1
|
Maio N, Heffner AL, Rouault TA. Iron‑sulfur clusters in viral proteins: Exploring their elusive nature, roles and new avenues for targeting infections. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119723. [PMID: 38599324 PMCID: PMC11139609 DOI: 10.1016/j.bbamcr.2024.119723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Viruses have evolved complex mechanisms to exploit host factors for replication and assembly. In response, host cells have developed strategies to block viruses, engaging in a continuous co-evolutionary battle. This dynamic interaction often revolves around the competition for essential resources necessary for both host cell and virus replication. Notably, iron, required for the biosynthesis of several cofactors, including iron‑sulfur (FeS) clusters, represents a critical element in the ongoing competition for resources between infectious agents and host. Although several recent studies have identified FeS cofactors at the core of virus replication machineries, our understanding of their specific roles and the cellular processes responsible for their incorporation into viral proteins remains limited. This review aims to consolidate our current knowledge of viral components that have been characterized as FeS proteins and elucidate how viruses harness these versatile cofactors to their benefit. Its objective is also to propose that viruses may depend on incorporation of FeS cofactors more extensively than is currently known. This has the potential to revolutionize our understanding of viral replication, thereby carrying significant implications for the development of strategies to target infections.
Collapse
Affiliation(s)
- Nunziata Maio
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| | - Audrey L Heffner
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tracey A Rouault
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
El-Kafrawy SA, El-Daly MM, Bajrai LH, Alandijany TA, Faizo AA, Mobashir M, Ahmed SS, Ahmed S, Alam S, Jeet R, Kamal MA, Anwer ST, Khan B, Tashkandi M, Rizvi MA, Azhar EI. Genomic profiling and network-level understanding uncover the potential genes and the pathways in hepatocellular carcinoma. Front Genet 2022; 13:880440. [PMID: 36479247 PMCID: PMC9720179 DOI: 10.3389/fgene.2022.880440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 11/02/2022] [Indexed: 12/11/2023] Open
Abstract
Data integration with phenotypes such as gene expression, pathways or function, and protein-protein interactions data has proven to be a highly promising technique for improving human complex diseases, particularly cancer patient outcome prediction. Hepatocellular carcinoma is one of the most prevalent cancers, and the most common cause is chronic HBV and HCV infection, which is linked to the majority of cases, and HBV and HCV play a role in multistep carcinogenesis progression. We examined the list of known hepatocellular carcinoma biomarkers with the publicly available expression profile dataset of hepatocellular carcinoma infected with HCV from day 1 to day 10 in this study. The study covers an overexpression pattern for the selected biomarkers in clinical hepatocellular carcinoma patients, a combined investigation of these biomarkers with the gathered temporal dataset, temporal expression profiling changes, and temporal pathway enrichment following HCV infection. Following a temporal analysis, it was discovered that the early stages of HCV infection tend to be more harmful in terms of expression shifting patterns, and that there is no significant change after that, followed by a set of genes that are consistently altered. PI3K, cAMP, TGF, TNF, Rap1, NF-kB, Apoptosis, Longevity regulating pathway, signaling pathways regulating pluripotency of stem cells, Cytokine-cytokine receptor interaction, p53 signaling, Wnt signaling, Toll-like receptor signaling, and Hippo signaling pathways are just a few of the most commonly enriched pathways. The majority of these pathways are well-known for their roles in the immune system, infection and inflammation, and human illnesses like cancer. We also find that ADCY8, MYC, PTK2, CTNNB1, TP53, RB1, PRKCA, TCF7L2, PAK1, ITPR2, CYP3A4, UGT1A6, GCK, and FGFR2/3 appear to be among the prominent genes based on the networks of genes and pathways based on the copy number alterations, mutations, and structural variants study.
Collapse
Affiliation(s)
- Sherif A. El-Kafrawy
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mai M. El-Daly
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Leena H. Bajrai
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thamir A. Alandijany
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arwa A. Faizo
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Mobashir
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Sunbul S. Ahmed
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Sarfraz Ahmed
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Shoaib Alam
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Raja Jeet
- Botany Department, Ganesh Dutt College, Begusarai, Bihar, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Enzymoics, Hebersham, NSW, Australia
- Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Syed Tauqeer Anwer
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Bushra Khan
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Manal Tashkandi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Moshahid A. Rizvi
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Esam Ibraheem Azhar
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Prevalence and Genomic Sequence Analysis of Domestic Cat Hepadnavirus in the United States. Viruses 2022; 14:v14102091. [PMID: 36298647 PMCID: PMC9607532 DOI: 10.3390/v14102091] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/28/2022] Open
Abstract
Hepadnaviruses are partially double-stranded DNA viruses that infect a variety of species. The prototypical virus in this family is the human hepatitis B virus, which chronically infects approximately 400 million people worldwide and is a risk factor for progressive liver disease and liver cancer. The first hepadnavirus isolated from carnivores was a domestic cat hepadnavirus (DCH), initially identified in Australia and subsequently detected in cats in Europe and Asia. As with all characterized hepadnaviruses so far, DCH infection has been associated with hepatic disease in its host. Prevalence of this infection in the United States has not been explored broadly. Thus, we utilized conventional and quantitative PCR to screen several populations of domestic cats to estimate DCH prevalence in the United States. We detected DCH DNA in 1 out of 496 animals (0.2%) in the U.S. cohort. In contrast, we detected circulating DCH DNA in 7 positive animals from a cohort of 67 domestic cats from Australia (10.4%), consistent with previous studies. The complete consensus genome of the U.S. DCH isolate was sequenced by Sanger sequencing with overlapping PCR products. An in-frame deletion of 157 bp was identified in the N-terminus of the core open reading frame. The deletion begins at the direct repeat 1 sequence (i.e., the 5′ end of the expected double-stranded linear DNA form), consistent with covalently closed circular DNA resultant from illegitimate recombination described in other hepadnaviruses. Comparative genome sequence analysis indicated that the closest described relatives of the U.S. DCH isolate are those previously isolated in Italy. Motif analysis supports DCH using NTCP as an entry receptor, similar to human HBV. Our work indicates that chronic DCH prevalence in the U.S. is likely low compared to other countries.
Collapse
|
4
|
Zheng Y, Zhang H, Sun H. Metformin inhibits the proliferation and invasion of ovarian cancer cells by suppressing TRIM37-induced TRAF2 ubiquitination. Cancer Sci 2022; 113:3776-3786. [PMID: 35950370 PMCID: PMC9633302 DOI: 10.1111/cas.15524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Ovarian cancer is the leading cause of death in gynecological malignancies worldwide. Our previous studies have proved that metformin inhibited the proliferation and invasion of ovarian cancer in vitro and in vivo. However, the underlying mechanisms have not been fully elucidated. Immunohistochemistry was carried out to detect the expression of tripartite motif‐containing 37 (TRIM37), Ki‐67, and MMP‐9 in ovarian cancer and normal tissues. The influence of TRIM37 on the proliferation and invasion of ovarian cancer cells was verified by the real‐time cellular analysis proliferation test, colony formation test, and Transwell assay. Western blot analysis and immunoprecipitation were used to detect the expression of the nuclear factor‐κB (NF‐κB) pathway and the interaction between TRIM37 and tumor necrosis factor receptor‐associated factor 2 (TRAF2). Ubiquitination detection was carried out to detect the ubiquitination level of TRAF2. The present study revealed that TRIM37 expression was significantly increased in ovarian cancer tissues compared with normal control tissues, and its overexpression was closely associated with proliferation and metastasis. Metformin inhibited the NF‐κB signaling pathway by downregulating TRIM37. Metformin also inhibited the ubiquitination of TRAF2 induced by TRIM37 overexpression. Metformin inhibits the proliferation and invasion of ovarian cancer cells by suppressing TRIM37‐induced TRAF2 ubiquitination.
Collapse
Affiliation(s)
- Ya Zheng
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, P. R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, P. R. China
| | - Haiyan Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, P. R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, P. R. China
| | - Hong Sun
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, P. R. China
| |
Collapse
|
5
|
Lin S, Liu C, Zhao X, Han X, Li X, Ye Y, Li Z. Recent Advances of Pyridinone in Medicinal Chemistry. Front Chem 2022; 10:869860. [PMID: 35402370 PMCID: PMC8984125 DOI: 10.3389/fchem.2022.869860] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022] Open
Abstract
Pyridinones have been adopted as an important block in medicinal chemistry that could serve as hydrogen bond donors and acceptors. With the help of feasible synthesis routes via established condensation reactions, the physicochemical properties of such a scaffold could be manipulated by adjustment of polarity, lipophilicity, and hydrogen bonding, and eventually lead to its wide application in fragment-based drug design, biomolecular mimetics, and kinase hinge-binding motifs. In addition, most pyridinone derivatives exhibit various biological activities ranging from antitumor, antimicrobial, anti-inflammatory, and anticoagulant to cardiotonic effects. This review focuses on recent contributions of pyridinone cores to medicinal chemistry, and addresses the structural features and structure–activity relationships (SARs) of each drug-like molecule. These advancements contribute to an in-depth understanding of the potential of this biologically enriched scaffold and expedite the development of its new applications in drug discovery.
Collapse
Affiliation(s)
- Shibo Lin
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
- *Correspondence: Shibo Lin,
| | - Chun Liu
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Xiaotian Zhao
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Xiao Han
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Xuanhao Li
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Yongqin Ye
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Zheyu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China
| |
Collapse
|
6
|
Hepatitis B Viral Protein HBx and the Molecular Mechanisms Modulating the Hallmarks of Hepatocellular Carcinoma: A Comprehensive Review. Cells 2022; 11:cells11040741. [PMID: 35203390 PMCID: PMC8870387 DOI: 10.3390/cells11040741] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
With 296 million cases estimated worldwide, chronic hepatitis B virus (HBV) infection is the most common risk factor for hepatocellular carcinoma (HCC). HBV-encoded oncogene X protein (HBx), a key multifunctional regulatory protein, drives viral replication and interferes with several cellular signalling pathways that drive virus-associated hepatocarcinogenesis. This review article provides a comprehensive overview of the role of HBx in modulating the various hallmarks of HCC by supporting tumour initiation, progression, invasion and metastasis. Understanding HBx-mediated dimensions of complexity in driving liver malignancies could provide the key to unlocking novel and repurposed combinatorial therapies to combat HCC.
