1
|
Combs LR, Combs J, McKenna R, Toth Z. Protein Degradation by Gammaherpesvirus RTAs: More Than Just Viral Transactivators. Viruses 2023; 15:730. [PMID: 36992439 PMCID: PMC10055789 DOI: 10.3390/v15030730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a member of the Gammaherpesvirus subfamily that encodes several viral proteins with intrinsic E3 ubiquitin ligase activity or the ability to hijack host E3 ubiquitin ligases to modulate the host's immune response and to support the viral life cycle. This review focuses specifically on how the immediate-early KSHV protein RTA (replication and transcription activator) hijacks the host's ubiquitin-proteasome pathway (UPP) to target cellular and viral factors for protein degradation to allow for robust lytic reactivation. Notably, RTA's targets are either potent transcription repressors or they are activators of the innate and adaptive immune response, which block the lytic cycle of the virus. This review mainly focuses on what is currently known about the role of the E3 ubiquitin ligase activity of KSHV RTA in the regulation of the KSHV life cycle, but we will also discuss the potential role of other gammaherpesviral RTA homologs in UPP-mediated protein degradation.
Collapse
Affiliation(s)
- Lauren R. Combs
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, USA
| | - Jacob Combs
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, USA
- UF Genetics Institute, Gainesville, FL 32610, USA
- UF Health Cancer Center, Gainesville, FL 32610, USA
| |
Collapse
|
2
|
Moraes SN, Becker JT, Moghadasi SA, Shaban NM, Auerbach AA, Cheng AZ, Harris RS. Evidence linking APOBEC3B genesis and evolution of innate immune antagonism by gamma-herpesvirus ribonucleotide reductases. eLife 2022; 11:83893. [PMID: 36458685 DOI: 10.7554/elife.83893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 12/04/2022] Open
Abstract
Viruses have evolved diverse mechanisms to antagonize host immunity such as direct inhibition and relocalization of cellular APOBEC3B (A3B) by the ribonucleotide reductase (RNR) of Epstein-Barr virus. Here, we investigate the mechanistic conservation and evolutionary origin of this innate immune counteraction strategy. First, we find that human gamma-herpesvirus RNRs engage A3B via largely distinct surfaces. Second, we show that RNR-mediated enzymatic inhibition and relocalization of A3B depend upon binding to different regions of the catalytic domain. Third, we show that the capability of viral RNRs to antagonize A3B is conserved among gamma-herpesviruses that infect humans and Old World monkeys that encode this enzyme but absent in homologous viruses that infect New World monkeys that naturally lack the A3B gene. Finally, we reconstruct the ancestral primate A3B protein and demonstrate that it is active and similarly engaged by the RNRs from viruses that infect humans and Old World monkeys but not by the RNRs from viruses that infect New World monkeys. These results combine to indicate that the birth of A3B at a critical branchpoint in primate evolution may have been a driving force in selecting for an ancestral gamma-herpesvirus with an expanded RNR functionality through counteraction of this antiviral enzyme.
Collapse
Affiliation(s)
- Sofia N Moraes
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, United States
| | - Jordan T Becker
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, United States
| | - Seyed Arad Moghadasi
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, United States
| | - Nadine M Shaban
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, United States
| | - Ashley A Auerbach
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, United States.,Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, United States
| | - Adam Z Cheng
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, United States
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, United States.,Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, United States.,Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, United States
| |
Collapse
|
3
|
Jary A, Veyri M, Gothland A, Leducq V, Calvez V, Marcelin AG. Kaposi's Sarcoma-Associated Herpesvirus, the Etiological Agent of All Epidemiological Forms of Kaposi's Sarcoma. Cancers (Basel) 2021; 13:cancers13246208. [PMID: 34944828 PMCID: PMC8699694 DOI: 10.3390/cancers13246208] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Kaposi’s sarcoma-associated herpesvirus (KSHV) is one of the seven oncogenic viruses currently recognized by the International Agency for Research on Cancer. Its presence for Kaposi’s sarcoma development is essential and knowledge on the oncogenic process has increased since its discovery in 1994. However, some uncertainties remain to be clarified, in particular on the exact routes of transmission and disparities in KSHV seroprevalence and the prevalence of Kaposi’s sarcoma worldwide. Here, we summarized the current data on the KSHV viral particle’s structure, its genome, the replication, its seroprevalence, the viral diversity and the lytic and latent oncogenesis proteins involved in Kaposi’s sarcoma. Lastly, we reported the environmental, immunological and viral factors possibly associated with KSHV transmission that could also play a role in the development of Kaposi’s sarcoma. Abstract Kaposi’s sarcoma-associated herpesvirus (KSHV), also called human herpesvirus 8 (HHV-8), is an oncogenic virus belonging to the Herpesviridae family. The viral particle is composed of a double-stranded DNA harboring 90 open reading frames, incorporated in an icosahedral capsid and enveloped. The viral cycle is divided in the following two states: a short lytic phase, and a latency phase that leads to a persistent infection in target cells and the expression of a small number of genes, including LANA-1, v-FLIP and v-cyclin. The seroprevalence and risk factors of infection differ around the world, and saliva seems to play a major role in viral transmission. KSHV is found in all epidemiological forms of Kaposi’s sarcoma including classic, endemic, iatrogenic, epidemic and non-epidemic forms. In a Kaposi’s sarcoma lesion, KSHV is mainly in a latent state; however, a small proportion of viral particles (<5%) are in a replicative state and are reported to be potentially involved in the proliferation of neighboring cells, suggesting they have crucial roles in the process of tumorigenesis. KSHV encodes oncogenic proteins (LANA-1, v-FLIP, v-cyclin, v-GPCR, v-IL6, v-CCL, v-MIP, v-IRF, etc.) that can modulate cellular pathways in order to induce the characteristics found in all cancer, including the inhibition of apoptosis, cells’ proliferation stimulation, angiogenesis, inflammation and immune escape, and, therefore, are involved in the development of Kaposi’s sarcoma.
Collapse
Affiliation(s)
- Aude Jary
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
- Correspondence: ; Tel.: +33-1-4217-7401
| | - Marianne Veyri
- Service d’Oncologie Médicale, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France;
| | - Adélie Gothland
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| | - Valentin Leducq
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| | - Vincent Calvez
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| | - Anne-Geneviève Marcelin
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| |
Collapse
|
4
|
Grewer A, Bleyer M, Mätz-Rensing K, Hahn AS, Rüggeberg T, Babaryka G, Zimmermann A, Pöhlmann S, Kaul A. Kaposi Sarcoma in Mantled Guereza. Emerg Infect Dis 2019; 25:1552-1555. [PMID: 31310216 PMCID: PMC6649314 DOI: 10.3201/eid2508.181804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We identified a novel Kaposi’s sarcoma herpesvirus–related rhadinovirus (Colobine gammaherpesvirus 1) in a mantled guereza (Colobus guereza kikuyensis). The animal had multiple oral tumors characterized by proliferation of latent nuclear antigen 1–positive spindle cells and was not co-infected with immunosuppressive simian viruses, suggesting that it had Kaposi sarcoma caused by this novel rhadinovirus.
Collapse
|
5
|
Dhingra A, Ganzenmueller T, Hage E, Suárez NM, Mätz-Rensing K, Widmer D, Pöhlmann S, Davison AJ, Schulz TF, Kaul A. Novel Virus Related to Kaposi's Sarcoma-Associated Herpesvirus from Colobus Monkey. Emerg Infect Dis 2019; 25:1548-1551. [PMID: 31310220 PMCID: PMC6649351 DOI: 10.3201/eid2508.181802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We determined the complete genome sequence of a virus isolated from a mantled guereza that died of primary effusion lymphoma. The virus is closely related to Kaposi’s sarcoma–associated herpesvirus (KSHV) but lacks some genes implicated in KSHV pathogenesis. This finding may help determine how KSHV causes primary effusion lymphoma in humans.
Collapse
|
6
|
Bruce AG, Barcy S, Staheli J, Bielefeldt-Ohmann H, Ikoma M, Howard K, Rose TM. Experimental co-transmission of Simian Immunodeficiency Virus (SIV) and the macaque homologs of the Kaposi Sarcoma-Associated Herpesvirus (KSHV) and Epstein-Barr Virus (EBV). PLoS One 2018; 13:e0205632. [PMID: 30444879 PMCID: PMC6239284 DOI: 10.1371/journal.pone.0205632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/02/2018] [Indexed: 12/29/2022] Open
Abstract
Macaque RFHV and LCV are close homologs of human KSHV and EBV, respectively. No experimental model of RFHV has been developed due to the lack of a source of culturable infectious virus. Screening of macaques at the Washington National Primate Research Center detected RFHV in saliva of SIV-infected macaques from previous vaccine studies. A pilot experimental infection of two naïve juvenile pig-tailed macaques was initiated by inoculation of saliva from SIV-infected pig-tailed and cynomolgus macaque donors, which contained high levels of DNA (> 10(6) genomes/ml) of the respective species-specific RFHV strain. Both juvenile recipients developed SIV and RFHV infections with RFHV DNA detected transiently in saliva and/or PBMC around week 16 post-infection. One juvenile macaque was infected with the homologous RFHVMn from whole saliva of a pig-tailed donor, which had been inoculated into the cheek pouch. This animal became immunosuppressed, developing simian AIDS and was euthanized 23 weeks after inoculation. The levels of RFHV DNA in saliva and PBMC remained below the level of detection after week 17, showing no reactivation of the RFHVMn infection during the rapid development of AIDS. The other juvenile macaque was infected with the heterologous RFHVMf from i.v. inoculation of purified virions from saliva of a cynomolgus donor. The juvenile recipient remained immunocompetent, developing high levels of persistent anti-RFHV and -SIV antibodies. After the initial presence of RFHVMf DNA in saliva and PBMC decreased to undetectable levels by week 19, all attempts to reactivate the infection through additional inoculations, experimental infection with purified SRV-2 or SIV, or immunosuppressive treatments with cyclosporine or dexamethasone were unsuccessful. An heterologous LCV transmission was also detected in this recipient, characterized by continual high levels of LCVMf DNA from the cynomolgus donor in both saliva (> 10(6) genomes/ml) and PBMC (> 10(4) genomes/million cells), coupled with high levels of anti-LCV antibodies. The macaque was sacrificed 209 weeks after the initial inoculation. Low levels of LCVMf DNA were detected in salivary glands, tonsils and other lymphoid organs, while RFHVMf DNA was below the level of detection. These results show successful co-transmission of RFHV and LCV from saliva and demonstrate differential lytic activation of the different gammaherpesvirus lineages due to presumed differences in biology and tropism and control by the host immune system. Although this initial pilot transmission study utilized only two macaques, it provides the first evidence for experimental transmission of the macaque homolog of KSHV, setting the stage for larger transmission studies to examine the differential activation of rhadinovirus and lymphocryptovirus infections and the pathological effects of immunosuppression.
