1
|
Nagaretnam I, Kakimoto Y, Yoneshige A, Takeuchi F, Sakimura T, Sato K, Osaki Y, Ishii Y, Ozaki A, Tamura M, Hamada M, Shigeoka T, Ito A, Ishida Y. Granulomatous inflammatory responses are elicited in the liver of PD-1 knockout mice by de novo genome mutagenesis. DISCOVERY IMMUNOLOGY 2024; 4:kyae018. [PMID: 39839810 PMCID: PMC11744370 DOI: 10.1093/discim/kyae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 12/10/2024] [Accepted: 12/21/2024] [Indexed: 01/23/2025]
Abstract
Introduction Programmed death-1 (PD-1) is a negative regulator of immune responses. Upon deletion of PD-1 in mice, symptoms of autoimmunity developed only after they got old. In a model experiment in cancer immunotherapy, PD-1 was shown to prevent cytotoxic T lymphocytes from attacking cancer cells that expressed neoantigens derived from genome mutations. Furthermore, the larger number of genome mutations in cancer cells led to more robust anti-tumor immune responses after the PD-1 blockade. To understand the common molecular mechanisms underlying these findings, we hypothesize that we might have acquired PD-1 during evolution to avoid/suppress autoimmune reactions against neoantigens derived from mutations in the genome of aged individuals. Methods To test the hypothesis, we introduced random mutations into the genome of young PD-1-/- and PD-1+/+ mice. We employed two different procedures of random mutagenesis: administration of a potent chemical mutagen N-ethyl-N-nitrosourea (ENU) into the peritoneal cavity of mice and deletion of MSH2, which is essential for the mismatch-repair activity in the nucleus and therefore for the suppression of accumulation of random mutations in the genome. Results We observed granulomatous inflammatory changes in the liver of the ENU-treated PD-1 knockout (KO) mice but not in the wild-type (WT) counterparts. Such lesions also developed in the PD-1/MSH2 double KO mice but not in the MSH2 single KO mice. Conclusion These results support our hypothesis about the physiological function of PD-1 and address the mechanistic reasons for immune-related adverse events observed in cancer patients having PD-1-blockade immunotherapies.
Collapse
Affiliation(s)
- Ilamangai Nagaretnam
- Laboratory of Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma-shi, Nara, Japan
| | - Yoshiya Kakimoto
- Laboratory of Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma-shi, Nara, Japan
| | - Azusa Yoneshige
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama-shi, Osaka, Japan
| | - Fuka Takeuchi
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama-shi, Osaka, Japan
| | - Takayuki Sakimura
- Laboratory of Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma-shi, Nara, Japan
| | - Kanato Sato
- Laboratory of Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma-shi, Nara, Japan
| | - Yoshiro Osaki
- Laboratory of Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma-shi, Nara, Japan
| | - Yuta Ishii
- Laboratory of Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma-shi, Nara, Japan
| | - Ai Ozaki
- Mouse Phenotype Analysis Division, RIKEN Bioresource Research Center, Tsukuba-shi, Ibaraki, Japan
| | - Masaru Tamura
- Mouse Phenotype Analysis Division, RIKEN Bioresource Research Center, Tsukuba-shi, Ibaraki, Japan
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - Toshiaki Shigeoka
- Laboratory of Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma-shi, Nara, Japan
| | - Akihiko Ito
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama-shi, Osaka, Japan
| | - Yasumasa Ishida
- Laboratory of Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma-shi, Nara, Japan
| |
Collapse
|
2
|
Chen XD, Chen Z, Wythes G, Zhang Y, Orr BC, Sun G, Chao YK, Navarro Torres A, Thao K, Vallurupalli M, Sun J, Borji M, Tkacik E, Chen H, Bernstein BE, Chen F. Helicase-assisted continuous editing for programmable mutagenesis of endogenous genomes. Science 2024; 386:eadn5876. [PMID: 39388570 DOI: 10.1126/science.adn5876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 08/14/2024] [Indexed: 10/12/2024]
Abstract
Deciphering the context-specific relationship between sequence and function is a major challenge in genomics. Existing tools for inducing locus-specific hypermutation and evolution in the native genome context are limited. Here we present a programmable platform for long-range, locus-specific hypermutation called helicase-assisted continuous editing (HACE). HACE leverages CRISPR-Cas9 to target a processive helicase-deaminase fusion that incurs mutations across large (>1000-base pair) genomic intervals. We applied HACE to identify mutations in mitogen-activated protein kinase kinase 1 (MEK1) that confer kinase inhibitor resistance, to dissect the impact of individual variants in splicing factor 3B subunit 1 (SF3B1)-dependent missplicing, and to evaluate noncoding variants in a stimulation-dependent immune enhancer of CD69. HACE provides a powerful tool for investigating coding and noncoding variants, uncovering combinatorial sequence-to-function relationships, and evolving new biological functions.
Collapse
Affiliation(s)
- Xi Dawn Chen
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Systems, Synthetic, and Quantitative Biology PhD Program, Harvard University, Cambridge, MA 02138, USA
| | - Zeyu Chen
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - George Wythes
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yifan Zhang
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Benno C Orr
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Gary Sun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Yu-Kai Chao
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrea Navarro Torres
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ka Thao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Jing Sun
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mehdi Borji
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Emre Tkacik
- Systems, Synthetic, and Quantitative Biology PhD Program, Harvard University, Cambridge, MA 02138, USA
| | - Haiqi Chen
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bradley E Bernstein
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Fei Chen
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
3
|
Standley A, Xie J, Lau AW, Grote L, Gifford AJ. Working with Miraculous Mice: Mus musculus as a Model Organism. Curr Protoc 2024; 4:e70021. [PMID: 39435766 DOI: 10.1002/cpz1.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The laboratory mouse has been described as a "miracle" model organism, providing a window by which we may gain an understanding of ourselves. Since the first recorded mouse experiment in 1664, the mouse has become the most used animal model in biomedical research. Mice are ideally suited as a model organism because of their small size, short gestation period, large litter size, and genetic similarity to humans. This article provides a broad overview of the laboratory mouse as a model organism and is intended for undergraduates and those new to working with mice. We delve into the history of the laboratory mouse and outline important terminology to accurately describe research mice. The types of laboratory mice available to researchers are reviewed, including outbred stocks, inbred strains, immunocompromised mice, and genetically engineered mice. The critical role mice have played in advancing knowledge in the areas of oncology, immunology, and pharmacology is highlighted by examining the significant contribution of mice to Nobel Prize winning research. International mouse mutagenesis programs and accurate phenotyping of mouse models are outlined. We also explain important considerations for working with mice, including animal ethics; the welfare principles of replacement, refinement, and reduction; and the choice of mouse model in experimental design. Finally, we present practical advice for maintaining a mouse colony, which involves adequate training of staff, the logistics of mouse housing, monitoring colony health, and breeding strategies. Useful resources for working with mice are also listed. The aim of this overview is to equip the reader with a broad appreciation of the enormous potential and some of the complexities of working with the laboratory mouse in a quest to improve human health. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Anick Standley
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Jinhan Xie
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Angelica Wy Lau
- Garvan Institute of Medical Research, St Vincent's Clinical School, Darlinghurst, NSW, Australia
| | - Lauren Grote
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Andrew J Gifford
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- Anatomical Pathology, NSW Heath Pathology, Prince of Wales Hospital, Randwick, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Curtis L, Piggins HD. Diverse genetic alteration dysregulates neuropeptide and intracellular signalling in the suprachiasmatic nuclei. Eur J Neurosci 2024; 60:3921-3945. [PMID: 38924215 DOI: 10.1111/ejn.16443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/12/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
In mammals, intrinsic 24 h or circadian rhythms are primarily generated by the suprachiasmatic nuclei (SCN). Rhythmic daily changes in the transcriptome and proteome of SCN cells are controlled by interlocking transcription-translation feedback loops (TTFLs) of core clock genes and their proteins. SCN cells function as autonomous circadian oscillators, which synchronize through intercellular neuropeptide signalling. Physiological and behavioural rhythms can be severely disrupted by genetic modification of a diverse range of genes and proteins in the SCN. With the advent of next generation sequencing, there is unprecedented information on the molecular profile of the SCN and how it is affected by genetically targeted alteration. However, whether the expression of some genes is more readily affected by genetic alteration of the SCN is unclear. Here, using publicly available datasets from recent RNA-seq assessments of the SCN from genetically altered and control mice, we evaluated whether there are commonalities in transcriptome dysregulation. This was completed for four different phases across the 24 h cycle and was augmented by Gene Ontology Molecular Function (GO:MF) and promoter analysis. Common differentially expressed genes (DEGs) and/or enriched GO:MF terms included signalling molecules, their receptors, and core clock components. Finally, examination of the JASPAR database indicated that E-box and CRE elements in the promoter regions of several commonly dysregulated genes. From this analysis, we identify differential expression of genes coding for molecules involved in SCN intra- and intercellular signalling as a potential cause of abnormal circadian rhythms.
Collapse
Affiliation(s)
- Lucy Curtis
- School of Biological Sciences, University of Bristol, Bristol, UK
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - Hugh D Piggins
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
5
|
Zhang C, Yang L, Zhang H, Wu F, Zhang Y, Zhang K, Wu C, Li R, Dong M, Zhao S, Song H. TAF1 is needed for the proliferation and maturation of thyroid follicle cells via Notch signaling. Am J Physiol Endocrinol Metab 2024; 326:E832-E841. [PMID: 38656129 DOI: 10.1152/ajpendo.00403.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Thyroid dysgenesis (TD) is the common pathogenic mechanism of congenital hypothyroidism (CH). In addition, known pathogenic genes are limited to those that are directly involved in thyroid development. To identify additional candidate pathogenetic genes, we performed forward genetic screening for TD in zebrafish, followed by positional cloning. The candidate gene was confirmed in vitro using the Nthy-ori 3.1 cell line and in vivo using a zebrafish model organism. We obtained a novel zebrafish line with thyroid dysgenesis and identified the candidate pathogenetic mutation TATA-box binding protein associated Factor 1 (taf1) by positional cloning. Further molecular studies revealed that taf1 was needed for the proliferation of thyroid follicular cells by binding to the NOTCH1 promoter region. Knockdown of TAF1 impaired the proliferation and maturation of thyroid cells, thereby leading to thyroid dysplasia. This study showed that TAF1 promoted Notch signaling and that this association played a pivotal role in thyroid development.NEW & NOTEWORTHY In our study, we obtained a novel zebrafish line with thyroid dysgenesis (TD) and identified the candidate pathogenetic mutation TATA-box binding protein associated Factor 1 (taf1). Further researches revealed that taf1 was required for thyroid follicular cells by binding to the NOTCH1 promoter region. Our findings revealed a novel role of TAF1 in thyroid morphogenesis.
Collapse
Affiliation(s)
- Caoxu Zhang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Liu Yang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Haiyang Zhang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Fengyao Wu
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Yue Zhang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Kaiwen Zhang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Chenyang Wu
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Rui Li
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Mei Dong
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Shuangxia Zhao
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Huaidong Song
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
6
|
Godoy-Corchuelo JM, Ali Z, Brito Armas JM, Martins-Bach AB, García-Toledo I, Fernández-Beltrán LC, López-Carbonero JI, Bascuñana P, Spring S, Jimenez-Coca I, Muñoz de Bustillo Alfaro RA, Sánchez-Barrena MJ, Nair RR, Nieman BJ, Lerch JP, Miller KL, Ozdinler HP, Fisher EMC, Cunningham TJ, Acevedo-Arozena A, Corrochano S. TDP-43-M323K causes abnormal brain development and progressive cognitive and motor deficits associated with mislocalised and increased levels of TDP-43. Neurobiol Dis 2024; 193:106437. [PMID: 38367882 PMCID: PMC10988218 DOI: 10.1016/j.nbd.2024.106437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024] Open
Abstract
TDP-43 pathology is found in several neurodegenerative disorders, collectively referred to as "TDP-43 proteinopathies". Aggregates of TDP-43 are present in the brains and spinal cords of >97% of amyotrophic lateral sclerosis (ALS), and in brains of ∼50% of frontotemporal dementia (FTD) patients. While mutations in the TDP-43 gene (TARDBP) are usually associated with ALS, many clinical reports have linked these mutations to cognitive impairments and/or FTD, but also to other neurodegenerative disorders including Parkinsonism (PD) or progressive supranuclear palsy (PSP). TDP-43 is a ubiquitously expressed, highly conserved RNA-binding protein that is involved in many cellular processes, mainly RNA metabolism. To investigate systemic pathological mechanisms in TDP-43 proteinopathies, aiming to capture the pleiotropic effects of TDP-43 mutations, we have further characterised a mouse model carrying a point mutation (M323K) within the endogenous Tardbp gene. Homozygous mutant mice developed cognitive and behavioural deficits as early as 3 months of age. This was coupled with significant brain structural abnormalities, mainly in the cortex, hippocampus, and white matter fibres, together with progressive cortical interneuron degeneration and neuroinflammation. At the motor level, progressive phenotypes appeared around 6 months of age. Thus, cognitive phenotypes appeared to be of a developmental origin with a mild associated progressive neurodegeneration, while the motor and neuromuscular phenotypes seemed neurodegenerative, underlined by a progressive loss of upper and lower motor neurons as well as distal denervation. This is accompanied by progressive elevated TDP-43 protein and mRNA levels in cortex and spinal cord of homozygous mutant mice from 3 months of age, together with increased cytoplasmic TDP-43 mislocalisation in cortex, hippocampus, hypothalamus, and spinal cord at 12 months of age. In conclusion, we find that Tardbp M323K homozygous mutant mice model many aspects of human TDP-43 proteinopathies, evidencing a dual role for TDP-43 in brain morphogenesis as well as in the maintenance of the motor system, making them an ideal in vivo model system to study the complex biology of TDP-43.