Collapse
|
7
|
Kato Y, Tabata H, Sato K, Nakamura M, Saito I, Nakanishi T. Adenovirus Vectors Expressing Eight Multiplex Guide RNAs of CRISPR/Cas9 Efficiently Disrupted Diverse Hepatitis B Virus Gene Derived from Heterogeneous Patient. Int J Mol Sci 2021; 22:10570. [PMID: 34638909 PMCID: PMC8508944 DOI: 10.3390/ijms221910570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/22/2022] Open
Abstract
Hepatitis B virus (HBV) chronically infects more than 240 million people worldwide, causing chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). Genome editing using CRISPR/Cas9 could provide new therapies because it can directly disrupt HBV genomes. However, because HBV genome sequences are highly diverse, the identical target sequence of guide RNA (gRNA), 20 nucleotides in length, is not necessarily present intact in the target HBV DNA in heterogeneous patients. Consequently, possible genome-editing drugs would be effective only for limited numbers of patients. Here, we show that an adenovirus vector (AdV) bearing eight multiplex gRNA expression units could be constructed in one step and amplified to a level sufficient for in vivo study with lack of deletion. Using this AdV, HBV X gene integrated in HepG2 cell chromosome derived from a heterogeneous patient was cleaved at multiple sites and disrupted. Indeed, four targets out of eight could not be cleaved due to sequence mismatches, but the remaining four targets were cleaved, producing irreversible deletions. Accordingly, the diverse X gene was disrupted at more than 90% efficiency. AdV containing eight multiplex gRNA units not only offers multiple knockouts of genes, but could also solve the problems of heterogeneous targets and escape mutants in genome-editing therapy.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adenoviridae/physiology
- CRISPR-Cas Systems
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/virology
- Cell Line, Tumor
- Gene Editing/methods
- Genetic Vectors/genetics
- HEK293 Cells
- Hep G2 Cells
- Hepatitis B virus/genetics
- Hepatitis B virus/metabolism
- Hepatitis B, Chronic/genetics
- Hepatitis B, Chronic/therapy
- Hepatitis B, Chronic/virology
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/therapy
- Liver Neoplasms/virology
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Viral Regulatory and Accessory Proteins/genetics
- Viral Regulatory and Accessory Proteins/metabolism
- Virus Replication/genetics
Collapse
Affiliation(s)
- Yuya Kato
- Laboratory of Virology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Foundation, Shinagawa-ku, Tokyo 141-0021, Japan; (Y.K.); (H.T.); (M.N.); (T.N.)
| | - Hirotaka Tabata
- Laboratory of Virology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Foundation, Shinagawa-ku, Tokyo 141-0021, Japan; (Y.K.); (H.T.); (M.N.); (T.N.)
- Laboratory of Molecular Genetics, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| | - Kumiko Sato
- Laboratory of Molecular Genetics, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| | - Mariko Nakamura
- Laboratory of Virology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Foundation, Shinagawa-ku, Tokyo 141-0021, Japan; (Y.K.); (H.T.); (M.N.); (T.N.)
- Laboratory of Molecular Genetics, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
- Center for Biomedical Research Resources, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Izumu Saito
- Laboratory of Virology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Foundation, Shinagawa-ku, Tokyo 141-0021, Japan; (Y.K.); (H.T.); (M.N.); (T.N.)
- Laboratory of Molecular Genetics, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
- Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Tomoko Nakanishi
- Laboratory of Virology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Foundation, Shinagawa-ku, Tokyo 141-0021, Japan; (Y.K.); (H.T.); (M.N.); (T.N.)
- Laboratory of Molecular Genetics, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
- Center for Biomedical Research Resources, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
8
|
Burwitz BJ, Zhou Z, Li W. Animal models for the study of human hepatitis B and D virus infection: New insights and progress. Antiviral Res 2020; 182:104898. [PMID: 32758525 DOI: 10.1016/j.antiviral.2020.104898] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus (HBV) is a member of the Hepadnaviridae family and infects hepatocytes, leading to liver pathology in acutely and chronically infected individuals. Co-infection with Hepatitis D virus (HDV), which requires the surface proteins of HBV to replicate, can exacerbate this disease progression. Thus, the >250 million people living with chronic HBV infection, including 13 million co-infected with HDV, would significantly benefit from an effective and affordable curative treatment. Animal models are crucial to the development of innovative disease therapies, a paradigm repeated again and again throughout the fields of immunology, neurology, reproduction, and development. Unfortunately, HBV has a highly-restricted species tropism, infecting limited species including humans, chimpanzees, and treeshrews. The first experimentally controlled studies of HBV infection were following inoculation of human volunteers in 1942, which identified the transmissibility of hepatitis through serum transfer and led to the hypothesis that the etiological agent was viral. Subsequent research in chimpanzees (Desmyter et al., 1971; Lichter, 1969) and later in other species, such as the treeshrews (Walter et al., 1996; Yan et al., 1996), further confirmed the viral origin of hepatitis B. Shortly thereafter, HBV-like viral infections were identified in woodchucks (Summers et al., 1978; Werner et al., 1979) and ducks, and much of our understanding of HBV replication can be attributed to these important models. However, with the exodus of chimpanzees from research and the limited reagents and historical data for treeshrews and other understudied species, there remains an urgent need to identify physiologically relevant models of chronic HBV infection. While large strides have been made in generating such models, particularly over the past two decades, there is still no available model that faithfully recapitulates the immunity and pathogenesis of HBV infection. Here, we discuss recent advancements in the generation of murine and non-human primate (NHP) models of HBV/HDV infection.
Collapse
Affiliation(s)
- Benjamin J Burwitz
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, 97006, USA.
| | - Zhongmin Zhou
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China; National Institute of Biological Sciences, Beijing, 102206, China.
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing, 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
| |
Collapse
|
9
|
Li T, Li J, Yang Y, Han Y, Wu D, Xiao T, Wang Y, Liu T, Zhao Y, Li Y, Dai Z, Fu X. Synthesis, pharmacological evaluation, and mechanistic study of adefovir mixed phosphonate derivatives bearing cholic acid and l-amino acid moieties for the treatment of HBV. Bioorg Med Chem 2019; 27:3707-3721. [PMID: 31301948 DOI: 10.1016/j.bmc.2019.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/27/2019] [Accepted: 07/06/2019] [Indexed: 02/06/2023]
Abstract
The deficiency of nucleos(t)ide analogues (NAs) as anti-hepatitis B virus (HBV) drugs in clinical use is attributable to their insufficient enrichment in liver and non-target organ toxicity. We aimed to develop potent anti-HBV adefovir derivatives with hepatotrophic properties and reduced nephrotoxicity. A series of adefovir mono l-amino acids, mono cholic acid-drug conjugates were designed and synthesized, and their antiviral activity and uptake in rat primary hepatocytes and Na+-dependent taurocholate co-transporting polypeptide (NTCP)-HEK293 cells were evaluated. We isolated compound 6c as the optimal molecular candidate, with the highest antiviral activity (EC50 0.42 μmol/L, SI 1063.07) and highest cellular uptake in primary hepatocytes and NTCP-HEK293 cells. In-depth mechanistic studies demonstrated that 6c exhibited a lower toxicity in HK-2 cells when compared to adefovir dipivoxil (ADV). This is because 6c cannot be transported by the human renal organic anion transporter 1 (hOAT1). Furthermore, pharmacokinetic characterization and tissue distribution of 6c indicates it has favorable druggability and pharmacokinetic properties. Further docking studies suggested compounds with ursodeoxycholic acid and l-amino acid groups are better at binding to NTCP due to their hydrophilic properties, indicating that 6c is a potential candidate as an anti-HBV therapy and therefore merits further investigation.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, PR China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, PR China
| | - Jing Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, PR China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, PR China
| | - Yang Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, PR China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, PR China
| | - Yilin Han
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, PR China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, PR China
| | - Dirong Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, PR China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, PR China
| | - Tao Xiao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, PR China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, PR China
| | - Yang Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, PR China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, PR China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, PR China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, PR China
| | - Yonglong Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, PR China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, PR China
| | - Yongjun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, PR China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, PR China
| | - Zeqin Dai
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, PR China
| | - Xiaozhong Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, PR China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, PR China.
| |
Collapse
|
10
|
Chiu SY, Chung HJ, Chen YT, Huang MS, Huang CC, Huang SF, Matsuura I. A nonsense mutant of the hepatitis B virus large S protein antagonizes multiple tumor suppressor pathways through c-Jun activation domain-binding protein1. PLoS One 2019; 14:e0208665. [PMID: 30870427 PMCID: PMC6417713 DOI: 10.1371/journal.pone.0208665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/26/2019] [Indexed: 11/18/2022] Open
Abstract
Hepatitis B virus (HBV) is a major cause of hepatocellular carcinoma (HCC). Previous studies have identified recurrent nonsense mutations in the HBV large S (LHBs) gene from the liver from HBV core antigen-positive HCC patients. These nonsense mutants have been shown to be oncogenic in mouse xenograft models using a mouse embryonic fibroblast cell line. Here, we expressed in a liver cell line Huh-7 a carboxy terminally truncated protein from a nonsense mutant of the LHBs gene, sW182* (stop codon at tryptophane-182). Although the sW182* protein appeared not to be very stable in the cultured liver cells, we confirmed that the protein can be highly expressed and retained for a prolonged period of time in the hepatocytes in the mouse liver, indicating its stable nature in the physiological condition. In the Huh-7 cells, the sW182* mutant downregulated tumor suppressors p53 and Smad4. This downregulation was reversed by a proteasome inhibitor MG132, implying the involvement of proteasome-based protein degradation in the observed regulation of the tumor suppressors. On the other hand, we found that c-Jun activation domain-binding protein 1 (Jab1) physically interacts with the sW182*, but not wild-type LHBs. RNA interference (RNAi) of Jab1 restored the levels of the downregulated p53 and Smad4. The sW182* mutant inhibited the promoter activity of downstream target genes of the tumor suppressors. Consistently, Jab1 RNAi reversed the inhibition. These results suggest that the LHBs nonsense mutant antagonizes the tumor suppressor pathways through Jab1 in the liver contributing to HCC development.
Collapse
Affiliation(s)
- Shu-Yi Chiu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Hsiang-Ju Chung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Ya-Ting Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Min-Syuan Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Chien-Chih Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Shiu-Feng Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Isao Matsuura
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
- * E-mail:
| |
Collapse
|
11
|
Hepatitis B Virus DNA Integration Occurs Early in the Viral Life Cycle in an In Vitro Infection Model via Sodium Taurocholate Cotransporting Polypeptide-Dependent Uptake of Enveloped Virus Particles. J Virol 2018; 92:JVI.02007-17. [PMID: 29437961 DOI: 10.1128/jvi.02007-17] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/30/2018] [Indexed: 02/08/2023] Open
Abstract
Chronic infection by hepatitis B virus (HBV) is the major contributor to liver disease worldwide. Though HBV replicates via a nuclear episomal DNA (covalently closed circular DNA [cccDNA]), integration of HBV DNA into the host cell genome is regularly observed in the liver in infected patients. While reported as a prooncogenic alteration, the mechanism(s) and timing of HBV DNA integration are not well understood, chiefly due to the lack of in vitro infection models that have detectable integration events. In this study, we have established an in vitro system in which integration can be reliably detected following HBV infection. We measured HBV DNA integration using inverse nested PCR in primary human hepatocytes, HepaRG-NTCP, HepG2-NTCP, and Huh7-NTCP cells after HBV infection. Integration was detected in all cell types at a rate of >1 per 10,000 cells, with the most consistent detection in Huh7-NTCP cells. The integration rate remained stable between 3 and 9 days postinfection. HBV DNA integration was efficiently blocked by treatment with a 200 nM concentration of the HBV entry inhibitor Myrcludex B, but not with 10 μM tenofovir, 100 U of interferon alpha, or a 1 μM concentration of the capsid assembly inhibitor GLS4. This suggests that integration of HBV DNA occurs immediately after infection of hepatocytes and is likely independent of de novo HBV genome replication in this model. Site analysis revealed that HBV DNA integrations were distributed over the entire human genome. Further, integrated HBV DNA sequences were consistent with double-stranded linear HBV DNA being the major precursor. Thus, we have established an in vitro system to interrogate the mechanisms of HBV DNA integration.IMPORTANCE Hepatitis B virus (HBV) is a common blood-borne pathogen and, following a chronic infection, can cause liver cancer and liver cirrhosis. Integration of HBV DNA into the host genome occurs in all known members of the Hepadnaviridae family, despite this form not being necessary for viral replication. HBV DNA integration has been reported to drive liver cancer formation and persistence of virus infection. However, when and the mechanism(s) by which HBV DNA integration occurs are not clear. In this study, we have developed and characterized an in vitro system to reliably detect HBV DNA integrations that result from a true HBV infection event and that closely resemble those found in patient tissues. Using this model, we showed that integration occurs when the infection is first established. Importantly, we provide here a system to analyze molecular factors involved in HBV integration, which can be used to develop strategies to halt its formation.
