1
|
Liu L, Bano F, Conca DV, Thorsteinsson K, Jayaweera SW, Avinens D, Pace H, Lövheim H, Olofsson A, Bally M. Recruitment of apolipoprotein E facilitates Herpes simplex virus 1 attachment and release. NPJ VIRUSES 2025; 3:13. [PMID: 40295730 PMCID: PMC11846946 DOI: 10.1038/s44298-025-00099-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 02/03/2025] [Indexed: 04/30/2025]
Abstract
Human apolipoprotein E (ApoE) has been shown to play important roles during primary infection and pathogenesis of several viruses. Furthermore, epidemiological studies suggest that interactions between ApoE 4 and herpes simplex virus type-1 (HSV1) could associate with higher risk of Alzheimer's disease. Nevertheless, little is known about the ApoE-HSV1 interactions at molecular levels. Here, we investigate the effects of ApoE on HSV1 infection in vitro. Our results show that ApoE promotes HSV1 growth, which is attributed to the incorporation of ApoE into HSV1 particles. Using both biological and biophysical approaches, we conclude that ApoE-coated HSV1 demonstrates a more efficient attachment to and faster release from the cell surface. Mechanistic studies reveal that ApoE modifies HSV1 interactions with heparan sulfate, thereby modulating interactions between HSV1 and the cell surface. Overall, our results provide new insights into the roles of ApoE during HSV1 infections which may inspire future studies on Alzheimer's disease etiology.
Collapse
Affiliation(s)
- Lifeng Liu
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden.
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.
| | - Fouzia Bano
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Dario Valter Conca
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Konrad Thorsteinsson
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | | | - Damien Avinens
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Hudson Pace
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Hugo Lövheim
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Department of Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden
| | - Anders Olofsson
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Marta Bally
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden.
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.
| |
Collapse
|
2
|
Salgado B, Izquierdo B, Zapata A, Sastre I, Kristen H, Terreros J, Mejías V, Bullido MJ, Aldudo J. Cholesterol Modulation Attenuates the AD-like Phenotype Induced by Herpes Simplex Virus Type 1 Infection. Biomolecules 2024; 14:603. [PMID: 38786010 PMCID: PMC11117519 DOI: 10.3390/biom14050603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Cholesterol, a crucial component of cell membranes, influences various biological processes, including membrane trafficking, signal transduction, and host-pathogen interactions. Disruptions in cholesterol homeostasis have been linked to congenital and acquired conditions, including neurodegenerative disorders such as Alzheimer's disease (AD). Previous research from our group has demonstrated that herpes simplex virus type I (HSV-1) induces an AD-like phenotype in several cell models of infection. This study explores the interplay between cholesterol and HSV-1-induced neurodegeneration. The impact of cholesterol was determined by modulating its levels with methyl-beta-cyclodextrin (MβCD) using the neuroblastoma cell lines SK-N-MC and N2a. We have found that HSV-1 infection triggers the intracellular accumulation of cholesterol in structures resembling endolysosomal/autophagic compartments, a process reversible upon MβCD treatment. Moreover, MβCD exhibits inhibitory effects at various stages of HSV-1 infection, underscoring the importance of cellular cholesterol levels, not only in the viral entry process but also in subsequent post-entry stages. MβCD also alleviated several features of AD-like neurodegeneration induced by viral infection, including lysosomal impairment and intracellular accumulation of amyloid-beta peptide (Aβ) and phosphorylated tau. In conclusion, these findings highlight the connection between cholesterol, neurodegeneration, and HSV-1 infection, providing valuable insights into the underlying mechanisms of AD.
Collapse
Affiliation(s)
- Blanca Salgado
- Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autonoma de Madrid, 28049 Madrid, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Beatriz Izquierdo
- Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autonoma de Madrid, 28049 Madrid, Spain
- Hospital Clinico San Carlos, 28040 Madrid, Spain
| | - Alba Zapata
- Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | - Isabel Sastre
- Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autonoma de Madrid, 28049 Madrid, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Henrike Kristen
- Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | - Julia Terreros
- Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | - Víctor Mejías
- Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autonoma de Madrid, 28049 Madrid, Spain
- Institute for Bioengineering of Catalunya (IBEC), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - María J Bullido
- Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autonoma de Madrid, 28049 Madrid, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Hospital La Paz Institute for Health Research, IdiPAZ, 28046 Madrid, Spain
| | - Jesús Aldudo
- Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autonoma de Madrid, 28049 Madrid, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Hospital La Paz Institute for Health Research, IdiPAZ, 28046 Madrid, Spain
| |
Collapse
|
3
|
Salgado B, Sastre I, Bullido MJ, Aldudo J. Herpes Simplex Virus Type 1 Induces AD-like Neurodegeneration Markers in Human Progenitor and Differentiated ReNcell VM Cells. Microorganisms 2023; 11:1205. [PMID: 37317179 DOI: 10.3390/microorganisms11051205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 06/16/2023] Open
Abstract
An increasing body of evidence strongly suggests that infections or reactivations of herpes simplex virus type 1 (HSV-1) may be closely linked to Alzheimer's disease (AD). Promising results have been obtained using cell and animal models of HSV-1 infection, contributing to the understanding of the molecular mechanisms linking HSV-1 infection and AD neurodegeneration. ReNcell VM is a human neural stem cell line that has been used as a model system to study the impact of various infectious agents on the central nervous system. In this study, we demonstrate the suitability of the ReNcell VM cell line for developing a new in vitro model of HSV-1 infection. By following standard differentiation protocols, we were able to derive various nervous cell types, including neurons, astrocytes, and oligodendrocytes, from neural precursors. Additionally, we demonstrated the susceptibility of ReNcell VM cells, including precursor and differentiated cells, to HSV-1 infection and subsequent viral-induced AD-like neurodegeneration. Our findings support the use of this cell line to generate a new research platform for investigating AD neuropathology and its most significant risk factors, which may lead to important discoveries in the context of this highly impactful disease.
Collapse
Affiliation(s)
- Blanca Salgado
- Centro de Biologia Molecular "Severo Ochoa" (C.S.I.C.-U.A.M.), Universidad Autonoma de Madrid, 28049 Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Isabel Sastre
- Centro de Biologia Molecular "Severo Ochoa" (C.S.I.C.-U.A.M.), Universidad Autonoma de Madrid, 28049 Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Maria J Bullido
- Centro de Biologia Molecular "Severo Ochoa" (C.S.I.C.-U.A.M.), Universidad Autonoma de Madrid, 28049 Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
| | - Jesus Aldudo
- Centro de Biologia Molecular "Severo Ochoa" (C.S.I.C.-U.A.M.), Universidad Autonoma de Madrid, 28049 Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
| |
Collapse
|
4
|
Sait A, Angeli C, Doig AJ, Day PJR. Viral Involvement in Alzheimer's Disease. ACS Chem Neurosci 2021; 12:1049-1060. [PMID: 33687205 PMCID: PMC8033564 DOI: 10.1021/acschemneuro.0c00719] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the presence of β-amyloid plaques (Aβ) and neurofibrillary tangles (NFTs) in the brain. The prevalence of the disease is increasing and is expected to reach 141 million cases by 2050. Despite the risk factors associated with the disease, there is no known causative agent for AD. Clinical trials with many drugs have failed over the years, and no therapeutic has been approved for AD. There is increasing evidence that pathogens are found in the brains of AD patients and controls, such as human herpes simplex virus-1 (HSV-1). Given the lack of a human model, the route for pathogen entry into the brain remains open for scrutiny and may include entry via a disturbed blood-brain barrier or the olfactory nasal route. Many factors can contribute to the pathogenicity of HSV-1, such as the ability of HSV-1 to remain latent, tau protein phosphorylation, increased accumulation of Aβ invivo and in vitro, and repeated cycle of reactivation if immunocompromised. Intriguingly, valacyclovir, a widely used drug for the treatment of HSV-1 and HSV-2 infection, has shown patient improvement in cognition compared to controls in AD clinical studies. We discuss the potential role of HSV-1 in AD pathogenesis and argue for further studies to investigate this relationship.
Collapse
Affiliation(s)
- Ahmad Sait
- Division
of Evolution and Genomic Sciences, Faculty of Biology, Medicine and
Health, The University of Manchester, Manchester M13 9PL, United Kingdom
- Manchester
Institute of Biotechnology, The University
of Manchester, Manchester M1 7DN, United Kingdom
- Faculty
of Applied Medical Science, Medical Laboratory Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Cristian Angeli
- Division
of Evolution and Genomic Sciences, Faculty of Biology, Medicine and
Health, The University of Manchester, Manchester M13 9PL, United Kingdom
- Manchester
Institute of Biotechnology, The University
of Manchester, Manchester M1 7DN, United Kingdom
| | - Andrew J. Doig
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United
Kingdom
| | - Philip J. R. Day
- Division
of Evolution and Genomic Sciences, Faculty of Biology, Medicine and
Health, The University of Manchester, Manchester M13 9PL, United Kingdom
- Manchester
Institute of Biotechnology, The University
of Manchester, Manchester M1 7DN, United Kingdom
- Department
of Medicine, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
5
|
LAMP2 deficiency attenuates the neurodegeneration markers induced by HSV-1 infection. Neurochem Int 2021; 146:105032. [PMID: 33781848 DOI: 10.1016/j.neuint.2021.105032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 11/22/2022]
Abstract
Mounting evidence suggests a major role of infectious agents in the pathogenesis of sporadic Alzheimer's disease (AD). Among them, herpes simplex virus type 1 (HSV-1) infection has emerged as a major factor in the etiology of AD. HSV-1 is able to induce some of the main alterations of the disease such as hyperphosphorylation of tau protein and accumulation of amyloid-β peptide. Functional genomic analysis of a cell model of HSV-1 infection and oxidative stress developed in our laboratory revealed lysosomal system to be the main pathway altered, and the lysosome-associated membrane protein 2 (LAMP2) gene one of the most strongly modulated genes. The aim of this work is to study LAMP2 as an AD candidate gene and to investigate its role in the neurodegeneration induced by HSV-1 using a LAMP2 knockdown cell model. LAMP2 deficiency led to a significant reduction of viral DNA replication and formation of infectious particles. In addition, tau hyperphosphorylation and inhibition of Aβ secretion induced by the virus were attenuated by the absence of LAMP2. Finally, genetic association studies revealed LAMP2 genetic variants to be associated with AD risk. In summary, our data indicate that LAMP2 could be a suitable candidate to mediate the AD-like phenotype caused by HSV-1.