Collapse
Affiliation(s)
- Juan M Godoy-Corchuelo
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | - Zeinab Ali
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain; MRC Harwell Institute, Oxfordshire, UK
| | - Jose M Brito Armas
- Unidad de Investigación, Hospital Universitario de Canarias, ITB-ULL and CIBERNED, La Laguna, Spain
| | | | - Irene García-Toledo
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | - Luis C Fernández-Beltrán
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain; Department of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan I López-Carbonero
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | - Pablo Bascuñana
- Brain Mapping Group, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Shoshana Spring
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Irene Jimenez-Coca
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | | | - Maria J Sánchez-Barrena
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Blas Cabrera", CSIC, Madrid, Spain
| | - Remya R Nair
- MRC Harwell Institute, Oxfordshire, UK; Nucleic Acid Therapy Accelerator (NATA), Harwell Campus, Oxfordshire, UK
| | - Brian J Nieman
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jason P Lerch
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Hande P Ozdinler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, and UCL Queen Square Motor Neuron Disease Centre, UCL, Institute of Neurology, London, UK
| | - Thomas J Cunningham
- MRC Harwell Institute, Oxfordshire, UK; MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK
| | - Abraham Acevedo-Arozena
- Unidad de Investigación, Hospital Universitario de Canarias, ITB-ULL and CIBERNED, La Laguna, Spain.
| | - Silvia Corrochano
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain; MRC Harwell Institute, Oxfordshire, UK.
| |
Collapse
|
7
|
Awwad SW, Serrano-Benitez A, Thomas JC, Gupta V, Jackson SP. Revolutionizing DNA repair research and cancer therapy with CRISPR-Cas screens. Nat Rev Mol Cell Biol 2023; 24:477-494. [PMID: 36781955 DOI: 10.1038/s41580-022-00571-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 02/15/2023]
Abstract
All organisms possess molecular mechanisms that govern DNA repair and associated DNA damage response (DDR) processes. Owing to their relevance to human disease, most notably cancer, these mechanisms have been studied extensively, yet new DNA repair and/or DDR factors and functional interactions between them are still being uncovered. The emergence of CRISPR technologies and CRISPR-based genetic screens has enabled genome-scale analyses of gene-gene and gene-drug interactions, thereby providing new insights into cellular processes in distinct DDR-deficiency genetic backgrounds and conditions. In this Review, we discuss the mechanistic basis of CRISPR-Cas genetic screening approaches and describe how they have contributed to our understanding of DNA repair and DDR pathways. We discuss how DNA repair pathways are regulated, and identify and characterize crosstalk between them. We also highlight the impacts of CRISPR-based studies in identifying novel strategies for cancer therapy, and in understanding, overcoming and even exploiting cancer-drug resistance, for example in the contexts of PARP inhibition, homologous recombination deficiencies and/or replication stress. Lastly, we present the DDR CRISPR screen (DDRcs) portal , in which we have collected and reanalysed data from CRISPR screen studies and provide a tool for systematically exploring them.
Collapse
Affiliation(s)
- Samah W Awwad
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Almudena Serrano-Benitez
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - John C Thomas
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - Vipul Gupta
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Stephen P Jackson
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Telliam G, Desterke C, Imeri J, M'kacher R, Oudrhiri N, Balducci E, Fontaine-Arnoux M, Acloque H, Bennaceur-Griscelli A, Turhan AG. Modeling Global Genomic Instability in Chronic Myeloid Leukemia (CML) Using Patient-Derived Induced Pluripotent Stem Cells (iPSCs). Cancers (Basel) 2023; 15:cancers15092594. [PMID: 37174060 PMCID: PMC10177163 DOI: 10.3390/cancers15092594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
METHODS We used a patient-specific induced pluripotent stem cell (iPSC) line treated with the mutagenic agent N-ethyl-N-nitrosourea (ENU). Genomic instability was validated using γ-H2AX and micronuclei assays and CGH array for genomic events. RESULTS An increased number of progenitors (x5-Fold), which proliferated in liquid cultures with a blast cell morphology, was observed in the mutagenized condition as compared to the unmutagenized one. CGH array performed for both conditions in two different time points reveals several cancer genes in the ENU-treated condition, some known to be altered in leukemia (BLM, IKZF1, NCOA2, ALK, EP300, ERG, MKL1, PHF6 and TET1). Transcriptome GEO-dataset GSE4170 allowed us to associate 125 of 249 of the aberrations that we detected in CML-iPSC with the CML progression genes already described during progression from chronic and AP to BC. Among these candidates, eleven of them have been described in CML and related to tyrosine kinase inhibitor resistance and genomic instability. CONCLUSIONS These results demonstrated that we have generated, for the first time to our knowledge, an in vitro genetic instability model, reproducing genomic events described in patients with BC.
Collapse
Affiliation(s)
- Gladys Telliam
- INSERM UMR_S_1310, Université Paris Saclay, 94800 Villejuif, France
- Faculté de Médecine Paris Saclay, Université Paris Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Christophe Desterke
- INSERM UMR_S_1310, Université Paris Saclay, 94800 Villejuif, France
- Faculté de Médecine Paris Saclay, Université Paris Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Jusuf Imeri
- INSERM UMR_S_1310, Université Paris Saclay, 94800 Villejuif, France
| | - Radhia M'kacher
- APHP Paris Saclay Service d'Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse, 94800 Villejuif, France
| | - Noufissa Oudrhiri
- INSERM UMR_S_1310, Université Paris Saclay, 94800 Villejuif, France
- APHP Paris Saclay Service d'Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse, 94800 Villejuif, France
| | - Estelle Balducci
- INSERM UMR_S_1310, Université Paris Saclay, 94800 Villejuif, France
- Faculté de Médecine Paris Saclay, Université Paris Saclay, 94270 Le Kremlin-Bicêtre, France
- APHP Paris Saclay Service d'Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse, 94800 Villejuif, France
| | - Micheline Fontaine-Arnoux
- APHP Paris Saclay Service d'Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse, 94800 Villejuif, France
| | - Hervé Acloque
- INSERM UMR_S_1310, Université Paris Saclay, 94800 Villejuif, France
| | - Annelise Bennaceur-Griscelli
- INSERM UMR_S_1310, Université Paris Saclay, 94800 Villejuif, France
- Faculté de Médecine Paris Saclay, Université Paris Saclay, 94270 Le Kremlin-Bicêtre, France
- APHP Paris Saclay Service d'Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse, 94800 Villejuif, France
- APHP-Paris Saclay Service d'Hématologie-Bicêtre, 94270 Le Kremlin Bicêtre, France
- INGESTEM National iPSC Infrastructure, 94800 Villejuif, France
- Centre for iPSC Therapies (CITHERA) INSERM UMS 45, Génopole, 91100 Evry, France
| | - Ali G Turhan
- INSERM UMR_S_1310, Université Paris Saclay, 94800 Villejuif, France
- Faculté de Médecine Paris Saclay, Université Paris Saclay, 94270 Le Kremlin-Bicêtre, France
- APHP Paris Saclay Service d'Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse, 94800 Villejuif, France
- APHP-Paris Saclay Service d'Hématologie-Bicêtre, 94270 Le Kremlin Bicêtre, France
- INGESTEM National iPSC Infrastructure, 94800 Villejuif, France
- Centre for iPSC Therapies (CITHERA) INSERM UMS 45, Génopole, 91100 Evry, France
| |
Collapse
|
9
|
Portero V, Nicol T, Podliesna S, Marchal GA, Baartscheer A, Casini S, Tadros R, Treur JL, Tanck MWT, Cox IJ, Probert F, Hough TA, Falcone S, Beekman L, Müller-Nurasyid M, Kastenmüller G, Gieger C, Peters A, Kääb S, Sinner MF, Blease A, Verkerk AO, Bezzina CR, Potter PK, Remme CA. Chronically elevated branched chain amino acid levels are pro-arrhythmic. Cardiovasc Res 2022; 118:1742-1757. [PMID: 34142125 PMCID: PMC9215196 DOI: 10.1093/cvr/cvab207] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/16/2021] [Indexed: 01/03/2023] Open
Abstract
AIMS Cardiac arrhythmias comprise a major health and economic burden and are associated with significant morbidity and mortality, including cardiac failure, stroke, and sudden cardiac death (SCD). Development of efficient preventive and therapeutic strategies is hampered by incomplete knowledge of disease mechanisms and pathways. Our aim is to identify novel mechanisms underlying cardiac arrhythmia and SCD using an unbiased approach. METHODS AND RESULTS We employed a phenotype-driven N-ethyl-N-nitrosourea mutagenesis screen and identified a mouse line with a high incidence of sudden death at young age (6-9 weeks) in the absence of prior symptoms. Affected mice were found to be homozygous for the nonsense mutation Bcat2p.Q300*/p.Q300* in the Bcat2 gene encoding branched chain amino acid transaminase 2. At the age of 4-5 weeks, Bcat2p.Q300*/p.Q300* mice displayed drastic increase of plasma levels of branch chain amino acids (BCAAs-leucine, isoleucine, valine) due to the incomplete catabolism of BCAAs, in addition to inducible arrhythmias ex vivo as well as cardiac conduction and repolarization disturbances. In line with these findings, plasma BCAA levels were positively correlated to electrocardiogram indices of conduction and repolarization in the German community-based KORA F4 Study. Isolated cardiomyocytes from Bcat2p.Q300*/p.Q300* mice revealed action potential (AP) prolongation, pro-arrhythmic events (early and late afterdepolarizations, triggered APs), and dysregulated calcium homeostasis. Incubation of human pluripotent stem cell-derived cardiomyocytes with elevated concentration of BCAAs induced similar calcium dysregulation and pro-arrhythmic events which were prevented by rapamycin, demonstrating the crucial involvement of mTOR pathway activation. CONCLUSIONS Our findings identify for the first time a causative link between elevated BCAAs and arrhythmia, which has implications for arrhythmogenesis in conditions associated with BCAA metabolism dysregulation such as diabetes, metabolic syndrome, and heart failure.
Collapse
Affiliation(s)
- Vincent Portero
- Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam UMC, Location AMC, Room K2-104.2, Meibergdreef 9, PO Box 22700, 1100 DE Amsterdam, The Netherlands
| | - Thomas Nicol
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell, Oxfordshire, UK
| | - Svitlana Podliesna
- Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam UMC, Location AMC, Room K2-104.2, Meibergdreef 9, PO Box 22700, 1100 DE Amsterdam, The Netherlands
| | - Gerard A Marchal
- Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam UMC, Location AMC, Room K2-104.2, Meibergdreef 9, PO Box 22700, 1100 DE Amsterdam, The Netherlands
| | - Antonius Baartscheer
- Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam UMC, Location AMC, Room K2-104.2, Meibergdreef 9, PO Box 22700, 1100 DE Amsterdam, The Netherlands
| | - Simona Casini
- Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam UMC, Location AMC, Room K2-104.2, Meibergdreef 9, PO Box 22700, 1100 DE Amsterdam, The Netherlands
| | - Rafik Tadros
- Cardiovascular Genetics Center, Montreal Heart Institute and Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Jorien L Treur
- Department of Psychiatry, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Michael W T Tanck
- Amsterdam UMC, University of Amsterdam, Department of Epidemiology and Data Science, Amsterdam Public Health (APH), The Netherlands
| | - I Jane Cox
- Institute of Hepatology London, Foundation for Liver Research, London, UK
- Faculty of Life Sciences & Medicine, Kings College, London, UK
| | - Fay Probert
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Tertius A Hough
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell, Oxfordshire, UK
| | - Sara Falcone
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell, Oxfordshire, UK
| | - Leander Beekman
- Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam UMC, Location AMC, Room K2-104.2, Meibergdreef 9, PO Box 22700, 1100 DE Amsterdam, The Netherlands
| | - Martina Müller-Nurasyid
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- IBE, Faculty of Medicine, Ludwig Maximilian’s University (LMU) Munich, Munich, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Gabi Kastenmüller
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site: Munich Heart Alliance, Munich, Germany
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site: Munich Heart Alliance, Munich, Germany
| | - Stefan Kääb
- German Centre for Cardiovascular Research (DZHK), Partner Site: Munich Heart Alliance, Munich, Germany
- Department of Medicine I (Cardiology), University Hospital, LMU Munich, Munich, Germany
| | - Moritz F Sinner
- German Centre for Cardiovascular Research (DZHK), Partner Site: Munich Heart Alliance, Munich, Germany
- Department of Medicine I (Cardiology), University Hospital, LMU Munich, Munich, Germany
| | - Andrew Blease
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell, Oxfordshire, UK
| | - Arie O Verkerk
- Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam UMC, Location AMC, Room K2-104.2, Meibergdreef 9, PO Box 22700, 1100 DE Amsterdam, The Netherlands
| | - Connie R Bezzina
- Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam UMC, Location AMC, Room K2-104.2, Meibergdreef 9, PO Box 22700, 1100 DE Amsterdam, The Netherlands
| | - Paul K Potter
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Carol Ann Remme
- Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam UMC, Location AMC, Room K2-104.2, Meibergdreef 9, PO Box 22700, 1100 DE Amsterdam, The Netherlands
| |
Collapse
|
10
|
Sánchez-Arcila JC, Jensen KDC. Forward Genetics in Apicomplexa Biology: The Host Side of the Story. Front Cell Infect Microbiol 2022; 12:878475. [PMID: 35646724 PMCID: PMC9133346 DOI: 10.3389/fcimb.2022.878475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Forward genetic approaches have been widely used in parasitology and have proven their power to reveal the complexities of host-parasite interactions in an unbiased fashion. Many aspects of the parasite's biology, including the identification of virulence factors, replication determinants, antibiotic resistance genes, and other factors required for parasitic life, have been discovered using such strategies. Forward genetic approaches have also been employed to understand host resistance mechanisms to parasitic infection. Here, we will introduce and review all forward genetic approaches that have been used to identify host factors involved with Apicomplexa infections, which include classical genetic screens and QTL mapping, GWAS, ENU mutagenesis, overexpression, RNAi and CRISPR-Cas9 library screens. Collectively, these screens have improved our understanding of host resistance mechanisms, immune regulation, vaccine and drug designs for Apicomplexa parasites. We will also discuss how recent advances in molecular genetics give present opportunities to further explore host-parasite relationships.
Collapse
Affiliation(s)
- Juan C. Sánchez-Arcila
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, United States
| | - Kirk D. C. Jensen
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, United States
- Health Science Research Institute, University of California, Merced, Merced, CA, United States
| |
Collapse
|
11
|
Genetically modified mice for research on human diseases: A triumph for Biotechnology or a work in progress? THE EUROBIOTECH JOURNAL 2022. [DOI: 10.2478/ebtj-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
Abstract
Genetically modified mice are engineered as models for human diseases. These mouse models include inbred strains, mutants, gene knockouts, gene knockins, and ‘humanized’ mice. Each mouse model is engineered to mimic a specific disease based on a theory of the genetic basis of that disease. For example, to test the amyloid theory of Alzheimer’s disease, mice with amyloid precursor protein genes are engineered, and to test the tau theory, mice with tau genes are engineered. This paper discusses the importance of mouse models in basic research, drug discovery, and translational research, and examines the question of how to define the “best” mouse model of a disease. The critiques of animal models and the caveats in translating the results from animal models to the treatment of human disease are discussed. Since many diseases are heritable, multigenic, age-related and experience-dependent, resulting from multiple gene-gene and gene-environment interactions, it will be essential to develop mouse models that reflect these genetic, epigenetic and environmental factors from a developmental perspective. Such models would provide further insight into disease emergence, progression and the ability to model two-hit and multi-hit theories of disease. The summary examines the biotechnology for creating genetically modified mice which reflect these factors and how they might be used to discover new treatments for complex human diseases such as cancers, neurodevelopmental and neurodegenerative diseases.