Collapse
|
12
|
Recent progress in potential anti-hepatitis B virus agents: Structural and pharmacological perspectives. Eur J Med Chem 2018; 147:205-217. [PMID: 29438889 DOI: 10.1016/j.ejmech.2018.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 12/13/2022]
|
13
|
Lu D, Liu F, Xing W, Tong X, Wang L, Wang Y, Zeng L, Feng C, Yang L, Zuo J, Hu Y. Optimization and Synthesis of Pyridazinone Derivatives as Novel Inhibitors of Hepatitis B Virus by Inducing Genome-free Capsid Formation. ACS Infect Dis 2017; 3:199-205. [PMID: 27989113 DOI: 10.1021/acsinfecdis.6b00159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The capsid of hepatitis B virus (HBV) plays a vital role in virus DNA replication. Targeting nucleocapsid function has been demonstrated as an effective approach for anti-HBV drug development. A high-throughput screening and mechanism study revealed the hit compound 4a as an HBV assembly effector (AEf), which could inhibit HBV replication by inducing the formation of HBV DNA-free capsids. The subsequent SAR study and drug-like optimization resulted in the discovery of the lead candidate 4r, with potent antiviral activity (IC50 = 0.087 ± 0.002 μM), low cytotoxicity (CC50 = 90.6 ± 2.06 μM), sensitivity to nucleoside analogue-resistant HBV mutants, and synergistic effect with nucleoside analogues in HepG2.2.15 cells.
Collapse
Affiliation(s)
- Dong Lu
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Feifei Liu
- Laboratory
of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Weiqiang Xing
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China
| | - Xiankun Tong
- Laboratory
of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China
| | - Lang Wang
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China
| | - Yajuan Wang
- Laboratory
of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Limin Zeng
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China
| | - Chunlan Feng
- Laboratory
of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China
| | - Li Yang
- Laboratory
of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China
| | - Jianping Zuo
- Laboratory
of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China
| | - Youhong Hu
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China
| |
Collapse
|
14
|
Chao CCK. Inhibition of apoptosis by oncogenic hepatitis B virus X protein: Implications for the treatment of hepatocellular carcinoma. World J Hepatol 2016; 8:1061-1066. [PMID: 27660672 PMCID: PMC5026997 DOI: 10.4254/wjh.v8.i25.1061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/27/2016] [Accepted: 07/22/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus X protein (HBx) plays an important role in the development of hepatocellular carcinoma (HCC). In addition, hepatoma upregulated protein (HURP) is a cellular oncogene that is upregulated in a majority of HCC cases. We highlight here recent findings demonstrating a link between HBx, HURP and anti-apoptosis effects observed in cisplatin-treated HCC cells. We observed that Hep3B cells overexpressing HBx display increased HURP mRNA and protein levels, and show resistance to cisplatin-induced apoptosis. Knockdown of HURP in HBx-expressing cells reverses this effect, and sensitizes cells to cisplatin. The anti-apoptotic effect of HBx requires activation of the p38/MAPK pathway as well as expression of SATB1, survivin and HURP. Furthermore, silencing of HURP using short-hairpin RNA promotes accumulation of p53 and reduces cell proliferation in SK-Hep-1 cells (p53+/–), whereas these effects are not observed in p53-mutant Mahlavu cells. Similarly, HURP silencing does not affect the proliferation of H1299 lung carcinoma cells or Hep3B HCC cells which lack p53. Silencing of HURP sensitizes SK-Hep-1 cells to cisplatin. While HURP overexpression promotes p53 ubiquitination and degradation by the proteasome, HURP silencing reverses these effects. Inoculation of SK-Hep-1 cancer cells in which HURP has been silenced produces smaller tumors than control in nude mice. Besides, gankyrin, a positive regulator of the E3 ubiquitin ligase MDM2, is upregulated following HURP expression, and silencing of gankyrin reduces HURP-mediated downregulation of p53. In addition, we observed a positive correlation between HURP and gankyrin protein levels in HCC patients (r2 = 0.778; n = 9). These findings suggest a role for the viral protein HBx and the host protein HURP in preventing p53-mediated apoptosis during cancer progression and establishment of chemoresistance.
Collapse
|
15
|
He L, Tian DA, Li PY, He XX. Mouse models of liver cancer: Progress and recommendations. Oncotarget 2016; 6:23306-22. [PMID: 26259234 PMCID: PMC4695120 DOI: 10.18632/oncotarget.4202] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/23/2015] [Indexed: 02/06/2023] Open
Abstract
To clarify the pathogenesis of hepatocellular carcinoma (HCC) and investigate the effects of potential therapies, a number of mouse models have been developed. Subcutaneous xenograft models are widely used in the past decades. Yet, with the advent of in vivo imaging technology, investigators are more and more concerned with the orthotopic models nowadays. Genetically engineered mouse models (GEM) have greatly facilitated studies of gene function in HCC development. Recently, GEM of miR-122 and miR-221 provided new approaches for better understanding of the in vivo functions of microRNA in hepatocarcinogenesis. Chemically induced liver tumors in animals share many of the morphological, histogenic, and biochemical features of human HCC. Yet, the complicated and obscure genomic alternation restricts their applications. In this review, we highlight both the frequently used mouse models and some emerging ones with emphasis on their merits or defects, and give advises for investigators to chose a “best-fit” animal model in HCC research.
Collapse
Affiliation(s)
- Li He
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - De-An Tian
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei-Yuan Li
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing-Xing He
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide, and the third leading cause of cancer mortality. The great majority of patients are not eligible for curative therapies, and therapeutic approaches for advanced disease show only limited efficacy. Difficulties to treat HCC are due to the heterogenous genetic alterations of HCC, profound alterations in the hepatic microenvironment, and incomplete understanding of HCC biology. Mouse models of HCC will be helpful to improve our understanding of HCC biology, the contributions of the specific pathways and genetic alterations to carcinogenesis. In addition, mouse models of HCC may contribute to elucidate the role of the tumor microenvironment, and serve as models for preclinical studies. As no single mouse model is appropriate to study all of the above, we discuss key features and limitations of commonly used models. Furthermore, we provide detailed protocols for select models, in which HCC is induced genetically, chemically or by transplantation of tumor cells.
Collapse
Affiliation(s)
- Jorge Matias Caviglia
- Department of Medicine, Columbia University, Russ Berrie Pavilion, Room 415, 1150 St. Nicholas Ave, New York, NY, 10032, USA
| | | |
Collapse
|
17
|
Superinfection with woodchuck hepatitis virus strain WHVNY of livers chronically infected with strain WHV7. J Virol 2014; 89:384-405. [PMID: 25320318 DOI: 10.1128/jvi.02361-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED The determinants of the maintenance of chronic hepadnaviral infection are yet to be fully understood. A long-standing unresolved argument in the hepatitis B virus (HBV) research field suggests that during chronic hepadnaviral infection, cell-to-cell spread of hepadnavirus is at least very inefficient (if it occurs at all), virus superinfection is an unlikely event, and chronic hepadnavirus infection can be maintained exclusively via division of infected hepatocytes in the absence of virus spread. Superinfection exclusion was previously shown for duck HBV, but it was not demonstrated for HBV or HBV-related woodchuck hepatitis virus (WHV). Three woodchucks, which were chronically infected with the strain WHV7 and already developed WHV-induced hepatocellular carcinomas (HCCs), were superinfected with another WHV strain, WHVNY. Six weeks after the superinfection, the woodchucks were sacrificed and tissues of the livers and HCCs were examined. The WHVNY superinfection was demonstrated by using WHV strain-specific PCR assays and (i) finding WHVNY relaxed circular DNA in the serum samples collected from all superinfected animals during weeks one through six after the superinfection, (ii) detecting replication-derived WHVNY RNA in the tissue samples of the livers and HCCs collected from three superinfected woodchucks, and (iii) finding WHVNY DNA replication intermediates in tissues harvested after the superinfection. The results are consistent with the occurrence of continuous but inefficient hepadnavirus cell-to-cell spread and superinfection during chronic infection and suggest that the replication space occupied by the superinfecting hepadnavirus in chronically infected livers is limited. The findings are discussed in the context of the mechanism of chronic hepadnavirus infection. IMPORTANCE This study aimed to better understand the determinants of the maintenance of chronic hepadnavirus infection. The generated data suggest that in the livers chronically infected with woodchuck hepatitis virus, (i) hepadnavirus superinfection and cell-to-cell spread likely continue to occur and (ii) the virus spread is apparently inefficient, which is consistent with the interpretation that a limited number of cells in the livers facilitates the spread of hepadnavirus. The limitations of the cell-to-cell virus spread most likely are mediated at the level of the cells and do not reflect the properties of the virus. Our results further advance the understanding of the mechanism of chronic hepadnavirus infection. The significance of the continuous but limited hepadnavirus spread and superinfection for the maintenance of the chronic state of infection should be further evaluated in follow-up studies in order to determine whether blocking the virus spread would facilitate the suppression of chronic hepadnavirus infection.
Collapse
|
18
|
Yu G, Bing Y, Li W, Xia L, Liu Z. Hepatitis B virus inhibits the expression of CD82 through hypermethylation of its promoter in hepatoma cells. Mol Med Rep 2014; 10:2580-6. [PMID: 25119390 DOI: 10.3892/mmr.2014.2495] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/23/2014] [Indexed: 12/20/2022] Open
Abstract
The tumor suppressor gene CD82, also known as KAI1, may act as a general suppressor of metastasis in numerous types of cancer. It is hypothesized that downregulation of CD82 gene expression may be an important factor in the induction of hepatocellular carcinoma (HCC), however the mechanism for this requires further study. In the present study, the relative mRNA and protein expression levels of the CD82 gene were determined in HCC and adjacent non‑tumor tissues. The association between the CD82 gene and the hepatitis B virus (HBV) was also investigated, by quantitative polymerase chain reaction, western blotting, luciferase reporter assays and mass spectrometry with matrix‑assisted laser desorption/ionization time‑of‑flight mass array. CD82 expression was shown to be suppressed in response to HCC promoter methylation. Relative CD82 mRNA and protein expression levels were downregulated in HCC tissues (P<0.05). HBx protein inhibited CD82 promoter activity and subsequently the mRNA and protein expression levels. Furthermore, it was demonstrated that HBV could inhibit the expression of CD82 at the transcriptional level, and repress the activity of the CD82 promoter through hypermethylation. In addition, the methyl enzyme inhibitor 5‑aza‑CdR could induce the CD82 promoter activity and the relative expression level of CD82 mRNA, as observed by an increase in luciferase activity driven by the CD82 promoter. The observations of the present study suggest that hypermethylation of the CD82 promoter may be an event leading to the development of HCC. Low expression of CD82 is likely to be involved in tumor progression. HBV may inhibit the expression of CD82 through hypermethylation of the promoter in hepatoma cells.
