1
|
de Ávila AI, Soria ME, Martínez-González B, Somovilla P, Mínguez P, Salar-Vidal L, Esteban-Muñoz M, Martín-García M, Zuñiga S, Sola I, Enjuanes L, Gadea I, Perales C, Domingo E. SARS-CoV-2 biological clones are genetically heterogeneous and include clade-discordant residues. J Virol 2025:e0225024. [PMID: 40272156 DOI: 10.1128/jvi.02250-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/26/2025] [Indexed: 04/25/2025] Open
Abstract
Defective genomes are part of SARS-CoV-2 quasispecies. High-resolution, ultra-deep sequencing of bulk RNA from viral populations does not distinguish RNA mutations, insertions, and deletions in viable genomes from those in defective genomes. To quantify SARS-CoV-2 infectious variant progeny, virus from four individual plaques (biological clones) of a preparation of isolate USA-WA1/2020, formed on Vero E6 cell monolayers, was subjected to further biological cloning to yield 9 second-generation and 15 third-generation sub-clones. Consensus genomic sequences of the biological clones and sub-clones included an average of 2.8 variations per viable genome, relative to the consensus sequence of the parental USA-WA1/2020 virus. This value is 6.5-fold lower than the estimates for biological clones of other RNA viruses such as bacteriophage Qβ, foot-and-mouth disease virus, or hepatitis C virus in cell culture. The mutant spectrum complexity of the nsp12 (polymerase)- and spike (S)-coding region was unique in the progeny of each of 10 third-generation sub-clones; they shared 2.4% of the total of 164 different mutations and deletions scored in the 3,719 genomic residues that were screened. The presence of minority out-of-frame deletions revealed the ease of defective genome production from an individual infectious genome. Several low-frequency point mutations and deletions were clade-discordant in that they were not typical of USA-WA1/2020 but served to define the consensus sequences of future SARS-CoV-2 clades. Implications for SARS-CoV-2 adaptability and COVID-19 control of the viable genome heterogeneity and the generation of complex mutant spectra from individual genomes are discussed.IMPORTANCESequencing of biological clones is a means to identify mutations, insertions, and deletions located in viable genomes. This distinction is particularly important for viral populations, such as those of SARS-CoV-2, that contain large proportions of defective genomes. By sequencing biological clones and sub-clones, we quantified the heterogeneity of the viable complement of USA-WA1/2020 to be lower than exhibited by other RNA viruses. This difference may be due to a reduced mutation rate or to limited tolerance of the large coronavirus genome to incorporate mutations and deletions and remain functional or a combination of both influences. The presence of clade-discordant residues in the progeny of individual biological sub-clones suggests limitations in the occupation of sequence space by SARS-CoV-2. However, the complex and unique mutant spectra that are rapidly generated from individual genomes suggest an aptness to confront selective constraints.
Collapse
Affiliation(s)
- Ana Isabel de Ávila
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
| | - María Eugenia Soria
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Brenda Martínez-González
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Pilar Somovilla
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
- Departamento de Biología Molecular, Universidad Autonoma de Madrid, Campus de Cantoblanco, Madrid, Spain
| | - Pablo Mínguez
- Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Llanos Salar-Vidal
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Mario Esteban-Muñoz
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Marta Martín-García
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Sonia Zuñiga
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Isabel Sola
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Ignacio Gadea
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Celia Perales
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
| |
Collapse
|
2
|
Berryman S, Feenstra F, Asfor A, Coco-Martin J, Jackson T, Tuthill TJ. Foot-and-Mouth Disease Vaccines by Design; Production of Capsid-Modified Foot-and-Mouth Disease Viruses with Improved Cell Culture Growth. Vaccines (Basel) 2025; 13:281. [PMID: 40266141 PMCID: PMC11945908 DOI: 10.3390/vaccines13030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND/OBJECTIVES Vaccination is important for controlling foot-and-mouth disease (FMD) in endemic regions and to lessen the effects of outbreaks in FMD-free countries. The adaptation of FMD virus to BHK cells is a necessary but time-consuming and costly step in vaccine production and can prove problematic for some isolates. Adaptation is, in part, driven by receptor availability and selects variants with altered receptor specificity that result from amino acid substitutions in the capsid proteins. METHODS To bypass the need for cell culture adaptation, we generated chimeric viruses with field-strain capsids and introduced amino acid substitutions associated with cell culture adaptation. We targeted two sites on the capsid: the canonical heparan sulphate binding site and the icosahedral 5-fold symmetry axes. RESULTS Our results show that some viruses with unmodified wild-type (wt) capsids grew well in BHK cells (suspension and adherent), whereas others showed poor growth. For viruses that showed good growth, the introduction of amino acid changes associated with cell culture adaptation improved the rate of growth but not virus titres or yields of 146S particles, whereas growth and 146S yields for viruses that grew poorly in BHK cells were greatly enhanced by some of the amino acid changes. For the latter viruses, the introduced changes did not appear to adversely affect virion stability or antigenicity. CONCLUSIONS For FMD viruses that grow poorly in BHK cells, this approach could be a viable alternative to protracted adaptation by serial passage and could expedite the production of a new vaccine strain from a field virus.
Collapse
Affiliation(s)
- Stephen Berryman
- Pirbright Institute, Ash Road, Woking GU24 0NF, UK; (A.A.); (T.J.)
| | - Femke Feenstra
- Boehringer Ingelheim Animal Health Netherlands BV, P.O. Box 65, 8200 AB Lelystad, The Netherlands; (F.F.); (J.C.-M.)
| | - Amin Asfor
- Pirbright Institute, Ash Road, Woking GU24 0NF, UK; (A.A.); (T.J.)
| | - Jose Coco-Martin
- Boehringer Ingelheim Animal Health Netherlands BV, P.O. Box 65, 8200 AB Lelystad, The Netherlands; (F.F.); (J.C.-M.)
| | - Terry Jackson
- Pirbright Institute, Ash Road, Woking GU24 0NF, UK; (A.A.); (T.J.)
| | | |
Collapse
|
3
|
Martínez-González B, Soria ME, Mínguez P, Lorenzo-Redondo R, Salar-Vidal L, López-García A, Esteban-Muñoz M, Durán-Pastor A, Somovilla P, García-Crespo C, de Ávila AI, Gómez J, Esteban J, Fernández-Roblas R, Gadea I, Domingo E, Perales C. SARS-CoV-2 mutant spectra as variant of concern nurseries: endless variation? Front Microbiol 2024; 15:1358258. [PMID: 38559344 PMCID: PMC10979541 DOI: 10.3389/fmicb.2024.1358258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/21/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction SARS-CoV-2 isolates of a given clade may contain low frequency genomes that encode amino acids or deletions which are typical of a different clade. Methods Here we use high resolution ultra-deep sequencing to analyze SARS-CoV-2 mutant spectra. Results In 6 out of 11 SARS-CoV-2 isolates from COVID-19 patients, the mutant spectrum of the spike (S)-coding region included two or more amino acids or deletions, that correspond to discordant viral clades. A similar observation is reported for laboratory populations of SARS-CoV-2 USA-WA1/2020, following a cell culture infection in the presence of remdesivir, ribavirin or their combinations. Moreover, some of the clade-discordant genome residues are found in the same haplotype within an amplicon. Discussion We evaluate possible interpretations of these findings, and reviewed precedents for rapid selection of genomes with multiple mutations in RNA viruses. These considerations suggest that intra-host evolution may be sufficient to generate minority sequences which are closely related to sequences typical of other clades. The results provide a model for the origin of variants of concern during epidemic spread─in particular Omicron lineages─that does not require prolonged infection, involvement of immunocompromised individuals, or participation of intermediate, non-human hosts.
Collapse
Affiliation(s)
- Brenda Martínez-González
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - María Eugenia Soria
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
| | - Pablo Mínguez
- Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Ramón Lorenzo-Redondo
- Division of Infectious Diseases, Center for Pathogen Genomics and Microbial Evolution, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Llanos Salar-Vidal
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Alberto López-García
- Health Research Institute IIS-FJD, Fundación Jiménez Diaz University Hospital, Madrid, Spain
| | - Mario Esteban-Muñoz
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Antoni Durán-Pastor
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Pilar Somovilla
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, Spain
| | - Carlos García-Crespo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
| | - Ana Isabel de Ávila
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
| | - Jordi Gómez
- Instituto de Parasitología y Biomedicina “López-Neyra” (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Jaime Esteban
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Ricardo Fernández-Roblas
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Ignacio Gadea
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
| | - Celia Perales
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| |
Collapse
|
4
|
Domingo E. Virus population dynamics examined with experimental model systems. VIRUS AS POPULATIONS 2020. [PMCID: PMC7153323 DOI: 10.1016/b978-0-12-816331-3.00006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Experimental evolution permits exploring the effect of controlled environmental variables in virus evolution. Several designs in cell culture and in vivo have established basic concepts that can assist in the interpretation of evolutionary events in the field. Important information has come from cytolytic and persistent infections in cell culture that have unveiled the power of virus-cell coevolution in virus and cell diversification. Equally informative are comparisons of the response of viral populations when subjected to different passage régimens. In particular, plaque-to-plaque transfers in cell culture have revealed unusual genotypes and phenotypes that populate minority layers of viral quasispecies. Some of these viruses display properties that contradict features established in virology textbooks. Several hypotheses and principles of population genetics have found experimental confirmation in experimental designs with viruses. The possibilities of using experimental evolution to understand virus behavior are still largely unexploited.