Collapse
|
12
|
Miyasaka Y, Okuda K, Miura I, Motegi H, Wakana S, Ohno T. A novel ENU-induced Cpox mutation causes microcytic hypochromic anemia in mice. Exp Anim 2022; 71:433-441. [PMID: 35527013 PMCID: PMC9671764 DOI: 10.1538/expanim.22-0032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mouse models of red blood cell abnormalities are important for understanding the underlying molecular mechanisms of human erythrocytic diseases. DBA.B6-Mha (Microcytic hypochromic anemia) congenic mice were generated from the cross between N-ethyl-N-nitrosourea (ENU)-mutagenized male C57BL/6J and female DBA/2J mice as part of the RIKEN large-scale ENU mutagenesis project. The mice were established by backcrossing with DBA/2J mice for more than 20 generations. These mice showed autosomal-dominant microcytic hypochromic anemia with decreased mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH) levels and increased red blood cell distribution width (RDW) and plasma ferritin levels. Linkage analysis indicated that the Mha locus was located within an interval of approximately 1.95-Mb between D16Nut1 (58.35 Mb) and D16Mit185 (60.30 Mb) on mouse chromosome 16. Mutation analysis revealed that DBA.B6-Mha mice had a point mutation (c.921-2A>G) at the acceptor site of intron 4 in the coproporphyrinogen oxidase (Cpox) gene, a heme-synthesizing gene. RT-PCR revealed that the Cpox mRNA in DBA.B6-Mha mice caused splicing errors. Our results suggest that microcytic hypochromic anemia in DBA.B6-Mha mice is owing to impaired heme synthesis caused by splice mutations in Cpox. Therefore, the DBA.B6-Mha mice may be used to elucidate the molecular mechanisms underlying microcytic hypochromic anemia caused by mutations in Cpox. Although low MCV levels are known to confer malarial resistance to the host, there were no marked changes in the susceptibility of DBA.B6-Mha mice to rodent malarial (Plasmodium yoelii 17XL) infection.
Collapse
Affiliation(s)
- Yuki Miyasaka
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Kento Okuda
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Ikuo Miura
- Technology and Developmental Team for Mouse Phenotype Analysis, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Hiromi Motegi
- Team for Advanced Development and Evaluation of Human Disease Models, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Shigeharu Wakana
- Technology and Developmental Team for Mouse Phenotype Analysis, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan,Department of Animal Experimentation, Foundation for Biomedical Research and Innovation at Kobe, Creative Lab for Innovation in Kobe, 5F 6-3-7,
Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Tamio Ohno
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
13
|
Miura I, Kikkawa Y, Yasuda SP, Shinogi A, Usuda D, Kumar V, Takahashi JS, Tamura M, Masuya H, Wakana S. Characterization of single nucleotide polymorphisms for a forward genetics approach using genetic crosses in C57BL/6 and BALB/c substrains of mice. Exp Anim 2021; 71:240-251. [PMID: 34980769 PMCID: PMC9130033 DOI: 10.1538/expanim.21-0181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Forward genetics is a powerful approach based on chromosomal mapping of phenotypes and has successfully led to the discovery of many mouse mutations in genes responsible for various
phenotypes. Although crossing between genetically remote strains can produce F2 and backcross mice for chromosomal mapping, the phenotypes are often affected by background effects
from the partner strains in genetic crosses. Genetic crosses between substrains might be useful in genetic mapping to avoid genetic background effects. In this study, we investigated single
nucleotide polymorphisms (SNPs) available for genetic mapping using substrains of C57BL/6 and BALB/c mice. In C57BL/6 mice, 114 SNP markers were developed and assigned to locations on all
chromosomes for full utilization for genetic mapping using genetic crosses between the C57BL/6J and C57BL/6N substrains. Moreover, genetic differences were identified in the 114 SNP markers
among the seven C57BL/6 substrains from five production breeders. In addition, 106 SNPs were detected on all chromosomes of BALB/cAJcl and BALB/cByJJcl substrains. These SNPs could be used
for genotyping in BALB/cJ, BALB/cAJcl, BALB/cAnNCrlCrlj, and BALB/cCrSlc mice, and they are particularly useful for genetic mapping using crosses between BALB/cByJJcl and other BALB/c
substrains. The SNPs characterized in this study can be utilized for genetic mapping to identify the causative mutations of the phenotypes induced by N-ethyl-N-nitrosourea mutagenesis and
the SNPs responsible for phenotypic differences between the substrains of C57BL/6 and BALB/c mice.
Collapse
Affiliation(s)
- Ikuo Miura
- Division of Molecular Genetics, Department of Cooperative Graduate School, School of Medicine, Faculty of Medicine, Graduate School of Medical and Dental Sciences (Medicine), Niigata University.,Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center.,Deafness Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science
| | - Yoshiaki Kikkawa
- Division of Molecular Genetics, Department of Cooperative Graduate School, School of Medicine, Faculty of Medicine, Graduate School of Medical and Dental Sciences (Medicine), Niigata University.,Deafness Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science
| | - Shumpei P Yasuda
- Deafness Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science
| | - Akiko Shinogi
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center
| | - Daiki Usuda
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center.,Integrated Bioresource Information Division, RIKEN BioResource Research Center
| | | | - Joseph S Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center
| | - Hiroshi Masuya
- Integrated Bioresource Information Division, RIKEN BioResource Research Center
| | - Shigeharu Wakana
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center.,Department of Animal Experimentation, Foundation for Biomedical Research and Innovation at Kobe, Creative Lab for Innovation in Kobe
| |
Collapse
|
14
|
Ali Khan A, Raess M, de Angelis MH. Moving forward with forward genetics: A summary of the INFRAFRONTIER Forward Genetics Panel Discussion. F1000Res 2021; 10:456. [PMID: 34900227 PMCID: PMC8634052 DOI: 10.12688/f1000research.25369.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/22/2020] [Indexed: 11/20/2022] Open
Abstract
In the last few decades, forward genetics approaches have been extensively used to identify gene function. Essentially, forward genetics is the elucidation of the genetic basis of a specific phenotype by screening a population containing random genomic modifications that alter gene function. These approaches have shed light on some essential gene functions in development and disease and have expanded the realm of understanding for genetic disorders. Due to the availability of efficient mutagenesis methods, phenotyping techniques, reliable validation, comprehensive sequence information and translational potential, mouse models are favored for forward genetics approaches. However, in this post-genomic CRISPR-Cas9 era, the relevance and future of forward genetics was brought into question. With more than 7300 mouse strains archived and close interactions with several leading mouse researchers around the world, INFRAFRONTIER - the European Research Infrastructure for mouse models organised a panel discussion on forward genetics at the International Mammalian Genome Conference 2018 to discuss the future of forward genetics as well as challenges faced by researchers using this approach in the current research environment. The commentary presents an overview of this discussion.
Collapse
Affiliation(s)
- Asrar Ali Khan
- INFRAFRONTIER GmbH, Neuherberg / Munich, Bavaria, 85764, Germany
| | - Michael Raess
- INFRAFRONTIER GmbH, Neuherberg / Munich, Bavaria, 85764, Germany
| | | |
Collapse
|
15
|
Tissue-Nonspecific Alkaline Phosphatase, a Possible Mediator of Cell Maturation: Towards a New Paradigm. Cells 2021; 10:cells10123338. [PMID: 34943845 PMCID: PMC8699127 DOI: 10.3390/cells10123338] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/01/2023] Open
Abstract
Alkaline phosphatase (ALP) is a ubiquitous membrane-bound glycoprotein capable of providing inorganic phosphate by catalyzing the hydrolysis of organic phosphate esters, or removing inorganic pyrophosphate that inhibits calcification. In humans, four forms of ALP cDNA have been cloned, among which tissue-nonspecific ALP (TNSALP) (TNSALP) is widely distributed in the liver, bone, and kidney, making it an important marker in clinical and basic research. Interestingly, TNSALP is highly expressed in juvenile cells, such as pluripotent stem cells (i.e., embryonic stem cells and induced pluripotent stem cells (iPSCs)) and somatic stem cells (i.e., neuronal stem cells and bone marrow mesenchymal stem cells). Hypophosphatasia is a genetic disorder causing defects in bone and tooth development as well as neurogenesis. Mutations in the gene coding for TNSALP are thought to be responsible for the abnormalities, suggesting the essential role of TNSALP in these events. Moreover, a reverse-genetics-based study using mice revealed that TNSALP is important in bone and tooth development as well as neurogenesis. However, little is known about the role of TNSALP in the maintenance and differentiation of juvenile cells. Recently, it was reported that cells enriched with TNSALP are more easily reprogrammed into iPSCs than those with less TNSALP. Furthermore, in bone marrow stem cells, ALP could function as a "signal regulator" deciding the fate of these cells. In this review, we summarize the properties of ALP and the background of ALP gene analysis and its manipulation, with a special focus on the potential role of TNSALP in the generation (and possibly maintenance) of juvenile cells.
Collapse
|
16
|
Distinct Morphological and Behavioural Alterations in ENU-Induced Heterozygous Trpc7K810Stop Mutant Mice. Genes (Basel) 2021; 12:genes12111732. [PMID: 34828338 PMCID: PMC8617871 DOI: 10.3390/genes12111732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
Trpc7 (transient receptor potential cation channel, subfamily C, member 7; 862 amino acids) knockout mice are described showing no clear phenotypic alterations, therefore, the functional relevance of the gene remains unclear. A complementary approach for the functional analysis of a given gene is the examination of individuals harbouring a mutant allele of the gene. In the phenotype-driven Munich ENU mouse mutagenesis project, a high number of phenotypic parameters was used for establishing novel mouse models on the genetic background of C3H inbred mice. The phenotypically dominant mutant line SMA002 was established and further examined. Analysis of the causative mutation as well as the phenotypic characterization of the mutant line were carried out. The causative mutation was detected in the gene Trpc7 which leads to the production of a truncated protein due to the novel stop codon at amino acid position 810 thereby affecting the highly conserved cytoplasmic C terminus of the protein. Trpc7 heterozygous mutant mice of both sexes were viable and fertile, but showed distinct morphological and behavioural alterations which is in contrast to the published phenotype of Trpc7 knockout mice. Thus, the Trpc7K810Stop mutation leads to a dominant negative effect of the mutant protein.
Collapse
|
17
|
Brown SDM. Advances in mouse genetics for the study of human disease. Hum Mol Genet 2021; 30:R274-R284. [PMID: 34089057 PMCID: PMC8490014 DOI: 10.1093/hmg/ddab153] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 01/11/2023] Open
Abstract
The mouse is the pre-eminent model organism for studies of mammalian gene function and has provided an extraordinarily rich range of insights into basic genetic mechanisms and biological systems. Over several decades, the characterization of mouse mutants has illuminated the relationship between gene and phenotype, providing transformational insights into the genetic bases of disease. However, if we are to deliver the promise of genomic and precision medicine, we must develop a comprehensive catalogue of mammalian gene function that uncovers the dark genome and elucidates pleiotropy. Advances in large-scale mouse mutagenesis programmes allied to high-throughput mouse phenomics are now addressing this challenge and systematically revealing novel gene function and multi-morbidities. Alongside the development of these pan-genomic mutational resources, mouse genetics is employing a range of diversity resources to delineate gene-gene and gene-environment interactions and to explore genetic context. Critically, mouse genetics is a powerful tool for assessing the functional impact of human genetic variation and determining the causal relationship between variant and disease. Together these approaches provide unique opportunities to dissect in vivo mechanisms and systems to understand pathophysiology and disease. Moreover, the provision and utility of mouse models of disease has flourished and engages cumulatively at numerous points across the translational spectrum from basic mechanistic studies to pre-clinical studies, target discovery and therapeutic development.
Collapse
|
18
|
Abstract
The past 25 years of genomics research first revealed which genes are encoded by the human genome and then a detailed catalogue of human genome variation associated with many diseases. Despite this, the function of many genes and gene regulatory elements remains poorly characterized, which limits our ability to apply these insights to human disease. The advent of new CRISPR functional genomics tools allows for scalable and multiplexable characterization of genes and gene regulatory elements encoded by the human genome. These approaches promise to reveal mechanisms of gene function and regulation, and to enable exploration of how genes work together to modulate complex phenotypes.
Collapse
|
19
|
Wu Q, Shou J. Toward precise CRISPR DNA fragment editing and predictable 3D genome engineering. J Mol Cell Biol 2021; 12:828-856. [PMID: 33125070 PMCID: PMC7883824 DOI: 10.1093/jmcb/mjaa060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Ever since gene targeting or specific modification of genome sequences in mice was achieved in the early 1980s, the reverse genetic approach of precise editing of any genomic locus has greatly accelerated biomedical research and biotechnology development. In particular, the recent development of the CRISPR/Cas9 system has greatly expedited genetic dissection of 3D genomes. CRISPR gene-editing outcomes result from targeted genome cleavage by ectopic bacterial Cas9 nuclease followed by presumed random ligations via the host double-strand break repair machineries. Recent studies revealed, however, that the CRISPR genome-editing system is precise and predictable because of cohesive Cas9 cleavage of targeting DNA. Here, we synthesize the current understanding of CRISPR DNA fragment-editing mechanisms and recent progress in predictable outcomes from precise genetic engineering of 3D genomes. Specifically, we first briefly describe historical genetic studies leading to CRISPR and 3D genome engineering. We then summarize different types of chromosomal rearrangements by DNA fragment editing. Finally, we review significant progress from precise 1D gene editing toward predictable 3D genome engineering and synthetic biology. The exciting and rapid advances in this emerging field provide new opportunities and challenges to understand or digest 3D genomes.
Collapse
Affiliation(s)
- Qiang Wu
- Center for Comparative Biomedicine, MOE Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jia Shou
- Center for Comparative Biomedicine, MOE Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
20
|
Jilderda LJ, Zhou L, Foijer F. Understanding How Genetic Mutations Collaborate with Genomic Instability in Cancer. Cells 2021; 10:342. [PMID: 33562057 PMCID: PMC7914657 DOI: 10.3390/cells10020342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 01/23/2023] Open
Abstract
Chromosomal instability is the process of mis-segregation for ongoing chromosomes, which leads to cells with an abnormal number of chromosomes, also known as an aneuploid state. Induced aneuploidy is detrimental during development and in primary cells but aneuploidy is also a hallmark of cancer cells. It is therefore believed that premalignant cells need to overcome aneuploidy-imposed stresses to become tumorigenic. Over the past decade, some aneuploidy-tolerating pathways have been identified through small-scale screens, which suggest that aneuploidy tolerance pathways can potentially be therapeutically exploited. However, to better understand the processes that lead to aneuploidy tolerance in cancer cells, large-scale and unbiased genetic screens are needed, both in euploid and aneuploid cancer models. In this review, we describe some of the currently known aneuploidy-tolerating hits, how large-scale genome-wide screens can broaden our knowledge on aneuploidy specific cancer driver genes, and how we can exploit the outcomes of these screens to improve future cancer therapy.