Collapse
|
6
|
Vasefi M, Ghaboolian-Zare E, Abedelwahab H, Osu A. Environmental toxins and Alzheimer's disease progression. Neurochem Int 2020; 141:104852. [PMID: 33010393 DOI: 10.1016/j.neuint.2020.104852] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/05/2020] [Accepted: 09/18/2020] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, which causes progressive memory loss and cognitive decline. Effective strategies to treat or prevent remains one of the most challenging undertakings in the medical field. AD is a complex and multifactorial disease that involves several risk factors. Aging and genetic factors both play important roles in the onset of the AD, however; certain environmental factors have been reported to increase the risk of AD. Chronic exposure to toxins has been seen as an environmental factor that may increase the risk of developing a neurodegenerative disease such as AD. Exposure to metals and biotoxins produced by bacteria, molds, and viruses may contribute to the cognitive decline and pathophysiology associated with AD. Toxins may contribute to the pathology of the disease through various mechanisms such as deposition of amyloid-beta (Aβ) plaques and tangles in the brain, induction of apoptosis, inflammation, or oxidative damage. Here, we will review how toxins affect brain physiology with a focus on mechanisms by which toxins may contribute to the development and progression of AD. A better understanding of these mechanisms may help contribute towards the development of an effective strategy to slow the progression of AD.
Collapse
Affiliation(s)
- Maryam Vasefi
- Department Biology, Lamar University, Beaumont, TX, United States.
| | | | | | - Anthony Osu
- Department Biology, Lamar University, Beaumont, TX, United States
| |
Collapse
|
7
|
Zhang LN, Li MJ, Shang YH, Zhao FF, Huang HC, Lao FX. Independent and Correlated Role of Apolipoprotein E ɛ4 Genotype and Herpes Simplex Virus Type 1 in Alzheimer's Disease. J Alzheimers Dis 2020; 77:15-31. [PMID: 32804091 DOI: 10.3233/jad-200607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The ɛ4 allele of the Apolipoprotein E (APOE) gene in individuals infected by Herpes simplex virus type 1 (HSV-1) has been demonstrated to be a risk factor in Alzheimer's disease (AD). APOE-ɛ4 reduces the levels of neuronal cholesterol, interferes with the transportation of cholesterol, impairs repair of synapses, decreases the clearance of neurotoxic peptide amyloid-β (Aβ), and promotes the deposition of amyloid plaque, and eventually may cause development of AD. HSV-1 enters host cells and can infect the olfactory system, trigeminal ganglia, entorhinal cortex, and hippocampus, and may cause AD-like pathological changes. The lifecycle of HSV-1 goes through a long latent phase. HSV-1 induces neurotropic cytokine expression with pro-inflammatory action and inhibits antiviral cytokine production in AD. It should be noted that interferons display antiviral activity in HSV-1-infected AD patients. Reactivated HSV-1 is associated with infectious burden in cognitive decline and AD. Finally, HSV-1 DNA has been confirmed as present in human brains and is associated with APOEɛ4 in AD. HSV-1 and APOEɛ4 increase the risk of AD and relate to abnormal autophagy, higher concentrations of HSV-1 DNA in AD, and formation of Aβ plaques and neurofibrillary tangles.
Collapse
Affiliation(s)
- Li-Na Zhang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, P.R. China.,College of Biochemical Engineering, Beijing Union University, Beijing, P.R. China
| | - Meng-Jie Li
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, P.R. China.,College of Biochemical Engineering, Beijing Union University, Beijing, P.R. China
| | - Ying-Hui Shang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, P.R. China.,College of Biochemical Engineering, Beijing Union University, Beijing, P.R. China
| | - Fan-Fan Zhao
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, P.R. China.,College of Biochemical Engineering, Beijing Union University, Beijing, P.R. China
| | - Han-Chang Huang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, P.R. China.,College of Biochemical Engineering, Beijing Union University, Beijing, P.R. China
| | - Feng-Xue Lao
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, P.R. China.,College of Biochemical Engineering, Beijing Union University, Beijing, P.R. China
| |
Collapse
|
8
|
Benayas B, Sastre I, López-Martín S, Oo A, Kim B, Bullido MJ, Aldudo J, Yáñez-Mó M. Tetraspanin CD81 regulates HSV-1 infection. Med Microbiol Immunol 2020; 209:489-498. [PMID: 32500359 PMCID: PMC7271138 DOI: 10.1007/s00430-020-00684-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023]
Abstract
Different members of the tetraspanin superfamily have been described to regulate different virus infectious cycles at several stages: viral entry, viral replication or virion exit or infectivity. In addition, tetraspanin CD81 regulates HIV reverse transcription through its association with the dNTP hydrolase SAMHD1. Here we aimed at analysing the role of CD81 in Herpes simplex virus 1 infectivity using a neuroblastoma cell model. For this purpose, we generated a CD81 KO cell line using the CRISPR/Cas9 technology. Despite being CD81 a plasma membrane protein, CD81 KO cells showed no defects in viral entry nor in the expression of early protein markers. In contrast, glycoprotein B and C, which require viral DNA replication for their expression, were significantly reduced in CD81 KO infected cells. Indeed, HSV-1 DNA replication and the formation of new infectious particles were severely compromised in CD81 KO cells. We could not detect significant changes in SAMHD1 total expression levels, but a relocalization into endosomal structures was observed in CD81 KO cells. In summary, CD81 KO cells showed impaired viral DNA replication and produced greatly diminished viral titers.
Collapse
Affiliation(s)
- Beatriz Benayas
- Centro de Biología Molecular, "Severo Ochoa" (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, 28049, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), 28006, Madrid, Spain
| | - Isabel Sastre
- Centro de Biología Molecular, "Severo Ochoa" (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, 28049, Madrid, Spain
- Centro de Investigacion Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Soraya López-Martín
- Centro de Biología Molecular, "Severo Ochoa" (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, 28049, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), 28006, Madrid, Spain
| | - Adrian Oo
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Drug Discovery, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Baek Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Drug Discovery, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Maria J Bullido
- Centro de Biología Molecular, "Severo Ochoa" (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, 28049, Madrid, Spain
- Centro de Investigacion Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Investigación Sanitaria "Hospital la Paz" (IdIPaz), Madrid, Spain
| | - Jesús Aldudo
- Centro de Biología Molecular, "Severo Ochoa" (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, 28049, Madrid, Spain.
- Centro de Investigacion Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Instituto de Investigación Sanitaria "Hospital la Paz" (IdIPaz), Madrid, Spain.
| | - María Yáñez-Mó
- Centro de Biología Molecular, "Severo Ochoa" (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, 28049, Madrid, Spain.
- Centro de Biología Molecular Severo Ochoa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), 28006, Madrid, Spain.
- Departamento de Bioquímica y Biología Molecular, UAM, Centro de Biología Molecular Severo Ochoa, Lab 412, C/Nicolás Cabrera, 1, 28049, Madrid, Spain.
| |
Collapse
|
9
|
The Innate Immune Response to Herpes Simplex Virus 1 Infection Is Dampened in the Newborn Brain and Can Be Modulated by Exogenous Interferon Beta To Improve Survival. mBio 2020; 11:mBio.00921-20. [PMID: 32457247 PMCID: PMC7251210 DOI: 10.1128/mbio.00921-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Herpes simplex virus (HSV) is a ubiquitous human pathogen affecting 50 to 80% of the population in North America and Europe. HSV infection is commonly asymptomatic in the adult population but can result in fatal encephalitis in the newborn. Current treatment with acyclovir has improved mortality in the newborn; however, severe neurologic sequelae are still a major concern following HSV encephalitis. For this reason, there is a critical need to better understand the underlying differences in the immune response between the two age groups that could be used to develop more effective treatments. In this study, we investigated differences in the innate immune response to viral infection in the brains of newborn and adult mice. We found that, similar to humans, newborn mice are more susceptible to HSV infection than the adult. Increased susceptibility was associated with dampened innate immune responses in the newborn brain that could be rescued by administering interferon beta. Newborns are particularly susceptible to severe forms of herpes simplex virus 1 (HSV-1) infection, including encephalitis and multisystemic disseminated disease. The underlying age-dependent differences in the immune response that explain this increased susceptibility relative to the adult population remain largely understudied. Using a murine model of HSV-1 infection, we found that newborn mice are largely susceptible to intracranial and intraperitoneal challenge while adult mice are highly resistant. This age-dependent difference correlated with differential basal-level expression of components of innate immune signaling pathways, which resulted in dampened interferon (IFN) signaling in the newborn brain. To explore the possibility of modulating the IFN response in the newborn brain to recapitulate the adult phenotype, we administered exogenous IFN-β in the context of disseminated HSV-1 infection. IFN-β treatment resulted in significantly increased survival and delayed viral neuroinvasion in the newborn. These effects were associated with changes in the type I IFN response in the brain, reduced viral replication in the periphery, and the stabilization of the blood-brain barrier (BBB). Our study reveals important age-dependent differences in the innate immune response to HSV-1 infection and suggests a contribution of the BBB and the brain parenchyma in mediating the increased susceptibility to HSV-1 infection observed in the newborn. These results could provide the basis for potential new therapeutic strategies for life-threatening HSV-1 infection in newborns.