Collapse
|
5
|
Bai XW, Bao HF, Li PH, Ma XQ, Sun P, Bai QF, Zhang M, Yuan H, Chen DD, Li K, Chen YL, Cao YM, Fu YF, Zhang J, Li D, Lu ZJ, Liu ZX, Luo JX. Engineering Responses to Amino Acid Substitutions in the VP0- and VP3-Coding Regions of PanAsia-1 Strains of Foot-and-Mouth Disease Virus Serotype O. J Virol 2019; 93:e02278-18. [PMID: 30700601 PMCID: PMC6430551 DOI: 10.1128/jvi.02278-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/15/2019] [Indexed: 12/05/2022] Open
Abstract
The presence of sequence divergence through adaptive mutations in the major capsid protein VP1, and also in VP0 (VP4 and VP2) and VP3, of foot-and-mouth disease virus (FMDV) is relevant to a broad range of viral characteristics. To explore the potential role of isolate-specific residues in the VP0 and VP3 coding regions of PanAsia-1 strains in genetic and phenotypic properties of FMDV, a series of recombinant full-length genomic clones were constructed using Cathay topotype infectious cDNA as the original backbone. The deleterious and compensatory effects of individual amino acid substitutions at positions 4008 and 3060 and in several different domains of VP2 illustrated that the chain-based spatial interaction patterns of VP1, VP2, and VP3 (VP1-3), as well as between the internal VP4 and the three external capsid proteins of FMDV, might contribute to the assembly of eventually viable viruses. The Y2079H site-directed mutants dramatically induced a decrease in plaque size on BHK-21 cells and viral pathogenicity in suckling mice. Remarkably, the 2079H-encoding viruses displayed a moderate increase in acid sensitivity correlated with NH4Cl resistance compared to the Y2079-encoding viruses. Interestingly, none of all the 16 rescued viruses were able to infect heparan sulfate-expressing CHO-K1 cells. However, viral infection in BHK-21 cells was facilitated by utilizing non-integrin-dependent, heparin-sensitive receptor(s) and replacements of four uncharged amino acids at position 3174 in VP3 of FMDV had no apparent influence on heparin affinity. These results provide particular insights into the correlation of evolutionary biology with genetic diversity in adapting populations of FMDV.IMPORTANCE The sequence variation within the capsid proteins occurs frequently in the infection of susceptible tissue cultures, reflecting the high levels of genetic diversity of FMDV. A systematic study for the functional significance of isolate-specific residues in VP0 and VP3 of FMDV PanAsia-1 strains suggested that the interaction of amino acid side chains between the N terminus of VP4 and several potential domains of VP1-3 had cascading effects on the viability and developmental characteristics of progeny viruses. Y2079H in VP0 of the indicated FMDVs could affect plaque size and pathogenicity, as well as acid sensitivity correlated with NH4Cl resistance, whereas there was no inevitable correlation in viral plaque and acid-sensitive phenotypes. The high affinity of non-integrin-dependent FMDVs for heparin might be explained by the differences in structures of heparan sulfate proteoglycans on the surfaces of different cell lines. These results may contribute to our understanding of the distinct phenotypic properties of FMDV in vitro and in vivo.
Collapse
Affiliation(s)
- Xing-Wen Bai
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Hui-Fang Bao
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Ping-Hua Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xue-Qing Ma
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Pu Sun
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Qi-Feng Bai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Meng Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Hong Yuan
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Dong-Dong Chen
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Kun Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Ying-Li Chen
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yi-Mei Cao
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yuan-Fang Fu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jing Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Dong Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Zeng-Jun Lu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Zai-Xin Liu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jian-Xun Luo
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Single-cell analysis reveals the relevance of foot-and-mouth disease virus persistence to emopamil-binding protein gene expression in host cells. Arch Virol 2017; 162:3791-3802. [PMID: 28916923 DOI: 10.1007/s00705-017-3546-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/18/2017] [Indexed: 10/18/2022]
Abstract
Foot-and-mouth disease virus (FMDV) infects host cells in either an acute or persistent manner. In this study, we examined the relevance of the establishment of FMDV persistence to the expression of the emopamil-binding protein (EBP) gene in 231 individual persistently infected baby hamster kidney (BHK-21) cells after passages 28, 38, and 68 (PI28, PI38, and PI68). At PI28, the stage at which persistent infection of FDMV becomes unstable, the percentage of cells carrying FMDV was 66.7%, while 80.2% of cells were EBP positive. Additionally, in 55.6% of the EBP-positive cells at PI28, EBP expression was upregulated approximately 149.9% compared to uninfected BHK-21 cells. This was the highest expression level among all cell passages measured. Interestingly, in a parallel experiment, the average EBP expression level in the whole cell population at PI28 was only slightly higher (108.2%) than that in uninfected BHK-21 cells. At PI38, 98.7% of the cells were positive for FMDV 3D (an RNA-dependent RNA polymerase enzyme gene), and its maximum expression level observed at this passage. The expression level of EBP in 78.2% of the total cells, however, was reduced significantly. At PI68, 95.8% of the cells were 3D positive, and the expression of both the EBP and 3D genes were at the lowest levels of all the passages. Our studies using single cells yielded data that are otherwise inaccessible a using whole cell population. These results suggest that the establishment of persistent infection by FMDV is a dynamic process that results from the continuous adaptation and coevolution of viruses and cells to reach an equilibrium.
Collapse
|
7
|
Abstract
Experimental evolution permits exploring the effect of controlled environmental variables in virus evolution. Several designs in cell culture and in vivo have established basic concepts that can assist in the interpretation of evolutionary events in the field. Important information has come from cytolytic and persistent infections in cell culture that have unveiled the power of virus-cell coevolution in virus and cell diversification. Equally informative are comparisons of the response of viral populations when subjected to different passage régimes. In particular, plaque-to-plaque transfers in cell culture have revealed unusual genotypes and phenotypes that populate minority layers of viral quasispecies. Some of these viruses display properties that contradict features established in virology textbooks. Several hypotheses and principles of population genetics have found experimental confirmation in experimental designs with viruses. The possibilities of using experimental evolution to understand virus behavior are still largely unexploited.
Collapse
|
8
|
Characterization of the Determinants of NS2-3-Independent Virion Morphogenesis of Pestiviruses. J Virol 2015; 89:11668-80. [PMID: 26355097 DOI: 10.1128/jvi.01646-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/04/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED A peculiarity of the Flaviviridae is the critical function of nonstructural (NS) proteins for virus particle formation. For pestiviruses, like bovine viral diarrhea virus (BVDV), uncleaved NS2-3 represents an essential factor for virion morphogenesis, while NS3 is an essential component of the viral replicase. Accordingly, in natural pestivirus isolates, processing at the NS2-3 cleavage site is not complete, to allow for virion morphogenesis. Virion morphogenesis of the related hepatitis C virus (HCV) shows a major deviation from that of pestiviruses: while RNA replication also requires free NS3, virion formation does not depend on uncleaved NS2-NS3. Recently, we described a BVDV-1 chimera based on strain NCP7 encompassing the NS2-4B*-coding region of strain Osloss (E. Lattwein, O. Klemens, S. Schwindt, P. Becher, and N. Tautz, J Virol 86:427-437, 2012, doi:10.1128/JVI.06133-11). This chimera allowed for the production of infectious virus particles in the absence of uncleaved NS2-3. The Osloss sequence deviates in the NS2-4B* part from NCP7 in 48 amino acids and also has a ubiquitin insertion between NS2 and NS3. The present study demonstrates that in the NCP7 backbone, only two amino acid exchanges in NS2 (E1576V) and NS3 (V1721A) are sufficient and necessary to allow for efficient NS2-3-independent virion morphogenesis. The adaptation of a bicistronic virus encompassing an internal ribosomal entry site element between the NS2 and NS3 coding sequences to efficient virion morphogenesis led to the identification of additional amino acids in E2, NS2, and NS5B that are critically involved in this process. The surprisingly small requirements for approximating the packaging schemes of pestiviruses and HCV with respect to the NS2-3 region is in favor of a common mechanism in an ancestral virus. IMPORTANCE For positive-strand RNA viruses, the processing products of the viral polyprotein serve in RNA replication as well as virion morphogenesis. For bovine viral diarrhea virus, nonstructural protein NS2-3 is of critical importance to switch between these processes. While free NS3 is essential for RNA replication, uncleaved NS2-3, which accumulates over time in the infected cell, is required for virion morphogenesis. In contrast, the virion morphogenesis of the related hepatitis C virus is independent from uncleaved NS2-NS3. Here, we demonstrate that pestiviruses can adapt to virion morphogenesis in the absence of uncleaved NS2-3 by just two amino acid exchanges. While the mechanism behind this gain of function remains elusive, the fact that it can be achieved by such minor changes is in line with the assumption that an ancestral virus already used this mechanism but lost it in the course of adapting to a new host/infection strategy.
Collapse
|
9
|
Chamberlain K, Fowler VL, Barnett PV, Gold S, Wadsworth J, Knowles NJ, Jackson T. Identification of a novel cell culture adaptation site on the capsid of foot-and-mouth disease virus. J Gen Virol 2015; 96:2684-2692. [PMID: 26296881 PMCID: PMC4635497 DOI: 10.1099/jgv.0.000222] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vaccination remains the most effective tool for control of foot-and-mouth disease both in endemic countries and as an emergency preparedness for new outbreaks. Foot-and-mouth disease vaccines are chemically inactivated virus preparations and the production of new vaccines is critically dependent upon cell culture adaptation of field viruses, which can prove problematic. A major driver of cell culture adaptation is receptor availability. Field isolates of foot-and-mouth disease virus (FMDV) use RGD-dependent integrins as receptors, whereas cell culture adaptation often selects for variants with altered receptor preferences. Previously, two independent sites on the capsid have been identified where mutations are associated with improved cell culture growth. One is a shallow depression formed by the three major structural proteins (VP1–VP3) where mutations create a heparan sulphate (HS)-binding site (the canonical HS-binding site). The other involves residues of VP1 and is located at the fivefold symmetry axis. For some viruses, changes at this site result in HS binding; for others, the receptors are unknown. Here, we report the identification of a novel site on VP2 where mutations resulted in an expanded cell tropism of a vaccine variant of A/IRN/87 (called A − ). Furthermore, we show that introducing the same mutations into a different type A field virus (A/TUR/2/2006) resulted in the same expanded cell culture tropism as the A/IRN/87 A − vaccine variant. These observations add to the evidence for multiple cell attachment mechanisms for FMDV and may be useful for vaccine manufacture when cell culture adaptation proves difficult.
Collapse
Affiliation(s)
- Kyle Chamberlain
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Veronica L Fowler
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Paul V Barnett
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Sarah Gold
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Jemma Wadsworth
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Nick J Knowles
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Terry Jackson
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| |
Collapse
|
10
|
Mohapatra JK, Pandey LK, Rai DK, Das B, Rodriguez LL, Rout M, Subramaniam S, Sanyal A, Rieder E, Pattnaik B. Cell culture adaptation mutations in foot-and-mouth disease virus serotype A capsid proteins: implications for receptor interactions. J Gen Virol 2014; 96:553-564. [PMID: 25381054 DOI: 10.1099/vir.0.071597-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study we describe the adaptive changes fixed on the capsid of several foot-and-mouth disease virus serotype A strains during propagation in cell monolayers. Viruses passaged extensively in three cell lines (BHK-21, LFBK and IB-RS-2) consistently gained positively charged amino acids in the putative heparin-sulfate-binding pocket (VP2 βE-βF loop, VP1 C-terminus and VP3 β-B knob) surrounding the fivefold symmetry axis (VP1 βF-βG loop) and at other discrete sites on the capsid (VP3 βG-βH loop, VP1 C-terminus, VP2 βC strand and VP1 βG-βH loop). A lysine insertion in the VP1 βF-βG loop of two of the BHK-21-adapted viruses supports the biological advantage of positively charged residues acquired in cell culture. The charge transitions occurred irrespective of cell line, suggesting their possible role in ionic interaction with ubiquitous negatively charged cell-surface molecules such as glycosaminoglycans (GAG). This was supported by the ability of the cell-culture-adapted variants to replicate in the integrin-deficient, GAG-positive CHO-K1 cells and their superior fitness in competition assays compared with the lower passage viruses with WT genotypes. Substitutions fixed in the VP1 βG-βH loop (-3, -2 and +2 'RGD' positions) or in the structural element known to be juxtaposed against that loop (VP1 βB-βC loop) suggest their possible role in modulating the efficiency and specificity of interaction of the 'RGD' motif with αv-integrin receptors. The nature and location of the substitutions described in this study could be applied in the rapid cell culture adaptation of viral strains for vaccine production.