Collapse
Affiliation(s)
| | | | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Centre Groningen, 9713 AV Groningen, The Netherlands; (L.J.J.); (L.Z.)
| |
Collapse
|
21
|
The marker of alkyl DNA base damage, N7-methylguanine, is associated with semen quality in men. Sci Rep 2021; 11:3121. [PMID: 33542261 PMCID: PMC7862252 DOI: 10.1038/s41598-021-81674-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
Sperm DNA contains a range of DNA base damage that can arise, in part, from exposure to methylating agents. However, the effects are not fully characterized and so the aim of this study was to investigate associations between semen quality and the levels of N7-methyldeoxyguanosine (N7-MedG), a marker of exposure to methylating agents, and other markers of DNA damage and DNA methylation. Sperm samples were collected from 105 men attending an assisted reproduction clinic as part of a couple undergoing treatment for infertility and semen quality assessed manually according to WHO guidelines. Semen levels of N7-MedG, quantified by immunoslotblot, were significantly higher in men with sperm concentration < 15 × 106/ml (p ≤ 0.01), semen volume < 1.5 ml (p ≤ 0.05) and also in men with any aspect of semen quality below WHO reference levels (p ≤ 0.001). Measures of neutral Comet DNA damage were correlated with semen quality in a univariate analysis but not after adjustment for N7-MedG levels. Sperm concentration was negatively associated with % methylation at the gene for DAZL but no other marker of global or gene-specific DNA methylation. Results support the hypothesis that the known toxic and DNA damaging properties of alkylating agent exposure may have direct deleterious consequences on semen quality.
Collapse
|
22
|
Hadi F, Smith ESJ, Khaled WT. Naked Mole-Rats: Resistant to Developing Cancer or Good at Avoiding It? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:341-352. [PMID: 34424524 DOI: 10.1007/978-3-030-65943-1_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is widely accepted that cancer is driven by genetic mutations that confer uncontrolled cell proliferation and tumor formation. For tumors to take hold and grow, cancer cells evolve mechanisms to favorably shape their microenvironment and avoid being cleared by the immune system. Cancer is not unique to human, but rather affects nearly all multicellular organisms albeit to different degrees. The different degrees of cancer susceptibility across the animal kingdom could be attributed to several factors, which have been the subject of several studies in recent years. The naked mole-rat (NMR, Heterocephalus glaber), an exceptionally long-lived rodent, which, as discussed in detail in the next section, displays significant cancer resistance with only a small number of animals being reported to exhibit spontaneous neoplasms. The reason why studying cancer resistance in NMRs is of particular interest is that not only are they now an established laboratory species, but that NMRs are mammals and thus there is great potential for translating knowledge about their cancer resistance into preventing and/or treating cancer in humans and companion animals.
Collapse
Affiliation(s)
- Fazal Hadi
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Ewan St J Smith
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| | - Walid T Khaled
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
23
|
Harding P, Cunha DL, Moosajee M. Animal and cellular models of microphthalmia. THERAPEUTIC ADVANCES IN RARE DISEASE 2021; 2:2633004021997447. [PMID: 37181112 PMCID: PMC10032472 DOI: 10.1177/2633004021997447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/02/2021] [Indexed: 05/16/2023]
Abstract
Microphthalmia is a rare developmental eye disorder affecting 1 in 7000 births. It is defined as a small (axial length ⩾2 standard deviations below the age-adjusted mean) underdeveloped eye, caused by disruption of ocular development through genetic or environmental factors in the first trimester of pregnancy. Clinical phenotypic heterogeneity exists amongst patients with varying levels of severity, and associated ocular and systemic features. Up to 11% of blind children are reported to have microphthalmia, yet currently no treatments are available. By identifying the aetiology of microphthalmia and understanding how the mechanisms of eye development are disrupted, we can gain a better understanding of the pathogenesis. Animal models, mainly mouse, zebrafish and Xenopus, have provided extensive information on the genetic regulation of oculogenesis, and how perturbation of these pathways leads to microphthalmia. However, differences exist between species, hence cellular models, such as patient-derived induced pluripotent stem cell (iPSC) optic vesicles, are now being used to provide greater insights into the human disease process. Progress in 3D cellular modelling techniques has enhanced the ability of researchers to study interactions of different cell types during eye development. Through improved molecular knowledge of microphthalmia, preventative or postnatal therapies may be developed, together with establishing genotype-phenotype correlations in order to provide patients with the appropriate prognosis, multidisciplinary care and informed genetic counselling. This review summarises some key discoveries from animal and cellular models of microphthalmia and discusses how innovative new models can be used to further our understanding in the future. Plain language summary Animal and Cellular Models of the Eye Disorder, Microphthalmia (Small Eye) Microphthalmia, meaning a small, underdeveloped eye, is a rare disorder that children are born with. Genetic changes or variations in the environment during the first 3 months of pregnancy can disrupt early development of the eye, resulting in microphthalmia. Up to 11% of blind children have microphthalmia, yet currently no treatments are available. By understanding the genes necessary for eye development, we can determine how disruption by genetic changes or environmental factors can cause this condition. This helps us understand why microphthalmia occurs, and ensure patients are provided with the appropriate clinical care and genetic counselling advice. Additionally, by understanding the causes of microphthalmia, researchers can develop treatments to prevent or reduce the severity of this condition. Animal models, particularly mice, zebrafish and frogs, which can also develop small eyes due to the same genetic/environmental changes, have helped us understand the genes which are important for eye development and can cause birth eye defects when disrupted. Studying a patient's own cells grown in the laboratory can further help researchers understand how changes in genes affect their function. Both animal and cellular models can be used to develop and test new drugs, which could provide treatment options for patients living with microphthalmia. This review summarises the key discoveries from animal and cellular models of microphthalmia and discusses how innovative new models can be used to further our understanding in the future.
Collapse
Affiliation(s)
| | | | - Mariya Moosajee
- UCL Institute of Ophthalmology, 11-43 Bath
Street, London, EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust,
London, UK
- Great Ormond Street Hospital for Children NHS
Foundation Trust, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
24
|
Vujin A, Jones SJ, Zetka M. NHJ-1 Is Required for Canonical Nonhomologous End Joining in Caenorhabditis elegans. Genetics 2020; 215:635-651. [PMID: 32457132 PMCID: PMC7337088 DOI: 10.1534/genetics.120.303328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/11/2020] [Indexed: 11/18/2022] Open
Abstract
DNA double-strand breaks (DSBs) are a particularly lethal form of DNA damage that must be repaired to restore genomic integrity. Canonical nonhomologous end joining (NHEJ), is a widely conserved pathway that detects and directly ligates the broken ends to repair the DSB. These events globally require the two proteins that form the Ku ring complex, Ku70 and Ku80, and the terminal ligase LIG4. While the NHEJ pathway in vertebrates is elaborated by more than a dozen factors of varying conservation and is similarly complex in other eukaryotes, the entire known NHEJ toolkit in Caenorhabditis elegans consists only of the core components CKU-70, CKU-80, and LIG-4 Here, we report the discovery of the first accessory NHEJ factor in C. elegans Our analysis of the DNA damage response in young larvae revealed that the canonical wild-type N2 strain consisted of two lines that exhibited a differential phenotypic response to ionizing radiation (IR). Following the mapping of the causative locus to a candidate on chromosome V and clustered regularly interspaced short palindromic repeats-Cas9 mutagenesis, we show that disruption of the nhj-1 sequence induces IR sensitivity in the N2 line that previously exhibited IR resistance. Using genetic and cytological analyses, we demonstrate that nhj-1 functions in the NHEJ pathway to repair DSBs. Double mutants of nhj-1 and lig-4 or cku-80 do not exhibit additive IR sensitivity, and the post-IR somatic and fertility phenotypes of nhj-1 mimic those of the other NHEJ factors. Furthermore, in com-1 mutants that permit repair of meiotic DSBs by NHEJ instead of restricting their repair to the homologous recombination pathway, loss of nhj-1 mimics the consequences of loss of lig-4 Diakinesis-stage nuclei in nhj-1; com-1 and nhj-1; lig-4 mutant germlines exhibit increased numbers of DAPI-staining bodies, consistent with increased chromosome fragmentation in the absence of NHEJ-mediated meiotic DSB repair. Finally, we show that NHJ-1 and LIG-4 localize to somatic nuclei in larvae, but are excluded from the germline progenitor cells, consistent with NHEJ being the dominant DNA repair pathway in the soma. nhj-1 shares no sequence homology with other known eukaryotic NHEJ factors and is taxonomically restricted to the Rhabditid family, underscoring the evolutionary plasticity of even highly conserved pathways.
Collapse
Affiliation(s)
- Aleksandar Vujin
- Department of Biology, McGill University, Montreal, Quebec H3K 1M4, Canada
| | - Steven J Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6
| | - Monique Zetka
- Department of Biology, McGill University, Montreal, Quebec H3K 1M4, Canada
| |
Collapse
|
25
|
Rahit KMTH, Tarailo-Graovac M. Genetic Modifiers and Rare Mendelian Disease. Genes (Basel) 2020; 11:E239. [PMID: 32106447 PMCID: PMC7140819 DOI: 10.3390/genes11030239] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Despite advances in high-throughput sequencing that have revolutionized the discovery of gene defects in rare Mendelian diseases, there are still gaps in translating individual genome variation to observed phenotypic outcomes. While we continue to improve genomics approaches to identify primary disease-causing variants, it is evident that no genetic variant acts alone. In other words, some other variants in the genome (genetic modifiers) may alleviate (suppress) or exacerbate (enhance) the severity of the disease, resulting in the variability of phenotypic outcomes. Thus, to truly understand the disease, we need to consider how the disease-causing variants interact with the rest of the genome in an individual. Here, we review the current state-of-the-field in the identification of genetic modifiers in rare Mendelian diseases and discuss the potential for future approaches that could bridge the existing gap.
Collapse
Affiliation(s)
- K. M. Tahsin Hassan Rahit
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Maja Tarailo-Graovac
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
26
|
Li QV, Rosen BP, Huangfu D. Decoding pluripotency: Genetic screens to interrogate the acquisition, maintenance, and exit of pluripotency. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1464. [PMID: 31407519 PMCID: PMC6898739 DOI: 10.1002/wsbm.1464] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/31/2019] [Accepted: 07/17/2019] [Indexed: 01/25/2023]
Abstract
Pluripotent stem cells have the ability to unlimitedly self-renew and differentiate to any somatic cell lineage. A number of systems biology approaches have been used to define this pluripotent state. Complementary to systems level characterization, genetic screens offer a unique avenue to functionally interrogate the pluripotent state and identify the key players in pluripotency acquisition and maintenance, exit of pluripotency, and lineage differentiation. Here we review how genetic screens have helped us decode pluripotency regulation. We will summarize results from RNA interference (RNAi) based screens, discuss recent advances in CRISPR/Cas-based genetic perturbation methods, and how these advances have made it possible to more comprehensively interrogate pluripotency and differentiation through genetic screens. Such investigations will not only provide a better understanding of this unique developmental state, but may enhance our ability to use pluripotent stem cells as an experimental model to study human development and disease progression. Functional interrogation of pluripotency also provides a valuable roadmap for utilizing genetic perturbation to gain systems level understanding of additional cellular states, from later stages of development to pathological disease states. This article is categorized under: Developmental Biology > Stem Cell Biology and Regeneration Developmental Biology > Developmental Processes in Health and Disease Biological Mechanisms > Cell Fates.
Collapse
Affiliation(s)
- Qing V. Li
- Sloan Kettering Institute, 1275 York Avenue, New York, New York 10065, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
- These authors contributed equally
| | - Bess P. Rosen
- Sloan Kettering Institute, 1275 York Avenue, New York, New York 10065, USA
- Weill Graduate School of Medical Sciences at Cornell University, 1300 York Avenue, New York, New York 10065, USA
- These authors contributed equally
| | - Danwei Huangfu
- Sloan Kettering Institute, 1275 York Avenue, New York, New York 10065, USA
| |
Collapse
|
27
|
FUNATO H. Forward genetic approach for behavioral neuroscience using animal models. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:10-31. [PMID: 31932526 PMCID: PMC6974404 DOI: 10.2183/pjab.96.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Forward genetics is a powerful approach to understand the molecular basis of animal behaviors. Fruit flies were the first animal to which this genetic approach was applied systematically and have provided major discoveries on behaviors including sexual, learning, circadian, and sleep-like behaviors. The development of different classes of model organism such as nematodes, zebrafish, and mice has enabled genetic research to be conducted using more-suitable organisms. The unprecedented success of forward genetic approaches was the identification of the transcription-translation negative feedback loop composed of clock genes as a fundamental and conserved mechanism of circadian rhythm. This approach has now expanded to sleep/wakefulness in mice. A conventional strategy such as dominant and recessive screenings can be modified with advances in DNA sequencing and genome editing technologies.
Collapse
Affiliation(s)
- Hiromasa FUNATO
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
28
|
Mouse models for microphthalmia, anophthalmia and cataracts. Hum Genet 2019; 138:1007-1018. [PMID: 30919050 PMCID: PMC6710221 DOI: 10.1007/s00439-019-01995-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/04/2019] [Indexed: 12/21/2022]
Abstract
Mouse mutants are a long-lasting, valuable tool to identify genes underlying eye diseases, because the absence of eyes, very small eyes and severely affected, cataractous eyes are easily to detect without major technical equipment. In mice, actually 145 genes or loci are known for anophthalmia, 269 for microphthalmia, and 180 for cataracts. Approximately, 25% of the loci are not yet characterized; however, some of the ancient lines are extinct and not available for future research. The phenotypes of the mutants represent a continuous spectrum either in anophthalmia and microphthalmia, or in microphthalmia and cataracts. On the other side, mouse models are still missing for some genes, which have been identified in human families to be causative for anophthalmia, microphthalmia, or cataracts. Finally, the mouse offers the possibility to genetically test the roles of modifiers and the role of SNPs; these aspects open new avenues for ophthalmogenetics in the mouse.
