1
|
Euring B, Harzer M, Vahlenkamp TW. Extended analyses of rotavirus C (RVC) G-types and P-types reveal new cut-off value for the G-types and reclassification of strains. J Virol 2025; 99:e0004925. [PMID: 40231817 DOI: 10.1128/jvi.00049-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/15/2025] [Indexed: 04/16/2025] Open
Abstract
Rotavirus C (RVC) is an important cause of gastroenteritis in humans and pigs and has also been detected in cattle, ferrets, minks, and dogs. Incidental zoonotic transmissions have been described. In contrast to rotavirus A (RVA), a complete genotyping system for RVC has not yet been established due to limited or incomplete sequence data. In this study, 138 complete nucleotide sequences for VP7 (G-type) and 97 complete nucleotide sequences for VP4 (P-type) of porcine RVC-positive samples have successfully been generated and genotyped. Together with available sequences from the NCBI database, phylogenetic analyses were conducted, cut-off values were re-evaluated, and the current classification system was adapted. Pairwise identity frequency analyses revealed a new cut-off value of 82% instead of the previous 85% for the G-type and confirmed the current cut-off value of 85% for the P-type. This resulted in the identification of 21 G-types and 39 P-types, including 4 new G-types and 10 new P-types. The results of the investigations expand the existing knowledge about the genetics of RVC and demonstrate the enormous diversity of porcine RVC sequences in particular.IMPORTANCEThis article provides a new sequence data set of porcine rotavirus C (RVC) strains. The extended full-length analysis of RVC G-types and P-types enabled us to review the current classification system. According to the guidelines of the rotavirus classification working group (RCWG), the results led to a new cut-off value of RVC G-types and required the reclassification of numerous RVC G-types. In addition, several new genotypes have been found. The present work closes the aforementioned knowledge gap and provides important, comprehensive data for RVC genetic diversity.
Collapse
Affiliation(s)
- Belinda Euring
- Institute of Virology, Veterinary Faculty, University of Leipzig, Leipzig, Germany
| | - Maxi Harzer
- Institute of Virology, Veterinary Faculty, University of Leipzig, Leipzig, Germany
| | - Thomas W Vahlenkamp
- Institute of Virology, Veterinary Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
2
|
Li S, Bian X, Wang J, Wang D, Zhou J, Song J, Wang W, Han N, Zhou J, Li Y, Tao R, Zhu X, Fan B, Dong H, Zhang X, Li B. VP4-Specific IgA level as a correlate of neutralizing antibody and fecal shedding of porcine rotavirus infection. Vet Microbiol 2025; 304:110501. [PMID: 40179488 DOI: 10.1016/j.vetmic.2025.110501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/25/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
Rotavirus (RV) causes diarrhea in children, infants, and young animals globally, with public health implications. Porcine rotavirus (PoRV) leads to economic losses in swine farming. Neutralizing antibodies (NAb) are vital for protecting piglets from intestinal infections. However, which serum and mucosal markers correlate with NAbs against PoRV and relate to post-infection fecal shedding remains unclear, crucial for pathogen-specific detection. We used indirect ELISA to measure IgG/IgA in sera, sIgA in colostrum from recovered pigs, and feces from diarrheal piglets against VP4*, VP7*, VP6, and NSP4*. Analyses showed specific IgA/sIgA levels correlated better with NAb titers than IgG. Among them, VP4*-specific IgA/sIgA had the highest positive correlation with NAb titers in sera (R = 0.848, P < 0.0001) and colostrum (R = 0.865, P < 0.0001). Also, VP4*-specific IgA/sIgA in sera (R= -0.446, P < 0.001) and feces (R= -0.497, P < 0.0001) had the strongest inverse relationship with viral RNA load. Piglet passive protection tests confirmed VP4*-specific IgA's high neutralizing capacity, highly correlated with NAb titers (R = 0.858, P < 0.0001), reducing viral shedding. In conclusion, mucosal IgA/sIgA responses to VP4 are important for PoRV diagnosis assays and vaccine efficacy evaluation.
Collapse
Affiliation(s)
- Sufen Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xianyu Bian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; College of Animal Science, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet 860000, China
| | - Jianxin Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Dandan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
| | - Jinzhu Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
| | - Jiapeng Song
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Wei Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
| | - Nan Han
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Junming Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
| | - Yunchuan Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
| | - Ran Tao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
| | - Xuejiao Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
| | - Hailong Dong
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet 860000, China
| | - Xuehan Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; College of Animal Science, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet 860000, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China.
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet 860000, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China.
| |
Collapse
|
3
|
Jalilvand S, Latifi T, Kachooei A, Mirhoseinian M, Hoseini-Fakhr SS, Behnezhad F, Roohvand F, Shoja Z. Circulating rotavirus strains in children with acute gastroenteritis in Iran, 1986 to 2023 and their genetic/antigenic divergence compared to approved vaccines strains (Rotarix, RotaTeq, ROTAVAC, ROTASIIL) before mass vaccination: Clues for vaccination policy makers. Virus Res 2024; 346:199411. [PMID: 38823689 PMCID: PMC11190746 DOI: 10.1016/j.virusres.2024.199411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
In the present study, first, rotaviruses that caused acute gastroenteritis in children under five years of age during the time before the vaccine was introduced in Iran (1986 to 2023) are reviewed. Subsequently, the antigenic epitopes of the VP7 and VP4/VP8 proteins in circulating rotavirus strains in Iran and that of the vaccine strains were compared and their genetic differences in histo-blood group antigens (HBGAs) and the potential impact on rotavirus infection susceptibility and vaccine efficacy were discussed. Overall data indicate that rotavirus was estimated in about 38.1 % of samples tested. The most common genotypes or combinations were G1 and P[8], or G1P[8]. From 2015 to 2023, there was a decline in the prevalence of G1P[8], with intermittent peaks of genotypes G3P[8] and G9P[8]. The analyses suggested that the monovalent Rotarix vaccine or monovalent vaccines containing the G1P[8] component might be proper in areas with a similar rotavirus genotype pattern and genetic background as the Iranian population where the G1P[8] strain is the most predominant and has the ability to bind to HBGA secretors. While the same concept can be applied to RotaTeq and RotasIIL vaccines, their complex vaccine technology, which involves reassortment, makes them less of a priority. The ROTASIIL vaccine, despite not having the VP4 arm (P[5]) as a suitable protection option, has previously shown the ability to neutralize not only G9-lineage I strains but also other G9-lineages at high titers. Thus, vaccination with the ROTASIIL vaccine may be more effective in Iran compared to RotaTeq. However, considering the rotavirus genotypic pattern, ROTAVAC might not be a good choice for Iran. Overall, the findings of this study provide valuable insights into the prevalence of rotavirus strains and the potential effectiveness of different vaccines in the Iranian and similar populations.
Collapse
Affiliation(s)
- Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Atefeh Kachooei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahtab Mirhoseinian
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farzane Behnezhad
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Zabihollah Shoja
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran; Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
4
|
Uprety T, Soni S, Sreenivasan C, Hause BM, Naveed A, Ni S, Graves AJ, Morrow JK, Meade N, Mellits KH, Adam E, Kennedy MA, Wang D, Li F. Genetic and antigenic characterization of two diarrhoeicdominant rotavirus A genotypes G3P[12] and G14P[12] circulating in the global equine population. J Gen Virol 2024; 105:002016. [PMID: 39163114 PMCID: PMC11335307 DOI: 10.1099/jgv.0.002016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024] Open
Abstract
Equine rotavirus species A (ERVA) G3P[12] and G14P[12] are two dominant genotypes that cause foal diarrhoea with a significant economic impact on the global equine industry. ERVA can also serve as a source of novel (equine-like) rotavirus species A (RVA) reassortants with zoonotic potential as those identified previously in 2013-2019 when equine G3-like RVA was responsible for worldwide outbreaks of severe gastroenteritis and hospitalizations in children. One hurdle to ERVA research is that the standard cell culture system optimized for human rotavirus replication is not efficient for isolating ERVA. Here, using an engineered cell line defective in antiviral innate immunity, we showed that both equine G3P[12] and G14P[12] strains can be rapidly isolated from diarrhoeic foals. The genome sequence analysis revealed that both G3P[12] and G14P[12] strains share the identical genotypic constellation except for VP7 and VP6 segments in which G3P[12] possessed VP7 of genotype G3 and VP6 of genotype I6 and G14P[12] had the combination of VP7 of genotype G14 and VP6 of genotype I2. Further characterization demonstrated that two ERVA genotypes have a limited cross-neutralization. The lack of an in vitro broad cross-protection between both genotypes supported the increased recent diarrhoea outbreaks due to equine G14P[12] in foals born to dams immunized with the inactivated monovalent equine G3P[12] vaccine. Finally, using the structural modelling approach, we provided the genetic basis of the antigenic divergence between ERVA G3P[12] and G14P[12] strains. The results of this study will provide a framework for further investigation of infection biology, pathogenesis and cross-protection of equine rotaviruses.
