 31001276 PMCID: PMC6455405 DOI: 10.3389/fimmu.2019.00677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/12/2019] [Indexed: 02/02/2023] Open
Abstract
Recent clinical trials and studies using nonhuman primates (NHPs) suggest that antibody-mediated protection against HIV-1 will require α-HIV envelope humoral immunity beyond direct neutralization to include Fc-receptor (FcR) mediated effector functions such as antibody-dependent cellular cytotoxicity (ADCC). There is also strong evidence indicating that the most potent ADCC response in humans is directed toward transitional non-neutralizing epitopes associated with the gp41-interactive face of gp120, particularly those within the first and second constant (C1–C2) region (A32-like epitopes). These epitopes were shown to be major targets of ADCC responses during natural infection and have been implicated in vaccine-induced protective immunity. Here we describe the immunogenicity of ID2, an immunogen consisting of the inner domain of the clade A/E 93TH057 HIV-1 gp120 expressed independently of the outer domain (OD) and stabilized in the CD4-bound conformation to harbor conformational A32 region epitopes within a minimal structural unit of HIV-1 Env. ID2 induced A32-specific antibody responses in BALB/c mice when injected alone or in the presence of the adjuvants Alum or GLA-SE. Low α-ID2 titers were detected in mice immunized with ID2 alone whereas robust responses were observed with ID2 plus adjuvant, with the greatest ID2 and A32-specific titers observed in the GLA-SE group. Only sera from groups immunized in the presence of GLA-SE were capable of mediating significant ADCC using NKr cells sensitized with recombinant BaL gp120 as targets and human PBMCs as effectors. A neutralization response to a tier 2 virus was not observed. Altogether, our studies demonstrate that ID2 is highly immunogenic and elicits A32-specific ADCC responses in an animal host. The ID2 immunogen has significant translational value as it can be used in challenge studies to evaluate the role of non-neutralizing antibodies directed at the A32 subregion in HIV-1 protection.
Collapse
Affiliation(s)
- Maria L Visciano
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Neelakshi Gohain
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rebekah Sherburn
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Chiara Orlandi
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Robin Flinko
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Amir Dashti
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - George K Lewis
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - William D Tolbert
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marzena Pazgier
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
2
|
Requirements for Empirical Immunogenicity Trials, Rather than Structure-Based Design, for Developing an Effective HIV Vaccine. HIV/AIDS: IMMUNOCHEMISTRY, REDUCTIONISM AND VACCINE DESIGN 2019. [PMCID: PMC7122000 DOI: 10.1007/978-3-030-32459-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The claim that it is possible to rationally design a structure-based HIV-1 vaccine is based on misconceptions regarding the nature of protein epitopes and of immunological specificity. Attempts to use reverse vaccinology to generate an HIV-1 vaccine on the basis of the structure of viral epitopes bound to monoclonal neutralizing antibodies have failed so far because it was not possible to extrapolate from an observed antigenic structure to the immunogenic structure required in a vaccine. Vaccine immunogenicity depends on numerous extrinsic factors such as the host immunoglobulin gene repertoire, the presence of various cellular and regulatory mechanisms in the immunized host and the process of antibody affinity maturation. All these factors played a role in the appearance of the neutralizing antibody used to select the epitope to be investigated as potential vaccine immunogen, but they cannot be expected to be present in identical form in the host to be vaccinated. It is possible to rationally design and optimize an epitope to fit one particular antibody molecule or to improve the paratope binding efficacy of a monoclonal antibody intended for passive immunotherapy. What is not possible is to rationally design an HIV-1 vaccine immunogen that will elicit a protective polyclonal antibody response of predetermined efficacy. An effective vaccine immunogen can only be discovered by investigating experimentally the immunogenicity of a candidate molecule and demonstrating its ability to induce a protective immune response. It cannot be discovered by determining which epitopes of an engineered antigen molecule are recognized by a neutralizing monoclonal antibody. This means that empirical immunogenicity trials rather than structural analyses of antigens offer the best hope of discovering an HIV-1 vaccine.
Collapse
|
3
|
González N, McKee K, Lynch RM, Georgiev IS, Jimenez L, Grau E, Yuste E, Kwong PD, Mascola JR, Alcamí J. Characterization of broadly neutralizing antibody responses to HIV-1 in a cohort of long term non-progressors. PLoS One 2018; 13:e0193773. [PMID: 29558468 PMCID: PMC5860703 DOI: 10.1371/journal.pone.0193773] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/16/2018] [Indexed: 12/21/2022] Open
Abstract
Background Only a small fraction of HIV-1-infected patients develop broadly neutralizing antibodies (bNAbs), a process generally associated to chronic antigen stimulation. It has been described that rare aviremic HIV-1-infected patients can generate bNAbs but this issue remains controversial. To address this matter we have assessed bNAb responses in a large cohort of long-term non-progressors (LTNPs) with low or undetectable viremia. Methods Samples from the LTNP cohort of the Spanish AIDS Research Network (87 elite and 42 viremic controllers) and a control population of 176 viremic typical-progressors (TPs) were screened for bNAbs using Env-recombinant viruses. bNAb specificities were studied by ELISA using mutated gp120, neutralization assays with mutated viruses, and peptide competition. Epitope specificities were also elucidated from the serum pattern of neutralization against a panel of diverse HIV-1 isolates. Results Broadly neutralizing sera were found among 9.3% LTNPs, both elite (7%) and viremic controllers (14%). Within the broadly neutralizing sera, CD4 binding site antibodies were detected by ELISA in 4/12 LTNPs (33%), and 16/33 of TPs (48%). Anti-MPER antibodies were detected in 6/12 LTNPs (50%) and 14/33 TPs (42%) whereas glycan-dependent HIV-1 bNAbs were more frequent in LTNPs (11/12, 92%) as compared to TPs (12/33, 36%). A good concordance between standard serum mapping and neutralization-based mapping was observed. Conclusion LTNPs, both viremic and elite controllers, showed broad humoral immune responses against HIV-1, including activity against many major epitopes involved in bNAbs-mediated protection.
Collapse
Affiliation(s)
- Nuria González
- AIDS Immunopathology Unit, Instituto de Salud Carlos III, Madrid, Spain
- * E-mail: (NG); (JA)
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Washington, United States of America
| | - Rebecca M. Lynch
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Washington, United States of America
| | - Ivelin S. Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Washington, United States of America
| | - Laura Jimenez
- AIDS Immunopathology Unit, Instituto de Salud Carlos III, Madrid, Spain
| | - Eulalia Grau
- IrsiCaixa Foundation, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Eloísa Yuste
- Retrovirology and Viral Immunopathology Laboratory, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Washington, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Washington, United States of America
| | - José Alcamí
- AIDS Immunopathology Unit, Instituto de Salud Carlos III, Madrid, Spain
- * E-mail: (NG); (JA)
| |
Collapse
|
4
|
Hicar MD, Chen X, Sulli C, Barnes T, Goodman J, Sojar H, Briney B, Willis J, Chukwuma VU, Kalams SA, Doranz BJ, Spearman P, Crowe JE. Human Antibodies that Recognize Novel Immunodominant Quaternary Epitopes on the HIV-1 Env Protein. PLoS One 2016; 11:e0158861. [PMID: 27411063 PMCID: PMC4943599 DOI: 10.1371/journal.pone.0158861] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 06/23/2016] [Indexed: 11/19/2022] Open
Abstract
Numerous broadly neutralizing antibodies (Abs) target epitopes that are formed or enhanced during mature HIV envelope formation (i.e. quaternary epitopes). Generally, it is thought that Env epitopes that induce broadly neutralizing Abs are difficult to access and poorly immunogenic because of the characteristic oligomerization, conformational flexibility, sequence diversity and extensive glycosylation of Env protein. To enhance for isolation of quaternary epitope-targeting Abs (QtAbs), we previously used HIV virus-like particles (VLPs) to bind B cells from long-term non-progressor subjects to identify a panel of monoclonal Abs. When expressed as recombinant full-length Abs, a subset of these novel Abs exhibited the binding profiles of QtAbs, as they either failed to bind to monomeric Env protein or showed much higher affinity for Env trimers and VLPs. These QtAbs represented a significant proportion of the B-cell response identified with VLPs. The Ab genes of these clones were highly mutated, but they did not neutralize common HIV strains. We sought to further define the epitopes targeted by these QtAbs. Competition-binding and mapping studies revealed these Abs targeted four separate epitopes; they also failed to compete for binding by Abs to known major neutralizing epitopes. Detailed epitope mapping studies revealed that two of the four epitopes were located in the gp41 subunit of Env. These QtAbs bound pre-fusion forms of antigen and showed differential binding kinetics depending on whether oligomers were produced as recombinant gp140 trimers or as full-length Env incorporated into VLPs. Antigenic regions within gp41 present unexpectedly diverse structural epitopes, including these QtAb epitopes, which may be targeted by the naturally occurring Ab response to HIV infection.
Collapse
Affiliation(s)
- Mark D. Hicar
- Departments of Pediatrics, University at Buffalo, Buffalo, New York, United States of America
- Departments of Microbiology and Immunology, University at Buffalo, Buffalo, New York, United States of America
| | - Xuemin Chen
- Departments of Pediatrics, Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Chidananda Sulli
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| | - Trevor Barnes
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| | - Jason Goodman
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| | - Hakimuddin Sojar
- Departments of Pediatrics, University at Buffalo, Buffalo, New York, United States of America
| | - Bryan Briney
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jordan Willis
- The Program in Chemical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Valentine U. Chukwuma
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Spyros A. Kalams
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- The Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Benjamin J. Doranz
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| | - Paul Spearman
- Departments of Pediatrics, Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - James E. Crowe
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
5
|
Liang Y, Guttman M, Davenport TM, Hu SL, Lee KK. Probing the Impact of Local Structural Dynamics of Conformational Epitopes on Antibody Recognition. Biochemistry 2016; 55:2197-213. [PMID: 27003615 PMCID: PMC5479570 DOI: 10.1021/acs.biochem.5b01354] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Antibody-antigen interactions are governed by recognition of specific residues and structural complementarity between the antigen epitope and antibody paratope. While X-ray crystallography has provided detailed insights into static conformations of antibody-antigen complexes, factors such as conformational flexibility and dynamics, which are not readily apparent in the structures, can also have an impact on the binding event. Here we investigate the contribution of dynamics in the HIV-1 gp120 glycoprotein to antibody recognition of conserved conformational epitopes, including the CD4- and coreceptor-binding sites, and an inner domain site that is targeted by ADCC-active antibodies. Hydrogen/deuterium-exchange mass spectrometry (HDX-MS) was used to measure local structural dynamics across a panel of variable loop truncation mutants of HIV-1 gp120, including full-length gp120, ΔV3, ΔV1/V2, and extended core, which includes ΔV1/V2 and V3 loop truncations. CD4-bound full-length gp120 was also examined as a reference state. HDX-MS revealed a clear trend toward an increased level of order of the conserved subunit core resulting from loop truncation. Combined with biolayer interferometry and enzyme-linked immunosorbent assay measurements of antibody-antigen binding, we demonstrate that an increased level of ordering of the subunit core was associated with better recognition by an array of antibodies targeting complex conformational epitopes. These results provide detailed insight into the influence of structural dynamics on antibody-antigen interactions and suggest the importance of characterizing the structural stability of vaccine candidates to improve antibody recognition of complex epitopes.