Collapse
Affiliation(s)
- A. Gregory Bruce
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pathobiology, University of Washington, Seattle, Washington, United States of America
| | - Serge Barcy
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Jeannette Staheli
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pathobiology, University of Washington, Seattle, Washington, United States of America
| | - Helle Bielefeldt-Ohmann
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Minako Ikoma
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Kellie Howard
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pathobiology, University of Washington, Seattle, Washington, United States of America
| | - Timothy M. Rose
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pathobiology, University of Washington, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
7
|
Bielefeldt-Ohmann H, Bruce AG, Howard K, Ikoma M, Thouless ME, Rose TM. Macaque homologs of Kaposi's sarcoma-associated herpesvirus (KSHV) infect germinal center lymphoid cells, epithelial cells in skin and gastrointestinal tract and gonadal germ cells in naturally infected macaques. Virology 2018; 519:106-120. [PMID: 29689462 DOI: 10.1016/j.virol.2018.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/12/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Abstract
We developed a set of rabbit antisera to characterize infections by the macaque RV2 rhadinovirus homologs of KSHV. We analyzed tissues from rhesus and pig-tailed macaques naturally infected with rhesus rhadinovirus (RRV) or Macaca nemestrina rhadinovirus 2 (MneRV2). Our study demonstrates that RV2 rhadinoviruses have a tropism for epithelial cells, lymphocytes and gonadal germ cells in vivo. We observed latent infections in both undifferentiated and differentiated epithelial cells with expression of the latency marker, LANA. Expression of the early (ORF59) and late (glycoprotein B) lytic markers were detected in highly differentiated cells in epithelial ducts in oral, renal, dermal and gastric mucosal tissue as well as differentiated germ cells in male and female gonads. Our data provides evidence that epithelial and germ cell differentiation in vivo induces rhadinovirus reactivation and suggests that infected epithelial and germ cells play a role in transmission and dissemination of RV2 rhadinovirus infections in vivo.
Collapse
Affiliation(s)
| | - A Gregory Bruce
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pathobiology, University of Washington, Seattle, WA, USA.
| | - Kellie Howard
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pathobiology, University of Washington, Seattle, WA, USA.
| | - Minako Ikoma
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
| | | | - Timothy M Rose
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pathobiology, University of Washington, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
8
|
Mariggiò G, Koch S, Schulz TF. Kaposi sarcoma herpesvirus pathogenesis. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0275. [PMID: 28893942 PMCID: PMC5597742 DOI: 10.1098/rstb.2016.0275] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2017] [Indexed: 12/15/2022] Open
Abstract
Kaposi sarcoma herpesvirus (KSHV), taxonomical name human gammaherpesvirus 8, is a phylogenetically old human virus that co-evolved with human populations, but is now only common (seroprevalence greater than 10%) in sub-Saharan Africa, around the Mediterranean Sea, parts of South America and in a few ethnic communities. KSHV causes three human malignancies, Kaposi sarcoma, primary effusion lymphoma, and many cases of the plasmablastic form of multicentric Castleman's disease (MCD) as well as occasional cases of plasmablastic lymphoma arising from MCD; it has also been linked to rare cases of bone marrow failure and hepatitis. As it has colonized humans physiologically for many thousand years, cofactors are needed to allow it to unfold its pathogenic potential. In most cases, these include immune defects of genetic, iatrogenic or infectious origin, and inflammation appears to play an important role in disease development. Our much improved understanding of its life cycle and its role in pathogenesis should now allow us to develop new therapeutic strategies directed against key viral proteins or intracellular pathways that are crucial for virus replication or persistence. Likewise, its limited (for a herpesvirus) distribution and transmission should offer an opportunity for the development and use of a vaccine to prevent transmission. This article is part of the themed issue ‘Human oncogenic viruses’.
Collapse
Affiliation(s)
- Giuseppe Mariggiò
- Institute of Virology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany.,German Centre for Infection Research, Hannover-Braunschweig site, Hannover, Germany
| | - Sandra Koch
- Institute of Virology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany.,German Centre for Infection Research, Hannover-Braunschweig site, Hannover, Germany
| | - Thomas F Schulz
- Institute of Virology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany .,German Centre for Infection Research, Hannover-Braunschweig site, Hannover, Germany
| |
Collapse
|
9
|
Howard K, Cherezova L, DeMaster LK, Rose TM. ORF73 LANA homologs of RRV and MneRV2 contain an extended RGG/RG-rich nuclear and nucleolar localization signal that interacts directly with importin β1 for non-classical nuclear import. Virology 2017; 511:152-164. [PMID: 28850829 DOI: 10.1016/j.virol.2017.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/10/2017] [Accepted: 08/22/2017] [Indexed: 01/26/2023]
Abstract
The latency-associated nuclear antigens (LANA) of KSHV and macaque RFHVMn, members of the RV1 rhadinovirus lineage, are closely related with conservation of complex nuclear localization signals (NLS) containing bipartite KR-rich motifs and RG-rich domains, which interact distinctly with importins α and ß1 for nuclear import via classical and non-classical pathways, respectively. RV1 LANAs are expressed in the nucleus of latently-infected cells where they inhibit replication and establish a dominant RV1 latency. Here we show that LANA homologs of macaque RRV and MneRV2 from the more distantly-related RV2 lineage, lack the KR-rich NLS, and instead have a large RG-rich NLS with multiple RG dipeptides and a conserved RGG motif. The RG-NLS interacts uniquely with importin β1, which mediates nuclear import and accumulation of RV2 LANA in the nucleolus. The alternative nuclear import and localization of RV2 LANA homologs may contribute to the dominant RV2 lytic replication phenotype.
Collapse
Affiliation(s)
- Kellie Howard
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA.
| | - Lidia Cherezova
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Laura K DeMaster
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA.
| | - Timothy M Rose
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
10
|
Bruce AG, Horst JA, Rose TM. Conservation of the glycoprotein B homologs of the Kaposi׳s sarcoma-associated herpesvirus (KSHV/HHV8) and old world primate rhadinoviruses of chimpanzees and macaques. Virology 2016; 494:29-46. [PMID: 27070755 DOI: 10.1016/j.virol.2016.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 01/09/2023]
Abstract
The envelope-associated glycoprotein B (gB) is highly conserved within the Herpesviridae and plays a critical role in viral entry. We analyzed the evolutionary conservation of sequence and structural motifs within the Kaposi׳s sarcoma-associated herpesvirus (KSHV) gB and homologs of Old World primate rhadinoviruses belonging to the distinct RV1 and RV2 rhadinovirus lineages. In addition to gB homologs of rhadinoviruses infecting the pig-tailed and rhesus macaques, we cloned and sequenced gB homologs of RV1 and RV2 rhadinoviruses infecting chimpanzees. A structural model of the KSHV gB was determined, and functional motifs and sequence variants were mapped to the model structure. Conserved domains and motifs were identified, including an "RGD" motif that plays a critical role in KSHV binding and entry through the cellular integrin αVβ3. The RGD motif was only detected in RV1 rhadinoviruses suggesting an important difference in cell tropism between the two rhadinovirus lineages.
Collapse
Affiliation(s)
- A Gregory Bruce
- Center for Global Infectious Disease Research, Seattle Children׳s Research Institute, Seattle, WA, United States
| | - Jeremy A Horst
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| | - Timothy M Rose
- Center for Global Infectious Disease Research, Seattle Children׳s Research Institute, Seattle, WA, United States; Department of Pediatrics, University of Washington, Seattle, WA, United States.
| |
Collapse
|
11
|
Complete genome sequence of Pig-tailed macaque rhadinovirus 2 and its evolutionary relationship with rhesus macaque rhadinovirus and human herpesvirus 8/Kaposi's sarcoma-associated herpesvirus. J Virol 2015; 89:3888-909. [PMID: 25609822 DOI: 10.1128/jvi.03597-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Two rhadinovirus lineages have been identified in Old World primates. The rhadinovirus 1 (RV1) lineage consists of human herpesvirus 8, Kaposi's sarcoma-associated herpesvirus (KSHV), and closely related rhadinoviruses of chimpanzees, gorillas, macaques and other Old World primates. The RV2 rhadinovirus lineage is distinct and consists of closely related viruses from the same Old World primate species. Rhesus macaque rhadinovirus (RRV) is the RV2 prototype, and two RRV isolates, 26-95 and 17577, were sequenced. We determined that the pig-tailed macaque RV2 rhadinovirus, MneRV2, is highly associated with lymphomas in macaques with simian AIDS. To further study the role of rhadinoviruses in the development of lymphoma, we sequenced the complete genome of MneRV2 and identified 87 protein coding genes and 17 candidate microRNAs (miRNAs). A strong genome colinearity and sequence homology were observed between MneRV2 and RRV26-95, although the open reading frame (ORF) encoding the KSHV ORFK15 homolog was disrupted in RRV26-95. Comparison with MneRV2 revealed several genomic anomalies in RRV17577 that were not present in other rhadinovirus genomes, including an N-terminal duplication in ORF4 and a recombinative exchange of more distantly related homologs of the ORF22/ORF47 interacting glycoprotein genes. The comparison with MneRV2 has revealed novel genes and important conservation of protein coding domains and transcription initiation, termination, and splicing signals, which have added to our knowledge of RV2 rhadinovirus genetics. Further comparisons with KSHV and other RV1 rhadinoviruses will provide important avenues for dissecting the biology, evolution, and pathology of these closely related tumor-inducing viruses in humans and other Old World primates. IMPORTANCE This work provides the sequence characterization of MneRV2, the pig-tailed macaque homolog of rhesus rhadinovirus (RRV). MneRV2 and RRV belong to the rhadinovirus 2 (RV2) rhadinovirus lineage of Old World primates and are distinct but related to Kaposi's sarcoma-associated herpesvirus (KSHV), the etiologic agent of Kaposi's sarcoma. Pig-tailed macaques provide important models of human disease, and our previous studies have indicated that MneRV2 plays a causal role in AIDS-related lymphomas in macaques. Delineation of the MneRV2 sequence has allowed a detailed characterization of the genome structure, and evolutionary comparisons with RRV and KSHV have identified conserved promoters, splice junctions, and novel genes. This comparison provides insight into RV2 rhadinovirus biology and sets the groundwork for more intensive next-generation (Next-Gen) transcript and genetic analysis of this class of tumor-inducing herpesvirus. This study supports the use of MneRV2 in pig-tailed macaques as an important model for studying rhadinovirus biology, transmission and pathology.