Collapse
Affiliation(s)
- Tirth Uprety
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Shalini Soni
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Chithra Sreenivasan
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Ben M. Hause
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, South Dakota, 57007, USA
| | - Ahsan Naveed
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Shuisong Ni
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Amy J. Graves
- Equine Diagnostic Solutions, LLC, 1501 Bull Lea Rd, Suite 104, Lexington, Kentucky 40511, USA
| | - Jennifer K. Morrow
- Equine Diagnostic Solutions, LLC, 1501 Bull Lea Rd, Suite 104, Lexington, Kentucky 40511, USA
| | - Nathan Meade
- Division of Microbiology, Brewing, and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Kenneth H. Mellits
- Division of Microbiology, Brewing, and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Emma Adam
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Michael A. Kennedy
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, South Dakota, 57007, USA
| | - Dan Wang
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Feng Li
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| |
Collapse
|
5
|
Zhu X, Wang X, Liu T, Zhang D, Jin T. Design of multi-epitope vaccine against porcine rotavirus using computational biology and molecular dynamics simulation approaches. Virol J 2024; 21:160. [PMID: 39039549 PMCID: PMC11264426 DOI: 10.1186/s12985-024-02440-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
Porcine Rotavirus (PoRV) is a significant pathogen affecting swine-rearing regions globally, presenting a substantial threat to the economic development of the livestock sector. At present, no specific pharmaceuticals are available for this disease, and treatment options remain exceedingly limited. This study seeks to design a multi-epitope peptide vaccine for PoRV employing bioinformatics approaches to robustly activate T-cell and B-cell immune responses. Two antigenic proteins, VP7 and VP8*, were selected from PoRV, and potential immunogenic T-cell and B-cell epitopes were predicted using immunoinformatic tools. These epitopes were further screened according to non-toxicity, antigenicity, non-allergenicity, and immunogenicity criteria. The selected epitopes were linked with linkers to form a novel multi-epitope vaccine construct, with the PADRE sequence (AKFVAAWTLKAAA) and RS09 peptide attached at the N-terminus of the designed peptide chain to enhance the vaccine's antigenicity. Protein-protein docking of the vaccine constructs with toll-like receptors (TLR3 and TLR4) was conducted using computational methods, with the lowest energy docking results selected as the optimal predictive model. Subsequently, molecular dynamics (MD) simulation methods were employed to assess the stability of the protein vaccine constructs and TLR3 and TLR4 receptors. The results indicated that the vaccine-TLR3 and vaccine-TLR4 docking models remained stable throughout the simulation period. Additionally, the C-IMMSIM tool was utilized to determine the immunogenic triggering capability of the vaccine protein, demonstrating that the constructed vaccine protein could induce both cell-mediated and humoral immune responses, thereby playing a role in eliciting host immune responses. In conclusion, this study successfully constructed a multi-epitope vaccine against PoRV and validated the stability and efficacy of the vaccine through computational analysis. However, as the study is purely computational, experimental evaluation is required to validate the safety and immunogenicity of the newly constructed vaccine protein.
Collapse
MESH Headings
- Animals
- Swine
- Molecular Dynamics Simulation
- Rotavirus/immunology
- Rotavirus/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/chemistry
- Computational Biology
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/genetics
- Rotavirus Vaccines/immunology
- Rotavirus Vaccines/chemistry
- Rotavirus Vaccines/genetics
- Rotavirus Infections/prevention & control
- Rotavirus Infections/immunology
- Rotavirus Infections/virology
- Vaccines, Subunit/immunology
- Vaccines, Subunit/genetics
- Vaccines, Subunit/chemistry
- Antigens, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/chemistry
- Molecular Docking Simulation
- Swine Diseases/prevention & control
- Swine Diseases/immunology
- Swine Diseases/virology
- Capsid Proteins/immunology
- Capsid Proteins/genetics
- Capsid Proteins/chemistry
- Vaccine Development
- Immunogenicity, Vaccine
Collapse
Affiliation(s)
- Xiaochen Zhu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Xinyuan Wang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Tingting Liu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Dongchao Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China.
- Tianjin Engineering Technology Center of Livestock Pathogen Detection and Genetic Engineering Vaccine, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China.
| | - Tianming Jin
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.
- Tianjin Engineering Technology Center of Livestock Pathogen Detection and Genetic Engineering Vaccine, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China.
| |
Collapse
|
6
|
Carossino M, Vissani MA, Barrandeguy ME, Balasuriya UBR, Parreño V. Equine Rotavirus A under the One Health Lens: Potential Impacts on Public Health. Viruses 2024; 16:130. [PMID: 38257830 PMCID: PMC10819593 DOI: 10.3390/v16010130] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Group A rotaviruses are a well-known cause of viral gastroenteritis in infants and children, as well as in many mammalian species and birds, affecting them at a young age. This group of viruses has a double-stranded, segmented RNA genome with high genetic diversity linked to point mutations, recombination, and, importantly, reassortment. While initial molecular investigations undertaken in the 1900s suggested host range restriction among group A rotaviruses based on the fact that different gene segments were distributed among different animal species, recent molecular surveillance and genome constellation genotyping studies conducted by the Rotavirus Classification Working Group (RCWG) have shown that animal rotaviruses serve as a source of diversification of human rotavirus A, highlighting their zoonotic potential. Rotaviruses occurring in various animal species have been linked with contributing genetic material to human rotaviruses, including horses, with the most recent identification of equine-like G3 rotavirus A infecting children. The goal of this article is to review relevant information related to rotavirus structure/genomic organization, epidemiology (with a focus on human and equine rotavirus A), evolution, inter-species transmission, and the potential zoonotic role of equine and other animal rotaviruses. Diagnostics, surveillance and the current status of human and livestock vaccines against RVA are also reviewed.
Collapse
Affiliation(s)
- Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Maria Aldana Vissani
- Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar, Buenos Aires B1630AHU, Argentina; (M.A.V.); (M.E.B.)
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| | - Maria E. Barrandeguy
- Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar, Buenos Aires B1630AHU, Argentina; (M.A.V.); (M.E.B.)
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
| | - Udeni B. R. Balasuriya
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Viviana Parreño
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| |
Collapse
|
7
|
Kumar D, Anderson Reever AV, Pittman JS, Springer NL, Mallen K, Roman-Sosa G, Sangewar N, Casey-Moore MC, Bowen MD, Mwangi W, Marthaler DG. Role of Pre-Farrow Natural Planned Exposure of Gilts in Shaping the Passive Antibody Response to Rotavirus A in Piglets. Vaccines (Basel) 2023; 11:1866. [PMID: 38140269 PMCID: PMC10748143 DOI: 10.3390/vaccines11121866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Natural planned exposure (NPE) remains one of the most common methods in swine herds to boost lactogenic immunity against rotaviruses. However, the efficacy of NPE protocols in generating lactogenic immunity has not been investigated before. A longitudinal study was conducted to investigate the dynamics of genotype-specific antibody responses to different doses (3, 2 and 1) of Rotavirus A (RVA) NPE (genotypes G4, G5, P[7] and P[23]) in gilts and the transfer of lactogenic immunity to their piglets. Group 1 gilts received three doses of NPE at 5, 4 and 3 weeks pre-farrow (WPF), group 2 received two doses at 5 and 3 WPF, group 3 received one dose at 5 WPF, and group 4 received no NPE (control group). VP7 (G4 and G5) and truncated VP4* (P[7] and P[23]) antigens of RVA were expressed in mammalian and bacterial expression systems, respectively, and used to optimize indirect ELISAs to determine antibody levels against RVA in gilts and piglets. In day-0 colostrum samples, group 1 had significantly higher IgG titers compared to the control group for all four antigens, and either significantly or numerically higher IgG titers than groups 2 and 3. Group 1 also had significantly higher colostrum IgA levels than the control group for all antigens (except G4), and either significantly or numerically higher IgA levels compared to groups 2 and 3. In piglet serum, group 1 piglets had higher IgG titers for all four antigens at day 0 than the other groups. Importantly, RVA NPE stimulated antibodies in all groups regardless of the treatment doses and prevented G4, G5, P[7] and P[23] RVA fecal shedding prior to weaning in piglets in the absence of viral challenge. The G11 and P[34] RVA genotypes detected from pre-weaning piglets differed at multiple amino acid positions with parent NPE strains. In conclusion, the results of this study suggest that the group 1 NPE regimen (three doses of NPE) resulted in the highest anti-RVA antibody (IgG and IgA) levels in the colostrum/milk, and the highest IgG levels in piglet serum.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (N.S.); (W.M.)
| | - Amanda V. Anderson Reever
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | | | - Nora L. Springer
- Clinical Pathology, Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA;
| | - Kylynn Mallen
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (N.S.); (W.M.)
| | - Gleyder Roman-Sosa
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany;
| | - Neha Sangewar
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (N.S.); (W.M.)
| | - Mary C. Casey-Moore
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30329, USA; (M.C.C.-M.); (M.D.B.)
| | - Michael D. Bowen
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30329, USA; (M.C.C.-M.); (M.D.B.)
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (N.S.); (W.M.)
| | | |
Collapse
|
8
|
Mwape I, Laban NM, Chibesa K, Moono A, Silwamba S, Malisheni MM, Chisenga C, Chauwa A, Simusika P, Phiri M, Simuyandi M, Chilengi R, De Beer C, Ojok D. Characterization of Rotavirus Strains Responsible for Breakthrough Diarrheal Diseases among Zambian Children Using Whole Genome Sequencing. Vaccines (Basel) 2023; 11:1759. [PMID: 38140164 PMCID: PMC10748035 DOI: 10.3390/vaccines11121759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 12/24/2023] Open
Abstract
The occurrence of rotavirus (RV) infection among vaccinated children in high-burden settings poses a threat to further disease burden reduction. Genetically altered viruses have the potential to evade both natural infection and vaccine-induced immune responses, leading to diarrheal diseases among vaccinated children. Studies characterizing RV strains responsible for breakthrough infections in resource-limited countries where RV-associated diarrheal diseases are endemic are limited. We aimed to characterize RV strains detected in fully vaccinated children residing in Zambia using next-generation sequencing. We conducted whole genome sequencing on Illumina MiSeq. Whole genome assembly was performed using Geneious Prime 2023.1.2. A total of 76 diarrheal stool specimens were screened for RV, and 4/76 (5.2%) were RV-positive. Whole genome analysis revealed RVA/Human-wt/ZMB/CIDRZ-RV2088/2020/G1P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2 and RVA/Human-wt/ZMB/CIDRZ-RV2106/2020/G12P[4]-I1-R2-C2-M2-A2-N1-T2-E1-H2 strains were mono and multiple reassortant (exchanged genes in bold) respectively, whilst RVA/Human-wt/ZMB/CIDRZ-RV2150/2020/G12P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1 was a typical Wa-like strain. Comparison of VP7 and VP4 antigenic epitope of breakthrough strains and Rotarix strain revealed several amino acid differences. Variations in amino acids in antigenic epitope suggested they played a role in immune evasion of neutralizing antibodies elicited by vaccination. Findings from this study have the potential to inform national RV vaccination strategies and the design of highly efficacious universal RV vaccines.
Collapse
Affiliation(s)
- Innocent Mwape
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (N.M.L.); (A.C.)
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town 8000, South Africa;
| | - Natasha Makabilo Laban
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (N.M.L.); (A.C.)
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Kennedy Chibesa
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (N.M.L.); (A.C.)