Collapse
Affiliation(s)
- Jajati K Mohapatra
- Project Directorate on Foot and Mouth Disease, IVRI Campus, Mukteswar-263 138, Uttarakhand, India
| | - Laxmi K Pandey
- Project Directorate on Foot and Mouth Disease, IVRI Campus, Mukteswar-263 138, Uttarakhand, India
| | - Devendra K Rai
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
| | - Biswajit Das
- Project Directorate on Foot and Mouth Disease, IVRI Campus, Mukteswar-263 138, Uttarakhand, India
| | - Luis L Rodriguez
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
| | - Manoranjan Rout
- Project Directorate on Foot and Mouth Disease, IVRI Campus, Mukteswar-263 138, Uttarakhand, India
| | - Saravanan Subramaniam
- Project Directorate on Foot and Mouth Disease, IVRI Campus, Mukteswar-263 138, Uttarakhand, India
| | - Aniket Sanyal
- Project Directorate on Foot and Mouth Disease, IVRI Campus, Mukteswar-263 138, Uttarakhand, India
| | - Elizabeth Rieder
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
| | - Bramhadev Pattnaik
- Project Directorate on Foot and Mouth Disease, IVRI Campus, Mukteswar-263 138, Uttarakhand, India
| |
Collapse
|
11
|
Biswal JK, Mohapatra JK, Bisht P, Subramaniam S, Sanyal A, Pattnaik B. A positively charged lysine residue at VP2 131 position allows for the enhanced adaptability of foot-and-mouth disease virus serotype A in BHK-21 cells. Biologicals 2014; 43:71-8. [PMID: 25439090 DOI: 10.1016/j.biologicals.2014.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/13/2014] [Accepted: 07/06/2014] [Indexed: 11/28/2022] Open
Abstract
Field outbreak strains of foot-and-mouth disease virus (FMDV) infect host cells through certain Arg-Gly-Asp (RGD) dependent integrin family of cellular receptors. In contrast, FMDV adapted in non-host cell cultures are reported to acquire the ability to infect cells via heparin sulphate (HS) or other unidentified cell surface molecules. It has been reported that during the serial passage of FMDV serotype A in BHK-21 cell culture, VP2 E131K (E2131K) substitution was fixed within the heparin sulphate binding site. The fixation of positively charged residue at position VP2 131 of serotype A is considered to associate with the ability to utilise alternative receptor. In this study, an infectious full-length cDNA clone for Indian FMDV vaccine strain A IND 40/2000 was constructed. Through site-directed mutagenesis on the cDNA clone, recombinant virus containing positive charged amino acid residue at position VP2 131 was rescued. The recombinant mutated virus was shown to have specific and strong affinity for HS and demonstrated an enhanced infectivity in BHK-21 cell line. The introduction of lysine residue at VP2 131 position that allows cell culture adaptation of FMDV serotype A could be exploited for the generation of vaccine seed stocks with improved growth properties in BHK-21 cell line.
Collapse
Affiliation(s)
- Jitendra K Biswal
- Project Directorate on Foot-and-Mouth Disease (ICAR), Mukteswar, 263138 Nainital, Uttarakhand, India
| | - Jajati K Mohapatra
- Project Directorate on Foot-and-Mouth Disease (ICAR), Mukteswar, 263138 Nainital, Uttarakhand, India
| | - Punam Bisht
- Project Directorate on Foot-and-Mouth Disease (ICAR), Mukteswar, 263138 Nainital, Uttarakhand, India
| | - Saravanan Subramaniam
- Project Directorate on Foot-and-Mouth Disease (ICAR), Mukteswar, 263138 Nainital, Uttarakhand, India
| | - Aniket Sanyal
- Project Directorate on Foot-and-Mouth Disease (ICAR), Mukteswar, 263138 Nainital, Uttarakhand, India
| | - Bramhadev Pattnaik
- Project Directorate on Foot-and-Mouth Disease (ICAR), Mukteswar, 263138 Nainital, Uttarakhand, India.
| |
Collapse
|
12
|
O'Donnell V, Pacheco JM, Larocco M, Gladue DP, Pauszek SJ, Smoliga G, Krug PW, Baxt B, Borca MV, Rodriguez L. Virus-host interactions in persistently FMDV-infected cells derived from bovine pharynx. Virology 2014; 468-470:185-196. [PMID: 25216088 DOI: 10.1016/j.virol.2014.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/07/2014] [Accepted: 08/04/2014] [Indexed: 11/26/2022]
Abstract
Foot-and-mouth disease virus (FMDV) produces a disease in cattle characterized by vesicular lesions and a persistent infection with asymptomatic low-level production of virus in pharyngeal tissues. Here we describe the establishment of a persistently infected primary cell culture derived from bovine pharynx tissue (PBPT) infected with FMDV serotype O1 Manisa, where surviving cells were serially passed until a persistently infected culture was generated. Characterization of the persistent virus demonstrated changes in its plaque size, ability to grow in different cell lines, and change in the use of integrins as receptors, when compared with the parental virus. These results demonstrate the establishment of persistently infected PBPT cell cultures where co-adaptation has taken place between the virus and host cells. This in vitro model for FMDV persistence may help further understanding of the molecular mechanisms of the cattle carrier state.
Collapse
Affiliation(s)
- V O'Donnell
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, USA; Department of Pathobiology and Veterinary Science, University of Connecticut at Storrs, Storrs, CT 06269, USA
| | - J M Pacheco
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, USA
| | - Michael Larocco
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, USA
| | - D P Gladue
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, USA
| | - S J Pauszek
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, USA
| | - G Smoliga
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, USA
| | - P W Krug
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, USA
| | - B Baxt
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, USA
| | - M V Borca
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, USA
| | - L Rodriguez
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, USA
| |
Collapse
|
13
|
Bai X, Bao H, Li P, Wei W, Zhang M, Sun P, Cao Y, Lu Z, Fu Y, Xie B, Chen Y, Li D, Luo J, Liu Z. Effects of two amino acid substitutions in the capsid proteins on the interaction of two cell-adapted PanAsia-1 strains of foot-and-mouth disease virus serotype O with heparan sulfate receptor. Virol J 2014; 11:132. [PMID: 25056022 PMCID: PMC4118260 DOI: 10.1186/1743-422x-11-132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/22/2014] [Indexed: 12/01/2022] Open
Abstract
Background Some cell-adapted strains of foot-and-mouth disease virus (FMDV) can utilize heparan sulfate (HS) as a receptor to facilitate viral infection in cultured cells. A number of independent sites on the capsid that might be involved in FMDV-HS interaction have been studied. However, the previously reported residues do not adequately explain HS-dependent infection of two cell-adapted PanAsia-1 strains (O/Tibet/CHA/6/99tc and O/Fujian/CHA/9/99tc) of FMDV serotype O. To identify the molecular determinant(s) for the interaction of O/Tibet/CHA/6/99tc and O/Fujian/CHA/9/99tc with HS receptor, several chimeric viruses and site-directed mutants were generated by using an infectious cDNA of a non-HS-utilizing rescued virus (Cathay topotype) as the genomic backbone. Phenotypic properties of these viruses were determined by plaque assays and virus adsorption and penetration assays in cultured cells. Results Only two of the rescued viruses encoding VP0 of O/Tibet/CHA/6/99tc or VP1 of O/Fujian/CHA/9/99tc formed plaques on wild-type Chinese hamster ovary (WT-CHO; HS+) cells, but not on HS-negative pgsD-677 cells. The formation of plaques by these two chimeric viruses on WT-CHO cells could be abolished by the introduction of single amino acid mutations Gln-2080 → Leu in VP2 of O/Tibet/CHA/6/99tc and Lys-1083 → Glu in VP1 of O/Fujian/CHA/9/99tc, respectively. Nonetheless, the introduced mutation Leu-2080 → Gln in VP2 of O/Fujian/CHA/9/99tc for the construction of expectant recombinant plasmid led to non-infectious progeny virus in baby hamster kidney 21 (BHK-21) cells, and the site-directed mutant encoding Glu-1083 → Lys in VP1 of O/Tibet/CHA/6/99tc did not acquire the ability to produce plaques on WT-CHO cells. Significant differences in the inhibition of the infectivity of four HS-utilizing viruses by heparin and RGD-containing peptide were observed in BHK-21 cells. Interestingly, the chimeric virus encoding VP0 of O/Fujian/CHA/9/99tc, and the site-directed mutant encoding Gln-2080 → Leu in VP2 of O/Tibet/CHA/6/99tc could bind to HS, but there was no expression of the 3A protein of these two viruses in WT-CHO cells. Conclusion The results suggest that the cooperation of certain specific amino acid residues in the capsid proteins of these two cell-adapted PanAsia-1 strains is essential for viral infectivity, the heparin affinity and the capability on FMDV-HS interaction.