Collapse
Affiliation(s)
- Yu Liang
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Thaddeus M. Davenport
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Shiu-Lok Hu
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | - Kelly K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
6
|
Klasse PJ. How to assess the binding strength of antibodies elicited by vaccination against HIV and other viruses. Expert Rev Vaccines 2016; 15:295-311. [PMID: 26641943 DOI: 10.1586/14760584.2016.1128831] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vaccines that protect against viral infections generally induce neutralizing antibodies. When vaccines are evaluated, the need arises to assess the affinity maturation of the antibody responses. Binding titers of polyclonal sera depend not only on the affinities of the constituent antibodies but also on their individual concentrations, which are difficult to ascertain. Therefore an assay based on chaotrope disruption of antibody-antigen complexes was designed for measuring binding strength. This assay works well with many viral antigens but gives differential results depending on the conformational dependence of epitopes on complex antigens such as the envelope glycoprotein of HIV-1. Kinetic binding assays might offer alternatives, since they can measure average off-rate constants for polyclonal antibodies in a serum. Here, potentials and fallacies of these techniques are discussed.
Collapse
Affiliation(s)
- P J Klasse
- a Department of Microbiology and Immunology, Weill Cornell Medical College , Cornell University , New York , NY , USA
| |
Collapse
|
7
|
What Do Chaotrope-Based Avidity Assays for Antibodies to HIV-1 Envelope Glycoproteins Measure? J Virol 2015; 89:5981-95. [PMID: 25810537 DOI: 10.1128/jvi.00320-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/16/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED When HIV-1 vaccine candidates that include soluble envelope glycoproteins (Env) are tested in humans and other species, the resulting antibody responses to Env are sifted for correlates of protection or risk. One frequently used assay measures the reduction in antibody binding to Env antigens by an added chaotrope (such as thiocyanate). Based on that assay, an avidity index was devised for assessing the affinity maturation of antibodies of unknown concentration in polyclonal sera. Since a high avidity index was linked to protection in animal models of HIV-1 infection, it has become a criterion for evaluating antibody responses to vaccine candidates. But what does the assay measure and what does an avidity index mean? Here, we have used a panel of monoclonal antibodies to well-defined epitopes on Env (gp120, gp41, and SOSIP.664 trimers) to explore how the chaotrope acts. We conclude that the chaotrope sensitivity of antibody binding to Env depends on several properties of the epitopes (continuity versus tertiary- and quaternary-structural dependence) and that the avidity index has no simple relationship to antibody affinity for functional Env spikes on virions. We show that the binding of broadly neutralizing antibodies against quaternary-structural epitopes is particularly sensitive to chaotrope treatment, whereas antibody binding to epitopes in variable loops and to nonneutralization epitopes in gp41 is generally resistant. As a result of such biases, the avidity index may at best be a mere surrogate for undefined antibody or other immune responses that correlate weakly with protection. IMPORTANCE An effective HIV-1 vaccine is an important goal. Such a vaccine will probably need to induce antibodies that neutralize typically transmitted variants of HIV-1, preventing them from infecting target cells. Vaccine candidates have so far failed to induce such antibody responses, although some do protect weakly against infection in animals and, possibly, humans. In the search for responses associated with protection, an avidity assay based on chemical disruption is often used to measure the strength of antibody binding. We have analyzed this assay mechanistically and found that the epitope specificity of an antibody has a greater influence on the outcome than does its affinity. As a result, the avidity assay is biased toward the detection of some antibody specificities while disfavoring others. We conclude that the assay may yield merely indirect correlations with weak protection, specifically when Env vaccination has failed to induce broad neutralizing responses.
Collapse
|
8
|
Mutations in the H, F, or M Proteins Can Facilitate Resistance of Measles Virus to Neutralizing Human Anti-MV Sera. Adv Virol 2014; 2014:205617. [PMID: 24648840 PMCID: PMC3932291 DOI: 10.1155/2014/205617] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/15/2013] [Accepted: 10/30/2013] [Indexed: 11/18/2022] Open
Abstract
Although there is currently no evidence of emerging strains of measles virus (MV) that can resist neutralization by the anti-MV antibodies present in vaccinees, certain mutations in circulating wt MV strains appear to reduce the efficacy of these antibodies. Moreover, it has been hypothesized that resistance to neutralization by such antibodies could allow MV to persist. In this study, we use a novel in vitro system to determine the molecular basis of MV's resistance to neutralization. We find that both wild-type and laboratory strain MV variants that escape neutralization by anti-MV polyclonal sera possess multiple mutations in their H, F, and M proteins. Cytometric analysis of cells expressing viral escape mutants possessing minimal mutations and their plasmid-expressed H, F, and M proteins indicates that immune resistance is due to particular mutations that can occur in any of these three proteins that affect at distance, rather than directly, the native conformation of the MV-H globular head and hence its epitopes. A high percentage of the escape mutants contain mutations found in cases of Subacute Sclerosing Panencephalitis (SSPE) and our results could potentially shed light on the pathogenesis of this rare fatal disease.
Collapse
|
9
|
Chai Z, Wang H, Zhou G, Yang D, Wang J, Yu L. Adenovirus-vectored type Asia1 foot-and-mouth disease virus (FMDV) capsid proteins as a vehicle to display a conserved, neutralising epitope of type O FMDV. J Virol Methods 2012; 188:175-82. [PMID: 22981982 DOI: 10.1016/j.jviromet.2012.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 08/16/2012] [Accepted: 08/30/2012] [Indexed: 10/27/2022]
Abstract
The objective of this study was to explore the immunogenicity of an adenovirus construction expressing a type O foot and mouth disease virus neutralising epitope (8E8) in the context of heterologous capsid proteins. Adenoviruses expressing four chimeric type Asia1 FMDV capsid proteins were constructed by inserting the type O FMDV 8E8 epitope into the G-H loop from the type Asia1 VP1 at amino acid residues 139/140, 150/151, 134/140 or at both 139/140 and 150/151. These recombinant proteins were recognised by antibodies against the type O 8E8 epitope and type Asia1 FMDV. When inoculated in mice, all of the recombinant chimeric capsid proteins for each single epitope insertion induced the production of anti-type O FMDV neutralising antibodies. The recombinant chimeric capsid proteins with a foreign insertion at position 139/140 or 150/151 induced high levels of anti-type Asia1 FMDV neutralising antibodies as the recombinant type Asia1 capsid proteins without any foreign epitope, suggesting that the foreign insertion did not affect the immunogenicity of the type Asia1 FMDV capsid proteins. This study suggests that a foreign epitope displayed on the surface of the FMDV capsid proteins could induce an epitope-specific response. Therefore, the adenovirus-vectored FMDV capsid proteins could be used as a vehicle for the development of an epitope-based vaccine.
Collapse
Affiliation(s)
- Zheng Chai
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin 150001, China
| | | | | | | | | | | |
Collapse
|
10
|
Association of HIV neutralizing antibody with lower viral load after treatment interruption in a prospective trial (A5170). AIDS 2012; 26:1452. [PMID: 22767347 DOI: 10.1097/qad.0b013e3283550b8e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Van Regenmortel MHV. Basic research in HIV vaccinology is hampered by reductionist thinking. Front Immunol 2012; 3:194. [PMID: 22787464 PMCID: PMC3391733 DOI: 10.3389/fimmu.2012.00194] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/21/2012] [Indexed: 01/05/2023] Open
Abstract
This review describes the structure-based reverse vaccinology approach aimed at developing vaccine immunogens capable of inducing antibodies that broadly neutralize HIV-1. Some basic principles of protein immunochemistry are reviewed and the implications of the extensive polyspecificity of antibodies for vaccine development are underlined. Although it is natural for investigators to want to know the cause of an effective immunological intervention, the classic notion of causality is shown to have little explanatory value for a system as complex as the immune system, where any observed effect always results from many interactions between a large number of components. Causal explanations are reductive because a single factor is singled out for attention and given undue explanatory weight on its own. Other examples of the negative impact of reductionist thinking on HIV vaccine development are discussed. These include (1) the failure to distinguish between the chemical nature of antigenicity and the biological nature of immunogenicity, (2) the belief that when an HIV-1 epitope is reconstructed by rational design to better fit a neutralizing monoclonal antibody (nMab), this will produce an immunogen able to elicit Abs with the same neutralizing capacity as the Ab used as template for designing the antigen, and (3) the belief that protection against infection can be analyzed at the level of individual molecular interactions although it has meaning only at the level of an entire organism. The numerous unsuccessful strategies that have been used to design HIV-1 vaccine immunogens are described and it is suggested that the convergence of so many negative experimental results justifies the conclusion that reverse vaccinology is unlikely to lead to the development of a preventive HIV-1 vaccine. Immune correlates of protection in vaccines have not yet been identified because this will become feasible only retrospectively once an effective vaccine exists. The finding that extensive antibody affinity maturation is needed to obtain mature anti-HIV-1 Abs endowed with a broad neutralizing capacity explains why antigens designed to fit matured Mabs are not effective vaccine immunogens since these are administered to naive recipients who possess only B-cell receptors corresponding to the germline version of the matured Abs.
Collapse
Affiliation(s)
- Marc H. V. Van Regenmortel
- Stellenbosch Institute of Advanced Study, Wallenberg Research Center at Stellenbosch University,Stellenbosch, South Africa
| |
Collapse
|
12
|
Abstract
Broadly neutralizing antibodies to the CD4 binding site (CD4bs) of gp120 are generated by some HIV-1-infected individuals, but little is known about the prevalence and evolution of this antibody response during the course of HIV-1 infection. We analyzed the sera of 113 HIV-1 seroconverters from three cohorts for binding to a panel of gp120 core proteins and their corresponding CD4bs knockout mutants. Among sera collected between 99 and 258 weeks post-HIV-1 infection, 88% contained antibodies to the CD4bs and 47% contained antibodies to resurfaced stabilized core (RSC) probes that react preferentially with broadly neutralizing CD4bs antibodies (BNCD4), such as monoclonal antibodies (MAbs) VRC01 and VRC-CH31. Analysis of longitudinal serum samples from a subset of 18 subjects revealed that CD4bs antibodies to gp120 arose within the first 4 to 16 weeks of infection, while the development of RSC-reactive antibodies was more varied, occurring between 10 and 152 weeks post-HIV-1 infection. Despite the presence of these antibodies, serum neutralization mediated by RSC-reactive antibodies was detected in sera from only a few donors infected for more than 3 years. Thus, CD4bs antibodies that bind a VRC01-like epitope are often induced during HIV-1 infection, but the level and potency required to mediate serum neutralization may take years to develop. An improved understanding of the immunological factors associated with the development and maturation of neutralizing CD4bs antibodies during HIV-1 infection may provide insights into the requirements for eliciting this response by vaccination.