Collapse
|
10
|
Devanand DP, Andrews H, Kreisl WC, Razlighi Q, Gershon A, Stern Y, Mintz A, Wisniewski T, Acosta E, Pollina J, Katsikoumbas M, Bell KL, Pelton GH, Deliyannides D, Prasad KM, Huey ED. Antiviral therapy: Valacyclovir Treatment of Alzheimer's Disease (VALAD) Trial: protocol for a randomised, double-blind,placebo-controlled, treatment trial. BMJ Open 2020; 10:e032112. [PMID: 32034019 PMCID: PMC7045215 DOI: 10.1136/bmjopen-2019-032112] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/16/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION After infection, herpes simplex virus-1 (HSV1) becomes latent in the trigeminal ganglion and can enter the brain via retrograde axonal transport. Recurrent reactivation of HSV1 may lead to neurodegeneration and Alzheimer's disease (AD) pathology. HSV1 (oral herpes) and HSV2 (genital herpes) can trigger amyloid beta-protein (Aβ) aggregation and HSV1 DNA is common in amyloid plaques. Anti-HSV drugs reduce Aβ and phosphorylated tau accumulation in cell-culture models. Cognitive impairment is greater in patients with HSV seropositive, and antiviral drugs show robust efficacy against peripheral HSV infection. Recent studies of electronic health records databases demonstrate that HSV infections increase dementia risk, and that antiviral medication treatment reduces this risk. The generic antiviral drug valacyclovir was superior to placebo in improving memory in a schizophrenia pilot trial but has not been tested in AD. METHODS AND ANALYSIS In patients with mild AD who test positive for HSV1 or HSV2 serum antibodies, valacyclovir, repurposed as an anti-AD drug, will be compared with placebo (lactose pills) in 130 patients (65 valacyclovir and 65 placebo) in a randomised, double-blind, 78-week phase II proof-of-concept trial. Patients on valacyclovir, dose-titrated from 2 g to a targeted oral dose of 4 g daily, compared with placebo, are hypothesised to show smaller cognitive and functional decline, and, using 18F-Florbetapir positron emission tomography (PET) and 18F-MK-6240 PET imaging, to show less amyloid and tau accumulation, respectively. In the lumbar puncture subsample, cerebrospinal fluid acyclovir will be assayed to assess central nervous system valacyclovir penetration. ETHICS AND DISSEMINATION The trial is being overseen by the New York State Psychiatric Institute Institutional Review Board (protocol 7537), the National Institute on Ageing, and the Data Safety Monitoring Board. Written informed consent is obtained for all subjects. Results will be disseminated via publication, clinicaltrials.gov, media and conferences. TRIAL REGISTRATION NUMBER ClinicalTrials.gov identifier (NCT03282916) Pre-results.
Collapse
Affiliation(s)
- D P Devanand
- Department of Psychiatry, Columbia University, New York, New York, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, New York, USA
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York, USA
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Howard Andrews
- Department of Psychiatry, Columbia University, New York, New York, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, New York, USA
- Department of Biostatistics, Columbia University Medical Center, New York, New York, USA
| | - William C Kreisl
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York, USA
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Qolamreza Razlighi
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York, USA
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Anne Gershon
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Yaakov Stern
- Department of Psychiatry, Columbia University, New York, New York, USA
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York, USA
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, New York, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Departments of Neurology, New York University Medical Center, New York, New York, USA
| | - Edward Acosta
- Department of Pharmacology, University of Alabama, Tuscaloosa, Alabama, USA
| | - Julianna Pollina
- Department of Psychiatry, Columbia University, New York, New York, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, New York, USA
| | - Mariasofia Katsikoumbas
- Department of Psychiatry, Columbia University, New York, New York, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, New York, USA
| | - Karen L Bell
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York, USA
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Gregory H Pelton
- Department of Psychiatry, Columbia University, New York, New York, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, New York, USA
| | - Deborah Deliyannides
- Department of Psychiatry, Columbia University, New York, New York, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, New York, USA
| | - K M Prasad
- Departments of Psychiatry and Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, USA
| | - Edward D Huey
- Department of Psychiatry, Columbia University, New York, New York, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, New York, USA
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York, USA
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
11
|
Qiao L, Luo GG. Human apolipoprotein E promotes hepatitis B virus infection and production. PLoS Pathog 2019; 15:e1007874. [PMID: 31393946 PMCID: PMC6687101 DOI: 10.1371/journal.ppat.1007874] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/27/2019] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus (HBV) is a common cause of liver diseases, including chronic hepatitis, steatosis, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). HBV chronically infects about 240 million people worldwide, posing a major global health problem. The current standard antiviral therapy effectively inhibits HBV replication but does not eliminate the virus unlike direct-acting antivirals (DAA) for curing hepatitis C. Our previous studies have demonstrated that human apolipoprotein E (apoE) plays important roles in hepatitis C virus infection and morphogenesis. In the present study, we have found that apoE is also associated with HBV and is required for efficient HBV infection. An apoE-specific monoclonal antibody was able to capture HBV similar to anti-HBs. More importantly, apoE monoclonal antibody could effectively block HBV infection, resulting in a greater than 90% reduction of HBV infectivity. Likewise, silencing of apoE expression or knockout of apoE gene by CRISPR/Cas9 resulted in a greater than 90% reduction of HBV infection and more than 80% decrease of HBV production, which could be fully restored by ectopic apoE expression. However, apoE silencing or knockout did not significantly affect HBV DNA replication or the production of nonenveloped (naked) nucleocapsids. These findings demonstrate that human apoE promotes HBV infection and production. We speculate that apoE may also play a role in persistent HBV infection by evading host immune response similar to its role in the HCV life cycle and pathogenesis. Inhibitors interfering with apoE biogenesis, secretion, and/or binding to receptors may serve as antivirals for elimination of chronic HBV infection.
Collapse
Affiliation(s)
- Luhua Qiao
- Department of Microbiology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Guangxiang George Luo
- Department of Microbiology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| |
Collapse
|
12
|
Kristen H, Sastre I, Muñoz-Galdeano T, Recuero M, Aldudo J, Bullido MJ. The lysosome system is severely impaired in a cellular model of neurodegeneration induced by HSV-1 and oxidative stress. Neurobiol Aging 2018; 68:5-17. [DOI: 10.1016/j.neurobiolaging.2018.03.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/08/2018] [Accepted: 03/21/2018] [Indexed: 12/25/2022]
|
13
|
Abstract
PURPOSE OF REVIEW Viruses, particularly herpes simplex virus (HSV), may be a cause of Alzheimer's disease (AD). The evidence supporting the viral hypothesis suggests that antiviral treatment trials, which have not been conducted, are warranted. RECENT FINDINGS HSV1 (oral herpes) and HSV2 (genital herpes) can trigger amyloid aggregation, and their DNA is common in amyloid plaques. HSV1 reactivation is associated with tau hyperphosphorylation and possibly tau propagation. Anti-HSV drugs reduce Aβ and p-tau accumulation in infected mouse brains. Clinically, after the initial oral infection, herpes simplex virus-1 (HSV1) becomes latent in the trigeminal ganglion and recurrent reactivation may produce neuronal damage and AD pathology. Clinical studies show cognitive impairment in HSV seropositive patients, and antiviral drugs show strong efficacy against HSV. An antiviral treatment trial in AD is clearly warranted. A phase II treatment trial with valacyclovir, an anti-HSV drug, recently began with evaluation of clinical and biomarker outcomes.
Collapse
|
14
|
Reinert LS, Lopušná K, Winther H, Sun C, Thomsen MK, Nandakumar R, Mogensen TH, Meyer M, Vægter C, Nyengaard JR, Fitzgerald KA, Paludan SR. Sensing of HSV-1 by the cGAS-STING pathway in microglia orchestrates antiviral defence in the CNS. Nat Commun 2016; 7:13348. [PMID: 27830700 PMCID: PMC5109551 DOI: 10.1038/ncomms13348] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 09/22/2016] [Indexed: 12/29/2022] Open
Abstract
Herpes simplex encephalitis (HSE) is the most common form of acute viral encephalitis in industrialized countries. Type I interferon (IFN) is important for control of herpes simplex virus (HSV-1) in the central nervous system (CNS). Here we show that microglia are the main source of HSV-induced type I IFN expression in CNS cells and these cytokines are induced in a cGAS–STING-dependent manner. Consistently, mice defective in cGAS or STING are highly susceptible to acute HSE. Although STING is redundant for cell-autonomous antiviral resistance in astrocytes and neurons, viral replication is strongly increased in neurons in STING-deficient mice. Interestingly, HSV-infected microglia confer STING-dependent antiviral activities in neurons and prime type I IFN production in astrocytes through the TLR3 pathway. Thus, sensing of HSV-1 infection in the CNS by microglia through the cGAS–STING pathway orchestrates an antiviral program that includes type I IFNs and immune-priming of other cell types. The cGAS–STING pathway is an important immune defence pathway against viral infection, including HSV-1. Here the authors use an HSV-1 encephalitis model and show microglia are the main producers of type 1 interferons that induce antiviral activity in neurons and prime the TLR3-interferon pathway in astrocytes.
