1
|
Serna-Arbeláez MS, García-Cárcamo V, Rincón-Tabares DS, Guerra D, Loaiza-Cano V, Martinez-Gutierrez M, Pereañez JA, Pastrana-Restrepo M, Galeano E, Zapata W. In Vitro and In Silico Antiviral Activity of Di-Halogenated Compounds Derived from L-Tyrosine against Human Immunodeficiency Virus 1 (HIV-1). Curr Issues Mol Biol 2023; 45:8173-8200. [PMID: 37886959 PMCID: PMC10605077 DOI: 10.3390/cimb45100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
HIV-1 infection is considered one of the major public health problems worldwide. Due to the limited access to antiretroviral therapy, the associated side effects, and the resistance that the virus can generate, it has become necessary to continue the development of new antiviral agents. The study aimed to identify potential antiviral agents for HIV-1 by evaluating the in vitro and in silico activity of 16 synthetic di-halogenated compounds derived from L-Tyrosine. The compounds were tested for cytotoxicity, which was determined using MTT, and a combined antiviral screening strategy (pre- and post-infection treatment) was performed against R5 and X4 strains of HIV-1. The most promising compounds were evaluated against a pseudotyped virus (HIV-GFP-VSV-G), and the effectiveness of these compounds was measured through GFP flow cytometry. Also, the antiviral effect of these compounds was evaluated in PBMCs using flow cytometry and ELISA for p24. The TODB-2M, TODC-2M, TODC-3M, and YDC-3M compounds showed low toxicity and significant inhibitory activity against HIV-1. In silico docking and molecular dynamics assays suggest that the compounds' antiviral activity may be due to interaction with reverse transcriptase, viral protease, or envelope gp120.
Collapse
Affiliation(s)
- Maria S. Serna-Arbeláez
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín 050001, Colombia; (M.S.S.-A.); (V.G.-C.)
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín 050001, Colombia;
| | - Valentina García-Cárcamo
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín 050001, Colombia; (M.S.S.-A.); (V.G.-C.)
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín 050001, Colombia;
| | - Daniel S. Rincón-Tabares
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín 050001, Colombia;
| | - Diego Guerra
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas, PTS Granada, 18016 Granada, Spain;
- Programa de Estudio y Control de Enfermedades Tropicales PECET, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia
| | - Vanessa Loaiza-Cano
- Grupo de Investigación en Ciencias Animales-GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680005, Colombia; (V.L.-C.); (M.M.-G.)
| | - Marlen Martinez-Gutierrez
- Grupo de Investigación en Ciencias Animales-GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680005, Colombia; (V.L.-C.); (M.M.-G.)
| | - Jaime A. Pereañez
- Grupo Toxinología, Alternativas Terapéuticas y Alimentarias, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Medellín 050001, Colombia;
| | - Manuel Pastrana-Restrepo
- Productos Naturales Marinos, Departamento de Farmacia, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Medellín 050001, Colombia; (M.P.-R.); (E.G.)
| | - Elkin Galeano
- Productos Naturales Marinos, Departamento de Farmacia, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Medellín 050001, Colombia; (M.P.-R.); (E.G.)
| | - Wildeman Zapata
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín 050001, Colombia; (M.S.S.-A.); (V.G.-C.)
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín 050001, Colombia;
| |
Collapse
|
2
|
Harms M, Smith N, Han M, Groß R, von Maltitz P, Stürzel C, Ruiz-Blanco YB, Almeida-Hernández Y, Rodriguez-Alfonso A, Cathelin D, Caspar B, Tahar B, Sayettat S, Bekaddour N, Vanshylla K, Kleipass F, Wiese S, Ständker L, Klein F, Lagane B, Boonen A, Schols D, Benichou S, Sanchez-Garcia E, Herbeuval JP, Münch J. Spermine and spermidine bind CXCR4 and inhibit CXCR4- but not CCR5-tropic HIV-1 infection. SCIENCE ADVANCES 2023; 9:eadf8251. [PMID: 37406129 DOI: 10.1126/sciadv.adf8251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/01/2023] [Indexed: 07/07/2023]
Abstract
Semen is an important vector for sexual HIV-1 transmission. Although CXCR4-tropic (X4) HIV-1 may be present in semen, almost exclusively CCR5-tropic (R5) HIV-1 causes systemic infection after sexual intercourse. To identify factors that may limit sexual X4-HIV-1 transmission, we generated a seminal fluid-derived compound library and screened it for antiviral agents. We identified four adjacent fractions that blocked X4-HIV-1 but not R5-HIV-1 and found that they all contained spermine and spermidine, abundant polyamines in semen. We showed that spermine, which is present in semen at concentrations up to 14 mM, binds CXCR4 and selectively inhibits cell-free and cell-associated X4-HIV-1 infection of cell lines and primary target cells at micromolar concentrations. Our findings suggest that seminal spermine restricts sexual X4-HIV-1 transmission.
Collapse
Affiliation(s)
- Mirja Harms
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Nikaïa Smith
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, 75014 Paris, France
| | - Mingyu Han
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, 75014 Paris, France
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Pascal von Maltitz
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Christina Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Yasser B Ruiz-Blanco
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany
| | - Yasser Almeida-Hernández
- Computational Bioengineering, Department of Biochemical and Chemical Engineering, Emil-Figge Str. 66., 44227 Dortmund, Germany
| | - Armando Rodriguez-Alfonso
- Core Facility Functional Peptidomics, Ulm University Medical Center, 89081 Ulm, Germany
- Core Unit Mass Spectrometry and Proteomics, Ulm University, 89081 Ulm, Germany
| | - Dominique Cathelin
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Paris, France
| | - Birgit Caspar
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Paris, France
| | - Bouceba Tahar
- Sorbonne University, CNRS, Institut de Biologie Paris-Seine (IBPS), Protein Engineering Platform, Molecular Interaction Service, F-75252 Paris, France
| | - Sophie Sayettat
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, 75014 Paris, France
| | - Nassima Bekaddour
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Paris, France
| | - Kanika Vanshylla
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Franziska Kleipass
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University, 89081 Ulm, Germany
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- German Center for Infection Research (DZIF), Partner site Bonn-Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Bernard Lagane
- Infinity, Université de Toulouse, CNRS, INSERM, Toulouse, France
| | - Arnaud Boonen
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, P.O. Box 1030, 3000 Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, P.O. Box 1030, 3000 Leuven, Belgium
| | - Serge Benichou
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, 75014 Paris, France
| | - Elsa Sanchez-Garcia
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany
- Computational Bioengineering, Department of Biochemical and Chemical Engineering, Emil-Figge Str. 66., 44227 Dortmund, Germany
| | - Jean-Philippe Herbeuval
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Paris, France
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
3
|
Brunetti JE, Kitsera M, Muñoz-Fontela C, Rodríguez E. Use of Hu-PBL Mice to Study Pathogenesis of Human-Restricted Viruses. Viruses 2023; 15:228. [PMID: 36680271 PMCID: PMC9866769 DOI: 10.3390/v15010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Different humanized mouse models have been developed to study human diseases such as autoimmune illnesses, cancer and viral infections. These models are based on the use of immunodeficient mouse strains that are transplanted with human tissues or human immune cells. Among the latter, mice transplanted with hematopoietic stem cells have been widely used to study human infectious diseases. However, mouse models built upon the transplantation of donor-specific mature immune cells are still under development, especially in the field of viral infections. These models can retain the unique immune memory of the donor, making them suitable for the study of correlates of protection upon natural infection or vaccination. Here, we will review some of these models and how they have been applied to virology research. Moreover, the future applications and the potential of these models to design therapies against human viral infections are discussed.
