1
|
da Silva Morgado F, Cahú R, de Jesus DC, de Souza Chaves LC, Ribeiro BM. Insect cell production of chimeric virus-like particles based on human immunodeficiency virus GAG proteins and yellow fever virus envelope protein. Braz J Microbiol 2024; 55:3187-3197. [PMID: 39254800 PMCID: PMC11711793 DOI: 10.1007/s42770-024-01509-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
The yellow fever virus (YFV) is a single stranded RNA virus belonging to the genus Orthoflavivirus that is capable of zoonotic transmissions that infect nonhuman and human primates. It is endemic in Brazil with recurrent epidemics of the disease, and it is transmitted through mosquitoes. The detection and immunization against YFV and other flaviviruses are fundamental for the management of the impacts of the disease in human environments. In an ongoing effort to develop new approaches for diagnostics and immunizations, we expressed VLPs displaying the yellow fever virus envelope protein (YFE) using recombinant baculovirus in insect cells. By co-expressing HIV-1 Pr55Gag protein (GAG) together with YFE we were able to generate chimeric VLPs containing a GAG core together with an envelope containing the YFE protein. The YFE and the chimeric GAG-YFE VLPs have potential as vaccine candidates and as reagents for serological assays in the detection of these viruses in human sera.
Collapse
Affiliation(s)
| | - Roberta Cahú
- Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| | | | | | | |
Collapse
|
2
|
Addressing Antiretroviral Drug Resistance with Host-Targeting Drugs-First Steps towards Developing a Host-Targeting HIV-1 Assembly Inhibitor. Viruses 2021; 13:v13030451. [PMID: 33802145 PMCID: PMC8001593 DOI: 10.3390/v13030451] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
The concerning increase in HIV-1 resistance argues for prioritizing the development of host-targeting antiviral drugs because such drugs can offer high genetic barriers to the selection of drug-resistant viral variants. Targeting host proteins could also yield drugs that act on viral life cycle events that have proven elusive to inhibition, such as intracellular events of HIV-1 immature capsid assembly. Here, we review small molecule inhibitors identified primarily through HIV-1 self-assembly screens and describe how all act either narrowly post-entry or broadly on early and late events of the HIV-1 life cycle. We propose that a different screening approach could identify compounds that specifically inhibit HIV-1 Gag assembly, as was observed when a potent rabies virus inhibitor was identified using a host-catalyzed rabies assembly screen. As an example of this possibility, we discuss an antiretroviral small molecule recently identified using a screen that recapitulates the host-catalyzed HIV-1 capsid assembly pathway. This chemotype potently blocks HIV-1 replication in T cells by specifically inhibiting immature HIV-1 capsid assembly but fails to select for resistant viral variants over 37 passages, suggesting a host protein target. Development of such small molecules could yield novel host-targeting antiretroviral drugs and provide insight into chronic diseases resulting from dysregulation of host machinery targeted by these drugs.
Collapse
|
3
|
A novel platform for virus-like particle-display of flaviviral envelope domain III: induction of Dengue and West Nile virus neutralizing antibodies. Virol J 2013; 10:129. [PMID: 23617954 PMCID: PMC3668303 DOI: 10.1186/1743-422x-10-129] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 03/26/2013] [Indexed: 11/10/2022] Open
Abstract
CD16-RIgE is a chimeric human membrane glycoprotein consisting of the CD16 ectodomain fused to the transmembrane domain and cytoplasmic tail of the gamma chain of the high affinity receptor of IgE (RIgE). Coexpression of CD16-RIgE and HIV-1 Pr55Gag polyprotein precursor (Pr55GagHIV) in insect cells resulted in the incorporation of CD16-RIgE glycoprotein into the envelope of extracellular virus-like particles (VLPs), a phenomenon known as pseudotyping. Taking advantage of this property, we replaced the CD16 ectodomain of CD16-RIgE by the envelope glycoprotein domain III (DIII) of dengue virus serotype 1 (DENV1) or West Nile virus Kunjin (WNVKun). The two resulting chimeric proteins, DIII-DENV1-RIgE and DIII-WNVKun-RIgE, were addressed to the plasma membrane, exposed at the surface of human and insect cells, and incorporated into extracellular VLPs when coexpressed with Pr55GagHIV in insect cells. The DIII domains were accessible at the surface of retroviral VLPs, as shown by their reactivity with specific antibodies, and notably antibodies from patient sera. The DIII-RIgE proteins were found to be incorporated in VLPs made of SIV, MLV, or chimeric MLV-HIV Gag precursors, indicating that DIII-RIgE could pseudotype a wide variety of retroviral VLPs. VLP-displayed DIII were capable of inducing specific neutralizing antibodies against DENV and WNV in mice. Although the neutralization response was modest, our data confirmed the capability of DIII to induce a flavivirus neutralization response, and suggested that our VLP-displayed CD16-RIgE-based platform could be developed as a vaccine vector against different flaviviruses and other viral pathogens.
Collapse
|
4
|
Jalaguier P, Turcotte K, Danylo A, Cantin R, Tremblay MJ. Efficient production of HIV-1 virus-like particles from a mammalian expression vector requires the N-terminal capsid domain. PLoS One 2011; 6:e28314. [PMID: 22140574 PMCID: PMC3227654 DOI: 10.1371/journal.pone.0028314] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 11/06/2011] [Indexed: 11/19/2022] Open
Abstract
It is now well accepted that the structural protein Pr55(Gag) is sufficient by itself to produce HIV-1 virus-like particles (VLPs). This polyprotein precursor contains different domains including matrix, capsid, SP1, nucleocapsid, SP2 and p6. In the present study, we wanted to determine by mutagenesis which region(s) is essential to the production of VLPs when Pr55(Gag) is inserted in a mammalian expression vector, which allows studying the protein of interest in the absence of other viral proteins. To do so, we first studied a minimal Pr55(Gag) sequence called Gag min that was used previously. We found that Gag min fails to produce VLPs when expressed in an expression vector instead of within a molecular clone. This failure occurs early in the cell at the assembly of viral proteins. We then generated a series of deletion and substitution mutants, and examined their ability to produce VLPs by combining biochemical and microscopic approaches. We demonstrate that the matrix region is not necessary, but that the efficiency of VLP production depends strongly on the presence of its basic region. Moreover, the presence of the N-terminal domain of capsid is required for VLP production when Gag is expressed alone. These findings, combined with previous observations indicating that HIV-1 Pr55(Gag)-derived VLPs act as potent stimulators of innate and acquired immunity, make the use of this strategy worth considering for vaccine development.
Collapse
Affiliation(s)
- Pascal Jalaguier
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec – CHUL, Québec, Canada
| | - Karine Turcotte
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec – CHUL, Québec, Canada
| | - Alexis Danylo
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec – CHUL, Québec, Canada
| | - Réjean Cantin
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec – CHUL, Québec, Canada
| | - Michel J. Tremblay
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec – CHUL, Québec, Canada
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de médecine, Université Laval, Québec, Canada
- * E-mail:
| |
Collapse
|
5
|
Gonzalez G, DaFonseca S, Errazuriz E, Coric P, Souquet F, Turcaud S, Boulanger P, Bouaziz S, Hong SS. Characterization of a novel type of HIV-1 particle assembly inhibitor using a quantitative luciferase-Vpr packaging-based assay. PLoS One 2011; 6:e27234. [PMID: 22073298 PMCID: PMC3207847 DOI: 10.1371/journal.pone.0027234] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 10/12/2011] [Indexed: 12/02/2022] Open
Abstract
The HIV-1 auxiliary protein Vpr and Vpr-fusion proteins can be copackaged with Gag precursor (Pr55Gag) into virions or membrane-enveloped virus-like particles (VLP). Taking advantage of this property, we developed a simple and sensitive method to evaluate potential inhibitors of HIV-1 assembly in a living cell system. Two proteins were coexpressed in recombinant baculovirus-infected Sf9 cells, Pr55Gag, which formed the VLP backbone, and luciferase fused to the N-terminus of Vpr (LucVpr). VLP-encapsidated LucVpr retained the enzymatic activity of free luciferase. The levels of luciferase activity present in the pelletable fraction recovered from the culture medium correlated with the amounts of extracellular VLP released by Sf9 cells assayed by conventional immunological methods. Our luciferase-based assay was then applied to the characterization of betulinic acid (BA) derivatives that differed from the leader compound PA-457 (or DSB) by their substituant on carbon-28. The beta-alanine-conjugated and lysine-conjugated DSB could not be evaluated for their antiviral potentials due to their high cytotoxicity, whereas two other compounds with a lesser cytotoxicity, glycine-conjugated and ε-NH-Boc-lysine-conjugated DSB, exerted a dose-dependent negative effect on VLP assembly and budding. A fifth compound with a low cytotoxicity, EP-39 (ethylene diamine-conjugated DSB), showed a novel type of antiviral effect. EP-39 provoked an aberrant assembly of VLP, resulting in nonenveloped, morula-like particles of 100-nm in diameter. Each morula was composed of nanoparticle subunits of 20-nm in diameter, which possibly mimicked transient intermediates of the HIV-1 Gag assembly process. Chemical cross-linking in situ suggested that EP-39 favored the formation or/and persistence of Pr55Gag trimers over other oligomeric species. EP-39 showed a novel type of negative effect on HIV-1 assembly, targeting the Pr55Gag oligomerisation. The biological effect of EP-39 underlined the critical role of the nature of the side chain at position 28 of BA derivatives in their anti-HIV-1 activity.
Collapse
Affiliation(s)
- Gaëlle Gonzalez
- Université Lyon I & INRA UMR-754, Retrovirus & Comparative Pathology, Lyon, France
| | - Sandrina DaFonseca
- Université Lyon I & INRA UMR-754, Retrovirus & Comparative Pathology, Lyon, France
| | - Elisabeth Errazuriz
- Centre Commun d'Imagerie Laënnec, Université Lyon I, Faculté de Medicine, Lyon, France
| | - Pascale Coric
- Laboratoire de Cristallographie et RMN Biologiques, CNRS UMR-8015, UFR des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
| | - Florence Souquet
- Laboratoire Synthèse et Structure de Molécules d'Intérêt Pharmacologique, CNRS UMR-8638, UFR des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
| | - Serge Turcaud
- Laboratoire Synthèse et Structure de Molécules d'Intérêt Pharmacologique, CNRS UMR-8638, UFR des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
| | - Pierre Boulanger
- Université Lyon I & INRA UMR-754, Retrovirus & Comparative Pathology, Lyon, France
| | - Serge Bouaziz
- Laboratoire de Cristallographie et RMN Biologiques, CNRS UMR-8015, UFR des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
| | - Saw See Hong
- Université Lyon I & INRA UMR-754, Retrovirus & Comparative Pathology, Lyon, France
| |
Collapse
|
6
|
HIV Gag-leucine zipper chimeras form ABCE1-containing intermediates and RNase-resistant immature capsids similar to those formed by wild-type HIV-1 Gag. J Virol 2011; 85:7419-35. [PMID: 21543480 DOI: 10.1128/jvi.00288-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
During HIV-1 assembly, Gag polypeptides multimerize to form an immature capsid and also package HIV-1 genomic RNA. Assembling Gag forms immature capsids by progressing through a stepwise pathway of assembly intermediates containing the cellular ATPase ABCE1, which facilitates capsid formation. The NC domain of Gag is required for ABCE1 binding, acting either directly or indirectly. NC is also critical for Gag multimerization and RNA binding. Previous studies of GagZip chimeric proteins in which NC was replaced with a heterologous leucine zipper that promotes protein dimerization but not RNA binding established that the RNA binding properties of NC are dispensable for capsid formation per se. Here we utilized GagZip proteins to address the question of whether the RNA binding properties of NC are required for ABCE1 binding and for the formation of ABCE1-containing capsid assembly intermediates. We found that assembly-competent HIV-1 GagZip proteins formed ABCE1-containing intermediates, while assembly-incompetent HIV-1 GagZip proteins harboring mutations in residues critical for leucine zipper dimerization did not. Thus, these data suggest that ABCE1 does not bind to NC directly or through an RNA bridge, and they support a model in which dimerization of Gag, mediated by NC or a zipper, results in exposure of an ABCE1-binding domain located elsewhere in Gag, outside NC. Additionally, we demonstrated that immature capsids formed by GagZip proteins are insensitive to RNase A, as expected. However, unexpectedly, immature HIV-1 capsids were almost as insensitive to RNase A as GagZip capsids, suggesting that RNA is not a structural element holding together immature wild-type HIV-1 capsids.