- Division of Medical Virology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein P.O. Box 339, South Africa
| | - Andrew Moono
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (N.M.L.); (A.C.)
| | - Suwilanji Silwamba
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (N.M.L.); (A.C.)
| | | | - Caroline Chisenga
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (N.M.L.); (A.C.)
| | - Adriace Chauwa
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (N.M.L.); (A.C.)
| | - Paul Simusika
- University Teaching Hospitals, Lusaka 10101, Zambia
- Institute of Basic and Biomedical Sciences, Levy Mwanawasa Medical University, Lusaka 10101, Zambia
| | - Mabvuto Phiri
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (N.M.L.); (A.C.)
| | - Michelo Simuyandi
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (N.M.L.); (A.C.)
| | - Roma Chilengi
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (N.M.L.); (A.C.)
| | - Corena De Beer
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town 8000, South Africa;
| | - David Ojok
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (N.M.L.); (A.C.)
| |
Collapse
|
9
|
Mhango C, Banda A, Chinyama E, Mandolo JJ, Kumwenda O, Malamba-Banda C, Barnes KG, Kumwenda B, Jambo KC, Donato CM, Esona MD, Mwangi PN, Steele AD, Iturriza-Gomara M, Cunliffe NA, Ndze VN, Kamng’ona AW, Dennis FE, Nyaga MM, Chaguza C, Jere KC. Comparative whole genome analysis reveals re-emergence of human Wa-like and DS-1-like G3 rotaviruses after Rotarix vaccine introduction in Malawi. Virus Evol 2023; 9:vead030. [PMID: 37305707 PMCID: PMC10256189 DOI: 10.1093/ve/vead030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/12/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
G3 rotaviruses rank among the most common rotavirus strains worldwide in humans and animals. However, despite a robust long-term rotavirus surveillance system from 1997 at Queen Elizabeth Central Hospital in Blantyre, Malawi, these strains were only detected from 1997 to 1999 and then disappeared and re-emerged in 2017, 5 years after the introduction of the Rotarix rotavirus vaccine. Here, we analysed representative twenty-seven whole genome sequences (G3P[4], n = 20; G3P[6], n = 1; and G3P[8], n = 6) randomly selected each month between November 2017 and August 2019 to understand how G3 strains re-emerged in Malawi. We found four genotype constellations that were associated with the emergent G3 strains and co-circulated in Malawi post-Rotarix vaccine introduction: G3P[4] and G3P[6] strains with the DS-1-like genetic backbone genes (G3-P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2 and G3-P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H2), G3P[8] strains with the Wa-like genetic backbone genes (G3-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1), and reassortant G3P[4] strains consisting of the DS-1-like genetic backbone genes and a Wa-like NSP2 (N1) gene (G3-P[4]-I2-R2-C2-M2-A2-N1-T2-E2-H2). Time-resolved phylogenetic trees demonstrated that the most recent common ancestor for each ribonucleic acid (RNA) segment of the emergent G3 strains was between 1996 and 2012, possibly through introductions from outside the country due to the limited genetic similarity with G3 strains which circulated before their disappearance in the late 1990s. Further genomic analysis revealed that the reassortant DS-1-like G3P[4] strains acquired a Wa-like NSP2 genome segment (N1 genotype) through intergenogroup reassortment; an artiodactyl-like VP3 through intergenogroup interspecies reassortment; and VP6, NSP1, and NSP4 segments through intragenogroup reassortment likely before importation into Malawi. Additionally, the emergent G3 strains contain amino acid substitutions within the antigenic regions of the VP4 proteins which could potentially impact the binding of rotavirus vaccine-induced antibodies. Altogether, our findings show that multiple strains with either Wa-like or DS-1-like genotype constellations have driven the re-emergence of G3 strains. The findings also highlight the role of human mobility and genome reassortment events in the cross-border dissemination and evolution of rotavirus strains in Malawi necessitating the need for long-term genomic surveillance of rotavirus in high disease-burden settings to inform disease prevention and control.
Collapse
Affiliation(s)
- Chimwemwe Mhango
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
- Department of Biomedical Sciences, School of Life Sciences and Allied Health Professions, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
| | - Akuzike Banda
- Department of Computer Science, Faculty of Science, University of Malawi, Zomba 305205, Malawi
| | - End Chinyama
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
| | - Jonathan J Mandolo
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
- Department of Biomedical Sciences, School of Life Sciences and Allied Health Professions, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
| | - Orpha Kumwenda
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
| | - Chikondi Malamba-Banda
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK
- Department of Biological Sciences, Academy of Medical Sciences, Malawi University of Science and Technology, Thyolo 310105, Malawi
- Department of Medical Laboratory Sciences, Faculty of Biomedical Sciences and Health Profession, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
| | - Kayla G Barnes
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
| | - Benjamin Kumwenda
- Department of Biomedical Sciences, School of Life Sciences and Allied Health Professions, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
| | - Kondwani C Jambo
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Celeste M Donato
- Enteric Diseases Group, Murdoch Children’s Research Institute, 50 Flemington Road, Parkville, Melbourne 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mathew D Esona
- Diarrhoeal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Medunsa, Pretoria 0204, South Africa
| | - Peter N Mwangi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of Free State, Bloemfontein 9300, South Africa
| | - A Duncan Steele
- Diarrhoeal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Medunsa, Pretoria 0204, South Africa
| | - Miren Iturriza-Gomara
- Centre for Vaccine Innovation and Access, Program for Appropriate Technology in Health (PATH), Geneva 1218, Switzerland
| | - Nigel A Cunliffe
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool L69 7BE, UK
| | - Valentine N Ndze
- Faculty of Health Sciences, University of Buea, PO Box 63, Buea, Cameroon
| | - Arox W Kamng’ona
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
- Department of Biomedical Sciences, School of Life Sciences and Allied Health Professions, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
| | - Francis E Dennis
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, P. O. Box LG 581, Legon, Ghana
| | | | - Chrispin Chaguza
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut 06510, USA
- NIHR Mucosal Pathogens Research Unit, Division of Infection and Immunity, University College London, London WC1E 6BT, UK
- Yale Institute for Global Health, Yale University, New Haven, Connecticut 06510, USA
| | - Khuzwayo C Jere
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK
- Department of Medical Laboratory Sciences, Faculty of Biomedical Sciences and Health Profession, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool L69 7BE, UK
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
10
|
Vaccine evaluation and genotype characterization in children infected with rotavirus in Qatar. Pediatr Res 2023:10.1038/s41390-023-02468-7. [PMID: 36658331 PMCID: PMC10382313 DOI: 10.1038/s41390-023-02468-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/29/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND We characterized and identified the genetic and antigenic variations of circulating rotavirus strains in comparison to used rotavirus vaccines. METHODS Rotavirus-positive samples (n = 231) were collected and analyzed. The VP7 and VP4 genes were sequenced and analyzed against the rotavirus vaccine strains. Antigenic variations were illustrated on the three-dimensional models of surface proteins. RESULTS In all, 59.7% of the hospitalized children were vaccinated, of which only 57.2% received two doses. There were no significant differences between the vaccinated and non-vaccinated groups in terms of clinical outcome. The G3 was the dominant genotype (40%) regardless of vaccination status. Several amino acid changes were identified in the VP7 and VP4 antigenic epitopes compared to the licensed vaccines. The highest variability was seen in the G3 (6 substitutions) and P[4] (11 substitutions) genotypes in comparison to RotaTeq®. In comparison to Rotarix®, G1 strains possessed three amino acid changes in 7-1a and 7-2 epitopes while P[8] strains possessed five amino acid changes in 8-1 and 8-3 epitopes. CONCLUSIONS The current use of Rotarix® vaccine might not be effective in preventing the infection due to the higher numbers of G3-associated cases. The wide range of mutations in the antigenic epitopes compared to vaccine strains may compromise the vaccine's effectiveness. IMPACT The reduced rotavirus vaccine effectiveness necessitate regular evaluation of the vaccine content to ensure optimal protection. We characterized and identified the genetic and antigenic variations of circulating rotavirus strains in comparison to the Rotarix vaccine strain that is used in Qatar. The study highlight the importance for regular monitoring of emerging rotavirus variants and their impact on vaccine effectiveness in young children.
Collapse
|
11
|
Kumar D, Anderson AV, Pittman J, Springer NL, Marthaler DG, Mwangi W. Antibody Response to Rotavirus C Pre-Farrow Natural Planned Exposure to Gilts and Their Piglets. Viruses 2022; 14:2250. [PMID: 36298806 PMCID: PMC9610825 DOI: 10.3390/v14102250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
A longitudinal study was conducted to investigate the dynamics of genotype-specific (G6 and P[5]) antibody response to different doses (3, 2 and 1) of rotavirus C (RVC) natural planned exposure (NPE) in gilt serum, colostrum/milk and piglet serum, and compare with antibody response to rotavirus A NPE (RVA genotypes G4, G5, P[7] and P[23]). G6 and P[5] antigens of RVC were expressed in mammalian and bacterial cells, and used to develop individual indirect ELISAs. For both antigens, group 1 with 3 doses of NPE resulted in significantly higher IgG and IgA levels in colostrum compared to other groups. In piglet serum, group 1 P[5] IgG levels were significantly higher than other study groups at day 0 and 7. Piglet serum had higher IgA levels for group 1 piglets compared to other groups for both antigens. A comparison of colostrum antibody levels to rotavirus A (RVA) and RVC revealed that colostrum RVC IgG and IgA titers were lower than RVA titers irrespective of the G and P-type. Next generation sequencing (NGS) detected same RVC genotypes (G6 and P[5]) circulating in the piglet population under the window of lactogenic immunity. We conclude that the low RVC load in NPE material (real-time PCR Ct-values 32.55, 29.32 and 30.30) failed to induce sufficient maternal immunity in gilts (low colostrum RVC antibody levels) and passively prevent piglets from natural RVC infection in the farrowing room. To the best of our knowledge, this is the first study comparing differences in antibody response to porcine RVA and RVC in a commercial setting.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Amanda V. Anderson
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Jeremy Pittman
- Smithfield Foods, Inc., 434 E Main St., Waverly, VA 23890, USA
| | - Nora L. Springer
- Clinical Pathology, Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
12
|
Kumar D, Shepherd FK, Springer NL, Mwangi W, Marthaler DG. Rotavirus Infection in Swine: Genotypic Diversity, Immune Responses, and Role of Gut Microbiome in Rotavirus Immunity. Pathogens 2022; 11:pathogens11101078. [PMID: 36297136 PMCID: PMC9607047 DOI: 10.3390/pathogens11101078] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Rotaviruses (RVs) are endemic in swine populations, and all swine herds certainly have a history of RV infection and circulation. Rotavirus A (RVA) and C (RVC) are the most common among all RV species reported in swine. RVA was considered most prevalent and pathogenic in swine; however, RVC has been emerging as a significant cause of enteritis in newborn piglets. RV eradication from swine herds is not practically achievable, hence producers’ mainly focus on minimizing the production impact of RV infections by reducing mortality and diarrhea. Since no intra-uterine passage of immunoglobulins occur in swine during gestation, newborn piglets are highly susceptible to RV infection at birth. Boosting lactogenic immunity in gilts by using vaccines and natural planned exposure (NPE) is currently the only way to prevent RV infections in piglets. RVs are highly diverse and multiple RV species have been reported from swine, which also contributes to the difficulties in preventing RV diarrhea in swine herds. Human RV-gut microbiome studies support a link between microbiome composition and oral RV immunogenicity. Such information is completely lacking for RVs in swine. It is not known how RV infection affects the functionality or structure of gut microbiome in swine. In this review, we provide a detailed overview of genotypic diversity of swine RVs, host-ranges, innate and adaptive immune responses to RVs, homotypic and heterotypic immunity to RVs, current methods used for RV management in swine herds, role of maternal immunity in piglet protection, and prospects of investigating swine gut microbiota in providing immunity against rotaviruses.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
- Correspondence: (D.K.); (W.M.); (D.G.M.); Tel.: +1-804-503-1241 (D.K.)