Collapse
Affiliation(s)
| | - Maksym Kitsera
- Bernhard-Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - César Muñoz-Fontela
- Bernhard-Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Borstel-Lübeck, 38124 Braunschweig, Germany
| | - Estefanía Rodríguez
- Bernhard-Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Borstel-Lübeck, 38124 Braunschweig, Germany
| |
Collapse
|
4
|
Terahara K, Iwabuchi R, Tsunetsugu-Yokota Y. Perspectives on Non-BLT Humanized Mouse Models for Studying HIV Pathogenesis and Therapy. Viruses 2021; 13:v13050776. [PMID: 33924786 PMCID: PMC8145733 DOI: 10.3390/v13050776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
A variety of humanized mice, which are reconstituted only with human hematopoietic stem cells (HSC) or with fetal thymus and HSCs, have been developed and widely utilized as in vivo animal models of HIV-1 infection. The models represent some aspects of HIV-mediated pathogenesis in humans and are useful for the evaluation of therapeutic regimens. However, there are several limitations in these models, including their incomplete immune responses and poor distribution of human cells to the secondary lymphoid tissues. These limitations are common in many humanized mouse models and are critical issues that need to be addressed. As distinct defects exist in each model, we need to be cautious about the experimental design and interpretation of the outcomes obtained using humanized mice. Considering this point, we mainly characterize the current conventional humanized mouse reconstituted only with HSCs and describe past achievements in this area, as well as the potential contributions of the humanized mouse models for the study of HIV pathogenesis and therapy. We also discuss the use of various technologies to solve the current problems. Humanized mice will contribute not only to the pre-clinical evaluation of anti-HIV regimens, but also to a deeper understanding of basic aspects of HIV biology.
Collapse
Affiliation(s)
- Kazutaka Terahara
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.T.); (R.I.)
| | - Ryutaro Iwabuchi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.T.); (R.I.)
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo 162-8480, Japan
| | - Yasuko Tsunetsugu-Yokota
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.T.); (R.I.)
- Department of Medical Technology, School of Human Sciences, Tokyo University of Technology, Tokyo 144-8535, Japan
- Correspondence: or ; Tel.: +81-3-6424-2223
| |
Collapse
|
5
|
Logozzi M, Mizzoni D, Di Raimo R, Andreotti M, Macchia D, Spada M, Fais S. In vivo antiaging effects of alkaline water supplementation. J Enzyme Inhib Med Chem 2020; 35:657-664. [PMID: 32106720 PMCID: PMC7054916 DOI: 10.1080/14756366.2020.1733547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Telomeres length and telomerase activity are currently considered aging molecular stigmata. Water is a major requirement for our body and water should be alkaline. Recent reports have shown that aging is related to a reduced water intake. We wanted to investigate the effect of the daily intake of alkaline water on the molecular hallmark of aging and the anti-oxidant response. We watered a mouse model of aging with or without alkaline supplementation. After 10 months, we obtained the blood, the bone marrow and the ovaries from both groups. In the blood, we measured the levels of ROS, SOD-1, GSH, and the telomerase activity and analysed the bone marrow and the ovaries for the telomeres length. We found reduced ROS levels and increased SOD-1, GSH, telomerase activity and telomeres length in alkaline supplemented mice. We show here that watering by using alkaline water supplementation highly improves aging at the molecular level.
Collapse
Affiliation(s)
- Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mauro Andreotti
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Daniele Macchia
- Center of Animal research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Spada
- Center of Animal research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
6
|
Logozzi M, Di Raimo R, Mizzoni D, Andreotti M, Spada M, Macchia D, Fais S. Beneficial Effects of Fermented Papaya Preparation (FPP ®) Supplementation on Redox Balance and Aging in a Mouse Model. Antioxidants (Basel) 2020; 9:antiox9020144. [PMID: 32046112 PMCID: PMC7070551 DOI: 10.3390/antiox9020144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 12/18/2022] Open
Abstract
In recent decades much attention has been paid to how dietary antioxidants may positively affect the human health, including the beneficial effects of fermented foods and beverages. Fermented Papaya Preparation (FPP®) has been shown to represent a valuable approach to obtain systemic antioxidants effect. In this study, we wanted to verify whether FPP® had a clear and scientifically supported in vivo anti-aging effect together with the induction of a systemic antioxidant reaction. To this purpose we daily treated a mouse model suitable for aging studies (C57BL/6J) with FPP®-supplemented water from either the 6th weeks (early treatment) or the 51th weeks (late treatment) of age as compared to mice receiving only tap water. After 10 months of FPP® treatment, we evaluated the telomerase activity, antioxidants and Reactive Oxygen Species ROS plasmatic levels and the telomeres length in the bone marrow and ovaries in both mice groups. The results showed that the daily FPP® assumption induced increase in telomeres length in bone marrow and ovary, together with an increase in the plasmatic levels of telomerase activity, and antioxidant levels, with a decrease of ROS. Early treatment resulted to be more effective, suggesting a potential key role of FPP® in preventing the age-related molecular damages.
Collapse
Affiliation(s)
- Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.L.); (R.D.R.); (D.M.)
| | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.L.); (R.D.R.); (D.M.)
| | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.L.); (R.D.R.); (D.M.)
| | - Mauro Andreotti
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Massimo Spada
- Centro Nazionale Sperimentazione e Benessere Animale, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.S.); (D.M.)
| | - Daniele Macchia
- Centro Nazionale Sperimentazione e Benessere Animale, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.S.); (D.M.)
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.L.); (R.D.R.); (D.M.)
- Correspondence: ; Tel.: +39-0649903195; Fax: +39-0649902436
| |
Collapse
|
7
|
Foletti A, Fais S. Unexpected Discoveries Should Be Reconsidered in Science-A Look to the Past? Int J Mol Sci 2019; 20:ijms20163973. [PMID: 31443232 PMCID: PMC6720802 DOI: 10.3390/ijms20163973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/05/2019] [Accepted: 08/14/2019] [Indexed: 12/19/2022] Open
Abstract
From the past, we know how much “serendipity” has played a pivotal role in scientific discoveries. The definition of serendipity implies the finding of one thing while looking for something else. The most known example of this is the discovery of penicillin. Fleming was studying “Staphylococcus influenzae” when one of his culture plates became contaminated and developed a mold that created a bacteria-free circle. Then he found within the mold, a substance that proved to be very active against the vast majority of bacteria infecting human beings. Serendipity had a key role in the discovery of a wide panel of psychotropic drugs as well, including aniline purple, lysergic acid diethylamide, meprobamate, chlorpromazine, and imipramine. Actually, many recent studies support a step back in current strategies that could lead to new discoveries in science. This change should seriously consider the idea that to further focus research project milestones that are already too focused could be a mistake. How can you observe something that others did not realize before you? Probably, one pivotal requirement is that you pay a high level of attention on what is occurring all around you. But this is not entirely enough, since, specifically talking about scientific discoveries, you should have your mind sufficiently unbiased from mainstream infrastructures, which normally make you extremely focused on a particular endpoint without paying attention to potential “unexpected discoveries”. Research in medicine should probably come back to the age of innocence and avoid the age of mainstream reports that do not contribute to real advances in the curing of human diseases. Max Planck said “Science progresses not because scientists change their minds, but rather because scientists attached to erroneous views die, and are replaced”, and Otto Warburg used the same words when he realized the lack of acceptance of his ideas. This editorial proposes a series of examples showing, in a practical way, how unfocused research may contribute to very important discoveries in science.
Collapse
Affiliation(s)
- Alberto Foletti
- Clinical Biophysics International Research Group, 6900 Lugano, Switzerland
- Institute of Translational Pharmacology, National Research Council-CNR, 00133 Rome, Italy
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, National Institute of Health, 00133 Rome, Italy.
| |
Collapse
|
8
|
Alkhatib G. Counterpoint: Cord blood stem cell therapy for acquired immune deficiency syndrome. Stem Cells Dev 2010; 18:5-6. [PMID: 19196115 DOI: 10.1089/scd.2008.0304.cp2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ghalib Alkhatib
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| |
Collapse
|
9
|
Dynamics of memory and naïve CD8+ T lymphocytes in humanized NOD/SCID/IL-2Rgammanull mice infected with CCR5-tropic HIV-1. Vaccine 2010; 28 Suppl 2:B32-7. [PMID: 20510741 DOI: 10.1016/j.vaccine.2009.10.154] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 08/03/2009] [Accepted: 10/29/2009] [Indexed: 11/22/2022]
Abstract
Creating a novel small animal model of HIV-1 infection that can support long-term systemic HIV-1 infection and produce HIV-1-specific immune response has a great benefit for studying HIV-1 pathogenesis in vivo. In the present study, we have generated a humanized mouse, NOG-hCD34 mouse, by transplanting newborn NOD/SCID/IL-2Rgamma(null) mice with human hematopoietic stem cells through hepatic injection. These mice were infected with a CCR5-tropic HIV-1 and were analyzed for plasma viral load, changes in peripheral blood T lymphocytes, and HIV-1-specific antibody production. High level of viral replication, increase in effector/memory CD8(+) T lymphocytes, class-switching to IgG, and production of HIV-1-specific IgGs were observed. Our findings suggest that NOG-hCD34 mice may have a wide variety of application in HIV-1 research.