Collapse
|
13
|
Van Regenmortel MHV. Limitations to the structure-based design of HIV-1 vaccine immunogens. J Mol Recognit 2012; 24:741-53. [PMID: 21812050 DOI: 10.1002/jmr.1116] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In spite of 25 years of intensive research, no effective human immunodeficiency virus type 1 (HIV-1) vaccine has yet been developed. One reason for this is that investigators have concentrated mainly on the structural analysis of HIV-1 antigens because they assumed that it should be possible to deduce vaccine-relevant immunogens from the structure of viral antigens bound to neutralizing monoclonal antibodies. This unwarranted assumption arises from misconceptions regarding the nature of protein epitopes and from the belief that it is justified to extrapolate from the antigenicity to the immunogenicity of proteins. Although the structure of the major HIV-1 antigenic sites has been elucidated, this knowledge has been of little use for designing an HIV-1 vaccine. Little attention has been given to the fact that protective immune responses tend to be polyclonal and involve antibodies directed to several different epitopes. It is concluded that only trial and error, empirical investigations using numerous immunization protocols may eventually allow us to identify which mixtures of immunogens are likely to be the best candidates for an HIV-1 vaccine.
Collapse
|
14
|
Association of HIV neutralizing antibody with lower viral load after treatment interruption in a prospective trial (A5170). AIDS 2012; 26:1-9. [PMID: 21971356 DOI: 10.1097/qad.0b013e32834d606e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE We investigated the impact of neutralizing antibodies (NAbs) on CD4 T-cell count and viral load in a cohort of HAART recipients who underwent extended structured treatment interruption. DESIGN Substudy of NAb in the AIDS Clinical Trials Group 5170 trial. METHODS Early plasma samples from 50 volunteers who discontinued HAART were evaluated in a peripheral blood mononuclear cell-based neutralization assay against a panel of four subtype B primary isolates. RESULTS We found that high-titer (90% inhibitory dose > 500) NAb against two or more isolates was associated with reduced viral load (P = 0.003 at 12-week posttreatment interruption). This effect faded with time, losing significance (P = 0.161) by study conclusion. Participants possessing the highest NAb levels against individual isolates appeared more likely to have lower viral loads with the association gaining significance against the R5-tropic primary isolate US1 (P = 0.005). There was no association between broader neutralization and CD4 T-cell slope over time. CONCLUSION The data suggest that high-titer NAb responses at the time of treatment interruption are associated with reduced viral load over time, but not CD4(+) T-cell decline.
Collapse
|
15
|
Van Regenmortel MHV. Requirements for empirical immunogenicity trials, rather than structure-based design, for developing an effective HIV vaccine. Arch Virol 2011; 157:1-20. [PMID: 22012269 PMCID: PMC7087187 DOI: 10.1007/s00705-011-1145-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 10/07/2011] [Indexed: 11/29/2022]
Abstract
The claim that it is possible to rationally design a structure-based HIV-1 vaccine is based on misconceptions regarding the nature of protein epitopes and of immunological specificity. Attempts to use reverse vaccinology to generate an HIV-1 vaccine on the basis of the structure of viral epitopes bound to monoclonal neutralizing antibodies have failed so far because it was not possible to extrapolate from an observed antigenic structure to the immunogenic structure required in a vaccine. Vaccine immunogenicity depends on numerous extrinsic factors such as the host immunoglobulin gene repertoire, the presence of various cellular and regulatory mechanisms in the immunized host and the process of antibody affinity maturation. All these factors played a role in the appearance of the neutralizing antibody used to select the epitope to be investigated as potential vaccine immunogen, but they cannot be expected to be present in identical form in the host to be vaccinated. It is possible to rationally design and optimize an epitope to fit one particular antibody molecule or to improve the paratope binding efficacy of a monoclonal antibody intended for passive immunotherapy. What is not possible is to rationally design an HIV-1 vaccine immunogen that will elicit a protective polyclonal antibody response of predetermined efficacy. An effective vaccine immunogen can only be discovered by investigating experimentally the immunogenicity of a candidate molecule and demonstrating its ability to induce a protective immune response. It cannot be discovered by determining which epitopes of an engineered antigen molecule are recognized by a neutralizing monoclonal antibody. This means that empirical immunogenicity trials rather than structural analyses of antigens offer the best hope of discovering an HIV-1 vaccine.
Collapse
Affiliation(s)
- Marc H V Van Regenmortel
- Stellenbosch Institute of Advanced Study, Wallenberg Research Center at Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
16
|
[Structural mechanism of immune evasion of HIV-1 gp120 by genomic, computational, and experimental science]. Uirusu 2011; 61:49-57. [PMID: 21972555 DOI: 10.2222/jsv.61.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The third variable region (V3) of the human immunodeficiency virus type 1 (HIV-1) envelope gp120 subunit participates in determination of viral infection co-receptor tropism and host humoral immune responses. Positive charge of the V3 plays a key role in determining viral co-receptor tropism. In our previous papers, we showed a key role of the V3's net positive charge in the immunological escape and co-receptor tropism evolution in vivo. On the other hand, the several papers suggested that trimeric gp120s are protected from immune system by occlusion on the oligomer, by mutational variation, by carbohydrate masking and by conformational masking. If we can reveal the mechanism of neutralization escape, we expect that we will regulate the neutralization of HIV-1. In this review, we will overview the structural mechanism of neutralization escape of HIV-1 gp120 examined by computational science. The computational sciences for virology can provide more valuable information in combination with genomic and experimental science.
Collapse
|
17
|
Magnus C, Regoes RR. Restricted occupancy models for neutralization of HIV virions and populations. J Theor Biol 2011; 283:192-202. [PMID: 21683711 DOI: 10.1016/j.jtbi.2011.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 04/04/2011] [Accepted: 06/02/2011] [Indexed: 11/26/2022]
Abstract
HIV virions infect cells by attaching to target cell receptors, fusing membranes with the cell and by finally releasing their genetic material into the target cells. Antibodies can hinder the infection by attaching to the HIV envelope glycoprotein trimers before or during attachment. The exact mechanisms and the quantitative requirements of antibody neutralization are still debated. Recently, the number of antibodies rendering one trimer non-functional, called stoichiometry of (trimer) neutralization, was studied with mathematical models. Here we extend this theoretical framework to calculate the stoichiometries of neutralizing a single virion and a whole virion population. We derive mathematical equations for antibody neutralization based on restricted occupancy theory. Additionally we simulate these processes when a direct calculation is not possible. We find that the number of trimers needed for cell entry and the number of antibodies neutralizing one trimer strongly influence the mean number of antibodies needed for virion and population neutralization. Further we show that the mean number of antibodies needed to neutralize a virion population exceeds the product of the number of virions in the population and the mean number of antibodies needed to neutralize one virion.
Collapse
Affiliation(s)
- Carsten Magnus
- Institute of Integrative Biology, ETH Zurich, Switzerland.
| | | |
Collapse
|
18
|
Tarr AW, Urbanowicz RA, Hamed MR, Albecka A, McClure CP, Brown RJP, Irving WL, Dubuisson J, Ball JK. Hepatitis C patient-derived glycoproteins exhibit marked differences in susceptibility to serum neutralizing antibodies: genetic subtype defines antigenic but not neutralization serotype. J Virol 2011; 85:4246-57. [PMID: 21325403 PMCID: PMC3126256 DOI: 10.1128/jvi.01332-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 01/21/2011] [Indexed: 12/30/2022] Open
Abstract
Neutralizing antibodies have a role in controlling hepatitis C virus (HCV) infection. A successful vaccine will need to elicit potently neutralizing antibodies that are capable of preventing the infection of genetically diverse viral isolates. However, the specificity of the neutralizing antibody response in natural HCV infection still is poorly understood. To address this, we examined the reactivity of polyclonal antibodies isolated from chronic HCV infection to the diverse patient-isolated HCV envelope glycoproteins E1 and E2 (E1E2), and we also examined the potential to neutralize the entry of pseudoparticles bearing these diverse E1E2 proteins. The genetic type of the infection was found to determine the pattern of the antibody recognition of these E1E2 proteins, with the greatest reactivity to homologous E1E2 proteins. This relationship was strongest when the component of the antibody response directed only to linear epitopes was analyzed. In contrast, the neutralization serotype did not correlate with genotype. Instead, serum-derived antibodies displayed a range of neutralization breadth and potency, while different E1E2 glycoproteins displayed different sensitivities to neutralization, such that these could be divided broadly into neutralization-sensitive and -resistant phenotypes. An important additional observation was that entry mediated by some E1E2 proteins was enhanced in the presence of some of the polyclonal antibody fractions isolated during chronic infection. These data highlight the need to use diverse E1E2 isolates, which represent extremes of neutralization sensitivity, when screening antibodies for therapeutic potential and for testing antibodies generated following immunization as part of vaccine development.
Collapse
Affiliation(s)
- Alexander W. Tarr
- School of Molecular Medical Sciences and Biomedical Research Unit in Gastroenterology, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Richard A. Urbanowicz
- School of Molecular Medical Sciences and Biomedical Research Unit in Gastroenterology, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Mohamed R. Hamed
- School of Molecular Medical Sciences and Biomedical Research Unit in Gastroenterology, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
| | - Anna Albecka
- Institut Pasteur de Lille, Center for Infection & Immunity of Lille (CIIL), F-59019 Lille, Inserm U1019, F-59019 Lille, CNRS UMR8204, F-59021 Lille, and University Lille Nord de France, F-59000 Lille, France
| | - C. Patrick McClure
- School of Molecular Medical Sciences and Biomedical Research Unit in Gastroenterology, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Richard J. P. Brown
- School of Molecular Medical Sciences and Biomedical Research Unit in Gastroenterology, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - William L. Irving
- School of Molecular Medical Sciences and Biomedical Research Unit in Gastroenterology, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Jean Dubuisson
- Institut Pasteur de Lille, Center for Infection & Immunity of Lille (CIIL), F-59019 Lille, Inserm U1019, F-59019 Lille, CNRS UMR8204, F-59021 Lille, and University Lille Nord de France, F-59000 Lille, France
| | - Jonathan K. Ball
- School of Molecular Medical Sciences and Biomedical Research Unit in Gastroenterology, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| |
Collapse
|
19
|
Magnus C, Regoes RR. Estimating the stoichiometry of HIV neutralization. PLoS Comput Biol 2010; 6:e1000713. [PMID: 20333245 PMCID: PMC2841622 DOI: 10.1371/journal.pcbi.1000713] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 02/10/2010] [Indexed: 11/23/2022] Open
Abstract
HIV-1 virions infect target cells by first establishing contact between envelope glycoprotein trimers on the virion's surface and CD4 receptors on a target cell, recruiting co-receptors, fusing with the cell membrane and finally releasing the genetic material into the target cell. Specific experimental setups allow the study of the number of trimer-receptor-interactions needed for infection, i.e., the stoichiometry of entry and also the number of antibodies needed to prevent one trimer from engaging successfully in the entry process, i.e., the stoichiometry of (trimer) neutralization. Mathematical models are required to infer the stoichiometric parameters from these experimental data. Recently, we developed mathematical models for the estimations of the stoichiometry of entry [1]. In this article, we show how our models can be extended to investigate the stoichiometry of trimer neutralization. We study how various biological parameters affect the estimate of the stoichiometry of neutralization. We find that the distribution of trimer numbers—which is also an important determinant of the stoichiometry of entry—influences the estimated value of the stoichiometry of neutralization. In contrast, other parameters, which characterize the experimental system, diminish the information we can extract from the data about the stoichiometry of neutralization, and thus reduce our confidence in the estimate. We illustrate the use of our models by re-analyzing previously published data on the neutralization sensitivity [2], which contains measurements of neutralization sensitivity of viruses with different envelope proteins to antibodies with various specificities. Our mathematical framework represents the formal basis for the estimation of the stoichiometry of neutralization. Together with the stoichiometry of entry, the stoichiometry of trimer neutralization will allow one to calculate how many antibodies are required to neutralize a virion or even an entire population of virions. A large part of the research on the Human Immunodeficiency Virus focuses on how virus particles attach and enter their target cells, and how entry can be inhibited by antibodies or antiretroviral drugs. Because virus particles are too small to be observed in action the inference of the details of HIV entry has to be indirect—involving the genetic manipulation of virions, and often mathematical modeling. It is known that virus particles establish contact to their target cells with spikes on their surface, and antibodies binding to these spikes can inhibit virus entry. It is not known, however, how many antibodies are needed to neutralize a spike. In this article, we develop a mathematical framework to estimate this number, called the stoichiometry of neutralization, from data obtained in experiments with genetically engineered virions. An estimate of the stoichiometry of neutralization for different antibodies is important, as it will allow us to calculate the amount of antibodies required to abrogate virus replication.