Collapse
|
7
|
Kitidee K, Nangola S, Gonzalez G, Boulanger P, Tayapiwatana C, Hong SS. Baculovirus display of single chain antibody (scFv) using a novel signal peptide. BMC Biotechnol 2010; 10:80. [PMID: 21092083 PMCID: PMC3002913 DOI: 10.1186/1472-6750-10-80] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 11/19/2010] [Indexed: 11/13/2022] Open
Abstract
Background Cells permissive to virus can become refractory to viral replication upon intracellular expression of single chain fragment variable (scFv) antibodies directed towards viral structural or regulatory proteins, or virus-coded enzymes. For example, an intrabody derived from MH-SVM33, a monoclonal antibody against a conserved C-terminal epitope of the HIV-1 matrix protein (MAp17), was found to exert an inhibitory effect on HIV-1 replication. Results Two versions of MH-SVM33-derived scFv were constructed in recombinant baculoviruses (BVs) and expressed in BV-infected Sf9 cells, N-myristoylation-competent scFvG2/p17 and N-myristoylation-incompetent scFvE2/p17 protein, both carrying a C-terminal HA tag. ScFvG2/p17 expression resulted in an insoluble, membrane-associated protein, whereas scFvE2/p17 was recovered in both soluble and membrane-incorporated forms. When coexpressed with the HIV-1 Pr55Gag precursor, scFvG2/p17 and scFvE2/p17 did not show any detectable negative effect on virus-like particle (VLP) assembly and egress, and both failed to be encapsidated in VLP. However, soluble scFvE2/p17 isolated from Sf9 cell lysates was capable of binding to its specific antigen, in the form of a synthetic p17 peptide or as Gag polyprotein-embedded epitope. Significant amounts of scFvE2/p17 were released in the extracellular medium of BV-infected cells in high-molecular weight, pelletable form. This particulate form corresponded to BV particles displaying scFvE2/p17 molecules, inserted into the BV envelope via the scFv N-terminal region. The BV-displayed scFvE2/p17 molecules were found to be immunologically functional, as they reacted with the C-terminal epitope of MAp17. Fusion of the N-terminal 18 amino acid residues from the scFvE2/p17 sequence (N18E2) to another scFv recognizing CD147 (scFv-M6-1B9) conferred the property of BV-display to the resulting chimeric scFv-N18E2/M6. Conclusion Expression of scFvE2/p17 in insect cells using a BV vector resulted in baculoviral progeny displaying scFvE2/p17. The function required for BV envelope incorporation was carried by the N-terminal octadecapeptide of scFvE2/p17, which acted as a signal peptide for BV display. Fusion of this peptide to the N-terminus of scFv molecules of interest could be applied as a general method for BV-display of scFv in a GP64- and VSV-G-independent manner.
Collapse
Affiliation(s)
- Kuntida Kitidee
- University Lyon 1, INRA UMR-754, Retrovirus & Comparative Pathology, 50, avenue Tony Garnier, 69366 Lyon Cedex 07, France
| | | | | | | | | | | |
Collapse
|
8
|
Kameoka M, Isarangkura-na-ayuthaya P, Kameoka Y, Sapsutthipas S, Soonthornsata B, Nakamura S, Tokunaga K, Sawanpanyalert P, Ikuta K, Auwanit W. The role of lysine residue at amino acid position 165 of human immunodeficiency virus type 1 CRF01_AE Gag in reducing viral drug susceptibility to protease inhibitors. Virology 2010; 405:129-38. [DOI: 10.1016/j.virol.2010.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/12/2010] [Accepted: 06/01/2010] [Indexed: 11/25/2022]
|
9
|
Dafonseca S, Coric P, Gay B, Hong SS, Bouaziz S, Boulanger P. The inhibition of assembly of HIV-1 virus-like particles by 3-O-(3',3'-dimethylsuccinyl) betulinic acid (DSB) is counteracted by Vif and requires its Zinc-binding domain. Virol J 2008; 5:162. [PMID: 19105849 PMCID: PMC2628355 DOI: 10.1186/1743-422x-5-162] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 12/23/2008] [Indexed: 01/02/2023] Open
Abstract
Background DSB, the 3-O-(3',3'dimethylsuccinyl) derivative of betulinic acid, blocks the last step of protease-mediated processing of HIV-1 Gag precursor (Pr55Gag), which leads to immature, noninfectious virions. When administered to Pr55Gag-expressing insect cells (Sf9), DSB inhibits the assembly and budding of membrane-enveloped virus-like particles (VLP). In order to explore the possibility that viral factors could modulate the susceptibility to DSB of the VLP assembly process, several viral proteins were coexpressed individually with Pr55Gag in DSB-treated cells, and VLP yields assayed in the extracellular medium. Results Wild-type Vif (Vifwt) restored the VLP production in DSB-treated cells to levels observed in control, untreated cells. DSB-counteracting effect was also observed with Vif mutants defective in encapsidation into VLP, suggesting that packaging and anti-DSB effect were separate functions in Vif. The anti-DSB effect was abolished for VifC133S and VifS116V, two mutants which lacked the zinc binding domain (ZBD) formed by the four H108C114C133H139 coordinates with a Zn atom. Electron microscopic analysis of cells coexpressing Pr55Gag and Vifwt showed that a large proportion of VLP budded into cytoplasmic vesicles and were released from Sf9 cells by exocytosis. However, in the presence of mutant VifC133S or VifS116V, most of the VLP assembled and budded at the plasma membrane, as in control cells expressing Pr55Gag alone. Conclusion The function of HIV-1 Vif protein which negated the DSB inhibition of VLP assembly was independent of its packaging capability, but depended on the integrity of ZBD. In the presence of Vifwt, but not with ZBD mutants VifC133S and VifS116V, VLP were redirected to a vesicular compartment and egressed via the exocytic pathway.
Collapse
Affiliation(s)
- Sandrina Dafonseca
- Université de Lyon I-Claude Bernard, Faculté de Médecine Laënnec, Laboratoire de Virologie & Pathologie Humaine, CNRS FRE-3011, 69372 Lyon Cedex 08, France.
| | | | | | | | | | | |
Collapse
|
10
|
DaFonseca S, Blommaert A, Coric P, Hong SS, Bouaziz S, Boulanger P. The 3- O-(3’,3’-dimethylsuccinyl) derivative of betulinic acid (DSB) inhibits the assembly of virus-like particles in HIV-1 Gag precursor-expressing cells. Antivir Ther 2007. [DOI: 10.1177/135965350701200807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Background The 3- O-(3’,3’-dimethylsuccinyl) derivative of betulinic acid (DSB) blocks HIV-1 maturation by interfering with viral protease (PR) at the capsid (CA)-SP1 cleavage site, a crucial region in HIV-1 morphogenesis. Methods We analysed the effect of DSB on the assembly of HIV-1 Gag precursor (Pr55GagHIV) into membrane-enveloped virus-like particles (VLP) in baculovirus-infected cells expressing Pr55GagHIV, in a cellular context devoid of viral PR. Results DSB showed a dose-dependent negative effect on VLP assembly, with an IC50∼10 μM. The DSB inhibitory effect was p6-independent and was also observed for intracellular assembly of non-N-myristoylated Gag core-like particles. HIV-1 VLP assembled in the presence of DSB exhibited a lower stability of their inner cores upon membrane delipidation compared with control VLP, suggesting weaker Gag-Gag interactions. DSB also inhibited the assembly of simian immunodeficiency virus SIVmac251 VLP, although with a twofold lower efficacy (IC50∼20 μM). No detectable inhibitory activity was observed for murine leukaemia virus (MLV) VLP; however, fusion of the SP1-NC-p6 domains from HIV-1 to the matrix (MA)-CA domains from MLV conferred DSB sensitivity to the chimaeric Gag precursor Pr72GagMLV–HIV (IC50=30 μM). This observation suggested that the main DSB target on Pr55Gag was the SP1 domain, but the higher degree of DSB resistance for Pr72GagMLV–HIV compared with Pr55GagHIV implied that other upstream Gag region(s) might contribute to DSB reactivity. Conclusions Sequence alignment and three-dimensional modelling by homology of the CA-SP1-NC junction in HIV-1, SIVmac251 and Pr72GagMLV–HIV suggested that a higher hydrophilic character of the CA region immediately upstream to the HIV-1 CA-SP1 junction, as occurred in Pr72GagMLV–HIV, correlated with a lower DSB sensitivity.