Collapse
|
10
|
Sterjovski J, Roche M, Churchill MJ, Ellett A, Farrugia W, Gray LR, Cowley D, Poumbourios P, Lee B, Wesselingh SL, Cunningham AL, Ramsland PA, Gorry PR. An altered and more efficient mechanism of CCR5 engagement contributes to macrophage tropism of CCR5-using HIV-1 envelopes. Virology 2010; 404:269-78. [PMID: 20570309 DOI: 10.1016/j.virol.2010.05.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 04/24/2010] [Accepted: 05/04/2010] [Indexed: 10/19/2022]
Abstract
While CCR5 is the principal coreceptor used by macrophage (M)-tropic HIV-1, not all primary CCR5-using (R5) viruses enter macrophages efficiently. Here, we used functionally-diverse R5 envelope (Env) clones to characterize virus-cell interactions important for efficient CCR5-mediated macrophage entry. The magnitude of macrophage entry by Env-pseudotyped reporter viruses correlated with increased immunoreactivity of CD4-induced gp120 epitopes, increased ability to scavenge low levels of cell-surface CCR5, reduced sensitivity to the CCR5 inhibitor maraviroc, and increased dependence on specific residues in the CCR5 ECL2 region. These results are consistent with an altered and more efficient mechanism of CCR5 engagement. Structural studies revealed potential alterations within the gp120 V3 loop, the gp41 interaction sites at the gp120 C- and N-termini, and within the gp120 CD4 binding site which may directly or indirectly lead to more efficient CCR5-usage. Thus, enhanced gp120-CCR5 interactions may contribute to M-tropism of R5 HIV-1 strains through different structural mechanisms.
Collapse
|
11
|
RNAi-mediated CCR5 silencing by LFA-1-targeted nanoparticles prevents HIV infection in BLT mice. Mol Ther 2009; 18:370-6. [PMID: 19997090 DOI: 10.1038/mt.2009.271] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
RNA interference (RNAi)-mediated knockdown of gene expression offers a novel treatment strategy for human immunodeficiency virus (HIV) infection. However, the major hurdle for clinical use is a practical strategy for small interfering RNA (siRNA) delivery to the multiple immune cell types important in viral pathogenesis. We have developed a novel immunoliposome method targeting the lymphocyte function-associated antigen-1 (LFA-1) integrin expressed on all leukocytes and evaluated it for systemic delivery of siRNA in a humanized mouse model. We show that in vivo administration of the LFA-1 integrin-targeted and stabilized nanoparticles (LFA-1 I-tsNPs) results in selective uptake of siRNA by T cells and macrophages, the prime targets of HIV. Further, in vivo administration of anti-CCR5 siRNA/LFA-1 I-tsNPs resulted in leukocyte-specific gene silencing that was sustained for 10 days. Finally, humanized mice challenged with HIV after anti-CCR5 siRNA treatment showed enhanced resistance to infection as assessed by the reduction in plasma viral load and disease-associated CD4 T-cell loss. This study demonstrates the potential in vivo applicability of LFA-1-directed siRNA delivery as anti-HIV prophylaxis.
Collapse
|
12
|
Wade J, Sterjovski J, Gray L, Roche M, Chiavaroli L, Ellett A, Jakobsen MR, Cowley D, Pereira CDF, Saksena N, Wang B, Purcell DFJ, Karlsson I, Fenyö EM, Churchill M, Gorry PR. Enhanced CD4+ cellular apoptosis by CCR5-restricted HIV-1 envelope glycoprotein variants from patients with progressive HIV-1 infection. Virology 2009; 396:246-55. [PMID: 19913863 DOI: 10.1016/j.virol.2009.10.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 08/05/2009] [Accepted: 10/18/2009] [Indexed: 12/20/2022]
Abstract
CCR5-using (R5) human immunodeficiency virus type 1 (HIV-1) strains cause CD4+ T-cell loss in most infected individuals, but mechanisms underlying cytopathicity of R5 viruses are poorly understood. We investigated mechanisms contributing to R5 envelope glycoprotein (Env)-mediated cellular apoptosis by constructing a panel of retroviral vectors engineered to co-express GFP and R5 Envs derived from two HIV-1-infected subjects spanning asymptomatic (Early, E-R5 Envs) to late stages of infection (Late, L-R5 Envs). The L-R5 Envs induced significantly more cellular apoptosis than E-R5 Envs, but only in Env-expressing (GFP-positive) cells, and only in cells where CD4 and CCR5 levels were limiting. Studies with fusion-defective Env mutants showed induction of apoptosis required membrane-fusing events. Our results provide evidence for an intracellular mechanism of R5 Env-induced apoptosis of CD4+ cells that requires membrane fusion. Furthermore, they contribute to a better understanding of mechanisms involved in CD4+ T-cell loss in subjects experiencing progressive R5 HIV-1 infection.
Collapse
Affiliation(s)
- Jessica Wade
- Center for Virology, Burnet Institute, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hattori S, Ide K, Nakata H, Harada H, Suzu S, Ashida N, Kohgo S, Hayakawa H, Mitsuya H, Okada S. Potent activity of a nucleoside reverse transcriptase inhibitor, 4'-ethynyl-2-fluoro-2'-deoxyadenosine, against human immunodeficiency virus type 1 infection in a model using human peripheral blood mononuclear cell-transplanted NOD/SCID Janus kinase 3 knockout mice. Antimicrob Agents Chemother 2009; 53:3887-3893. [PMID: 19546363 PMCID: PMC2737856 DOI: 10.1128/aac.00270-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 04/09/2009] [Accepted: 06/16/2009] [Indexed: 01/12/2023] Open
Abstract
4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA), a recently discovered nucleoside reverse transcriptase inhibitor, exhibits activity against a wide spectrum of wild-type and multidrug-resistant clinical human immunodeficiency virus type 1 (HIV-1) isolates (50% effective concentration, 0.0001 to 0.001 microM). In the present study, we used human peripheral blood mononuclear cell-transplanted, HIV-1-infected NOD/SCID/Janus kinase 3 knockout mice for in vivo evaluation of the anti-HIV activity of EFdA. Administration of EFdA decreased the replication and cytopathic effects of HIV-1 without identifiable adverse effects. In phosphate-buffered saline (PBS)-treated mice, the CD4+/CD8+ cell ratio in the spleen was low (median, 0.04; range, 0.02 to 0.49), while that in mice receiving EFdA was increased (median, 0.65; range, 0.57 to 1.43). EFdA treatment significantly suppressed the amount of HIV-1 RNA (median of 9.0 x 10(2) copies/ml [range, 8.1 x 10(2) to 1.1 x 10(3) copies/ml] versus median of 9.9 x 10(4) copies/ml [range, 8.1 x 10(2) to 1.1 x 10(3) copies/ml]; P < 0.001), the p24 level in plasma (2.5 x 10(3) pg/ml [range, 8.2 x 10(2) to 5.6 x 10(3) pg/ml] versus 2.8 x 10(2) pg/ml [range, 8.2 x 10(1) to 6.3 x 10(2) pg/ml]; P < 0.001), and the percentage of p24-expressing cells in the spleen (median of 1.90% [range, 0.33% to 3.68%] versus median of 0.11% [range, 0.00% to 1.00%]; P = 0.003) in comparison with PBS-treated mice. These data suggest that EFdA is a promising candidate for a new age of HIV-1 chemotherapy and should be developed further as a potential therapy for individuals with multidrug-resistant HIV-1 variants.