Collapse
|
20
|
Kelker HC, Itri VR, Valentine FT. A strategy for eliciting antibodies against cryptic, conserved, conformationally dependent epitopes of HIV envelope glycoprotein. PLoS One 2010; 5:e8555. [PMID: 20052405 PMCID: PMC2797330 DOI: 10.1371/journal.pone.0008555] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 12/10/2009] [Indexed: 11/18/2022] Open
Abstract
Background Novel strategies are needed for the elicitation of broadly neutralizing antibodies to the HIV envelope glycoprotein, gp120. Experimental evidence suggests that combinations of antibodies that are broadly neutralizing in vitro may protect against challenge with HIV in nonhuman primates, and a small number of these antibodies have been selected by repertoire sampling of B cells and by the fractionation of antiserum from some patients with prolonged disease. Yet no additional strategies for identifying conserved epitopes, eliciting antibodies to these epitopes, and determining whether these epitopes are accessible to antibodies have been successful to date. The defining of additional conserved, accessible epitopes against which one can elicit antibodies will increase the probability that some may be the targets of broadly neutralizing antibodies. Methodology/Principal Findings We postulate that additional cryptic epitopes of gp120 are present, against which neutralizing antibodies might be elicited even though these antibodies are not elicited by gp120, and that many of these epitopes may be accessible to antibodies should they be formed. We demonstrate a strategy for eliciting antibodies in mice against selected cryptic, conformationally dependent conserved epitopes of gp120 by immunizing with multiple identical copies of covalently linked peptides (MCPs). This has been achieved with MCPs representing 3 different domains of gp120. We show that some cryptic epitopes on gp120 are accessible to the elicited antibodies, and some epitopes in the CD4 binding region are not accessible. The antibodies bind to gp120 with relatively high affinity, and bind to oligomeric gp120 on the surface of infected cells. Conclusions/Significance Immunization with MCPs comprised of selected peptides of HIV gp120 is able to elicit antibodies against conserved, conformationally dependent epitopes of gp120 that are not immunogenic when presented as gp120. Some of these cryptic epitopes are accessible to the elicited antibodies.
Collapse
Affiliation(s)
- Hanna C. Kelker
- Department of Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Vincenza R. Itri
- Department of Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Fred T. Valentine
- Department of Medicine, New York University School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
21
|
Nandi A, Lavine CL, Wang P, Lipchina I, Goepfert PA, Shaw GM, Tomaras GD, Montefiori DC, Haynes BF, Easterbrook P, Robinson JE, Sodroski JG, Yang X. Epitopes for broad and potent neutralizing antibody responses during chronic infection with human immunodeficiency virus type 1. Virology 2009; 396:339-48. [PMID: 19922969 DOI: 10.1016/j.virol.2009.10.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 10/22/2009] [Accepted: 10/28/2009] [Indexed: 11/29/2022]
Abstract
Neutralizing antibody (nAb) response is sporadic and has limited potency and breadth during infection with human immunodeficiency virus type 1 (HIV-1). In rare cases, broad and potent nAbs are actually induced in vivo. Identifying specific epitopes targeted by such broad and potent nAb response is valuable in guiding the design of a prophylactic vaccine aimed to induce nAb. In this study, we have defined neutralizing epitope usage in 7 out of 17 subjects with broad and potent nAbs by using targeted mutagenesis in known neutralizing epitopes of HIV-1 glycoproteins and by using in vitro depletion of serum neutralizing activity by various recombinant HIV-1 glycoproteins. Consistent with recent reports, the CD4 binding site (CD4BS) is targeted by nAbs in vivo (4 of the 7 subjects with defined neutralizing epitopes). The new finding from this study is that epitopes in the gp120 outer domain are also targeted by nAbs in vivo (5 of the 7 subjects). The outer domain epitopes include glycan-dependent epitopes (2 subjects), conserved nonlinear epitope in the V3 region (2 subjects), and a CD4BS epitope composed mainly of the elements in the outer domain (1 subject). Importantly, we found indication for epitope poly-specificity, a dual usage of the V3 and CD4BS epitopes, in only one subject. This study provides a more complete profile of epitope usage for broad and potent nAb responses during HIV-1 infection.
Collapse
Affiliation(s)
- Avishek Nandi
- Division of Viral Pathogenesis, Department of Medicine, Beth Israel Deaconess Medical Center, E/CLS-1011, 3 Blackfan Circle, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Dosenovic P, Chakrabarti B, Soldemo M, Douagi I, Forsell MNE, Li Y, Phogat A, Paulie S, Hoxie J, Wyatt RT, Karlsson Hedestam GB. Selective expansion of HIV-1 envelope glycoprotein-specific B cell subsets recognizing distinct structural elements following immunization. THE JOURNAL OF IMMUNOLOGY 2009; 183:3373-82. [PMID: 19696434 DOI: 10.4049/jimmunol.0900407] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The HIV-1 envelope glycoprotein (Env) functional spike has evolved multiple immune evasion strategies, and only a few broadly neutralizing determinants on the assembled spike are accessible to Abs. Serological studies, based upon Ab binding and neutralization activity in vitro, suggest that vaccination with current Env-based immunogens predominantly elicits Abs that bind nonneutralizing or strain-restricted neutralizing epitopes. However, the fractional specificities of the polyclonal mixture of Abs present in serum, especially those directed to conformational Env epitopes, are often difficult to determine. Furthermore, serological analyses do not provide information regarding how repeated Ag inoculation impacts the expansion and maintenance of Env-specific B cell subpopulations. Therefore, we developed a highly sensitive Env-specific B cell ELISPOT system, which allows the enumeration of Ab-secreting cells (ASC) from diverse anatomical compartments directed against different structural determinants of Env. In this study, we use this system to examine the evolution of B cell responses in mice immunized with engineered Env trimers in adjuvant. We demonstrate that the relative proportion of ASC specific for defined structural elements of Env is altered significantly by homologous booster immunizations. This results in the selective expansion of ASC directed against the variable regions of Env. We suggest that the B cell specificity and compartment analysis described in this study are important complements to serological mapping studies for the examination of B cell responses against subspecificities of a variety of immunogens.
Collapse
Affiliation(s)
- Pia Dosenovic
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yuan W, Li X, Kasterka M, Gorny MK, Zolla-Pazner S, Sodroski J. Oligomer-specific conformations of the human immunodeficiency virus (HIV-1) gp41 envelope glycoprotein ectodomain recognized by human monoclonal antibodies. AIDS Res Hum Retroviruses 2009; 25:319-28. [PMID: 19292593 DOI: 10.1089/aid.2008.0213] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Trimerization of the human immunodeficiency virus (HIV-1) envelope glycoproteins is mediated by the ectodomain of the gp41 transmembrane glycoprotein. Here we investigate oligomer-specific conformations of gp41 by using monoclonal antibodies (MAbs) from HIV-1-infected humans. Human MAbs directed against the cluster I region of gp41 recognized trimeric, dimeric, and monomeric forms of soluble envelope glycoproteins; thus, the integrity of the cluster I epitopes is minimally affected by the oligomeric state. In contrast, human MAbs to the cluster II region were all oligomers specific. One cluster II MAb, 126-6, recognized exclusively the trimeric form of envelope glycoproteins, whereas the others recognized both trimeric and dimeric forms. Thus, a distinct trimer-specific conformation exists in the cluster II region of gp41. Analysis of soluble envelope glycoprotein mutants revealed that gp41 sequences immediately N-terminal to isoleucine 646 contribute to the formation of both the trimer and the trimer-specific conformational epitope.
Collapse
Affiliation(s)
- Wen Yuan
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia 22908
| | - Xing Li
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
- Department of Pathology, Division of AIDS, Harvard Medical School, Boston, Massachusetts 02115
| | - Marta Kasterka
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908
| | - Miroslaw K. Gorny
- Department of Pathology, New York University School of Medicine, New York, New York 10016
| | - Susan Zolla-Pazner
- Department of Pathology, New York University School of Medicine, New York, New York 10016
- Veterans Affairs Medical Center, New York, New York 10010
| | - Joseph Sodroski
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
- Department of Pathology, Division of AIDS, Harvard Medical School, Boston, Massachusetts 02115
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115
| |
Collapse
|
24
|
Factors associated with the development of cross-reactive neutralizing antibodies during human immunodeficiency virus type 1 infection. J Virol 2008; 83:757-69. [PMID: 18987148 DOI: 10.1128/jvi.02036-08] [Citation(s) in RCA: 446] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The characterization of the cross-reactive, or heterologous, neutralizing antibody responses developed during human immunodeficiency virus type 1 (HIV-1) infection and the identification of factors associated with their generation are relevant to the development of an HIV vaccine. We report that in healthy HIV-positive, antiretroviral-naïve subjects, the breadth of plasma heterologous neutralizing antibody responses correlates with the time since infection, plasma viremia levels, and the binding avidity of anti-Env antibodies. Anti-CD4-binding site antibodies are responsible for the exceptionally broad cross-neutralizing antibody responses recorded only in rare plasma samples. However, in most cases examined, antibodies to the variable regions and to the CD4-binding site of Env modestly contributed in defining the overall breadth of these responses. Plasmas with broad cross-neutralizing antibody responses were identified that targeted the gp120 subunit, but their precise epitopes mapped outside the variable regions and the CD4-binding site. Finally, although several plasmas were identified with cross-neutralizing antibody responses that were not directed against gp120, only one plasma with a moderate breadth of heterologous neutralizing antibody responses contained cross-reactive neutralizing antibodies against the 4E10 epitope, which is within the gp41 transmembrane subunit. Overall, our study indicates that more than one pathway leads to the development of broad cross-reactive neutralizing antibodies during HIV infection and that the virus continuously escapes their action.