Collapse
Affiliation(s)
- Sandrina DaFonseca
- Laboratoire de Virologie & Pathologie Humaine, Université de Lyon I and CNRS FRE-3011, Faculté de Médecine Laënnec, 69372 Lyon Cedex 08, France
| | - Armand Blommaert
- Unité de Pharmacologie Chimique et Génétique, INSERM U-640 and CNRS UMR-8151, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
| | - Pascale Coric
- Unité de Pharmacologie Chimique et Génétique, INSERM U-640 and CNRS UMR-8151, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
| | - Saw See Hong
- Laboratoire de Virologie & Pathologie Humaine, Université de Lyon I and CNRS FRE-3011, Faculté de Médecine Laënnec, 69372 Lyon Cedex 08, France
| | - Serge Bouaziz
- Unité de Pharmacologie Chimique et Génétique, INSERM U-640 and CNRS UMR-8151, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
| | - Pierre Boulanger
- Laboratoire de Virologie & Pathologie Humaine, Université de Lyon I and CNRS FRE-3011, Faculté de Médecine Laënnec, 69372 Lyon Cedex 08, France
- Laboratoire de Virologie Médicale, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, 69677 Bron Cedex, France
| |
Collapse
|
11
|
Li H, Dou J, Ding L, Spearman P. Myristoylation is required for human immunodeficiency virus type 1 Gag-Gag multimerization in mammalian cells. J Virol 2007; 81:12899-910. [PMID: 17881447 PMCID: PMC2169113 DOI: 10.1128/jvi.01280-07] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gag protein of human immunodeficiency virus type 1 directs the virion assembly process. Gag proteins must extensively multimerize during the formation of the spherical immature virion shell. In vitro, virus-like particles can be generated from Gag proteins that lack the N-terminal myristic acid modification or the nucleocapsid (NC) protein. The precise requirements for Gag-Gag multimerization under conditions present in mammalian cells, however, have not been fully elucidated. In this study, a Gag-Gag multimerization assay measuring fluorescence resonance energy transfer was employed to define the Gag domains that are essential for homomultimerization. Three essential components were identified: protein-protein interactions contributed by residues within both the N- and C-terminal domains of capsid (CA), basic residues in NC, and the presence of myristic acid. The requirement of myristic acid for multimerization was reproduced using the heterologous myristoylation sequence from v-src. Only when a leucine zipper dimerization motif was placed in the position of NC was a nonmyristoylated Gag protein able to multimerize. These results support a three-component model for Gag-Gag multimerization that includes membrane interactions mediated by the myristoylated N terminus of Gag, protein-protein interactions between CA domains, and NC-RNA interactions.
Collapse
Affiliation(s)
- Hua Li
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
12
|
Fu W, Dang Q, Nagashima K, Freed EO, Pathak VK, Hu WS. Effects of Gag mutation and processing on retroviral dimeric RNA maturation. J Virol 2006; 80:1242-9. [PMID: 16415001 PMCID: PMC1346957 DOI: 10.1128/jvi.80.3.1242-1249.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
After their release from host cells, most retroviral particles undergo a maturation process, which includes viral protein cleavage, core condensation, and increased stability of the viral RNA dimer. Inactivating the viral protease prevents protein cleavage; the resulting virions lack condensed cores and contain fragile RNA dimers. Therefore, protein cleavage is linked to virion morphological change and increased stability of the RNA dimer. However, it is unclear whether protein cleavage is sufficient for mediating virus RNA maturation. We have observed a novel phenotype in a murine leukemia virus capsid mutant, which has normal virion production, viral protein cleavage, and RNA packaging. However, this mutant also has immature virion morphology and contains a fragile RNA dimer, which is reminiscent of protease-deficient mutants. To our knowledge, this mutant provides the first evidence that Gag cleavage alone is not sufficient to promote RNA dimer maturation. To extend our study further, we examined a well-defined human immunodeficiency virus type 1 (HIV-1) Gag mutant that lacks a functional PTAP motif and produces immature virions without major defects in viral protein cleavage. We found that the viral RNA dimer in the PTAP mutant is more fragile and unstable compared with those from wild-type HIV-1. Based on the results of experiments using two different Gag mutants from two distinct retroviruses, we conclude that Gag cleavage is not sufficient for promoting RNA dimer maturation, and we propose that there is a link between the maturation of virion morphology and the viral RNA dimer.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Base Sequence
- Capsid Proteins/chemistry
- Capsid Proteins/genetics
- Cell Line
- Dogs
- Gene Products, gag/genetics
- Genes, gag
- Humans
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/physiology
- Microscopy, Electron
- Molecular Sequence Data
- Mutation
- RNA Processing, Post-Transcriptional
- RNA Stability
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Sequence Deletion
- Sequence Homology, Amino Acid
- Virus Replication/genetics
Collapse
Affiliation(s)
- William Fu
- HIV Drug Resistance Program, National Cancer Institute at Frederick, P.O. Box B, Building 535, Room 336, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
13
|
Young KR, Ross TM. Elicitation of immunity to HIV type 1 Gag is determined by Gag structure. AIDS Res Hum Retroviruses 2006; 22:99-108. [PMID: 16438652 DOI: 10.1089/aid.2006.22.99] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gag gene of the human immunodeficiency virus type 1 (HIV-1) encodes for viral proteins that self-assemble into viral particles. The primary Gag gene products (capsid, matrix, and nucleocapsid) elicit humoral and cellular immune responses during natural infection, and these proteins are included in many preclinical and clinical HIV/AIDS vaccines. However, the structure (particulate or soluble) of these proteins may influence the immunity elicited during vaccination. In this study, mice were inoculated with four different HIV-1 Gag vaccines to compare the elicitation of immune responses by the same Gag immunogen presented to the immune system in different forms. The immunity elicited by particles produced in vivo by DNA plasmid (pGag) was compared to these same proteins retained intracellularly (pGag(DMyr)). In addition, the elicitation of anti- Gag immunity by Gag(p55) virus-like particles (VLPs) or soluble, nonparticulate Gag(p55) proteins was compared. Enhanced cellular responses, but almost no anti-Gag antibodies, were elicited with intracellularly retained Gag proteins. In contrast, DNA vaccines expressing VLPs elicited both anti-Gag antibodies and cellular responses. Mice vaccinated with purified Gag(p55) VLPs elicited robust humoral and cellular immune responses, which were significantly higher than the immunity elicited by soluble, nonparticulate Gag(p55) protein. Overall, purified particles of Gag effectively elicited the broadest and highest titers of anti-Gag immunity. The structural form of Gag influences the elicited immune responses and should be considered in the design of HIV/AIDS vaccines.
Collapse
Affiliation(s)
- Kelly R Young
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, 15261, USA
| | | |
Collapse
|
14
|
Ono A, Waheed AA, Joshi A, Freed EO. Association of human immunodeficiency virus type 1 gag with membrane does not require highly basic sequences in the nucleocapsid: use of a novel Gag multimerization assay. J Virol 2005; 79:14131-40. [PMID: 16254348 PMCID: PMC1280195 DOI: 10.1128/jvi.79.22.14131-14140.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 08/30/2005] [Indexed: 12/30/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) particle production, a process driven by the Gag polyprotein precursor, occurs on the plasma membrane in most cell types. The plasma membrane contains cholesterol-enriched microdomains termed lipid rafts, which can be isolated as detergent-resistant membrane (DRM). Previously, we and others demonstrated that HIV-1 Gag is associated with DRM and that disruption of Gag-raft interactions impairs HIV-1 particle production. However, the determinants of Gag-raft association remain undefined. In this study, we developed a novel epitope-based Gag multimerization assay to examine whether Gag assembly is essential for its association with lipid rafts. We observed that membrane-associated, full-length Gag is poorly detected by immunoprecipitation relative to non-membrane-bound Gag. This poor detection is due to assembly-driven masking of Gag epitopes, as denaturation greatly improves immunoprecipitation. Gag mutants lacking the Gag-Gag interaction domain located in the N terminus of the nucleocapsid (NC) were efficiently immunoprecipitated without denaturation, indicating that the epitope masking is caused by higher-order Gag multimerization. We used this assay to examine the relationship between Gag assembly and Gag binding to total cellular membrane and DRM. Importantly, a multimerization-defective NC mutant displayed wild-type levels of membrane binding and DRM association, indicating that NC-mediated Gag multimerization is dispensable for association of Gag with membrane or DRM. We also demonstrate that different properties of sucrose and iodixanol membrane flotation gradients may explain some discrepancies regarding Gag-raft interactions. This report offers new insights into the association of HIV-1 Gag with membrane and with lipid rafts.
Collapse
Affiliation(s)
- Akira Ono
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, Maryland, USA.
| | | | | | | |
Collapse
|
15
|
Roldan A, Warren OU, Russell RS, Liang C, Wainberg MA. A HIV-1 minimal gag protein is superior to nucleocapsid at in vitro annealing and exhibits multimerization-induced inhibition of reverse transcription. J Biol Chem 2005; 280:17488-96. [PMID: 15731102 DOI: 10.1074/jbc.m501310200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
HIV-1 uses tRNA3Lys to prime reverse transcription of its viral RNA. In this process, the 3'-end of tRNA3Lys must be annealed to the primer binding site of HIV-1 genomic RNA, and the two molecules together form a complex structure. During annealing, the nucleocapsid (NC) protein enhances the unwinding of tertiary structures within both RNA molecules. Moreover, the packaging of tRNA3Lys occurs prior to viral budding at a time when NC is still part of the Pr55Gag polyprotein. In contrast, Pr55Gag is able to produce virus-like particles on its own. We have recently shown that an N-terminal extended form of NC (mGag), containing all of the minimal elements required for virus-like particle formation, possesses greater affinity for HIV-1 genomic RNA than does NC alone. We have now studied the tRNA3Lys-annealing properties of mGag in comparison to those of NC and report that the former is more efficient in this regard than the latter. We have also tested each of a mutant version of mGag, an extended form of mGag, and an almost full-length form of Gag, and showed that all of these possessed greater tRNA-annealing capacity than did the viral NC protein. Yet, surprisingly, multimerization of Gag-related proteins did not abrogate this annealing process but rather resulted in dramatically reduced levels of reverse transcriptase processivity. These results suggest that the initial stages of reverse transcription may be regulated by the multimerization of Pr55Gag polyprotein at times prior to the cleavage of NC.
Collapse
MESH Headings
- DNA/chemistry
- DNA Primers/chemistry
- Dimerization
- Dose-Response Relationship, Drug
- Gene Products, gag/chemistry
- Gene Products, gag/physiology
- HIV-1/metabolism
- Hot Temperature
- In Vitro Techniques
- Models, Biological
- Models, Genetic
- Mutation
- Nucleic Acid Conformation
- Nucleocapsid/chemistry
- Polymerase Chain Reaction
- Protein Binding
- Protein Folding
- Protein Precursors/chemistry
- Protein Precursors/physiology
- Protein Structure, Tertiary
- Proteins/chemistry
- RNA/chemistry
- RNA, Transfer/chemistry
- RNA, Transfer, Amino Acyl/chemistry
- Transcription, Genetic
Collapse
Affiliation(s)
- Ariel Roldan
- McGill University AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | | | | | | | | |
Collapse
|
16
|
Deml L, Speth C, Dierich MP, Wolf H, Wagner R. Recombinant HIV-1 Pr55gag virus-like particles: potent stimulators of innate and acquired immune responses. Mol Immunol 2005; 42:259-77. [PMID: 15488613 DOI: 10.1016/j.molimm.2004.06.028] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Several previous reports have clearly demonstrated the strong effectiveness of human immunodeficiency virus (HIV) Gag polyprotein-based virus-like particles (VLP) to stimulate humoral and cellular immune responses in complete absence of additional adjuvants. Yet, the mechanisms underlying the strong immunogenicity of these particulate antigens are still not very clear. However, current reports strongly indicate that these VLP act as "danger signals" to trigger the innate immune system and possess potent adjuvant activity to enhance the immunogenicity of per se only weakly immunogenic peptides and proteins. Here, we review the current understanding of how various particle-associated substances and other impurities may contribute to the observed immune-activating properties of these complex immunogens.