Collapse
|
12
|
African great apes are naturally infected with roseoloviruses closely related to human herpesvirus 7. J Virol 2014; 88:13212-20. [PMID: 25187544 DOI: 10.1128/jvi.01490-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Primates are naturally infected with herpesviruses. During the last 15 years, the search for homologues of human herpesviruses in nonhuman primates allowed the identification of numerous viruses belonging to the different herpesvirus subfamilies and genera. No simian homologue of human herpesvirus 7 (HHV7) has been reported to date. To investigate the putative existence of HHV7-like viruses in African great apes, we applied the consensus-degenerate hybrid oligonucleotide primers (CODEHOP) program-mediated PCR strategy to blood DNA samples from the four common chimpanzee subspecies (Pan troglodytes verus, P. t. ellioti, P. t. troglodytes, and P. t. schweinfurthii), pygmy chimpanzees (Pan paniscus), as well as lowland gorillas (Gorilla gorilla gorilla). This study led to the discovery of a novel roseolovirus close to HHV7 in each of these nonhuman primate species and subspecies. Generation of the partial glycoprotein B (1,111-bp) and full-length DNA polymerase (3,036/3,042-bp) gene sequences allowed the deciphering of their evolutionary relationships. Phylogenetic analyses revealed that HHV7 and its African great ape homologues formed well-supported monophyletic lineages whose topological resemblance to the host phylogeny is suggestive of virus-host codivergence. Notably, the evolutionary branching points that separate HHV7 from African great ape herpesvirus 7 are remarkably congruent with the dates of divergence of their hosts. Our study shows that African great apes are hosts of human herpesvirus homologues, including HHV7 homologues, and that the latter, like other DNA viruses that establish persistent infections, have cospeciated with their hosts. IMPORTANCE Human herpesviruses are known to possess simian homologues. However, surprisingly, none has been identified to date for human herpesvirus 7 (HHV7). This study is the first to describe simian homologues of HHV7. The extensive search performed on almost all African great ape species and subspecies, i.e., common chimpanzees of the four subspecies, bonobos, and lowland gorillas, has allowed characterization of a specific virus in each. Genetic characterization of the partial glycoprotein B and full-length DNA polymerase gene sequences, followed by their phylogenetic analysis and estimation of divergence times, has shed light on the evolutionary relationships of these viruses. In this respect, we conclusively demonstrate the cospeciation between these new viruses and their hosts and report cases of cross-species transmission between two common chimpanzee subspecies in both directions.
Collapse
|
13
|
DeMaster LK, Rose TM. A critical Sp1 element in the rhesus rhadinovirus (RRV) Rta promoter confers high-level activity that correlates with cellular permissivity for viral replication. Virology 2013; 448:196-209. [PMID: 24314650 DOI: 10.1016/j.virol.2013.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 08/25/2013] [Accepted: 10/08/2013] [Indexed: 10/26/2022]
Abstract
KSHV establishes characteristic latent infections in vitro, while RRV, a related macaque rhadinovirus, establishes characteristic permissive infections with virus replication. We identified cells that are not permissive for RRV replication and recapitulate the latent KSHV infection and reactivation processes. The RRV replication and transactivator (Rta) promoter was characterized in permissive and non-permissive cells and compared to the KSHV Rta promoter. Both promoters contained a critical Sp1 element, had equivalent activities in different cell types, and were inhibited by LANA. RRV and KSHV infections were non-permissive in cells with low Rta promoter activity. While RRV infections were permissive in cells with high basal promoter activity, KSHV infections remained non-permissive. Our studies suggest that RRV lacks the Rta-inducible LANA promoter that is responsible for LANA inhibition of the KSHV Rta promoter and induction of latency during KSHV infection. Instead, the outcome of RRV infection is determined by host factors, such as Sp1.
Collapse
Affiliation(s)
- Laura K DeMaster
- Department of Global Health, University of Washington, Seattle, WA 98195, USA; Center for Childhood Infections and Prematurity Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.
| | | |
Collapse
|
14
|
Next-generation sequence analysis of the genome of RFHVMn, the macaque homolog of Kaposi's sarcoma (KS)-associated herpesvirus, from a KS-like tumor of a pig-tailed macaque. J Virol 2013; 87:13676-93. [PMID: 24109218 DOI: 10.1128/jvi.02331-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete sequence of retroperitoneal fibromatosis-associated herpesvirus Macaca nemestrina (RFHVMn), the pig-tailed macaque homolog of Kaposi's sarcoma-associated herpesvirus (KSHV), was determined by next-generation sequence analysis of a Kaposi's sarcoma (KS)-like macaque tumor. Colinearity of genes was observed with the KSHV genome, and the core herpesvirus genes had strong sequence homology to the corresponding KSHV genes. RFHVMn lacked homologs of open reading frame 11 (ORF11) and KSHV ORFs K5 and K6, which appear to have been generated by duplication of ORFs K3 and K4 after the divergence of KSHV and RFHV. RFHVMn contained positional homologs of all other unique KSHV genes, although some showed limited sequence similarity. RFHVMn contained a number of candidate microRNA genes. Although there was little sequence similarity with KSHV microRNAs, one candidate contained the same seed sequence as the positional homolog, kshv-miR-K12-10a, suggesting functional overlap. RNA transcript splicing was highly conserved between RFHVMn and KSHV, and strong sequence conservation was noted in specific promoters and putative origins of replication, predicting important functional similarities. Sequence comparisons indicated that RFHVMn and KSHV developed in long-term synchrony with the evolution of their hosts, and both viruses phylogenetically group within the RV1 lineage of Old World primate rhadinoviruses. RFHVMn is the closest homolog of KSHV to be completely sequenced and the first sequenced RV1 rhadinovirus homolog of KSHV from a nonhuman Old World primate. The strong genetic and sequence similarity between RFHVMn and KSHV, coupled with similarities in biology and pathology, demonstrate that RFHVMn infection in macaques offers an important and relevant model for the study of KSHV in humans.
Collapse
|
15
|
Estep RD, Wong SW. Rhesus macaque rhadinovirus-associated disease. Curr Opin Virol 2013; 3:245-50. [PMID: 23747119 DOI: 10.1016/j.coviro.2013.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/01/2013] [Accepted: 05/14/2013] [Indexed: 11/18/2022]
Abstract
Rhesus macaque rhadinovirus (RRV) is a gamma-2 herpesvirus that naturally infects rhesus macaque (RM) monkeys and is closely related to human herpesvirus-8 (HHV-8)/Kaposi's sarcoma-associated herpesvirus (KSHV). Infection of immunodeficient RM induces disease in infected RM that resembles KSHV-associated pathologies. Importantly, RRV possesses homologues of KSHV ORFs that are postulated to play a role in disease development. As such, RRV has emerged as a prominent in vivo model system for examining mechanisms of infection and disease of these pathogenic herpesviruses, and has provided unique insight into how these viruses cause disease.
Collapse
Affiliation(s)
- Ryan D Estep
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, United States
| | | |
Collapse
|
16
|
Development of whole-virus multiplex luminex-based serological assays for diagnosis of infections with kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 homologs in macaques. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:409-19. [PMID: 23345584 DOI: 10.1128/cvi.00673-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV)/human herpesvirus 8 is a tumorigenic rhadinovirus that is associated with all forms of Kaposi's sarcoma. Current serological detection of KSHV is based on enzyme-linked immunosorbent or immunofluorescence assays that suffer from a variety of problems, including the lack of defined standards for test comparison. While KSHV is the only known human rhadinovirus, two lineages of KSHV-like rhadinoviruses are found in Old World primates: the RV1 lineage includes KSHV and retroperitoneal fibromatosis herpesvirus (RFHV) in macaques, and the RV2 lineage includes RRV and MneRV2 from different macaque species. To develop animal models of KSHV-associated diseases, we developed quantitative multiplex bead-based serological assays to detect antibodies against rhadinovirus antigens. Proteins from KSHV (RV1) and MneRV2 (RV2) virions were coupled to spectrally distinct fluorescent beads and used in Luminex flow cytometry-based assays to detect immune responses in macaques. Both assays showed large dynamic ranges with high levels of seroreactivity to both KSHV and MneRV2 proteins. A large set of macaque serum samples from the Washington National Primate Research Center was screened, and most of the samples (82%) were positive in both assays, consistent with the high level of RV1-RV2 coinfection detected by PCR. The macaque sera showed broad, variable, and unique serological responses to the different viral antigens, allowing an initial seroprevalence to be determined for the macaque viruses. The Luminex assays offer a novel multiplexed approach to assess rhadinovirus infection patterns in both humans and nonhuman primates. This will help advance our understanding of rhadinovirus biology and associated host immunological responses.
Collapse
|
17
|
Bruce AG, Bielefeldt-Ohmann H, Barcy S, Bakke AM, Lewis P, Tsai CC, Murnane RD, Rose TM. Macaque homologs of EBV and KSHV show uniquely different associations with simian AIDS-related lymphomas. PLoS Pathog 2012; 8:e1002962. [PMID: 23055934 PMCID: PMC3464224 DOI: 10.1371/journal.ppat.1002962] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/27/2012] [Indexed: 01/28/2023] Open
Abstract
Two gammaherpesviruses, Epstein-Barr virus (EBV) (Lymphocryptovirus genus) and Kaposi's sarcoma-associated herpesvirus (KSHV) (Rhadinovirus genus) have been implicated in the etiology of AIDS-associated lymphomas. Homologs of these viruses have been identified in macaques and other non-human primates. In order to assess the association of these viruses with non-human primate disease, archived lymphoma samples were screened for the presence of macaque lymphocryptovirus (LCV) homologs of EBV, and macaque rhadinoviruses belonging to the RV1 lineage of KSHV homologs or the more distant RV2 lineage of Old World primate rhadinoviruses. Viral loads were determined by QPCR and infected cells were identified by immunolabeling for different viral proteins. The lymphomas segregated into three groups. The first group (n = 6) was associated with SIV/SHIV infections, contained high levels of LCV (1–25 genomes/cell) and expressed the B-cell antigens CD20 or BLA.36. A strong EBNA-2 signal was detected in the nuclei of the neoplastic cells in one of the LCV-high lymphomas, indicative of a type III latency stage. None of the lymphomas in this group stained for the LCV viral capsid antigen (VCA) lytic marker. The second group (n = 5) was associated with D-type simian retrovirus-2 (SRV-2) infections, contained high levels of RV2 rhadinovirus (9–790 genomes/cell) and expressed the CD3 T-cell marker. The third group (n = 3) was associated with SIV/SHIV infections, contained high levels of RV2 rhadinovirus (2–260 genomes/cell) and was negative for both CD20 and CD3. In both the CD3-positive and CD3/CD20-negative lymphomas, the neoplastic cells stained strongly for markers of RV2 lytic replication. None of the lymphomas had detectable levels of retroperitoneal fibromatosis herpesvirus (RFHV), the macaque RV1 homolog of KSHV. Our data suggest etiological roles for both lymphocryptoviruses and RV2 rhadinoviruses in the development of simian AIDS-associated lymphomas and indicate that the virus-infected neoplastic lymphoid cells are derived from different lymphocyte lineages and differentiation stages. The incidence of Kaposi's sarcoma (KS) and non-Hodgkin's lymphoma increased in conjunction with the epidemic of HIV disease and AIDS. These malignancies are now known to be associated with secondary infections with a gammaherpesvirus; KS, with the Kaposi's sarcoma-associated herpesvirus (KSHV) and lymphoma, with both KSHV and Epstein-Barr virus (EBV). Similar AIDS-related malignancies have been observed in monkeys with simian AIDS and monkey gammaherpesviruses related to KSHV and EBV have been implicated in the development of disease. The study of monkey models of AIDS-related malignancies provides important approaches for understanding the role of gammaherpesviruses in AIDS-related tumorigenesis. Here we have used a combined molecular and immunological approach to identify, quantitate and localize infections of gammaherpesviruses in AIDS-associated lymphomas in macaques. We found high levels of macaque viruses related to EBV and KSHV in the tumor cells of distinct types of macaque lymphomas, suggesting that the virus-infected tumor cells belong to different lymphocyte lineages and differentiation stages.