| | - Frances K Shepherd
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55108, USA
| | - Nora L. Springer
- Clinical Pathology, Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
- Correspondence: (D.K.); (W.M.); (D.G.M.); Tel.: +1-804-503-1241 (D.K.)
| | - Douglas G. Marthaler
- Indical Inc., 1317 Edgewater Dr #3722, Orlando, FL 32804, USA
- Correspondence: (D.K.); (W.M.); (D.G.M.); Tel.: +1-804-503-1241 (D.K.)
| |
Collapse
|
13
|
Afchangi A, Jalilvand S, Arashkia A, Latifi T, Farahmand M, Abolghasem Shirazi MM, Mousavi Nasab SD, Marashi SM, Roohvand F, Shoja Z. Co-administration of rotavirus nanospheres VP6 and NSP4 proteins enhanced the anti-NSP4 humoral responses in immunized mice. Microb Pathog 2022; 163:105405. [PMID: 35045328 DOI: 10.1016/j.micpath.2022.105405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/28/2021] [Accepted: 01/12/2022] [Indexed: 11/29/2022]
Abstract
Inconveniences associated with the efficacy and safety of the World Health Organization (WHO) approved/prequalified live attenuated rotavirus (RV) vaccines, sounded for finding alternative non-replicating modals and proper RV antigens (Ags). Herein, we report the development of a RV candidate vaccine based on the combination of RV VP6 nanospheres (S) and NSP4112-175 proteins (VP6S + NSP4). Self-assembled VP6S protein was produced in insect cells. Analyses by western blotting and transmission electron microscopy (TEM) indicated expression of VP6 trimer structures with sizes of ≥140 kDa and presence of VP6S. Four group of mice were immunized (2-dose formulation) intra-peritoneally (IP) by either¨VP6S + NSP4¨ or each protein alone (VP6S or NSP4112-175) emulsified in aluminium hydroxide or control. Results indicated that VP6S + NSP4 formulation induced significant anti-VP6 IgG (P < 0.001) and IgA (P < 0.05) as well as anti-NSP4 IgG (P < 0.001) and enhancement of protective immunity. Analyses of anti-VP6S and anti-NSP4 IgG subclass (IgG1 and IgG2a) showed IgG1/IgG2a ≥6 and IgG1/IgG2a ≥3 ratios, respectively indicating Th2 polarization of immune responses. The combination of VP6S + NSP4 proteins emulsified in aluminum hydroxide adjuvant might present a dual universal, efficient and cost-effective candidate vaccine against RV infection.
Collapse
Affiliation(s)
- Atefeh Afchangi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Arash Arashkia
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Tayebeh Latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farahmand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Seyed Dawood Mousavi Nasab
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Sayed Mahdi Marashi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Zabihollah Shoja
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
14
|
Moore RE, Xu LL, Townsend SD. Prospecting Human Milk Oligosaccharides as a Defense Against Viral Infections. ACS Infect Dis 2021; 7:254-263. [PMID: 33470804 DOI: 10.1021/acsinfecdis.0c00807] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In addition to providing maximal nutritional value for neonatal growth and development, human milk functions as an early defense mechanism against invading pathogens. Human milk oligosaccharides (HMOs), which are abundant in human milk, are a diverse group of heterogeneous carbohydrates with wide ranging protective effects. In addition to promoting the colonization of beneficial intestinal flora, HMOs serve as decoy receptors, effectively blocking the attachment of pathogenic bacteria. HMOs also function as bacteriostatic agents, inhibiting the growth of gram-positive bacteria. Based on this precedence, an emerging area in the field has focused on characterizing the antiviral properties of HMOs. Indeed, HMOs have been evaluated as antiviral agents, with many possessing activity against life-threatening infections. This targeted review provides insight into the known glycan-binding interactions between select HMOs and influenza, rotavirus, respiratory syncytial virus, human immunodeficiency virus, and norovirus. Additionally, we review the role of HMOs in preventing necrotizing enterocolitis, an intestinal disease linked to viral infections. We close with a discussion of what is known broadly regarding human milk oligosaccharides and their interactions with coronaviruses.
Collapse
Affiliation(s)
- Rebecca E. Moore
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Lianyan L. Xu
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Steven D. Townsend
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, Tennessee 37212, United States
| |
Collapse
|
15
|
Harastani HH, Reslan L, Sabra A, Ali Z, Hammadi M, Ghanem S, Hajar F, Matar GM, Dbaibo GS, Zaraket H. Genetic Diversity of Human Rotavirus A Among Hospitalized Children Under-5 Years in Lebanon. Front Immunol 2020; 11:317. [PMID: 32174920 PMCID: PMC7054381 DOI: 10.3389/fimmu.2020.00317] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/07/2020] [Indexed: 12/02/2022] Open
Abstract
Human rotavirus remains a major cause of gastroenteritis worldwide despite the availability of effective vaccines. In this study, we investigated the genetic diversity of rotaviruses circulating in Lebanon. We genetically characterized the VP4 and VP7 genes encoding the outer capsid proteins of 132 rotavirus-associated gastroenteritis specimens, previously identified in hospitalized children (<5 years) from 2011 to 2013 in Lebanon. These included 43 vaccine-breakthrough specimens and the remainder were from non-vaccinated subjects. Phylogenetic analysis of VP4 and VP7 genes revealed distinct clustering compared to the vaccine strains, and several substitutions were identified in the antigenic epitopes of Lebanese specimens. No unique changes were identified in the breakthrough specimens compared to non-breakthroughs that could explain the occurrence of infection in vaccinated children. Further, we report the emergence of a rare P[8] OP354-like strain with a G9 VP7 in Lebanon, possessing high genetic variability in their VP4 compared to vaccine strains. Therefore, human rotavirus strains circulating in Lebanon and globally have accumulated numerous substitutions in their antigenic sites compared to those currently used in the licensed vaccines. The successful spread and continued genetic drift of these strains over time might undermine the effectiveness of the vaccines. The effect of such changes in the antigenic sites on vaccine efficacy remains to be assessed.
Collapse
Affiliation(s)
- Houda H Harastani
- Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Lina Reslan
- Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Ahmad Sabra
- Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Zainab Ali
- Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Moza Hammadi
- Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Soha Ghanem
- Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Farah Hajar
- Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ghassan M Matar
- Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon.,Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ghassan S Dbaibo
- Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hassan Zaraket
- Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon.,Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
16
|
Abstract
Because of their replication mode and segmented dsRNA genome, homologous recombination is assumed to be rare in the rotaviruses. We analyzed 23,627 complete rotavirus genome sequences available in the NCBI Virus Variation database, and found 109 instances of homologous recombination, at least eleven of which prevailed across multiple sequenced isolates. In one case, recombination may have generated a novel rotavirus VP1 lineage. We also found strong evidence for intergenotypic recombination in which more than one sequence strongly supported the same event, particularly between different genotypes of segment 9, which encodes the glycoprotein, VP7. The recombined regions of many putative recombinants showed amino acid substitutions differentiating them from their major and minor parents. This finding suggests that these recombination events were not overly deleterious, since presumably these recombinants proliferated long enough to acquire adaptive mutations in their recombined regions. Protein structural predictions indicated that, despite the sometimes substantial amino acid replacements resulting from recombination, the overall protein structures remained relatively unaffected. Notably, recombination junctions appear to occur nonrandomly with hot spots corresponding to secondary RNA structures, a pattern seen consistently across segments. In total, we found strong evidence for recombination in nine of eleven rotavirus A segments. Only segments 7 (NSP3) and 11 (NSP5) did not show strong evidence of recombination. Collectively, the results of our computational analyses suggest that, contrary to the prevailing sentiment, recombination may be a significant driver of rotavirus evolution and may influence circulating strain diversity.