Collapse
Affiliation(s)
- Ludwig Deml
- Institute of Medical Microbiology, University of Regensburg, Franz-Josef-Straurr-Allee 11, D-93053 Regensburg, Germany.
| | | | | | | | | |
Collapse
|
17
|
Roldan A, Russell RS, Marchand B, Götte M, Liang C, Wainberg MA. In vitro identification and characterization of an early complex linking HIV-1 genomic RNA recognition and Pr55Gag multimerization. J Biol Chem 2004; 279:39886-94. [PMID: 15247214 DOI: 10.1074/jbc.m405632200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The minimal protein requirements that drive virus-like particle formation of human immunodeficiency virus type 1 (HIV-1) have been established. The C-terminal domain of capsid (CTD-CA) and nucleocapsid (NC) are the most important domains in a so-called minimal Gag protein (mGag). The CTD is essential for Gag oligomerization. NC is known to bind and encapsidate HIV-1 genomic RNA. The spacer peptide, SP1, located between CA and NC is important for the multimerization process, viral maturation and recognition of HIV-1 genomic RNA by NC. In this study, we show that NC in the context of an mGag protein binds HIV-1 genomic RNA with almost 10-fold higher affinity. The protein region encompassing the 11th alpha-helix of CA and the proposed alpha-helix in the CA/SP1 boundary region play important roles in this increased binding capacity. Furthermore, sequences downstream from stem loop 4 of the HIV-1 genomic RNA are also important for this RNA-protein interaction. In gel shift assays using purified mGag and a model RNA spanning the region from +223 to +506 of HIV-1 genomic RNA, we have identified an early complex (EC) formation between 2 proteins and 1 RNA molecule. This EC was not present in experiments performed with a mutant mGag protein, which contains a CTD dimerization mutation (M318A). These data suggest that the dimerization interface of the CTD plays an important role in EC formation, and, as a consequence, in RNA-protein association and multimerization. We propose a model for the RNA-protein interaction, based on previous results and those presented in this study.
Collapse
Affiliation(s)
- Ariel Roldan
- McGill University AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Teysset L, Dang VD, Kim MK, Levin HL. A long terminal repeat-containing retrotransposon of Schizosaccharomyces pombe expresses a Gag-like protein that assembles into virus-like particles which mediate reverse transcription. J Virol 2003; 77:5451-63. [PMID: 12692246 PMCID: PMC153967 DOI: 10.1128/jvi.77.9.5451-5463.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Tf1 element of Schizosaccharomyces pombe is a long terminal repeat-containing retrotransposon that encodes functional protease, reverse transcriptase, and integrase proteins. Although these proteins are known to be necessary for protein processing, reverse transcription, and integration, respectively, the function of the protein thought to be Gag has not been determined. We present here the first electron microscopy of Tf1 particles. We tested whether the putative Gag of Tf1 was required for particle formation, packaging of RNA, and reverse transcription. We generated deletions of 10 amino acids in each of the four hydrophilic domains of the protein and found that all four mutations reduced transposition activity. The N-terminal deletion removed a nuclear localization signal and inhibited nuclear import of the transposon. The two mutations in the center of Gag destabilized the protein and resulted in no virus-like particles. The C-terminal deletion caused a defect in RNA packaging and, as a result, low levels of cDNA. The electron microscopy of cells expressing a truncated Tf1 showed that Gag alone was sufficient for the formation of virus-like particles. Taken together, these results indicate that Tf1 encodes a Gag protein that is a functional equivalent of the Gag proteins of retroviruses.
Collapse
Affiliation(s)
- Laure Teysset
- Section on Eukaryotic Transposable Elements, Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
19
|
Höglund S, Su J, Reneby SS, Végvári A, Hjertén S, Sintorn IM, Foster H, Wu YP, Nyström I, Vahlne A. Tripeptide interference with human immunodeficiency virus type 1 morphogenesis. Antimicrob Agents Chemother 2002; 46:3597-605. [PMID: 12384371 PMCID: PMC128702 DOI: 10.1128/aac.46.11.3597-3605.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Capsid assembly during virus replication is a potential target for antiviral therapy. The Gag polyprotein is the main structural component of retroviral particles, and in human immunodeficiency virus type 1 (HIV-1), it contains the sequences for the matrix, capsid, nucleocapsid, and several small polypeptides. Here, we report that at a concentration of 100 micro M, 7 of 83 tripeptide amides from the carboxyl-terminal sequence of the HIV-1 capsid protein p24 suppressed HIV-1 replication (>80%). The three most potent tripeptides, glycyl-prolyl-glycine-amide (GPG-NH(2)), alanyl-leucyl-glycine-amide (ALG-NH(2)), and arginyl-glutaminyl-glycine-amide (RQG-NH(2)), were found to interact with p24. With electron microscopy, disarranged core structures of HIV-1 progeny were extensively observed when the cells were treated with GPG-NH(2) and ALG-NH(2). Furthermore, nodular structures of approximately the same size as the broad end of HIV-1 conical capsids were observed at the plasma membranes of treated cells only, possibly indicating an arrest of the budding process. Corresponding tripeptides with nonamidated carboxyl termini were not biologically active and did not interact with p24.
Collapse
Affiliation(s)
- Stefan Höglund
- Department of Biochemistry, Biomedical Center, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Liang C, Hu J, Russell RS, Roldan A, Kleiman L, Wainberg MA. Characterization of a putative alpha-helix across the capsid-SP1 boundary that is critical for the multimerization of human immunodeficiency virus type 1 gag. J Virol 2002; 76:11729-37. [PMID: 12388733 PMCID: PMC136778 DOI: 10.1128/jvi.76.22.11729-11737.2002] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A 14-amino-acid spacer peptide termed SP1 that separates the capsid (CA) and nucleocapsid (NC) sequences plays an active role in the assembly of human immunodeficiency virus type 1. This activity of SP1 involves its amino-terminal residues that, together with adjacent CA residues, constitute a putative alpha-helical structure spanning Gag residues from positions 359 to 371. In this study, we have determined that the virus assembly determinants within this putative alpha-helix were residues H359, K360, A361, L364, A367, and M368, of which K360 and A367 contribute to virus production to lesser extents. Notably, changes of the two basic amino acids H359 and K360 to arginine (R) impaired virus production, whereas mutations L364I and M368I, in contrast to L364A and M368A, generated near-wild-type levels of virus particles. This suggests that within Gag complexes, amino acids H359 and K360 are involved in stricter steric interactions than L364 and M368. Since L364 and M368 are separated by four residues and thus presumably located on the same side of the helical surface, they may initiate synergistic hydrophobic interactions to stabilize Gag association. Further analysis in the context of the protease-negative mutation D185H confirmed the key roles of amino acids H359, A361, L364, and M368 in virus assembly. Importantly, when transfected cells were subjected to Dounce homogenization and the cell lysates were treated by ultracentrifugation at 100,000 x g, Gag molecules containing each of the H359A, A361V, L364A, and M368A mutations were found mainly in the supernatant fraction (S100), whereas approximately 80% of wild-type Gag proteins were found in the pellet. Therefore, these four mutations must have prevented Gag from generating large complexes.
Collapse
Affiliation(s)
- Chen Liang
- McGill AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2.
| | | | | | | | | | | |
Collapse
|
21
|
Kakker NK, Mikhailov MV, Jones IM, Roy P. Comparative analysis of the roles of simian immunodeficiency and bovine leukemia virus matrix proteins in Gag assembly in insect cells. Virology 2002; 299:48-55. [PMID: 12167340 DOI: 10.1006/viro.2002.1441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of the matrix (MA) domain of simian immunodeficiency virus (SIV) and bovine leukaemia virus (BLV) Gag in the assembly of virus-like particles (VLP) in insect cells has been investigated. Wild-type SIV and BLV Gag assembled to form discrete VLP structures typical of many retroviruses analysed by similar systems. When amino acids predicated by the three-dimensional structure to be at the interface of SIV MA monomers were deleted, VLP assembly was abolished consistent with a role for MA multimerization in assembly. When amino acids predicted to be in the analogous positions in BLV MA were mutated, however, VLP assembly was not affected. These data indicate that the models of assembly derived from one model retrovirus may not necessarily apply to more distantly related viruses despite the structural similarity present in equivalent Gag domains.
Collapse
Affiliation(s)
- Naresh K Kakker
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, United Kingdom
| | | | | | | |
Collapse
|
22
|
Zábranský A, Hunter E, Sakalian M. Identification of a minimal HIV-1 gag domain sufficient for self-association. Virology 2002; 294:141-50. [PMID: 11886273 DOI: 10.1006/viro.2001.1315] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gag polyprotein precursors play an essential role in the assembly of the HIV particle by polymerizing into a spherical shell at the plasma membrane. In order to define the domains within Gag responsible for this homotypic interaction, we have coupled the technology of the yeast two-hybrid system with the technology of a gene-based, semirandom library. By this method, we have identified a minimal region of Gag capable of efficient self-interaction. This region consists of the N-terminal portion of the nucleocapsid protein (NC), including the first zinc finger and the previously described interaction, or I, domain. In parallel with this randomized approach, individual HIV Gag domains, and combinations of these domains, were tested for potential homotypic and heterotypic interactions in the yeast two-hybrid system. Consistent with the results from the semirandom library screen, only combinations of species containing NC were strongly interacting.
Collapse
Affiliation(s)
- Ales Zábranský
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | | | | |
Collapse
|
23
|
Bardy M, Gay B, Pébernard S, Chazal N, Courcoul M, Vigne R, Decroly E, Boulanger P. Interaction of human immunodeficiency virus type 1 Vif with Gag and Gag-Pol precursors: co-encapsidation and interference with viral protease-mediated Gag processing. J Gen Virol 2001; 82:2719-2733. [PMID: 11602784 DOI: 10.1099/0022-1317-82-11-2719] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interactions of human immunodeficiency virus type 1 (HIV-1) Vif protein with various forms of Gag and Gag-Pol precursors expressed in insect cells were investigated in vivo and in vitro by co-encapsidation, co-precipitation and viral protease (PR)-mediated Gag processing assays. Addressing of Gag to the plasma membrane, its budding as extracellular virus-like particles (VLP) and the presence of the p6 domain were apparently not required for Vif encapsidation, as non-N-myristoylated Deltap6-Gag and Vif proteins were co-encapsidated into intracellular VLP. Encapsidation of Vif occurred at significantly higher copy numbers in extracellular VLP formed from N-myristoylated, budding-competent Gag-Pol precursors harbouring an inactive PR domain or in chimaeric VLP composed of Gag and Gag-Pol precursors compared with the Vif content of Pr55Gag VLP. Vif encapsidation efficiency did not seem to correlate directly with VLP morphology, since these chimaeric VLP were comparable in size and shape to Pr55Gag VLP. Vif apparently inhibited PR-mediated Pr55Gag processing in vitro, with preferential protection of cleavage sites at the MA-CA and CA-NC junctions. Vif was resistant to PR action in vitro under conditions that allowed full Gag processing, and no direct interaction between Vif and PR was detected in vivo or in vitro. This suggested that inhibition by Vif of PR-mediated Gag processing resulted from interaction of Vif with the Gag substrate and not with the enzyme. Likewise, the higher efficiency of Vif encapsidation by Gag-Pol precursor compared with Pr55Gag was probably not mediated by direct binding of Vif to the Gag-Pol-embedded PR domain, but more likely resulted from a particular conformation of the Gag structural domains of the Gag-Pol precursor.