Collapse
Affiliation(s)
- Line S Reinert
- Department of Biomedicine, University of Aarhus, Bartholins Allé 6, 8000 Aarhus, Denmark.,Aarhus Research Center for Innate Immunology, University of Aarhus, 8000 Aarhus C, Denmark
| | - Katarína Lopušná
- Department of Biomedicine, University of Aarhus, Bartholins Allé 6, 8000 Aarhus, Denmark.,Department of Molecular Pathogenesis of Viruses, Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic
| | - Henriette Winther
- Department of Biomedicine, University of Aarhus, Bartholins Allé 6, 8000 Aarhus, Denmark.,Aarhus Research Center for Innate Immunology, University of Aarhus, 8000 Aarhus C, Denmark
| | - Chenglong Sun
- Department of Biomedicine, University of Aarhus, Bartholins Allé 6, 8000 Aarhus, Denmark.,Aarhus Research Center for Innate Immunology, University of Aarhus, 8000 Aarhus C, Denmark
| | - Martin K Thomsen
- Department of Biomedicine, University of Aarhus, Bartholins Allé 6, 8000 Aarhus, Denmark.,Aarhus Research Center for Innate Immunology, University of Aarhus, 8000 Aarhus C, Denmark
| | - Ramya Nandakumar
- Department of Biomedicine, University of Aarhus, Bartholins Allé 6, 8000 Aarhus, Denmark.,Aarhus Research Center for Innate Immunology, University of Aarhus, 8000 Aarhus C, Denmark
| | - Trine H Mogensen
- Department of Biomedicine, University of Aarhus, Bartholins Allé 6, 8000 Aarhus, Denmark.,Aarhus Research Center for Innate Immunology, University of Aarhus, 8000 Aarhus C, Denmark.,Department of Infectious Diseases, Aarhus University Hospital Skejby, 8200 Aarhus N, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark
| | - Christian Vægter
- Department of Biomedicine, University of Aarhus, Bartholins Allé 6, 8000 Aarhus, Denmark
| | - Jens R Nyengaard
- Department of Clinical Medicine, University of Aarhus, 8200 Aarhus N, Denmark
| | - Katherine A Fitzgerald
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Søren R Paludan
- Department of Biomedicine, University of Aarhus, Bartholins Allé 6, 8000 Aarhus, Denmark.,Aarhus Research Center for Innate Immunology, University of Aarhus, 8000 Aarhus C, Denmark
| |
Collapse
|
15
|
Arbuckle JH, Turner AMW, Kristie TM. Analysis of HSV Viral Reactivation in Explants of Sensory Neurons. CURRENT PROTOCOLS IN MICROBIOLOGY 2014; 35:14E.6.1-21. [PMID: 25367271 PMCID: PMC4251777 DOI: 10.1002/9780471729259.mc14e06s35] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As with all Herpesviruses, Herpes simplex virus (HSV) has both a lytic replication phase and a latency-reactivation cycle. During lytic replication, there is an ordered cascade of viral gene expression that leads to the synthesis of infectious viral progeny. In contrast, latency is characterized by the lack of significant lytic gene expression and the absence of infectious virus. Reactivation from latency is characterized by the re-entry of the virus into the lytic replication cycle and the production of recurrent disease. This unit describes the establishment of the mouse sensory neuron model of HSV-1 latency-reactivation as a useful in vivo system for the analysis of mechanisms involved in latency and reactivation. Assays including the determination of viral yields, immunohistochemical/immunofluorescent detection of viral antigens, and mRNA quantitation are used in experiments designed to investigate the network of cellular and viral proteins regulating HSV-1 lytic infection, latency, and reactivation.
Collapse
Affiliation(s)
- Jesse H. Arbuckle
- Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Anne-Marie W. Turner
- Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas M. Kristie
- Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Piacentini R, De Chiara G, Li Puma DD, Ripoli C, Marcocci ME, Garaci E, Palamara AT, Grassi C. HSV-1 and Alzheimer's disease: more than a hypothesis. Front Pharmacol 2014; 5:97. [PMID: 24847267 PMCID: PMC4019841 DOI: 10.3389/fphar.2014.00097] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/16/2014] [Indexed: 12/22/2022] Open
Abstract
Among the multiple factors concurring to Alzheimer’s disease (AD) pathogenesis, greater attention should be devoted to the role played by infectious agents. Growing epidemiological and experimental evidence suggests that recurrent herpes simplex virus type-1 (HSV-1) infection is a risk factor for AD although the underlying molecular and functional mechanisms have not been fully elucidated yet. Here, we review literature suggesting the involvement of HSV-1 infection in AD also briefly mentioning possible pharmacological implications of these findings.
Collapse
Affiliation(s)
- Roberto Piacentini
- Institute of Human Physiology, Medical School, Università Cattolica del Sacro Cuore Rome, Italy
| | - Giovanna De Chiara
- Institute of Translational Pharmacology, National Research Council Rome, Italy
| | - Domenica D Li Puma
- Institute of Human Physiology, Medical School, Università Cattolica del Sacro Cuore Rome, Italy
| | - Cristian Ripoli
- Institute of Human Physiology, Medical School, Università Cattolica del Sacro Cuore Rome, Italy
| | - Maria E Marcocci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Rome, Italy
| | - Enrico Garaci
- San Raffaele Pisana Scientific Institute for Research, Hospitalization and Health Care, Telematic University Rome, Italy
| | - Anna T Palamara
- Department of Public Health and Infectious Diseases, Institute Pasteur Cenci Bolognetti Foundation, Sapienza University of Rome Rome, Italy ; San Raffaele Pisana Scientific Institute for Research, Hospitalization and Health Care Rome, Italy
| | - Claudio Grassi
- Institute of Human Physiology, Medical School, Università Cattolica del Sacro Cuore Rome, Italy
| |
Collapse
|
17
|
Oxidative stress enhances neurodegeneration markers induced by herpes simplex virus type 1 infection in human neuroblastoma cells. PLoS One 2013; 8:e75842. [PMID: 24124518 PMCID: PMC3790872 DOI: 10.1371/journal.pone.0075842] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/21/2013] [Indexed: 01/05/2023] Open
Abstract
Mounting evidence suggests that Herpes simplex virus type 1 (HSV-1) is involved in the pathogenesis of Alzheimer's disease (AD). Previous work from our laboratory has shown HSV-1 infection to induce the most important pathological hallmarks of AD brains. Oxidative damage is one of the earliest events of AD and is thought to play a crucial role in the onset and development of the disease. Indeed, many studies show the biomarkers of oxidative stress to be elevated in AD brains. In the present work the combined effects of HSV-1 infection and oxidative stress on Aβ levels and autophagy (neurodegeneration markers characteristic of AD) were investigated. Oxidative stress significantly potentiated the accumulation of intracellular Aβ mediated by HSV-1 infection, and further inhibited its secretion to the extracellular medium. It also triggered the accumulation of autophagic compartments without increasing the degradation of long-lived proteins, and enhanced the inhibition of the autophagic flux induced by HSV-1. These effects of oxidative stress were not due to enhanced virus replication. Together, these results suggest that HSV-1 infection and oxidative damage interact to promote the neurodegeneration events seen in AD.
Collapse
|
18
|
Webre JM, Hill JM, Nolan NM, Clement C, McFerrin HE, Bhattacharjee PS, Hsia V, Neumann DM, Foster TP, Lukiw WJ, Thompson HW. Rabbit and mouse models of HSV-1 latency, reactivation, and recurrent eye diseases. J Biomed Biotechnol 2012; 2012:612316. [PMID: 23091352 PMCID: PMC3467953 DOI: 10.1155/2012/612316] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 05/04/2012] [Accepted: 05/22/2012] [Indexed: 11/17/2022] Open
Abstract
The exact mechanisms of HSV-1 establishment, maintenance, latency, reactivation, and also the courses of recurrent ocular infections remain a mystery. Comprehensive understanding of the HSV-1 disease process could lead to prevention of HSV-1 acute infection, reactivation, and more effective treatments of recurrent ocular disease. Animal models have been used for over sixty years to investigate our concepts and hypotheses of HSV-1 diseases. In this paper we present descriptions and examples of rabbit and mouse eye models of HSV-1 latency, reactivation, and recurrent diseases. We summarize studies in animal models of spontaneous and induced HSV-1 reactivation and recurrent disease. Numerous stimuli that induce reactivation in mice and rabbits are described, as well as factors that inhibit viral reactivation from latency. The key features, advantages, and disadvantages of the mouse and rabbit models in relation to the study of ocular HSV-1 are discussed. This paper is pertinent but not intended to be all inclusive. We will give examples of key papers that have reported novel discoveries related to the review topics.
Collapse
Affiliation(s)
- Jody M. Webre
- Department of Ophthalmology, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA
| | - James M. Hill
- Department of Ophthalmology, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA
- Department of Pharmacology, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA
- Department of Microbiology, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA
- Neuroscience Center, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA
| | - Nicole M. Nolan
- Department of Ophthalmology, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA
- College of Science and Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Christian Clement
- Department of Ophthalmology, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA
| | - Harris E. McFerrin
- Department of Biology, Xavier University of Louisiana, One Drexel Drive, New Orleans, LA 70125, USA
| | - Partha S. Bhattacharjee
- Department of Ophthalmology, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA
- Department of Biology, Xavier University of Louisiana, One Drexel Drive, New Orleans, LA 70125, USA
| | - Victor Hsia
- School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Donna M. Neumann
- Department of Ophthalmology, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA
- Department of Pharmacology, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA
- Department of Genetics, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA
| | - Timothy P. Foster
- Department of Microbiology, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA
| | - Walter J. Lukiw
- Department of Ophthalmology, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA
- Neuroscience Center, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA
| | - Hilary W. Thompson
- Department of Ophthalmology, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA
- Neuroscience Center, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA
- Department of Biostatistics, Louisiana State University Health Sciences Center School of Public Health, New Orleans, LA 70112, USA
| |
Collapse
|
19
|
Al-Dujaili LJ, Clerkin PP, Clement C, McFerrin HE, Bhattacharjee PS, Varnell ED, Kaufman HE, Hill JM. Ocular herpes simplex virus: how are latency, reactivation, recurrent disease and therapy interrelated? Future Microbiol 2011; 6:877-907. [PMID: 21861620 DOI: 10.2217/fmb.11.73] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Most humans are infected with herpes simplex virus (HSV) type 1 in early childhood and remain latently infected throughout life. While most individuals have mild or no symptoms, some will develop destructive HSV keratitis. Ocular infection with HSV-1 and its associated sequelae account for the majority of corneal blindness in industrialized nations. Neuronal latency in the peripheral ganglia is established when transcription of the viral genome is repressed (silenced) except for the latency-associated transcripts and microRNAs. The functions of latency-associated transcripts have been investigated since 1987. Roles have been suggested relating to reactivation, establishment of latency, neuronal protection, antiapoptosis, apoptosis, virulence and asymptomatic shedding. Here, we review HSV-1 latent infections, reactivation, recurrent disease and antiviral therapies for the ocular HSV diseases.