Collapse
Affiliation(s)
- Shinichiro Hattori
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University Graduate School of Medical and Pharmaceutical Sciences, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kumar P, Ban HS, Kim SS, Wu H, Pearson T, Greiner DL, Laouar A, Yao J, Haridas V, Habiro K, Yang YG, Jeong JH, Lee KY, Kim YH, Kim SW, Peipp M, Fey GH, Manjunath N, Shultz LD, Lee SK, Shankar P. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 2008; 134:577-86. [PMID: 18691745 PMCID: PMC2943428 DOI: 10.1016/j.cell.2008.06.034] [Citation(s) in RCA: 460] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 05/08/2008] [Accepted: 06/12/2008] [Indexed: 11/17/2022]
Abstract
Evaluation of the therapeutic potential of RNAi for HIV infection has been hampered by the challenges of siRNA delivery and lack of suitable animal models. Using a delivery method for T cells, we show that siRNA treatment can dramatically suppress HIV infection. A CD7-specific single-chain antibody was conjugated to oligo-9-arginine peptide (scFvCD7-9R) for T cell-specific siRNA delivery in NOD/SCIDIL2rgamma-/- mice reconstituted with human lymphocytes (Hu-PBL) or CD34+ hematopoietic stem cells (Hu-HSC). In HIV-infected Hu-PBL mice, treatment with anti-CCR5 (viral coreceptor) and antiviral siRNAs complexed to scFvCD7-9R controlled viral replication and prevented the disease-associated CD4 T cell loss. This treatment also suppressed endogenous virus and restored CD4 T cell counts in mice reconstituted with HIV+ peripheral blood mononuclear cells. Moreover, scFvCD7-9R could deliver antiviral siRNAs to naive T cells in Hu-HSC mice and effectively suppress viremia in infected mice. Thus, siRNA therapy for HIV infection appears to be feasible in a preclinical animal model.
Collapse
Affiliation(s)
- Priti Kumar
- Immune Disease Institute and Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Hong-Seok Ban
- Department of Bioengineering and Hanyang Fusion Materials Program,, Hanyang University, Seoul, 133-791, Korea
| | - Sang-Soo Kim
- Immune Disease Institute and Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Haoquan Wu
- Immune Disease Institute and Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Todd Pearson
- Department of Medicine, Division of Diabetes, University of Massachusetts Medical School, Worcester, 01605, MA, USA
| | - Dale. L. Greiner
- Department of Medicine, Division of Diabetes, University of Massachusetts Medical School, Worcester, 01605, MA, USA
| | - Amale Laouar
- Immune Disease Institute and Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Jiahong Yao
- Immune Disease Institute and Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Viraga Haridas
- Immune Disease Institute and Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Katsuyoshi Habiro
- Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Yong-Guang Yang
- Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Ji-Hoon Jeong
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Kuen-Yong Lee
- Department of Bioengineering and Hanyang Fusion Materials Program,, Hanyang University, Seoul, 133-791, Korea
| | - Yong-Hee Kim
- Department of Bioengineering and Hanyang Fusion Materials Program,, Hanyang University, Seoul, 133-791, Korea
| | - Sung Wan Kim
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Christian-Albrechts-University, Kiel, Germany
| | - Georg H. Fey
- University of Erlangen, D 91058, Erlangen, Germany
| | - N Manjunath
- Immune Disease Institute and Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Sang-Kyung Lee
- Department of Bioengineering and Hanyang Fusion Materials Program,, Hanyang University, Seoul, 133-791, Korea
| | - Premlata Shankar
- Immune Disease Institute and Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
15
|
Okuma K, Tanaka R, Ogura T, Ito M, Kumakura S, Yanaka M, Nishizawa M, Sugiura W, Yamamoto N, Tanaka Y. Interleukin-4-transgenic hu-PBL-SCID mice: a model for the screening of antiviral drugs and immunotherapeutic agents against X4 HIV-1 viruses. J Infect Dis 2008; 197:134-41. [PMID: 18171296 DOI: 10.1086/524303] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
CXCR4-tropic (X4) human immunodeficiency virus type 1 (HIV-1) does not efficiently infect and replicate in severe combined immunodeficiency (SCID) mice reconstituted with human peripheral blood mononuclear cells, termed "hu-PBL-SCID mice," due to, at least in part, relatively low levels of expression of the CXCR4 coreceptor. To overcome this limitation, interleukin (IL)-4-transgenic hu-PBL-SCID mice were derived that spontaneously synthesized human IL-4, which has been shown to enhance CXCR4 expression and promote X4 virus infection in vitro. Experiments reported here show that (1) synthesis of human IL-4 in vivo augmented CXCR4 expression on human CD4(+) lymphocytes and importantly led to productive infection of not only X4 HIV-1(NL4-3) but also multidrug-resistant primary clinical isolates and that (2) the in vivo infection could be significantly blocked by the administration of a CXCR4 antagonist. Altogether, IL-4-transgenic hu-PBL-SCID mice provide a useful model for X4 HIV-1 study and testing/screening of anti-X4 viral drugs.
Collapse
Affiliation(s)
- Kazu Okuma
- Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sterjovski J, Churchill MJ, Ellett A, Gray LR, Roche MJ, Dunfee RL, Purcell DFJ, Saksena N, Wang B, Sonza S, Wesselingh SL, Karlsson I, Fenyo EM, Gabuzda D, Cunningham AL, Gorry PR. Asn 362 in gp120 contributes to enhanced fusogenicity by CCR5-restricted HIV-1 envelope glycoprotein variants from patients with AIDS. Retrovirology 2007; 4:89. [PMID: 18076768 PMCID: PMC2225424 DOI: 10.1186/1742-4690-4-89] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 12/12/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND CCR5-restricted (R5) human immunodeficiency virus type 1 (HIV-1) variants cause CD4+ T-cell loss in the majority of individuals who progress to AIDS, but mechanisms underlying the pathogenicity of R5 strains are poorly understood. To better understand envelope glycoprotein (Env) determinants contributing to pathogenicity of R5 viruses, we characterized 37 full-length R5 Envs from cross-sectional and longitudinal R5 viruses isolated from blood of patients with asymptomatic infection or AIDS, referred to as pre-AIDS (PA) and AIDS (A) R5 Envs, respectively. RESULTS Compared to PA-R5 Envs, A-R5 Envs had enhanced fusogenicity in quantitative cell-cell fusion assays, and reduced sensitivity to inhibition by the fusion inhibitor T-20. Sequence analysis identified the presence of Asn 362 (N362), a potential N-linked glycosylation site immediately N-terminal to CD4-binding site (CD4bs) residues in the C3 region of gp120, more frequently in A-R5 Envs than PA-R5 Envs. N362 was associated with enhanced fusogenicity, faster entry kinetics, and increased sensitivity of Env-pseudotyped reporter viruses to neutralization by the CD4bs-directed Env mAb IgG1b12. Mutagenesis studies showed N362 contributes to enhanced fusogenicity of most A-R5 Envs. Molecular models indicate N362 is located adjacent to the CD4 binding loop of gp120, and suggest N362 may enhance fusogenicity by promoting greater exposure of the CD4bs and/or stabilizing the CD4-bound Env structure. CONCLUSION Enhanced fusogenicity is a phenotype of the A-R5 Envs studied, which was associated with the presence of N362, enhanced HIV-1 entry kinetics and increased CD4bs exposure in gp120. N362 contributes to fusogenicity of R5 Envs in a strain dependent manner. Our studies suggest enhanced fusogenicity of A-R5 Envs may contribute to CD4+ T-cell loss in subjects who progress to AIDS whilst harbouring R5 HIV-1 variants. N362 may contribute to this effect in some individuals.
Collapse
Affiliation(s)
- Jasminka Sterjovski
- Macfarlane Burnet Institute for Medical Research & Public Health, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Watanabe S, Ohta S, Yajima M, Terashima K, Ito M, Mugishima H, Fujiwara S, Shimizu K, Honda M, Shimizu N, Yamamoto N. Humanized NOD/SCID/IL2Rgamma(null) mice transplanted with hematopoietic stem cells under nonmyeloablative conditions show prolonged life spans and allow detailed analysis of human immunodeficiency virus type 1 pathogenesis. J Virol 2007; 81:13259-64. [PMID: 17881441 PMCID: PMC2169100 DOI: 10.1128/jvi.01353-07] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In a previous study, we demonstrated that humanized NOD/SCID/IL2Rgamma(null) (hNOG) mice constructed with human hematopoietic stem cells (HSCs) allow efficient human immunodeficiency virus type 1 (HIV-1) infection. However, HIV-1 infection could be monitored for only 43 days in the animals due to their short life spans. By transplanting HSCs without any myeloablation methods, the mice successfully survived longer than 300 days with stable engraftment of human cells. The mice showed high viremia state for more than the 3 months examined, with systemic HIV-1 infection and gradual decrease of CD4+ T cells analogous to that in humans. These capacities of the hNOG mice are very attractive for modeling mechanisms of AIDS progression and therapeutic strategy.