Collapse
Affiliation(s)
- Guozheng Yu
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yuntao Bing
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Wei Li
- Department of Head and Neck Surgery, Hubei Cancer Hospital, Wuhan, Hubei 430079, P.R. China
| | - Lin Xia
- Department of Internal Medicine Oncology, Huangshi Central Hospital, Huangshi, Hubei 435005, P.R. China
| | - Zhisu Liu
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
19
|
Jiang SS, Huang SF, Huang MS, Chen YT, Jhong HJ, Chang IC, Chen YT, Chang JW, Chen WL, Lee WC, Chen MF, Yeh CT, Matsuura I. Dysregulation of the TGFBI gene is involved in the oncogenic activity of the nonsense mutation of hepatitis B virus surface gene sW182*. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1080-7. [DOI: 10.1016/j.bbadis.2014.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/05/2014] [Accepted: 03/09/2014] [Indexed: 01/14/2023]
|
20
|
Hai H, Tamori A, Kawada N. Role of hepatitis B virus DNA integration in human hepatocarcinogenesis. World J Gastroenterol 2014; 20:6236-6243. [PMID: 24876744 PMCID: PMC4033461 DOI: 10.3748/wjg.v20.i20.6236] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 12/14/2013] [Accepted: 01/14/2014] [Indexed: 02/06/2023] Open
Abstract
Liver cancer ranks sixth in cancer incidence, and is the third leading cause of cancer-related deaths worldwide. Hepatocellular carcinoma (HCC) is the most common type of liver cancer, which arises from hepatocytes and accounts for approximately 70%-85% of cases. Hepatitis B virus (HBV) frequently causes liver inflammation, hepatic damage and subsequent cirrhosis. Integrated viral DNA is found in 85%-90% of HBV-related HCCs. Its presence in tumors from non-cirrhotic livers of children or young adults further supports the role of viral DNA integration in hepatocarcinogenesis. Integration of subgenomic HBV DNA fragments into different locations within the host DNA is a significant feature of chronic HBV infection. Integration has two potential consequences: (1) the host genome becomes altered ("cis" effect); and (2) the HBV genome becomes altered ("trans" effect). The cis effect includes insertional mutagenesis, which can potentially disrupt host gene function or alter host gene regulation. Tumor progression is frequently associated with rearrangement and partial gain or loss of both viral and host sequences. However, the role of integrated HBV DNA in hepatocarcinogenesis remains controversial. Modern technology has provided a new paradigm to further our understanding of disease mechanisms. This review summarizes the role of HBV DNA integration in human carcinogenesis.
Collapse
|
21
|
Huang SF, Chen YT, Lee WC, Chang IC, Chiu YT, Chang Y, Tu HC, Yuh CH, Matsuura I, Shih LY, Lai MW, Wu HDI, Chen MF, Yeh CT. Identification of transforming hepatitis B virus S gene nonsense mutations derived from freely replicative viruses in hepatocellular carcinoma. PLoS One 2014; 9:e89753. [PMID: 24587012 PMCID: PMC3933656 DOI: 10.1371/journal.pone.0089753] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/23/2014] [Indexed: 01/21/2023] Open
Abstract
Background & Aims The correlation between chronic hepatitis B virus (HBV) infection and hepatocellular carcinoma (HCC) has been well-established. But the roles of viral factor remain uncertain. Only HBV X gene and nonsense mutations of S gene (C-terminal truncation of HBV surface protein) have been demonstrated to have transforming activity. Whether they play a significant role in hepatocarcinogenesis is still uncertain. Methods Twenty-five HBV-related HCC patients were positive for hepatitis B core antigen (HBcAg) in the cancerous parts of their HCC liver tissues by immunohistochemistry studies, and had available tissue for whole HBV genome sequence analysis. The results were compared with 25 gender and age-matched HBcAg negative HCCs. Plasmids encoding HBV S gene nonsense mutations identified from HBcAg (+) HCC tissue were constructed to investigate their cell proliferation, transformation activity and the oncogenic potentials by xenograft study and in vivo migration assay. Results HBcAg (+) HCC patients were significantly associated with cirrhosis and small tumor size (≦2 cm) when compared with HBcAg (−) HCC patients. Southern blot analyses revealed freely replicative forms of HBV in the cancerous parts of HBcAg(+) HCC. Three nonsense mutations of S gene (sL95*, sW182*, and sL216*) were identified in the HBcAg(+) HCC tumor tissues. sW182* and sL216* were recurrently found in the 25 HBcAg (−) HCC tumor tissue, too. Functional studies of the above 3 non-sense mutations all demonstrated higher cell proliferation activities and transformation abilities than wild type S, especially sW182*. Tumorigenicity analysis by xenograft experiments and in vitro migration assay showed potent oncogenic activity of sW182* mutant. Conclusions This study has demonstrated potent oncogenic activity of nonsense mutations of HBV S gene, suggesting they may play an important role in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Shiu-Feng Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
- Department of Pathology, Chang-Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Pathology, Tzu-Chi General Hospital, Taipei Branch, Tzu-Chi University School of Medicine, Hualien, Taiwan
- * E-mail: (SFH); (CTY)
| | - Ya-Ting Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Wei-Chen Lee
- Department of General Surgery, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, Taiwan
| | - Il-Chi Chang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Ting Chiu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Yu Chang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Hsiao-Chen Tu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Chiou-Hwa Yuh
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Isao Matsuura
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Liang-Yu Shih
- Department of Pathology, Chang-Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Pathology, Tzu-Chi General Hospital, Dalin Branch, Chiayi, Taiwan
| | - Ming-Wei Lai
- Department of Pediatrics, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, Taiwan
| | - Hong-Dar Isaac Wu
- Department of Applied Mathematics and Institute of Statistics, National Chung-Hsing University, Taichung, Taiwan
| | - Miin-Fu Chen
- Department of General Surgery, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, Taiwan
- * E-mail: (SFH); (CTY)
| |
Collapse
|
22
|
Liu B, Fang M, Hu Y, Huang B, Li N, Chang C, Huang R, Xu X, Yang Z, Chen Z, Liu W. Hepatitis B virus X protein inhibits autophagic degradation by impairing lysosomal maturation. Autophagy 2013; 10:416-30. [PMID: 24401568 DOI: 10.4161/auto.27286] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Deficiency in autophagy, a lysosome-dependent cell degradation pathway, has been associated with a variety of diseases especially cancer. Recently, the activation of autophagy by hepatitis B virus X (HBx) protein, which is implicated in hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC), has been identified in hepatic cells. However, the underlying mechanism and the relevance of HBx-activated autophagy to the carcinogenesis caused by HBV remain elusive. Here, by transfection of HBV genomic DNA and HBx in hepatic and hepatoma cells, we showed that HBV- or HBx-induced autophagosome formation was accompanied by unchanged MTOR (mechanistic target of rapamycin) activity and decreased degradation of LC3 and SQSTM1/p62, the typical autophagic cargo proteins. Further functional and morphological analysis indicated that HBx dramatically impaired lysosomal acidification leading to a drop in lysosomal degradative capacity and the accumulation of immature lysosomes possibly through interaction with V-ATPase affecting its lysosome targeting. Moreover, clinical specimen test showed increased SQSTM1 and immature lysosomal hydrolase CTSD (cathepsin D) in human liver tissues with chronic HBV infection and HBV-associated liver cancer. These data suggest that a repressive effect of HBx on lysosomal function is responsible for the inhibition of autophagic degradation, and this may be critical to the development of HBV-associated HCC.
Collapse
Affiliation(s)
- Bo Liu
- Department of Biochemistry and Molecular Biology; Program in Molecular Cell Biology; Zhejiang University School of Medicine; Hangzhou, Zhejiang, China
| | - Mengdie Fang
- Department of Biochemistry and Molecular Biology; Program in Molecular Cell Biology; Zhejiang University School of Medicine; Hangzhou, Zhejiang, China
| | - Ye Hu
- Department of Biochemistry and Molecular Biology; Program in Molecular Cell Biology; Zhejiang University School of Medicine; Hangzhou, Zhejiang, China
| | - Baoshan Huang
- Department of Biochemistry and Molecular Biology; Program in Molecular Cell Biology; Zhejiang University School of Medicine; Hangzhou, Zhejiang, China
| | - Ning Li
- Department of Biochemistry and Molecular Biology; Program in Molecular Cell Biology; Zhejiang University School of Medicine; Hangzhou, Zhejiang, China
| | - Chunmei Chang
- Department of Biochemistry and Molecular Biology; Program in Molecular Cell Biology; Zhejiang University School of Medicine; Hangzhou, Zhejiang, China
| | - Rui Huang
- Department of Biochemistry and Molecular Biology; Program in Molecular Cell Biology; Zhejiang University School of Medicine; Hangzhou, Zhejiang, China
| | - Xiao Xu
- Department of Surgery; First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, Zhejiang China
| | - Zhenggang Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, Zhejiang China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, Zhejiang China
| | - Wei Liu
- Department of Biochemistry and Molecular Biology; Program in Molecular Cell Biology; Zhejiang University School of Medicine; Hangzhou, Zhejiang, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, Zhejiang China
| |
Collapse
|
23
|
Bharadwaj M, Roy G, Dutta K, Misbah M, Husain M, Hussain S. Tackling hepatitis B virus-associated hepatocellular carcinoma--the future is now. Cancer Metastasis Rev 2013; 32:229-68. [PMID: 23114844 DOI: 10.1007/s10555-012-9412-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal and prevalent cancers in many developing countries including India. Among the various etiological factors being implicated in the cause of HCC, the most important cause, however, is hepatitis B virus (HBV) infection. Among all HBV genes, HBx is the most critical carcinogenic component, the molecular mechanisms of which have not been completely elucidated. Despite its clinical significance, there exists a very elemental understanding of the molecular, cellular, and environmental mechanisms that drive disease pathogenesis in HCC infected with HBV. Furthermore, there are only limited therapeutic options, the clinical benefits of which are insignificant. Therefore, the quest for novel and effective therapeutic regimen against HBV-related HCC is of paramount importance. This review attempts to epitomize the current state of knowledge of this most common and dreaded liver neoplasm, highlighting the putative treatment avenues and therapeutic research strategies that need to be implemented with immediate effect for tackling HBV-related HCC that has plagued the medical and scientific fraternity for decades. Additionally, this review proposes a novel "five-point" management algorithm for HBV-related HCC apart from portraying the unmet needs, principal challenges, and scientific perspectives that are relevant to controlling this accelerating global health crisis.