Collapse
Affiliation(s)
- A. Gregory Bruce
- Seattle Children's Research Institute, Seattle, Washington, United States of America
| | | | - Serge Barcy
- Seattle Children's Research Institute, Seattle, Washington, United States of America
- University of Washington, Seattle, Washington, United States of America
| | - Angela M. Bakke
- Northwestern University, Evanston, Illinois, United States of America
| | - Patrick Lewis
- Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Che-Chung Tsai
- University of Washington, Seattle, Washington, United States of America
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - Robert D. Murnane
- University of Washington, Seattle, Washington, United States of America
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - Timothy M. Rose
- Seattle Children's Research Institute, Seattle, Washington, United States of America
- University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
18
|
|
19
|
Taylor GS, Blackbourn DJ. Infectious agents in human cancers: lessons in immunity and immunomodulation from gammaherpesviruses EBV and KSHV. Cancer Lett 2011; 305:263-78. [PMID: 21470769 DOI: 10.1016/j.canlet.2010.08.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/23/2010] [Accepted: 08/22/2010] [Indexed: 01/13/2023]
Abstract
Members of the herpesvirus family have evolved the ability to persist in their hosts by establishing a reservoir of latently infected cells each carrying the viral genome with reduced levels of viral protein synthesis. In order to spread within and between hosts, in some cells, the quiescent virus will reactivate and enter lytic cycle replication to generate and release new infectious virus particles. To allow the efficient generation of progeny viruses, all herpesviruses have evolved a wide variety of immunomodulatory mechanisms to limit the exposure of cells undergoing lytic cycle replication to the immune system. Here we have focused on the human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) that, uniquely among the eight human herpesviruses identified to date, have growth transforming potential. Most people infected with these viruses will not develop cancer, viral growth-transforming activity being kept under control by the host's antigen-specific immune responses. Nonetheless, EBV and KSHV are associated with several malignancies in which various viral proteins, either predominantly or exclusively latency-associated, are expressed; at least some of these proteins also have immunomodulatory activities. Of these malignancies, some are the result of a disrupted virus/immune balance through genetic, infectious or iatrogenic immune suppression. Others develop in people that are not overtly immune suppressed and likely modulate the immunological response. This latter aspect of immune modulation by EBV and KSHV forms the basis of this review.
Collapse
Affiliation(s)
- Graham S Taylor
- CR UK Cancer Centre, School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Edgbaston, Birmingham, UK
| | | |
Collapse
|
20
|
Estep RD, Messaoudi I, Wong SW. Simian herpesviruses and their risk to humans. Vaccine 2010; 28 Suppl 2:B78-84. [PMID: 20510749 PMCID: PMC2879342 DOI: 10.1016/j.vaccine.2009.11.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 07/29/2009] [Accepted: 11/02/2009] [Indexed: 11/22/2022]
Abstract
A high level of genetic and physiological homology with humans has rendered non-human primates (NHP) an essential animal model for biomedical research. As such NHP offer a unique opportunity to study host-pathogen interactions in a species that closely mimics human biology but can yet be maintained under tight laboratory conditions. Indeed, studies using NHP have been critical to our understanding of pathogenesis as well as the development of vaccines and therapeutics. This further facilitated by the fact that NHPs are susceptible to a variety of pathogens that bear significant homology to human pathogens. Unfortunately, these same viruses pose a potential health issue to humans. In this review we discuss the simian herpesviruses and their potential to cause disease in researchers that come into close contact with them.
Collapse
Affiliation(s)
- Ryan D. Estep
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, West Campus, Beaverton, OR 97006
| | - Ilhem Messaoudi
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, West Campus, Beaverton, OR 97006
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR 97006
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239
| | - Scott W. Wong
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, West Campus, Beaverton, OR 97006
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR 97006
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
21
|
Gessain A, Rose TM, Lavergne A, Lacoste V. Comment on Mugisha et al. J Med Primatol 2010; 39: 71-76. J Med Primatol 2010; 39:363-4; author reply 365-6. [PMID: 20444000 DOI: 10.1111/j.1600-0684.2010.00421.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Abstract
Viruses that establish lifelong latent infections must ensure that the viral genome is maintained within the latently infected cell throughout the life of the host, yet at the same time must also be capable of avoiding elimination by the immune surveillance system. Gammaherpesviruses, which include the human viruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, establish latent infections in lymphocytes. Infection of this dynamic host-cell population requires that the viruses have appropriate strategies for enabling the viral genome to persist while these cells go through rounds of mitosis, but at the same time must avoid detection by host CD8(+) cytotoxic T lymphocytes (CTLs). The majority of gammaherpesviruses studied have been found to encode a specific protein that is critical for maintenance of the viral genome within latently infected cells. This protein is termed the genome maintenance protein (GMP). Due to its vital role in long-term latency, this offers the immune system a crucial target for detection and elimination of virus-infected cells. GMPs from different gammaherpesviruses have evolved related strategies that allow the protein to be present within latently infected cells, but to remain effectively hidden from circulating CD8(+) CTLs. In this review, I will summarize the role of the GMPs and highlight the available data describing the immune-evasion properties of these proteins.
Collapse
Affiliation(s)
- Neil Blake
- Division of Medical Microbiology, School of Infection and Host Defence, University of Liverpool, Liverpool L69 3GA, UK
| |
Collapse
|
23
|
Bruce AG, Bakke AM, Gravett CA, DeMaster LK, Bielefeldt-Ohmann H, Burnside KL, Rose TM. The ORF59 DNA polymerase processivity factor homologs of Old World primate RV2 rhadinoviruses are highly conserved nuclear antigens expressed in differentiated epithelium in infected macaques. Virol J 2009; 6:205. [PMID: 19922662 PMCID: PMC2785786 DOI: 10.1186/1743-422x-6-205] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 11/18/2009] [Indexed: 11/17/2022] Open
Abstract
Background ORF59 DNA polymerase processivity factor of the human rhadinovirus, Kaposi's sarcoma-associated herpesvirus (KSHV), is required for efficient copying of the genome during virus replication. KSHV ORF59 is antigenic in the infected host and is used as a marker for virus activation and replication. Results We cloned, sequenced and expressed the genes encoding related ORF59 proteins from the RV1 rhadinovirus homologs of KSHV from chimpanzee (PtrRV1) and three species of macaques (RFHVMm, RFHVMn and RFHVMf), and have compared them with ORF59 proteins obtained from members of the more distantly-related RV2 rhadinovirus lineage infecting the same non-human primate species (PtrRV2, RRV, MneRV2, and MfaRV2, respectively). We found that ORF59 homologs of the RV1 and RV2 Old World primate rhadinoviruses are highly conserved with distinct phylogenetic clustering of the two rhadinovirus lineages. RV1 and RV2 ORF59 C-terminal domains exhibit a strong lineage-specific conservation. Rabbit antiserum was developed against a C-terminal polypeptide that is highly conserved between the macaque RV2 ORF59 sequences. This anti-serum showed strong reactivity towards ORF59 encoded by the macaque RV2 rhadinoviruses, RRV (rhesus) and MneRV2 (pig-tail), with no cross reaction to human or macaque RV1 ORF59 proteins. Using this antiserum and RT-qPCR, we determined that RRV ORF59 is expressed early after permissive infection of both rhesus primary fetal fibroblasts and African green monkey kidney epithelial cells (Vero) in vitro. RRV- and MneRV2-infected foci showed strong nuclear expression of ORF59 that correlated with production of infectious progeny virus. Immunohistochemical studies of an MneRV2-infected macaque revealed strong nuclear expression of ORF59 in infected cells within the differentiating layer of epidermis corroborating previous observations that differentiated epithelial cells are permissive for replication of KSHV-like rhadinoviruses. Conclusion The ORF59 DNA polymerase processivity factor homologs of the Old World primate RV1 and RV2 rhadinovirus lineages are phylogenetically distinct yet demonstrate similar expression and localization characteristics that correlate with their use as lineage-specific markers for permissive infection and virus replication. These studies will aid in the characterization of virus activation from latency to the replicative state, an important step for understanding the biology and transmission of rhadinoviruses, such as KSHV.
Collapse
Affiliation(s)
- A Gregory Bruce
- Center for Childhood Infection and Prematurity Research, Seattle Children's Research Institute, Seattle, WA 98101-1304, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Lacoste V, Lavergne A, de Thoisy B, Pouliquen JF, Gessain A. Genetic diversity and molecular evolution of human and non-human primate Gammaherpesvirinae. INFECTION GENETICS AND EVOLUTION 2009; 10:1-13. [PMID: 19879975 DOI: 10.1016/j.meegid.2009.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 10/19/2009] [Accepted: 10/21/2009] [Indexed: 12/26/2022]
Abstract
The Gammaherpesvirinae sub-family is divided into two genera: Lymphocryptovirus and Rhadinovirus. Until the middle of the 1990s, the Rhadinovirus genus was only represented by Herpesvirus saimiri and Herpesvirus ateles, which infect New World monkey species. Until the year 2000, Epstein-Barr virus (EBV), the human prototype of the Lymphocryptovirus, and simian homologues had only been detected in humans and Old World non-human primates. It was thought, therefore, that the separation of the continents had resulted in drastic changes in Gammaherpesvirinae evolution. The discovery of Kaposi's sarcoma-associated herpesvirus in humans, belonging to the Rhadinovirus, followed by the identification of CalHV3 (Callitrichine herpesvirus 3), a lymphocryptovirus of the marmoset, challenged this paradigm. The description of numerous viruses belonging to this sub-family from various Old and New World primate species enabled a cospeciation hypothesis for these viruses and their hosts to be developed. This review focuses on the current knowledge of primate Gammaherpesvirinae genetic diversity and molecular evolution. We discuss the various theories based on current genetic data regarding evolutionary relationships between lymphocryptoviruses of Old World primates, the use of these data as a tool to study evolutionary relationships between New World monkey species, and the possible existence of a ninth human herpesvirus belonging to the Rhadinovirus genus.