Collapse
Affiliation(s)
- Xingwen Bai
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Engineering Research Center of Biological Detection of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Chang Y, Dou Y, Bao H, Luo X, Liu X, Mu K, Liu Z, Liu X, Cai X. Multiple microRNAs targeted to internal ribosome entry site against foot-and-mouth disease virus infection in vitro and in vivo. Virol J 2014; 11:1. [PMID: 24393133 PMCID: PMC3903555 DOI: 10.1186/1743-422x-11-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 12/27/2013] [Indexed: 11/25/2022] Open
Abstract
Background Foot-and-mouth disease virus (FMDV) causes a severe vesicular disease in domestic and wild cloven-hoofed animals. Because of the limited early protection induced by current vaccines, emergency antiviral strategies to control the rapid spread of FMD outbreaks are needed. Here we constructed multiple microRNAs (miRNAs) targeting the internal ribosome entry site (IRES) element of FMDV and investigated the effect of IRES-specific miRNAs on FMDV replication in baby hamster kidney (BHK-21) cells and suckling mice. Results Four IRES-specific miRNAs significantly reduced enhanced green fluorescent protein (EGFP) expression from IRES-EGFP reporter plasmids, which were used with each miRNA expression plasmid in co-transfection of BHK-21 cells. Furthermore, treatment of BHK-21 cells with Bi-miRNA (a mixture of two miRNA expression plasmids) and Dual-miRNA (a co-cistronic expression plasmid containing two miRNA hairpin structures) induced more efficient and greater inhibition of EGFP expression than did plasmids carrying single miRNA sequences. Stably transformed BHK-21 cells and goat fibroblasts with an integrating IRES-specific Dual-miRNA were generated, and real-time quantitative RT-PCR showed that the Dual-miRNA was able to effectively inhibit the replication of FMDV (except for the Mya98 strain) in the stably transformed BHK-21 cells. The Dual-miRNA plasmid significantly delayed the deaths of suckling mice challenged with 50× and 100× the 50% lethal dose (LD50) of FMDV vaccine strains of three serotypes (O, A and Asia 1), and induced partial/complete protection against the prevalent PanAsia-1 and Mya98 strains of FMDV serotype O. Conclusion These data demonstrate that IRES-specific miRNAs can significantly inhibit FMDV infection in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xuepeng Cai
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, P, R of China.
| |
Collapse
|
15
|
Initial evidence on differences among Enterovirus 71, Coxsackievirus A16 and Coxsackievirus B4 in binding to cell surface heparan sulphate. Virusdisease 2013; 25:277-84. [PMID: 25674594 DOI: 10.1007/s13337-013-0172-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 10/10/2013] [Indexed: 10/25/2022] Open
Abstract
Cell surface heparan sulphate (HS) mediates infection for many viruses from diverse families. We demonstrated significant antiviral potencies for a number of HS mimetics against a cloned strain of Enterovirus 71 (EV71) in a previous study. Thus, the involvement of HS in mediating viral infection of isolates of human enteroviruses was investigated in Vero and human neural cells in the present work. In both cell lines, heparin and pentosan polysulphate significantly inhibited both infection and attachment of low passage clinical isolates of EV71 and Coxsackievirus A16 (CVA16) but showed no affect on Coxsackievirus B4 (CVB4) (p < 0.05). In addition, enzymatic removal of cell surface HS by heparinase I prevented binding of the clinical EV71 by nearly 50 % but failed to significantly inhibit CVA16 or CVB4 binding in Vero cells. Overall, the findings of this study provides evidence that whilst highly sulphated domains of HS serve as an essential attachment co-receptor for EV71, HS might be used as an alternative attachment receptor by the other member of Human Enterovirus group A, CVA16. In addition, HS may not mediate early infection in CVB4.
Collapse
|
16
|
Zhang H, Li Y, Huang X, Zheng C. Global transcriptional analysis of model of persistent FMDV infection reveals critical role of host cells in persistence. Vet Microbiol 2013; 162:321-329. [DOI: 10.1016/j.vetmic.2012.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/01/2012] [Accepted: 09/05/2012] [Indexed: 11/16/2022]
|
17
|
Enterovirus 71 uses cell surface heparan sulfate glycosaminoglycan as an attachment receptor. J Virol 2012; 87:611-20. [PMID: 23097443 DOI: 10.1128/jvi.02226-12] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Enterovirus 71 (EV-71) infections are usually associated with mild hand, foot, and mouth disease in young children but have been reported to cause severe neurological complications with high mortality rates. To date, four EV-71 receptors have been identified, but inhibition of these receptors by antagonists did not completely abolish EV-71 infection, implying that there is an as yet undiscovered receptor(s). Since EV-71 has a wide range of tissue tropisms, we hypothesize that EV-71 infections may be facilitated by using receptors that are widely expressed in all cell types, such as heparan sulfate. In this study, heparin, polysulfated dextran sulfate, and suramin were found to significantly prevent EV-71 infection. Heparin inhibited infection by all the EV-71 strains tested, including those with a single-passage history. Neutralization of the cell surface anionic charge by polycationic poly-d-lysine and blockage of heparan sulfate by an anti-heparan sulfate peptide also inhibited EV-71 infection. Interference with heparan sulfate biosynthesis either by sodium chlorate treatment or through transient knockdown of N-deacetylase/N-sulfotransferase-1 and exostosin-1 expression reduced EV-71 infection in RD cells. Enzymatic removal of cell surface heparan sulfate by heparinase I/II/III inhibited EV-71 infection. Furthermore, the level of EV-71 attachment to CHO cell lines that are variably deficient in cell surface glycosaminoglycans was significantly lower than that to wild-type CHO cells. Direct binding of EV-71 particles to heparin-Sepharose columns under physiological salt conditions was demonstrated. We conclude that EV-71 infection requires initial binding to heparan sulfate as an attachment receptor.
Collapse
|
18
|
Ojosnegros S, García-Arriaza J, Escarmís C, Manrubia SC, Perales C, Arias A, Mateu MG, Domingo E. Viral genome segmentation can result from a trade-off between genetic content and particle stability. PLoS Genet 2011; 7:e1001344. [PMID: 21437265 PMCID: PMC3060069 DOI: 10.1371/journal.pgen.1001344] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 02/16/2011] [Indexed: 01/30/2023] Open
Abstract
The evolutionary benefit of viral genome segmentation is a classical, yet unsolved question in evolutionary biology and RNA genetics. Theoretical studies anticipated that replication of shorter RNA segments could provide a replicative advantage over standard size genomes. However, this question has remained elusive to experimentalists because of the lack of a proper viral model system. Here we present a study with a stable segmented bipartite RNA virus and its ancestor non-segmented counterpart, in an identical genomic nucleotide sequence context. Results of RNA replication, protein expression, competition experiments, and inactivation of infectious particles point to a non-replicative trait, the particle stability, as the main driver of fitness gain of segmented genomes. Accordingly, measurements of the volume occupation of the genome inside viral capsids indicate that packaging shorter genomes involves a relaxation of the packaging density that is energetically favourable. The empirical observations are used to design a computational model that predicts the existence of a critical multiplicity of infection for domination of segmented over standard types. Our experiments suggest that viral segmented genomes may have arisen as a molecular solution for the trade-off between genome length and particle stability. Genome segmentation allows maximizing the genetic content without the detrimental effect in stability derived from incresing genome length. Genome segmentation, the splitting of a linear genome into two or more segments, is a major evolutionary transition from independent towards complementing transmission of genetic information. Many viruses with RNA as genetic material have segmented genomes, but the molecular forces behind genome segmentation are unknown. We have used foot-and-mouth disease virus to address this question, because this non-segmented RNA virus became segmented into two RNAs when it was extensively propagated in cell culture. This made possible a comparison of the segmented form (with two shorter RNAs enclosed into separate viral particles) with its exactly matching non-segmented counterpart. The results show that the advantage of the segmented form lies in the higher stability of the particles that enclose the shorter RNA, and not in any difference in the rate of RNA synthesis or expression of the genetic material. Genome segmentation may have arisen as a molecular mechanism to overcome the trade-off between genomic content and particle stability. It allows optimizing the amount of genetic information while relaxing packaging density.
Collapse
Affiliation(s)
- Samuel Ojosnegros
- Centro de Biología Molecular “Severo Ochoa,” CSIC-UAM, Madrid, Spain
| | - Juan García-Arriaza
- Centro de Biología Molecular “Severo Ochoa,” CSIC-UAM, Madrid, Spain
- Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Cristina Escarmís
- Centro de Biología Molecular “Severo Ochoa,” CSIC-UAM, Madrid, Spain
| | - Susanna C. Manrubia
- Laboratorio de Evolución Molecular, Centro de Astrobiología (CSIC/INTA), Instituto Nacional de Técnica Aeroespacial, Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular “Severo Ochoa,” CSIC-UAM, Madrid, Spain
| | - Armando Arias
- Centro de Biología Molecular “Severo Ochoa,” CSIC-UAM, Madrid, Spain
| | | | - Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa,” CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- * E-mail:
| |
Collapse
|
19
|
Bøtner A, Kakker NK, Barbezange C, Berryman S, Jackson T, Belsham GJ. Capsid proteins from field strains of foot-and-mouth disease virus confer a pathogenic phenotype in cattle on an attenuated, cell-culture-adapted virus. J Gen Virol 2011; 92:1141-1151. [PMID: 21270284 DOI: 10.1099/vir.0.029710-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chimeric foot-and-mouth disease viruses (FMDVs) have been generated from plasmids containing full-length FMDV cDNAs and characterized. The parental virus cDNA was derived from the cell-culture-adapted O1Kaufbeuren B64 (O1K B64) strain. Chimeric viruses, containing capsid coding sequences derived from the O/UKG/34/2001 or A/Turkey 2/2006 field viruses, were constructed using the backbone from the O1K B64 cDNA, and viable viruses (O1K/O-UKG and O1K/A-Tur, respectively) were successfully rescued in each case. These viruses grew well in primary bovine thyroid cells but grew less efficiently in BHK cells than the rescued parental O1K B64 virus. The two chimeric viruses displayed the expected antigenicity in serotype-specific antigen ELISAs. Following inoculation of each virus into cattle, the rescued O1K B64 strain proved to be attenuated whereas, with each chimeric virus, typical clinical signs of foot-and-mouth disease were observed, which then spread to in-contact animals. Thus, the surface-exposed capsid proteins of the O1K B64 strain are responsible for its attenuation in cattle. Consequently, there is no evidence for any adaptation, acquired during cell culture, outside the capsid coding region within the O1K B64 strain that inhibits replication in cattle. These chimeric infectious cDNA plasmids provide a basis for the analysis of FMDV pathogenicity and characterization of receptor utilization in vivo.
Collapse
Affiliation(s)
- Anette Bøtner
- National Veterinary Institute, Technical University of Denmark, Lindholm, 4771 Kalvehave, Denmark
| | - Naresh K Kakker
- Institute for Animal Health, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Cyril Barbezange
- National Veterinary Institute, Technical University of Denmark, Lindholm, 4771 Kalvehave, Denmark
| | - Stephen Berryman
- Institute for Animal Health, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Terry Jackson
- Institute for Animal Health, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Graham J Belsham
- National Veterinary Institute, Technical University of Denmark, Lindholm, 4771 Kalvehave, Denmark
| |
Collapse
|
20
|
Modelling foot-and-mouth disease virus dynamics in oral epithelium to help identify the determinants of lysis. Bull Math Biol 2010; 73:1503-28. [PMID: 20725794 DOI: 10.1007/s11538-010-9576-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 07/12/2010] [Indexed: 10/19/2022]
Abstract
Foot-and-mouth disease virus (FMDV) causes an economically important disease of cloven-hoofed livestock; of interest here is the difference in lytic behaviour that is observed in bovine epithelium. On the skin around the feet and tongue, the virus rapidly replicates, killing cells, and resulting in growing lesions, before eventually being cleared by the immune response. In contrast, there is usually minimal lysis in the soft palate, but virus may persist in tissue long after the animal has recovered from the disease. Persistence of virus has important implications for disease control, while identifying the determinant of lysis in epithelium is potentially important for the development of prophylactics. To help identify which of the differences between oral and pharyngeal epithelium are responsible for such dramatically divergent FMDV dynamics, a simple model has been developed, in which virus concentration is made explicit to allow the lytic behaviour of cells to be fully considered. Results suggest that localised structuring of what are fundamentally similar cells can induce a bifurcation in the behaviour of the system, explicitly whether infection can be sustained or results in mutual extinction, although parameter estimates indicate that more complex factors may be involved in maintaining viral persistence, or that there are as yet unquantified differences between the intrinsic properties of cells in these regions.