Collapse
Affiliation(s)
- Mausumi Bharadwaj
- Division of Molecular Genetics & Biochemistry, Institute of Cytology & Preventive Oncology (ICMR), Noida, India.
| | | | | | | | | | | |
Collapse
|
24
|
p16 Stimulates CDC42-dependent migration of hepatocellular carcinoma cells. PLoS One 2013; 8:e69389. [PMID: 23894465 PMCID: PMC3722281 DOI: 10.1371/journal.pone.0069389] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 06/08/2013] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide. Tumor dissemination to the extra-hepatic region of the portal vein, lymph nodes, lungs or bones contributes to the high mortality seen in HCC; yet, the molecular mechanisms responsible for HCC metastasis remain unclear. Prior studies have suggested a potential link between accumulated cytoplasm-localized p16 and tumor progression. Here we report that p16 enhances metastasis-associated phenotypes in HCC cells – ectopic p16 expression increased cell migration in vitro, and lung colonization after intravenous injection, whereas knockdown of endogenous p16 reduced cell migration. Interestingly, analysis of p16 mutants indicated that the Cdk4 interaction domain is required for stimulation of HCC cell migration; however, knockdown of Cdk4 and Cdk6 showed that these proteins are dispensable for this phenomenon. Intriguingly, we found that in p16-positive HCC samples, p16 protein is predominantly localized in the cytoplasm. In addition, we identified a potential role for nuclear-cytoplasmic shuttling in p16-stimulated migration, consistent with the predominantly cytoplasmic localization of p16 in IHC-positive HCC samples. Finally, we determined that p16-stimulated cell migration requires the Cdc42 GTPase. Our results demonstrate for the first time a pro-migratory role for p16, and suggest a potential mechanism for the observed association between cytoplasmic p16 and tumor progression in diverse tumor types.
Collapse
|
25
|
Wierstra I. FOXM1 (Forkhead box M1) in tumorigenesis: overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy. Adv Cancer Res 2013; 119:191-419. [PMID: 23870513 DOI: 10.1016/b978-0-12-407190-2.00016-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor and is also intimately involved in tumorigenesis. FOXM1 stimulates cell proliferation and cell cycle progression by promoting the entry into S-phase and M-phase. Additionally, FOXM1 is required for proper execution of mitosis. In accordance with its role in stimulation of cell proliferation, FOXM1 exhibits a proliferation-specific expression pattern and its expression is regulated by proliferation and anti-proliferation signals as well as by proto-oncoproteins and tumor suppressors. Since these factors are often mutated, overexpressed, or lost in human cancer, the normal control of the foxm1 expression by them provides the basis for deregulated FOXM1 expression in tumors. Accordingly, FOXM1 is overexpressed in many types of human cancer. FOXM1 is intimately involved in tumorigenesis, because it contributes to oncogenic transformation and participates in tumor initiation, growth, and progression, including positive effects on angiogenesis, migration, invasion, epithelial-mesenchymal transition, metastasis, recruitment of tumor-associated macrophages, tumor-associated lung inflammation, self-renewal capacity of cancer cells, prevention of premature cellular senescence, and chemotherapeutic drug resistance. However, in the context of urethane-induced lung tumorigenesis, FOXM1 has an unexpected tumor suppressor role in endothelial cells because it limits pulmonary inflammation and canonical Wnt signaling in epithelial lung cells, thereby restricting carcinogenesis. Accordingly, FOXM1 plays a role in homologous recombination repair of DNA double-strand breaks and maintenance of genomic stability, that is, prevention of polyploidy and aneuploidy. The implication of FOXM1 in tumorigenesis makes it an attractive target for anticancer therapy, and several antitumor drugs have been reported to decrease FOXM1 expression.
Collapse
|
26
|
Toh ST, Jin Y, Liu L, Wang J, Babrzadeh F, Gharizadeh B, Ronaghi M, Toh HC, Chow PKH, Chung AYF, Ooi LLPJ, Lee CGL. Deep sequencing of the hepatitis B virus in hepatocellular carcinoma patients reveals enriched integration events, structural alterations and sequence variations. Carcinogenesis 2012; 34:787-98. [PMID: 23276797 DOI: 10.1093/carcin/bgs406] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection is epidemiologically associated with hepatocellular carcinoma (HCC), but its role in HCC remains poorly understood due to technological limitations. In this study, we systematically characterize HBV in HCC patients. HBV sequences were enriched from 48 HCC patients using an oligo-bead-based strategy, pooled together and sequenced using the FLX-Genome-Sequencer. In the tumors, preferential integration of HBV into promoters of genes (P < 0.001) and significant enrichment of integration into chromosome 10 (P < 0.01) were observed. Integration into chromosome 10 was significantly associated with poorly differentiated tumors (P < 0.05). Notably, in the tumors, recurrent integration into the promoter of the human telomerase reverse transcriptase (TERT) gene was found to correlate with increased TERT expression. The preferred region within the HBV genome involved in integration and viral structural alteration is at the 3'-end of hepatitis B virus X protein (HBx), where viral replication/transcription initiates. Upon integration, the 3'-end of the HBx is often deleted. HBx-human chimeric transcripts, the most common type of chimeric transcripts, can be expressed as chimeric proteins. Sequence variation resulting in non-conservative amino acid substitutions are commonly observed in HBV genome. This study highlights HBV as highly mutable in HCC patients with preferential regions within the host and virus genome for HBV integration/structural alterations.
Collapse
Affiliation(s)
- Soo Ting Toh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
GUO PENGTAO, YANG DONG, SUN ZHE, XU HUIMIAN. Hepatitis B virus X protein plays an important role in gastric ulcers. Oncol Rep 2012; 28:1653-8. [DOI: 10.3892/or.2012.2011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/09/2012] [Indexed: 11/06/2022] Open
|
28
|
Lin ZS, Chu HC, Yen YC, Lewis BC, Chen YW. Krüppel-like factor 4, a tumor suppressor in hepatocellular carcinoma cells reverts epithelial mesenchymal transition by suppressing slug expression. PLoS One 2012; 7:e43593. [PMID: 22937066 PMCID: PMC3427336 DOI: 10.1371/journal.pone.0043593] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 07/23/2012] [Indexed: 12/13/2022] Open
Abstract
Krüppel-like factor 4 (KLF4) is a zinc-finger transcription factor that plays an important role in differentiation and pathogenesis. KLF4 has been suggested to act as an oncogene or tumor suppressor in different tumor types. However, the role of KLF4 in hepatocellular carcinoma (HCC) remains unclear. Here, we demonstrate that forced expression of Klf4 in murine HCC cell lines reduced anchorage-independent growth in soft agar as well as cell migration and invasion activities in vitro. Ectopic Klf4 expression impaired subcutaneous tumor growth and lung colonization in vivo. By contrast, Klf4 knockdown enhanced HCC cell migration. Interestingly, ectopic expression of Klf4 changed the morphology of murine HCC cells to a more epithelial phenotype. Associated with this, we found that expression of Slug, a critical epithelial mesenchymal transition (EMT)-related transcription factor, was significantly down-regulated in Klf4-expressing cells. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays showed that Klf4 is able to bind and repress the activity of the Slug promoter. Furthermore, ectopic Slug expression partially reverts the Klf4-mediated phenotypes. Consistent with a role as a tumor suppressor in HCC, analysis of the public microarray databases from Oncomine revealed reduced KLF4 expression in human HCC tissues in comparison with normal liver tissues in 3 out of 4 data sets. By quantitative reverse transcription-polymerase chain reaction (qRT-PCR), we found reduced KLF4 mRNA in 50% of HCC tissues. Importantly, an inverse correlation between the expression of KLF4 and SLUG was found in HCC tissues. Our data suggest that KLF4 acts as a tumor suppressor in HCC cells, in part by suppressing SLUG transcription.
Collapse
Affiliation(s)
- Ze-Shiang Lin
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Hsiao-Chien Chu
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Yi-Chen Yen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Brian C. Lewis
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ya-Wen Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
- * E-mail:
| |
Collapse
|
29
|
Lee SA, Kim K, Kim H, Kim BJ. Nucleotide change of codon 182 in the surface gene of hepatitis B virus genotype C leading to truncated surface protein is associated with progression of liver diseases. J Hepatol 2012; 56:63-69. [PMID: 21827734 DOI: 10.1016/j.jhep.2011.06.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 06/22/2011] [Accepted: 06/27/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Hepatitis B virus (HBV) genotype C infection is associated with progression of hepatocellular carcinoma (HCC). Specific mutations of the HBV surface (S) gene have been reported to contribute to the development of HCC. In this study, novel nucleotide changes (sW182*) that result in a premature stop at codon 182 in the S gene of genotype C are investigated with regards to the development of HCC. METHODS A multi-probe real time PCR that enables rapid and reliable detection of sW182* was developed and applied to 292 DNA samples from Korean patients with diverse chronic liver diseases. RESULTS sW182* was detected in a total of 73 patients out of the 275 with positive amplification (26.5%). Its prevalence was significantly higher in patients with progressive forms of the disease (HCC and liver cirrhosis) than in patients with less severe forms of the disease (chronic hepatitis and carrier) [31.8% (56/176 patients) vs. 17.2% (17/99 patients); p=0.010]. In addition, an in vitro study using cell lines stable expressing the S protein with sW182* also strongly supported its relationship with HCC. CONCLUSIONS In the present study, we demonstrate that the sW182* of HBV could provide an important contribution to the progression of liver diseases, through molecular epidemiologic and in vitro studies.
Collapse
Affiliation(s)
- Seoung-Ae Lee
- Department of Microbiology and Immunology, Liver Research Institute, SNUMRC, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
30
|
Liao HH, Nawarak J, Chang KL, Hsieh WY, Tsai HY, Chen ST, Cheng SL. Screening and Identification of Peptides that Bind Specifically to the X gene Promoter of Hepatitis B Virus Using a Combinatorial Peptide Library Approach. J CHIN CHEM SOC-TAIP 2011. [DOI: 10.1002/jccs.201190138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Yamashita T, Arai K, Sunagozaka H, Ueda T, Terashima T, Yamashita T, Mizukoshi E, Sakai A, Nakamoto Y, Honda M, Kaneko S. Randomized, phase II study comparing interferon combined with hepatic arterial infusion of fluorouracil plus cisplatin and fluorouracil alone in patients with advanced hepatocellular carcinoma. Oncology 2011; 81:281-90. [PMID: 22133996 DOI: 10.1159/000334439] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 10/10/2011] [Indexed: 12/16/2022]
Abstract
OBJECTIVE This randomized phase II trial compared the response rates to treatment with interferon (IFN) combined with hepatic arterial infusion of fluorouracil (FU) plus cisplatin (CDDP) or FU alone in patients with advanced hepatocellular carcinoma (HCC). METHODS A total of 114 patients with measurable advanced HCC were enrolled and randomized into 2 groups. FU (300 mg/m(2), days 1-5, days 8-12) with or without CDDP (20 mg/m(2), days 1 and 8) was administered via the hepatic artery. IFNα-2b was administered 3 times per week for 4 weeks. RESULTS The response rates were 45.6% for the IFN/FU + CDDP group and 24.6% for the IFN/FU group. The response rate was significantly higher in the IFN/FU + CDDP group (p = 0.030). The median overall survival period was 17.6 months in the IFN/FU + CDDP group versus 10.5 months in the IFN/FU group (p = 0.522). The median progression-free survival period was 6.5 months in the IFN/FU + CDDP group versus 3.3 months in the IFN/FU group (p = 0.0048). Hematological toxicity was common, but no toxicity-related deaths were observed. CONCLUSION These results show the clinical efficacy of adding CDDP to the hepatic arterial infusion of FU in combined chemotherapy regimens with IFN.