Collapse
Affiliation(s)
- Satoru Watanabe
- Department of Virology, Division of Medical Science, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Gurney KB, Uittenbogaart CH. Human immunodeficiency virus persistence and production in T-cell development. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:1237-45. [PMID: 16988009 PMCID: PMC1656539 DOI: 10.1128/cvi.00184-06] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) replication depends on CD4 and coreceptor expression as well as host factors associated with the activation state of the cell. To determine the impact of the activation stage of thymocytes on the HIV-1 life cycle, we investigated R5 and X4 HIV-1 entry, reverse transcription, and expression in discrete thymocyte subsets at different stages of T-cell development. Early after infection, preferential entry and replication of R5 HIV-1 were predominantly detected in mature CD3(+/hi) CD27(+) thymocytes. Thus, R5 HIV-1 targets the stage of development where thymocytes acquire functional responsiveness, which has important implications for HIV pathogenesis. In contrast, X4 HIV-1 expression and replication were primarily found in immature CD3(-/+/low) CD27(-) CD69(-) thymocytes. HIV-1 proviral burden and virus expression in thymocyte subsets correlated with the expression of the highest levels of the respective coreceptor. R5 and X4 HIV-1 entered and completed reverse transcription in all subsets tested, indicating that the activation state of thymocytes and coreceptor expression are sufficient to support full reverse transcription throughout development. Although R5 HIV-1 is expressed mainly in mature CD3(+/hi) CD27(+) thymocytes, 5.3% of HIV-1-infected immature thymocytes express R5 HIV-1, indicating that potentially latent viral DNA can be established early in T-cell development.
Collapse
Affiliation(s)
- Kevin B Gurney
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA School of Medicine, Los Angeles, CA 90095-1747, USA
| | | |
Collapse
|
19
|
Watanabe S, Terashima K, Ohta S, Horibata S, Yajima M, Shiozawa Y, Dewan MZ, Yu Z, Ito M, Morio T, Shimizu N, Honda M, Yamamoto N. Hematopoietic stem cell–engrafted NOD/SCID/IL2Rγnull mice develop human lymphoid systems and induce long-lasting HIV-1 infection with specific humoral immune responses. Blood 2006; 109:212-8. [PMID: 16954502 DOI: 10.1182/blood-2006-04-017681] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractCritical to the development of an effective HIV/AIDS model is the production of an animal model that reproduces long-lasting active replication of HIV-1 followed by elicitation of virus-specific immune responses. In this study, we constructed humanized nonobese diabetic/severe combined immunodeficiency (NOD/SCID)/interleukin-2 receptor γ-chain knockout (IL2Rγnull) (hNOG) mice by transplanting human cord blood–derived hematopoietic stem cells that eventually developed into human B cells, T cells, and other monocytes/macrophages and 4 dendritic cells associated with the generation of lymphoid follicle–like structures in lymphoid tissues. Expressions of CXCR4 and CCR5 antigens were recognized on CD4+ cells in peripheral blood, the spleen, and bone marrow, while CCR5 was not detected on thymic CD4+ T cells. The hNOG mice showed marked, long-lasting viremia after infection with both CCR5- and CXCR4-tropic HIV-1 isolates for more than the 40 days examined, with R5 virus–infected animals showing high levels of HIV-DNA copies in the spleen and bone marrow, and X4 virus–infected animals showing high levels of HIV-DNA copies in the thymus and spleen. Furthermore, we detected both anti–HIV-1 Env gp120– and Gag p24–specific antibodies in animals showing a high rate of viral infection. Thus, the hNOG mice mirror human systemic HIV infection by developing specific antibodies, suggesting that they may have potential as an HIV/AIDS animal model for the study of HIV pathogenesis and immune responses.
Collapse
MESH Headings
- Animals
- Bone Marrow/pathology
- Bone Marrow/virology
- CD4-Positive T-Lymphocytes/virology
- Cell Lineage
- Cord Blood Stem Cell Transplantation
- DNA, Viral/analysis
- Disease Models, Animal
- Disease Susceptibility
- Female
- HIV Antibodies/biosynthesis
- HIV Antibodies/blood
- HIV Infections/immunology
- Humans
- Interleukin Receptor Common gamma Subunit/deficiency
- Interleukin Receptor Common gamma Subunit/genetics
- Lymphocyte Subsets/pathology
- Lymphoid Tissue/pathology
- Lymphoid Tissue/virology
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Receptors, CXCR4/analysis
- Receptors, CXCR4/genetics
- Receptors, CXCR5
- Receptors, Chemokine/analysis
- Receptors, Chemokine/genetics
- Spleen/pathology
- Spleen/virology
- Thymus Gland/pathology
- Thymus Gland/virology
- Transplantation, Heterologous
- Viremia/immunology
Collapse
Affiliation(s)
- Satoru Watanabe
- Department of Virology, Division of Medical Science, Medical Research Institute, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gorantla S, Santos K, Meyer V, Dewhurst S, Bowers WJ, Federoff HJ, Gendelman HE, Poluektova L. Human dendritic cells transduced with herpes simplex virus amplicons encoding human immunodeficiency virus type 1 (HIV-1) gp120 elicit adaptive immune responses from human cells engrafted into NOD/SCID mice and confer partial protection against HIV-1 challenge. J Virol 2005; 79:2124-32. [PMID: 15681415 PMCID: PMC546587 DOI: 10.1128/jvi.79.4.2124-2132.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small-animal models are needed to test human immunodeficiency virus (HIV) vaccine efficacy following viral challenge. To this end, we examined HIV-1-specific immune responses following immunization of nonobese diabetic-severe combined immunodeficient mice that were repopulated with human peripheral blood lymphocytes (hu-PBL-NOD/SCID mice). Autologous dendritic cells (DC) were transduced ex vivo with replication-defective, helper virus-free, herpes simplex virus type 1 (HSV-1) amplicons that expressed HIV-1 gp120 and were then injected into the hu-PBL-NOD/SCID mice. This resulted in primary HIV-1-specific humoral and cellular immune responses. Serum samples from vaccinated animals contained human immunoglobulin G that reacted with HIV-1 Env proteins by enzyme-linked immunosorbent assay and neutralized the infectivity of HIV-1 LAI and ADA strains. T cells isolated from the mice responded to viral antigens by producing gamma interferon when analyzed by enzyme-linked immunospot assay. Importantly, exposure of the vaccinated animals to infectious HIV-1 demonstrated partial protection against infectious HIV-1 challenge. This was reflected by a reduction in HIV-1(ADA) and by protection of the engrafted human CD4(+) T lymphocytes against HIV-1(LAI)-induced cytotoxicity. These data demonstrate that transduction of DC by HSV amplicon vectors expressing HIV-1 gp120 induce virus-specific immune responses in hu-PBL-NOD/SCID mice. This mouse model may be a useful tool to evaluate human immune responses and protection against viral infection following vaccination.
Collapse
MESH Headings
- Animals
- Antibody Formation
- DNA, Viral
- Defective Viruses/genetics
- Defective Viruses/immunology
- Dendritic Cells/transplantation
- Genetic Vectors/genetics
- Genetic Vectors/immunology
- HIV Envelope Protein gp120/genetics
- HIV Envelope Protein gp120/immunology
- HIV Infections/immunology
- HIV Infections/virology
- Helper Viruses
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/physiology
- Humans
- Immunity, Cellular
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Models, Animal
- Transduction, Genetic
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Santhi Gorantla
- Center for Neurovirology and Neurodegenerative Disorders, 985880 Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Gray L, Sterjovski J, Churchill M, Ellery P, Nasr N, Lewin SR, Crowe SM, Wesselingh SL, Cunningham AL, Gorry PR. Uncoupling coreceptor usage of human immunodeficiency virus type 1 (HIV-1) from macrophage tropism reveals biological properties of CCR5-restricted HIV-1 isolates from patients with acquired immunodeficiency syndrome. Virology 2005; 337:384-98. [PMID: 15916792 DOI: 10.1016/j.virol.2005.04.034] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 04/18/2005] [Accepted: 04/27/2005] [Indexed: 11/23/2022]
Abstract
The mechanisms underlying the pathogenicity of CCR5-restricted (R5) human immunodeficiency virus type-1 (HIV-1) strains are incompletely understood. Acquisition or enhancement of macrophage (M)-tropism by R5 viruses contributes to R5 HIV-1 pathogenesis. In this study, we show that M-tropic R5 viruses isolated from individuals with acquired immunodeficiency syndrome (late R5 viruses) require lower levels of CD4/CCR5 expression for entry, have decreased sensitivity to inhibition by the entry inhibitors TAK-779 and T-20, and have increased sensitivity to neutralization by the Env MAb IgG1b12 compared with non-M-tropic R5 viruses isolated from asymptomatic, immunocompetent individuals (early R5 viruses). Augmenting CCR5 expression levels on monocyte-derived macrophages via retroviral transduction led to a complete or marginal restoration of M-tropism by early R5 viruses, depending on the viral strain. Thus, reduced CD4/CCR5 dependence is a phenotype of R5 HIV-1 associated with M-tropism and late stage infection, which may affect the efficacy of HIV-1 entry inhibitors.