Collapse
Affiliation(s)
- Vincent Lacoste
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de Guyane, 23 avenue Pasteur, BP6010, 97306 Cayenne Cedex, French Guiana.
| | | | | | | | | |
Collapse
|
25
|
Wang L, Pietrek M, Brinkmann MM, Hävemeier A, Fischer I, Hillenbrand B, Dittrich-Breiholz O, Kracht M, Chanas S, Blackbourn DJ, Schulz TF. Identification and functional characterization of a spliced rhesus rhadinovirus gene with homology to the K15 gene of Kaposi's sarcoma-associated herpesvirus. J Gen Virol 2009; 90:1190-1201. [PMID: 19264656 DOI: 10.1099/vir.0.007971-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rhesus monkey rhadinovirus (RRV) is a gamma-2 herpesvirus related to the human Kaposi's sarcoma-associated herpesvirus (KSHV or human herpesvirus 8). This study identified an alternatively spliced gene at the right side of the RRV genome (strain 17577) between open reading frame 75 and the terminal repeat region. Of its eight exons, the first seven encoded up to 12 transmembrane domains, whilst the eighth exon encoded a predicted C-terminal cytoplasmic domain. Structurally and positionally, this RRV gene therefore resembles the K15 gene of KSHV; it was provisionally named RK15 to avoid confusion with other RRV17577 genes. In ectopic expression studies, the 55 kDa RK15 protein isoform activated the JNK and NF-kappaB pathways, like the 45 kDa KSHV K15-encoded protein isoform. In contrast to K15, which activates angiogenic and inflammatory cytokines such as interleukin (IL)-8, IL-6 and CCL20, the range of cellular transcripts activated by the RRV K15 homologue was much more restricted, but included IL-6, IL-8 and FGF21. These data suggest functional differences between terminal membrane proteins at the right end of the genomes of Old World primate gamma-2 herpesviruses.
Collapse
Affiliation(s)
- Linding Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan 430071, PR China
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Marcel Pietrek
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Melanie M Brinkmann
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Anika Hävemeier
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Irina Fischer
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Bernd Hillenbrand
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Oliver Dittrich-Breiholz
- Institute of Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Michael Kracht
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Simon Chanas
- CRUK Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TT, UK
| | - David J Blackbourn
- CRUK Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TT, UK
| | - Thomas F Schulz
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| |
Collapse
|
26
|
Ehlers B, Dural G, Yasmum N, Lembo T, de Thoisy B, Ryser-Degiorgis MP, Ulrich RG, McGeoch DJ. Novel mammalian herpesviruses and lineages within the Gammaherpesvirinae: cospeciation and interspecies transfer. J Virol 2008; 82:3509-16. [PMID: 18216123 PMCID: PMC2268488 DOI: 10.1128/jvi.02646-07] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 01/15/2008] [Indexed: 02/06/2023] Open
Abstract
Novel members of the subfamily Gammaherpesvirinae, hosted by eight mammalian species from six orders (Primates, Artiodactyla, Perissodactyla, Carnivora, Scandentia, and Eulipotyphla), were discovered using PCR with pan-herpesvirus DNA polymerase (DPOL) gene primers and genus-specific glycoprotein B (gB) gene primers. The gB and DPOL sequences of each virus species were connected by long-distance PCR, and contiguous sequences of approximately 3.4 kbp were compiled. Six additional gammaherpesviruses from four mammalian host orders (Artiodactyla, Perissodactyla, Primates, and Proboscidea), for which only short DPOL sequences were known, were analyzed in the same manner. Together with available corresponding sequences for 31 other gammaherpesviruses, alignments of encoded amino acid sequences were made and used for phylogenetic analyses by maximum-likelihood and Bayesian Monte Carlo Markov chain methods to derive a tree which contained two major loci of unresolved branching details. The tree was rooted by parallel analyses that included alpha- and betaherpesvirus sequences. This gammaherpesvirus tree contains 11 major lineages and presents the widest view to date of phylogenetic relationships in any subfamily of the Herpesviridae, as well as the most complex in the number of deep lineages. The tree's branching pattern can be interpreted only in part in terms of the cospeciation of virus and host lineages, and a substantial incidence of the interspecies transfer of viruses must also be invoked.
Collapse
Affiliation(s)
- Bernhard Ehlers
- P14 Molekulare Genetik und Epidemiologie von Herpesviren, Robert Koch-Institut, D-13353 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Westmoreland SV, Mansfield KG. Comparative pathobiology of Kaposi sarcoma-associated herpesvirus and related primate rhadinoviruses. Comp Med 2008; 58:31-42. [PMID: 19793454 PMCID: PMC2703163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 05/19/2007] [Accepted: 06/11/2007] [Indexed: 05/28/2023]
Abstract
With the emergence of the AIDS epidemic over the last 2 decades and the more recent identification of Kaposi sarcoma-associated herpesvirus (KSHV, Human herpesvirus 8), the genera of rhadinoviruses have gained importance as a family of viruses with oncogenic potential. First recognized in New World primates more than 30 y ago, the rhadinoviruses Saimiriine herpesvirus 2 and Ateline herpesvirus 2 have well-described transforming capabilities. Recently several new species-specific rhadinoviruses of Old World primates have been described, including retroperitoneal fibromatosis herpesvirus and rhesus rhadinovirus (Cercopithecine herpesvirus 17). Molecular analysis of these viruses has elucidated several functionally conserved genes and properties shared with KSHV involved in cellular proliferation, transformation, and immune evasion that facilitate the oncogenic potential of these viruses. This review examines the comparative pathobiology of KSHV, discusses the role of macaque rhadinoviruses as models of human disease, and outlines the derivation of specific pathogen-free animals.
Collapse
Key Words
- ccl, cellular chemokine ligand
- irf, interferon regulatory factors
- kshv, kaposi sarcoma-associated herpesvirus
- lana, latent nuclear antigen
- mcd, multicentric castleman disease
- mcp1, monocyte chemotactic protein 1
- mirna, microrna
- orf, open reading frame
- pel, primary effusion lymphoma
- rfhv, retroperitoneal fibromatosis herpesvirus
- rvv, rhesus rhadinovirus
- sahv2, saimiriine herpesvirus 2
- spf, specific pathogen-free
- srv2, simian retrovirus type 2
- thbs1, thrombospondin
Collapse
|
28
|
Bruce AG, Bakke AM, Bielefeldt-Ohmann H, Ryan JT, Thouless ME, Tsai CC, Rose TM. High levels of retroperitoneal fibromatosis (RF)-associated herpesvirus in RF lesions in macaques are associated with ORF73 LANA expression in spindleoid tumour cells. J Gen Virol 2006; 87:3529-3538. [PMID: 17098967 DOI: 10.1099/vir.0.82339-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Two distinct lineages of rhadinoviruses related to Kaposi's sarcoma (KS)-associated herpesvirus (KSHV; Human herpesvirus 8), the causative agent of KS, have been identified. In macaques, the RV1 lineage is represented by retroperitoneal fibromatosis (RF) herpesvirus (RFHV), the homologue of KSHV, whilst the RV2 lineage is represented by rhesus rhadinovirus (RRV), a more distantly related virus. Real-time quantitative PCR was used to estimate the loads of RV1 and RV2 rhadinoviruses in simian acquired immunodeficiency syndrome-associated RF (SAIDS-RF), a neoplasm of macaques with similarities to AIDS-associated KS. Both RV1 and RV2 rhadinoviruses were detected in macaques with RF. The RV1 loads were 220- to 4300-fold higher in RF tumours than in spleen, showing a strong tumour association (mean loads of 1 800 000 vs 2900 copies per 10(6) cells in tumours and spleen, respectively). In contrast, RV2 loads in the RF tumours were 100-fold lower than RV1 loads and showed similar levels in tumours and spleen (mean loads of 16 000 vs 24 000 copies per 10(6) cells, respectively). Immunostaining with antibodies reactive against RFHV ORF73 latency-associated nuclear antigen (LANA) showed intense nuclear staining of the spindleoid RF tumour cells. Correlation of viral load and the number of LANA-positive cells indicated that RF tumour cells contained multiple copies of the RFHV genome per cell. This pattern of infectivity is similar to that seen in KS tumours latently infected with KSHV. Our study demonstrates similarities in the biology of KSHV and RFHV and supports a role for RFHV in the aetiology of SAIDS-RF.
Collapse
Affiliation(s)
- A Gregory Bruce
- Department of Pathobiology, School of Public Health and Community Medicine, University of Washington, Seattle, WA 98195, USA
| | - Angela M Bakke
- Department of Pathobiology, School of Public Health and Community Medicine, University of Washington, Seattle, WA 98195, USA
| | - Helle Bielefeldt-Ohmann
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Jonathan T Ryan
- Department of Pathobiology, School of Public Health and Community Medicine, University of Washington, Seattle, WA 98195, USA
| | - Margaret E Thouless
- Department of Pathobiology, School of Public Health and Community Medicine, University of Washington, Seattle, WA 98195, USA
| | - Che-Chung Tsai
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA
| | - Timothy M Rose
- Department of Pathobiology, School of Public Health and Community Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
29
|
Burnside KL, Ryan JT, Bielefeldt-Ohmann H, Gregory Bruce A, Thouless ME, Tsai CC, Rose TM. RFHVMn ORF73 is structurally related to the KSHV ORF73 latency-associated nuclear antigen (LANA) and is expressed in retroperitoneal fibromatosis (RF) tumor cells. Virology 2006; 354:103-15. [PMID: 16879850 DOI: 10.1016/j.virol.2006.06.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 04/11/2006] [Accepted: 06/15/2006] [Indexed: 11/15/2022]
Abstract
Retroperitoneal fibromatosis herpesvirus (RFHV), the macaque homolog of the human rhadinovirus, Kaposi's sarcoma-associated herpesvirus (KSHV), was first identified in retroperitoneal fibromatosis (RF) tumor lesions of macaques with simian AIDS. We cloned and sequenced the ORF73 latency-associated nuclear antigen (LANA) of RFHVMn from the pig-tailed macaque. RFHVMn LANA is structurally analogous to KSHV ORF73 LANA and contains an N-terminal serine-proline-rich region, a large internal glutamic acidic-rich repeat region and a conserved C-terminal domain. RFHVMn LANA reacts with monoclonal antibodies specific for a glutamic acid-proline dipeptide motif and a glutamic acid-glutamine-rich motif in the KSHV LANA repeat region. Immunohistochemical and immunofluorescence analysis revealed that RFHVMn LANA is a nuclear antigen which is highly expressed in RF spindloid tumor cells. These data suggest that RFHV LANA is an ortholog of KSHV LANA and will function similarly to maintain viral latency and play a role in tumorigenicity in macaques.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Cell Nucleus/chemistry
- Cloning, Molecular
- DNA, Viral/chemistry
- DNA, Viral/genetics
- Fibroma/pathology
- Fibroma/virology
- Immunohistochemistry
- Macaca nemestrina
- Microscopy, Fluorescence
- Molecular Sequence Data
- Nuclear Proteins/chemistry
- Nuclear Proteins/genetics
- Nuclear Proteins/immunology
- Nuclear Proteins/metabolism
- Open Reading Frames
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Retroperitoneal Neoplasms/virology
- Rhadinovirus/genetics
- Rhadinovirus/isolation & purification
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Kellie L Burnside
- Department of Pathobiology, School of Public Health and Community Medicine, HSB Rm F161E, Box 357238, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Brinkmann MM, Schulz TF. Regulation of intracellular signalling by the terminal membrane proteins of members of the Gammaherpesvirinae. J Gen Virol 2006; 87:1047-1074. [PMID: 16603506 DOI: 10.1099/vir.0.81598-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The human gamma(1)-herpesvirus Epstein-Barr virus (EBV) and the gamma(2)-herpesviruses Kaposi's sarcoma-associated herpesvirus (KSHV), rhesus rhadinovirus (RRV), herpesvirus saimiri (HVS) and herpesvirus ateles (HVA) all contain genes located adjacent to the terminal-repeat region of their genomes, encoding membrane proteins involved in signal transduction. Designated 'terminal membrane proteins' (TMPs) because of their localization in the viral genome, they interact with a variety of cellular signalling molecules, such as non-receptor protein tyrosine kinases, tumour-necrosis factor receptor-associated factors, Ras and Janus kinase (JAK), thereby initiating further downstream signalling cascades, such as the MAPK, PI3K/Akt, NF-kappaB and JAK/STAT pathways. In the case of TMPs expressed during latent persistence of EBV and HVS (LMP1, LMP2A, Stp and Tip), their modulation of intracellular signalling pathways has been linked to the provision of survival signals to latently infected cells and, hence, a contribution to occasional cellular transformation. In contrast, activation of similar pathways by TMPs of KSHV (K1 and K15) and RRV (R1), expressed during lytic replication, may extend the lifespan of virus-producing cells, alter their migration and/or modulate antiviral immune responses. Whether R1 and K1 contribute to the oncogenic properties of KSHV and RRV has not been established satisfactorily, despite their transforming qualities in experimental settings.