Collapse
Affiliation(s)
- Tatsuya Yamashita
- Department of Gastroenterology, Kanazawa University, Kanazawa, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mohamadkhani A, Shahnazari P, Minuchehr Z, Madadkar-Sobhani A, Tehrani MJ, Jazii FR, Poustchi H. Protein-x of hepatitis B virus in interaction with CCAAT/enhancer-binding protein α (C/EBPα)--an in silico analysis approach. Theor Biol Med Model 2011; 8:41. [PMID: 22035036 PMCID: PMC3231813 DOI: 10.1186/1742-4682-8-41] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Accepted: 10/28/2011] [Indexed: 02/06/2023] Open
Abstract
Background Even though many functions of protein-x from the Hepatitis B virus (HBV) have been revealed, the nature of protein-x is yet unknown. This protein is well-known for its transactivation activity through interaction with several cellular transcription factors, it is also known as an oncogene. In this work, we have presented computational approaches to design a model to show the structure of protein-x and its respective binding sites associated with the CCAAT/enhancer-binding protein α (C/EBPα). C/EBPα belongs to the bZip family of transcription factors, which activates transcription of several genes through its binding sites in liver and fat cells. The C/EBPα has been shown to bind and modulate enhancer I and the enhancer II/core promoter of HBV. In this study using the bioinformatics tools we tried to present a reliable model for the protein-x interaction with C/EBPα. Results The amino acid sequence of protein-x was extracted from UniProt [UniProt:Q80IU5] and the x-ray crystal structure of the partial CCAAT-enhancer α [PDB:1NWQ] was retrieved from the Protein Data Bank (PDB). Similarity search for protein-x was carried out by psi-blast and bl2seq using NCBI [GenBank: BAC65106.1] and Local Meta-Threading-Server (LOMETS) was used as a threading server for determining the maximum tertiary structure similarities. Advanced MODELLER was implemented to design a comparative model, however, due to the lack of a suitable template, Quark was used for ab initio tertiary structure prediction. The PDB-blast search indicated a maximum of 23% sequence identity and 33% similarity with crystal structure of the porcine reproductive and respiratory syndrome virus leader protease Nsp1α [PDB:3IFU]. This meant that protein-x does not have a suitable template to predict its tertiary structure using comparative modeling tools, therefore we used QUARK as an ab initio 3D prediction approach. Docking results from the ab initio tertiary structure of protein-x and crystal structure of the C/EBPα- DNA region [PDB:1NWQ] illustrated the protein-binding site interactions. Indeed, the N-terminal part of 1NWQ has a high affinity for certain regions in protein-x (e.g. from Ala76 to Ser101 and Thr105 to Glu125). Conclusion In this study, we predicted the structure of protein-x of HBV in interaction with C/EBPα. The docking results showed that protein-x has an interaction synergy with C/EBPα. However, despite previous experimental data, protein-x was found to interact with DNA. This can lead to a better understanding of the function of protein-x and may provide an opportunity to use it as a therapeutic target.
Collapse
Affiliation(s)
- Ashraf Mohamadkhani
- National Institute of Genetic Engineering and Biotechnology, NIGEB, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
33
|
Yue X, Yang F, Yang Y, Mu Y, Sun W, Li W, Xu D, Wu J, Zhu Y. Induction of cyclooxygenase-2 expression by hepatitis B virus depends on demethylation-associated recruitment of transcription factors to the promoter. Virol J 2011; 8:118. [PMID: 21401943 PMCID: PMC3066118 DOI: 10.1186/1743-422x-8-118] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/14/2011] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The hepatitis B virus (HBV) is a major etiological factor of inflammation and damage to the liver resulting in hepatocellular carcinoma. Transcription factors play important roles in the disordered gene expression and liver injury caused by HBV. However, the molecular mechanisms behind this observation have not been defined. RESULTS In this study, we observed that circulating prostaglandin (PGE) 2 synthesis was increased in patients with chronic hepatitis B infection, and detected elevated cyclooxygenase (COX)-2 expression in HBV- and HBx-expressing liver cells. Likewise, the association of HBx with C/EBPβ contributed to the induction of COX-2. The COX-2 promoter was hypomethylated in HBV-positive cells, and specific demethylation of CpG dinucleotides within each of the two NF-AT sites in the COX-2 promoter resulted in the increased binding affinity of NF-AT to the cognate sites in the promoter, followed by increased COX-2 expression and PGE2 accumulation. The DNA methylatransferase DNMT3B played a key role in the methylation of the COX-2 promoter, and its decreased binding to the promoter was responsible for the regional demethylation of CpG sites, and for the increased binding of transcription factors in HBV-positive cells. CONCLUSION Our results indicate that upregulation of COX-2 by HBV and HBx is mediated by both demethylation events and recruitment of multiple transcription factors binding to the promoter.
Collapse
Affiliation(s)
- Xin Yue
- State Key Laboratory of Virology and College of Life Sciences, Chinese-French Liver Disease Research Institute of Wuhan University (Zhongnan Hospital), Wuhan University, Wuhan 430072, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Liu Q, Chen J, Liu L, Zhang J, Wang D, Ma L, He Y, Liu Y, Liu Z, Wu J. The X protein of hepatitis B virus inhibits apoptosis in hepatoma cells through enhancing the methionine adenosyltransferase 2A gene expression and reducing S-adenosylmethionine production. J Biol Chem 2011; 286:17168-80. [PMID: 21247894 PMCID: PMC3089560 DOI: 10.1074/jbc.m110.167783] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The X protein (HBx) of hepatitis B virus (HBV) is involved in the development of hepatocellular carcinoma (HCC), and methionine adenosyltransferase 2A (MAT2A) promotes the growth of liver cancer cells through altering S-adenosylmethionine homeostasis. Thus, we speculated that a link between HBx and MAT2A may contribute to HCC development. In this study, the effects of HBx on MAT2A expression and cell apoptosis were investigated, and the molecular mechanism by which HBx and MAT2A regulate tumorigenesis was evaluated. Results from immunohistochemistry analyses of 37 pairs of HBV-associated liver cancer tissues/corresponding peritumor tissues showed that HBx and MAT2A are highly expressed in most liver tumor tissues. Our in vitro results revealed that HBx activates MAT2A expression in a dose-dependent manner in hepatoma cells, and such regulation requires the cis-regulatory elements NF-κB and CREB on the MAT2A gene promoter. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) further demonstrated that HBx facilitates the binding of NF-κB and CREB to MAT2A gene promoter. In addition, overexpression of HBx or MAT2A inhibits cell apoptosis, whereas knockdown of MAT2A expression stimulates apoptosis in hepatoma cells. Furthermore, we demonstrated that HBx reduces MAT1A expression and AdoMet production but enhances MAT2β expression. Thus, we proposed that HBx activates MAT2A expression through NF-κB and CREB signaling pathways to reduce AdoMet production, inhibit hepatoma cell apoptosis, and perhaps enhance HCC development. These findings should provide new insights into our understanding how the molecular mechanisms underline the effects of HBV infection on the production of MAT2A and the development of HCC.
Collapse
Affiliation(s)
- Quanyan Liu
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital, Wuhan 430071, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kew MC. Hepatitis B virus x protein in the pathogenesis of hepatitis B virus-induced hepatocellular carcinoma. J Gastroenterol Hepatol 2011; 26 Suppl 1:144-52. [PMID: 21199526 DOI: 10.1111/j.1440-1746.2010.06546.x] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently available evidence supports a role for the hepatitis B virus (HBV) x gene and protein in the pathogenesis of HBV-induced hepatocellular carcinoma (HCC). HBx gene is often included, and remains functionally active, in the HBV DNA that is frequently integrated into cellular DNA during hepatocellular carcinogenesis. HBx protein promotes cell cycle progression, inactivates negative growth regulators, and binds to and inhibits the expression of p53 tumour suppressor gene and other tumour suppressor genes and senescence-related factors. However, the molecular mechanisms responsible for HBx protein-induced HCC remain uncertain. Only some of the more fully documented or more recently recognised mechanisms are reviewed. During recent years evidence has accumulated that HBx protein modulates transcription of methyl transferases, causing regional hypermethylation of DNA that results in silencing of tumour suppressor genes, or global hypomethylation that results in chromosomal instability, thereby playing a role in hepatocarcinogenesis. HBx protein has both anti-apoptotic and pro-apoptotic actions, apparently contradictory effects that have yet to be explained. Particularly important among the anti-apoptotic properties is inhibition of p53. Recent experimental observations suggest that HBx protein may increase the expression of TERT and telomerase activity, prolonging the life-span of hepatocytes and contributing to malignant transformation. The protein also interferes with nucleotide excision repair through both p53-dependent and p53- independent mechanisms. Carboxy-terminal truncated HBx protein loses its inhibitory effects on cell proliferation and pro-apoptotic properties, and it may enhance the protein's ability to transform oncogenes. Dysregulation of IGF-II enhances proliferation and anti-apoptotic effects of oncogenes, resulting in uncontrolled cell growth.
Collapse
Affiliation(s)
- Michael C Kew
- Department of Medicine, University of Cape Town, Groote Schuur Hospital, South Africa.
| |
Collapse
|
36
|
Kim KH, Kim ND, Seong BL. Discovery and development of anti-HBV agents and their resistance. Molecules 2010; 15:5878-908. [PMID: 20802402 PMCID: PMC6257723 DOI: 10.3390/molecules15095878] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 08/24/2010] [Accepted: 08/26/2010] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a prime cause of liver diseases such as hepatitis, cirrhosis and hepatocellular carcinoma. The current drugs clinically available are nucleot(s)ide analogues that inhibit viral reverse transcriptase activity. Most drugs of this class are reported to have viral resistance with breakthrough. Recent advances in methods for in silico virtual screening of chemical libraries, together with a better understanding of the resistance mechanisms of existing drugs have expedited the discovery and development of novel anti-viral drugs. This review summarizes the current status of knowledge about and viral resistance of HBV drugs, approaches for the development of novel drugs as well as new viral and host targets for future drugs.