Collapse
|
25
|
Sanders RW, Hsu STD, van Anken E, Liscaljet IM, Dankers M, Bontjer I, Land A, Braakman I, Bonvin AMJJ, Berkhout B. Evolution rescues folding of human immunodeficiency virus-1 envelope glycoprotein GP120 lacking a conserved disulfide bond. Mol Biol Cell 2008; 19:4707-16. [PMID: 18753405 PMCID: PMC2575144 DOI: 10.1091/mbc.e08-07-0670] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 08/19/2008] [Indexed: 11/11/2022] Open
Abstract
The majority of eukaryotic secretory and membrane proteins contain disulfide bonds, which are strongly conserved within protein families because of their crucial role in folding or function. The exact role of these disulfide bonds during folding is unclear. Using virus-driven evolution we generated a viral glycoprotein variant, which is functional despite the lack of an absolutely conserved disulfide bond that links two antiparallel beta-strands in a six-stranded beta-barrel. Molecular dynamics simulations revealed that improved hydrogen bonding and side chain packing led to stabilization of the beta-barrel fold, implying that beta-sheet preference codirects glycoprotein folding in vivo. Our results show that the interactions between two beta-strands that are important for the formation and/or integrity of the beta-barrel can be supported by either a disulfide bond or beta-sheet favoring residues.
Collapse
Affiliation(s)
- Rogier W Sanders
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
van Anken E, Sanders RW, Liscaljet IM, Land A, Bontjer I, Tillemans S, Nabatov AA, Paxton WA, Berkhout B, Braakman I. Only five of 10 strictly conserved disulfide bonds are essential for folding and eight for function of the HIV-1 envelope glycoprotein. Mol Biol Cell 2008; 19:4298-309. [PMID: 18653472 DOI: 10.1091/mbc.e07-12-1282] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Protein folding in the endoplasmic reticulum goes hand in hand with disulfide bond formation, and disulfide bonds are considered key structural elements for a protein's folding and function. We used the HIV-1 Envelope glycoprotein to examine in detail the importance of its 10 completely conserved disulfide bonds. We systematically mutated the cysteines in its ectodomain, assayed the mutants for oxidative folding, transport, and incorporation into the virus, and tested fitness of mutant viruses. We found that the protein was remarkably tolerant toward manipulation of its disulfide-bonded structure. Five of 10 disulfide bonds were dispensable for folding. Two of these were even expendable for viral replication in cell culture, indicating that the relevance of these disulfide bonds becomes manifest only during natural infection. Our findings refine old paradigms on the importance of disulfide bonds for proteins.
Collapse
Affiliation(s)
- Eelco van Anken
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Moore PL, Gray ES, Choge IA, Ranchobe N, Mlisana K, Abdool Karim SS, Williamson C, Morris L. The c3-v4 region is a major target of autologous neutralizing antibodies in human immunodeficiency virus type 1 subtype C infection. J Virol 2008; 82:1860-9. [PMID: 18057243 PMCID: PMC2258729 DOI: 10.1128/jvi.02187-07] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 11/19/2007] [Indexed: 11/20/2022] Open
Abstract
The early autologous neutralizing antibody response in human immunodeficiency virus type 1 (HIV-1) subtype C infections is often characterized by high titers, but the response is type specific with little to no cross-neutralizing activity. The specificities of these early neutralizing antibodies are not known; however, the type specificity suggests that they may target the variable regions of the envelope. Here, we show that cross-reactive anti-V3 antibodies developed within 3 to 12 weeks in six individuals but did not mediate autologous neutralization. Using a series of chimeric viruses, we found that antibodies directed at the V1V2, V4, and V5 regions contributed to autologous neutralization in some individuals, with V1V2 playing a more substantial role. However, these antibodies did not account for the total neutralizing capacity of these sera against the early autologous virus. Antibodies directed against the C3-V4 region were involved in autologous neutralization in all four sera studied. In two sera, transfer of the C3-V4 region rendered the chimera as sensitive to antibody neutralization as the parental virus. Although the C3 region, which contains the highly variable alpha2-helix was not a direct target in most cases, it contributed to the formation of neutralization epitopes as substitution of this region resulted in neutralization resistance. These data suggest that the C3 and V4 regions combine to form important structural motifs and that epitopes in this region are major targets of the early autologous neutralizing response in HIV-1 subtype C infection.
Collapse
Affiliation(s)
- Penny L Moore
- National Institute for Communicable Diseases, Private Bag X4, Sandringham 2131, Johannesburg, South Africa.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Sanders RW, van Anken E, Nabatov AA, Liscaljet IM, Bontjer I, Eggink D, Melchers M, Busser E, Dankers MM, Groot F, Braakman I, Berkhout B, Paxton WA. The carbohydrate at asparagine 386 on HIV-1 gp120 is not essential for protein folding and function but is involved in immune evasion. Retrovirology 2008; 5:10. [PMID: 18237398 PMCID: PMC2262092 DOI: 10.1186/1742-4690-5-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 01/31/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The HIV-1 envelope glycoprotein gp120, which mediates viral attachment to target cells, consists for approximately 50% of sugar, but the role of the individual sugar chains in various aspects of gp120 folding and function is poorly understood. Here we studied the role of the carbohydrate at position 386. We identified a virus variant that had lost the 386 glycan in an evolution study of a mutant virus lacking the disulfide bond at the base of the V4 domain. RESULTS The 386 carbohydrate was not essential for folding of wt gp120. However, its removal improved folding of a gp120 variant lacking the 385-418 disulfide bond, suggesting that it plays an auxiliary role in protein folding in the presence of this disulfide bond. The 386 carbohydrate was not critical for gp120 binding to dendritic cells (DC) and DC-mediated HIV-1 transmission to T cells. In accordance with previous reports, we found that N386 was involved in binding of the mannose-dependent neutralizing antibody 2G12. Interestingly, in the presence of specific substitutions elsewhere in gp120, removal of N386 did not result in abrogation of 2G12 binding, implying that the contribution of N386 is context dependent. Neutralization by soluble CD4 and the neutralizing CD4 binding site (CD4BS) antibody b12 was significantly enhanced in the absence of the 386 sugar, indicating that this glycan protects the CD4BS against antibodies. CONCLUSION The carbohydrate at position 386 is not essential for protein folding and function, but is involved in the protection of the CD4BS from antibodies. Removal of this sugar in the context of trimeric Env immunogens may therefore improve the elicitation of neutralizing CD4BS antibodies.
Collapse
Affiliation(s)
- Rogier W Sanders
- Laboratory of Experimental Virology, Dept, Medical Microbiology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chomont N, Hocini H, Gody JC, Bouhlal H, Becquart P, Krief-Bouillet C, Kazatchkine M, Bélec L. Neutralizing monoclonal antibodies to human immunodeficiency virus type 1 do not inhibit viral transcytosis through mucosal epithelial cells. Virology 2008; 370:246-54. [DOI: 10.1016/j.virol.2007.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 05/10/2007] [Accepted: 09/06/2007] [Indexed: 11/29/2022]
|
30
|
Mirsaliotis A, Nurkiyanova K, Lamb D, Kuo CWS, Brighty DW. Resistance to neutralization by antibodies targeting the coiled coil of fusion-active envelope is a common feature of retroviruses. J Biol Chem 2007; 282:36724-35. [PMID: 17940280 DOI: 10.1074/jbc.m706827200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The human T-cell leukemia virus transmembrane glycoprotein (TM) is a typical class 1 membrane fusion protein and a subunit of the viral envelope glycoprotein complex. Following activation, the TM undergoes conformational transitions from a native nonfusogenic state to a fusion-active pre-hairpin intermediate that subsequently resolves to a compact trimer-of-hairpins or six-helix bundle. Disruption of these structural transitions inhibits membrane fusion and viral entry and validates TM as an anti-viral and vaccine target. To investigate the immunological properties of fusion-active TM, we have generated a panel of monoclonal antibodies that recognize the coiled-coil domain of the pre-hairpin intermediate. Antibody reactivity is highly sensitive to the conformation of the coiled coil as binding is dramatically reduced or lost on denatured antigen. Moreover, a unique group of antibodies are 100-1000-fold more reactive with the coiled coil than the trimer-of-hairpins form of TM. The antibodies recognize virally expressed envelope, and significantly, some selectively bind to envelope only under conditions that promote membrane fusion. Most importantly, many of the antibodies potently block six-helix bundle formation in vitro. Nevertheless, viral envelope was remarkably resistant to neutralization by antibodies directed to the coiled coil. The data imply that the coiled coil of viral envelope is poorly exposed to antibody during membrane fusion. We suggest that resistance to neutralization by antibodies directed to fusion-associated structures is a common property of retroviral TM and perhaps of other viral class I fusion proteins. These observations have significant implications for vaccine design.
Collapse
Affiliation(s)
- Antonis Mirsaliotis
- Biomedical Research Centre, Ninewells Hospital and Medical School, the University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
31
|
Saphire EO, Montero M, Menendez A, van Houten NE, Irving MB, Pantophlet R, Zwick MB, Parren PWHI, Burton DR, Scott JK, Wilson IA. Structure of a high-affinity "mimotope" peptide bound to HIV-1-neutralizing antibody b12 explains its inability to elicit gp120 cross-reactive antibodies. J Mol Biol 2007; 369:696-709. [PMID: 17445828 PMCID: PMC1995417 DOI: 10.1016/j.jmb.2007.01.060] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 01/20/2007] [Accepted: 01/23/2007] [Indexed: 11/26/2022]
Abstract
The human antibody b12 recognizes a discontinuous epitope on gp120 and is one of the rare monoclonal antibodies that neutralize a broad range of primary human immunodeficiency virus type 1 (HIV-1) isolates. We previously reported the isolation of B2.1, a dimeric peptide that binds with high specificity to b12 and competes with gp120 for b12 antibody binding. Here, we show that the affinity of B2.1 was improved 60-fold over its synthetic-peptide counterpart by fusing it to the N terminus of a soluble protein. This affinity, which is within an order of magnitude of that of gp120, probably more closely reflects the affinity of the phage-borne peptide. The crystal structure of a complex between Fab of b12 and B2.1 was determined at 1.8 A resolution. The structural data allowed the differentiation of residues that form critical contacts with b12 from those required for maintenance of the antigenic structure of the peptide, and revealed that three contiguous residues mediate B2.1's critical contacts with b12. This single region of critical contact between the B2.1 peptide and the b12 paratope is unlikely to mimic the discontinuous key binding residues involved in the full b12 epitope for gp120, as previously identified by alanine scanning substitutions on the gp120 surface. These structural observations are supported by experiments that demonstrate that B2.1 is an ineffective immunogenic mimic of the b12 epitope on gp120. Indeed, an extensive series of immunizations with B2.1 in various forms failed to produce gp120 cross-reactive sera. The functional and structural data presented here, however, suggest that the mechanism by which b12 recognizes the two antigens is very different. Here, we present the first crystal structure of peptide bound to an antibody that was originally raised against a discontinuous protein epitope. Our results highlight the challenge of producing immunogens that mimic discontinuous protein epitopes, and the necessity of combining complementary experimental approaches in analyzing the antigenic and immunogenic properties of putative molecular mimics.