Collapse
Affiliation(s)
- Lachlan Gray
- Macfarlane Burnet Institute for Medical Research and Public Health, GPO Box 2284, Melbourne, 3001 Victoria, Australia; Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Aziz S, Fackler OT, Meyerhans A, Müller-Lantzsch N, Zeitz M, Schneider T. Replication of M-tropic HIV-1 in Activated Human Intestinal Lamina Propria Lymphocytes Is the Main Reason for Increased Virus Load in the Intestinal Mucosa. J Acquir Immune Defic Syndr 2005; 38:23-30. [PMID: 15608520 DOI: 10.1097/00126334-200501010-00005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The gastrointestinal tract is the site of early abundant HIV replication and associated marked CD4 T-cell depletion. The aim of this study was to characterize the basis for the increased HIV replication in this compartment. Isolated mononuclear cells of the peripheral blood (PBMCs), the intestinal lamina propria (LPMCs), and purified gut lamina propria CD4 T-cell subpopulations (LP T cells) were isolated, phenotypically characterized, and infected in vitro with 2 different HIV-1 strains. T-cell subpopulations were analyzed by fluorescence-activated cell sorter. HIV-1 core protein p24 was determined in supernatants after in vitro infection. Furthermore the effect of T-cell stimulation on the replication of M- and T-tropic HIV strains was studied. In vitro replication of HIV-1 was significantly increased in CD69 compared with CD69 CD4 LP T cells, while there was no difference between CD103 and CD103 CD4 LP T cells. Experimental stimulation of LPMCs, which mimics activation by intestinal pathogens frequently present in the bowel of HIV-infected patients, further dramatically enhances HIV replication (24.5-fold) compared with nonstimulated LPMCs. M-tropic HIV-1 showed a preferential replication in LPMCs, while T-tropic HIV-1 strain showed a preferential replication in PBMCs. Thus, the elevated activation state of target cells in the intestine and not the expression of the homing marker CD103 is directly linked to massive HIV production.
Collapse
Affiliation(s)
- Sheriff Aziz
- Internal Medicine II, University Saarland, Homburg/Saar, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Gay W, Lauret E, Boson B, Larghero J, Matheux F, Peyramaure S, Rousseau V, Dormont D, De Maeyer E, Le Grand R. Low autocrine interferon beta production as a gene therapy approach for AIDS: Infusion of interferon beta-engineered lymphocytes in macaques chronically infected with SIVmac251. Retrovirology 2004; 1:29. [PMID: 15447786 PMCID: PMC523856 DOI: 10.1186/1742-4690-1-29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Accepted: 09/25/2004] [Indexed: 11/25/2022] Open
Abstract
Background The aim of this study was to evaluate gene therapy for AIDS based on the transduction of circulating lymphocytes with a retroviral vector giving low levels of constitutive macaque interferon β production in macaques chronically infected with a pathogenic isolate of SIVmac251. Results Two groups of three animals infected for more than one year with a pathogenic primary isolate of SIVmac251 were included in this study. The macaques received three infusions of their own lymphocytes transduced ex vivo with the construct encoding macaque IFN-β (MaIFN-β or with a vector carrying a version of the MaIFN-β gene with a deletion preventing translation of the mRNA. Cellular or plasma viremia increased transiently following injection in most cases, regardless of the retroviral construct used. Transduced cells were detected only transiently after each infusion, among the peripheral blood mononuclear cells of all the animals, with copy numbers of 10 to 1000 per 106 peripheral mononuclear cells. Conclusion Long-term follow-up indicated that the transitory presence of such a small number of cells producing such small amounts of MaIFN-β did not prevent animals from the progressive decrease in CD4+ cell count typical of infection with simian immunodeficiency virus. These results reveal potential pitfalls for future developments of gene therapy strategies of HIV infection.
Collapse
Affiliation(s)
- Wilfried Gay
- CEA, Laboratoire d'Immuno-Pathologie Expérimentale, Service de Neurovirologie, CRSSA, EPHE, IPSC, Université Paris XI, 18 route du Panorama 92265 Fontenay aux Roses, Cedex, France
| | - Evelyne Lauret
- INSERM U362, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif, France
| | - Bertrand Boson
- CEA, Laboratoire d'Immuno-Pathologie Expérimentale, Service de Neurovirologie, CRSSA, EPHE, IPSC, Université Paris XI, 18 route du Panorama 92265 Fontenay aux Roses, Cedex, France
| | - Jérome Larghero
- INSERM U362, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif, France
| | - Franck Matheux
- CEA, Laboratoire d'Immuno-Pathologie Expérimentale, Service de Neurovirologie, CRSSA, EPHE, IPSC, Université Paris XI, 18 route du Panorama 92265 Fontenay aux Roses, Cedex, France
| | - Sophie Peyramaure
- INSERM U362, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif, France
| | - Véronique Rousseau
- Institut Fédératif de Neurobiologie Alfred Fessard CNRS UPR 9040 91198 Gif-sur-Yvette cedex, France
| | - Dominique Dormont
- CEA, Laboratoire d'Immuno-Pathologie Expérimentale, Service de Neurovirologie, CRSSA, EPHE, IPSC, Université Paris XI, 18 route du Panorama 92265 Fontenay aux Roses, Cedex, France
| | - Edward De Maeyer
- INSERM U362, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif, France
| | - Roger Le Grand
- CEA, Laboratoire d'Immuno-Pathologie Expérimentale, Service de Neurovirologie, CRSSA, EPHE, IPSC, Université Paris XI, 18 route du Panorama 92265 Fontenay aux Roses, Cedex, France
| |
Collapse
|
24
|
Vödrös D, Fenyö EM. Primate models for human immunodeficiency virus infection. Evolution of receptor use during pathogenesis. Acta Microbiol Immunol Hung 2004; 51:1-29. [PMID: 15362285 DOI: 10.1556/amicr.51.2004.1-2.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Animal models greatly facilitate understanding of transmission, pathogenesis and immune responses in HIV and SIV infection and provide models for studies on the effect of candidate drugs or vaccines. However, there are several aspects that one should consider when drawing conclusions from results obtained from animal models. First, the genetic relationship of primate lentiviruses cannot be disregarded because it is known that HIV-1 is more closely related to SIV of chimpanzee origin (SIVcpz) than to SIV from sooty mangabey (SIVsm) origin. Nevertheless, SIVsm and SIVmac are the ones most often used as model systems. Second, there are differences in the biological properties, like CXCR4 use and CD4-independent coreceptor use, of HIV and SIV. These differences might be relevant in virus transmission, pathogenesis and in evoking immune responses. Third, in vivo and in vitro selection may influence the results. Neutralizing antibodies may play a role in selection of variant viruses since neutralization sensitive, CD4-independent SIVsm variants seemed to be suppressed in animals that mounted a neutralizing antibody response. It is tempting to speculate that neutralizing antibodies shape the SIV/HIV infection by selecting variants with a more "closed" envelope conformation with consequences for both receptor binding and neutralization sensitivity. The SIV/monkey model, although it has important advantages, may not answer all questions asked about HIV-1 infection in human.
Collapse
Affiliation(s)
- Dalma Vödrös
- Department of Medical Microbiology, Dermatology and Infection, Lund University, Lund, Sweden.
| | | |
Collapse
|
25
|
Abstract
Understanding the mechanisms of HIV transmission to women will be crucial to the development of effective strategies to curb this epidemic. Current data suggest that HIV has at least two routes to penetrate the vaginal epithelium and reach lymphoid tissues, trans-epithelial migration of infected Langerhans cells or virus penetration into the lamina propria through loss of epithelial integrity resulting in direct infection of lymphocytes, dendritic cells and macrophages.