Collapse
Affiliation(s)
- Kyun-Hwan Kim
- Department of Pharmacology, School of Medicine, and Center for Cancer Research and Diagnostic Medicine, IBST, Konkuk University, Seoul 143-701, Korea
- Research Institute of Medical Sciences, Konkuk University, Seoul 143-701, Korea
- Author to whom correspondence should be addressed; E-Mail: (K.H.K.); Tel.: +82 2 2030 7833; Fax: +82 2 2049 6192; E-Mail: (B.L.S.); Tel.: +82 2 2123 2885; Fax: +82 2 392 3582
| | - Nam Doo Kim
- R&D Center, Equispharm Inc., 11F Gyeonggi Bio-Center, 864-1 Iui-Dong, Yeongtong-gu, Suwon-Shi, Gyeonggi-Do 443-766, Korea
| | - Baik-Lin Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
- Translational Research Center for Protein Function Control, Yonsei University, Seoul 120-749, Korea
- Author to whom correspondence should be addressed; E-Mail: (K.H.K.); Tel.: +82 2 2030 7833; Fax: +82 2 2049 6192; E-Mail: (B.L.S.); Tel.: +82 2 2123 2885; Fax: +82 2 392 3582
| |
Collapse
|
37
|
Kim KH. [Pro-apoptotic function of hepatitis B virus X protein]. THE KOREAN JOURNAL OF HEPATOLOGY 2010; 16:112-22. [PMID: 20606495 DOI: 10.3350/kjhep.2010.16.2.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Infection of hepatitis B virus (HBV) is a main cause of liver diseases including hepatitis, cirrhosis and hepatocellular carcinoma (HCC). Among the HBV-encoded proteins, the HBV X protein (HBx) has been suspected to be strongly involved in HBV-associated liver pathogenesis. HBx, a virally encoded multifunctional regulator, has been shown to induce apoptosis, anti-apoptosis, proliferation, and transformation of cells depending on the cell lines, model systems used, assay protocols, and research groups. Among the several activities of HBx, the pro-apoptotic function of HBx will be discussed in this review. Given that the disruption of apoptosis pathway by HBx contributes to the liver pathogenesis, a better understanding of the molecular interference in the cellular pro-apoptotic networks by HBx will provide useful clues for the intervention in HBV-mediated liver diseases.
Collapse
Affiliation(s)
- Kyun-Hwan Kim
- Department of Pharmacology, School of Medicine and Center for Cancer Research and Diagnostic Medicine, IBST, Konkuk University, Seoul, Korea.
| |
Collapse
|
38
|
Kuo TC, Chao CCK. Hepatitis B virus X protein prevents apoptosis of hepatocellular carcinoma cells by upregulating SATB1 and HURP expression. Biochem Pharmacol 2010; 80:1093-102. [PMID: 20541537 DOI: 10.1016/j.bcp.2010.06.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 05/28/2010] [Accepted: 06/03/2010] [Indexed: 02/06/2023]
Abstract
Protein X from hepatitis B virus (HBV) appears to play a critical role in the development of hepatocellular carcinoma (HCC). The hepatoma upregulated protein (HURP) is also upregulated in a majority of HCC cases, therefore suggesting that HURP represents an oncogene. In this study, we describe a link between the viral protein HBx, HURP, and the establishment of cisplatin chemoresistance in HCC cells. Hep3B cells which express HBx displayed increased levels of HURP mRNA and protein, and showed resistance to cisplatin-induced apoptosis. Knockdown of HURP in HBx-expressing cells reversed this effect and sensitized Hep3B cells to cisplatin. Interestingly, SATB1, a global gene regulator which is often overexpressed in malignant breast cancer, was also induced following expression of HBx. The anti-apoptotic effect of HBx was shown to require activation of the p38/MAPK pathway in Hep3B cells. In addition, the expression of survivin, an anti-apoptotic protein, was also upregulated by HBx in an HURP-dependent manner. Taken together, these results indicate that HBx activates the expression of HURP via the p38/MAPK pathway and the SATB1 protein, culminating with the accumulation of the anti-apoptotic protein survivin. Our findings illustrate the role of the viral protein HBx in preventing apoptosis during cancer progression and establishment of chemoresistance.
Collapse
Affiliation(s)
- Tzu-Ching Kuo
- Department of Biochemistry and Molecular Biology, Graduate Institute of Biomedical Sciences, Chang Gung University, Gueishan, Taoyuan 333, Taiwan, ROC
| | | |
Collapse
|
39
|
Abstract
Chronic infection with the hepatitis B virus has been linked epidemiologically to the development of hepatocellular carcinoma for more than 30 years. Although the mechanisms by which chronic hepatitis B viral infection results in hepatocellular carcinoma are unclear, there is good evidence that the virus itself exerts a direct hepatocarcinogenic effect, and this has implications for prevention. First, programs of universal infant vaccination have been shown to be effective in reducing the rate of hepatocellular carcinoma among children. This benefit should be translated into adulthood among vaccine recipients. Second, it has been suggested that antiviral therapy against hepatitis B may reduce the risk of hepatocellular carcinoma. Antiviral therapy against hepatitis B is effective in causing prolonged lowering of serum levels of hepatitis B virus DNA. There are emerging data showing that prolonged antiviral therapy may reduce the risk of hepatocellular carcinoma among certain patients with chronic hepatitis B.
Collapse
Affiliation(s)
- Adrian M Di Bisceglie
- Saint Louis University Liver Center, Saint Louis University, St. Louis, MO 63110, USA. <>
| |
Collapse
|
40
|
Park NH, Chung YH. [Molecular mechanisms of hepatitis B virus-associated hepatocellular carcinoma]. THE KOREAN JOURNAL OF HEPATOLOGY 2008; 13:320-40. [PMID: 17898549 DOI: 10.3350/kjhep.2007.13.3.320] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant diseases in the world. The hepatitis B virus (HBV) replicates non-cytopathically in hepatocytes, and most of the liver injury associated with this infection reflects the immune response. Epidemiological studies have clearly demonstrated that a chronic HBV infection is a major etiological factor in the development of HCC. The pathogenesis of HBV-associated HCC has been studied extensively, and the molecular changes during the malignant transformation have been identified. The main carcinogenic mechanism of HBV-associated HCC is related to the long term-inflammatory changes caused by a chronic hepatitis B infection, which might involve the integration of the HBV. Integration of the HBV DNA into the host genome occurs at the early steps of clonal tumorous expansion. The hepatitis B x protein (HBx) is a multifunctional regulatory protein that communicates directly or indirectly with a variety of host targets, and mediates many opposing cellular functions, including its function in cell cycle regulation, transcriptional regulation, signaling, encoding of the cytoskeleton and cell adhesion molecules, as well as oncogenes and tumor suppressor genes. Continued study of the mechanisms of hepatocarcinogenesis will refine our current understanding of the molecular and cellular basis for neoplastic transformations in the liver. This review summarizes the current knowledge of the mechanisms involved in HBV-associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Neung Hwa Park
- Department of Internal Medicine, University of Ulsan College of Medicine, Biomedical Research Center, Ulsan University Hospital, Ulsan, Korea
| | | |
Collapse
|
41
|
Kim A, Kwon OS, Kim SO, He L, Bae EY, Lee MS, Jeong SJ, Shim JH, Yoon DY, Kim CH, Moon A, Kim KE, Ahn JS, Kim BY. Caspase-3 activation as a key factor for HBx-transformed cell death. Cell Prolif 2008; 41:755-74. [PMID: 18700866 DOI: 10.1111/j.1365-2184.2008.00550.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Nuclear factor-kappa B (NF-kappaB) activation has been associated with the tumorigenic growth of hepatitis B virus X protein (HBx)-transformed cells. This study was aimed to find a key target for treatment of HBx-mediated cancers. MATERIALS AND METHODS NF-kappaB activation, endoplasmic reticulum-stress (ER-stress), caspase-3 activation, and cell proliferation were evaluated after Chang/HBx cells permanently expressing HBx viral protein were treated with inhibitors of NF-kappaB, proteasome and DNA topoisomerase. RESULTS Inhibition of NF-kappaB transcriptional activity by transient transfection with mutant plasmids encoding Akt1 and glycogen synthase kinase-3beta (GSK-3beta), or by treatment with chemical inhibitors, wortmannin and LY294002, showed little effect on the survival of Chang/HBx cells. Furthermore, IkappaBalpha (S32/36A) mutant plasmid or other NF-kappaB inhibitors, 1-pyrrolidinecarbonidithioic acid and sulphasalazine, were also shown to have little effect on the cell proliferation. By contrast, proteasome inhibitor-1 (Pro1) and MG132 enhanced the HBx-induced ER-stress response and the subsequent activation of caspase-12, -9 and -3 and reduced cell proliferation. Camptothecin (CPT), however, triggered activation of caspase-3 without induction of caspase-12, and reduced cell proliferation. In addition, CPT-induced cell death was reversed by pre-treatment with z-DEVD, a caspase-3-specific inhibitor. CONCLUSIONS Detailed exploitation of the regulators of caspase-3 activation could open the gate for finding an efficient target for development of anticancer therapeutics against HBx-transformed hepatocellular carcinoma.
Collapse
Affiliation(s)
- A Kim
- Functional Metabolomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Yuseong, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wong CH, Chan SKP, Chan HLY, Tsui SKW, Feitelson M. The Molecular Diagnosis of Hepatitis B Virus-Associated Hepatocellular Carcinoma. Crit Rev Clin Lab Sci 2008; 43:69-101. [PMID: 16531275 DOI: 10.1080/10408360500410407] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatitis B virus (HBV) infection is the major cause of hepatocellular carcinoma (HCC) worldwide. The pathogenesis of HBV-associated HCC has been studied extensively, and molecular changes during malignant transformation have been identified. It has been proposed that the insertion of HBV DNA into the human genome results in chromosomal instability and inactivation of tumor suppressor genes. Transactivation of oncogenes, inactivation of tumor suppressor genes, and alteration of the cell cycle by HBV proteins are also involved in the progression of hepatocellular carcinogenesis. Traditional clinical examinations of HCC, such as biopsy, computer tomography, ultrasonic imaging, and detection of such biomarkers as a-fetoprotein, are currently the "gold standard" in diagnosis. These tests diagnose HCC only in the late stages of disease. This limitation has greatly reduced the chance of survival of HCC patients. To resolve this problem, new biomarkers that can diagnose HCC in earlier stages are necessary. Based on recent molecular studies of the effects of HBV on cellular transformation, differentially expressed biomarkers of HBV infection have been elucidated. With the analyses of the HBV replication profile, the viral load (HBV DNA levels) of patients, and the viral protein expression, the severity of hepatitis in the preneoplastic stages can be assessed. In the future, with the molecular profiles identified by genomic and proteomic approaches, stage-specific biomarkers should be identified to monitor the progression and prognosis of HCC.