Collapse
Affiliation(s)
- Melanie M Brinkmann
- Institut für Virologie, Medizinische Hochschule Hannover, Carl-Neuberg Str. 1, D-30625 Hannover, Germany
| | - Thomas F Schulz
- Institut für Virologie, Medizinische Hochschule Hannover, Carl-Neuberg Str. 1, D-30625 Hannover, Germany
| |
Collapse
|
31
|
Henke-Gendo C, Mengel M, Hoeper MM, Alkharsah K, Schulz TF. Absence of Kaposi's sarcoma-associated herpesvirus in patients with pulmonary arterial hypertension. Am J Respir Crit Care Med 2005; 172:1581-5. [PMID: 16192453 DOI: 10.1164/rccm.200504-546oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE In addition to Kaposi's sarcoma, Kaposi's sarcoma-associated herpesvirus (KSHV or HHV-8) has been associated with two other diseases: primary effusion lymphoma and the plasma cell variant of multicentric Castleman's disease. Recently, evidence of KSHV infection was reported in plexiform lesions of idiopathic pulmonary arterial hypertension (IPAH) as well as in adjacent parenchyma and bronchial epithelial cells. OBJECTIVES To further investigate a possible association of KSHV and pulmonary arterial hypertension. METHODS AND MEASUREMENTS Twenty-six lungs explanted from German patients suffering from IPAH were tested for the presence of KSHV antigen and genomes by immunohistochemistry (IHC) and polymerase chain reaction (PCR). MAIN RESULTS When stained with a commercial monoclonal antibody directed against the latency-associated nuclear antigen of KSHV, LANA-1, a positive signal reminiscent of the "speckled" nuclear pattern typical of latently KSHV-infected cells was found in 16 (61.5%) cases. Alveolar and bronchial epithelial cells in areas of unremarkable lung tissue, but not cells within the plexiform lesions, were the predominantly stained cell types. Different KSHV-PCR assays (based on orf26, orfK6, and orf72) performed on samples that had tested positively in IHC, however, could not confirm KSHV infection, indicating that the IHC signal was not due to KSHV infection. One IHC-negative patient tested positive by PCR. A PCR based on consensus degenerate hybrid oligonucleotide primers (CODEHOP) to detect yet unknown gamma-herpesviruses did not reveal any specific sequences. CONCLUSIONS KSHV is unlikely to play a role in the pathogenesis of IPAH.
Collapse
Affiliation(s)
- Cornelia Henke-Gendo
- Institute of Virology, Hannover Medical School, Carl Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | |
Collapse
|
32
|
Jones MS, Kapoor A, Lukashov VV, Simmonds P, Hecht F, Delwart E. New DNA viruses identified in patients with acute viral infection syndrome. J Virol 2005; 79:8230-6. [PMID: 15956568 PMCID: PMC1143717 DOI: 10.1128/jvi.79.13.8230-8236.2005] [Citation(s) in RCA: 286] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A sequence-independent PCR amplification method was used to identify viral nucleic acids in the plasma samples of 25 individuals presenting with symptoms of acute viral infection following high-risk behavior for human immunodeficiency virus type 1 transmission. GB virus C/hepatitis G virus was identified in three individuals and hepatitis B virus in one individual. Three previously undescribed DNA viruses were also detected, a parvovirus and two viruses related to TT virus (TTV). Nucleic acids in human plasma that were distantly related to bacterial sequences or with no detectable similarities to known sequences were also found. Nearly complete viral genome sequencing and phylogenetic analysis confirmed the presence of a new parvovirus distinct from known human and animal parvoviruses and of two related TTV-like viruses highly divergent from both the TTV and TTV-like minivirus groups. The detection of two previously undescribed viral species in a small group of individuals presenting acute viral syndrome with unknown etiology indicates that a rich yield of new human viruses may be readily identifiable using simple methods of sequence-independent nucleic acid amplification and limited sequencing.
Collapse
Affiliation(s)
- Morris S Jones
- Blood Systems Research Institute, 270 Masonic Ave., San Francisco, California 94118, USA
| | | | | | | | | | | |
Collapse
|
33
|
Rose TM. CODEHOP-mediated PCR - a powerful technique for the identification and characterization of viral genomes. Virol J 2005; 2:20. [PMID: 15769292 PMCID: PMC1079958 DOI: 10.1186/1743-422x-2-20] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2005] [Accepted: 03/15/2005] [Indexed: 12/16/2022] Open
Abstract
Consensus-Degenerate Hybrid Oligonucleotide Primer (CODEHOP) PCR primers derived from amino acid sequence motifs which are highly conserved between members of a protein family have proven to be highly effective in the identification and characterization of distantly related family members. Here, the use of the CODEHOP strategy to identify novel viruses and obtain sequence information for phylogenetic characterization, gene structure determination and genome analysis is reviewed. While this review describes techniques for the identification of members of the herpesvirus family of DNA viruses, the same methodology and approach is applicable to other virus families.
Collapse
Affiliation(s)
- Timothy M Rose
- Department of Pathobiology, Box 357238, School of Public Health and Community Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
34
|
McGeoch DJ, Gatherer D, Dolan A. On phylogenetic relationships among major lineages of the Gammaherpesvirinae. J Gen Virol 2005; 86:307-316. [PMID: 15659749 DOI: 10.1099/vir.0.80588-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phylogenetic relationships within the subfamily Gammaherpesvirinae of the family Herpesviridae were investigated for three species in the genus Lymphocryptovirus (or γ1 group) and nine in the genus Rhadinovirus (or γ2 group). Alignments of amino acid sequences from up to 28 genes were used to derive trees by maximum-likelihood and Bayesian Monte Carlo Markov chain methods. Two problem areas were identified involving an unresolvable multifurcation for a clade within the γ2 group, and a high divergence for Murid herpesvirus 4 (MHV4). A robust final tree was obtained, which was valid for genes from across the virus genomes and was rooted by reference to previous analyses of the whole family Herpesviridae. This tree comprised four major lineages: the γ1 group of primate viruses; a clade of artiodactyl γ2 viruses; a clade of perissodactyl γ2 viruses; and a clade of γ2 viruses with a multifurcation at its base and containing Old World and New World primate viruses, Bovine herpesvirus 4 and MHV4. Developing previous work it was proposed, on the basis of similarities between the gammaherpesvirus tree and the tree of corresponding mammalian hosts, that the first three of these major viral lineages arose in a coevolutionary manner with host lineages, while the fourth had its origin in an ancient interspecies transfer. Transfer of dates from mammalian palaeontology then allowed estimation of dates for nodes in the gammaherpesvirus tree.
Collapse
Affiliation(s)
- Duncan J McGeoch
- Medical Research Council Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK
| | - Derek Gatherer
- Medical Research Council Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK
| | - Aidan Dolan
- Medical Research Council Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK
| |
Collapse
|
35
|
Bruce AG, Bakke AM, Thouless ME, Rose TM. Development of a real-time QPCR assay for the detection of RV2 lineage-specific rhadinoviruses in macaques and baboons. Virol J 2005; 2:2. [PMID: 15634356 PMCID: PMC544863 DOI: 10.1186/1743-422x-2-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Accepted: 01/05/2005] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Two distinct lineages of rhadinoviruses related to Kaposi's sarcoma-associated herpesvirus (KSHV/HHV8) have been identified in macaques and other Old World non-human primates. We have developed a real-time quantitative PCR (QPCR) assay using a TaqMan probe to differentially detect and quantitate members of the rhadinovirus-2 (RV2) lineage. PCR primers were derived from sequences within ORF 60 and the adjacent ORF 59/60 intergenic region which were highly conserved between the macaque RV2 rhadinoviruses, rhesus rhadinovirus (RRV) and Macaca nemestrina rhadinovirus-2 (MneRV2). These primers showed little similarity to the corresponding sequences of the macaque RV1 rhadinoviruses, retroperitoneal fibromatosis herpesvirus Macaca nemestrina (RFHVMn) and Macaca mulatta (RFHVMm). To determine viral loads per cell, an additional TaqMan QPCR assay was developed to detect the single copy cellular oncostatin M gene. RESULTS We show that the RV2 QPCR assay is linear from less than 2 to more than 300,000 copies using MneRV2 DNA, and is non-reactive with RFHVMn DNA up to 1 billion DNA templates per reaction. RV2 loads ranging from 6 to 2,300 viral genome equivalent copies per 10(6) cells were detected in PBMC from randomly sampled macaques from the Washington National Primate Research Center. Screening tissue from other primate species, including another macaque, Macaca fascicularis, and a baboon, Papio cynocephalus, revealed the presence of novel rhadinoviruses, MfaRV2 and PcyRV2, respectively. Sequence comparison and phylogenetic analysis confirmed their inclusion within the RV2 lineage of KSHV-like rhadinoviruses. CONCLUSIONS We describe a QPCR assay which provides a quick and sensitive method for quantitating rhadinoviruses belonging to the RV2 lineage of KSHV-like rhadinoviruses found in a variety of macaque species commonly used for biomedical research. While this assay broadly detects different RV2 rhadinovirus species, it is unreactive with RV1 rhadinovirus species which commonly co-infect the same primate hosts. We also show that this QPCR assay can be used to identify novel RV2 rhadinoviruses in different primate species.