Collapse
Affiliation(s)
- Christopher J Miller
- Department of Veterinary Pathology, Microbiology and Immunology, Center for Comparative Medicine, School of Veterinary Medicine, California National Primate Research Center, University of California-Davis, Davis, CA 95616, USA.
| | | |
Collapse
|
26
|
Pedroza-Martins L, Boscardin WJ, Anisman-Posner DJ, Schols D, Bryson YJ, Uittenbogaart CH. Impact of cytokines on replication in the thymus of primary human immunodeficiency virus type 1 isolates from infants. J Virol 2002; 76:6929-43. [PMID: 12072494 PMCID: PMC136332 DOI: 10.1128/jvi.76.14.6929-6943.2002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Early infection of the thymus with the human immunodeficiency virus (HIV) may explain the more rapid disease progression among children infected in utero than in children infected intrapartum. Therefore, we analyzed infection of thymocytes in vitro by HIV type 1 primary isolates, obtained at or near birth, from 10 children with different disease outcomes. HIV isolates able to replicate in the thymus and impact thymopoiesis were present in all infants, regardless of the timing of viral transmission and the rate of disease progression. Isolates from newborns utilized CCR5, CXCR4, or both chemokine receptors to enter thymocytes. Viral expression was observed in discrete thymocyte subsets postinfection with HIV isolates using CXCR4 (X4) and isolates using CCR5 (R5), despite the wider distribution of CXCR4 in the thymus. In contrast to previous findings, the X4 primary isolates were not more cytopathic for thymocytes than were the R5 isolates. The cytokines interleukin-2 (IL-2), IL-4, and IL-7 increased HIV replication in the thymus by inducing differentiation and expansion of mature CD27(+) thymocytes expressing CXCR4 or CCR5. IL-2 and IL-4 together increased expression of CXCR4 and CCR5 in this population, whereas IL-4 and IL-7 increased CXCR4 but not CCR5 expression. IL-2 plus IL-4 increased the viral production of all pediatric isolates, but IL-4 and IL-7 had a significantly higher impact on the replication of X4 isolates compared to R5 isolates. Our studies suggest that coreceptor use by HIV primary isolates is important but is not the sole determinant of HIV pathogenesis in the thymus.
Collapse
Affiliation(s)
- Livia Pedroza-Martins
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA AIDS Institute, USA
| | | | | | | | | | | |
Collapse
|
27
|
Veazey RS, Marx PA, Lackner AA. Importance of the state of activation and/or differentiation of CD4+ T cells in AIDS pathogenesis. Trends Immunol 2002. [DOI: 10.1016/s1471-4906(01)02172-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
28
|
Fais S. Importance of the state of activation and/or differentiation of CD4+ T cells in AIDS pathogenesis. Trends Immunol 2002; 23:128-9. [PMID: 11864837 DOI: 10.1016/s1471-4906(01)02171-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Kwa D, Vingerhoed J, Boeser-Nunnink B, Broersen S, Schuitemaker H. Cytopathic effects of non-syncytium-inducing and syncytium-inducing human immunodeficiency virus type 1 variants on different CD4(+)-T-cell subsets are determined only by coreceptor expression. J Virol 2001; 75:10455-9. [PMID: 11581413 PMCID: PMC114619 DOI: 10.1128/jvi.75.21.10455-10459.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In peripheral blood mononuclear cells, syncytium-inducing (SI) human immunodeficiency virus type 1 (HIV-1) infected and depleted all CD4(+) T cells, including naive T cells. Non-SI HIV-1 infected and depleted only the CCR5-expressing T-cell subset. This may explain the accelerated CD4 cell loss after SI conversion in vivo.
Collapse
Affiliation(s)
- D Kwa
- Department of Clinical Viro-Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
30
|
Bahr GM, Darcissac EC, Castéran N, Amiel C, Cocude C, Truong MJ, Dewulf J, Capron A, Mouton Y. Selective regulation of human immunodeficiency virus-infected CD4(+) lymphocytes by a synthetic immunomodulator leads to potent virus suppression in vitro and in hu-PBL-SCID mice. J Virol 2001; 75:6941-52. [PMID: 11435574 PMCID: PMC114422 DOI: 10.1128/jvi.75.15.6941-6952.2001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2001] [Accepted: 05/08/2001] [Indexed: 01/11/2023] Open
Abstract
We have previously observed that the synthetic immunomodulator Murabutide inhibits human immunodeficiency virus type 1 (HIV-1) replication at multiple levels in macrophages and dendritic cells. The present study was designed to profile the activity of Murabutide on CD8-depleted phytohemagglutinin-activated lymphocytes from HIV-1-infected subjects and on the outcome of HIV-1 infection in severe combined immunodeficiency mice reconstituted with human peripheral blood leukocytes (hu-PBL-SCID mice). Maintaining cultures of CD8-depleted blasts from 36 patients in the presence of Murabutide produced dramatically reduced levels of viral p24 protein in the supernatants. This activity correlated with reduced viral transcripts and proviral DNA, was evident in cultures harboring R5, X4-R5, or X4 HIV-1 isolates, was not linked to inhibition of cellular DNA synthesis, and did not correlate with beta-chemokine release. Moreover, c-myc mRNA expression was down-regulated in Murabutide-treated cells, suggesting potential interference of the immunomodulator with the nuclear transport of viral preintegration complexes. On the other hand, daily treatment of HIV-1-infected hu-PBL-SCID mice with Murabutide significantly reduced the viral loads in plasma and the proviral DNA content in human peritoneal cells. These results are the first to demonstrate that a clinically acceptable synthetic immunomodulator with an ability to enhance the host's nonspecific immune defense mechanisms against infections can directly regulate cellular factors in infected lymphocytes, leading to controlled HIV-1 replication.
Collapse
MESH Headings
- Acetylmuramyl-Alanyl-Isoglutamine/analogs & derivatives
- Acetylmuramyl-Alanyl-Isoglutamine/pharmacology
- Adjuvants, Immunologic
- Adult
- Animals
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/virology
- Cell Division
- Cell Survival
- Cells, Cultured
- Cytokines/metabolism
- DNA, Viral/blood
- Down-Regulation
- Gene Expression Regulation, Viral
- HIV Infections/blood
- HIV Infections/virology
- HIV-1/drug effects
- HIV-1/genetics
- HIV-1/physiology
- Humans
- Leukocytes, Mononuclear/cytology
- Mice
- Mice, SCID
- Proto-Oncogene Proteins c-myc/genetics
- RNA, Messenger
- RNA, Viral/blood
- Receptors, CCR5/biosynthesis
- Receptors, CXCR4/biosynthesis
- Receptors, Interleukin-2/biosynthesis
- Viral Load
- Virus Replication/drug effects
Collapse
Affiliation(s)
- G M Bahr
- Laboratoire d'Immunologie Moleculaire de l'Infection et de l'Inflammation, Institut Pasteur de Lille, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Parlato S, Giammarioli AM, Logozzi M, Lozupone F, Matarrese P, Luciani F, Falchi M, Malorni W, Fais S. CD95 (APO-1/Fas) linkage to the actin cytoskeleton through ezrin in human T lymphocytes: a novel regulatory mechanism of the CD95 apoptotic pathway. EMBO J 2000; 19:5123-34. [PMID: 11013215 PMCID: PMC302100 DOI: 10.1093/emboj/19.19.5123] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
CD95 (APO-1/Fas) is a member of the tumor necrosis factor receptor family, which can trigger apoptosis in a variety of cell types. However, little is known of the mechanisms underlying cell susceptibility to CD95-mediated apoptosis. Here we show that human T cells that are susceptible to CD95-mediated apoptosis, exhibit a constitutive polarized morphology, and that CD95 colocalizes with ezrin at the site of cellular polarization. In fact, CD95 co-immunoprecipitates with ezrin exclusively in lymphoblastoid CD4(+) T cells and primary long-term activated T lymphocytes, which are prone to CD95-mediated apoptosis, but not in short-term activated T lymphocytes, which are refractory to the same stimuli, even expressing equal levels of CD95 on the cell membrane. Pre-treatment with ezrin antisense oligonucleotides specifically protected from the CD95-mediated apoptosis. Moreover, we show that the actin cytoskeleton integrity is essential for this function. These findings strongly suggest that the CD95 cell membrane polarization, through an ezrin-mediated association with the actin cytoskeleton, is a key intracellular mechanism in rendering human T lymphocytes susceptible to the CD95-mediated apoptosis.