Collapse
|
21
|
Highly sensitive fetal goat tongue cell line for detection and isolation of foot-and-mouth disease virus. J Clin Microbiol 2009; 47:3156-60. [PMID: 19656987 DOI: 10.1128/jcm.00510-09] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A fetal goat cell line (ZZ-R 127) supplied by the Collection of Cell Lines in Veterinary Medicine of the Friedrich Loeffler Institute was examined for susceptibility to infection by foot-and-mouth disease (FMD) virus (FMDV) and by two other viruses causing clinically indistinguishable vesicular conditions, namely, the viruses of swine vesicular disease and vesicular stomatitis. Primary bovine thyroid (BTY) cells are generally the most sensitive cell culture system for FMDV detection but are problematic to produce, particularly for laboratories that infrequently perform FMD diagnostic tests and for those in countries where FMD is endemic that face problems in sourcing thyroid glands from FMD-negative calves. Strains representing all seven serotypes of FMDV could be isolated in ZZ-R 127 cells with a sensitivity that was considerably higher than that of established cell lines and within 0.5 log of that for BTY cells. The ZZ-R 127 cell line was found to be a sensitive, rapid, and convenient tool for the isolation of FMDV and a useful alternative to BTY cells for FMD diagnosis.
Collapse
|
22
|
Cooke JN, Westover KM. Serotype-specific differences in antigenic regions of foot-and-mouth disease virus (FMDV): A comprehensive statistical analysis. INFECTION GENETICS AND EVOLUTION 2008; 8:855-63. [DOI: 10.1016/j.meegid.2008.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 08/11/2008] [Accepted: 08/15/2008] [Indexed: 10/21/2022]
|
23
|
Herrera M, Grande-Pérez A, Perales C, Domingo E. Persistence of foot-and-mouth disease virus in cell culture revisited: implications for contingency in evolution. J Gen Virol 2008; 89:232-244. [DOI: 10.1099/vir.0.83312-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
If we could rewind the tape of evolution and play it again, would it turn out to be similar to or different from what we know? Obviously, this key question can only be addressed by fragmentary experimental approaches. Twenty-two years ago, we described the establishment of BHK-21 cells persistently infected with foot-and-mouth disease virus (FMDV), a system that displayed as its major biological feature a coevolution of the cells and the resident virus in the course of persistence. Now we report the establishment of two persistently infected cell lines in parallel, starting with the same clones of FMDV and BHK-21 cells used 22 years ago. We have asked whether the evolution of the two newly established cell lines and of the earlier cell line would be similar or different. The main conclusions of the study are: (i) the basic behaviour characterized by virus–cell coevolution is similar in the three carrier cell lines, despite differences in some genetic alterations of FMDV; (ii) a strikingly parallel behaviour has been observed with the two newly established cell lines passaged in parallel, unveiling a deterministic virus behaviour during persistence; and (iii) selective RT-PCR amplifications have detected imbalances in the proportion of positive- versus negative-strand viral RNA, mediated by both viral and cellular factors. The results confirm coevolution of cells and virus as a major and reproducible feature of FMDV persistence in cell culture, and suggest that rapidly evolving viruses may constitute adequate test systems to probe the influence of historical contingency on evolutionary events.
Collapse
Affiliation(s)
- Mónica Herrera
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Ana Grande-Pérez
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Esteban Domingo
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
24
|
Carrillo C, Lu Z, Borca MV, Vagnozzi A, Kutish GF, Rock DL. Genetic and phenotypic variation of foot-and-mouth disease virus during serial passages in a natural host. J Virol 2007; 81:11341-51. [PMID: 17686868 PMCID: PMC2045514 DOI: 10.1128/jvi.00930-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV), like other RNA viruses, exhibits high mutation rates during replication that have been suggested to be of adaptive value. However, even though genetic variation in RNA viruses and, more specifically, FMDV has been extensively examined during virus replication in a wide variety of in vitro cell cultures, very little is known regarding the generation and effects of genetic variability of virus replication in the natural host under experimental conditions and no genetic data are available regarding the effects of serial passage in natural hosts. Here, we present the results of 20 serial contact transmissions of the highly pathogenic, pig-adapted O Taiwan 97 (O Tw97) isolate of FMDV in swine. We examined the virus genomic consensus sequences for a total of 37 full-length viral genomes recovered from 20 in vivo passages. The characteristics and distributions of changes in the sequences during the series of pig infections were analyzed in comparison to the O Tw97 genomes recovered from serially infected BHK-21 cell cultures. Unexpectedly, a significant reduction of virulence upon pig passages was observed, and finally, interruption of the viral transmission chain occurred after the14th pig passage (T14). Virus was, however, isolated from the tonsils and nasal swabs of the asymptomatic T15 pigs at 26 days postcontact, consistent with a natural establishment of the carrier state previously described only for ruminants. Surprisingly, the region encoding the capsid protein VP1 (1D) did not show amino acid changes during in vivo passages. These data demonstrate that contact transmission of FMDV O Tw97 in pigs mimics the fitness loss induced by the bottleneck effect, which was previously observed by others during plaque-to-plaque FMDV passage in vitro, suggesting that unknown mechanisms of virulence recovery might be necessary during the evolution and perpetuation of FMDV in nature.
Collapse
Affiliation(s)
- C Carrillo
- Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944-0848, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Henry KR, Weber J, Quiñones-Mateu ME, Arts EJ. The impact of viral and host elements on HIV fitness and disease progression. Curr HIV/AIDS Rep 2007; 4:36-41. [PMID: 17338859 DOI: 10.1007/s11904-007-0006-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Twenty-five years after the emergence of HIV onto the global scene, multiple advancements have been made in the understanding of HIV pathology. Thanks to the development of antiretroviral therapies, growing numbers of individuals with HIV infection experience slowed or halted acceleration to AIDS. Despite this, new HIV infections and AIDS-related morbidity and mortality are still common in the highly active antiretroviral therapy era. Recently, we and others have identified viral replicative fitness as a major determinant of HIV disease progression, which could have a major impact in the clinical setting. Therefore, in this review, we will discuss host and viral factors that affect viral fitness and its relationship on HIV pathogenesis.
Collapse
Affiliation(s)
- Kenneth R Henry
- Division of Infectious Diseases, BRB 1029, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
26
|
Horsington J, Zhang Z. Consistent change in the B-C loop of VP2 observed in foot-and-mouth disease virus from persistently infected cattle: implications for association with persistence. Virus Res 2007; 125:114-8. [PMID: 17241682 DOI: 10.1016/j.virusres.2006.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 12/08/2006] [Accepted: 12/14/2006] [Indexed: 10/23/2022]
Abstract
The mechanisms of foot-and-mouth disease virus (FMDV) persistence are poorly understood. It is thought the existence of viral quasispecies that encompass sub-populations with varying survival competencies and antigenicities may play some role in the maintenance of virus in persistently infected animals. By analyzing nucleotide sequences encoding the viral VP2 protein in oesophageal-pharyngeal fluid (probang) samples from cattle at different stages of infection, the significance of any amino acid changes in relation to persistence was investigated. Twenty-two experimentally infected cattle (including six carriers) from three animal experiments with FMDV type O UKG34/2001 were studied. Comparison of VP2 sequences in these samples with the inoculum sequence revealed a consistent change in the B-C loop in FMDV from persistently infected cattle. Residue 2079 changed from Y to H in five carrier animals and residue 2080 changed from A to Q in one carrier from 14 days post-infection onward. In contrast, there were no changes evident in any of the non-carriers up to 28 days post-infection. The results indicate that a substitution change in the B-C loop of VP2 may be associated with persistent FMDV infection in cattle.
Collapse
|
27
|
Mateo R, Mateu MG. Deterministic, compensatory mutational events in the capsid of foot-and-mouth disease virus in response to the introduction of mutations found in viruses from persistent infections. J Virol 2006; 81:1879-87. [PMID: 17151123 PMCID: PMC1797555 DOI: 10.1128/jvi.01899-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The evolution of foot-and-mouth disease virus (FMDV) (biological clone C-S8c1) in persistently infected cells led to the emergence of a variant (R100) that displayed increased virulence, reduced stability, and other modified phenotypic traits. Some mutations fixed in the R100 genome involved a cluster of highly conserved residues around the capsid pores that participate in interactions with each other and/or between capsid protomers. We have investigated phenotypic and genotypic changes that occurred when these replacements were introduced into the C-S8c1 capsid. The C3007V and M3014L mutations exerted no effect on plaque size or viral yield during lytic infections, or on virion stability, but led to a reduction in biological fitness; the D3009A mutation caused drastic reductions in plaque size and viability. Remarkably, competition of the C3007V mutant with the nonmutated virus invariably resulted in the fixation of the D3009A mutation in the C3007V capsid. In turn, the presence of the D3009A mutation invariably led to the fixation of the M3014L mutation. In both cases, two individually disadvantageous mutations led, together, to an increase in fitness, as the double mutants outcompeted the nonmutated genotype. The higher fitness of C3007V/D3009A was related to a faster multiplication rate. These observations provide evidence for a chain of linked, compensatory mutational events in a defined region of the FMDV capsid. Furthermore, they indicate that the clustering of unique amino acid replacements in viruses from persistent infections may also occur in cytolytic infections in response to changes caused by previous mutations without an involvement of the new mutations in the adaptation to a different environment.
Collapse
Affiliation(s)
- Roberto Mateo
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
28
|
Quiñones-Mateu ME, Arts EJ. Virus fitness: concept, quantification, and application to HIV population dynamics. Curr Top Microbiol Immunol 2006; 299:83-140. [PMID: 16568897 DOI: 10.1007/3-540-26397-7_4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Viral fitness has been broadly studied during the past three decades, mainly to test evolutionary models and population theories difficult to analyze and interpret with more complex organisms. More recent studies, however, are focused in the role of fitness on viral transmission, pathogenesis, and drug resistance. Here, we used human immunodeficiency virus (HIV) as one of the most relevant models to evaluate the importance of viral quasispecies and fitness in HIV evolution, population dynamics, disease progression, and potential clinical implications.