Collapse
Affiliation(s)
- A Gregory Bruce
- Department of Pathobiology, School of Public Health and Community Medicine, University of Washington, Seattle, WA 98195 USA
| | - Angela M Bakke
- Department of Pathobiology, School of Public Health and Community Medicine, University of Washington, Seattle, WA 98195 USA
| | - Margaret E Thouless
- Department of Pathobiology, School of Public Health and Community Medicine, University of Washington, Seattle, WA 98195 USA
| | - Timothy M Rose
- Department of Pathobiology, School of Public Health and Community Medicine, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
36
|
Duprez R, Boulanger E, Roman Y, Gessain A. Novel gamma-2-herpesvirus of the Rhadinovirus 2 lineage in gibbons. Emerg Infect Dis 2004; 10:899-902. [PMID: 15200826 PMCID: PMC3323210 DOI: 10.3201/eid1005.030964] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We obtained 475 nucleotides of the DNA polymerase gene of a novel human herpesvirus 8 homolog sequence in a gibbon. The finding of this new gibbon virus, which clusters with a related chimpanzee virus in the rhadinovirus 2 genogroup, suggests the existence of a novel γ-2-herpesvirus in humans.
Collapse
Affiliation(s)
| | | | - Yannick Roman
- Museum National d’Histoire Naturelle, Clères, France
| | | |
Collapse
|
37
|
Ehlers B, Ochs A, Leendertz F, Goltz M, Boesch C, Mätz-Rensing K. Novel simian homologues of Epstein-Barr virus. J Virol 2003; 77:10695-9. [PMID: 12970457 PMCID: PMC228477 DOI: 10.1128/jvi.77.19.10695-10699.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Thirty different lymphocryptoviruses (LCV), 26 of them novel, were detected in primates by a panherpesvirus PCR assay. Nineteen LCV from chimpanzees, bonobos, gorillas, and other Old World primates were closely related to Epstein-Barr virus (EBV), the type species of the genus lymphocryptovirus. Seven LCV originating from New World primates were related to callitrichine herpesvirus 3 (CalHV-3), the first recognized New World LCV. Importantly, a second LCV from gorillas and three LCV from orangutans and gibbons were only distantly related to EBV and CalHV-3. They were tentatively assigned to a novel genogroup of Old World primate LCV. The work described in the paper may also help identify an as yet unknown human LCV.
Collapse
|
38
|
de Thoisy B, Pouliquen JF, Lacoste V, Gessain A, Kazanji M. Novel gamma-1 herpesviruses identified in free-ranging new world monkeys (golden-handed tamarin [Saguinus midas], squirrel monkey [Saimiri sciureus], and white-faced saki [Pithecia pithecia]) in French Guiana. J Virol 2003; 77:9099-105. [PMID: 12885928 PMCID: PMC167222 DOI: 10.1128/jvi.77.16.9099-9105.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recent finding of a novel Epstein-Barr virus-related lymphocryptovirus (CalHV-3) in a captive colony of common marmoset (Callithrix jacchus) in the United States modifies the view that the host range of lymphocryptovirus is restricted to humans and Old World primates. We investigated the presence of Epstein-Barr virus-related viruses in 79 samples of New World monkeys caught in the wild, including six species of the Cebidae family and one of the Callitrichidae, living in the rain forest of French Guiana. Using a degenerate consensus PCR method for the herpesvirus DNA polymerase gene, we identified three novel lymphocryptoviruses from golden-handed tamarin (Saguinus midas) of the Callitrichidae family and squirrel monkey (Saimiri sciureus) and white-faced saki (Pithecia pithecia) of the Cebidae family. With the CalHV-3 strain, these three novel viruses constitute a well-supported phylogenetic clade in the Lymphocryptovirus genus, which is clearly distinct from the lineage of Old World lymphocryptovirus, hosted by catarrhine monkeys and humans. In tamarins, the prevalence of the novel lymphocryptovirus was more than 50%, indicating that it circulates well in the wild population, perhaps due to specific ecoethological patterns such as confrontations and intergroup migration. The detection and partial molecular characterization of the polymerase gene of three novel Gamma-1-Herpesvirinae from New World monkeys caught in the wild clearly indicate that free-ranging populations of platyrrhine are natural hosts of lymphocryptoviruses. Further characterization of these novel viruses will provide new insight not only into the origin and evolution of Gammaherpesvirinae but also into their pathogenicity.
Collapse
Affiliation(s)
- Benoit de Thoisy
- Laboratoire de Rétrovirologie, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | | | | | | | | |
Collapse
|
39
|
Whitby D, Stossel A, Gamache C, Papin J, Bosch M, Smith A, Kedes DH, White G, Kennedy R, Dittmer DP. Novel Kaposi's sarcoma-associated herpesvirus homolog in baboons. J Virol 2003; 77:8159-65. [PMID: 12829855 PMCID: PMC161918 DOI: 10.1128/jvi.77.14.8159-8165.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Kaposi's sarcoma (KS) and lymphoproliferative diseases induced by KS-associated herpesvirus (KSHV/human herpesvirus 8) cause substantial morbidity and mortality in human immunodeficiency virus-infected individuals. To understand KSHV biology it is useful to investigate closely related rhadinoviruses naturally occurring in nonhuman primates. Here we report evidence for a novel KSHV homolog in captive baboon species (Papio anubis and other). Using degenerate PCR we identified a novel rhadinovirus, PapRV2, that has substantial sequence identity to two essential KSHV genes, the viral polymerase and thymidylate synthase. A subset of animals exhibited detectable PapRV2 viral load in peripheral blood mononuclear cells. Extensive serological analysis of nearly 200 animals in the colony demonstrated that the majority carried cross-reacting antibodies that recognize KSHV or macaque rhadinovirus antigens. Seroreactivity increased with age, similar to the age-specific prevalence of KSHV in the human population. This establishes baboons as a novel resource to investigate rhadinovirus biology, which can be developed into an animal model system for KSHV-associated human diseases, vaccine development, and therapy evaluation.
Collapse
Affiliation(s)
- Denise Whitby
- Viral Epidemiology Section, AIDS Vaccine Program, SAIC-Frederick, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Kaposi's sarcoma (KS) is a disease characterized by proliferative vascular lesions, which almost invariably contain the KS-associated herpesvirus (KSHV), also called human herpesvirus 8. KSHV is a lymphotrophic and angiotrophic herpesvirus, whose genome encodes several proteins involved in proliferation, antiapoptotic functions, and inflammation. Most KS spindle cells express latent KSHV genes, but a few express lytic genes, which might be involved in angiogenic and paracrine mechanisms that contribute to KS pathogenesis. A number of tissue culture and mouse models have been established, but a comprehensive system that accurately portrays KS pathogenesis still does not exist.
Collapse
Affiliation(s)
- Darya Bubman
- Pharmacology Program, Weill Graduate School of Medical Sciences of Cornell University, 1300 York Avenue, Room C406, New York, NY 10021, USA
| | | |
Collapse
|
41
|
Rose TM, Ryan JT, Schultz ER, Raden BW, Tsai CC. Analysis of 4.3 kilobases of divergent locus B of macaque retroperitoneal fibromatosis-associated herpesvirus reveals a close similarity in gene sequence and genome organization to Kaposi's sarcoma-associated herpesvirus. J Virol 2003; 77:5084-97. [PMID: 12692211 PMCID: PMC153986 DOI: 10.1128/jvi.77.9.5084-5097.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We previously identified retroperitoneal fibromatosis-associated herpesvirus (RFHV) as a simian homolog of Kaposi's sarcoma-associated herpesvirus (KSHV) in a fibroproliferative malignancy of macaques that has similarities to Kaposi's sarcoma. In this report, we cloned 4.3 kb of divergent locus B (DL-B) flanking the DNA polymerase gene from two variants of RFHV from different species of macaque with a consensus degenerate hybrid oligonucleotide primer approach. Within the DL-B region of RFHV, viral homologs of the cellular interleukin-6, dihydrofolate reductase, and thymidylate synthase genes were identified, along with a homolog of the gammaherpesvirus open reading frame (ORF) 10. In addition, a homolog of the KSHV ORF K3, the modulator of immune recognition-1, was identified. Our data show a close similarity in sequence conservation, gene content, and genomic structure between RFHV and KSHV which strongly supports the grouping of these viral species within the same RV-1 rhadinovirus lineage and the hypothesis that RFHV is the macaque homolog of KSHV.
Collapse
Affiliation(s)
- Timothy M Rose
- Department of Pathobiology, School of Public Health and Community Medicine, University of Washington, Seattle 98195, USA.
| | | | | | | | | |
Collapse
|
42
|
Ruff K, Baskin GB, Simpson L, Murphey-Corb M, Levy LS. Rhesus rhadinovirus infection in healthy and SIV-infected macaques at Tulane National Primate Research Center. J Med Primatol 2003; 32:1-6. [PMID: 12733596 DOI: 10.1034/j.1600-0684.2003.00007.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Rhesus rhadinovirus (RRV) infection was quantified in peripheral blood mononuclear cells (PBMC) from healthy and simian immunodeficiency virus (SIV)-infected rhesus macaques (Macaca mulatta) at the Tulane National Primate Research Center and in a large collection of simian acquired immunodeficiency syndrome--(SAIDS)-associated lymphomas. Quantification of RRV load was performed by real-time PCR using amplification primers specific for the RRV interleukin-6 homologue (RRV vIL-6). RRV infection was detected infrequently and at low levels in PBMC of randomly selected healthy animals. Examination of longitudinally collected PBMC from 22 SIV-infected animals throughout progression to SAIDS revealed similarly low RRV loads that sometimes increased with advancing disease. RRV infection was detected more frequently in the peripheral blood of SIV-infected animals than in healthy animals. Examination of SAIDS-associated lymphomas showed that RRV is rare within the tumor mass, likely representing infection in an occasional tumor-infiltrating cell or contaminating blood. The results indicate that RRV infection in PBMC is not predictive of, and is apparently not required for, development of lymphoma or hyperplastic lymphadenopathy in SIV-infected animals at TNPRC.