Collapse
Affiliation(s)
- Irene Hoxie
- Biology Department, Queens College of The City University of New York, 65-30 Kissena Blvd, Queens, NY 11367, USA.,The Graduate Center of The City University of New York, Biology Program, 365 5th Ave, New York, NY 10016, USA
| | - John J Dennehy
- Biology Department, Queens College of The City University of New York, 65-30 Kissena Blvd, Queens, NY 11367, USA.,The Graduate Center of The City University of New York, Biology Program, 365 5th Ave, New York, NY 10016, USA
| |
Collapse
|
17
|
Rodríguez JM, Luque D. Structural Insights into Rotavirus Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1215:45-68. [PMID: 31317495 DOI: 10.1007/978-3-030-14741-9_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
18
|
Rotavirus Controls Activation of the 2'-5'-Oligoadenylate Synthetase/RNase L Pathway Using at Least Two Distinct Mechanisms. J Virol 2015; 89:12145-53. [PMID: 26401041 DOI: 10.1128/jvi.01874-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/17/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED The innate immune response is the first line of defense of the host cell against a viral infection. In turn, viruses have evolved a wide variety of strategies to hide from, and to directly antagonize, the host innate immune pathways. One of these pathways is the 2'-5'-oligoadenylate synthetase (OAS)/RNase L pathway. OAS is activated by double-stranded RNA (dsRNA) to produce 2'-5' oligoadenylates, which are the activators of RNase L; this enzyme degrades viral and cellular RNAs, restricting viral infection. It has been recently found that the carboxy-terminal domain (CTD) of rotavirus VP3 has a 2'-5'-phosphodiesterase (PDE) activity that is able to functionally substitute for the PDE activity of the mouse hepatitis virus ns2 protein. This particular phosphodiesterase cleaves the 2'-5'-phosphodiester bond of the oligoadenylates, antagonizing the OAS/RNase L pathway. However, whether this activity of VP3 is relevant during the replication cycle of rotavirus is not known. Here, we demonstrate that after rotavirus infection the OAS/RNase L complex becomes activated; however, the virus is able to control its activity using at least two distinct mechanisms. A virus-cell interaction that occurs during or before rotavirus endocytosis triggers a signal that prevents the early activation of RNase L, while later on the control is taken by the newly synthesized VP3. Cosilencing the expression of VP3 and RNase L in infected cells yields viral infectious particles at levels similar to those obtained in control infected cells, where no genes were silenced, suggesting that the capping activity of VP3 is not essential for the formation of infectious viral particles. IMPORTANCE Rotaviruses represent an important cause of severe gastroenteritis in the young of many animal species, including humans. In this work, we have found that the OAS/RNase L pathway is activated during rotavirus infection, but the virus uses two different strategies to prevent the deleterious effects of this innate immune response of the cell. Early during virus entry, the initial interactions of the viral particle with the cell result in the inhibition of RNase L activity during the first hours of the infection. Later on, once viral proteins are synthesized, the phosphodiesterase activity of VP3 degrades the cellular 2'-5'-oligoadenylates, which are potent activators of RNase L, preventing its activation. This work demonstrates that the OAS/RNase L pathway plays an important role during infection and that the phosphodiesterase activity of VP3 is relevant during the replication cycle of the virus.
Collapse
|
19
|
Jalilvand S, Marashi SM, Shoja Z. Rotavirus VP6 preparations as a non-replicating vaccine candidates. Vaccine 2015; 33:3281-7. [PMID: 26021725 DOI: 10.1016/j.vaccine.2015.05.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/05/2015] [Accepted: 05/13/2015] [Indexed: 01/03/2023]
Abstract
Rotavirus (RV) structural proteins VP4 and VP7, located on the surface of viral particles, elicit neutralizing antibodies (Abs) and are therefore considered to be important components of RV vaccines. However, despite inducing neutralizing Abs, limits of cross-neutralizing activity and lack of full correlation with protection limit the usefulness of these proteins as protective agents against RV disease. VP6 protein, which forms the middle layer of RV particles, is discussed as an alternative vaccine candidate since it can induce cross-protective immune responses against different RV strains although the Ab raised is not neutralizing. This report reviews different functions of VP6 that can lead to considering it as an alternative vaccine against RV disease.
Collapse
Affiliation(s)
- Somayeh Jalilvand
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahdi Marashi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
20
|
Dormitzer PR. Rotaviruses. MANDELL, DOUGLAS, AND BENNETT'S PRINCIPLES AND PRACTICE OF INFECTIOUS DISEASES 2015:1854-1864.e4. [DOI: 10.1016/b978-1-4557-4801-3.00152-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
21
|
VP7 of Rhesus monkey rotavirus RRV contributes to diabetes acceleration in association with an elevated anti-rotavirus antibody response. Virology 2014; 468-470:504-509. [DOI: 10.1016/j.virol.2014.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/12/2014] [Accepted: 09/09/2014] [Indexed: 11/19/2022]
|
22
|
Günaydın G, Álvarez B, Lin Y, Hammarström L, Marcotte H. Co-expression of anti-rotavirus proteins (llama VHH antibody fragments) in Lactobacillus: development and functionality of vectors containing two expression cassettes in tandem. PLoS One 2014; 9:e96409. [PMID: 24781086 PMCID: PMC4004553 DOI: 10.1371/journal.pone.0096409] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/07/2014] [Indexed: 12/15/2022] Open
Abstract
Rotavirus is an important pediatric pathogen, causing severe diarrhea and being associated with a high mortality rate causing approximately 500 000 deaths annually worldwide. Even though some vaccines are currently available, their efficacy is lower in the developing world, as compared to developed countries. Therefore, alternative or complementary treatment options are needed in the developing countries where the disease burden is the largest. The effect of Lactobacillus in promoting health and its use as a vehicle for delivery of protein and antibody fragments was previously shown. In this study, we have developed co-expression vectors enabling Lactobacillus paracasei BL23 to produce two VHH fragments against rotavirus (referred to as anti-rotavirus proteins 1 and 3, ARP1 and ARP3) as secreted and/or surface displayed products. ARP1 and ARP3 fragments were successfully co-expressed as shown by Western blot and flow cytometry. In addition, engineered Lactobacillus produced VHH antibody fragments were shown to bind to a broad range of rotavirus serotypes (including the human rotavirus strains 69M, Va70, F45, DS1, Wa and ST3 and simian rotavirus strains including RRV and SA11), by flow cytometry and ELISA. Hereby, we have demonstrated for the first time that when RRV was captured by one VHH displayed on the surface of co-expressor Lactobacillus, targeting other epitope was possible with another VHH secreted from the same bacterium. Therefore, Lactobacillus producing two VHH antibody fragments may potentially serve as treatment against rotavirus with a reduced risk of development of escape mutants. This co-expression and delivery platform can also be used for delivery of VHH fragments against a variety of mucosal pathogens or production of other therapeutic molecules.
Collapse
Affiliation(s)
- Gökçe Günaydın
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institute at Karolinska University Hospital, Stockholm, Sweden
| | - Beatriz Álvarez
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institute at Karolinska University Hospital, Stockholm, Sweden
| | - Yin Lin
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institute at Karolinska University Hospital, Stockholm, Sweden
| | - Lennart Hammarström
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institute at Karolinska University Hospital, Stockholm, Sweden
| | - Harold Marcotte
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institute at Karolinska University Hospital, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
23
|
Pane JA, Webster NL, Coulson BS. Rotavirus activates lymphocytes from non-obese diabetic mice by triggering toll-like receptor 7 signaling and interferon production in plasmacytoid dendritic cells. PLoS Pathog 2014; 10:e1003998. [PMID: 24676425 PMCID: PMC3968122 DOI: 10.1371/journal.ppat.1003998] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 01/30/2014] [Indexed: 12/15/2022] Open
Abstract
It has been proposed that rotavirus infection promotes the progression of genetically-predisposed children to type 1 diabetes, a chronic autoimmune disease marked by infiltration of activated lymphocytes into pancreatic islets. Non-obese diabetic (NOD) mice provide a model for the human disease. Infection of adult NOD mice with rhesus monkey rotavirus (RRV) accelerates diabetes onset, without evidence of pancreatic infection. Rather, RRV spreads to the pancreatic and mesenteric lymph nodes where its association with antigen-presenting cells, including dendritic cells, induces cellular maturation. RRV infection increases levels of the class I major histocompatibility complex on B cells and proinflammatory cytokine expression by T cells at these sites. In autoimmunity-resistant mice and human mononuclear cells from blood, rotavirus-exposed plasmacytoid dendritic cells contribute to bystander polyclonal B cell activation through type I interferon expression. Here we tested the hypothesis that rotavirus induces bystander activation of lymphocytes from NOD mice by provoking dendritic cell activation and proinflammatory cytokine secretion. NOD mouse splenocytes were stimulated with rotavirus and assessed for activation by flow cytometry. This stimulation activated antigen-presenting cells and B cells independently of virus strain and replicative ability. Instead, activation depended on virus dose and was prevented by blockade of virus decapsidation, inhibition of endosomal acidification and interference with signaling through Toll-like receptor 7 and the type I interferon receptor. Plasmacytoid dendritic cells were more efficiently activated than conventional dendritic cells by RRV, and contributed to the activation of B and T cells, including islet-autoreactive CD8+ T cells. Thus, a double-stranded RNA virus can induce Toll-like receptor 7 signaling, resulting in lymphocyte activation. Our findings suggest that bystander activation mediated by type I interferon contributes to the lymphocyte activation observed following RRV infection of NOD mice, and may play a role in diabetes acceleration by rotavirus.
Collapse
Affiliation(s)
- Jessica A. Pane
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicole L. Webster
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Barbara S. Coulson
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
24
|
Hemming M, Vesikari T. Genetic diversity of G1P[8] rotavirus VP7 and VP8* antigens in Finland over a 20-year period: No evidence for selection pressure by universal mass vaccination with RotaTeq® vaccine. INFECTION GENETICS AND EVOLUTION 2013; 19:51-8. [PMID: 23831933 DOI: 10.1016/j.meegid.2013.06.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 06/20/2013] [Accepted: 06/25/2013] [Indexed: 12/13/2022]
Abstract
Two live-attenuated oral vaccines (Rotarix™ and Rotateq®) against rotavirus gastroenteritis were licensed in 2006 and have been introduced into National Immunization Programs (NIPs) of several countries. Large scale use of rotavirus vaccines might cause antigenic pressure on circulating rotavirus types or lead to selection of new rotaviruses thus decreasing vaccine efficacy. We examined the nucleotide and amino acid sequences of the surface proteins VP7 and VP4 (cleaved to VP8(*) and VP5(*)) of a total of 108 G1P[8] rotavirus strains collected over a 20-year period from 1992, including the years 2006-2009 when rotavirus vaccine (mainly Rotarix™) was available, and the years 2009-2012 after implementation of RotaTeq® vaccine into the NIP of Finland. In G1 VP7 no changes at amino acid level were observed. In VP8(*) periodical fluctuation of the sublineage over the study period was found with multiple changes both at nucleotide and amino acid levels. Most amino acid changes were in the dominant antigenic epitopes of VP8(*). A change in VP8(*) sublineage occurred between 2008 and 2009, with a temporal correlation to the use of Rotarix™ up to 30% coverage in the period. In contrast, no antigenic changes in the VP8(*) protein appeared to be correlated to the exclusive use of RotaTeq® vaccine after 2009. Nevertheless, long-term surveillance of antigenic changes in VP4 and also VP7 proteins in wild-type rotavirus strains is warranted in countries with large scale use of the currently licensed live oral rotavirus vaccines.