Collapse
Affiliation(s)
- Martine Bardy
- Laboratoire de Virologie et Pathogénèse Virale, CNRS UMR-5537, Faculté de Médecine RTH Laennec de Lyon, 7 rue Guillaume Paradin, 69372 Lyon Cedex 08, France1
| | - Bernard Gay
- Laboratoire de Virologie et Pathogénèse Virale, CNRS UMR-5537, Faculté de Médecine RTH Laennec de Lyon, 7 rue Guillaume Paradin, 69372 Lyon Cedex 08, France1
| | - Stéphanie Pébernard
- Laboratoire de Virologie et Pathogénèse Virale, CNRS UMR-5537, Faculté de Médecine RTH Laennec de Lyon, 7 rue Guillaume Paradin, 69372 Lyon Cedex 08, France1
| | - Nathalie Chazal
- Laboratoire de Virologie et Pathogénèse Virale, CNRS UMR-5537, Faculté de Médecine RTH Laennec de Lyon, 7 rue Guillaume Paradin, 69372 Lyon Cedex 08, France1
| | - Marianne Courcoul
- Unité de Pathogénie des Infections à Lentivirus, INSERM U-372, Campus de Luminy, Marseille, France2
| | - Robert Vigne
- Unité de Pathogénie des Infections à Lentivirus, INSERM U-372, Campus de Luminy, Marseille, France2
| | - Etienne Decroly
- Unité de Pathogénie des Infections à Lentivirus, INSERM U-372, Campus de Luminy, Marseille, France2
| | - Pierre Boulanger
- Laboratoire de Virologie et Pathogénèse Virale, CNRS UMR-5537, Faculté de Médecine RTH Laennec de Lyon, 7 rue Guillaume Paradin, 69372 Lyon Cedex 08, France1
| |
Collapse
|
24
|
Morikawa Y, Kinoshita A, Goto T, Tomoda H, Sano K. Membrane relocation but not tight binding of human immunodeficiency virus type 1 Gag particles myristoylated in Escherichia coli. Virology 2001; 283:343-52. [PMID: 11336559 DOI: 10.1006/viro.2001.0886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expression of human immunodeficiency virus Gag protein and the N-terminal matrix (MA) domain in Escherichia coli yielded spherical structures in the cytoplasm. When human N-myristoyltransferase was coexpressed, both Gag and MA were fully myristoylated and spherical structures were relocated in close proximity to the cytoplasmic membrane. However, neither myristoylated Gag nor MA exhibited tight binding to E. coli membrane, suggesting that myristoylation in E. coli did not confer membrane affinity on Gag despite the relocation. Our data also suggest that the morphogenetic pathway of Gag particles in prokaryotic cells differs from that in eukaryotic cells despite biochemical similarities of in the form of Gag expressed.
Collapse
Affiliation(s)
- Y Morikawa
- The Kitasato Institute, Shirokane 5-9-1, Minato-ku, Tokyo 108-8642, Japan.
| | | | | | | | | |
Collapse
|
25
|
Cornilescu CC, Bouamr F, Yao X, Carter C, Tjandra N. Structural analysis of the N-terminal domain of the human T-cell leukemia virus capsid protein. J Mol Biol 2001; 306:783-97. [PMID: 11243788 DOI: 10.1006/jmbi.2000.4395] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The N-terminal domain of the retroviral capsid (CA) protein is one of the least conserved regions encoded in the genome. Surprisingly, the three-dimensional structures of the CA from different genera exhibit alpha-helical structural features that are highly conserved. The N-terminal residues of the human immunodeficiency virus type 1 (HIV-1) and Rous sarcoma virus (RSV) capsid proteins form a beta-hairpin. To determine if this feature is conserved in the retroviral family, we cloned, expressed, purified, and solved the structure of a N-terminal 134 amino acid fragment (CA(134)) from the human T-cell leukemia virus type 1 (HTLV-I) using high resolution nuclear magnetic resonance (NMR) spectroscopy. The CA(134) fragment contains an N-terminal beta-hairpin and a central coiled-coil-like structure composed of six alpha-helices. The N-terminal Pro1 residue contacts Asp54 in the helical cluster through a salt bridge. Thus, the beta-hairpin is conserved and the helical cluster is structurally similar to other retroviral CA domains. However, although the same Asp residue defines the orientation of the hairpin in both the HTLV-1 and HIV-1 CA proteins, the HTLV-I hairpin is oriented away, rather than towards, the helical core. Significant differences were also detected in the spatial orientation and helical content of the long centrally located loop connecting the helices in the core. It has been proposed that the salt bridge allows the formation of a CA-CA interface that is important for the assembly of the conical cores that are characteristic of HIV-1. As HTLV-I forms spherical cores, the salt-bridge feature is apparently not conserved for this function although its role in determining the orientation of the beta-hairpin may be critical, along with the central loop. Comparison of three-dimensional structures is expected to elucidate the relationships between the retroviral capsid protein structure and its function.
Collapse
Affiliation(s)
- C C Cornilescu
- Laboratory of Biophysical Chemistry, Bldg. 3, NHLBI, NIH, Bethesda, MD, 20892-0380, USA
| | | | | | | | | |
Collapse
|
26
|
Fitzon T, Leschonsky B, Bieler K, Paulus C, Schröder J, Wolf H, Wagner R. Proline residues in the HIV-1 NH2-terminal capsid domain: structure determinants for proper core assembly and subsequent steps of early replication. Virology 2000; 268:294-307. [PMID: 10704338 DOI: 10.1006/viro.1999.0178] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent analyses suggest that the p24 capsid (p24(CA)) domain of the HIV-1 group-specific antigen (Gag) may be divided into two structurally and functionally distinct moieties: (i) an amino-terminal portion, previously shown to bind the cellular chaperone cyclophilin A, and (ii) a carboxy-terminal domain, known to contribute to the interaction of the Gag and Gag-Pol precursors during the early assembly process. In order to gain deeper insight into the role of the amino-terminal domain of the p24(CA) protein during viral replication, eight highly conserved proline residues known to promote turns and to terminate alpha-helices within the p24 tertiary structure were replaced by a leucine residue (P-position-L). Following transfection of the proviral constructs in COS7 cells, the majority of the mutants resembled wild-type viruses with respect to the assembly and release of virions. However, although the released particles contained wild-type levels of genomic viral RNA, the mature products of the Gag and Gag-Pol polyproteins as well as the Env glycoproteins-all of them, except mutant P225L-were either noninfectious or severely affected in their replicative capacity. Entry assays monitoring the process of viral DNA synthesis led to the classification of selected provirus mutants into four different phenotypes: (i) mutant P225L was infectious and allowed complete reverse transcription including formation of 2-LTR circles; (ii) mutants P149L, P170L, and P217L failed to form 2-LTR circles; (iii) mutant P222L displayed a severe defect in binding and incorporating cyclophilin A into virions, was delayed with respect to DNA polymerization, and failed to form a 2-LTR replication intermediate; and (iv) mutant P133L was unable even to synthesize a first-strand cDNA product. All replication-defective mutants were characterized by severe alterations in the stability of virion cores, which were in two cases reflected by visible changes in the core morphology. These results suggest that proline residues in the NH(2)-terminal capsid domain represent critical structure determinants for proper formation of functional virion cores and subsequent stages of early replication.
Collapse
Affiliation(s)
- T Fitzon
- Institute of Medical Microbiology, Institute of Pathology, University of Regensburg, Franz-Josef-Strauss Allee 11, Regensburg, D-93053, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Burniston MT, Cimarelli A, Colgan J, Curtis SP, Luban J. Human immunodeficiency virus type 1 Gag polyprotein multimerization requires the nucleocapsid domain and RNA and is promoted by the capsid-dimer interface and the basic region of matrix protein. J Virol 1999; 73:8527-40. [PMID: 10482606 PMCID: PMC112873 DOI: 10.1128/jvi.73.10.8527-8540.1999] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Gag polyprotein directs the formation of virions from productively infected cells. Many gag mutations disrupt virion assembly, but little is known about the biochemical effects of many of these mutations. Protein-protein interactions among Gag monomers are believed to be necessary for virion assembly, and data suggest that RNA may modify protein-protein interactions or even serve as a bridge linking Gag polyprotein monomers. To evaluate the primary sequence requirements for HIV-1 Gag homomeric interactions, a panel of HIV-1 Gag deletion mutants was expressed in bacteria and evaluated for the ability to associate with full-length Gag in vitro. The nucleocapsid protein, the major RNA-binding domain of Gag, exhibited activity comparable to that of the complete polyprotein. In the absence of the nucleocapsid protein, relatively weak activity was observed that was dependent upon both the capsid-dimer interface and basic residues within the matrix domain. The relevance of the in vitro findings was confirmed with an assay in which nonmyristylated mutant Gags were assessed for the ability to be incorporated into virions produced by wild-type Gag expressed in trans. Evidence of the importance of RNA for Gag-Gag interaction was provided by the demonstration that RNase impairs the Gag-Gag interaction and that HIV-1 Gag interacts efficiently with Gags encoded by distantly related retroviruses and with structurally unrelated RNA-binding proteins. These results are consistent with models in which Gag multimerization involves indirect contacts via an RNA bridge as well as direct protein-protein interactions.
Collapse
Affiliation(s)
- M T Burniston
- Departments of Microbiology, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
28
|
Khorasanizadeh S, Campos-Olivas R, Summers MF. Solution structure of the capsid protein from the human T-cell leukemia virus type-I. J Mol Biol 1999; 291:491-505. [PMID: 10438634 DOI: 10.1006/jmbi.1999.2986] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The solution structure of the capsid protein (CA) from the human T-cell leukemia virus type one (HTLV-I), a retrovirus that causes T-cell leukemia and HTLV-I-associated myelopathy in humans, has been determined by NMR methods. The protein consists of independent N and C-terminal domains connected by a flexible linker. The domains are structurally similar to the N-terminal "core" and C-terminal "dimerization" domains, respectively, of the human immunodeficiency virus type one (HIV-1) and equine infectious anemia virus (EIAV) capsid proteins, although several important differences exist. In particular, hydrophobic residues near the major homology region are partially buried in HTLV-I CA, which is monomeric in solution, whereas analogous residues in HIV-1 and EIAV CA project from the C-terminal domain and promote dimerization. These differences in the structure and oligomerization state of the proteins appear to be related to, and possibly controlled by, the oxidation state of conserved cysteine residues, which are reduced in HTLV-I CA but form a disulfide bond in the HIV-1 and EIAV CA crystal structures. The results are consistent with an oxidative capsid assembly mechanism, in which CA oligomerization or maturation is triggered by disulfide bo nd formation as the budding virus enters the oxidizing environment of the bloodstream.