Collapse
|
29
|
Gorvin CM, Ahmad BN, Stechman MJ, Loh NY, Hough TA, Leo P, Marshall M, Sethi S, Bentley L, Piret SE, Reed A, Jeyabalan J, Christie PT, Wells S, Simon MM, Mallon AM, Schulz H, Huebner N, Brown MA, Cox RD, Brown SD, Thakker RV. An N-Ethyl-N-Nitrosourea (ENU)-Induced Tyr265Stop Mutation of the DNA Polymerase Accessory Subunit Gamma 2 (Polg2) Is Associated With Renal Calcification in Mice. J Bone Miner Res 2019; 34:497-507. [PMID: 30395686 PMCID: PMC6446808 DOI: 10.1002/jbmr.3624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 10/12/2018] [Accepted: 10/28/2018] [Indexed: 12/24/2022]
Abstract
Renal calcification (RCALC) resulting in nephrolithiasis and nephrocalcinosis, which affects ∼10% of adults by 70 years of age, involves environmental and genetic etiologies. Thus, nephrolithiasis and nephrocalcinosis occurs as an inherited disorder in ∼65% of patients, and may be associated with endocrine and metabolic disorders including: primary hyperparathyroidism, hypercalciuria, renal tubular acidosis, cystinuria, and hyperoxaluria. Investigations of families with nephrolithiasis and nephrocalcinosis have identified some causative genes, but further progress is limited as large families are unavailable for genetic studies. We therefore embarked on establishing mouse models for hereditary nephrolithiasis and nephrocalcinosis by performing abdominal X-rays to identify renal opacities in N-ethyl-N-nitrosourea (ENU)-mutagenized mice. This identified a mouse with RCALC inherited as an autosomal dominant trait, designated RCALC type 2 (RCALC2). Genomewide mapping located the Rcalc2 locus to a ∼16-Mbp region on chromosome 11D-E2 and whole-exome sequence analysis identified a heterozygous mutation in the DNA polymerase gamma-2, accessory subunit (Polg2) resulting in a nonsense mutation, Tyr265Stop (Y265X), which co-segregated with RCALC2. Kidneys of mutant mice (Polg2+/Y265X ) had lower POLG2 mRNA and protein expression, compared to wild-type littermates (Polg2+/+ ). The Polg2+/Y265X and Polg2+/+ mice had similar plasma concentrations of sodium, potassium, calcium, phosphate, chloride, urea, creatinine, glucose, and alkaline phosphatase activity; and similar urinary fractional excretion of calcium, phosphate, oxalate, and protein. Polg2 encodes the minor subunit of the mitochondrial DNA (mtDNA) polymerase and the mtDNA content in Polg2+/Y265X kidneys was reduced compared to Polg2+/+ mice, and cDNA expression profiling revealed differential expression of 26 genes involved in several biological processes including mitochondrial DNA function, apoptosis, and ubiquitination, the complement pathway, and inflammatory pathways. In addition, plasma of Polg2+/Y265X mice, compared to Polg2+/+ littermates had higher levels of reactive oxygen species. Thus, our studies have identified a mutant mouse model for inherited renal calcification associated with a Polg2 nonsense mutation. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Caroline M Gorvin
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Bushra N Ahmad
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Michael J Stechman
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Nellie Y Loh
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Tertius A Hough
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council, Harwell, UK
| | - Paul Leo
- Translational Genomics Group, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology at Translational Research Institute, Brisbane, Australia
| | - Mhairi Marshall
- Translational Genomics Group, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology at Translational Research Institute, Brisbane, Australia
| | - Siddharth Sethi
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council, Harwell, UK
| | - Liz Bentley
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council, Harwell, UK
| | - Sian E Piret
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Anita Reed
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jeshmi Jeyabalan
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Paul T Christie
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sara Wells
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council, Harwell, UK
| | - Michelle M Simon
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council, Harwell, UK
| | - Ann-Marie Mallon
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council, Harwell, UK
| | - Herbert Schulz
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | - Matthew A Brown
- Translational Genomics Group, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology at Translational Research Institute, Brisbane, Australia
| | - Roger D Cox
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council, Harwell, UK
| | - Steve D Brown
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council, Harwell, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
30
|
Corrochano S, Blanco G, Williams D, Wettstein J, Simon M, Kumar S, Moir L, Agnew T, Stewart M, Landman A, Kotiadis VN, Duchen MR, Wackerhage H, Rubinsztein DC, Brown SDM, Acevedo-Arozena A. A genetic modifier suggests that endurance exercise exacerbates Huntington's disease. Hum Mol Genet 2019; 27:1723-1731. [PMID: 29509900 PMCID: PMC5932560 DOI: 10.1093/hmg/ddy077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 02/22/2018] [Indexed: 12/19/2022] Open
Abstract
Polyglutamine expansions in the huntingtin gene cause Huntington's disease (HD). Huntingtin is ubiquitously expressed, leading to pathological alterations also in peripheral organs. Variations in the length of the polyglutamine tract explain up to 70% of the age-at-onset variance, with the rest of the variance attributed to genetic and environmental modifiers. To identify novel disease modifiers, we performed an unbiased mutagenesis screen on an HD mouse model, identifying a mutation in the skeletal muscle voltage-gated sodium channel (Scn4a, termed 'draggen' mutation) as a novel disease enhancer. Double mutant mice (HD; Scn4aDgn/+) had decreased survival, weight loss and muscle atrophy. Expression patterns show that the main tissue affected is skeletal muscle. Intriguingly, muscles from HD; Scn4aDgn/+ mice showed adaptive changes similar to those found in endurance exercise, including AMPK activation, fibre type switching and upregulation of mitochondrial biogenesis. Therefore, we evaluated the effects of endurance training on HD mice. Crucially, this training regime also led to detrimental effects on HD mice. Overall, these results reveal a novel role for skeletal muscle in modulating systemic HD pathogenesis, suggesting that some forms of physical exercise could be deleterious in neurodegeneration.
Collapse
Affiliation(s)
- Silvia Corrochano
- Mammalian Genetics Unit, Harwell Institute, Medical Research Council, Oxfordshire, UK
| | | | - Debbie Williams
- Mammalian Genetics Unit, Harwell Institute, Medical Research Council, Oxfordshire, UK
| | | | - Michelle Simon
- Mammalian Genetics Unit, Harwell Institute, Medical Research Council, Oxfordshire, UK
| | - Saumya Kumar
- Mammalian Genetics Unit, Harwell Institute, Medical Research Council, Oxfordshire, UK
| | - Lee Moir
- Mammalian Genetics Unit, Harwell Institute, Medical Research Council, Oxfordshire, UK
| | - Thomas Agnew
- Mammalian Genetics Unit, Harwell Institute, Medical Research Council, Oxfordshire, UK
| | - Michelle Stewart
- Mammalian Genetics Unit, Harwell Institute, Medical Research Council, Oxfordshire, UK
| | - Allison Landman
- Mammalian Genetics Unit, Harwell Institute, Medical Research Council, Oxfordshire, UK
| | - Vassilios N Kotiadis
- Department of Cell and Developmental Biology, University College London (UCL), London, UK
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London (UCL), London, UK
| | - Henning Wackerhage
- Institute of Medical Sciences, University of Aberdeen, Scotland, UK.,Department of Sport and Health Sciences, Technical University of Munich (TUM), Exercise Biology, Munich, Germany
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, UK.,UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Steve D M Brown
- Mammalian Genetics Unit, Harwell Institute, Medical Research Council, Oxfordshire, UK
| | - Abraham Acevedo-Arozena
- Mammalian Genetics Unit, Harwell Institute, Medical Research Council, Oxfordshire, UK.,Unidad de Investigación, Hospital Universitario de Canarias, Fundación Canaria de Investigación Sanitaria e Instituto de Tecnologías Biomédicas, La Laguna, Spain
| |
Collapse
|
31
|
Cao C, Zhang Y, Jia Q, Wang X, Zheng Q, Zhang H, Song R, Li Y, Luo A, Hong Q, Qin G, Yao J, Zhang N, Wang Y, Wang H, Zhou Q, Zhao J. An exonic splicing enhancer mutation in DUOX2 causes aberrant alternative splicing and severe congenital hypothyroidism in Bama pigs. Dis Model Mech 2019; 12:12/1/dmm036616. [PMID: 30651277 PMCID: PMC6361156 DOI: 10.1242/dmm.036616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022] Open
Abstract
Pigs share many similarities with humans in terms of anatomy, physiology and genetics, and have long been recognized as important experimental animals in biomedical research. Using an N-ethyl-N-nitrosourea (ENU) mutagenesis screen, we previously identified a large number of pig mutants, which could be further established as human disease models. However, the identification of causative mutations in large animals with great heterogeneity remains a challenging endeavor. Here, we select one pig mutant, showing congenital nude skin and thyroid deficiency in a recessive inheritance pattern. We were able to efficiently map the causative mutation using family-based genome-wide association studies combined with whole-exome sequencing and a small sample size. A loss-of-function variant (c.1226 A>G) that resulted in a highly conserved amino acid substitution (D409G) was identified in the DUOX2 gene. This mutation, located within an exonic splicing enhancer motif, caused aberrant splicing of DUOX2 transcripts and resulted in lower H2O2 production, which might cause a severe defect in thyroid hormone production. Our findings suggest that exome sequencing is an efficient way to map causative mutations and that DUOX2D409G/D409G mutant pigs could be a potential large animal model for human congenital hypothyroidism. Summary: Here, we show that an exonic splicing enhancer variant in DUOX2 (c.1226 A>G) causes aberrant splicing of DUOX2 transcripts, resulting in lower H2O2 production, to cause severe congenital hypothyroidism in Bama pigs.
Collapse
Affiliation(s)
- Chunwei Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qitao Jia
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiantao Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyong Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruigao Song
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongshun Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,College of Life Science, Qufu Normal University, Qufu 273165, China
| | - Ailing Luo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianlong Hong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guosong Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Yao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanfang Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China .,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
De Giorgio F, Maduro C, Fisher EMC, Acevedo-Arozena A. Transgenic and physiological mouse models give insights into different aspects of amyotrophic lateral sclerosis. Dis Model Mech 2019; 12:dmm037424. [PMID: 30626575 PMCID: PMC6361152 DOI: 10.1242/dmm.037424] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A wide range of genetic mouse models is available to help researchers dissect human disease mechanisms. Each type of model has its own distinctive characteristics arising from the nature of the introduced mutation, as well as from the specific changes to the gene of interest. Here, we review the current range of mouse models with mutations in genes causative for the human neurodegenerative disease amyotrophic lateral sclerosis. We focus on the two main types of available mutants: transgenic mice and those that express mutant genes at physiological levels from gene targeting or from chemical mutagenesis. We compare the phenotypes for genes in which the two classes of model exist, to illustrate what they can teach us about different aspects of the disease, noting that informative models may not necessarily mimic the full trajectory of the human condition. Transgenic models can greatly overexpress mutant or wild-type proteins, giving us insight into protein deposition mechanisms, whereas models expressing mutant genes at physiological levels may develop slowly progressing phenotypes but illustrate early-stage disease processes. Although no mouse models fully recapitulate the human condition, almost all help researchers to understand normal and abnormal biological processes, providing that the individual characteristics of each model type, and how these may affect the interpretation of the data generated from each model, are considered and appreciated.
Collapse
Affiliation(s)
- Francesca De Giorgio
- Department of Neuromuscular Diseases, UCL Institute of Neurology, and MRC Centre for Neuromuscular Disease, University College London, Queen Square, London WC1N 3BG, UK
| | - Cheryl Maduro
- Department of Neuromuscular Diseases, UCL Institute of Neurology, and MRC Centre for Neuromuscular Disease, University College London, Queen Square, London WC1N 3BG, UK
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, UCL Institute of Neurology, and MRC Centre for Neuromuscular Disease, University College London, Queen Square, London WC1N 3BG, UK
| | - Abraham Acevedo-Arozena
- Unidad de Investigación Hospital Universitario de Canarias, Fundación Canaria de Investigación Sanitaria and Instituto de Tecnologías Biomédicas (ITB), La Laguna, 38320 Tenerife, Spain
| |
Collapse
|
33
|
Abstract
Cancer is a complex disease that originates from genetic changes leading to multiple phenotypic manifestations that ultimately result in suffering and death from cancer. Attempts have been made to define the phenotypic and genetic "hallmarks" of cancer, but many of these "hallmarks" remain descriptive, while the underlying mechanisms responsible for these hallmarks remain elusive. For decades, cancer researchers have been methodically identifying the molecular mechanisms that result in tumor initiation, growth, metastases, and resistance to therapy. Great strides forward have been made and we are entering an era of "precision medicine" with the goal of treating each cancer based on its unique etiology. Increasingly, the decision to use targeted therapies and immunotherapies in the clinic is based on the genotype of the cancer being treated. For example, specific tyrosine kinase inhibitors are only prescribed to patients that express the tyrosine kinase protein on their cancer cells. Likewise, a genetically unstable cancer is predictive for successful immunotherapy. Knowledge of the specific genetic changes that result in overproduction of oncogenes and reduced production of tumor suppressors is crucial for advancing therapeutic options for cancer. The first chapter of this book presents a brief history of cancer gene discovery. In the remaining chapters of this book, we present protocols using in silico, in vitro, and in vivo techniques for identifying genetic drivers of cancer, in the hope that these protocols will be used to increase our knowledge of the molecular mechanisms driving cancer.