Collapse
Affiliation(s)
- M E Quiñones-Mateu
- Department of Molecular Genetics, Section Virology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue/NN10, Cleveland, OH 44195, USA.
| | | |
Collapse
|
29
|
Misinzo G, Delputte PL, Meerts P, Lefebvre DJ, Nauwynck HJ. Porcine circovirus 2 uses heparan sulfate and chondroitin sulfate B glycosaminoglycans as receptors for its attachment to host cells. J Virol 2006; 80:3487-94. [PMID: 16537616 PMCID: PMC1440380 DOI: 10.1128/jvi.80.7.3487-3494.2006] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Monocyte/macrophage lineage cells are target cells in vivo for porcine circovirus 2 (PCV2) replication. The porcine monocytic cell line 3D4/31 supports PCV2 replication in vitro, and attachment and internalization kinetics of PCV2 have been established in these cells. However, PCV2 receptors remain unknown. Glycosaminoglycans (GAG) are used by several viruses as receptors. The present study examined the role of GAG in attachment and infection of PCV2. Heparin, heparan sulfate (HS), chondroitin sulfate B (CS-B), but not CS-A, and keratan sulfate reduced PCV2 infection when these GAG were incubated with PCV2 prior to and during inoculation of 3D4/31 cells. Enzymatic removal of HS and CS-B prior to PCV2 inoculation of 3D4/31 cells significantly reduced PCV2 infection. Similarly, when PCV2 virus-like particles (VLP) were allowed to bind onto 3D4/31 cells in the presence of heparin and CS-B, attachment was strongly reduced. Titration of field isolates and low- and high-passage laboratory strains of PCV2 in the presence of heparin significantly reduced PCV2 titers, showing that the capacity of PCV2 to bind GAG was not acquired during in vitro cultivation but is an intrinsic feature of wild-type virus. When Chinese hamster ovary (CHO) cells were inoculated with PCV2, relative percentages of PCV2-infected cells were 27% +/- 8% for HS-deficient and 12% +/- 10% for GAG-deficient cells compared to wild-type cells (100%). Furthermore, it was shown using heparin-Sepharose chromatography that both PCV2 and PCV2 VLP directly interacted with heparin. Together, these results show that HS and CS-B are attachment receptors for PCV2.
Collapse
Affiliation(s)
- Gerald Misinzo
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | | | | | | | | |
Collapse
|
30
|
Abstract
Structural studies of foot-and-mouth disease virus (FMDV) have largely focused on the mature viral particle, providing atomic resolution images of the spherical protein capsid for a number of sero- and sub-types, structures of the highly immunogenic surface loop, Fab and GAG receptor complexes. Additionally, structures are available for a few non-structural proteins. The chapter reviews our current structural knowledge and its impact on our understanding of the virus life cycle proceeding from the mature virus through immune evasion/inactivation, cell-receptor binding and replication and alludes to future structural targets.
Collapse
Affiliation(s)
- E E Fry
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | | | | |
Collapse
|
31
|
Monaghan P, Gold S, Simpson J, Zhang Z, Weinreb PH, Violette SM, Alexandersen S, Jackson T. The αvβ6 integrin receptor for Foot-and-mouth disease virus is expressed constitutively on the epithelial cells targeted in cattle. J Gen Virol 2005; 86:2769-2780. [PMID: 16186231 DOI: 10.1099/vir.0.81172-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Field strains ofFoot-and-mouth disease virus(FMDV) use a number ofαv-integrins as receptors to initiate infection on cultured cells, and integrins are believed to be the receptors used to target epithelial cells in animals. In this study, immunofluorescence confocal microscopy and real-time RT-PCR were used to investigate expression of two of the integrin receptors of FMDV,αvβ6 andαvβ3, within various epithelia targeted by this virus in cattle. These studies show thatαvβ6 is expressed constitutively on the surfaces of epithelial cells at sites where infectious lesions occur during a natural infection, but not at sites where lesions are not normally formed. Expression ofαvβ6 protein at these sites showed a good correlation with the relative abundance ofβ6 mRNA. In contrast,αvβ3 protein was only detected at low levels on the vasculature and not on the epithelial cells of any of the tissues investigated. Together, these data suggest that in cattle,αvβ6, rather thanαvβ3, serves as the major receptor that determines the tropism of FMDV for the epithelia normally targeted by this virus.
Collapse
Affiliation(s)
- Paul Monaghan
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Sarah Gold
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Jennifer Simpson
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Zhidong Zhang
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Paul H Weinreb
- Biogen Idec Inc., Cambridge Center, Cambridge, MA 02142, USA
| | | | - Soren Alexandersen
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Terry Jackson
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, UK
| |
Collapse
|
32
|
Cuevas JM, Moya A, Sanjuán R. Following the very initial growth of biological RNA viral clones. J Gen Virol 2005; 86:435-443. [PMID: 15659763 DOI: 10.1099/vir.0.80359-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Due to their extremely high genetic diversity, which is a direct consequence of high mutation rates, RNA viruses are often described as molecular quasispecies. According to this theory, RNA virus populations cannot be understood in terms of individual viral clones, as they are clouds of interconnected mutants, but this prediction has not yet been demonstrated experimentally. The goal of this study was to determine the fitness of individual clones sampled from a given RNA virus population, a necessary previous step to test the above prediction. To do so, limiting dilutions of a vesicular stomatitis virus population were employed to isolate single viral clones and their initial growth dynamics were followed, corresponding to the release of the first few hundred viral particles. This technique is useful for estimating basic fitness parameters, such as intracellular growth rate, viral yield per cell, rate at which cells are infected and time spent in cell-to-cell transmission. A combination of these parameters allows estimation of the fitness of individual clones, which seems to be determined mainly by their ability to complete infection cycles more quickly. Interestingly, fitness was systematically higher for initial clones than for their derived populations. In addition to environmental changes, such as cellular defence mechanisms, these differences are attributable to high RNA virus mutation rates.
Collapse
Affiliation(s)
- José M Cuevas
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, PO Box 22085, 46071 València, Spain
| | - Rafael Sanjuán
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, PO Box 22085, 46071 València, Spain
| |
Collapse
|
33
|
Williams CH, Kajander T, Hyypiä T, Jackson T, Sheppard D, Stanway G. Integrin alpha v beta 6 is an RGD-dependent receptor for coxsackievirus A9. J Virol 2004; 78:6967-73. [PMID: 15194773 PMCID: PMC421648 DOI: 10.1128/jvi.78.13.6967-6973.2004] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coxsackievirus A9 (CAV9), a member of the Enterovirus genus of Picornaviridae, is a common human pathogen and is one of a significant number of viruses containing a functional arginine-glycine-aspartic acid (RGD) motif in one of their capsid proteins. Previous studies identified the RGD-recognizing integrin alpha(v)beta(3) as its cellular receptor. However, integrin alpha(v)beta(6) has been shown to be an efficient receptor for another RGD-containing picornavirus, foot-and-mouth disease virus (FMDV). In view of the similarity in sequence context of the RGD motifs in CAV9 and FMDV, we investigated whether alpha(v)beta(6) can also serve as a receptor for CAV9. We found that CAV9 can bind to purified alpha(v)beta(6) and also to SW480 cells transfected with beta(6) cDNA, allowing expression of alpha(v)beta(6) on their surface, but it cannot bind to mock-transfected cells. In addition, a higher yield of CAV9 was obtained in beta(6)-expressing cells than in mock-transfected cells. There was no similar enhancement in infection with an RGD-less CAV9 mutant. We also found beta(6) on the surface of GMK cells, a cell line which CAV9 infects efficiently by an RGD-dependent mechanism. Significantly, this infection is blocked by an antibody to alpha(v)beta(6), while this antibody did not block the low level of infection by the RGD-less mutant. Thus, integrin alpha(v)beta(6) is an RGD-dependent receptor for CAV9 and may be important in natural CAV9 infections.
Collapse
Affiliation(s)
- Ciğdem H Williams
- Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | | | | | | | | | | |
Collapse
|
34
|
Jackson T, Clark S, Berryman S, Burman A, Cambier S, Mu D, Nishimura S, King AMQ. Integrin alphavbeta8 functions as a receptor for foot-and-mouth disease virus: role of the beta-chain cytodomain in integrin-mediated infection. J Virol 2004; 78:4533-40. [PMID: 15078934 PMCID: PMC387692 DOI: 10.1128/jvi.78.9.4533-4540.2004] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Accepted: 01/05/2004] [Indexed: 01/12/2023] Open
Abstract
Field isolates of foot-and-mouth disease virus (FMDV) have been shown to use three alphav integrins, alphavbeta1, alphavbeta3, and alphavbeta6, as cellular receptors. Binding to the integrin is mediated by a highly conserved RGD motif located on a surface-exposed loop of VP1. The RGD tripeptide is recognized by several other members of the integrin family, which therefore have the potential to act as receptors for FMDV. Here we show that SW480 cells are made susceptible to FMDV following transfection with human beta8 cDNA and expression of alphavbeta8 at the cell surface. The involvement of alphavbeta8 in infection was confirmed by showing that virus binding and infection of the transfected cells are inhibited by RGD-containing peptides and by function-blocking monoclonal antibodies specific for either the alphavbeta8 heterodimer or the alphav chain. Similar results were obtained with a chimeric alphavbeta8 including the beta6 cytodomain (alphavbeta8/6), showing that the beta6 cytodomain can substitute efficiently for the corresponding region of beta8. In contrast, virus binding to alphavbeta6 including the beta8 cytodomain (alphavbeta6/8) was lower than that of the wild-type integrin, and this binding did not lead to infection. Further, the alphavbeta6 chimera was recognized poorly by antibodies specific for the ectodomain of alphavbeta6 and displayed a relaxed sequence-binding specificity relative to that of wild-type integrin. These data suggest that the beta6 cytodomain is important for maintaining alphavbeta6 in a conformation required for productive infection by FMDV.
Collapse
Affiliation(s)
- Terry Jackson
- Department of Molecular Biology, Institute for Animal Health, Pirbright, Surrey GU24 ONF, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Baranowski E, Ruiz-Jarabo CM, Pariente N, Verdaguer N, Domingo E. Evolution of cell recognition by viruses: a source of biological novelty with medical implications. Adv Virus Res 2004; 62:19-111. [PMID: 14719364 PMCID: PMC7119103 DOI: 10.1016/s0065-3527(03)62002-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The picture beginning to form from genome analyses of viruses, unicellular organisms, and multicellular organisms is that viruses have shared functional modules with cells. A process of coevolution has probably involved exchanges of genetic information between cells and viruses for long evolutionary periods. From this point of view present-day viruses show flexibility in receptor usage and a capacity to alter through mutation their receptor recognition specificity. It is possible that for the complex DNA viruses, due to a likely limited tolerance to generalized high mutation rates, modifications in receptor specificity will be less frequent than for RNA viruses, albeit with similar biological consequences once they occur. It is found that different receptors, or allelic forms of one receptor, may be used with different efficiency and receptor affinities are probably modified by mutation and selection. Receptor abundance and its affinity for a virus may modulate not only the efficiency of infection, but also the capacity of the virus to diffuse toward other sites of the organism. The chapter concludes that receptors may be shared by different, unrelated viruses and that one virus may use several receptors and may expand its receptor specificity in ways that, at present, are largely unpredictable.