Collapse
Affiliation(s)
- S Khorasanizadeh
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | | | | |
Collapse
|
29
|
Simon JH, Carpenter EA, Fouchier RA, Malim MH. Vif and the p55(Gag) polyprotein of human immunodeficiency virus type 1 are present in colocalizing membrane-free cytoplasmic complexes. J Virol 1999; 73:2667-74. [PMID: 10074112 PMCID: PMC104022 DOI: 10.1128/jvi.73.4.2667-2674.1999] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Vif protein of human immunodeficiency virus type 1 (HIV-1) is a potent regulator of viral infectivity. Current data posit that Vif functions late in replication to modulate assembly, budding, and/or maturation. Consistent with this model, earlier indirect immunofluorescence analyses of HIV-1-infected cells demonstrated that Vif and Gag colocalize to a substantial degree (J. H. M. Simon, R. A. M. Fouchier, T. E. Southerling, C. B. Guerra, C. K. Grant, and M. H. Malim, J. Virol. 71:5259-5267, 1997). Here, we describe a series of subcellular fractionation studies which indicate that Vif and the p55(Gag) polyprotein are present in membrane-free cytoplasmic complexes that copurify in sucrose density gradients and are stable in nonionic detergents. Both Vif and Gag are targeted to these complexes independent of each other, and their association with them appears to be mediated by protein-protein interactions. We propose that these complexes may represent viral assembly intermediates and that Vif is appropriately localized to influence the final stages of the viral life cycle and, therefore, the infectivity of progeny virions.
Collapse
Affiliation(s)
- J H Simon
- Departments of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148, USA
| | | | | | | |
Collapse
|
30
|
Garnier L, Parent LJ, Rovinski B, Cao SX, Wills JW. Identification of retroviral late domains as determinants of particle size. J Virol 1999; 73:2309-20. [PMID: 9971814 PMCID: PMC104476 DOI: 10.1128/jvi.73.3.2309-2320.1999] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Retroviral Gag proteins, in the absence of any other viral products, induce budding and release of spherical, virus-like particles from the plasma membrane. Gag-produced particles, like those of authentic retrovirions, are not uniform in diameter but nevertheless fall within a fairly narrow distribution of sizes. For the human immunodeficiency virus type 1 (HIV-1) Gag protein, we recently reported that elements important for controlling particle size are contained within the C-terminal region of Gag, especially within the p6 sequence (L. Garnier, L. Ratner, B. Rovinski, S.-X. Cao, and J. W. Wills, J. Virol. 72:4667-4677, 1998). Deletions and substitutions throughout this sequence result in the release of very large particles. Because the size determinant could not be mapped to any one of the previously defined functions within p6, it seemed likely that its activity requires the overall proper folding of this region of Gag. This left open the possibility of the size determinant residing in a subdomain of p6, and in this study, we examined whether the late domain (the region of Gag that is critical for the virus-cell separation step) is involved in controlling particle size. We found that particles of normal size are produced when p6 is replaced with the totally unrelated late domain sequences from Rous sarcoma virus (contained in its p2b sequence) or equine infectious anemia virus (contained in p9). In addition, we found that the large particles released in the absence of p6 require the entire CA and adjacent spacer peptide sequences, whereas these internal sequences of HIV-1 Gag are not needed for budding (or proper size) when a late domain is present. Thus, it appears the requirements for budding are very different in the presence and absence of p6.
Collapse
Affiliation(s)
- L Garnier
- Departments of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|
31
|
Campbell S, Rein A. In vitro assembly properties of human immunodeficiency virus type 1 Gag protein lacking the p6 domain. J Virol 1999; 73:2270-9. [PMID: 9971810 PMCID: PMC104472 DOI: 10.1128/jvi.73.3.2270-2279.1999] [Citation(s) in RCA: 253] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) normally assembles into particles of 100 to 120 nm in diameter by budding through the plasma membrane of the cell. The Gag polyprotein is the only viral protein that is required for the formation of these particles. We have used an in vitro assembly system to examine the assembly properties of purified, recombinant HIV-1 Gag protein and of Gag missing the C-terminal p6 domain (Gag Deltap6). This system was used previously to show that the CA-NC fragment of HIV-1 Gag assembled into cylindrical particles. We now report that both HIV-1 Gag and Gag Deltap6 assemble into small, 25- to 30-nm-diameter spherical particles in vitro. The multimerization of Gag Deltap6 into units larger than dimers and the formation of spherical particles required nucleic acid. Removal of the nucleic acid with NaCl or nucleases resulted in the disruption of the multimerized complexes. We conclude from these results that (i) N-terminal extension of HIV-1 CA-NC to include the MA domain results in the formation of spherical, rather than cylindrical, particles; (ii) nucleic acid is required for the assembly and maintenance of HIV-1 Gag Deltap6 virus-like particles in vitro and possibly in vivo; (iii) a wide variety of RNAs or even short DNA oligonucleotides will support assembly; (iv) protein-protein interactions within the particle must be relatively weak; and (v) recombinant HIV-1 Gag Deltap6 and nucleic acid are not sufficient for the formation of normal-sized particles.
Collapse
Affiliation(s)
- S Campbell
- ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Frederick, Maryland 21702, USA.
| | | |
Collapse
|
32
|
Peytavi R, Hong SS, Gay B, d'Angeac AD, Selig L, Bénichou S, Benarous R, Boulanger P. HEED, the product of the human homolog of the murine eed gene, binds to the matrix protein of HIV-1. J Biol Chem 1999; 274:1635-45. [PMID: 9880543 DOI: 10.1074/jbc.274.3.1635] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
heed, the human homolog of mouse eed and Drosophila esc, two members of the trithorax (trx) and Polycomb group (Pc-G) of genes, was isolated by screening an activated lymphocyte cDNA library versus the immunodeficiency virus type 1 (HIV-1) MA protein used as a bait in a two-hybrid system in yeast. The human EED protein (HEED) had 99. 5% identity with the mouse EED protein and contained seven WD repeats. Two heed gene transcripts were identified, with a putative 407-nucleotide-long intron, giving rise to two HEED protein isoforms of 535 and 494 residues in length, respectively. The shorter HEED isoform, originated from the unspliced message, lacked the seventh WD repeat. HEED was found to bind to MA protein in vitro, as efficiently as in vivo in yeast cells. Site-directed mutagenesis and phage biopanning suggested that the interaction between HEED and MA involved the N-terminal region of the MA protein, including the first polybasic signal, in a MA conformation-dependent manner. In the HEED protein, however, two discrete linear MA-binding motifs were identified within residues 388-403, overlapping the origin of the fifth WD repeat. Deletion of the C-terminal 41 residues of HEED, spanning the seventh WD repeat, as in the 494-residue HEED protein, was detrimental to HEED-MA interaction in vivo, suggesting the existence of another C-terminal binding site and/or a conformational role of the HEED C-terminal domain in the MA-HEED interaction. MA and HEED proteins co-localized within the nucleus of co-transfected human cells and of recombinant baculovirus co-infected insect cells. This and the failure of HEED to bind to uncleaved GAG precursor suggested a role of HEED at the early stages of virus infection, rather than late in the virus life cycle.
Collapse
Affiliation(s)
- R Peytavi
- Laboratoire de Virologie Moléculaire and Pathogénèse Virale, CNRS UMR-5812, Faculté de Médecine, 2, Boulevard Henri IV, 34060 Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The human immunodeficiency virus (HIV) genome encodes a total of three structural proteins, two envelope proteins, three enzymes, and six accessory proteins. Studies over the past ten years have provided high-resolution three-dimensional structural information for all of the viral enzymes, structural proteins and envelope proteins, as well as for three of the accessory proteins. In some cases it has been possible to solve the structures of the intact, native proteins, but in most cases structural data were obtained for isolated protein domains, peptidic fragments, or mutants. Peptide complexes with two regulatory RNA fragments and a protein complex with an RNA recognition/encapsidation element have also been structurally characterized. This article summarizes the high-resolution structural information that is currently available for HIV proteins and reviews current structure-function and structure-biological relationships.
Collapse
Affiliation(s)
- B G Turner
- Howard Hughes Medical Institute, Department of Chemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | | |
Collapse
|
34
|
Abstract
The role of the nucleocapsid protein of HIV-1 Gag in virus assembly was investigated using Gag truncation mutants, a nucleocapsid deletion mutant, and point mutations in the nucleocapsid region of Gag, in transfected COS cells, and in stable T-cell lines. Consistent with previous investigations, a truncation containing only the matrix and capsid regions of Gag was unable to assemble efficiently into particles; also, the pelletable material released was lighter than the density of wild-type HIV-1. A deletion mutant lacking p7 nucleocapsid but containing the C-terminal p6 protein was also inefficient in particle release and released lighter particles, while a truncation containing only the first zinc finger of p7 could assemble more efficiently into virions. These results clearly show that p7 is indispensable for virus assembly and release. Some point mutations in the N-terminal basic domain and in the basic linker region between the two zinc fingers, which had been previously shown to have reduced RNA binding in vitro [Schmalzbauer, E., Strack, B., Dannull, J., Guehmann, S., and Moelling, K. (1996). J. Virol. 70: 771-777], were shown to reduce virus assembly dramatically when expressed in full-length viral clones. A fusion protein consisting of matrix and capsid fused to a heterologous viral protein known to have nonspecific RNA binding activity [Ribas, J. C., Fujimura, T., and Wickner, R. B. (1994) J. Biol. Chem. 269: 28420-28428] released pelletable material slightly more efficiently than matrix and capsid alone, and these particles had density higher than matrix and capsid alone. These results demonstrate the essential role of HIV-1 nucleocapsid in the virus assembly process and show that the positively charged N terminus of p7 is critical for this role.
Collapse
Affiliation(s)
- L Dawson
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Hygiene and Public Health, Baltimore, Maryland, 21205, USA
| | | |
Collapse
|
35
|
Abstract
The Gag proteins of HIV-1, like those of other retroviruses, are necessary and sufficient for the assembly of virus-like particles. The roles played by HIV-1 Gag proteins during the life cycle are numerous and complex, involving not only assembly but also virion maturation after particle release and early postentry steps in virus replication. As the individual Gag domains carry out their diverse functions, they must engage in interactions with themselves, other Gag proteins, other viral proteins, lipid, nucleic acid (DNA and RNA), and host cell proteins. This review briefly summarizes our current understanding of how HIV-1 Gag proteins function in the virus life cycle.
Collapse
Affiliation(s)
- E O Freed
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892-0460, USA.
| |
Collapse
|
36
|
Wang CT, Lai HY, Li JJ. Analysis of minimal human immunodeficiency virus type 1 gag coding sequences capable of virus-like particle assembly and release. J Virol 1998; 72:7950-9. [PMID: 9733833 PMCID: PMC110128 DOI: 10.1128/jvi.72.10.7950-7959.1998] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have constructed a series of human immunodeficiency virus (HIV) gag mutants by progressive truncation of the gag coding sequence from the C terminus and have combined these mutants with an assembly-competent matrix domain deletion mutation (DeltaMA). By using several methods, the particle-producing capabilities of each mutant were examined. Our analysis indicated that truncated Gag precursors lacking most of C-terminal gag gene products assembled and were released from 293T cells. Additionally, a mutant with a combined deletion of the MA (DeltaMA) and p6 domains even produced particles at levels comparable to that of the wild-type (wt) virus. However, most mutants derived from combination of the DeltaMA and the C-terminal truncation mutations did not release particles as well as the wt. Our smallest HIV gag gene product capable of virus-like particle formation was a 28-kDa protein which consists of a few MA amino acids and the CA-p2 domain. Sucrose density gradient fractionation analysis indicated that most mutants exhibited a wt retrovirus particle density. Exceptions to this rule were mutants with an intact MA domain but deleted downstream of the p2 domains. These C-terminal truncation mutants possessed particle densities of 1.13 to 1.15 g/ml, lower than that of the wt. The N-terminal portions of the CA domain, which have been shown to be dispensable for core assembly, became critical when most of the MA domain was deleted, suggesting a requirement for an intact CA domain to assemble and release particles.