Collapse
Affiliation(s)
- Erica Ollmann Saphire
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mirsaliotis A, Nurkiyanova K, Lamb D, Woof JM, Brighty DW. Conformation-specific antibodies targeting the trimer-of-hairpins motif of the human T-cell leukemia virus type 1 transmembrane glycoprotein recognize the viral envelope but fail to neutralize viral entry. J Virol 2007; 81:6019-31. [PMID: 17376912 PMCID: PMC1900303 DOI: 10.1128/jvi.02544-06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) entry into cells is dependent upon the viral envelope glycoprotein-catalyzed fusion of the viral and cellular membranes. Following receptor activation of the envelope, the transmembrane glycoprotein (TM) is thought to undergo a series of fusogenic conformational transitions through a rod-like prehairpin intermediate to a compact trimer-of-hairpins structure. Importantly, synthetic peptides that interfere with the conformational changes of TM are potent inhibitors of membrane fusion and HTLV-1 entry, suggesting that TM is a valid target for antiviral therapy. To assess the utility of TM as a vaccine target and to explore further the function of TM in HTLV-1 pathogenesis, we have begun to examine the immunological properties of TM. Here we demonstrate that a recombinant trimer-of-hairpins form of the TM ectodomain is strongly immunogenic. Monoclonal antibodies raised against the TM immunogen specifically bind to trimeric forms of TM, including structures thought to be important for membrane fusion. Importantly, these antibodies recognize the envelope on virally infected cells but, surprisingly, fail to neutralize envelope-mediated membrane fusion or infection by pseudotyped viral particles. Our data imply that, even in the absence of overt membrane fusion, there are multiple forms of TM on virally infected cells and that some of these display fusion-associated structures. Finally, we demonstrate that many of the antibodies possess the ability to recruit complement to TM, suggesting that envelope-derived immunogens capable of eliciting a combination of neutralizing and complement-fixing antibodies would be of value as subunit vaccines for intervention in HTLV infections.
Collapse
Affiliation(s)
- Antonis Mirsaliotis
- Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
33
|
Haim H, Steiner I, Panet A. Time frames for neutralization during the human immunodeficiency virus type 1 entry phase, as monitored in synchronously infected cell cultures. J Virol 2007; 81:3525-34. [PMID: 17251303 PMCID: PMC1866073 DOI: 10.1128/jvi.02293-06] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Characterization of the neutralizing interaction between antibody and virus is hindered by the nonsynchronized progression of infection in cell cultures. Discrete steps of the viral entry sequence cannot be discerned, and thus, the mode of antibody-mediated interference with virus infectivity remains undefined. Here, we magnetically synchronize the motion and cell attachment of human immunodeficiency virus type 1 (HIV-1) to monitor the progression of neutralization, both in solution and following virus attachment to the cell. By simultaneous transfer of all viral particles from reaction solution with antibody to the cell-bound state, the precise rate of neutralization of cell-free virus could be determined for each antibody. HIV-1 neutralization by both monoclonal and polyclonal antibody preparations followed distinct pseudo-first-order kinetics. For all antibodies, cell types, and HIV-1 strains examined, postattachment interference served a major role in the neutralizing effect. To monitor the progression of postattachment interference, we synchronized the entry process at initiation and measured the escape of cell-bound virus from antibody. We found that different antibodies neutralized the virus over different time frames during the entry phase. Virus was observed to progress through a sequence of shifting sensitivities to different antibodies during entry, suggested here to correlate with the exposure time of the target epitope on receptor-activated viral envelope proteins. Thus, by monitoring the progression of HIV-1 entry under synchronized conditions, we identify a new and significant determinant of antibody neutralization capacity, namely, the time frames for neutralization during the course of the viral entry phase.
Collapse
Affiliation(s)
- Hillel Haim
- Department of Virology, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel.
| | | | | |
Collapse
|
34
|
Shibata J, Yoshimura K, Honda A, Koito A, Murakami T, Matsushita S. Impact of V2 mutations on escape from a potent neutralizing anti-V3 monoclonal antibody during in vitro selection of a primary human immunodeficiency virus type 1 isolate. J Virol 2007; 81:3757-68. [PMID: 17251298 PMCID: PMC1866102 DOI: 10.1128/jvi.01544-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
KD-247, a humanized monoclonal antibody to an epitope of gp120-V3 tip, has potent cross-neutralizing activity against subtype B primary human immunodeficiency virus type 1 (HIV-1) isolates. To assess how KD-247 escape mutants can be generated, we induced escape variants by exposing bulked primary R5 virus, MOKW, to increasing concentrations of KD-247 in vitro. In the presence of relatively low concentrations of KD-247, viruses with two amino acid mutations (R166K/D167N) in V2 expanded, and under high KD-247 pressure, a V3 tip substitution (P313L) emerged in addition to the V2 mutations. However, a virus with a V2 175P mutation dominated during passaging in the absence of KD-247. Using domain swapping analysis, we demonstrated that the V2 mutations and the P313L mutation in V3 contribute to partial and complete resistance phenotypes against KD-247, respectively. To identify the V2 mutation responsible for the resistance to KD-247, we constructed pseudoviruses with single or double amino acid mutations in V2 and measured their sensitivity to neutralization. Interestingly, the neutralization phenotypes were switched, so that amino acid residue 175 (Pro or Leu) located in the center of V2 was exchanged, indicating that the amino acid at position 175 has a crucial role, dramatically changing the Env oligomeric state on the membrane surface and affecting the neutralization phenotype against not only anti-V3 antibody but also recombinant soluble CD4. These data suggested that HIV-1 can escape from anti-V3 antibody attack by changing the conformation of the functional envelope oligomer by acquiring mutations in the V2 region in environments with relatively low antibody concentrations.
Collapse
Affiliation(s)
- Junji Shibata
- Division of Clinical Retrovirology and Infectious Diseases, Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Lamalle-Bernard D, Munier S, Compagnon C, Charles MH, Kalyanaraman VS, Delair T, Verrier B, Ataman-Onal Y. Coadsorption of HIV-1 p24 and gp120 proteins to surfactant-free anionic PLA nanoparticles preserves antigenicity and immunogenicity. J Control Release 2006; 115:57-67. [PMID: 16919350 DOI: 10.1016/j.jconrel.2006.07.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 06/30/2006] [Accepted: 07/04/2006] [Indexed: 12/21/2022]
Abstract
Biodegradable micro- or nanoparticles with surface adsorbed antigens represent a promising method for in vivo delivery of vaccines. Most vaccines, licensed or under development, are based on combined delivery of multiple antigens. Thus, we investigated the feasibility of combining two vaccine antigens, HIV-1 p24 and gp120 proteins, on the surface of surfactant-free anionic PLA nanoparticles obtained by an improved solvent diffusion method. The analysis of adsorption isotherms has shown that both proteins had similar and high affinities for the nanoparticles. Coadsorption of p24 and gp120 onto the same PLA particle was evidenced by sandwich ELISA, using antibodies directed against one protein for particle capture and the other one for detection. To assess structural integrity, the antigenicity of free and PLA-adsorbed antigens was compared by competition ELISA, using a set of 6 anti-p24 and 7 anti-gp120 antibodies, as well as soluble CD4. The antigenicity of proteins on the nanoparticle surface was well preserved, adsorbed either individually or in combination. Furthermore, both antigens maintained their immunogenicity, since high antibody titres (10(6) for p24 and 10(5) for gp120) were elicited in mice with monovalent and divalent PLA formulations. Taken together our results show that development of multivalent vaccines based on anionic PLA nanoparticles is possible. Moreover, coadsorption of a ligand for cell-specific targeting or of an immunostimulatory molecule will further extend the field of application of delivery systems based on charged micro- and nanoparticles.
Collapse
Affiliation(s)
- Delphine Lamalle-Bernard
- FRE2736 CNRS-bioMérieux, IFR128 BioSciences Lyon-Gerland, Tour CERVI, 21, Avenue Tony Garnier, F-69365 Lyon cedex 07, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Yuan W, Bazick J, Sodroski J. Characterization of the multiple conformational States of free monomeric and trimeric human immunodeficiency virus envelope glycoproteins after fixation by cross-linker. J Virol 2006; 80:6725-37. [PMID: 16809278 PMCID: PMC1489074 DOI: 10.1128/jvi.00118-06] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) gp120 exterior and gp41 transmembrane envelope glycoproteins assemble into trimers on the virus surface that represent potential targets for antibodies. Potent neutralizing antibodies bind the monomeric gp120 glycoprotein with small changes in entropy, whereas unusually large decreases in entropy accompany gp120 binding by soluble CD4 and less potent neutralizing antibodies. The high degree of conformational flexibility in the free gp120 molecule implied by these observations has been suggested to contribute to masking the trimer from antibodies that recognize the gp120 receptor-binding regions. Here we use cross-linking and recognition by antibodies to investigate the conformational states of gp120 monomers and soluble and cell surface forms of the trimeric HIV-1 envelope glycoproteins. The fraction of monomeric and trimeric envelope glycoproteins able to be recognized after fixation was inversely related to the entropic changes associated with ligand binding. In addition, fixation apparently limited the access of antibodies to the V3 loop and gp41-interactive surface of gp120 only in the context of trimeric envelope glycoproteins. The results support a model in which the unliganded monomeric and trimeric HIV-1 envelope glycoproteins sample several different conformations. Depletion of particular fixed conformations by antibodies allowed characterization of the relationships among the conformational states. Potent neutralizing antibodies recognize the greatest number of conformations and therefore can bind the virion envelope glycoproteins more rapidly and completely than weakly neutralizing antibodies. Thus, the conformational flexibility of the HIV-1 envelope glycoproteins creates thermodynamic and kinetic barriers to neutralization by antibodies directed against the receptor-binding regions of gp120.
Collapse
Affiliation(s)
- Wen Yuan
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 44 Binney Street-JFB 824, Boston, MA 02115, USA
| | | | | |
Collapse
|
37
|
|
38
|
Verity EE, Williams LA, Haddad DN, Choy V, O'Loughlin C, Chatfield C, Saksena NK, Cunningham A, Gelder F, McPhee DA. Broad neutralization and complement-mediated lysis of HIV-1 by PEHRG214, a novel caprine anti-HIV-1 polyclonal antibody. AIDS 2006; 20:505-15. [PMID: 16470114 DOI: 10.1097/01.aids.0000210604.78385.95] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVES To assess the potency, breadth of action, and mechanism of action of the polyclonal goat anti-HIV antibody, PEHRG214. DESIGN Typical human antibody responses to HIV-1 infection are unable to neutralize virus efficiently, clear the infection, or prevent disease progression. However, more potent neutralizing antibodies may be capable of playing a pivotal role in controlling HIV replication in vivo. PEHRG214 is a polyclonal caprine antibody raised against purified HIV-associated proteins, such that epitopes that are immunologically silent in humans may potentially be recognized in another species. It has been administered safely to HIV-infected individuals in Phase I clinical trials. METHODS The anti-HIV activity of PEHRG214 was assessed using neutralization and virion lysis assays. The target proteins for PEHRG214 activity were investigated using flow cytometry and by adsorption of anti-cell antibodies from the antibody cocktail. RESULTS PEHRG214 strongly neutralized a diverse range of primary HIV-1 isolates, encompassing subtypes A to E and both CCR5 and CXCR4 phenotypes. Neutralization was enhanced by the presence of complement. PEHRG214 also induced complement-mediated lysis of all HIV-1 isolates tested, and recognized or cross-reacted with a number of host cell proteins. Lysis was abrogated by adsorption with T and/or B cells expressing GPI-linked proteins, but not by GPI-deficient B cells or red blood cells. CONCLUSIONS PEHRG214 was found to potently neutralize and lyse HIV-1 particles. By targeting host cell proteins present in the viral envelope, which are conserved among all strains tested, PEHRG214 potentially opens up a highly novel means of eliminating circulating virus in infected individuals.