Collapse
|
34
|
Esapa CT, Piret SE, Nesbit MA, Thomas GP, Coulton LA, Gallagher OM, Simon MM, Kumar S, Mallon AM, Bellantuono I, Brown MA, Croucher PI, Potter PK, Brown SD, Cox RD, Thakker RV. An N-Ethyl- N-Nitrosourea (ENU) Mutagenized Mouse Model for Autosomal Dominant Nonsyndromic Kyphoscoliosis Due to Vertebral Fusion. JBMR Plus 2018; 2:154-163. [PMID: 30283900 PMCID: PMC6124210 DOI: 10.1002/jbm4.10033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/01/2018] [Accepted: 01/14/2018] [Indexed: 02/06/2023] Open
Abstract
Kyphosis and scoliosis are common spinal disorders that occur as part of complex syndromes or as nonsyndromic, idiopathic diseases. Familial and twin studies implicate genetic involvement, although the causative genes for idiopathic kyphoscoliosis remain to be identified. To facilitate these studies, we investigated progeny of mice treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU) and assessed them for morphological and radiographic abnormalities. This identified a mouse with kyphoscoliosis due to fused lumbar vertebrae, which was inherited as an autosomal dominant trait; the phenotype was designated as hereditary vertebral fusion (HVF) and the locus as Hvf. Micro-computed tomography (μCT) analysis confirmed the occurrence of nonsyndromic kyphoscoliosis due to fusion of lumbar vertebrae in HVF mice, consistent with a pattern of blocked vertebrae due to failure of segmentation. μCT scans also showed the lumbar vertebral column of HVF mice to have generalized disc narrowing, displacement with compression of the neural spine, and distorted transverse processes. Histology of lumbar vertebrae revealed HVF mice to have irregularly shaped vertebral bodies and displacement of intervertebral discs and ossification centers. Genetic mapping using a panel of single nucleotide polymorphic (SNP) loci arranged in chromosome sets and DNA samples from 23 HVF (eight males and 15 females) mice, localized Hvf to chromosome 4A3 and within a 5-megabase (Mb) region containing nine protein coding genes, two processed transcripts, three microRNAs, five small nuclear RNAs, three large intergenic noncoding RNAs, and 24 pseudogenes. However, genome sequence analysis in this interval did not identify any abnormalities in the coding exons, or exon-intron boundaries of any of these genes. Thus, our studies have established a mouse model for a monogenic form of nonsyndromic kyphoscoliosis due to fusion of lumbar vertebrae, and further identification of the underlying genetic defect will help elucidate the molecular mechanisms involved in kyphoscoliosis. © 2018 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Christopher T Esapa
- Academic Endocrine Unit Radcliffe Department of Medicine University of Oxford Oxford Centre for Diabetes, Endocrinology and Metabolism Churchill Hospital Headington UK.,MRC Mammalian Genetics Unit and Mary Lyon Centre MRC Harwell Institute Harwell Science and Innovation Campus Harwell UK
| | - Sian E Piret
- Academic Endocrine Unit Radcliffe Department of Medicine University of Oxford Oxford Centre for Diabetes, Endocrinology and Metabolism Churchill Hospital Headington UK
| | - M Andrew Nesbit
- Academic Endocrine Unit Radcliffe Department of Medicine University of Oxford Oxford Centre for Diabetes, Endocrinology and Metabolism Churchill Hospital Headington UK.,School of Biomedical Sciences Ulster University Coleraine UK
| | - Gethin P Thomas
- Institute of Health and Biomedical Innovation Queensland University of Technology Translational Research Institute Princess Alexandra Hospital Brisbane Australia.,Charles Sturt University Boorooma Street Wagga Wagga Australia
| | - Leslie A Coulton
- The Mellanby Centre for Bone Research University of Sheffield Sheffield UK
| | - Orla M Gallagher
- The Mellanby Centre for Bone Research University of Sheffield Sheffield UK
| | - Michelle M Simon
- MRC Mammalian Genetics Unit and Mary Lyon Centre MRC Harwell Institute Harwell Science and Innovation Campus Harwell UK
| | - Saumya Kumar
- MRC Mammalian Genetics Unit and Mary Lyon Centre MRC Harwell Institute Harwell Science and Innovation Campus Harwell UK.,Instituto de Medicina Molecular (IMM) Faculdade de Medicina de Universidade de Lisboa Lisboa Portugal
| | - Ann-Marie Mallon
- MRC Mammalian Genetics Unit and Mary Lyon Centre MRC Harwell Institute Harwell Science and Innovation Campus Harwell UK
| | - Ilaria Bellantuono
- The Mellanby Centre for Bone Research University of Sheffield Sheffield UK
| | - Matthew A Brown
- Institute of Health and Biomedical Innovation Queensland University of Technology Translational Research Institute Princess Alexandra Hospital Brisbane Australia
| | - Peter I Croucher
- The Mellanby Centre for Bone Research University of Sheffield Sheffield UK.,Garvan Institute for Medical Research Sydney Australia
| | - Paul K Potter
- MRC Mammalian Genetics Unit and Mary Lyon Centre MRC Harwell Institute Harwell Science and Innovation Campus Harwell UK
| | - Steve Dm Brown
- MRC Mammalian Genetics Unit and Mary Lyon Centre MRC Harwell Institute Harwell Science and Innovation Campus Harwell UK
| | - Roger D Cox
- MRC Mammalian Genetics Unit and Mary Lyon Centre MRC Harwell Institute Harwell Science and Innovation Campus Harwell UK
| | - Rajesh V Thakker
- Academic Endocrine Unit Radcliffe Department of Medicine University of Oxford Oxford Centre for Diabetes, Endocrinology and Metabolism Churchill Hospital Headington UK
| |
Collapse
|
35
|
Blease A, Nicol T, Falcone S, Starbuck B, Greenaway S, Hutchinson M, Potter PK. Generation and Identification of Mutations Resulting in Chronic and Age-Related Phenotypes in Mice. ACTA ACUST UNITED AC 2018; 8:e42. [PMID: 29927552 DOI: 10.1002/cpmo.42] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Aging is inevitable, and our society must deal with the consequences: namely, an increased incidence of disease and ill health. Many mouse models of disease are acute or early onset or are induced in young mice, despite the fact that aging is a significant risk factor for a range of significant diseases. To improve modeling of such diseases, we should incorporate aging into our models. Many systems are affected by aging, with a decline in mitochondrial function, an increase in senescence, a loss of resilience, telomere shortening, and a decline in immune function being key factors in the increased susceptibility to disease that is associated with aging. To develop novel models of age-related disease, we undertook a phenotype-driven screen of a pipeline of mutagenized mice. Here, we describe some of the underlying protocols and outline important aspects to consider when studying aged mice. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Andrew Blease
- Mammalian Genetics Unit, Medical Research Council, Harwell Science and Innovation Campus, Oxford, United Kingdom
| | - Thomas Nicol
- Mammalian Genetics Unit, Medical Research Council, Harwell Science and Innovation Campus, Oxford, United Kingdom
| | - Sara Falcone
- Mammalian Genetics Unit, Medical Research Council, Harwell Science and Innovation Campus, Oxford, United Kingdom
| | - Becky Starbuck
- Mammalian Genetics Unit, Medical Research Council, Harwell Science and Innovation Campus, Oxford, United Kingdom
| | - Simon Greenaway
- Mammalian Genetics Unit, Medical Research Council, Harwell Science and Innovation Campus, Oxford, United Kingdom
| | - Marie Hutchinson
- Mary Lyon Centre, Medical Research Council Harwell Science and Innovation Campus, Oxford, United Kingdom
| | - Paul K Potter
- Mammalian Genetics Unit, Medical Research Council, Harwell Science and Innovation Campus, Oxford, United Kingdom
| |
Collapse
|
36
|
Fratta P, Sivakumar P, Humphrey J, Lo K, Ricketts T, Oliveira H, Brito-Armas JM, Kalmar B, Ule A, Yu Y, Birsa N, Bodo C, Collins T, Conicella AE, Mejia Maza A, Marrero-Gagliardi A, Stewart M, Mianne J, Corrochano S, Emmett W, Codner G, Groves M, Fukumura R, Gondo Y, Lythgoe M, Pauws E, Peskett E, Stanier P, Teboul L, Hallegger M, Calvo A, Chiò A, Isaacs AM, Fawzi NL, Wang E, Housman DE, Baralle F, Greensmith L, Buratti E, Plagnol V, Fisher EM, Acevedo-Arozena A. Mice with endogenous TDP-43 mutations exhibit gain of splicing function and characteristics of amyotrophic lateral sclerosis. EMBO J 2018; 37:embj.201798684. [PMID: 29764981 PMCID: PMC5983119 DOI: 10.15252/embj.201798684] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/15/2018] [Accepted: 03/22/2018] [Indexed: 12/11/2022] Open
Abstract
TDP‐43 (encoded by the gene TARDBP) is an RNA binding protein central to the pathogenesis of amyotrophic lateral sclerosis (ALS). However, how TARDBP mutations trigger pathogenesis remains unknown. Here, we use novel mouse mutants carrying point mutations in endogenous Tardbp to dissect TDP‐43 function at physiological levels both in vitro and in vivo. Interestingly, we find that mutations within the C‐terminal domain of TDP‐43 lead to a gain of splicing function. Using two different strains, we are able to separate TDP‐43 loss‐ and gain‐of‐function effects. TDP‐43 gain‐of‐function effects in these mice reveal a novel category of splicing events controlled by TDP‐43, referred to as “skiptic” exons, in which skipping of constitutive exons causes changes in gene expression. In vivo, this gain‐of‐function mutation in endogenous Tardbp causes an adult‐onset neuromuscular phenotype accompanied by motor neuron loss and neurodegenerative changes. Furthermore, we have validated the splicing gain‐of‐function and skiptic exons in ALS patient‐derived cells. Our findings provide a novel pathogenic mechanism and highlight how TDP‐43 gain of function and loss of function affect RNA processing differently, suggesting they may act at different disease stages.
Collapse
Affiliation(s)
- Pietro Fratta
- UCL Institute of Neurology, and MRC Centre for Neuromuscular Disease, London, UK
| | - Prasanth Sivakumar
- UCL Institute of Neurology, and MRC Centre for Neuromuscular Disease, London, UK
| | - Jack Humphrey
- UCL Institute of Neurology, and MRC Centre for Neuromuscular Disease, London, UK.,UCL Genetics Institute, London, UK
| | - Kitty Lo
- UCL Genetics Institute, London, UK
| | | | | | - Jose M Brito-Armas
- Unidad de Investigación, Hospital Universitario de Canarias, Fundación Canaria de Investigación Sanitaria and Instituto de Tecnologías Biomédicas (CIBICAN), La Laguna, Spain
| | - Bernadett Kalmar
- UCL Institute of Neurology, and MRC Centre for Neuromuscular Disease, London, UK
| | - Agnieszka Ule
- UCL Institute of Neurology, and MRC Centre for Neuromuscular Disease, London, UK
| | - Yichao Yu
- UCL Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Nicol Birsa
- UCL Institute of Neurology, and MRC Centre for Neuromuscular Disease, London, UK
| | - Cristian Bodo
- UCL Institute of Neurology, and MRC Centre for Neuromuscular Disease, London, UK
| | - Toby Collins
- UCL Institute of Neurology, and MRC Centre for Neuromuscular Disease, London, UK
| | - Alexander E Conicella
- Graduate Program in Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Alan Mejia Maza
- UCL Institute of Neurology, and MRC Centre for Neuromuscular Disease, London, UK
| | - Alessandro Marrero-Gagliardi
- Unidad de Investigación, Hospital Universitario de Canarias, Fundación Canaria de Investigación Sanitaria and Instituto de Tecnologías Biomédicas (CIBICAN), La Laguna, Spain
| | | | | | | | | | | | - Michael Groves
- UCL Institute of Neurology, and MRC Centre for Neuromuscular Disease, London, UK
| | - Ryutaro Fukumura
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Yoichi Gondo
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Mark Lythgoe
- UCL Centre for Advanced Biomedical Imaging, University College London, London, UK
| | | | | | | | | | | | - Andrea Calvo
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
| | - Adriano Chiò
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
| | - Adrian M Isaacs
- UCL Institute of Neurology, and MRC Centre for Neuromuscular Disease, London, UK.,UK Dementia Research Institute at UCL, UCL Institute of Neurology, London, UK
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University, Providence, RI, USA
| | - Eric Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David E Housman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Francisco Baralle
- International Center for Genomic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Linda Greensmith
- UCL Institute of Neurology, and MRC Centre for Neuromuscular Disease, London, UK
| | - Emanuele Buratti
- International Center for Genomic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | | | - Elizabeth Mc Fisher
- UCL Institute of Neurology, and MRC Centre for Neuromuscular Disease, London, UK
| | - Abraham Acevedo-Arozena
- MRC Mammalian Genetics Unit, Harwell, UK .,Unidad de Investigación, Hospital Universitario de Canarias, Fundación Canaria de Investigación Sanitaria and Instituto de Tecnologías Biomédicas (CIBICAN), La Laguna, Spain
| |
Collapse
|
37
|
Hai T, Guo W, Yao J, Cao C, Luo A, Qi M, Wang X, Wang X, Huang J, Zhang Y, Zhang H, Wang D, Shang H, Hong Q, Zhang R, Jia Q, Zheng Q, Qin G, Li Y, Zhang T, Jin W, Chen ZY, Wang H, Zhou Q, Meng A, Wei H, Yang S, Zhao J. Creation of miniature pig model of human Waardenburg syndrome type 2A by ENU mutagenesis. Hum Genet 2017; 136:1463-1475. [PMID: 29094203 DOI: 10.1007/s00439-017-1851-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/22/2017] [Indexed: 02/08/2023]
Abstract
Human Waardenburg syndrome 2A (WS2A) is a dominant hearing loss (HL) syndrome caused by mutations in the microphthalmia-associated transcription factor (MITF) gene. In mouse models with MITF mutations, WS2A is transmitted in a recessive pattern, which limits the study of hearing loss (HL) pathology. In the current study, we performed ENU (ethylnitrosourea) mutagenesis that resulted in substituting a conserved lysine with a serine (p. L247S) in the DNA-binding domain of the MITF gene to generate a novel miniature pig model of WS2A. The heterozygous mutant pig (MITF +/L247S) exhibits a dominant form of profound HL and hypopigmentation in skin, hair, and iris, accompanied by degeneration of stria vascularis (SV), fused hair cells, and the absence of endocochlear potential, which indicate the pathology of human WS2A. Besides hypopigmentation and bilateral HL, the homozygous mutant pig (MITF L247S/L247S) and CRISPR/Cas9-mediated MITF bi-allelic knockout pigs both exhibited anophthalmia. Three WS2 patients carrying MITF mutations adjacent to the corresponding region were also identified. The pig models resemble the clinical symptom and molecular pathology of human WS2A patients perfectly, which will provide new clues for better understanding the etiology and development of novel treatment strategies for human HL.
Collapse
Affiliation(s)
- Tang Hai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Weiwei Guo
- Department of Otolaryngology-Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jing Yao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Chunwei Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Ailing Luo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Meng Qi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Xianlong Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Xiao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Jiaojiao Huang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Hongyong Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Dayu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Haitao Shang
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, 400038, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Qianlong Hong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Rui Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Qitao Jia
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Qiantao Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Guosong Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Yongshun Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Tao Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Weiwu Jin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Zheng-Yi Chen
- Department of Otolaryngology, Harvard Medical School and Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, 02114, USA
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Anming Meng
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, 400038, China. .,Chinese Swine Mutagenesis Consortium, Beijing, China.