Collapse
Affiliation(s)
- C T Wang
- Institute of Clinical Medicine, National Yang-Ming University, and Department of Medical Research, Veterans General Hospital-Taipei, Taipei, Taiwan 11217, Republic of China.
| | | | | |
Collapse
|
37
|
Morikawa Y, Zhang WH, Hockley DJ, Nermut MV, Jones IM. Detection of a trimeric human immunodeficiency virus type 1 Gag intermediate is dependent on sequences in the matrix protein, p17. J Virol 1998; 72:7659-63. [PMID: 9696871 PMCID: PMC110034 DOI: 10.1128/jvi.72.9.7659-7663.1998] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown that single amino acid changes in the amino-terminal matrix (MA) domain, p17, of the human immunodeficiency virus type 1 Gag precursor Pr55, can abrogate virion particle assembly. In the three-dimensional structure of MA such mutations lie in a single helix spanning residues 54 to 68, suggesting a key role for this helix in the assembly process. The fundamental nature of this involvement, however, remains poorly understood. In the present study, the essential features of the MA helix required for virus assembly have been investigated through the analysis of a further 15 site-directed mutants. With previous mutants that failed to assemble, residues mapped as critical for assembly were all located on the hydrophobic face of the helix and had a key role in stabilizing the trimeric interface. This implies a role for the MA trimer in virus assembly. We support this interpretation by showing that purified MA is trimeric in solution and that mutations that prevent virus assembly also prevent trimerization. Trimerization in solution was also a property of a larger MA-capsid (CA) Gag molecule, while under the same conditions CA only was a monomer. These data suggest that Gag trimerization driven by the MA domain is an intermediate stage in normal virion assembly and that it relies, in turn, on an MA conformation dependent on the hydrophobic core of the molecule.
Collapse
Affiliation(s)
- Y Morikawa
- The Kitasato Institute, Minato-ku, Tokyo 108, Japan.
| | | | | | | | | |
Collapse
|
38
|
Garnier L, Ratner L, Rovinski B, Cao SX, Wills JW. Particle size determinants in the human immunodeficiency virus type 1 Gag protein. J Virol 1998; 72:4667-77. [PMID: 9573230 PMCID: PMC109988 DOI: 10.1128/jvi.72.6.4667-4677.1998] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/1997] [Accepted: 02/10/1998] [Indexed: 02/07/2023] Open
Abstract
The retroviral Gag protein plays the central role in the assembly process and can form membrane-enclosed, virus-like particles in the absence of any other viral products. These particles are similar to authentic virions in density and size. Three small domains of the human immunodeficiency virus type 1 (HIV-1) Gag protein have been previously identified as being important for budding. Regions that lie outside these domains can be deleted without any effect on particle release or density. However, the regions of Gag that control the size of HIV-1 particles are less well understood. In the case of Rous sarcoma virus (RSV), the size determinant maps to the CA (capsid) and adjacent spacer sequences within Gag, but systematic mapping of the HIV Gag protein has not been reported. To locate the size determinants of HIV-1, we analyzed a large collection of Gag mutants. To our surprise, all mutants with defects in the MA (matrix), CA, and the N-terminal part of NC (nucleocapsid) sequences produced dense particles of normal size, suggesting that oncoviruses (RSV) and lentiviruses (HIV-1) have different size-controlling elements. The most important region found to be critical for determining HIV-1 particle size is the p6 sequence. Particles lacking all or small parts of p6 were uniform in size distribution but very large as measured by rate zonal gradients. Further evidence for this novel function of p6 was obtained by placing this sequence at the C terminus of RSV CA mutants that produce heterogeneously sized particles. We found that the RSV-p6 chimeras produced normally sized particles. Thus, we present evidence that the entire p6 sequence plays a role in determining the size of a retroviral particle.
Collapse
Affiliation(s)
- L Garnier
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|
39
|
Abstract
In common with many aspects of the HIV life cycle, the assembly of the virus particle has been the subject of intense investigation over recent years. Study of the subject is facilitated by the fact that only a single gene product, the Pr55 Gag protein, is required for virus assembly. A combination of site directed mutagenesis, biochemical characterisation and structural studies have led to a picture of the overall architecture of the particle, the partial structure of Pr55, and the subdomains involved in oligomerisation. Copyright 1998 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- IM Jones
- NERC Institute of Virology, Mansfield Road, Oxford OX1 3SR, UK
| | | |
Collapse
|
40
|
Abstract
The Gag proteins of retroviruses are the only viral products required for the release of membrane-enclosed particles by budding from the host cell. Particles released when these proteins are expressed alone are identical to authentic virions in their rates of budding, proteolytic processing, and core morphology, as well as density and size. We have previously mapped three very small, modular regions of the Rous sarcoma virus (RSV) Gag protein that are necessary for budding. These assembly domains constitute only 20% of RSV Gag, and alterations within them block or severely impair particle formation. Regions outside of these domains can be deleted without any effect on the density of the particles that are released. However, since density and size are independent parameters for retroviral particles, we employed rate-zonal gradients and electron microscopy in an exhaustive study of mutants lacking the various dispensable segments of Gag to determine which regions would be required to constrain or define the particle dimensions. The only sequence found to be absolutely critical for determining particle size was that of the initial capsid cleavage product, CA-SP, which contains all of the CA sequence plus the spacer peptides located between CA and NC. Some regions of CA-SP appear to be more important than others. In particular, the major homology region does not contribute to defining particle size. Further evidence for interactions among CA-SP domains was obtained from genetic complementation experiments using mutant deltaNC, which lacks the RNA interaction domains in the NC sequence but retains a complete CA-SP sequence. This mutant produces low-density particles heterogeneous in size. It was rescued into particles of normal size and density, but only when the complementing Gag molecules contained the complete CA-SP sequence. We conclude that CA-SP functions during budding in a manner that is independent of the other assembly domains.
Collapse
Affiliation(s)
- N K Krishna
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | | | |
Collapse
|
41
|
Simon JH, Fouchier RA, Southerling TE, Guerra CB, Grant CK, Malim MH. The Vif and Gag proteins of human immunodeficiency virus type 1 colocalize in infected human T cells. J Virol 1997; 71:5259-67. [PMID: 9188594 PMCID: PMC191762 DOI: 10.1128/jvi.71.7.5259-5267.1997] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Vif protein of human immunodeficiency virus type 1 (HIV-1) and other lentiviruses is required for efficient replication in primary cells and certain immortalized cell lines in vitro and, in all likelihood, for the establishment of pathogenic infections in vivo. Current hypotheses concerning Vif's mechanism of action posit that it operates in virus-expressing cells during virion assembly, budding, or maturation such that released virions are modified in a manner that enables them to undergo productive infection in subsequent viral challenges. To gain further insight into the mechanism of action of lentivirus Vif proteins, we have performed a variety of in situ localization and biochemical fractionation studies using cells in which Vif is essential for efficient replication. Double-label immunofluorescence analyses of cells productively infected with HIV-1 or feline immunodeficiency virus revealed dramatic patterns of colocalization between Vif and the virally encoded Gag proteins. Subcellular fractionations of human T cells expressing HIV-1 Vif performed in the absence of any detergent demonstrated that greater than 90% of Vif is associated with cellular membranes. Additional purification using a continuous density gradient indicated that the majority of the membrane-bound Vif copurifies with the plasma membrane. Taken together, these observations suggest that lentivirus Vif and Gag proteins colocalize at the plasma membrane as virion assembly and budding take place. As a result, Vif is able to exert its modulatory effect(s) on these late steps of the virus life cycle.
Collapse
Affiliation(s)
- J H Simon
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia 19104-6148, USA
| | | | | | | | | | | |
Collapse
|
42
|
Yoo S, Myszka DG, Yeh C, McMurray M, Hill CP, Sundquist WI. Molecular recognition in the HIV-1 capsid/cyclophilin A complex. J Mol Biol 1997; 269:780-95. [PMID: 9223641 DOI: 10.1006/jmbi.1997.1051] [Citation(s) in RCA: 218] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The HIV-1 capsid protein (CA) makes an essential interaction with the human peptidyl prolyl isomerase, cyclophilin A (CypA), that results in packaging of CypA into the virion at a CA to CypA stoichiometry of approximately 10:1. The 231 amino acid residue capsid protein is composed of an amino-terminal CypA binding domain (1 to approximately 151; CA151) and a carboxyl-terminal dimerization domain (approximately 151 to 231). We find that CypA binds dimeric CA and monomeric CA151 with identical intrinsic affinities (K[d] = 16(+/-4) microM). This result demonstrates that capsid dimerization and cyclophilin A binding are not thermodynamically coupled and suggests that the substoichiometric ratio of CypA in the HIV-1 virion results from the intrinsic stability of the CA/CypA complex. In the known co-crystal structure of the CA151/CypA complex, CypA binding is mediated exclusively by an exposed capsid loop that spans residues Pro85 to Pro93. The energetic contributions to CypA binding were quantified for each residue in this loop, and the results demonstrate that the Gly89-Pro90 dipeptide is the primary cyclophilin A recognition motif, with Pro85, Val86, His87, Ala88, and Pro93 also making energetically favorable contacts. These studies reveal that the active site of CypA, which can catalyze the isomerization of proline residues in vitro, also functions as a sequence-specific, protein-binding motif in HIV-1 replication.
Collapse
Affiliation(s)
- S Yoo
- Department of Biochemistry, University of Utah, Salt Lake City 84132, USA
| | | | | | | | | | | |
Collapse
|
43
|
Huang M, Martin MA. Incorporation of Pr160(gag-pol) into virus particles requires the presence of both the major homology region and adjacent C-terminal capsid sequences within the Gag-Pol polyprotein. J Virol 1997; 71:4472-8. [PMID: 9151838 PMCID: PMC191666 DOI: 10.1128/jvi.71.6.4472-4478.1997] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The determinants critical for the incorporation of Pr160(gag-pol) into human immunodeficiency virus type 1 (HIV-1) particles were examined by cotransfecting cells with (i) a plasmid expressing wild-type Gag protein and (ii) a series of chimeric Gag-Pol expression plasmids in which individual murine leukemia virus (MLV) Gag regions and subdomains precisely replaced their HIV-1 counterparts. The presence of the MLV MA and NC Gag regions in the chimeric Gag-Pol precursor had no detectable effect on the incorporation of Gag-Pol into progeny virions. In contrast, the entire HIV-1 CA region was required to achieve wild-type levels of Gag-Pol assembly into particles; both the CA major homology region and the adjacent C-terminal CA sequences play dominant roles in this process yet, when assayed in the context of a chimeric Gag-Pol polyprotein, restored the defect affecting Gag-Pol incorporation to approximately half of the wild-type level.