Collapse
Affiliation(s)
- Lena J Al-Dujaili
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Carter C. Alzheimer's disease plaques and tangles: Cemeteries of a Pyrrhic victory of the immune defence network against herpes simplex infection at the expense of complement and inflammation-mediated neuronal destruction. Neurochem Int 2011; 58:301-20. [DOI: 10.1016/j.neuint.2010.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 12/29/2022]
|
21
|
Trotter JH, Liebl AL, Weeber EJ, Martin LB. Linking ecological immunology and evolutionary medicine: the case for apolipoprotein E. Funct Ecol 2010. [DOI: 10.1111/j.1365-2435.2010.01780.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Justin H. Trotter
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida 33613, USA
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, Florida 33613, USA
| | - Andrea L. Liebl
- Department of Integrative Biology, University of South Florida, Tampa Florida 33620, USA
| | - Edwin J. Weeber
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida 33613, USA
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, Florida 33613, USA
| | - Lynn B. Martin
- Department of Integrative Biology, University of South Florida, Tampa Florida 33620, USA
| |
Collapse
|
22
|
Koelle DM, Magaret A, Warren T, Schellenberg GD, Wald A. APOE genotype is associated with oral herpetic lesions but not genital or oral herpes simplex virus shedding. Sex Transm Infect 2010; 86:202-6. [PMID: 20410080 DOI: 10.1136/sti.2009.039735] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Apolipoprotein E is polymorphic in the human population. APOE4 has previously been reported to correlate with symptomatic oral and genital herpes disease. METHODS APOE was genotyped in 182 subjects with herpes simplex virus (HSV) 2 and in 62 subjects with HSV-1, including 44 subjects with both viral types for a total of 200 adults. HSV shedding was measured by PCR from swab samples obtained daily from mucosa for at least 30 days. Participants also maintained a diary of oral or genital lesions. RESULTS The APOE genotypes observed reflected the US white population and the Hardy-Weinberg equilibrium. Genital and oral HSV shedding was detected on 17.2% and 3.7% of overall days, respectively, whereas genital and oral lesion rates were 10.1% and 2.9%. Using Poisson regression and adjusting for known correlates of HSV shedding, a significant association was not observed between the APOE genotype and genital or oral HSV shedding, or genital HSV lesions. However, the presence of the APOE4 allele was associated with a higher rate of oral herpetic lesions, with a relative risk of 4.64 (95% CI 1.32 to 15.05, p=0.016). CONCLUSIONS Variation at the APOE locus may be associated with clinical manifestations of HSV-1 infection, but does not appear to correlate with herpes simplex viral reactivation in humans.
Collapse
Affiliation(s)
- David M Koelle
- Department of Medicine, University of Washington, Seattle, Washington 98102, USA.
| | | | | | | | | |
Collapse
|
23
|
Bhattacharjee PS, Neumann DM, Stark D, Thompson HW, Hill JM. Apolipoprotein E Modulates Establishment of HSV-1 Latency and Survival in a Mouse Ocular Model. Curr Eye Res 2009; 31:703-8. [PMID: 16966142 DOI: 10.1080/02713680600864600] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE To evaluate and compare the neuroinvasiveness and neurovirulence after ocular HSV-1 infection in ApoE knockout (ApoE-/-) and control C57BL/6 (ApoE+/+) mice. METHODS Age-matched (14 weeks of age) C57BL/6J (ApoE+/+) female mice and female ApoE knockout (ApoE-/-) mice were inoculated by corneal scarification with HSV-1 strain 17Syn+. Analysis of HSV-1 replication in the mouse cornea was assessed through infectious virus assays of ocular (tear film) swabs at 1 to 5 days postinoculation (PI), slit-lamp examination (SLE) of corneas at PI days 1 to 7, and survival of infected mice. The contribution of apoE to the efficient establishment of latency was measured by real-time PCR quantitation of the latent viral genome in the trigeminal ganglia (TG) of infected mice. RESULTS These studies showed that HSV-1 strain 17Syn+ replicates efficiently in the eyes, regardless of the host ApoE genotype. Neither the scoring of corneal pathology via SLE nor the infectious virus assay of the tear film resulted in any statistical differences between ApoE knockout (-/-) mice or the C57BL/6 (ApoE+/+) mice. In mice latently infected with HSV-1, our real-time PCR data showed significantly lower viral copy numbers of HSV-1 DNA in ApoE knockout (ApoE-/-) mice compared with C57BL/6 (ApoE+/+) mice. C57BL/6 (ApoE+/+) mice are more susceptible to the neurovirulence of HSV-1 strain 17Syn+ than female ApoE knockout (-/-) mice, as demonstrated by the fact that 50% (7/14) of the female C57BL/6 (ApoE+/+) mice inoculated with 17Syn+ died, as opposed to none (0/14) of the age- and sex-matched ApoE knockout mice. CONCLUSIONS These data indicate that age (14 weeks) and sex-matched (female) wild mice with an ApoE null background (ApoE-/-) are more resistant and less efficient in the establishment of latency compared with ApoE+/+ mice in the C57BL/6 background.
Collapse
Affiliation(s)
- Partha S Bhattacharjee
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | | | | | | | | |
Collapse
|
24
|
Burgos JS, Ripoll-Gomez J, Alfaro JM, Sastre I, Valdivieso F. Zebrafish as a new model for herpes simplex virus type 1 infection. Zebrafish 2009; 5:323-33. [PMID: 19133831 DOI: 10.1089/zeb.2008.0552] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The zebrafish (Danio rerio) is rapidly gaining ground as a disease model. However, until now, the use of this species with human pathogens has been restricted to just three bacteria; no studies involving viruses that infect humans are recorded. In this study, the zebrafish was used as a model of herpes simplex virus type 1 (HSV-1) infection of the nervous system. Fish infected using viral culture supernatants showed detectable HSV-1 DNA concentrations 1-4 days after inoculation, indicating that this virus can experimentally infect and persist in this host. The kinetics of infection was dose dependent, especially in the head. Histological immunodetection of HSV-1 glycoproteins confirmed the presence of HSV-1 in the organs studied; infection led to histopathological changes. Moreover, the suppression of the immune system by cyclophosphamide and the antiviral effect of acyclovir were demonstrated. The infection of the encephalon was studied in detail, and the time course of viral colonization recorded. Immunofluorescence studies provided immunoreactive evidence of viral antigens in the encephalon and spinal cord. Viruses cleared from infected brains showed the ability to infect human neuroblastoma cells. This study is the first to demonstrate HSV-1 infection in the zebrafish and manifests the potential use of this species in herpesvirus studies.
Collapse
Affiliation(s)
- Javier S Burgos
- Drug Discovery Unit, NEURON BioPharma , Edificio BIC, Avda. Innovación 1, Armilla, Spain.
| | | | | | | | | |
Collapse
|
25
|
Toma HS, Murina AT, Areaux RG, Neumann DM, Bhattacharjee PS, Foster TP, Kaufman HE, Hill JM. Ocular HSV-1 latency, reactivation and recurrent disease. Semin Ophthalmol 2008; 23:249-73. [PMID: 18584563 DOI: 10.1080/08820530802111085] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ocular infection with HSV-1 continues to be a serious clinical problem despite the availability of effective antivirals. Primary infection with HSV-1 can involve ocular and adenaxial sites and can manifest as blepharitis, conjunctivitis, or corneal epithelial keratitis. After initial ocular infection, HSV-1 can establish latent infection in the trigeminal ganglia for the lifetime of the host. During latency, the viral genome is retained in the neuron without producing viral proteins. However, abundant transcription occurs at the region encoding the latency-associated transcript, which may play significant roles in the maintenance of latency as well as neuronal reactivation. Many host and viral factors are involved in HSV-1 reactivation from latency. HSV-1 DNA is shed into tears and saliva of most adults, but in most cases this does not result in lesions. Recurrent disease occurs as HSV-1 is carried by anterograde transport to the original site of infection, or any other site innervated by the latently infected ganglia, and can reinfect the ocular tissues. Recurrent corneal disease can lead to corneal scarring, thinning, stromal opacity and neovascularization and, eventually, blindness. In spite of intensive antiviral and anti-inflammatory therapy, a significant percentage of patients do not respond to chemotherapy for herpetic necrotizing stromal keratitis. Therefore, the development of therapies that would reduce asymptomatic viral shedding and lower the risks of recurrent disease and transmission of the virus is key to decreasing the morbidity of ocular herpetic disease. This review will highlight basic HSV-1 virology, and will compare the animal models of latency, reactivation, and recurrent ocular disease to the current clinical data.