Collapse
Affiliation(s)
- Maria Hemming
- Vaccine Research Center, University of Tampere, Tampere, Finland.
| | | |
Collapse
|
25
|
Ghosh A, Chattopadhyay S, Chawla-Sarkar M, Nandy P, Nandy A. In silico study of rotavirus VP7 surface accessible conserved regions for antiviral drug/vaccine design. PLoS One 2012; 7:e40749. [PMID: 22844409 PMCID: PMC3406019 DOI: 10.1371/journal.pone.0040749] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/12/2012] [Indexed: 11/23/2022] Open
Abstract
Background Rotaviral diarrhoea kills about half a million children annually in developing countries and accounts for one third of diarrhea related hospitalizations. Drugs and vaccines against the rotavirus are handicapped, as in all viral diseases, by the rapid mutational changes that take place in the DNA and protein sequences rendering most of these ineffective. As of now only two vaccines are licensed and approved by the WHO (World Health Organization), but display reduced efficiencies in the underdeveloped countries where the disease is more prevalent. We approached this issue by trying to identify regions of surface exposed conserved segments on the surface glycoproteins of the virion, which may then be targeted by specific peptide vaccines. We had developed a bioinformatics protocol for these kinds of problems with reference to the influenza neuraminidase protein, which we have refined and expanded to analyze the rotavirus issue. Results Our analysis of 433 VP7 (Viral Protein 7 from rotavirus) surface protein sequences across 17 subtypes encompassing mammalian hosts using a 20D Graphical Representation and Numerical Characterization method, identified four possible highly conserved peptide segments. Solvent accessibility prediction servers were used to identify that these are predominantly surface situated. These regions analyzed through selected epitope prediction servers for their epitopic properties towards possible T-cell and B-cell activation showed good results as epitopic candidates (only dry lab confirmation). Conclusions The main reasons for the development of alternative vaccine strategies for the rotavirus are the failure of current vaccines and high production costs that inhibit their application in developing countries. We expect that it would be possible to use the protein surface exposed regions identified in our study as targets for peptide vaccines and drug designs for stable immunity against divergent strains of the rotavirus. Though this study is fully dependent on computational prediction algorithms, it provides a platform for wet lab experiments.
Collapse
Affiliation(s)
- Ambarnil Ghosh
- Physics Department, Jadavpur University, Kolkata, West Bengal, India
| | - Shiladitya Chattopadhyay
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Papiya Nandy
- Physics Department, Jadavpur University, Kolkata, West Bengal, India
| | - Ashesh Nandy
- Centre for Interdisciplinary Research and Education, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
26
|
Structural insights into the coupling of virion assembly and rotavirus replication. Nat Rev Microbiol 2012; 10:165-77. [PMID: 22266782 DOI: 10.1038/nrmicro2673] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Viral replication is rapid and robust, but it is far from a chaotic process. Instead, successful production of infectious progeny requires that events occur in the correct place and at the correct time. Rotaviruses (segmented double-stranded RNA viruses of the Reoviridae family) seem to govern their replication through ordered disassembly and assembly of a triple-layered icosahedral capsid. In recent years, high-resolution structural data have provided unprecedented insight into these events. In this Review, we explore the current understanding of rotavirus replication and how it compares to replication of other Reoviridae family members.
Collapse
|
27
|
Cross-linking of rotavirus outer capsid protein VP7 by antibodies or disulfides inhibits viral entry. J Virol 2011; 85:10509-17. [PMID: 21849465 DOI: 10.1128/jvi.00234-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Antibodies that neutralize rotavirus infection target outer coat proteins VP4 and VP7 and inhibit viral entry. The structure of a VP7-Fab complex (S. T. Aoki, et al., Science 324:1444-1447, 2009) led us to reclassify epitopes into two binding regions at inter- and intrasubunit boundaries of the calcium-dependent trimer. It further led us to show that antibodies binding at the intersubunit boundary inhibit uncoating of the virion outer layer. We have now tested representative antibodies for each of the defined structural epitope regions and find that antibodies recognizing epitopes in either binding region neutralize by cross-linking VP7 trimers. Antibodies that bind at the intersubunit junction neutralize as monovalent Fabs, while those that bind at the intrasubunit region require divalency. The VP7 structure has also allowed us to design a disulfide cross-linked VP7 mutant which recoats double-layered particles (DLPs) as efficiently as does wild-type VP7 but which yields particles defective in cell entry as determined both by lack of infectivity and by loss of α-sarcin toxicity in the presence of recoated particles. We conclude that dissociation of the VP7 trimer is an essential step in viral penetration into cells.
Collapse
|
28
|
Mellado MCM, Mena JA, Lopes A, Ramírez OT, Carrondo MJT, Palomares LA, Alves PM. Impact of physicochemical parameters on in vitro assembly and disassembly kinetics of recombinant triple-layered rotavirus-like particles. Biotechnol Bioeng 2009; 104:674-86. [PMID: 19623564 DOI: 10.1002/bit.22430] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Virus-like particles constitute potentially relevant vaccine candidates. Nevertheless, their behavior in vitro and assembly process needs to be understood in order to improve their yield and quality. In this study we aimed at addressing these issues and for that purpose triple- and double-layered rotavirus-like particles (TLP 2/6/7 and DLP 2/6, respectively) size and zeta potential were measured using dynamic light scattering at different physicochemical conditions, namely pH, ionic strength, and temperature. Both TLP and DLP were stable within a pH range of 3-7 and at 5-25 degrees C. Aggregation occurred at 35-45 degrees C and their disassembly became evident at 65 degrees C. The isoelectric points of TLP and DLP were 3.0 and 3.8, respectively. In vitro kinetics of TLP disassembly was monitored. Ionic strength, temperature, and the chelating agent employed determined disassembly kinetics. Glycerol (10%) stabilized TLP by preventing its disassembly. Disassembled TLP was able to reassemble by dialysis at high calcium conditions. VP7 monomers were added to DLP in the presence of calcium to follow in vitro TLP assembly kinetics; its assembly rate being mostly affected by pH. Finally, DLP and TLP were found to coexist under certain conditions as determined from all reaction products analyzed by capillary electrophoresis. Overall, these results contribute to the design of new strategies for the improvement of TLP yield and quality by reducing the VP7 detachment from TLP.
Collapse
|
29
|
Abstract
Trypsin primes rotavirus for efficient infectivity by cleaving the spike protein, VP4, into VP8* and VP5*. A recombinant VP5* fragment has a trimeric, folded-back structure. Comparison of this structure with virion spikes suggests that a rearrangement, analogous to those of enveloped virus fusion proteins, may mediate membrane penetration by rotavirus during entry. To detect this inferred rearrangement of virion-associated authentic VP5*, we raised conformation-specific monoclonal antibodies against the recombinant VP5* fragment in its putative post-membrane penetration conformation. Using one of these antibodies, we demonstrate that rotavirus uncoating triggers a conformational change in the cleaved VP4 spike to yield rearranged VP5*.
Collapse
|
30
|
Aoki ST, Settembre EC, Trask SD, Greenberg HB, Harrison SC, Dormitzer PR. Structure of rotavirus outer-layer protein VP7 bound with a neutralizing Fab. Science 2009; 324:1444-7. [PMID: 19520960 DOI: 10.1126/science.1170481] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Rotavirus outer-layer protein VP7 is a principal target of protective antibodies. Removal of free calcium ions (Ca2+) dissociates VP7 trimers into monomers, releasing VP7 from the virion, and initiates penetration-inducing conformational changes in the other outer-layer protein, VP4. We report the crystal structure at 3.4 angstrom resolution of VP7 bound with the Fab fragment of a neutralizing monoclonal antibody. The Fab binds across the outer surface of the intersubunit contact, which contains two Ca2+ sites. Mutations that escape neutralization by other antibodies suggest that the same region bears the epitopes of most neutralizing antibodies. The monovalent Fab is sufficient to neutralize infectivity. We propose that neutralizing antibodies against VP7 act by stabilizing the trimer, thereby inhibiting the uncoating trigger for VP4 rearrangement. A disulfide-linked trimer is a potential subunit immunogen.
Collapse
Affiliation(s)
- Scott T Aoki
- Laboratory of Molecular Medicine, Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
31
|
Dormitzer PR, Ulmer JB, Rappuoli R. Structure-based antigen design: a strategy for next generation vaccines. Trends Biotechnol 2008; 26:659-67. [PMID: 18977045 PMCID: PMC7114313 DOI: 10.1016/j.tibtech.2008.08.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 08/29/2008] [Accepted: 08/29/2008] [Indexed: 01/09/2023]
Abstract
Vaccine design is progressing from empiricism towards the increasingly rational presentation of the targets of protective immunity. Nevertheless, most current vaccine antigens are essentially the native macromolecules of pathogens. These molecules are adapted to evade, not induce, immunity. High resolution structures reveal the electrostatic surfaces recognized by neutralizing antibodies and the architectures underlying these surfaces, thereby identifying which substructures must be left intact and which can be changed to optimize biochemical and immunologic performance. Armed with detailed structural information, we can engineer optimized antigens that are more stable, homogeneous, and efficiently produced, making immunization more practical and affordable. Understanding the structural basis for immunogenicity and immunodominance will allow us to improve vaccine efficacy and broaden the range of vaccine-preventable diseases.
Collapse
Affiliation(s)
- Philip R Dormitzer
- Novartis Vaccines and Diagnostics, Inc., 350 Massachusetts Ave., Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
32
|
Marcotte H, Pant N, Hammarström L. Engineered lactobody-producing lactobacilli: a novel form of therapy against rotavirus infection. Future Virol 2008. [DOI: 10.2217/17460794.3.4.327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Rotavirus infections remain a major cause of morbidity and mortality worldwide, accounting for an estimated 600,000 deaths each year. New vaccines have been released recently but the lag time between vaccine administration and induction of an immune response can be critical in epidemic situations. A model system has been developed in which Lactobacillus, a ‘Generally Regarded As Safe’ microorganism, can be transformed with antibody fragment-encoding vectors. This allows in situ production of functional variable domains of llama heavy chain antibodies (VHH antibody fragments) against rotavirus in the intestinal tract. The modified bacteria were shown to be protective in a mouse pup model. Our approach represents a novel system for the induction of passive immunity that can be rapidly applied to populations at risk, for example through drinking water, rehydrating solutions or as a food supplement.