Collapse
Affiliation(s)
- Erin E Verity
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Selvarajah S, Puffer B, Pantophlet R, Law M, Doms RW, Burton DR. Comparing antigenicity and immunogenicity of engineered gp120. J Virol 2005; 79:12148-63. [PMID: 16160142 PMCID: PMC1211546 DOI: 10.1128/jvi.79.19.12148-12163.2005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have engineered monomeric gp120 in such a way as to favorably present the conserved epitope for the broadly neutralizing antibody b12 while lowering the exposure of epitopes recognized by some weakly neutralizing and nonneutralizing antibodies. The work presented here describes the immune response in rabbits immunized with two prototype, engineered gp120s to explore the relationship between antigenicity and immunogenicity for these mutants. The GDMR gp120 mutant (residues 473 to 476 on gp120 altered from GDMR to AAAA) has a series of substitutions on the edge of the CD4 binding site (CD4bs), and the mCHO gp120 mutant has seven extra glycans relative to the wild-type protein. Importantly, serum mapping showed that both mutants did not elicit antibodies against a number of epitopes that had been targeted for dampening. The sera from rabbits immunized with the GDMR gp120 mutant neutralized some primary viruses at levels somewhat better than the wild-type gp120 immune sera as a result of an increased elicitation of anti-V3 antibodies. Unlike wild-type gp120 immune sera, GDMR gp120 immune sera failed to neutralize HXBc2, a T-cell line adapted (TCLA) virus. This was associated with loss of CD4bs/CD4-induced antibodies that neutralize TCLA but not primary viruses. The mCHO gp120 immune sera did not neutralize primary viruses to any significant degree, reflecting the masking of epitopes of even weakly neutralizing antibodies without eliciting b12-like antibodies. These results show that antibody responses to multiple epitopes on gp120 can be dampened. More precise focusing to a neutralizing epitope will likely require several iterations comparing antigenicity and immunogenicity of engineered proteins.
Collapse
Affiliation(s)
- Suganya Selvarajah
- The Scripps Research Institute, Department of Immunology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
40
|
Saunders CJ, McCaffrey RA, Zharkikh I, Kraft Z, Malenbaum SE, Burke B, Cheng-Mayer C, Stamatatos L. The V1, V2, and V3 regions of the human immunodeficiency virus type 1 envelope differentially affect the viral phenotype in an isolate-dependent manner. J Virol 2005; 79:9069-80. [PMID: 15994801 PMCID: PMC1168758 DOI: 10.1128/jvi.79.14.9069-9080.2005] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is well documented that removal of the V1V2 region or of the V2 loop alone from the envelope glycoprotein of human immunodeficiency virus type 1 (HIV-1) or simian immunodeficiency virus (SIV) increases the susceptibility of these viruses to neutralization by antibodies. The specific role of the V1 loop in defining the neutralization susceptibility of HIV is, however, not well documented. Our current studies indicate that although the V1V2 region is a global modulator of the HIV-1 neutralization susceptibility, the individual roles the V1 and V2 loops have in defining the neutralization susceptibility profile of HIV-1 differ and in some cases are opposite. While deletion of the V2 loop renders the virus more susceptible to neutralization by antibodies that recognize diverse epitopes, in particular certain ones located in the CD4 binding site and the V3 loop, deletion of the V1 loop renders the virus refractory to neutralization, especially by antibodies that recognize CD4-induced epitopes and certain CD4-site binding antibodies. Our current studies also indicate that the relative involvement of the V2 loop of the HIV-1 envelope during virus-cell entry appears to be envelope background dependent. As a result, although deletion of the V2 loop from the clade B, R5-tropic SF162 HIV-1 virus resulted in a virus that was replication competent, the same modification introduced on the background of two other R5-tropic isolates, SF128A (clade B) or SF170 (clade A), abrogated the ability of these envelopes to mediate virus-cell entry.
Collapse
Affiliation(s)
- Cheryl J Saunders
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Burrer R, Haessig-Einius S, Aubertin AM, Moog C. Neutralizing as well as non-neutralizing polyclonal immunoglobulin (Ig)G from infected patients capture HIV-1 via antibodies directed against the principal immunodominant domain of gp41. Virology 2005; 333:102-13. [PMID: 15708596 DOI: 10.1016/j.virol.2004.12.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Accepted: 12/31/2004] [Indexed: 10/25/2022]
Abstract
We analyzed the factors influencing the binding of polyclonal immunoglobulin (Ig)G from HIV-infected patients to primary isolates (PI) in capture assays and a potential correlation between this binding and neutralization. The fixation of antibodies (Abs) to viral particles was measured by quantifying the capture of 4 PI by purified IgG immobilized onto a plate or by analyzing the capture of IgG-virus complexes formed in solution. We found that the capture of virus and the formation of immune complexes is mainly achieved by Abs directed against the principal immunodominant domain (PID) of gp41. We have further compared the binding measured by these two methods and the neutralizing activity of our polyclonal IgG and found no correlation. Thus, capture assays, including the immune complex capture assay that is more representative of "physiological" conditions, cannot be used as surrogate method for the investigation of the neutralizing activity of Abs.
Collapse
Affiliation(s)
- Renaud Burrer
- EA3770, Institut de Virologie, Université Louis Pasteur, 67000 Strasbourg, France
| | | | | | | |
Collapse
|
42
|
Kang SM, Quan FS, Huang C, Guo L, Ye L, Yang C, Compans RW. Modified HIV envelope proteins with enhanced binding to neutralizing monoclonal antibodies. Virology 2005; 331:20-32. [PMID: 15582650 DOI: 10.1016/j.virol.2004.10.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The target for neutralizing antibodies against human immunodeficiency virus (HIV) is the trimeric Env protein on the native virion. Conserved neutralizing epitopes of receptor binding sites are located in the recessed core of the Env protein, partially masked by glycosylations and variable loops. In this study, we have investigated the effects of modifications of the HIV Env protein by glycosylation site mutations, deletions of variable loops, or combinations of both types of mutations on their protein functions and reactivities with neutralizing antibodies. Modified Env proteins were expressed in insect or mammalian cells, and their reactivity with epitope-specific broadly neutralizing monoclonal antibodies (Mabs) was determined by flow cytometry. A unique mutant designated 3G with mutations in three glycosylation motifs within the V3/C3 domains surrounding the CD4 binding site showed higher levels of binding to most broadly neutralizing Mabs (b12 and 2F5) in both insect and mammalian expression systems. Mutants with a deletion of both V1 and V2 loop domains or with a unique combination of both types of mutations also bound to most neutralizing Mabs at higher levels compared to the wild-type control. Most mutants maintained the ability to bind CD4 and to induce syncytium formation at similar or higher levels as compared to that of the wild-type Env protein, except for a mutant with a combination of variable loop deletions and deglycosylation mutations. Our study suggests that modified HIV Env proteins with reduced glycosylation in domains surrounding the CD4 binding site or variable loop-deleted mutants expose important neutralizing epitopes at higher levels than wild type and may provide novel vaccine immunogens.
Collapse
Affiliation(s)
- Sang-Moo Kang
- Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Road, RRC 3086, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Krachmarov C, Pinter A, Honnen WJ, Gorny MK, Nyambi PN, Zolla-Pazner S, Kayman SC. Antibodies that are cross-reactive for human immunodeficiency virus type 1 clade a and clade B v3 domains are common in patient sera from Cameroon, but their neutralization activity is usually restricted by epitope masking. J Virol 2005; 79:780-90. [PMID: 15613306 PMCID: PMC538589 DOI: 10.1128/jvi.79.2.780-790.2005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sera from human immunodeficiency virus type 1 (HIV-1)-infected North American patients recognized a fusion protein expressing a V3 loop from a clade B primary isolate virus (JR-CSF) but not from a clade A primary isolate virus (92UG037.8), while most sera from Cameroonian patients recognized both fusion proteins. Competition studies of consensus V3 peptides demonstrated that the majority of the cross-reactive Cameroonian sera contained cross-reactive antibodies that reacted strongly with both V3 sequences. V3-specific antibodies purified from all six cross-reactive sera examined had potent neutralizing activity for virus pseudotyped with envelope proteins (Env) from SF162, a neutralization-sensitive clade B primary isolate. For four of these samples, neutralization of SF162 pseudotypes was blocked by both the clade A and clade B V3 fusion proteins, indicating that this activity was mediated by cross-reactive antibodies. In contrast, the V3-reactive antibodies from only one of these six sera had significant neutralizing activity against viruses pseudotyped with Envs from typically resistant clade B (JR-FL) or clade A (92UG037.8) primary isolates. However, the V3-reactive antibodies from these cross-reactive Cameroonian sera did neutralize virus pseudotyped with chimeric Envs containing the 92UG037.8 or JR-FL V3 sequence in Env backbones that did not express V1/V2 domain masking of V3 epitopes. These data indicated that Cameroonian sera frequently contain cross-clade reactive V3-directed antibodies and indicated that the typical inability of such antibodies to neutralize typical, resistant primary isolate Env pseudotypes was primarily due to indirect masking effects rather than to the absence of the target epitopes.
Collapse
Affiliation(s)
- Chavdar Krachmarov
- Public Health Research Institute, Laboratory of Retroviral Biology, 225 Warren St., Newark, NJ 07103-3535, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Trujillo JD, Kumpula-McWhirter NM, Hötzel KJ, Gonzalez M, Cheevers WP. Glycosylation of immunodominant linear epitopes in the carboxy-terminal region of the caprine arthritis-encephalitis virus surface envelope enhances vaccine-induced type-specific and cross-reactive neutralizing antibody responses. J Virol 2004; 78:9190-202. [PMID: 15308714 PMCID: PMC506968 DOI: 10.1128/jvi.78.17.9190-9202.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study evaluated type-specific and cross-reactive neutralizing antibodies induced by immunization with modified surface glycoproteins (SU) of the 63 isolate of caprine arthritis-encephalitis lentivirus (CAEV-63). Epitope mapping of sera from CAEV-infected goats localized immunodominant linear epitopes in the carboxy terminus of SU. Two modified SU (SU-M and SU-T) and wild-type CAEV-63 SU (SU-W) were produced in vaccinia virus and utilized to evaluate the effects of glycosylation or the deletion of immunodominant linear epitopes on neutralizing antibody responses induced by immunization. SU-M contained two N-linked glycosylation sites inserted into the target epitopes by R539S and E542N mutations. SU-T was truncated at 518A, upstream from the target epitopes, by introduction of termination codons at 519Y and 521Y. Six yearling Saanen goats were immunized subcutaneously with 30 microg of SU-W, SU-M, or SU-T in Quil A adjuvant and boosted at 3, 7, and 16 weeks. SU antibody titers determined by indirect enzyme-linked immunosorbent assay demonstrated anamnestic responses after each boost. Wild-type and modified SU-induced type-specific CAEV-63 neutralizing antibodies and cross-reactive neutralizing antibodies against CAEV-Co, a virus isolate closely related to CAEV-63, and CAEV-1g5, an isolate geographically distinct from CAEV-63, were determined. Immunization with SU-T resulted in altered recognition of SU linear epitopes and a 2.8- to 4.6-fold decrease in neutralizing antibody titers against CAEV-63, CAEV-Co, and CAEV-1g5 compared to titers of SU-W-immunized goats. In contrast, immunization with SU-M resulted in reduced recognition of glycosylated epitopes and a 2.4- to 2.7-fold increase in neutralizing antibody titers compared to titers of SU-W-immunized goats. Thus, the glycosylation of linear immunodominant nonneutralization epitopes, but not epitope deletion, is an effective strategy to enhance neutralizing antibody responses by immunization.