Collapse
Affiliation(s)
- Hassanain S Toma
- Louisiana State University Health Sciences Center, New Orleans, LA 70112-2234, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Nomura N, Kasuya H, Watanabe I, Shikano T, Shirota T, Misawa M, Sugimoto H, Kanazumi N, Nomoto S, Takeda S, Nakao A. Considerations for intravascular administration of oncolytic herpes virus for the treatment of multiple liver metastases. Cancer Chemother Pharmacol 2008; 63:321-30. [PMID: 18575868 DOI: 10.1007/s00280-008-0742-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2007] [Accepted: 03/17/2008] [Indexed: 11/25/2022]
Abstract
PURPOSE Oncolytic viral therapy is a newly developed modality for treating tumors. Many clinical trials using oncolytic virus have been performed worldwide, but most of them have used local injection in the tumor. Determination of the effect and safety of intravascular virus injection instead of local injection is necessary for clinical use against multiple liver metastases and systemic metastases. METHODS To evaluate the efficacy and safety of intravascular virus therapy, mice bearing multiple liver metastases were treated by intraportal or intravenous administration of the herpes simplex virus type 1 (HSV-1) mutant, hrR3. Mice treated with hrR3 were killed and organs were harvested for lacZ staining and PCR analysis. Inactivation of oncolytic virus in bloodstream was assessed by neutralization assay in vitro. Infectious activity of hrR3 with vascular endothelial cells was evaluated by replication and cytotoxicity assay. RESULTS The survival rate of animals treated by hrR3 was significantly improved compared with the untreated group. lacZ staining and PCR analysis demonstrated detectable virus in the tumor but not in normal tissue or other organs except for the adrenal glands. We also showed that vascular endothelial cells allowed virus replication, while normal hepatocytes did not, and human anti-HSV antibody revealed attenuation of the infectious activity of hrR3. CONCLUSIONS Intravascular delivery of hrR3 is effective in treating multiple liver metastases, however, several points must be kept in mind at the time of human clinical trials using intravascular virus administration in order to avoid critical side effects.
Collapse
Affiliation(s)
- Naohiro Nomura
- Department of Surgery II, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
The high prevalence of herpes simplex virus type 1 DNA in human trigeminal ganglia is not a function of age or gender. J Virol 2008; 82:8230-4. [PMID: 18550674 DOI: 10.1128/jvi.00686-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to determine the presence and copy numbers of herpes simplex virus type 1 (HSV-1) DNA in human trigeminal ganglia (TG) with respect to age, gender, and postmortem interval (PMI). Human TG (n = 174, obtained from the Oregon Brain Bank, with data on age, gender, and PMI) were analyzed for HSV-1 DNA copies (HSV-1 DNA polymerase gene) by using real-time PCR. We found that 89.1% (131/147) of subjects and 90.1% (155/174) of TG contained HSV-1 DNA. The copy numbers of HSV-1 DNA in the positives ranged from very high (>10(6)) to very low (5). These data confirm and strengthen our previous findings that subjects were positive for HSV-1 DNA in tears (46/50; 92%) and saliva (47/50; 94%). These TG data and tear and saliva data demonstrated considerable variability in copy numbers of HSV-1 DNA per subject. Statistical analysis showed no significant relationship between gender and copy number, age and copy number, or PMI and copy number for each pair of variables. A factorial analysis of gender, age, and PMI with respect to copy number also showed no statistical significance. This is the first study that provides statistical analysis that documents that the prevalence of HSV-1 DNA in the human TG is not a function of either gender or age.
Collapse
|
28
|
Miller RM, Federoff HJ. Isoform-specific effects of ApoE on HSV immediate early gene expression and establishment of latency. Neurobiol Aging 2008; 29:71-7. [PMID: 17101197 DOI: 10.1016/j.neurobiolaging.2006.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 09/12/2006] [Accepted: 09/13/2006] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease (AD) is a common and devastating neurodegenerative disease in which most cases are of unknown, sporadic origin. In addition to age, the most prevalent known risk factor for developing AD is carriage of the epsilon4 allele of Apolipoprotein E (ApoE). Carriage of the epsilon2 or epsilon3 allele of ApoE confers protection or no change in risk for AD, respectively. Latent herpes simplex virus type 1 (HSV-1) infection in the brain concurrent with ApoE4 carriage exacerbates risk for AD, suggesting that these two factors interact to promote neuronal dysfunction and degeneration in selective brain areas. Indeed, HSV-1 DNA has been found in regions primarily affected by AD, such as the temporal lobes, hippocampus, and neocortex. We hypothesize that HSV-1 infection in the background of ApoE4, but not ApoE2 or ApoE3, promotes an environment more conducive to neuronal degeneration. To investigate this idea, we have utilized transgenic mice that express human ApoE2, 3, or 4 alleles from astrocytes in a murine ApoE -/- background. We find that carriage of the different ApoE alleles dramatically affects HSV-1 immediate early gene expression as well as the establishment of latency. Both of these factors are poised to impact neuronal viability, inflammation, and viral spread. Our data support the concept that HSV-1 and ApoE4 interact to provide an environment conducive to the development and/or spread of AD.
Collapse
Affiliation(s)
- R M Miller
- Center for Aging and Developmental Biology, University of Rochester, Rochester, NY 14642, USA. renee
| | | |
Collapse
|
29
|
Burgos JS, Ramirez C, Sastre I, Valdivieso F. Apolipoprotein E genotype influences vertical transmission of herpes simplex virus type 1 in a gender specific manner. Aging Cell 2007; 6:841-2. [PMID: 17725689 DOI: 10.1111/j.1474-9726.2007.00332.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
There is growing evidence that herpes simplex virus type 1 (HSV-1), together with the apolipoprotein E 4 (APOE4) allele, contribute to the pathogenesis of Alzheimer's disease (AD), although the mechanism of their interaction remains uncertain. Here we show that the combination of inherited APOE genotype and vertical transmission of HSV-1 confers a differential risk of brain infection. These risk factors are known to be associated with AD.
Collapse
Affiliation(s)
- Javier S Burgos
- NEURON BioPharma, Drug Discovery Unit, Edificio BIC, Armilla, Granada, Spain.
| | | | | | | |
Collapse
|
30
|
Interactions between the products of the Herpes simplex genome and Alzheimer's disease susceptibility genes: relevance to pathological-signalling cascades. Neurochem Int 2007; 52:920-34. [PMID: 18164103 DOI: 10.1016/j.neuint.2007.11.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 11/08/2007] [Accepted: 11/19/2007] [Indexed: 01/07/2023]
Abstract
The products of the Herpes simplex (HSV-1) genome interact with many Alzheimer's disease susceptibility genes or proteins. These in turn affect those of the virus. For example, HSV-1 binds to heparan sulphate proteoglycans (HSPG2), or alpha-2-macroglobulin (A2M), and enters cells via nectin receptors, which are cleaved by gamma-secretase (APH1B, PSEN1, PSEN2, PEN2, NCSTN). The virus also binds to blood-borne lipoproteins and apolipoprotein E (APOE) is able to modify its infectivity. Viral uptake is cholesterol- and lipid raft-dependent (DHCR24, HMGCR, FDPS, RAFTLIN, SREBF1). The virus is transported to the nucleus via the dynein and kinesin (KNS2) motors associated with the microtubule network (MAPT). Amyloid precursor protein (APP) plays a role in this transport. Nuclear export is mediated via disruption of the nuclear lamina and binding to LMNA. Herpes simplex activates kinases (CDC2 and casein kinase 2) whose substrates include APOE, APP, MAPT, PSEN2, and SREBF1. A viral protein is also able to delete mitochondrial DNA, a situation prevalent in Alzheimer's disease. The virus binds to the host transcription factors transcription factor CP2 (TFCP2) and POU2F1 that control many other genes associated with Alzheimer's disease. Viral latency is controlled by IL6 and IL1B and at different stages of its life cycle the virus can either promote or attenuate apoptosis via Fas and tumor necrosis factor pathways (FAS, TNF, DAPK1, PARP1). Viral evasion strategies include inhibition of the antigen processor TAP2, the production of an Fc immunoglobulin receptor mimic (FCER1G) and inhibition of the viral-activated kinase EIF2AK2. These and other host/viral interactions, targeted to certain Alzheimer's disease susceptibility genes, support the idea that some form of synergy between the pathogen and genetic factors may play a role in the pathology of late-onset Alzheimer's disease.
Collapse
|
31
|
Burgos JS, Ramirez C, Sastre I, Valdivieso F. Effect of apolipoprotein E on the cerebral load of latent herpes simplex virus type 1 DNA. J Virol 2007; 80:5383-7. [PMID: 16699018 PMCID: PMC1472141 DOI: 10.1128/jvi.00006-06] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is neurotropic and enters a latent state lasting the lifetime of the host. This pathogen has recently been proposed as a risk factor for Alzheimer's disease (AD) in conjunction with apolipoprotein E4 (ApoE4). In a murine acute infection model, we showed that viral neuroinvasiveness depends directly on the overall ApoE dosage and especially on the presence of isoform ApoE4. If an interaction between ApoE and HSV-1 is involved in AD, it may occur during latency rather than during acute infection. Certainly, ApoE plays an important role in late-onset AD, i.e., at a time in life when the majority of people harbor HSV-1 in their nervous system. In the present work, wild-type, APOE knockout, APOE3, and APOE4 transgenic mice were used to analyze the influence of the ApoE profile on the levels of latent virus DNA. The knockout mice had significantly lower concentrations of the virus in the nervous system than the wild-type mice, while the APOE4 mice had very high levels in the brain compared to the APOE3 animals. ApoE4 seems to facilitate HSV-1 latency in the brain much more so than ApoE3. The APOE dosage correlated directly with the HSV-1 DNA concentration in the brain, strengthening the hypothesis that HSV-1, together with ApoE, might be involved in AD.