Collapse
Affiliation(s)
- Harold Marcotte
- Division of Clinical Immunology, Karolinska Institutet at Karolinska University Hospital Huddinge, SE-141 86, Stockholm, Sweden
| | - Neha Pant
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska Huddinge, SE-141 86 Stockholm, Sweden
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska Huddinge, SE-141 86 Stockholm, Sweden
| |
Collapse
|
33
|
Gualtero DF, Guzmán F, Acosta O, Guerrero CA. Amino acid domains 280–297 of VP6 and 531–554 of VP4 are implicated in heat shock cognate protein hsc70-mediated rotavirus infection. Arch Virol 2007; 152:2183-96. [PMID: 17876681 DOI: 10.1007/s00705-007-1055-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Accepted: 08/08/2007] [Indexed: 12/17/2022]
Abstract
The rotavirus infection mechanism seems to be a multi-step process which is still not fully understood. The heat shock cognate protein hsc70 has been proposed as being a co-receptor molecule for rotavirus entry into susceptible cells. In this work, an attempt was made to determine the existence of possible domains for VP4 and VP6 binding to hsc70. We selected amino acid sequences 531-554 from VP4 and 280-297 from VP6 on the basis of already recognized sequences for binding to hsc70. This study determined that DLPs and synthetic peptides from VP6 (aa 280-297) and VP4 (aa 531-554), individually or in combination, inhibited rotavirus RRV, YM and WA entry into MA104 and Caco-2 cells in an additive and dose-dependent manner. Hyperimmune sera against these synthetic peptides blocked infection by infectious TLPs. Capture ELISA results showed that DLPs interact with hsc70, probably through VP6 as the specific interaction between hcs70 and DLPs was disrupted by a VP6 peptide. These results suggest that VP6 takes part during rotavirus cell entry by binding to hsc70. This, as well as previous work, provides insight concerning the function of hsc70 within a multi-step model of rotavirus entry.
Collapse
Affiliation(s)
- D F Gualtero
- Departamento de Ciencias Fisiológicas, Facultad de Medicina-Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | | |
Collapse
|
34
|
Fleming FE, Graham KL, Taniguchi K, Takada Y, Coulson BS. Rotavirus-neutralizing antibodies inhibit virus binding to integrins alpha 2 beta 1 and alpha 4 beta 1. Arch Virol 2007; 152:1087-101. [PMID: 17318737 DOI: 10.1007/s00705-007-0937-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 01/08/2007] [Indexed: 11/25/2022]
Abstract
Rotavirus outer capsid proteins VP5(*), VP8(*) and VP7 elicit neutralizing, protective antibodies. The alpha 2 beta 1 integrin is a cellular receptor for rotavirus that is bound by VP5(*). Some rotaviruses also recognize the alpha 4 beta 1 integrin. In this study, the effects of antibodies to rotavirus on virus binding to recombinant alpha 2 beta 1 and alpha 4 beta 1 expressed on K562 cells were determined. All neutralizing monoclonal antibodies to VP5(*) tested (YO-2C2, 2G4, 1A10) and two to VP7 (RV-3:2, RV-4:2) inhibited rotavirus binding to alpha 2 beta 1. Rotavirus binding to alpha 4 beta 1 was reduced by 2G4 and neutralizing antibody F45:2, directed to VP7. However, a neutralizing antibody to VP8(*) (RV-5:2) and one to VP7 (RV-3:1) did not affect rotavirus binding to these integrins. Virus-cell binding was unaffected by non-neutralizing antibody RVA to the rotavirus inner capsid protein VP6. The attachment of human rotavirus strain Wa to these integrins was inhibited by infection sera with neutralizing activity collected from two children hospitalised with severe rotavirus gastroenteritis. A negative reference serum did not affect rotavirus-cell attachment. As the binding of rotaviruses to alpha 2 beta 1 and alpha 4 beta 1 is inhibited by neutralizing antibodies to VP5(*) and VP7, and serum from children with rotavirus disease, rotavirus recognition of these integrins may be important for host infection.
Collapse
Affiliation(s)
- F E Fleming
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia
| | | | | | | | | |
Collapse
|
35
|
Nelson CD, Palermo LS, Hafenstein SL, Parrish CR. Different mechanisms of antibody-mediated neutralization of parvoviruses revealed using the Fab fragments of monoclonal antibodies. Virology 2007; 361:283-93. [PMID: 17217977 PMCID: PMC1991280 DOI: 10.1016/j.virol.2006.11.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 10/25/2006] [Accepted: 11/29/2006] [Indexed: 11/20/2022]
Abstract
Antibody binding and neutralization are major host defenses against viruses, yet the mechanisms are often not well understood. Eight monoclonal antibodies and their Fab fragments were tested for neutralization of canine parvovirus and feline panleukopenia virus. All IgGs neutralized >85% of virus infectivity. Two Fabs neutralized when present at 5 nM, while the others gave little or no neutralization even at 20-100 nM. The antibodies bind two antigenic sites on the capsids which overlap the binding site of the host transferrin receptor (TfR). There was no specific correlation between Fab binding affinity and neutralization. All Fabs reduced capsid binding of virus to purified feline TfR in vitro, but the highly neutralizing Fabs were more efficient competitors. All partially prevented binding and uptake of capsids by feline TfR on cells. The virus appears adapted to allow some infectivity in the presence of at least low levels of antibodies.
Collapse
Affiliation(s)
- Christian D.S. Nelson
- Baker Institute for Animal Health, and Department of Microbiology and Immunology, Collegeof Veterinary Medicine, Cornell University, Ithaca, NY 14853 USA
| | - Laura S. Palermo
- Baker Institute for Animal Health, and Department of Microbiology and Immunology, Collegeof Veterinary Medicine, Cornell University, Ithaca, NY 14853 USA
| | - Susan L. Hafenstein
- Department of Biological Sciences, Lilley Hall, Purdue University, West Lafayette, IN 47907-1392 USA
| | - Colin R. Parrish
- Baker Institute for Animal Health, and Department of Microbiology and Immunology, Collegeof Veterinary Medicine, Cornell University, Ithaca, NY 14853 USA
- *Corresponding author: Colin R. Parrish, Baker Institute for Animal Health, and Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853 USA Telephone: (607) 256-5649 Fax: (607) 256-5608
| |
Collapse
|
36
|
Abstract
Rotaviruses, the leading cause of severe dehydrating diarrhea in infants and young children worldwide, are non-enveloped viruses formed by three concentric layers of protein that enclose a genome of double-stranded RNA. These viruses have a specific cell tropism in vivo, infecting primarily the mature enterocytes of the villi of the small intestine. It has been found that rotavirus cell entry is a complex multistep process, in which different domains of the rotavirus surface proteins interact sequentially with different cell surface molecules, which act as attachment and entry receptors. These recently described molecules include integrins (alpha2beta1, alphavbeta3, and alphaxbeta2) and a heat shock protein (hsc70), and have been found to be associated with cell membrane lipid microdomains. The requirement for several cell molecules, which might need to be present and organized in a precise fashion, could explain the cell and tissue tropism of these viruses. This review focuses on recent data describing the interactions between the virus and its receptors, the role of lipid microdomains in rotavirus infection, and the possible mechanism of rotavirus cell entry.
Collapse
Affiliation(s)
- S Lopez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mexico.
| | | |
Collapse
|
37
|
Trask SD, Dormitzer PR. Assembly of highly infectious rotavirus particles recoated with recombinant outer capsid proteins. J Virol 2006; 80:11293-304. [PMID: 16971442 PMCID: PMC1642144 DOI: 10.1128/jvi.01346-06] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Assembly of the rotavirus outer capsid is the final step of a complex pathway. In vivo, the later steps include a maturational membrane penetration that is dependent on the scaffolding activity of a viral nonstructural protein. In vitro, simply adding the recombinant outer capsid proteins VP4 and VP7 to authentic double-layered rotavirus subviral particles (DLPs) in the presence of calcium and acidic pH increases infectivity by a factor of up to 10(7), yielding particles as infectious as authentic purified virions. VP4 must be added before VP7 for high-level infectivity. Steep dependence of infectious recoating on VP4 concentration suggests that VP4-VP4 interactions, probably oligomerization, precede VP4 binding to particles. Trypsin sensitivity analysis identifies two populations of VP4 associated with recoated particles: properly mounted VP4 that can be specifically primed by trypsin, and nonspecifically associated VP4 that is degraded by trypsin. A full complement of properly assembled VP4 is not required for efficient infectivity. Minimal dependence of recoating on VP7 concentration suggests that VP7 binds DLPs with high affinity. The parameters for efficient recoating and the characterization of recoated particles suggest a model in which, after a relatively weak interaction between oligomeric VP4 and DLPs, VP7 binds the particles and locks VP4 in place. Recoating will allow the use of infectious modified rotavirus particles to explore rotavirus assembly and cell entry and could lead to practical applications in novel immunization strategies.
Collapse
Affiliation(s)
- Shane D Trask
- Children's Hospital, Enders 673, 320 Longwood Ave., Boston, MA 02115, USA
| | | |
Collapse
|
38
|
Corthésy B, Benureau Y, Perrier C, Fourgeux C, Parez N, Greenberg H, Schwartz-Cornil I. Rotavirus anti-VP6 secretory immunoglobulin A contributes to protection via intracellular neutralization but not via immune exclusion. J Virol 2006; 80:10692-9. [PMID: 16956954 PMCID: PMC1641769 DOI: 10.1128/jvi.00927-06] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Immunoglobulin A (IgA) monoclonal antibodies (MAbs) directed at the conserved inner core protein VP6 of rotavirus, such as the IgA7D9 MAb, provide protective immunity in adult and suckling mice when delivered systemically. While these antibodies do not have traditional in vitro neutralizing activity, they could mediate their antiviral activity either by interfering with the viral replication cycle along the IgA secretory pathway or by acting at mucosal surfaces as secretory IgA and excluding virus from target enterocytes. We sought to determine the critical step at which antirotaviral activity was initiated by the IgA7D9 MAb. The IgA7D9 MAb appeared to directly interact with purified triple-layer viral particles, as shown by immunoprecipitation and immunoblotting. However, protection was not conferred by passively feeding mice with the secretory IgA7D9 MAb. This indicates that the secretory IgA7D9 MAb does not confer protection by supplying immune exclusion activity in vivo. We next evaluated the capacity of polymeric IgA7D9 MAb to neutralize rotavirus intracellularly during transcytosis. We found that when polymeric IgA7D9 MAb was applied to the basolateral pole of polarized Caco-2 intestinal cells, it significantly reduced viral replication and prevented the loss of barrier function induced by apical exposure of the cell monolayer to rotavirus, supporting the conclusion that the antibody carries out its antiviral activity intracellularly. These findings identify a mechanism whereby the well-conserved immunodominant VP6 protein can function as a target for heterotypic antibodies and protective immunity.