Collapse
Affiliation(s)
- Eric Baranowski
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | | | | | | | | |
Collapse
|
36
|
Zhao Q, Pacheco JM, Mason PW. Evaluation of genetically engineered derivatives of a Chinese strain of foot-and-mouth disease virus reveals a novel cell-binding site which functions in cell culture and in animals. J Virol 2003; 77:3269-80. [PMID: 12584350 PMCID: PMC149744 DOI: 10.1128/jvi.77.5.3269-3280.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adaptation of field isolates of foot-and-mouth disease virus (FMDV) to grow in cells in culture can result in changes in viral properties that include acquisition of the ability to bind to cell surface heparan sulfate (HS). After 13 passages on BHK cells to produce a vaccine, a Cathay topotype isolate of FMDV serotype O from China (O/CHA/90) extended its cell culture host range and bound to heparin-Sepharose, although it did not require cell surface HS as a receptor molecule. To understand these phenomena, we constructed chimeric viruses by using a type A(12) infectious cDNA and the capsid protein-coding regions of O/CHA/90 and its cell culture-adapted derivative (vac-O/CHA/90). Using a set of viruses derived from these chimeras by exchanging portions of the capsid-coding regions, we discovered that a group of amino acid residues that surround the fivefold axis of the icosahedral virion determine host range in cell culture and influence pathogenicity in pigs. These residues included aromatic amino acids at positions 108 and 174 and positively charged residues at positions 83 and 172 in protein 1D. To test if these residues participated in non-integrin-dependent cell binding, the integrin-binding RGD sequence in protein 1D was changed to KGE in two different chimeras. Evaluation of these KGE viruses indicated that growth in cell culture was not dependent on HS. One of these viruses was tested in pigs, where it produced a mild disease and maintained its KGE sequence. These results are discussed in terms of receptor utilization and pathogenesis of this important pathogen.
Collapse
Affiliation(s)
- Qizu Zhao
- US Department of Agriculture, Greenport, New York, USA
| | | | | |
Collapse
|
37
|
Affiliation(s)
- Terry Jackson
- Department of Molecular Biology, Institute for Animal Health, Pirbright, Surrey GU24 ONF, UK
| | | | | | | |
Collapse
|
38
|
Clavijo A, Viera-Pereira PJ, Bergmann I. Use of the reverse transcription polymerase chain reaction (RT-PCR) for the rapid diagnosis of foot and mouth disease in South America. Vet Res Commun 2003; 27:63-71. [PMID: 12625404 DOI: 10.1023/a:1022062724543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Foot and mouth disease (FMD) is a limiting factor for the economic progress of the animal industry in South America. The presence of the disease results in the imposition of national and international sanitary barriers to animals and animal products, and, most especially, a reduction in the availability of protein from animal origin and in income. Rapid and accurate identification of infected animals, those with either clinical or subclinical disease as well as with persistent infection, is essential for maintaining an efficient eradication programme. The polymerase chain reaction was used to rapidly identify infected animals. With a primer set that corresponds to a conserved region of the 3D sequence of the viral genome, it was possible to amplify, regardless of the serotype, 116 strains of FMD virus, of which 109 were strains collected from outbreaks of FMD throughout South America from 1945 to the most recent outbreaks in 2000/2001. The PCR technique should be of considerable value in facilitating the diagnosis of FMD in South America. where laboratory resources are limited and a rapid response is needed, particularly in areas where national programmes for controlling or eradicating the disease are being implemented.
Collapse
Affiliation(s)
- A Clavijo
- Pan American Foot-and-Mouth Disease Center, Duque de Caxias, Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
39
|
Tami C, Taboga O, Berinstein A, Núñez JI, Palma EL, Domingo E, Sobrino F, Carrillo E. Evidence of the coevolution of antigenicity and host cell tropism of foot-and-mouth disease virus in vivo. J Virol 2003; 77:1219-26. [PMID: 12502839 PMCID: PMC140778 DOI: 10.1128/jvi.77.2.1219-1226.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this work we analyze the antigenic properties and the stability in cell culture of virus mutants recovered upon challenge of peptide-vaccinated cattle with foot-and-mouth disease virus (FMDV) C3 Arg85. Previously, we showed that a significant proportion of 29 lesions analyzed (41%) contained viruses with single amino acid replacements (R141G, L144P, or L147P) within a major antigenic site located at the G-H loop of VP1, known to participate also in interactions with integrin receptors. Here we document that no replacements at this site were found in viruses from 12 lesions developed in six control animals upon challenge with FMDV C3 Arg85. Sera from unprotected, vaccinated animals exhibited poor neutralization titers against mutants recovered from them. Sequence analyses of the viruses recovered upon 10 serial passages in BHK-21 and FBK-2 cells in the presence of preimmune (nonneutralizing) sera revealed that mutants reverted to the parental sequence, suggesting an effect of the amino acid replacements in the interaction of the viruses with cells. Parallel passages in the presence of subneutralizing concentrations of immune homologous sera resulted in the maintenance of mutations R141G and L147P, while mutation L144P reverted to the C3 Arg85 sequence. Reactivity with a panel of FMDV type C-specific monoclonal antibodies indicated that mutant viruses showed altered antigenicity. These results suggest that the selective pressure exerted by host humoral immune response can play a role in both the selection and stability of antigenic FMDV variants and that such variants can manifest alterations in cell tropism.
Collapse
Affiliation(s)
- Cecilia Tami
- Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, INTA, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Lin YL, Lei HY, Lin YS, Yeh TM, Chen SH, Liu HS. Heparin inhibits dengue-2 virus infection of five human liver cell lines. Antiviral Res 2002; 56:93-6. [PMID: 12323403 DOI: 10.1016/s0166-3542(02)00095-5] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Liver is suggested to be the major target of dengue virus infection and plays an important role in the immunopathogenesis of dengue hemorrhagic fever. Previously, we reported that five human liver cell lines (HuH-7, HA22T, Hep3B, PLC, and Chang liver) with various degrees of differentiation and tumorigenicity showed different susceptibility for dengue virus infection. Here, we demonstrate that heparin, an analogue of heparan sulfate (HS), can compete with HS on cell membrane for virus binding and subsequently inhibits the replication of dengue-2 and Japanese encephalitis viruses in hepatoma and BHK-21 cells, respectively. It indicates that the binding of these viruses with HS is an important process for their invasion. Moreover, the inhibitory effect of heparin correlates with the infectivity of the virus in the cells. All together, our results suggest that HS is an important host component for dengue and Japanese encephalitis virus replication, which can be effectively blocked by heparin.
Collapse
Affiliation(s)
- Yin-Ling Lin
- Department of Microbiology and Immunology and The Walther Oncology Center, The Walther Cancer Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | |
Collapse
|
41
|
Smit JM, Waarts BL, Kimata K, Klimstra WB, Bittman R, Wilschut J. Adaptation of alphaviruses to heparan sulfate: interaction of Sindbis and Semliki forest viruses with liposomes containing lipid-conjugated heparin. J Virol 2002; 76:10128-37. [PMID: 12239287 PMCID: PMC136541 DOI: 10.1128/jvi.76.20.10128-10137.2002] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Passage of Sindbis virus (SIN) in BHK-21 cells has been shown to select for virus mutants with high affinity for the glycosaminoglycan heparan sulfate (HS). Three loci in the viral spike protein E2 (E2:1, E2:70, and E2:114) have been identified that mutate during adaptation and independently confer on the virus the ability to bind to cell surface HS (W. B. Klimstra, K. D. Ryman, and R. E. Johnston, J. Virol. 72:7357-7366, 1998). In this study, we used HS-adapted SIN mutants to evaluate a new model system involving target liposomes containing lipid-conjugated heparin (HepPE) as an HS receptor analog for the virus. HS-adapted SIN, but not nonadapted wild-type SIN TR339, interacted efficiently with HepPE-containing liposomes at neutral pH. Binding was competitively inhibited by soluble heparin. Despite the efficient binding of HS-adapted SIN to HepPE-containing liposomes at neutral pH, there was no fusion under these conditions. Fusion did occur, however, at low pH, consistent with cellular entry of the virus via acidic endosomes. At low pH, wild-type or HS-adapted SIN underwent fusion with liposomes with or without HepPE with similar kinetics, suggesting that interaction with the HS receptor analog at neutral pH has little influence on subsequent fusion of SIN at low pH. Finally, Semliki Forest virus (SFV), passaged frequently on BHK-21 cells, also interacted efficiently with HepPE-containing liposomes, indicating that SFV, like other alphaviruses, readily adapts to cell surface HS. In conclusion, the liposomal model system presented in this paper may serve as a novel tool for the study of receptor interactions and membrane fusion properties of HS-interacting enveloped viruses.
Collapse
Affiliation(s)
- Jolanda M Smit
- Molecular Virology Section, Department of Medical Microbiology, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
42
|
Boonyakiat Y, Hughes PJ, Ghazi F, Stanway G. Arginine-glycine-aspartic acid motif is critical for human parechovirus 1 entry. J Virol 2001; 75:10000-4. [PMID: 11559835 PMCID: PMC114574 DOI: 10.1128/jvi.75.20.10000-10004.2001] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2001] [Accepted: 07/11/2001] [Indexed: 11/20/2022] Open
Abstract
The human parechovirus 1 RGD motif in VP1 was studied by mutagenesis. An RGD-to-RGE change gave only revertant viruses with a restored RGD, while deletion of GD was lethal and nonrevertable. Mutations at the +1 and +2 positions had some effect on growth properties and a +1 M-to-P change was lethal. These studies indicate that the RGD motif plays a critical role in infectivity, presumably by interacting with integrins, and that downstream amino acids can have an influence on function.