Collapse
Affiliation(s)
- J D Trujillo
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164-7040, USA.
| | | | | | | | | |
Collapse
|
45
|
Sanders RW, Busser E, Moore JP, Lu M, Berkhout B. Evolutionary repair of HIV type 1 gp41 with a kink in the N-terminal helix leads to restoration of the six-helix bundle structure. AIDS Res Hum Retroviruses 2004; 20:742-9. [PMID: 15307920 DOI: 10.1089/0889222041524544] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The HIV-1 envelope glycoprotein complex (Env) can be stabilized by the introduction of a disulfide bond between the gp120 and gp41 subunits. The resulting protein is monomeric, but trimerization can be improved by the introduction of a single helix-breaking residue at the conserved Ile559 site in the N-terminal heptad repeat region of gp41. To provide more insight into how such a substitution in gp41 affects Env structure and function, we evaluated the effect on the wild-type Env in the context of replicating virus. The Ile559Gly and Ile559Pro mutations adversely affect Env biosynthesis and Env incorporation into virions. Biophysical studies show that the Ile559Pro mutation essentially disrupts the folding of a recombinant gp41 ectodomain core into a six-helix bundle structure. Viruses containing the Ile559Gly and Ile559Pro substitutions replicate poorly, but an evolutionary route is described that restores replication competence. In the escape virus, which contains a Pro559Leu first-site pseudoreversion, the local helical structure and, as a consequence, Env biosynthesis and function are restored.
Collapse
Affiliation(s)
- Rogier W Sanders
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, the Netherlands
| | | | | | | | | |
Collapse
|
46
|
Slobod KS, Lockey TD, Howlett N, Srinivas RV, Rencher SD, Freiden PJ, Doherty PC, Hurwitz JL. Subcutaneous administration of a recombinant vaccinia virus vaccine expressing multiple envelopes of HIV-1. Eur J Clin Microbiol Infect Dis 2004; 23:106-10. [PMID: 14735404 DOI: 10.1007/s10096-003-1075-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A critical goal of HIV vaccine development is the identification of safe and immunogenic vectors. Recombinant vaccinia virus is a highly effective vaccine vector, with demonstrated capacity to protect animals from various viral pathogens, including rabies. Unlike many other candidate vaccine vectors, vast human experience exists with the parenteral smallpox vaccine. However, consideration of recombinant vaccinia virus as a modern vaccine is complicated by the relatively high prevalence of immunocompromised persons compared to such prevalence 4 or more decades ago (when smallpox vaccination was still routine). Administering vaccine by the subcutaneous (SQ) route, rather than the traditional scarification route, could address these concerns. SQ administration could prevent transmission of vaccinia virus to potentially vulnerable persons; it could also avoid the most common adverse events, which are cutaneous in nature. However, previous studies suggest that elicitation of immune response against passenger gene products following SQ administration requires development of a superficial pox lesion, defeating the intention of SQ administration. This is the first report to demonstrate that SQ administration of recombinant vaccinia virus does elicit immune response to the passenger protein in the absence of a cutaneous pox lesion. Results further show that a multi-envelope HIV vaccine can elicit antibody responses toward heterologous HIV-1 not represented by primary sequence in the vaccine. These findings have global implications because they support the consideration of recombinant vaccinia virus as a valuable HIV vaccine vector system.
Collapse
Affiliation(s)
- K S Slobod
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 332 N. Lauderdale Street, Memphis, TN 38105, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
McKenna PM, Pomerantz RJ, Dietzschold B, McGettigan JP, Schnell MJ. Covalently linked human immunodeficiency virus type 1 gp120/gp41 is stably anchored in rhabdovirus particles and exposes critical neutralizing epitopes. J Virol 2004; 77:12782-94. [PMID: 14610200 PMCID: PMC262580 DOI: 10.1128/jvi.77.23.12782-12794.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rabies virus (RV) vaccine strain-based vectors show significant promise as potential live-attenuated vaccines against human immunodeficiency virus type 1 (HIV-1). Here we describe a new RV construct that will also likely have applications as a live-attenuated or killed-particle immunogen. We have created a RV containing a chimeric HIV-1 Env protein, which contains introduced cysteine residues that give rise to an intermolecular disulfide bridge between gp120 and the ectodomain of gp41. This covalently linked gp140 (gp140 SOS) is fused in frame to the cytoplasmic domain of RV G glycoprotein and is efficiently incorporated into the RV virion. On the HIV-1 virion, the gp120 and gp41 moieties are noncovalently associated, which leads to extensive shedding of gp120 from virions and virus-infected cells. The ability to use HIV-1 particles as purified, inactivated immunogens has been confounded by the loss of gp120 during preparation. Additionally, monomeric gp120 and uncleaved gp160 molecules have been shown to be poor antigenic representations of virion-associated gp160. Because the gp120 and gp41 portions are covalently attached in the gp140 SOS molecule, the protein is maintained on the surface of the RV virion throughout purification. Surface immunostaining and fluorescence-activated cell sorting analysis with anti-envelope antibodies show that the gp140 SOS protein is stably expressed on the surface of infected cells and maintains CD4 binding capabilities. Furthermore, Western blot and immunoprecipitation experiments with infected-cell lysates and purified virions show that a panel of neutralizing anti-envelope antibodies efficiently recognize the gp140 SOS protein. The antigenic properties of this recombinant RV particle containing covalently attached Env, as well as the ability to present Env in a membrane-bound form, suggest that this approach could be a useful component of a HIV-1 vaccine strategy.
Collapse
Affiliation(s)
- Philip M McKenna
- Department of Microbiology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
48
|
Cavacini LA, Kuhrt D, Duval M, Mayer K, Posner MR. Binding and neutralization activity of human IgG1 and IgG3 from serum of HIV-infected individuals. AIDS Res Hum Retroviruses 2003; 19:785-92. [PMID: 14585209 DOI: 10.1089/088922203769232584] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The IgG1 and IgG3 subclasses represent the predominant antibody response to viral infections, including HIV. IgG subclasses differ in their interaction with antigen and functional effects due to specific physiochemical features. With an elongated hinge, IgG3 antibodies tend to have more segmental flexibility, which can render the antibody more effective at interacting with antigen. We have previously shown that the change of the human anti-CD4-binding site monoclonal antibody F105 from IgG1 to IgG3 results in neutralization of a T cell line-adapted isolate (TCLA) resistant to neutralization by the parental IgG1. In the studies presented here, we have purified IgG1 and IgG3 subclasses from the sera of HIV-infected individuals and tested for immunoreactivity with and neutralization of HIV. Purified total IgG3 tended to have less relative reactivity and mediated relatively poorer neutralization of either laboratory or primary isolates. IgG3 also tended to react relatively less well with gp160 and gp120 and more robustly with gp41 and p24. The contrasting results with serum, as opposed to F105, may result from the polyclonal nature of serum antibodies. There is also a failure to make a robust IgG3 response to neutralizing epitopes on envelope glycoproteins during natural infection. These studies suggest that the investigation of isotype effects on neutralization will require isotype-switched human monoclonal antibodies. Understanding isotype and neutralization will provide important data necessary for designing the most effective possible vaccines.
Collapse
Affiliation(s)
- Lisa A Cavacini
- Division of Hematology-Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.
| | | | | | | | | |
Collapse
|
49
|
Abstract
To study HIV-1 primary isolate neutralization, we have used DH012 as a model to study the immunogenicity of several DH012 immunogens and determine the potential neutralization epitopes in the virus envelope glycoprotein. Previously, we identified that DH012 infected animals mount potent neutralizing activity against a conformational epitope (CEV) that involves multiple variable regions. In this study, we show that the conformational epitope can be reconstituted with one gp120 recombinant fragment containing sequences from the V1/V2 loop and the bridging sheet of gp120 and a V3 peptide. In contrast to DH012 infection, we previously demonstrated that animals immunized with DH012 gp120 induced potent neutralizing antibodies directed at the V3 domain of gp120. In this study, a second neutralizing activity against the V1/V2 region of gp120 was identified from the same guinea pig sera. In summary, several neutralization epitopes are identified on DH012, including the CEV, V1/V2, V3, 17b, IgG1b12, and 2G12 epitopes. Infectious DH012 virus carrying oligomeric envelope appears to raise primarily neutralizing antibodies that recognize a discontinuous conformationally dependent epitope whereas the monomeric gp120 induces antibodies that are primarily directed at epitopes in the V3 and V1/V2 domains. The DH012 neutralizing epitopes, such as V1/V2 and V3, are either cryptic or poorly immunogenic in chimpanzees. However, immunogens, such as gp120, could be designed to induce neutralizing activity against epitopes that are poorly immunogenic, such as V1/V2 of DH012, in the native envelope glycoproteins.
Collapse
Affiliation(s)
- Chongbin Zhu
- Department of Microbiology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN, 37208, USA
| | | | | |
Collapse
|
50
|
Pantophlet R, Wilson IA, Burton DR. Hyperglycosylated mutants of human immunodeficiency virus (HIV) type 1 monomeric gp120 as novel antigens for HIV vaccine design. J Virol 2003; 77:5889-901. [PMID: 12719582 PMCID: PMC154011 DOI: 10.1128/jvi.77.10.5889-5901.2003] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability to induce broadly neutralizing antibodies should be a key component of any forthcoming vaccine against human immunodeficiency virus type 1. One potential vaccine candidate, monomeric gp120, has generally failed to elicit such antibodies. We postulated that gp120 might be a better immunogen if it could be engineered to preferentially bind known broadly neutralizing antibodies. In a first study, we found that four alanine substitutions on the perimeter of the so-called Phe-43 cavity of gp120 could reduce binding of weakly neutralizing CD4-binding site antibodies (R. Pantophlet, E. O. Saphire, P. Poignard, P. W. H. I. Parren, I. A. Wilson, and D. R. Burton, J. Virol. 77:642-658, 2003), while slightly enhancing binding of the potent, broadly neutralizing antibody b12. In the present study, we sought to reduce or abolish the binding of a wider range of nonneutralizing antibodies, by incorporating extra N-glycosylation motifs at select positions into the hypervariable loops and the gp120 core. A hyperglycosylated mutant containing seven extra glycosylation sequons (consensus sequences) and the four alanine substitutions described above did not bind an extensive panel of nonneutralizing and weakly neutralizing antibodies, including a polyclonal immunoglobulin preparation (HIVIG) of low neutralizing potency. Binding of b12, at lowered affinity, and of four antibodies to the C1 and C5 regions was maintained. Removal of N- and C-terminal residues in the C1 and C5 regions, respectively, reduced or abolished binding of the four antibodies, but this also adversely affected b12 binding. The hyperglycosylated mutant and its analogues described here are novel antigens that may provide a new approach to eliciting antibodies with b12-like neutralizing properties.
Collapse
Affiliation(s)
- Ralph Pantophlet
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|