| | - Shiming Yang
- Department of Otolaryngology-Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Chinese Swine Mutagenesis Consortium, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
38
|
Howles SA, Hannan FM, Gorvin CM, Piret SE, Paudyal A, Stewart M, Hough TA, Nesbit MA, Wells S, Brown SD, Cox RD, Thakker RV. Cinacalcet corrects hypercalcemia in mice with an inactivating Gα11 mutation. JCI Insight 2017; 2:96540. [PMID: 29046478 PMCID: PMC5846897 DOI: 10.1172/jci.insight.96540] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/19/2017] [Indexed: 11/17/2022] Open
Abstract
Loss-of-function mutations of GNA11, which encodes G-protein subunit α11 (Gα11), a signaling partner for the calcium-sensing receptor (CaSR), result in familial hypocalciuric hypercalcemia type 2 (FHH2). FHH2 is characterized by hypercalcemia, inappropriately normal or raised parathyroid hormone (PTH) concentrations, and normal or low urinary calcium excretion. A mouse model for FHH2 that would facilitate investigations of the in vivo role of Gα11 and the evaluation of calcimimetic drugs, which are CaSR allosteric activators, is not available. We therefore screened DNA from > 10,000 mice treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU) for GNA11 mutations and identified a Gα11 variant, Asp195Gly (D195G), which downregulated CaSR-mediated intracellular calcium signaling in vitro, consistent with it being a loss-of-function mutation. Treatment with the calcimimetic cinacalcet rectified these signaling responses. In vivo studies showed mutant heterozygous (Gna11+/195G) and homozygous (Gna11195G/195G) mice to be hypercalcemic with normal or increased plasma PTH concentrations and normal urinary calcium excretion. Cinacalcet (30mg/kg orally) significantly reduced plasma albumin-adjusted calcium and PTH concentrations in Gna11+/195G and Gna11195G/195G mice. Thus, our studies have established a mouse model with a germline loss-of-function Gα11 mutation that is representative for FHH2 in humans and demonstrated that cinacalcet can correct the associated abnormalities of plasma calcium and PTH.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Calcium/blood
- Calcium/urine
- Cinacalcet/administration & dosage
- Cinacalcet/therapeutic use
- Disease Models, Animal
- Ethylnitrosourea/pharmacology
- Female
- GTP-Binding Protein alpha Subunits, Gq-G11/chemistry
- GTP-Binding Protein alpha Subunits, Gq-G11/drug effects
- GTP-Binding Protein alpha Subunits, Gq-G11/genetics
- Humans
- Hypercalcemia/drug therapy
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Models, Molecular
- Mutation/drug effects
- Parathyroid Hormone/blood
- Parathyroid Hormone/metabolism
- Receptors, Calcium-Sensing/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Serum Albumin
- Signal Transduction
Collapse
Affiliation(s)
- Sarah A. Howles
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Fadil M. Hannan
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Caroline M. Gorvin
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sian E. Piret
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Anju Paudyal
- Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council (MRC) Harwell Institute, Harwell Science and Innovation Campus, United Kingdom
| | - Michelle Stewart
- Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council (MRC) Harwell Institute, Harwell Science and Innovation Campus, United Kingdom
| | - Tertius A. Hough
- Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council (MRC) Harwell Institute, Harwell Science and Innovation Campus, United Kingdom
| | - M. Andrew Nesbit
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Biomedical Sciences Research Institute, Ulster University, Coleraine, United Kingdom
| | - Sara Wells
- Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council (MRC) Harwell Institute, Harwell Science and Innovation Campus, United Kingdom
| | - Stephen D.M. Brown
- Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council (MRC) Harwell Institute, Harwell Science and Innovation Campus, United Kingdom
| | - Roger D. Cox
- Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council (MRC) Harwell Institute, Harwell Science and Innovation Campus, United Kingdom
| | - Rajesh V. Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
39
|
Bowl MR, Simon MM, Ingham NJ, Greenaway S, Santos L, Cater H, Taylor S, Mason J, Kurbatova N, Pearson S, Bower LR, Clary DA, Meziane H, Reilly P, Minowa O, Kelsey L, Tocchini-Valentini GP, Gao X, Bradley A, Skarnes WC, Moore M, Beaudet AL, Justice MJ, Seavitt J, Dickinson ME, Wurst W, de Angelis MH, Herault Y, Wakana S, Nutter LMJ, Flenniken AM, McKerlie C, Murray SA, Svenson KL, Braun RE, West DB, Lloyd KCK, Adams DJ, White J, Karp N, Flicek P, Smedley D, Meehan TF, Parkinson HE, Teboul LM, Wells S, Steel KP, Mallon AM, Brown SDM. A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction. Nat Commun 2017; 8:886. [PMID: 29026089 PMCID: PMC5638796 DOI: 10.1038/s41467-017-00595-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 07/12/2017] [Indexed: 01/27/2023] Open
Abstract
The developmental and physiological complexity of the auditory system is likely reflected in the underlying set of genes involved in auditory function. In humans, over 150 non-syndromic loci have been identified, and there are more than 400 human genetic syndromes with a hearing loss component. Over 100 non-syndromic hearing loss genes have been identified in mouse and human, but we remain ignorant of the full extent of the genetic landscape involved in auditory dysfunction. As part of the International Mouse Phenotyping Consortium, we undertook a hearing loss screen in a cohort of 3006 mouse knockout strains. In total, we identify 67 candidate hearing loss genes. We detect known hearing loss genes, but the vast majority, 52, of the candidate genes were novel. Our analysis reveals a large and unexplored genetic landscape involved with auditory function.The full extent of the genetic basis for hearing impairment is unknown. Here, as part of the International Mouse Phenotyping Consortium, the authors perform a hearing loss screen in 3006 mouse knockout strains and identify 52 new candidate genes for genetic hearing loss.
Collapse
Affiliation(s)
- Michael R Bowl
- Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, OX11 0RD, UK
| | - Michelle M Simon
- Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, OX11 0RD, UK
| | - Neil J Ingham
- King's College London, London, SE1 1UL, UK
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Simon Greenaway
- Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, OX11 0RD, UK
| | - Luis Santos
- Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, OX11 0RD, UK
| | - Heather Cater
- Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, OX11 0RD, UK
| | - Sarah Taylor
- Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, OX11 0RD, UK
| | - Jeremy Mason
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1 SD, UK
| | - Natalja Kurbatova
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1 SD, UK
| | - Selina Pearson
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Lynette R Bower
- Mouse Biology Program, University of California, Davis, California, 95618, USA
| | - Dave A Clary
- Mouse Biology Program, University of California, Davis, California, 95618, USA
| | - Hamid Meziane
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, Illkirch-Graffenstaden, F-67404, France
| | - Patrick Reilly
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, Illkirch-Graffenstaden, F-67404, France
| | - Osamu Minowa
- RIKEN BioResource Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Lois Kelsey
- The Centre for Phenogenomics, Toronto, Ontario, Canada, M5T 3H7
- The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8
- Canada and Mount Sinai Hospital, Toronto, Ontario, Canada, M5G 1X5
| | - Glauco P Tocchini-Valentini
- Monterotondo Mouse Clinic, Italian National Research Council (CNR), Institute of Cell Biology and Neurobiology, I-00015, Monterotondo Scalo, Italy
| | - Xiang Gao
- SKL of Pharmaceutical Biotechnology and Model Animal Research Center, Collaborative Innovation Center for Genetics and Development, Nanjing Biomedical Research Institute, Nanjing University, 210061, Nanjing, China
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - William C Skarnes
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Mark Moore
- IMPC, San Anselmo, California, 94960, USA
| | - Arthur L Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Monica J Justice
- The Centre for Phenogenomics, Toronto, Ontario, Canada, M5T 3H7
- The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8
- Canada and Mount Sinai Hospital, Toronto, Ontario, Canada, M5G 1X5
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - John Seavitt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Mary E Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
| | - Yann Herault
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, Illkirch-Graffenstaden, F-67404, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 67404, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, 67404, Illkirch, France
| | | | - Lauryl M J Nutter
- The Centre for Phenogenomics, Toronto, Ontario, Canada, M5T 3H7
- The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8
- Canada and Mount Sinai Hospital, Toronto, Ontario, Canada, M5G 1X5
| | - Ann M Flenniken
- The Centre for Phenogenomics, Toronto, Ontario, Canada, M5T 3H7
- The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8
- Canada and Mount Sinai Hospital, Toronto, Ontario, Canada, M5G 1X5
| | - Colin McKerlie
- The Centre for Phenogenomics, Toronto, Ontario, Canada, M5T 3H7
- The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8
- Canada and Mount Sinai Hospital, Toronto, Ontario, Canada, M5G 1X5
| | | | | | | | - David B West
- Childrens' Hospital Oakland Research Institute, Oakland, California, 94609, USA
| | - K C Kent Lloyd
- Mouse Biology Program, University of California, Davis, California, 95618, USA
| | - David J Adams
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Jacqui White
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Natasha Karp
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1 SD, UK
| | | | - Terrence F Meehan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1 SD, UK
| | - Helen E Parkinson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1 SD, UK
| | - Lydia M Teboul
- Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, OX11 0RD, UK
| | - Sara Wells
- Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, OX11 0RD, UK
| | - Karen P Steel
- King's College London, London, SE1 1UL, UK
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Ann-Marie Mallon
- Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, OX11 0RD, UK
| | - Steve D M Brown
- Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, OX11 0RD, UK.
| |
Collapse
|
40
|
Hai T, Cao C, Shang H, Guo W, Mu Y, Yang S, Zhang Y, Zheng Q, Zhang T, Wang X, Liu Y, Kong Q, Li K, Wang D, Qi M, Hong Q, Zhang R, Wang X, Jia Q, Wang X, Qin G, Li Y, Luo A, Jin W, Yao J, Huang J, Zhang H, Li M, Xie X, Zheng X, Guo K, Wang Q, Zhang S, Li L, Xie F, Zhang Y, Weng X, Yin Z, Hu K, Cong Y, Zheng P, Zou H, Xin L, Xia J, Ruan J, Li H, Zhao W, Yuan J, Liu Z, Gu W, Li M, Wang Y, Wang H, Yang S, Liu Z, Wei H, Zhao J, Zhou Q, Meng A. Pilot study of large-scale production of mutant pigs by ENU mutagenesis. eLife 2017. [PMID: 28639938 PMCID: PMC5505698 DOI: 10.7554/elife.26248] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
N-ethyl-N-nitrosourea (ENU) mutagenesis is a powerful tool to generate mutants on a large scale efficiently, and to discover genes with novel functions at the whole-genome level in Caenorhabditis elegans, flies, zebrafish and mice, but it has never been tried in large model animals. We describe a successful systematic three-generation ENU mutagenesis screening in pigs with the establishment of the Chinese Swine Mutagenesis Consortium. A total of 6,770 G1 and 6,800 G3 pigs were screened, 36 dominant and 91 recessive novel pig families with various phenotypes were established. The causative mutations in 10 mutant families were further mapped. As examples, the mutation of SOX10 (R109W) in pig causes inner ear malfunctions and mimics human Mondini dysplasia, and upregulated expression of FBXO32 is associated with congenital splay legs. This study demonstrates the feasibility of artificial random mutagenesis in pigs and opens an avenue for generating a reservoir of mutants for agricultural production and biomedical research. DOI:http://dx.doi.org/10.7554/eLife.26248.001
Collapse
Affiliation(s)
- Tang Hai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Chunwei Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Haitao Shang
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Department of Laboratory Animal Science, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Weiwei Guo
- Department of Otolaryngology-Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Yanshuang Mu
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,College of Life Science, Northeast Agricultural University of China, Harbin, China
| | - Shulin Yang
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Qiantao Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Tao Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Xianlong Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Yu Liu
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Department of Laboratory Animal Science, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Qingran Kong
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,College of Life Science, Northeast Agricultural University of China, Harbin, China
| | - Kui Li
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dayu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Meng Qi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Qianlong Hong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Rui Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Xiupeng Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Qitao Jia
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Xiao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Guosong Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Yongshun Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Ailing Luo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Weiwu Jin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Jing Yao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Jiaojiao Huang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Hongyong Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Menghua Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Xiangmo Xie
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Xuejuan Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Kenan Guo
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Department of Laboratory Animal Science, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Qinghua Wang
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Department of Laboratory Animal Science, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Shibin Zhang
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Department of Laboratory Animal Science, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Liang Li
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Department of Laboratory Animal Science, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Fei Xie
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Department of Laboratory Animal Science, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Yu Zhang
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,College of Life Science, Northeast Agricultural University of China, Harbin, China
| | - Xiaogang Weng
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,College of Life Science, Northeast Agricultural University of China, Harbin, China
| | - Zhi Yin
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,College of Life Science, Northeast Agricultural University of China, Harbin, China
| | - Kui Hu
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,College of Life Science, Northeast Agricultural University of China, Harbin, China
| | - Yimei Cong
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,College of Life Science, Northeast Agricultural University of China, Harbin, China
| | - Peng Zheng
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,College of Life Science, Northeast Agricultural University of China, Harbin, China
| | - Hailong Zou
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,College of Life Science, Northeast Agricultural University of China, Harbin, China
| | - Leilei Xin
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jihan Xia
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinxue Ruan
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hegang Li
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weiming Zhao
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Yuan
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zizhan Liu
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weiwang Gu
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Pearl Laboratory Animal Sci. & Tech. Co. Ltd, Guangzhou, China
| | - Ming Li
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Pearl Laboratory Animal Sci. & Tech. Co. Ltd, Guangzhou, China
| | - Yong Wang
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Department of Laboratory Animal Science, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Guide Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Shiming Yang
- Department of Otolaryngology-Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China.,Chinese Swine Mutagenesis Consortium Guide Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University of China, Harbin, China.,Chinese Swine Mutagenesis Consortium Guide Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medicine, Third Military Medical University, Chongqing, China.,Chinese Swine Mutagenesis Consortium Guide Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Guide Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Guide Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Anming Meng
- Chinese Swine Mutagenesis Consortium Guide Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
41
|
Gorvin CM, Rogers A, Stewart M, Paudyal A, Hough TA, Teboul L, Wells S, Brown SD, Cox RD, Thakker RV. N-ethyl-N-nitrosourea-Induced Adaptor Protein 2 Sigma Subunit 1 ( Ap2s1) Mutations Establish Ap2s1 Loss-of-Function Mice. JBMR Plus 2017; 1:3-15. [PMID: 29479578 PMCID: PMC5824975 DOI: 10.1002/jbm4.10001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The adaptor protein‐2 sigma subunit (AP2σ), encoded by AP2S1, forms a heterotetrameric complex, with AP2α, AP2β, and AP2μ subunits, that is pivotal for clathrin‐mediated endocytosis, and AP2σ loss‐of‐function mutations impair internalization of the calcium‐sensing receptor (CaSR), a G‐protein–coupled receptor, and cause familial hypocalciuric hypercalcemia type‐3 (FHH3). Mice with AP2σ mutations that would facilitate investigations of the in vivo role of AP2σ, are not available, and we therefore embarked on establishing such mice. We screened >10,000 mice treated with the mutagen N‐ethyl‐N‐nitrosourea (ENU) for Ap2s1 mutations and identified 5 Ap2s1 variants, comprising 2 missense (Tyr20Asn and Ile123Asn) and 3 intronic base substitutions, one of which altered the invariant donor splice site dinucleotide gt to gc. Three‐dimensional modeling and cellular expression of the missense Ap2s1 variants did not reveal them to alter AP2σ structure or CaSR‐mediated signaling, but investigation of the donor splice site variant revealed it to result in an in‐frame deletion of 17 evolutionarily conserved amino acids (del17) that formed part of the AP2σ α1‐helix, α1‐β3 loop, and β3 strand. Heterozygous mutant mice (Ap2s1+/del17) were therefore established, and these had AP2σ haplosufficiency but were viable with normal appearance and growth. Ap2s1+/del17 mice, when compared with Ap2s1+/+ mice, also had normal plasma concentrations of calcium, phosphate, magnesium, creatinine, urea, sodium, potassium, and alkaline phosphatase activity; normal urinary fractional excretion of calcium, phosphate, sodium, and potassium; and normal plasma parathyroid hormone (PTH) and 1,25‐dihydroxyvitamin D (1,25(OH)2) concentrations. However, homozygous Ap2s1del17/del17 mice were non‐viable and died between embryonic days 3.5 and 9.5 (E3.5–9.5), thereby indicating that AP2σ likely has important roles at the embryonic patterning stages and organogenesis of the heart, thyroid, liver, gut, lungs, pancreas, and neural systems. Thus, our studies have established a mutant mouse model that is haplosufficient for AP2σ. © 2017 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Caroline M Gorvin
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, Oxford, UK
| | - Angela Rogers
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, Oxford, UK
| | - Michelle Stewart
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire, UK
| | - Anju Paudyal
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire, UK
| | - Tertius A Hough
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire, UK
| | - Lydia Teboul
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire, UK
| | - Sara Wells
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire, UK
| | - Steve Dm Brown
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire, UK
| | - Roger D Cox
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, Oxford, UK
| |
Collapse
|
42
|
Brammeld JS, Petljak M, Martincorena I, Williams SP, Alonso LG, Dalmases A, Bellosillo B, Robles-Espinoza CD, Price S, Barthorpe S, Tarpey P, Alifrangis C, Bignell G, Vidal J, Young J, Stebbings L, Beal K, Stratton MR, Saez-Rodriguez J, Garnett M, Montagut C, Iorio F, McDermott U. Genome-wide chemical mutagenesis screens allow unbiased saturation of the cancer genome and identification of drug resistance mutations. Genome Res 2017; 27:613-625. [PMID: 28179366 PMCID: PMC5378179 DOI: 10.1101/gr.213546.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 02/07/2017] [Indexed: 01/26/2023]
Abstract
Drug resistance is an almost inevitable consequence of cancer therapy and ultimately proves fatal for the majority of patients. In many cases, this is the consequence of specific gene mutations that have the potential to be targeted to resensitize the tumor. The ability to uniformly saturate the genome with point mutations without chromosome or nucleotide sequence context bias would open the door to identify all putative drug resistance mutations in cancer models. Here, we describe such a method for elucidating drug resistance mechanisms using genome-wide chemical mutagenesis allied to next-generation sequencing. We show that chemically mutagenizing the genome of cancer cells dramatically increases the number of drug-resistant clones and allows the detection of both known and novel drug resistance mutations. We used an efficient computational process that allows for the rapid identification of involved pathways and druggable targets. Such a priori knowledge would greatly empower serial monitoring strategies for drug resistance in the clinic as well as the development of trials for drug-resistant patients.