Collapse
Affiliation(s)
- S Parlato
- Laboratories of Virology, Istituto Superiore di Sanità Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- D E Mosier
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
33
|
Cecilia D, Kulkarni SS, Tripathy SP, Gangakhedkar RR, Paranjape RS, Gadkari DA. Absence of coreceptor switch with disease progression in human immunodeficiency virus infections in India. Virology 2000; 271:253-8. [PMID: 10860879 DOI: 10.1006/viro.2000.0297] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The envelope glycoprotein of the human immunodeficiency virus (HIV) utilizes CD4 as a receptor and CCR5 and/or CXCR4 as coreceptor to gain entry into the cell. The CCR5-tropic viruses, observed early in infection, could be important in transmission and the CXCR4-tropic viruses, observed late, may play an important role in disease progression. Viruses from 40 HIV-positive, asymptomatic or symptomatic individuals in India were isolated. Of 40 isolates 39 used CCR5. Thirty-three isolates were subtype C, 3 isolates were subtype A, and 4 isolates were HIV-2. Only 1 HIV-2 isolate, from a symptomatic individual, was dualtropic. Therefore, a majority of isolates from India belonged to subtype C and all the isolates utilized CCR5 exclusively irrespective of HIV disease status.
Collapse
Affiliation(s)
- D Cecilia
- National Institute of Virology, Pune, 411001, India.
| | | | | | | | | | | |
Collapse
|
34
|
Santini SM, Lapenta C, Logozzi M, Parlato S, Spada M, Di Pucchio T, Belardelli F. Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro and in Hu-PBL-SCID mice. J Exp Med 2000; 191:1777-88. [PMID: 10811870 PMCID: PMC2193160 DOI: 10.1084/jem.191.10.1777] [Citation(s) in RCA: 488] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Type I interferons (IFNs) are cytokines exhibiting antiviral and antitumor effects, including multiple activities on immune cells. However, the importance of these cytokines in the early events leading to the generation of an immune response is still unclear. Here, we have investigated the effects of type I IFNs on freshly isolated granulocyte/macrophage colony-stimulating factor (GM-CSF)-treated human monocytes in terms of dendritic cell (DC) differentiation and activity in vitro and in severe combined immunodeficiency mice reconstituted with human peripheral blood leukocytes (hu-PBL-SCID) mice. Type I IFNs induced a surprisingly rapid maturation of monocytes into short-lived tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-expressing DCs endowed with potent functional activities, superior with respect to the interleukin (IL)-4/GM-CSF treatment, as shown by FACS((R)) analyses, mixed leukocyte reaction assays with allogeneic PBLs, and lymphocyte proliferation responses to HIV-1-pulsed autologous DCs. Type I IFN induced IL-15 production and strongly promoted a T helper cell type 1 response. Notably, injection of IFN-treated HIV-1-pulsed DCs in SCID mice reconstituted with autologous PBLs resulted in the generation of a potent primary immune response, as evaluated by the detection of human antibodies to various HIV-1 antigens. These results provide a rationale for using type I IFNs as vaccine adjuvants and support the concept that a natural alliance between these cytokines and monocytes/DCs represents an important early mechanism for connecting innate and adaptive immunity.
Collapse
Affiliation(s)
| | - Caterina Lapenta
- Laboratory of Virology, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | - Stefania Parlato
- Laboratory of Virology, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Massimo Spada
- Laboratory of Virology, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | | |
Collapse
|
35
|
A Novel Role for Tumor Necrosis Factor-α in Regulating Susceptibility of Activated CD4+ T Cells From Human and Nonhuman Primates for Distinct Coreceptor Using Lentiviruses. J Acquir Immune Defic Syndr 2000. [DOI: 10.1097/00042560-200005010-00003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Brice GT, Mayne AE, Villinger F, Ansari AA. A novel role for tumor necrosis factor-alpha in regulating susceptibility of activated CD4+ T cells from human and nonhuman primates for distinct coreceptor using lentiviruses. J Acquir Immune Defic Syndr 2000; 24:10-22. [PMID: 10877490 DOI: 10.1097/00126334-200005010-00003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although CD4+ T-cell activation has long been shown to promote infection and replication of simian immunodeficiency virus (SIV) and HIV, recent studies have documented that not all activated CD4+ T cells from human and nonhuman primates are susceptible to infection with HIV/SIV, respectively. Activation of CD4+ T cells with anti-CD3 + anti-CD28 conjugated beads led to induction of a state of anti-viral resistance to infection with strains of viruses that primarily use CCR5 as a coreceptor. The studies reported herein were designed to address the mechanism by which anti-CD3 + anti-CD28-induced stimulation in turn induced antiviral resistance. Results of these studies show that the anti-viral resistance induced by activation of CD4+ T cells with anti-CD3 + anti-CD28 is primarily conferred by the synthesis of tumor necrosis factor-alpha (TNF-alpha), and highlight a unique regulatory role for TNF-alpha in regulating synthesis of MIP-1alpha, MIP-1beta, and regulated-on-activation normal T-expressed and secreted cells, which contributes to this state of antiviral resistance to R5-tropic strains of HIV/SIV. However, while TNF-alpha has a protective role in antiviral resistance of activated CD4+ T cells to R5-tropic viruses, it enhances CXCR4 expression of CD4+ T cells and mediates increased susceptibility to infection with X4-tropic strains of HIV and recombinant SIVs. The results of the studies reported herein also suggest that it is not the Th1 v/s Th2 cytokine profile but the mode of CD4+ T-cell activation that dictates the synthesis of distinct cytokines which regulate the expression of chemokines and chemokine receptors which in turn regulate and confer susceptibility/resistance to R5 v/s X4-tropic HIV and SIV.
Collapse
Affiliation(s)
- G T Brice
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
37
|
Popik W, Pitha PM. Inhibition of CD3/CD28-mediated activation of the MEK/ERK signaling pathway represses replication of X4 but not R5 human immunodeficiency virus type 1 in peripheral blood CD4(+) T lymphocytes. J Virol 2000; 74:2558-66. [PMID: 10684270 PMCID: PMC111744 DOI: 10.1128/jvi.74.6.2558-2566.2000] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Binding of human immunodeficiency virus type 1 (HIV-1) to CD4 receptors induces multiple cellular signaling pathways, including the MEK/ERK cascade. While the interaction of X4 HIV-1 with CXCR4 does not seem to activate this pathway, viruses using CCR5 for entry efficiently activate MEK/ERK kinases (W. Popik, J. E. Hesselgesser, and P. M. Pitha, J. Virol. 72:6406-6413, 1998; W. Popik and P. M. Pitha, Virology 252:210-217, 1998). Since the importance of MEK/ERK in the initial steps of viral replication is poorly understood, we have examined the role of MEK/ERK signaling in the CD3- and CD28 (CD3/CD28)-mediated activation of HIV-1 replication in resting peripheral blood CD4(+) T lymphocytes infected with X4 or R5 HIV-1. We have found that the MEK/ERK inhibitor U0126 selectively inhibited CD3/CD28-stimulated replication of X4 HIV-1, while it did not affect the replication of R5 HIV-1. Inhibition of the CD3/CD28-stimulated MEK/ERK pathway did not affect the formation of the early proviral transcripts in cells infected with either X4 or R5 HIV-1, indicating that virus reverse transcription is not affected in the absence of MEK/ERK signaling. In contrast, the levels of nuclear provirus in cells infected with X4 HIV-1, detected by the formation of circular proviral DNA, was significantly lower in cells stimulated in the presence of MEK/ERK inhibitor than in the absence of the inhibitor. However, in cells infected with R5 HIV-1, the inhibition of the MEK/ERK pathway did not affect nuclear localization of the proviral DNA. These data suggest that the nuclear import of X4, but not R5, HIV-1 is dependent on a CD3/CD28-stimulated MEK/ERK pathway.
Collapse
Affiliation(s)
- W Popik
- Oncology Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA.
| | | |
Collapse
|