Collapse
Affiliation(s)
- Javier S Burgos
- Lab CX340, Centro de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
32
|
Burgos JS, Valdivieso F. Understanding the relationship between ApoE and HSV-1 and its possible significance in Alzheimer’s disease. Future Virol 2007. [DOI: 10.2217/17460794.2.3.239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Evaluation of: Miller RM, Federoff HJ: Isoform-specific effects of ApoE on HSV immediate early gene expression and establishment of latency. Neurobiol. Aging (2006) (Epub ahead of print). It is 100 years since Alzheimer's disease was first described and there is still no consensus of opinion regarding the etiology of its sporadic form. Herpes simplex virus type 1 (HSV-1), in conjunction with apolipoprotein E (ApoE), may well play a role in this form of the disease. In the evaluated article, Miller and Federoff try to determine whether the ApoE profile affects the expression of the HSV-1 immediate-early genes and the production of the virus’ latency-associated transcript. Their results show that overexpression of the intermediate-early genes and the establishment of latency are directly correlated with the ApoE genotype.
Collapse
Affiliation(s)
- Javier S Burgos
- NEURON BioPharma, Drug Discovery Unit, Edificio BIC, Avda, Innovación 1, 18100 Armilla, Granada, Spain
| | - Fernando Valdivieso
- Universidad Autónoma de Madrid, Centro de Biología Molecular Severo Ochoa, Departamento de Biologí Molecular Facultad de Ciencias, Lab CX340, 18049 Cantoblanco, Madrid, Spain
| |
Collapse
|
33
|
Bullido MJ, Martínez-García A, Tenorio R, Sastre I, Muñoz DG, Frank A, Valdivieso F. Double stranded RNA activated EIF2 alpha kinase (EIF2AK2; PKR) is associated with Alzheimer's disease. Neurobiol Aging 2007; 29:1160-6. [PMID: 17420072 DOI: 10.1016/j.neurobiolaging.2007.02.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 02/09/2007] [Accepted: 02/15/2007] [Indexed: 11/15/2022]
Abstract
Sporadic Alzheimer's disease (AD) appears to be the consequence of the interaction between combinations of genes and environmental factors (for example virus infections). To test this hypothesis, we are examining human genes relevant to herpes simplex virus type 1 (HSV-1) infection via genetic association studies in AD case-control samples. Recently, we found that a variant in TAP2, a major target used by HSV-1 to evade immune surveillance, is associated with AD. The present work analyses another gene involved in the host cell response to HSV-1, EIF2AK2 (eukaryotic translation initiation factor 2-alpha kinase 2; coding for PKR); PKR mediates the virus-induced shut-off of translation, and levels of activated PKR are high in the brains of AD patients. An EIF2AK2 SNP (rs2254958) located in the 5'-UTR region within an exonic splicing enhancer was found to be associated with AD. More specifically: the C allele was more commonly found in the patients and, compared to non-CC genotypes, the CC homozygotes showed earlier (around 3.3 years) onset of AD, especially in the absence of the APOE4 allele. These results further support the hypothesis that variants of human genes participating in HSV-1 infection modulate the susceptibility and/or clinical manifestations of AD.
Collapse
Affiliation(s)
- María J Bullido
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
34
|
Burgos JS, Serrano-Saiz E, Sastre I, Valdivieso F. ICP47 mediates viral neuroinvasiveness by induction of TAP protein following intravenous inoculation of herpes simplex virus type 1 in mice. J Neurovirol 2007; 12:420-7. [PMID: 17162658 DOI: 10.1080/13550280601009546] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) expresses an immediate-early protein, ICP47, that blocks the major histocompatibility complex class I antigen presentation pathway by binding to the transporter associated with antigen presentation (TAP). The result is the virus' evasion of the immune system. Although the interaction between ICP47 and TAP has been examined in vitro, this paper is the first to report their interaction in vivo. In C57BL/6 adult female mice, ICP47-defective virus (Delta ICP47, F strain) was less able to invade the organs studied than was wild-type HSV-1 F strain, showing that ICP47 influences general invasiveness. However, the neuroinvasiveness of the Delta ICP47 virus was recovered in TAP-deficient mice, indicating that the TAP-ICP47 interaction is specific to neural tissues. HSV-1 F strain showed no significant differences in their invasiveness in TAP-deficient and wild-type mice. Therefore, although ICP47 appears to be essential for invasion, the presence of TAP appears not to be crucial. Western blotting showed TAP1 expression to increase by at least fourfold in the brains and adrenal glands of infected mice. This suggests that TAP plays an important role in the host defense system. This increased expression may be particularly important in the encephalon since the baseline protein levels of this organ are low (ratio adrenal protein level/encephalon protein level > 100). However, Delta ICP47 virus provoked no significant increase in the brain TAP1 levels of wild-type mice because it could not invade this organ. These results suggest that ICP47 plays a role in infection, and that TAP1 production is regulated during viral challenge.
Collapse
Affiliation(s)
- Javier S Burgos
- Departamento de Biología Molecular and Centro de Biologí Molecular Severo Ochoa, C.S.I.C.-U.A.M., Universidad Autónoma de Madrid, Madrid, Spain.
| | | | | | | |
Collapse
|
35
|
Hill JM, Bhattacharjee PS, Neumann DM. Apolipoprotein E alleles can contribute to the pathogenesis of numerous clinical conditions including HSV-1 corneal disease. Exp Eye Res 2006; 84:801-11. [PMID: 17007837 PMCID: PMC2217677 DOI: 10.1016/j.exer.2006.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 07/19/2006] [Accepted: 08/03/2006] [Indexed: 11/18/2022]
Abstract
Apolipoprotein E (ApoE) alleles have been reported to affect the clinical outcome of numerous cardiovascular, neurodegenerative, and viral infectious diseases, including atherosclerosis, Alzheimer's disease (AD), hepatitis C, and HIV. The major alleles of ApoE are 2, 3, and 4. ApoE genotypes have been hypothesized to regulate many biological functions, resulting in significant changes in the onset and/or outcome (severity and duration) of several clinical conditions. Based on genetic analyses in human and animal studies using knockout (ApoE -/-) mice and mice transgenic for human 3 and 4, we present evidence that strongly suggests that the ApoE alleles can regulate the pathogenesis of ocular herpes simplex virus type 1 (HSV-1) infections. This review will summarize the major studies that support this hypothesis. Significant gender based differences in HSV-1 pathogenesis have also been reported, suggesting that hormonal regulation combined with ApoE genotype plays a significant role in HSV-1 pathogenesis. Identification of specific mechanisms in ocular HSV-1 infections related to the ApoE alleles and gender could lead to therapeutic intervention based on the properties of the apoE isoforms. While many clinical investigations have been reported and, to a lesser extent, transgenic mouse studies have been conducted, no specific mechanisms of how ApoE induces or alters clinical disease are known.
Collapse
Affiliation(s)
- James M Hill
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
36
|
Bullido MJ, Martínez-García A, Artiga MJ, Aldudo J, Sastre I, Gil P, Coria F, Muñoz DG, Hachinski V, Frank A, Valdivieso F. A TAP2 genotype associated with Alzheimer's disease in APOE4 carriers. Neurobiol Aging 2006; 28:519-23. [PMID: 16595160 DOI: 10.1016/j.neurobiolaging.2006.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 02/16/2006] [Accepted: 02/18/2006] [Indexed: 11/19/2022]
Abstract
Sporadic Alzheimer's disease (AD) appears to be the consequence of the interaction between combinations of genes and environmental factors. Binding with the transporter associated with antigen processing (TAP) is thought to be the main way in which herpes simplex virus type 1 (HSV-1) evades immune surveillance. Several TAP gene polymorphisms were examined and a TAP2 SNP (rs241448) associated with AD found in two independent case-control samples, especially in carriers of the APOE4 allele. These findings are consistent with the hypothesis that human genetic variants facilitating the access of HSV-1 to the brain might result in susceptibility to AD.
Collapse
Affiliation(s)
- María J Bullido
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Burgos JS, Guzman-Sanchez F, Sastre I, Fillat C, Valdivieso F. Non-invasive bioluminescence imaging for monitoring herpes simplex virus type 1 hematogenous infection. Microbes Infect 2006; 8:1330-8. [PMID: 16682243 DOI: 10.1016/j.micinf.2005.12.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 12/22/2005] [Accepted: 12/26/2005] [Indexed: 11/25/2022]
Abstract
Traditional studies on viral neuroinvasiveness and pathogenesis have generally relied on murine models that require the sacrifice of infected animals to determine viral distributions and titers. The present paper reports the use of in vivo bioluminescence imaging to monitor the replication and tropism of KOS strain HSV-1 viruses expressing the firefly luciferase reporter protein in hematogenously infected mice. Following intraperitoneal injection, a comparison was made between real-time PCR determinations of HSV-1 DNA concentrations (requiring the sacrifice of the experimental animals) and in vivo bioluminescence emissions in living animals. For further comparison, in vitro light emission was also measured in the ovaries and adrenal glands of sacrificed mice. After infection, HSV-1 spread preferentially to the ovaries and adrenal glands (these organs showed the highest virus levels). Both the PCR and bioluminescence methods detected low viral loads in the nervous system, where the virus was restricted to the spinal cord. The concentrations of viral DNA measured correlated with the magnitude of bioluminescence in vivo, and with the photon flux determined by the in vitro luciferase enzyme assay. The results show that bioluminescence imaging can be used for non-invasive, real-time monitoring of HSV-1 hematogenous infection in living mice, but that coupling this methodology with conventional techniques aids in the characterization of the infection.