Collapse
Affiliation(s)
| | - Mia Petljak
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | | | | | - Luz Garcia Alonso
- European Molecular Biology Laboratory - European Bioinformatics Institute, Cambridge CB10 1SA, United Kingdom
| | - Alba Dalmases
- Pathology Department, Hospital del Mar, 08003 Barcelona, Spain
| | | | - Carla Daniela Robles-Espinoza
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Santiago de Querétaro 76230, Mexico
| | - Stacey Price
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Syd Barthorpe
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Patrick Tarpey
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | | | - Graham Bignell
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Joana Vidal
- Cancer Research Program, FIMIM and Medical Oncology Department, Hospital del Mar, 08003 Barcelona, Spain
| | - Jamie Young
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Lucy Stebbings
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Kathryn Beal
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | | | - Julio Saez-Rodriguez
- European Molecular Biology Laboratory - European Bioinformatics Institute, Cambridge CB10 1SA, United Kingdom
- RWTH Aachen University Hospital, 52062 Aachen, Germany
| | - Mathew Garnett
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Clara Montagut
- Cancer Research Program, FIMIM and Medical Oncology Department, Hospital del Mar, 08003 Barcelona, Spain
| | - Francesco Iorio
- European Molecular Biology Laboratory - European Bioinformatics Institute, Cambridge CB10 1SA, United Kingdom
| | - Ultan McDermott
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| |
Collapse
|
43
|
Guichard SM. CRISPR–Cas9 for Drug Discovery in Oncology. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1016/bs.armc.2017.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Esapa CT, Piret SE, Nesbit MA, Loh NY, Thomas G, Croucher PI, Brown MA, Brown SDM, Cox RD, Thakker RV. Mice with an N-Ethyl-N-Nitrosourea (ENU) Induced Tyr209Asn Mutation in Natriuretic Peptide Receptor 3 (NPR3) Provide a Model for Kyphosis Associated with Activation of the MAPK Signaling Pathway. PLoS One 2016; 11:e0167916. [PMID: 27959934 PMCID: PMC5154531 DOI: 10.1371/journal.pone.0167916] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/22/2016] [Indexed: 12/17/2022] Open
Abstract
Non-syndromic kyphosis is a common disorder that is associated with significant morbidity and has a strong genetic involvement; however, the causative genes remain to be identified, as such studies are hampered by genetic heterogeneity, small families and various modes of inheritance. To overcome these limitations, we investigated 12 week old progeny of mice treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU) using phenotypic assessments including dysmorphology, radiography, and dual-energy X-ray absorptiometry. This identified a mouse with autosomal recessive kyphosis (KYLB). KYLB mice, when compared to unaffected littermates, had: thoraco-lumbar kyphosis, larger vertebrae, and increased body length and increased bone area. In addition, female KYLB mice had increases in bone mineral content and plasma alkaline phosphatase activity. Recombination mapping localized the Kylb locus to a 5.5Mb region on chromosome 15A1, which contained 51 genes, including the natriuretic peptide receptor 3 (Npr3) gene. DNA sequence analysis of Npr3 identified a missense mutation, Tyr209Asn, which introduced an N-linked glycosylation consensus sequence. Expression of wild-type NPR3 and the KYLB-associated Tyr209Asn NPR3 mutant in COS-7 cells demonstrated the mutant to be associated with abnormal N-linked glycosylation and retention in the endoplasmic reticulum that resulted in its absence from the plasma membrane. NPR3 is a decoy receptor for C-type natriuretic peptide (CNP), which also binds to NPR2 and stimulates mitogen-activated protein kinase (MAPK) signaling, thereby increasing the number and size of hypertrophic chondrocytes. Histomorphometric analysis of KYLB vertebrae and tibiae showed delayed endochondral ossification and expansion of the hypertrophic zones of the growth plates, and immunohistochemistry revealed increased p38 MAPK phosphorylation throughout the growth plates of KYLB vertebrae. Thus, we established a model of kyphosis due to a novel NPR3 mutation, in which loss of plasma membrane NPR3 expression results in increased MAPK pathway activation, causing elongation of the vertebrae and resulting in kyphosis.
Collapse
Affiliation(s)
- Christopher T. Esapa
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- MRC Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, Harwell, United Kingdom
| | - Sian E. Piret
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - M. Andrew Nesbit
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nellie Y. Loh
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Gethin Thomas
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | | | - Matthew A. Brown
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Steve D. M. Brown
- MRC Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, Harwell, United Kingdom
| | - Roger D. Cox
- MRC Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, Harwell, United Kingdom
| | - Rajesh V. Thakker
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
45
|
Potter PK, Bowl MR, Jeyarajan P, Wisby L, Blease A, Goldsworthy ME, Simon MM, Greenaway S, Michel V, Barnard A, Aguilar C, Agnew T, Banks G, Blake A, Chessum L, Dorning J, Falcone S, Goosey L, Harris S, Haynes A, Heise I, Hillier R, Hough T, Hoslin A, Hutchison M, King R, Kumar S, Lad HV, Law G, MacLaren RE, Morse S, Nicol T, Parker A, Pickford K, Sethi S, Starbuck B, Stelma F, Cheeseman M, Cross SH, Foster RG, Jackson IJ, Peirson SN, Thakker RV, Vincent T, Scudamore C, Wells S, El-Amraoui A, Petit C, Acevedo-Arozena A, Nolan PM, Cox R, Mallon AM, Brown SDM. Novel gene function revealed by mouse mutagenesis screens for models of age-related disease. Nat Commun 2016; 7:12444. [PMID: 27534441 PMCID: PMC4992138 DOI: 10.1038/ncomms12444] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/01/2016] [Indexed: 12/19/2022] Open
Abstract
Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss.
Collapse
Affiliation(s)
- Paul K. Potter
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Michael R. Bowl
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Prashanthini Jeyarajan
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Laura Wisby
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Andrew Blease
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | | | - Michelle M. Simon
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Simon Greenaway
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Vincent Michel
- Génétique et Physiologie de l'Audition, Institut Pasteur, INSERM UMR-S 1120, Sorbonne Universités, UPMC Univ Paris 06, Collège de France, 25 rue Dr Roux, Paris 75015, France
| | - Alun Barnard
- The Nuffield Laboratory of Ophthalmology & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
| | - Carlos Aguilar
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Thomas Agnew
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Gareth Banks
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Andrew Blake
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Lauren Chessum
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Joanne Dorning
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Sara Falcone
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Laurence Goosey
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Shelley Harris
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Andy Haynes
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Ines Heise
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Rosie Hillier
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Tertius Hough
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Angela Hoslin
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Marie Hutchison
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Ruairidh King
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Saumya Kumar
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Heena V. Lad
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Gemma Law
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Robert E. MacLaren
- The Nuffield Laboratory of Ophthalmology & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
| | - Susan Morse
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Thomas Nicol
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Andrew Parker
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Karen Pickford
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Siddharth Sethi
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Becky Starbuck
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Femke Stelma
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Michael Cheeseman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Sally H. Cross
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Russell G. Foster
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Ian J. Jackson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Stuart N. Peirson
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Rajesh V. Thakker
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Tonia Vincent
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Cheryl Scudamore
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Sara Wells
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Aziz El-Amraoui
- Génétique et Physiologie de l'Audition, Institut Pasteur, INSERM UMR-S 1120, Sorbonne Universités, UPMC Univ Paris 06, Collège de France, 25 rue Dr Roux, Paris 75015, France
| | - Christine Petit
- Génétique et Physiologie de l'Audition, Institut Pasteur, INSERM UMR-S 1120, Sorbonne Universités, UPMC Univ Paris 06, Collège de France, 25 rue Dr Roux, Paris 75015, France
| | | | - Patrick M. Nolan
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Roger Cox
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Anne-Marie Mallon
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Steve D. M. Brown
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| |
Collapse
|
46
|
Ruzzenente B, Rötig A, Metodiev MD. Mouse models for mitochondrial diseases. Hum Mol Genet 2016; 25:R115-R122. [PMID: 27329762 DOI: 10.1093/hmg/ddw176] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial diseases are heterogeneous and incurable conditions typically resulting from deficient ATP production in the cells. Mice, owing to their genetic and physiological similarity to humans as well as their relatively easy maintenance and propagation, are extremely valuable for studying mitochondrial diseases and are also indispensable for the preclinical evaluation of novel therapies for these devastating conditions. Here, we review the recent exciting developments in the field focusing on mouse models for mitochondrial disease genes although models for genes not involved in the pathogenesis of mitochondrial disease and therapeutic proof-of-concept studies using mouse models are also discussed.
Collapse
Affiliation(s)
- Benedetta Ruzzenente
- INSERM U1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, 75015 Paris, France
| | - Agnès Rötig
- INSERM U1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, 75015 Paris, France
| | - Metodi D Metodiev
- INSERM U1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, 75015 Paris, France
| |
Collapse
|
47
|
Absence of Neuroplastin-65 Affects Synaptogenesis in Mouse Inner Hair Cells and Causes Profound Hearing Loss. J Neurosci 2016; 36:222-34. [PMID: 26740663 DOI: 10.1523/jneurosci.1808-15.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED The Neuroplastin gene encodes two synapse-enriched protein isoforms, Np55 and Np65, which are transmembrane glycoproteins that regulate several cellular processes, including the genesis, maintenance, and plasticity of synapses. We found that an absence of Np65 causes early-onset sensorineural hearing loss and prevented the normal synaptogenesis in inner hair cells (IHCs) in the newly identified mouse mutant pitch. In wild-type mice, Np65 is strongly upregulated in the cochlea from around postnatal day 12 (P12), which corresponds to the onset of hearing. Np65 was specifically localized at the presynaptic region of IHCs. We found that the colocalization of presynaptic IHC ribbons and postsynaptic afferent terminals is greatly reduced in pitch mutants. Moreover, IHC exocytosis is also reduced with mutant mice showing lower rates of vesicle release. Np65 appears to have a nonessential role in vision. We propose that Np65, by regulating IHC synaptogenesis, is critical for auditory function in mammals. SIGNIFICANCE STATEMENT In the mammalian cochlea, the sensory inner hair cells (IHCs) encode auditory information. They do this by converting sound wave-induced mechanical motion of their hair bundles into an electrical current. This current generates a receptor potential that controls release of glutamate neurotransmitter from their ribbon synapses onto the auditory afferent fiber. We show that the synapse-enriched protein Np65, encoded by the Neuroplastin gene, is localized at the IHC presynaptic region. In mutant mice, absence of Np65 causes early-onset sensorineural hearing loss and prevents normal neurotransmitter release in IHCs and colocalization of presynaptic ribbons with postsynaptic afferents. We identified Neuroplastin as a novel deafness gene required for ribbon synapse formation and function, which is critical for sound perception in mammals.
Collapse
|
48
|
O'Tuathaigh CMP, Desbonnet L, Moran PM, Kirby BP, Waddington JL. Molecular genetic models related to schizophrenia and psychotic illness: heuristics and challenges. Curr Top Behav Neurosci 2016; 7:87-119. [PMID: 21298380 DOI: 10.1007/7854_2010_111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Schizophrenia is a heritable disorder that may involve several common genes of small effect and/or rare copy number variation, with phenotypic heterogeneity across patients. Furthermore, any boundaries vis-à-vis other psychotic disorders are far from clear. Consequently, identification of informative animal models for this disorder, which typically relate to pharmacological and putative pathophysiological processes of uncertain validity, faces considerable challenges. In juxtaposition, the majority of mutant models for schizophrenia relate to the functional roles of a diverse set of genes associated with risk for the disorder or with such putative pathophysiological processes. This chapter seeks to outline the evidence from phenotypic studies in mutant models related to schizophrenia. These have commonly assessed the degree to which mutation of a schizophrenia-related gene is associated with the expression of several aspects of the schizophrenia phenotype or more circumscribed, schizophrenia-related endophenotypes; typically, they place specific emphasis on positive and negative symptoms and cognitive deficits, and extend to structural and other pathological features. We first consider the primary technological approaches to the generation of such mutants, to include their relative merits and demerits, and then highlight the diverse phenotypic approaches that have been developed for their assessment. The chapter then considers the application of mutant phenotypes to study pathobiological and pharmacological mechanisms thought to be relevant for schizophrenia, particularly in terms of dopaminergic and glutamatergic dysfunction, and to an increasing range of candidate susceptibility genes and copy number variants. Finally, we discuss several pertinent issues and challenges within the field which relate to both phenotypic evaluation and a growing appreciation of the functional genomics of schizophrenia and the involvement of gene × environment interactions.
Collapse
Affiliation(s)
- Colm M P O'Tuathaigh
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland,
| | | | | | | | | |
Collapse
|
49
|
Lines KE, Stevenson M, Thakker RV. Animal models of pituitary neoplasia. Mol Cell Endocrinol 2016; 421:68-81. [PMID: 26320859 PMCID: PMC4721536 DOI: 10.1016/j.mce.2015.08.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 01/21/2023]
Abstract
Pituitary neoplasias can occur as part of a complex inherited disorder, or more commonly as sporadic (non-familial) disease. Studies of the molecular and genetic mechanisms causing such pituitary tumours have identified dysregulation of >35 genes, with many revealed by studies in mice, rats and zebrafish. Strategies used to generate these animal models have included gene knockout, gene knockin and transgenic over-expression, as well as chemical mutagenesis and drug induction. These animal models provide an important resource for investigation of tissue-specific tumourigenic mechanisms, and evaluations of novel therapies, illustrated by studies into multiple endocrine neoplasia type 1 (MEN1), a hereditary syndrome in which ∼ 30% of patients develop pituitary adenomas. This review describes animal models of pituitary neoplasia that have been generated, together with some recent advances in gene editing technologies, and an illustration of the use of the Men1 mouse as a pre clinical model for evaluating novel therapies.
Collapse
Affiliation(s)
- K E Lines
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford OX3 7LJ, UK
| | - M Stevenson
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford OX3 7LJ, UK
| | - R V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford OX3 7LJ, UK.
| |
Collapse
|
50
|
|