Collapse
Affiliation(s)
- Y Boonyakiat
- Department of Biological Sciences, John Tabor Laboratories, University of Essex, Colchester CO4 3SQ, United Kingdom
| | | | | | | |
Collapse
|
43
|
Mandl CW, Kroschewski H, Allison SL, Kofler R, Holzmann H, Meixner T, Heinz FX. Adaptation of tick-borne encephalitis virus to BHK-21 cells results in the formation of multiple heparan sulfate binding sites in the envelope protein and attenuation in vivo. J Virol 2001; 75:5627-37. [PMID: 11356970 PMCID: PMC114275 DOI: 10.1128/jvi.75.12.5627-5637.2001] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Propagation of the flavivirus tick-borne encephalitis virus in BHK-21 cells selected for mutations within the large surface glycoprotein E that increased the net positive charge of the protein. In the course of 16 independent experiments, 12 different protein E mutation patterns were identified. These were located in all three of the structural domains and distributed over almost the entire upper and lateral surface of protein E. The mutations resulted in the formation of local patches of predominantly positive surface charge. Recombinant viruses carrying some of these mutations in a defined genetic backbone showed heparan sulfate (HS)-dependent phenotypes, resulting in an increased specific infectivity and binding affinity for BHK-21 cells, small plaque formation in porcine kidney cells, and significant attenuation of neuroinvasiveness in adult mice. Our results corroborate the notion that the selection of attenuated HS binding mutants is a common and frequent phenomenon during the propagation of viruses in cell culture and suggest a major role for HS dependence in flavivirus attenuation. Recognition of this principle may be of practical value for designing attenuated flavivirus strains in the future.
Collapse
Affiliation(s)
- C W Mandl
- Institute of Virology, University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
44
|
Knowles NJ, Davies PR, Henry T, O'Donnell V, Pacheco JM, Mason PW. Emergence in Asia of foot-and-mouth disease viruses with altered host range: characterization of alterations in the 3A protein. J Virol 2001; 75:1551-6. [PMID: 11152528 PMCID: PMC114061 DOI: 10.1128/jvi.75.3.1551-1556.2001] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In 1997, an epizootic in Taiwan, Province of China, was caused by a type O foot-and-mouth disease virus which infected pigs but not cattle. The virus had an altered 3A protein, which harbored a 10-amino-acid deletion and a series of substitutions. Here we show that this deletion is present in the earliest type O virus examined from the region (from 1970), whereas substitutions surrounding the deletion accumulated over the last 29 years. Analyses of the growth of these viruses in bovine cells suggest that changes in the genome in addition to the deletion, per se, are responsible for the porcinophilic properties of current Asian viruses in this lineage.
Collapse
Affiliation(s)
- N J Knowles
- Institute for Animal Health, Pirbright Laboratory, Pirbright, Woking, Surrey GU24 ONF, United Kingdom
| | | | | | | | | | | |
Collapse
|
45
|
Fares MA, Moya A, Escarmís C, Baranowski E, Domingo E, Barrio E. Evidence for positive selection in the capsid protein-coding region of the foot-and-mouth disease virus (FMDV) subjected to experimental passage regimens. Mol Biol Evol 2001; 18:10-21. [PMID: 11141188 DOI: 10.1093/oxfordjournals.molbev.a003715] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We present sequence data from two genomic regions of foot-and-mouth disease virus (FMDV) subjected to several experimental passage regimens. Maximum-likelihood estimates of the nonsynonymous-to-synonymous rate ratio parameter (d(N)/d(S)) suggested the action of positive selection on some antigenic sites of the FMDV capsid during some experimental passages. These antigenic sites showed an accumulation of convergent amino acid replacements during massive serial cytolytic passages and also in persistent infections of FMDV in cell culture. This accumulation was most significant at the antigenic site A (the G-H loop of capsid VP1), which includes an Arg-Gly-Asp (RGD) cellular recognition motif. Our analyses also identified a subregion of VP3, part of the fivefold axis of FMDV particles, that also appeared to be subjected to positive selection of amino acid replacements. From these results, we can conclude that under the restrictive conditions imposed either by the presence of the monoclonal antibodies, by the persistent infections, or by the competition processes established between different variants of the viral population, amino acid replacement in some capsid-coding regions can be positively selected toward an increase of those mutants with a higher capability to infect the cell.
Collapse
Affiliation(s)
- M A Fares
- Institut Cavanilles de Biodiversitat i Biología Evolutiva, Universitat de València, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Bernard KA, Klimstra WB, Johnston RE. Mutations in the E2 glycoprotein of Venezuelan equine encephalitis virus confer heparan sulfate interaction, low morbidity, and rapid clearance from blood of mice. Virology 2000; 276:93-103. [PMID: 11021998 DOI: 10.1006/viro.2000.0546] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The arbovirus, Venezuelan equine encephalitis virus (VEE), causes disease in humans and equines during periodic outbreaks. A murine model, which closely mimics the encephalitic form of the disease, was used to study mechanisms of attenuation. Molecularly cloned VEE viruses were used: a virulent, epizootic, parental virus and eight site-specific glycoprotein mutants derived from the parental virus. Four of these mutants were selected in vitro for rapid binding and penetration, resulting in positive charge changes in the E2 glycoprotein from glutamic acid or threonine to lysine (N. L. Davis, N. Powell, G. F. Greenwald, L. V. Willis, B. J. Johnson, J. F. Smith, and R. E. Johnston, Virology 183, 20-31, 1991). Tissue culture adaptation also selected for the ability to bind heparan sulfate as evidenced by inhibition of plaque formation by heparin, decreased infectivity for CHO cells deficient for heparan sulfate, and tight binding to heparin-agarose beads. In contrast, the parental virus and three other mutants did not use heparan sulfate as a receptor. All eight mutants were partially or completely attenuated with respect to mortality in adult mice after a subcutaneous inoculation, and the five mutants that interacted with heparan sulfate in vitro had low morbidity (0-50%). These same five mutants were cleared rapidly from the blood after an intravenous inoculation. In contrast, the parental virus and the other three mutants were cleared very slowly. In summary, the five VEE viruses that contain tissue-culture-selected mutations interacted with cell surface heparan sulfate, and this interaction correlated with low morbidity and rapid clearance from the blood. We propose that one mechanism of attenuation is rapid viral clearance in vivo due to binding of the virus to ubiquitous heparan sulfate.
Collapse
Affiliation(s)
- K A Bernard
- Department of Microbiology and Immunology, School of Medicine, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
47
|
Baranowski E, Ruiz-Jarabo CM, Sevilla N, Andreu D, Beck E, Domingo E. Cell recognition by foot-and-mouth disease virus that lacks the RGD integrin-binding motif: flexibility in aphthovirus receptor usage. J Virol 2000; 74:1641-7. [PMID: 10644333 PMCID: PMC111638 DOI: 10.1128/jvi.74.4.1641-1647.2000] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell surface molecules that can act as virus receptors may exert an important selective pressure on RNA viral quasispecies. Large population passages of foot-and-mouth disease virus (FMDV) in cell culture select for mutant viruses that render dispensable a highly conserved Arg-Gly-Asp (RGD) motif responsible for integrin receptor recognition. Here, we provide evidence that viability of recombinant FMDVs including a Asp-143-->Gly change at the RGD motif was conditioned by a number of capsid substitutions selected upon FMDV evolution in cell culture. Multiply passaged FMDVs acquired the ability to infect human K-562 cells, which do not express integrin alpha(v)beta(3). In contrast to previously described cell culture-adapted FMDVs, the RGD-independent infection did not require binding to the surface glycosaminoglycan heparan sulfate (HS). Viruses which do not bind HS and lack the RGD integrin-binding motif replicate efficiently in BHK-21 cells. Interestingly, FMDV mutants selected from the quasispecies for the inability to bind heparin regained sensitivity to inhibition by a synthetic peptide that represents the G-H loop of VP1. Thus, a single amino acid replacement leading to loss of HS recognition can shift preferential receptor usage of FMDV from HS to integrin. These results indicate at least three different mechanisms for cell recognition by FMDV and suggest a potential for this virus to use multiple, alternative receptors for entry even into the same cell type.
Collapse
Affiliation(s)
- E Baranowski
- Centro de Biolog¿ia Molecular "Severo Ochoa", Universidad Aut¿onoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
48
|
Beard CW, Mason PW. Genetic determinants of altered virulence of Taiwanese foot-and-mouth disease virus. J Virol 2000; 74:987-91. [PMID: 10623761 PMCID: PMC111619 DOI: 10.1128/jvi.74.2.987-991.2000] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In 1997, a devastating outbreak of foot-and-mouth disease (FMD) in Taiwan was caused by a serotype O virus (referred to here as OTai) with atypical virulence. It produced high morbidity and mortality in swine but did not affect cattle. We have defined the genetic basis of the species specificity of OTai by evaluating the properties of genetically engineered chimeric viruses created from OTai and a bovine-virulent FMD virus. These studies have shown that an altered nonstructural protein, 3A, is a primary determinant of restricted growth on bovine cells in vitro and significantly contributes to bovine attenuation of OTai in vivo.
Collapse
Affiliation(s)
- C W Beard
- Plum Island Animal Disease Center, Agricultural Research Service, U. S. Department of Agriculture, Greenport, New York 11944, USA
| | | |
Collapse
|
49
|
Ruiz-Jarabo CM, Sevilla N, Dávila M, Gómez-Mariano G, Baranowski E, Domingo E. Antigenic properties and population stability of a foot-and-mouth disease virus with an altered Arg-Gly-Asp receptor-recognition motif. J Gen Virol 1999; 80 ( Pt 8):1899-1909. [PMID: 10466785 DOI: 10.1099/0022-1317-80-8-1899] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The antigenic properties and genetic stability of a multiply passaged foot-and-mouth disease virus (FMDV) clone C-S8c1 with an Arg-Gly-Gly triplet (RGG) instead of the Arg-Gly-Asp (RGD) integrin-recognition motif at positions 141 to 143 of capsid protein VP1 are described. Clear antigenic differences between FMDV RGG and clone C-S8c1 have been documented in ELISA, enzyme-linked immunoelectrotransfer (Western) blot and neutralization assays using site A-specific monoclonal antibodies and anti-FMDV polyclonal antibodies from swine and guinea pigs. The results validate with a live virus the role of the RGD (in particular Asp-143) in recognition of (and neutralization by) antibodies, a role previously suggested by immunochemical and structural studies with synthetic peptides. The FMDV RGG was genetically stable in a large proportion of serial infections of BHK-21 cells. However, a revertant virus with RGD was generated in one out of six passage series. Interestingly, this revertant FMDV did not reach dominance but established an equilibrium with its parental FMDV RGG, accompanied by an increase of quasispecies complexity at the sequences around the RGG triplet. FMDV RGG exhibited a selective disadvantage relative to other RGD-containing clones isolated from the same parental FMDV population. The results suggest that large antigenic variations can be prompted by replacements at critical capsid sites, including those involved in receptor recognition. These critical replacements may yield viruses whose stability allows them to replicate efficiently and to expand the sequence repertoire of an antigenic site.
Collapse
Affiliation(s)
- Carmen M Ruiz-Jarabo
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain1
| | - Noemí Sevilla
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain1
| | - Mercedes Dávila
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain1
| | - Gema Gómez-Mariano
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain1
| | - Eric Baranowski
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain1
| | - Esteban Domingo
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain1
| |
Collapse
|