Collapse
Affiliation(s)
- K Ruff
- Department of Microbiology and Immunology, Program in Molecular Pathogenesis and Immunity, Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
The study of viral molecular genetics has produced a considerable body of research into the sequences and phylogenetic relationships of human and animal viruses. A review of this literature suggests that humans have been afflicted by viruses throughout their evolutionary history, although the number and types have changed. Some viruses show evidence of long-standing intimate relationship and cospeciation with hominids, while others are more recently acquired from other species, including African monkeys and apes while our line was evolving in that continent, and domesticated animals and rodents since the Neolithic. Viral selection for specific resistance polymorphisms is unlikely, but in conjunction with other parasites, viruses have probably contributed to selection pressure maintaining major histocompatibility complex (MHC) diversity and a strong immune response. They may also have played a role in the loss in our lineage of N-glycolylneuraminic acid (Neu5Gc), a cell-surface receptor for many infectious agents. Shared viruses could have affected hominid species diversity both by promoting divergence and by weeding out less resistant host populations, while viruses carried by humans and other animals migrating out of Africa may have contributed to declines in other populations. Endogenous retroviral insertions since the divergence between humans and chimpanzees were capable of directly affecting hominid evolution through changes in gene expression and development.
Collapse
|
44
|
Tedeschi R, Dillner J, De Paoli P. Laboratory diagnosis of human herpesvirus 8 infection in humans. Eur J Clin Microbiol Infect Dis 2002; 21:831-44. [PMID: 12525917 DOI: 10.1007/s10096-002-0836-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Human herpesvirus 8 (HHV-8) is causally associated with Kaposi's sarcoma, primary effusion lymphoma and multicentric Castleman's disease. Serological and molecular biology assays are used to investigate the biology of this virus in different populations and diseases. Serological assays are mainly used to study the prevalence of the viral infection and to predict the diagnosis of Kaposi's sarcoma and other HHV-8-associated cancers. The appearance of antibodies against lytic antigens precedes the appearance of antibodies against latent antigens, probably explaining the lower sensitivity of assays based on latent HHV-8 antigens. The lack of international reference serum panels is presently the major bottleneck for further progress in the field of HHV-8 serology. Molecular biological assays are an absolute requirement for both the diagnosis and the follow-up of HHV-8 infection. Qualitative methods have been particularly useful to elucidate the mode of transmission and the causal association between HHV-8 and HHV-8-associated diseases. Quantitative methods have become an essential tool to monitor the progression of the infection and the effects of antiviral therapies. This review analyzes the performance of the different serological and molecular biological assays available at present. The main conclusion is that more research is needed to define the most useful laboratory tests for the diagnosis of HHV-8 infection and to establish the clinical role of such tests.
Collapse
Affiliation(s)
- R Tedeschi
- Microbiology-Immunology and Virology Department, Centro di Riferimento Oncologico, IRCCS, via Pedemontana Occ 12, 33081 Aviano, Italy
| | | | | |
Collapse
|
45
|
DeWire SM, McVoy MA, Damania B. Kinetics of expression of rhesus monkey rhadinovirus (RRV) and identification and characterization of a polycistronic transcript encoding the RRV Orf50/Rta, RRV R8, and R8.1 genes. J Virol 2002; 76:9819-31. [PMID: 12208960 PMCID: PMC136498 DOI: 10.1128/jvi.76.19.9819-9831.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rhesus monkey rhadinovirus (RRV) is a close relative of Kaposi's sarcoma-associated herpesvirus (KSHV; human herpesvirus 8). RRV serves as an in vitro and an in vivo model for KSHV, and the mapping of its transcription program during lytic replication is significant since it represents de novo infection in the absence of stimulation with phorbol esters. Further, the RRV lytic system facilitates the making of recombinant viruses, and hence transcription profiling of the wild-type virus is important. Currently, the kinetics of lytic gene expression of RRV, the function of the RRV Orf50/Rta gene, and the presence of the RRV R8 and R8.1 genes are not known. This study details the transcription profile seen during RRV lytic replication and shows that RRV latency-associated nuclear antigen, viral FLIP (vFLIP), and vCyclin are transcribed during the RRV lytic phase. In addition, this study describes the identification of three new spliced products of the RRV Orf50, R8, and R8.1 genes, which are structural homologs of the KSHV Orf50, K8, and K8.1 genes, respectively. Characterization of the RRV Orf50 protein identifies it as a strong transcriptional transactivator capable of activating three early RRV promoters. Interestingly, the KSHV Orf50 transactivator can also activate these simian virus promoters, suggesting that there exists a conservation of gene function between the key transcription factors of KSHV and RRV.
Collapse
Affiliation(s)
- Scott M DeWire
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
46
|
Ablashi DV, Chatlynne LG, Whitman JE, Cesarman E. Spectrum of Kaposi's sarcoma-associated herpesvirus, or human herpesvirus 8, diseases. Clin Microbiol Rev 2002; 15:439-64. [PMID: 12097251 PMCID: PMC118087 DOI: 10.1128/cmr.15.3.439-464.2002] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), discovered in 1994, is a human rhadinovirus (gamma-2 herpesvirus). Unlike other human herpesviruses (herpes simplex virus, Epstein-Barr virus, varicella-zoster virus, cytomegalovirus, HHV-6, and HHV-7), it is not widespread in the general population and has many unique proteins. HHV-8 is strongly associated with all subtypes of Kaposi's sarcoma (KS), multicentric Castleman's disease, and a rare form of B-cell lymphoma, primary effusion lymphoma. In addition, HHV-8 DNA sequences have been found in association with other diseases, but the role of the virus in these diseases is largely unconfirmed and remains controversial. The seroprevalence of HHV-8, based on detection of latent and lytic proteins, is 2 to 5% in healthy donors except in certain geographic areas where the virus is endemic, 80 to 95% in classic KS patients, and 40 to 50% in HIV-1 patients without KS. This virus can be transmitted both sexually and through body fluids (e.g., saliva and blood). HHV-8 is a transforming virus, as evidenced by its presence in human malignancies, by the in vitro transforming properties of several of its viral genes, and by its ability to transform some primary cells in culture. It is not, however, sufficient for transformation, and other cofactors such as immunosuppressive cytokines are involved in the development of HHV-8-associated malignancies. In this article, we review the biology, molecular virology, epidemiology, transmission, detection methods, pathogenesis, and antiviral therapy of this newly discovered human herpesvirus.
Collapse
|
47
|
Schulz TF, Sheldon J, Greensill J. Kaposi's sarcoma associated herpesvirus (KSHV) or human herpesvirus 8 (HHV8). Virus Res 2002; 82:115-26. [PMID: 11885938 DOI: 10.1016/s0168-1702(01)00394-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Lacoste V, Mauclère P, Dubreuil G, Lewis J, Georges-Courbot MC, Gessain A. A novel gamma 2-herpesvirus of the Rhadinovirus 2 lineage in chimpanzees. Genome Res 2001; 11:1511-9. [PMID: 11544194 PMCID: PMC311113 DOI: 10.1101/gr.158601] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Old World monkeys and, recently, African great apes have been shown, by serology and polymerase chain reaction (PCR), to harbor different gamma2-herpesviruses closely related to Kaposi's sarcoma-associated Herpesvirus (KSHV). Although the presence of two distinct lineages of KSHV-like rhadinoviruses, RV1 and RV2, has been revealed in Old World primates (including African green monkeys, macaques, and, recently, mandrills), viruses belonging to the RV2 genogroup have not yet been identified from great apes. Indeed, the three yet known gamma2-herpesviruses in chimpanzees (PanRHV1a/PtRV1, PanRHV1b) and gorillas (GorRHV1) belong to the RV1 group. To investigate the putative existence of a new RV2 Rhadinovirus in chimpanzees and gorillas we have used the degenerate consensus primer PCR strategy for the Herpesviral DNA polymerase gene on 40 wild-caught animals. This study led to the discovery, in common chimpanzees, of a novel gamma2-herpesvirus belonging to the RV2 genogroup, termed Pan Rhadino-herpesvirus 2 (PanRHV2). Use of specific primers and internal oligonucleotide probes demonstrated the presence of this novel gamma2-herpesvirus in three wild-caught animals. Comparison of a 1092-bp fragment of the DNA polymerase obtained from these three animals of the Pan troglodytes troglodytes subspecies, one from Gabon and the two others from Cameroon, revealed <1% of nucleotide divergence. The geographic colocalization as well as the phylogenetic "relationship" of the human and simian gamma2-herpesviruses support the model according to which herpesviruses have diversified from a common ancestor in a manner mediating cospeciation of herpesviruses with their host species. By demonstrating the existence of two distinct Rhadinovirus lineages in common chimpanzees, our finding indicates the possible existence of a novel human gamma2-herpesvirus belonging to the RV2 genogroup.
Collapse
Affiliation(s)
- V Lacoste
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Département du SIDA et des Rétrovirus, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a newly identified gammaherpesvirus associated with all clinical forms of Kaposi's sarcoma (KS), body-cavity-based, primary effusion lymphomas (PELs), and a subset of Castleman's disease (CD). Sequence analysis of the KSHV genome demonstrates an extensive array of genes with homology to cellular genes involved in cell cycle regulation, cell proliferation, apoptosis, and immune modulation. Functional studies indicate that these genes may modify the host cell environment, contributing to the pathogenesis of KSHV-associated disorders. Several KSHV genes have been found to cause dysregulated cell proliferation or to interfere with established tumor suppressor pathways. The epidemiologic association of KSHV with malignancies and the coding features of its genome suggest that it is a new DNA tumor virus.
Collapse
Affiliation(s)
- C Boshoff
- The CRC Viral Oncology Group, Department of Oncology, Sir Jules Thorn Institute, University College London, London W1N 8AA, United Kingdom.
| | | |
Collapse
|
50
|
Boshoff C, Weiss RA. Epidemiology and pathogenesis of Kaposi's sarcoma-associated herpesvirus. Philos Trans R Soc Lond B Biol Sci 2001; 356:517-34. [PMID: 11313009 PMCID: PMC1088442 DOI: 10.1098/rstb.2000.0778] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Kaposi's sarcoma (KS) occurs in Europe and the Mediterranean countries (classic KS) and Africa (endemic KS), immunosuppressed patients (iatrogenic or post-transplant KS) and those with acquired immune deficiency syndrome (AIDS), especially among those who acquired human immunodeficiency virus sexually (AIDS-KS). KS-associated herpesvirus (KSHV or HHV-8) is unusual among herpesviruses in having a restricted geographical distribution. Like KS, which it induces in immunosuppressed or elderly people, the virus is prevalent in Africa, in Mediterranean countries, among Jews and Arabs and certain Amerindians. Distinct KSHV genotypes occur in different parts of the world, but have not been identified as having a differential pathogenesis. KSHV is aetiologically linked to three distinct neoplasms: (i) KS, (ii) primary effusion lymphoma, and (iii) plasmablastic multicentric Castleman's disease. The histogenesis, clonality and pathology of the tumours are described, together with the epidemiology and possible modes of transmission of the virus.
Collapse
Affiliation(s)
- C Boshoff
- Department of Oncology and Molecular Pathology, The Wolfson Institute for Biomedical Research, Cruciform Building, University College London, Gower Street, London WC1 6BT, UK.
| | | |
Collapse
|