Collapse
Affiliation(s)
- Blaise Corthésy
- R & D Laboratory of the Division of Immunology and Allergy, DMI-CHUV, Rue du Bugnon, 1011 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
39
|
Graham KL, Takada Y, Coulson BS. Rotavirus spike protein VP5* binds alpha2beta1 integrin on the cell surface and competes with virus for cell binding and infectivity. J Gen Virol 2006; 87:1275-1283. [PMID: 16603530 DOI: 10.1099/vir.0.81580-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rotaviruses recognize several cell-surface molecules, including the alpha2beta1 integrin, and the processes of rotavirus cell attachment and entry appear to be multifactorial. The VP5* subunit of the rotavirus spike protein VP4 contains the alpha2beta1 ligand sequence Asp-Gly-Glu at residues 308-310. Binding to alpha2beta1 and infectivity of monkey rotavirus strain RRV and human rotavirus strain Wa, but not porcine rotavirus strain CRW-8, are inhibited by peptides containing Asp-Gly-Glu. Asp308 and Gly309 are necessary for the binding of RRV VP5* (aa 248-474) to expressed I domain of the alpha2 integrin subunit. Here, the ability of RRV VP5* to bind cells and affect rotavirus-integrin interactions was determined. Interestingly, VP5* bound to cells at 4 and 37 degrees C, both via alpha2beta1 and independently of this integrin. Prior VP5* binding at 37 degrees C eliminated RRV binding to cellular alpha2beta1 and reduced RRV and Wa infectivity in MA104 cells by 38-46 %. VP5* binding did not affect the infectivity of CRW-8. VP5* binding at 4 degrees C did not affect permissive-cell infection by RRV, indicating an energy requirement for VP5* competition with virus for infectivity. Mutagenesis of VP5* Asp308 and Gly309 eliminated VP5* binding to alpha2beta1 and the VP5* inhibition of rotavirus cell binding and infection, but not alpha2beta1-independent cell binding by VP5*. These studies show for the first time that expressed VP5* binds cell-surface alpha2beta1 using Asp308 and Gly309 and inhibits the infection of homologous and heterologous rotaviruses that use alpha2beta1 as a receptor.
Collapse
Affiliation(s)
- Kate L Graham
- Department of Microbiology and Immunology, The University of Melbourne, Victoria 3010, Australia
| | - Yoshikazu Takada
- The University of California, Davis, UC Davis Medical Center, 4645 2nd Avenue, Sacramento, CA 95817, USA
| | - Barbara S Coulson
- Department of Microbiology and Immunology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
40
|
Perez CA, Eichwald C, Burrone O, Mendoza D. Rotavirus vp7 antigen produced by Lactococcus lactis induces neutralizing antibodies in mice. J Appl Microbiol 2006; 99:1158-64. [PMID: 16238746 DOI: 10.1111/j.1365-2672.2005.02709.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To determine if live recombinant Lactococcus lactis strains expressing rotavirus VP7 antigen are immunogenic in mice. METHODS AND RESULTS Using the food-grade lactic acid bacterium L. lactis as a carrier, we expressed VP7, the major rotavirus outer shell protein and one of the main components of the infective particle, as a cytoplasmic, secreted or cell wall anchored forms. Our results showed that recombinant L. lactis strains secreting VP7 proved to be more immunogenic than strains containing the antigen in the cytoplasm or anchored to the cell wall. CONCLUSIONS This is the first demonstration that recombinant L. lactis producing VP7 can induce the production of a neutralizing antibody response against rotavirus by the intragastric route. SIGNIFICANCE AND IMPACT OF THE STUDY Rotaviruses are the single most important aetiological agents of severe diarrhoea of infants and young children worldwide and have been estimated to be responsible for 650 000-800 000 deaths per year of children younger than 5 years old in development countries. Thus, the development of a safe and effective vaccine has been a global public health goal. Although two of five mice orally inoculated with L. lactis strains secreting VP7 elicited a specific-antibody response, these strains could be very useful to be used as a prototype to develop a new generation of protective rotavirus vaccines.
Collapse
Affiliation(s)
- C A Perez
- Instituto de Biología Molecular y Celular de Rosario (IBR) and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha, Rosario, Argentina
| | | | | | | |
Collapse
|
41
|
Benureau Y, Huet JC, Charpilienne A, Poncet D, Cohen J. Trypsin is associated with the rotavirus capsid and is activated by solubilization of outer capsid proteins. J Gen Virol 2005; 86:3143-3151. [PMID: 16227238 DOI: 10.1099/vir.0.81045-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rotavirus capsid is made up of three concentric protein layers. The outer layer, consisting of VP7 and VP4, is lost during virus entry into the host cell. Rotavirus field isolates can be adapted to high-titre growth in tissue culture by treatment with trypsin and by supplementing the culture medium with trypsin, which cleaves VP4 into two fragments, VP8* and VP5*. It is known that protease inhibitors reduce the replication of rotavirus in vitro and in vivo and also diminish disease symptoms in a mouse model. To clarify the molecular basis of these observations, a series of assays were conducted on purified rotavirus particles grown in the presence of trypsin. Results of HPLC and mass spectrometry followed by N-terminal sequencing showed that viral particles contain molecules of trypsin. When associated with triple-layer particles (TLPs), trypsin is inactive and not accessible to protease inhibitors, such as aprotinin. When the outer layer is solubilized by calcium-chelating agents, VP5*, VP8* and VP7 are released and the associated trypsin is activated, allowing cleavage of the viral capsid proteins, as well as other exogenous proteins. It is shown that addition of trypsin inhibitors significantly reduces synthesis of viral mRNA and viral proteins in cells and has a major inhibitory effect if present when virus enters the cell. These data indicate that incorporation of trypsin into rotavirus particles may enhance its infectivity.
Collapse
Affiliation(s)
- Yann Benureau
- Virologie Moléculaire et Structurale, CNRS-INRA, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Jean Claude Huet
- Biochimie et Structure des Protéines, INRA, 78352 Jouy-en-Josas Cedex, France
| | - Annie Charpilienne
- Virologie Moléculaire et Structurale, CNRS-INRA, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Didier Poncet
- Virologie Moléculaire et Structurale, CNRS-INRA, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Jean Cohen
- Virologie Moléculaire et Structurale, CNRS-INRA, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
42
|
Abstract
Rotavirus entry into a cell is a complex multistep process in which different domains of the rotavirus surface proteins interact with different cell surface molecules, which act as attachment and entry receptors. These recently described molecules include several integrins and a heat shock protein, which have been found to be associated with cell membrane lipid microdomains. The requirement during viral entry for several cell molecules, which might be required to be present and organized in a precise fashion, could explain the selective cell and tissue tropism of these viruses. This review focuses on recent data describing the virus-receptor interactions, the role of lipid microdomains in rotavirus infection and the mechanism of rotavirus cell entry.
Collapse
Affiliation(s)
- Susana López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | | |
Collapse
|
43
|
|
44
|
Jayaram H, Estes MK, Prasad BVV. Emerging themes in rotavirus cell entry, genome organization, transcription and replication. Virus Res 2004; 101:67-81. [PMID: 15010218 DOI: 10.1016/j.virusres.2003.12.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rotaviruses, causative agents of gastroenteritis in young animals and humans, are large icosahedral viruses with a complex architecture. The double-stranded RNA (dsRNA) genome composed of 11 segments, which codes for 6 structural and 6 non-structural proteins, is enclosed within three concentric capsid layers. In addition to facilitating host-specific interactions, the design of the capsid architecture in rotaviruses as in other dsRNA viruses should also be conducive to the requirement of transcribing the enclosed genome segments repeatedly and simultaneously within the capsid interior. Several non-structural proteins facilitate the subsequent processes of genome replication and packaging. Electron cryomicroscopy studies of intact virions, recombinant virus-like particles, functional complexes, together with recent X-ray crystallographic studies on rotavirus proteins have provided structural insights into the capsid architecture, genome organization, antibody interaction, cell entry, trypsin-enhanced infectivity, endogenous transcription and replication. These studies underscore contrasting features and unifying themes between rotavirus and other dsRNA viruses.
Collapse
Affiliation(s)
- Hariharan Jayaram
- Program in Structural and Computational Biology and Molecular Biophysics, Houston, TX 77030, USA
| | | | | |
Collapse
|
45
|
Dimmock NJ, Hardy SA. Valency of antibody binding to virions and its determination by surface plasmon resonance. Rev Med Virol 2004; 14:123-35. [PMID: 15027004 DOI: 10.1002/rmv.419] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
All IgGs are homobivalent, but their ability to bind bivalently to the surface of a virus particle depends mainly on a favourable spacing of cognate epitopes and the angle that the FAb arm makes with the virus surface. If the angle of binding forces the second FAb arm to point into solution, monovalent binding is inevitable. This IgG will have the same affinity as its FAb, will be less stably bound than if it were bound bivalently, cannot cross-link epitopes on the surface of a virion, and cannot neutralise by cross-linking surface proteins. However, at moderate IgG concentrations, monovalently bound IgG can reduce infectivity by aggregating virions, a phenomenon that cannot occur with IgG bound bivalently. This review describes how surface plasmon resonance can be used to determine the valency of IgG binding to enveloped and non-enveloped virus particles, and discusses the implications of this new methodology.
Collapse
Affiliation(s)
- Nigel J Dimmock
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|