Collapse
Affiliation(s)
- M Huang
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
44
|
Abstract
The absence of effective treatments makes AIDS one obvious candidate among the infectious diseases which might be treated by somatic gene therapy. Since HIV1 predominantly infects cells of the haematopoietic system, multipotent stem cells or more mature CD4+ cells constitute potential targets for the introduction of a foreign antiviral gene that will inhibit HIV1 replication and/or spread. Reimplantation of the genetically-modified cells into HIV-infected patients should theoretically allow the repopulation of the host with HIV1-resistant CD4+ cells that might be able to control virus propagation in vivo. Alternatively, increased knowledge of the immunological mechanisms involved in the control of virus infection and propagation has led to the development of different strategies to augment host anti-HIV1 cytotoxic T lymphocyte responses in an effort to prevent virus spread and, hence, the onset of AIDS. While the therapeutic value of such approaches still remains unknown, these experimental treatments hold real promise that require thorough clinical evaluation.
Collapse
Affiliation(s)
- T Sorg
- Department of Gene Therapy, Transgene, Strasbourg, France
| | | |
Collapse
|
45
|
Barklis E, McDermott J, Wilkens S, Schabtach E, Schmid MF, Fuller S, Karanjia S, Love Z, Jones R, Rui Y, Zhao X, Thompson D. Structural analysis of membrane-bound retrovirus capsid proteins. EMBO J 1997; 16:1199-213. [PMID: 9135137 PMCID: PMC1169719 DOI: 10.1093/emboj/16.6.1199] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have developed a system for analysis of histidine-tagged (His-tagged) retrovirus core (Gag) proteins, assembled in vitro on lipid monolayers consisting of egg phosphatidylcholine (PC) plus the novel lipid DHGN. DHGN was shown to chelate nickel by atomic absorption spectrometry, and DHGN-containing monolayers specifically bound gold conjugates of His-tagged proteins. Using PC + DHGN monolayers, we examined membrane-bound arrays of an N-terminal His-tagged Moloney murine leukemia virus (M-MuLV) capsid (CA) protein, His-MoCA, and in vivo studies suggest that in vitro-derived His-MoCA arrays reflect some of the Gag protein interactions which occur in assembling virus particles. The His-MoCA proteins formed extensive two-dimensional (2D) protein crystals, with reflections out to 9.5 A resolution. The image-analyzed 2D projection of His-MoCA arrays revealed a distinct cage-like network. The asymmetry of the individual building blocks of the network led to the formation of two types of hexamer rings, surrounding protein-free cage holes. These results predict that Gag hexamers constitute a retrovirus core substructure, and that cage hole sizes define an exclusion limit for entry of retrovirus envelope proteins, or other plasma membrane proteins, into virus particles. We believe that the 2D crystallization method will permit the detailed analysis of retroviral Gag proteins and other His-tagged proteins.
Collapse
Affiliation(s)
- E Barklis
- Vollum Institute and Department of Microbiology, Oregon Health Sciences University, Portland 97201, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Christensen AM, Massiah MA, Turner BG, Sundquist WI, Summers MF. Three-dimensional structure of the HTLV-II matrix protein and comparative analysis of matrix proteins from the different classes of pathogenic human retroviruses. J Mol Biol 1996; 264:1117-31. [PMID: 9000634 DOI: 10.1006/jmbi.1996.0700] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The matrix protein performs similar roles in all retroviruses, initially directing membrane localization of the assembling viral particle and subsequently forming a stable structural shell associated with the inner surface of the mature viral membrane. Although conserved structural elements are likely to perform these functions in all retroviral matrix proteins, invariant motifs are not evident at the primary sequence level and three-dimensional structures have been available for only the primate lentiviral matrix proteins. We have therefore used NMR spectroscopy to determine the structure of the matrix protein from human T-cell leukemia virus type II (HTLV-II), a member of the human oncovirus subclass of retroviruses. A total of 577 distance restraints were used to build 20 refined models that superimpose with an rmsd of 0.71 A for the backbone atoms of the structured regions. The globular HTLV-II matrix structure is composed of four alpha-helices and a 3(10) helix. Exposed basic residues near the C terminus of helix II form a putative membrane binding surface which could act in concert with the N-terminal myristoyl group to anchor the protein on the viral membrane surface. Clear structural similarities between the HTLV-II and HIV-1 matrix proteins suggest that the topology and exposed cationic membrane binding surface are likely to be conserved features of retroviral matrix proteins.
Collapse
Affiliation(s)
- A M Christensen
- Department of Biochemistry, University of Utah, Salt Lake City 84132, USA
| | | | | | | | | |
Collapse
|
47
|
Massiah MA, Worthylake D, Christensen AM, Sundquist WI, Hill CP, Summers MF. Comparison of the NMR and X-ray structures of the HIV-1 matrix protein: evidence for conformational changes during viral assembly. Protein Sci 1996; 5:2391-8. [PMID: 8976548 PMCID: PMC2143307 DOI: 10.1002/pro.5560051202] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The three-dimensional solution- and solid-state structures of the human immunodeficiency virus type-1 (HIV-1) matrix protein have been determined recently in our laboratories by NMR and X-ray crystallographic methods (Massiah et al. 1994. J Mol Biol 244:198-223; Hill et al. 1996. Proc Natl Acad Sci USA 93:3099-3104). The matrix protein exists as a monomer in solution at low millimolar protein concentrations, but forms trimers in three different crystal lattices. Although the NMR and X-ray structures are similar, detailed comparisons have revealed an approximately 6 A displacement of a short 3(10) helix (Pro 66-Gly 71) located at the trimer interface. High quality electron density and nuclear Overhauser effect (NOE) data support the integrity of the X-ray and NMR models, respectively. Because matrix apparently associates with the viral membrane as a trimer, displacement of the 3(10) helix may reflect a physiologically relevant conformational change that occurs during virion assembly and disassembly. These findings further suggest that Pro 66 and Gly 71, which bracket the 3(10) helix, serve as "hinges" that allow the 3(10) helix to undergo this structural reorientation.
Collapse
Affiliation(s)
- M A Massiah
- Howard Hughes Medical Institute, University of Maryland, Baltimore 21228, USA
| | | | | | | | | | | |
Collapse
|
48
|
Ebbets-Reed D, Scarlata S, Carter CA. The major homology region of the HIV-1 gag precursor influences membrane affinity. Biochemistry 1996; 35:14268-75. [PMID: 8916912 DOI: 10.1021/bi9606399] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Assembly of retroviruses, including HIV-1, involves movement of newly synthesized viral proteins and RNA to the plasma membranes of host cells. The major homology region (MHR, aa 285-304), a highly conserved sequence in the capsid domain of the HIV-1 Gag precursor polyprotein, plays a critical, but unknown, role in infectious particle assembly. Mutations of invariant residues in the sequence have pleiotropic effects: Mutation of Gln287 blocks viral assembly while mutation of Arg299 permits assembly, but blocks formation of infectious particles. In this report, we demonstrate that Gag proteins lacking the entire MHR accumulated in the cytoplasm of transfected COS-1 cells, as did the wild-type protein, but were processed in a defective manner at the cellular membrane resulting in impaired particle assembly. To further examine the role of the MHR in membrane association, membrane binding of unmyristylated recombinant Gag proteins with alterations in the MHR was investigated in vitro. The wild-type Gag precursor bound to acidic phospholipid vesicles highly efficiently, as determined by fluorescence spectroscopy or velocity sedimentation. In contrast, deletion of the entire MHR reduced membrane affinity an average of approximately 3-fold or greater. Mutation of the invariant Gln287 residue disrupted membrane affinity approximately 6-fold relative to the wild-type, which was similar to the level of inhibition obtained by deletion of a membrane-binding signal previously identified in the matrix domain of the Gag precursor. Mutation of the invariant Arg299 residue reduced the affinity to a lesser extent. The results indicate that correct membrane binding is determined not only by signals in the MA domain of the precursor but also by sequences in the CA domain of Gag. We speculate that defects in the highly conserved MHR affect a Gag conformation that is required for productive interactions at the membrane assembly site.
Collapse
Affiliation(s)
- D Ebbets-Reed
- Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook 11794, USA
| | | | | |
Collapse
|
49
|
Momany C, Kovari LC, Prongay AJ, Keller W, Gitti RK, Lee BM, Gorbalenya AE, Tong L, McClure J, Ehrlich LS, Summers MF, Carter C, Rossmann MG. Crystal structure of dimeric HIV-1 capsid protein. NATURE STRUCTURAL BIOLOGY 1996; 3:763-70. [PMID: 8784350 DOI: 10.1038/nsb0996-763] [Citation(s) in RCA: 269] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
X-ray diffraction analysis of a human immunodeficiency virus (HIV-1) capsid (CA) protein shows that each monomer within the dimer consists of seven alpha-helices, five of which are arranged in a coiled coil-like structure. Sequence assignments were made for two of the helices, and tentative connectivity of the remainder of the protein was confirmed by the recent solution structure of a monomeric N-terminal fragment. The C-terminal third of the protein is mostly disordered in the crystal. The longest helices in the coiled coil-like structure are separated by a long, highly antigenic peptide that includes the binding site of an antibody fragment complexed with CA in the crystal. The site of binding of the Fab, the position of the antigenic loop and the site of cleavage between the matrix protein and CA establish the side of the dimer that would be on the exterior of the retroviral core.
Collapse
Affiliation(s)
- C Momany
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gitti RK, Lee BM, Walker J, Summers MF, Yoo S, Sundquist WI. Structure of the amino-terminal core domain of the HIV-1 capsid protein. Science 1996; 273:231-5. [PMID: 8662505 DOI: 10.1126/science.273.5272.231] [Citation(s) in RCA: 375] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The three-dimensional structure of the amino-terminal core domain (residues 1 through 151) of the human immunodeficiency virus-type 1 (HIV-1) capsid protein has been solved by multidimensional heteronuclear magnetic resonance spectroscopy. The structure is unlike those of previously characterized viral coat proteins and is composed of seven alpha helices, two beta hairpins, and an exposed partially ordered loop. The domain is shaped like an arrowhead, with the beta hairpins and loop exposed at the trailing edge and the carboxyl-terminal helix projecting from the tip. The proline residue Pro1 forms a salt bridge with a conserved, buried aspartate residue (Asp51), which suggests that the amino terminus of the protein rearranges upon proteolytic maturation. The binding site for cyclophilin A, a cellular rotamase that is packaged into the HIV-1 virion, is located on the exposed loop and encompasses the essential proline residue Pro90. In the free monomeric domain, Pro90 adopts kinetically trapped cis and trans conformations, raising the possibility that cyclophilin A catalyzes interconversion of the cis- and trans-Pro90 loop structures.
Collapse
Affiliation(s)
- R K Gitti
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21228, USA
| | | | | | | | | | | |
Collapse
|