Collapse
Affiliation(s)
- Javier S Burgos
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Spain.
| | | | | | | | | |
Collapse
|
38
|
Burgos JS, Ramirez C, Guzman-Sanchez F, Alfaro JM, Sastre I, Valdivieso F. Hematogenous vertical transmission of herpes simplex virus type 1 in mice. J Virol 2006; 80:2823-31. [PMID: 16501091 PMCID: PMC1395468 DOI: 10.1128/jvi.80.6.2823-2831.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Accepted: 12/22/2005] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a neurotropic virus that causes severe disease and death in newborn humans but, to date, it remains unclear how neonatal infection occurs. We show here that the vertical transmission of HSV-1 in mice is mainly hematogenous and involves the colonization of the neonate central nervous system (CNS). HSV-1 DNA was mainly detected in the blood and CNS of the offspring born to latently infected mothers; no significant differences were seen between the viral DNA concentrations in the blood of these mothers and their female progeny (either neonate or adult). The administration of acyclovir during gestation reduced or eliminated both the maternal and the neonatal viral DNA in the blood. Embryo transfer was performed to ensure (as far as possible) that only vertical hematogenous infection took place. Immunohistochemical analysis detected viral proteins in the encephalon of the offspring. Immunofluorescence studies provided immunoreactive evidence of HSV-1 proteins in the neurons of the hippocampus and showed that these viruses can molecularly reactivate after hyperthermia. Neonatal HSV-1 infection therefore appears to be mainly caused by hematogenous vertical transmission, and the viruses that colonize the offspring CNS are capable of molecular reactivation after a period of latency.
Collapse
Affiliation(s)
- Javier S Burgos
- Departamento de Biología Molecular and Centro de Biología Molecular, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
39
|
Ramos MC, Matías S, Artiga MJ, Pozueta J, Sastre I, Valdivieso F, Bullido MJ. Neuronal specific regulatory elements in apolipoprotein E gene proximal promoter. Neuroreport 2005; 16:1027-30. [PMID: 15931082 DOI: 10.1097/00001756-200506210-00029] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Systemic and local changes in apolipoprotein E (ApoE) quantity have been related with Alzheimer's and other neurodegenerative diseases, showing the relevance of maintaining physiological ApoE levels. However, APOE transcription has not been extensively studied in neural cells. In this report, we study the transcriptional activity of different APOE proximal promoter regions and their binding to nuclear proteins from human neural (astrocytoma and neuroblastoma) and peripheral (hepatoma and lymphoma) cell lines. We define several regions with a negative regulatory effect in all the cells and a region with a strong positive activity in neuroblastoma cells. Additionally, we show that the -219T/G polymorphism produces variations in APOE transcriptional activity, with the G allele showing higher activity.
Collapse
Affiliation(s)
- María C Ramos
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
40
|
Hill JM, Gebhardt BM, Azcuy AM, Matthews KE, Lukiw WJ, Steiner I, Thompson HW, Ball MJ. Can a herpes simplex virus type 1 neuroinvasive score be correlated to other risk factors in Alzheimer's disease? Med Hypotheses 2005; 64:320-7. [PMID: 15607565 DOI: 10.1016/j.mehy.2003.11.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Accepted: 11/24/2003] [Indexed: 01/05/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) is latent in the nervous system of most humans. Ball [Can J Neurol Sci 9 (1982) 303] first suggested the hypothesis that HSV-1 could be involved in the pathogenesis of Alzheimer's Disease (AD) by noting that regions of the brain particularly and earliest affected in AD were the same as those most damaged during HSV encephalitis. Data from Itzhaki's research suggests that HSV-1 in the brain and the carriage of an apolipoprotein E allele 4 (ApoE e4) together confer risk for AD [J Pathol 97 (2002) 395], [Mol Chem Neuropathol 28 (1996) 135], [Alzheimer's Rep 1 (1998) 173], [Biochem Soc Trans 26 (1998) 273]. Of the two other studies based on Itzhaki's findings, one showed similar results [Lancet 349 (1997) 1102], and the other showed a similar trend [Lancet 351 (1998) 1330], [Lancet 352 (1998) 1312]. To further examine the role of HSV-1 in the etiology of AD, we have formulated a Neuroinvasive Score that quantifies the presence and viral load of HSV-1 in eight brain regions. These regions are: entorhinal cortex, hippocampus, pons, cerebellum, and neocortex (temporal, parietal, occipital, and frontal). We hypothesize that the Neuroinvasive Score that encompasses the presence, amount, and extent of HSV-1 spreading (neuroinvasiveness), will correlate with the genetic risk factor, ApoE e4, in the assessment of autopsy samples from AD patients. If the neuroinvasive score can be directly correlated to the different stages of AD (mild, moderate, severe), this will strengthen the hypothesis that HSV-1 is involved in AD and that ApoE e4 also confers risk for the development and progression of AD.
Collapse
Affiliation(s)
- J M Hill
- Departments of Ophthalmology, Neuroscience, Pharmacology, and Microbiology, LSU Health Sciences Center, New Orleans, LA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Burgos JS, Ramirez C, Sastre I, Alfaro JM, Valdivieso F. Herpes simplex virus type 1 infection via the bloodstream with apolipoprotein E dependence in the gonads is influenced by gender. J Virol 2005; 79:1605-12. [PMID: 15650186 PMCID: PMC544102 DOI: 10.1128/jvi.79.3.1605-1612.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) causes disease in humans and animals. Infection usually occurs via the neural route and possibly occurs via the hematogenous route. The latter, however, is the main route by which immunosuppressed individuals and neonates are infected. Gender-dependent differences in the incidence and severity of some viral infections have been reported. To detect differences between the sexes with respect to HSV-1 colonization and disease, the characteristics of both acute and latent infections in hematogenously infected male and female mice were compared. In acute infection, the female mice had a poorer outcome: HSV-1 colonization was more effective, especially in the gonads and brain. In the encephalon, the midbrain had the highest viral load. In latent infection, brain viral loads were not significantly different with respect to sex. Significant differences were seen, however, in the blood and trigeminal ganglia: HSV-1 seroprevalence was observed in females, with no virus detected in males. In brain dissections, only the cerebral cortex of the females had viral loads statistically higher than those observed in the males. The spread of the virus to several organs of interest during acute infection was examined immunohistochemically. Female mice showed greater viral immunostaining, especially in the adrenal cortex, gonads, and midbrain. In male mice, HSV-1 was detected predominantly in the adrenal cortex. It was also found that apolipoprotein E promotes virus colonization of the ovaries, the APOE gene dose being directly related to viral invasiveness.
Collapse
Affiliation(s)
- Javier S Burgos
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Lab CX340, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | | | |
Collapse
|
42
|
|
43
|
Satpute-Krishnan P, DeGiorgis JA, Bearer EL. Fast anterograde transport of herpes simplex virus: role for the amyloid precursor protein of alzheimer's disease. Aging Cell 2003; 2:305-18. [PMID: 14677633 PMCID: PMC3622731 DOI: 10.1046/j.1474-9728.2003.00069.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Anterograde transport of herpes simplex virus (HSV) from its site of synthesis in the neuronal cell body out the neuronal process to the mucosal membrane is crucial for transmission of the virus from one person to another, yet the molecular mechanism is not known. By injecting GFP-labeled HSV into the giant axon of the squid, we reconstitute fast anterograde transport of human HSV and use this as an assay to uncover the underlying molecular mechanism. HSV travels by fast axonal transport at velocities four-fold faster (0.9 microm/sec average, 1.2 microm/sec maximal) than that of mitochondria moving in the same axon (0.2 microm/sec) and ten-fold faster than negatively charged beads (0.08 microm/sec). Transport of HSV utilizes cellular transport mechanisms because it appears to be driven from inside cellular membranes as revealed by negative stain electron microscopy and by the association of TGN46, a component of the cellular secretory pathway, with GFP-labeled viral particles. Finally, we show that amyloid precursor protein (APP), a putative receptor for the microtubule motor, kinesin, is a major component of viral particles, at least as abundant as any viral encoded protein, while another putative motor receptor, JIP 1/2, is not detected. Conventional kinesin is also associated with viral particles. This work links fast anterograde transport of the common pathogen, HSV, with the neurodegenerative Alzheimer's disease. This novel connection should prompt new ideas for treatment and prevention strategies.
Collapse
Affiliation(s)
- Prasanna Satpute-Krishnan
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
- Marine Biology Laboratory, Woods Hole, MA 02543, USA
| | - Joseph A. DeGiorgis
- Marine Biology Laboratory, Woods Hole, MA 02543, USA
- National Institute of Health, NINDS, Bethesda, MD 20892, USA
| | - Elaine L. Bearer
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
- Marine Biology Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
44
|
Burgos JS, Ramirez C, Sastre I, Bullido MJ, Valdivieso F. ApoE4 is more efficient than E3 in brain access by herpes simplex virus type 1. Neuroreport 2003; 14:1825-7. [PMID: 14534428 DOI: 10.1097/00001756-200310060-00013] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Apolipoprotein E (ApoE) plays a relevant role in herpes simplex type 1 (HSV-1) infection of the CNS; after infection by the hematogenous route, the viral neuroinvasiveness directly depends on the APOE gene dose. To analyze the effect of ApoE isoforms on the HSV-1 infectivity to the brain, we have used a model of hematogenous infection of mice humanized for the ApoE3 or the ApoE4 alleles, and we have analyzed the presence of viral DNA in several organs by real time quantitative PCR. We have found that animals expressing human ApoE4 present very high levels of virus in the brain when compared to those expressing the ApoE3 allele; in contrast, there were no significant differences in the viral levels found in peripheral organs. Apolipoprotein E4 seems to facilitate the entry and/or spread of HSV-1 in the brain much more efficiently than E3, pointing to a novel potential mechanism underlying the susceptibility to neurodegenerative processes associated with the ApoE4 allele.
Collapse
Affiliation(s)
- Javier S Burgos
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | |
Collapse
|