Collapse
Affiliation(s)
- Chi-Hang Wong
- Center for Emerging Infectious Diseases, The Chinese University, Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
43
|
Gupta N, Bano AS, Sharma Y, Banerjea AC. Potent Knockdown of the X RNA of Hepatitis B by a Novel Chimeric siRNA-Ribozyme Construct and Modulation of Intracellular Target RNA by Selectively Disabled Mutants. Oligonucleotides 2008; 18:225-33. [DOI: 10.1089/oli.2008.0134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Nidhi Gupta
- National Institute of Immunology, Jawaharlal Nehru University Campus, New Delhi, India
| | - Aalia S. Bano
- National Institute of Immunology, Jawaharlal Nehru University Campus, New Delhi, India
| | - Yogeshwar Sharma
- National Institute of Immunology, Jawaharlal Nehru University Campus, New Delhi, India
| | - Akhil C. Banerjea
- National Institute of Immunology, Jawaharlal Nehru University Campus, New Delhi, India
| |
Collapse
|
44
|
Park NH, Song IH, Chung YH. Molecular Pathogenesis of Hepatitis-B-virus-associated Hepatocellular Carcinoma. Gut Liver 2007; 1:101-17. [PMID: 20485626 DOI: 10.5009/gnl.2007.1.2.101] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2007] [Accepted: 11/18/2007] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent and malignant diseases worldwide. Epidemiological studies have clearly demonstrated that chronic hepatitis B virus (HBV) infection is a major etiological factor in the development of HCC. The pathogenesis of HBV-associated HCC has been studied extensively, and the molecular changes associated with malignant transformation have been identified. The predominant carcinogenic mechanisms of HBV-associated HCC are chronic inflammation and the effects of cytokines in the development of fibrosis and liver cell proliferation. An important role is also played by the integration of HBV DNA into host cellular DNA, which disrupts or promotes the expression of cellular genes that are important in cell growth and differentiation. Especially, HBx protein is a transactivating protein that promotes cell growth, survival, and the development of HCC. Continued investigation of the mechanisms underlying hepatocarcinogenesis will refine our current understanding of the molecular and cellular basis for neoplastic transformation in the liver. Prevention of HBV infections and effective treatments for chronic hepatitis B are still needed for the global control of HBV-associated HCC. This review summarizes the current knowledge on the mechanisms involved in HBV-associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Neung Hwa Park
- Division of Gastroenterology, Department of Internal Medicine, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, Korea
| | | | | |
Collapse
|
45
|
Uka K, Aikata H, Takaki S, Miki D, Kawaoka T, Jeong SC, Takahashi S, Toyota N, Ito K, Chayama K. Pretreatment predictor of response, time to progression, and survival to intraarterial 5-fluorouracil/interferon combination therapy in patients with advanced hepatocellular carcinoma. J Gastroenterol 2007; 42:845-53. [PMID: 17940838 DOI: 10.1007/s00535-007-2099-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 07/31/2007] [Indexed: 02/04/2023]
Abstract
BACKGROUND Several studies have reported survival benefits of combination therapy with intraarterial 5-fluorouracil (5-FU) and subcutaneous interferon (IFN) alpha for advanced hepatocellular carcinoma (HCC) with portal vein tumor thrombosis (PVTT). We investigated the pretreatment predictive factors of early response, time to progression (TTP), and survival in response to intraarterial 5-FU/IFN combination therapy. METHODS Patients with nonresectable HCC and variable PVTT grades (without PVTT to PVTT in the trunk) received intraarterial 5-FU/IFN combination therapy (n = 55). RESULTS After two courses of the combination therapy, 1 (2%), 15 (27%), 16 (29%), 12 (22%), and 11 (20%) of 55 patients showed complete response (CR), partial response (PR), stable disease (SD), progressive disease (PD), or had dropped out (DO), respectively, when their early response to treatment was assessed. Univariate analysis identified only hepatitis C virus (HCV) antibody positivity as having significantly influenced the early response (P = 0.028) and TTP (P = 0.021). Multivariate analysis identified performance status (P = 0.003) and HCV antibody positivity (P = 0.007) as significant and independent determinants of survival. PVTT grade did not influence early response, TTP, or survival. The survival rate was significantly higher in patients who achieved CR or PR than in those that assessed as SD or PD, or DO (P < 0.0001, each). CONCLUSIONS HCV antibody positivity may be a significant pretreatment predictor of early response, TTP, and survival of patients with advanced HCC treated with 5-FU/IFN. CR or PR as the early response to the combination therapy might indicate a more favorable prognosis in patients with advanced HCC. PVTT grade did not seem to influence the efficacy of combination therapy.
Collapse
Affiliation(s)
- Kiminori Uka
- Department of Medicine and Molecular Science, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Hiroshima 734-8551, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wu WB, Shao SW, Zhao LJ, Luan J, Cao J, Gao J, Zhu SY, Qi ZT. Hepatitis C virus F protein up-regulates c-myc and down-regulates p53 in human hepatoma HepG2 cells. Intervirology 2007; 50:341-6. [PMID: 17700029 DOI: 10.1159/000107271] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 06/04/2007] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Hepatitis C virus (HCV) F protein is a newly identified protein encoded by an alternative open reading frame that +1 overlaps core-encoding gene. It has been found that regulation of c-myc and p53 genes by HCV core protein is involved in liver cancer genesis. We wondered whether HCV F protein exerts similar or adverse regulatory effects on the transcription of c-myc and p53 genes. METHODS HCV F gene-containing, plasmid pcDNA3.1-F and HCV core gene-containing pcDNA3.1-C were constructed and transiently transfected into HepG(2) cells. Real-time quantitative PCR or Western blotting was used to determine the changes at transcription or translation levels of c-myc and p53 genes. RESULTS The transcription level of c-myc was much higher in pcDNA3.1-F transfected cells than those without plasmid transfected. Whereas the level of p53 transcription in pcDNA3.1-F transfected cells was lower than those in the parental cells. Moreover, levels of c-myc expression were up-regulated and those of p53 expression were down-regulated by HCV F protein. CONCLUSIONS HCV F protein is of regulatory properties in cellular oncogene c-myc and anti-oncogene p53, which may be implicated in the formation of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Wen-bin Wu
- Department of Microbiology, State Key Laboratory of Medical Immunology, Second Military Medical University, Shanghai, PR China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Chen YW, Klimstra DS, Mongeau ME, Tatem JL, Boyartchuk V, Lewis BC. Loss of p53 and Ink4a/Arf cooperate in a cell autonomous fashion to induce metastasis of hepatocellular carcinoma cells. Cancer Res 2007; 67:7589-96. [PMID: 17699762 PMCID: PMC2396788 DOI: 10.1158/0008-5472.can-07-0381] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. HCC patients frequently present with disease that has metastasized to other regions of the liver, the portal vein, lymph nodes, or lungs, leading to poor prognoses. Therefore, model systems that allow exploration of the molecular mechanisms underlying metastasis in this disease are greatly needed. We describe here a metastatic HCC model generated after the somatic introduction of the mouse polyoma virus middle T antigen to mice with liver-specific deletion of the Trp53 tumor suppressor locus and show the cell autonomous effect of p53 loss of function on HCC metastasis. We additionally find that cholangiocarcinoma also develops in these mice, and some tumors display features of both HCC and cholangiocarcinoma, suggestive of origin from liver progenitor cells. Concomitant loss of the Ink4a/Arf tumor suppressor locus accelerates tumor formation and metastasis, suggesting potential roles for the p16 and p19 tumor suppressors in this process. Significantly, tumor cell lines isolated from tumors lacking both Trp53 and Ink4a/Arf display enhanced invasion activity in vitro relative to those lacking Trp53 alone. Thus, our data illustrate a new model system amenable for the analysis of HCC metastasis.
Collapse
Affiliation(s)
- Ya-Wen Chen
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts
| | - David S. Klimstra
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Michelle E. Mongeau
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jessica L. Tatem
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Victor Boyartchuk
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Brian C. Lewis
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
- Memorial Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
48
|
Arbuthnot P, Longshaw V, Naidoo T, Weinberg MS. Opportunities for treating chronic hepatitis B and C virus infection using RNA interference. J Viral Hepat 2007; 14:447-59. [PMID: 17576386 DOI: 10.1111/j.1365-2893.2006.00818.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Activating the RNA interference (RNAi) pathway to achieve silencing of specific genes is one of the most exciting new developments of molecular biology. A particularly interesting use of this technology is inhibition of defined viral gene expression. In this review, we discuss the potential application of RNAi to treatment of chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infection. Globally, these hepatotropic viruses are the most important causes of cirrhosis and liver cancer. Available treatments have their limitations, which makes development of novel effective RNAi-based therapies for HBV and HCV especially significant. Several investigations carried out in vitro and in vivo are summarized, which demonstrate proof of principle that HBV and HCV can be inhibited by RNAi activators. Challenges facing further development of this technology to a stage of clinical application are discussed.
Collapse
Affiliation(s)
- P Arbuthnot
- Hepatitis B Virus Research Unit, Department of Molecular Medicine and Haematology, University of the Witwatersrand Medical School, Johannesburg, South Africa.
| | | | | | | |
Collapse
|
49
|
He Y, Yang F, Wang F, Song SX, Li DA, Guo YJ, Sun SH. The upregulation of expressed proteins in HepG2 cells transfected by the recombinant plasmid-containing HBx gene. Scand J Immunol 2007; 65:249-56. [PMID: 17309779 DOI: 10.1111/j.1365-3083.2007.01899.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is known that the hepatitis B virus X protein (HBx) plays a crucial role in the pathogenesis of HCC, but the exact functions and molecular mechanisms of HBx in HCC are not well understood. In the present study, HepG2 cell lines were cultured and transfected with pEGFP-N1 and pEGFP-N1-X. Twenty-four hours after transfection, cells were harvested and total RNA was extracted using TRIzol reagent. The expression of HBx in HepG2 cell line was assayed by real-time polymerase chain reaction and was detected by Western blotting. Moreover, proteomic analysis was performed for the HepG2-pEGFP-X cells and HepG2-pEGFP control cells. The combination of 2DE and MALDI-TOF-MS/MS revealed that SEC13L1 (SEC13-like 1 isoform b), PA28 alpha (proteasome activator REG alpha), serine-threonine kinase receptor-associated protein (STRAP) and nm23/nucleoside diphosphate kinase (NME) were upregulated in HepG2-pEGFP-X cells. STRAP is known to be a WD40 domain-containing protein, which interacts with TbetaR-I and TbetaR-II and negatively regulates TGF-beta signalling, was also found increased in human cancers. NME is known to be involved in the regulation of cancer cell progression and metastasis. These results would help the understanding of how HBx maintains tumorigenicity and progression of HCC.
Collapse
Affiliation(s)
- Y He
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Menne S, Cote PJ. The woodchuck as an animal model for pathogenesis and therapy of chronic hepatitis B virus infection. World J Gastroenterol 2007; 13:104-24. [PMID: 17206759 PMCID: PMC4065868 DOI: 10.3748/wjg.v13.i1.104] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 08/25/2006] [Accepted: 10/04/2006] [Indexed: 02/06/2023] Open
Abstract
This review describes the woodchuck and the woodchuck hepatitis virus (WHV) as an animal model for pathogenesis and therapy of chronic hepatitis B virus (HBV) infection and disease in humans. The establishment of woodchuck breeding colonies, and use of laboratory-reared woodchucks infected with defined WHV inocula, have enhanced our understanding of the virology and immunology of HBV infection and disease pathogenesis, including major sequelae like chronic hepatitis and hepatocellular carcinoma. The role of persistent WHV infection and of viral load on the natural history of infection and disease progression has been firmly established along the way. More recently, the model has shed new light on the role of host immune responses in these natural processes, and on how the immune system of the chronic carrier can be manipulated therapeutically to reduce or delay serious disease sequelae through induction of the recovery phenotype. The woodchuck is an outbred species and is not well defined immunologically due to a limitation of available host markers. However, the recent development of several key host response assays for woodchucks provides experimental opportunities for further mechanistic studies of outcome predictors in neonatal- and adult-acquired infections. Understanding the virological and immunological mechanisms responsible for resolution of self-limited infection, and for the onset and maintenance of chronic infection, will greatly facilitate the development of successful strategies for the therapeutic eradication of established chronic HBV infection. Likewise, the results of drug efficacy and toxicity studies in the chronic carrier woodchucks are predictive for responses of patients chronically infected with HBV. Therefore, chronic WHV carrier woodchucks provide a well-characterized mammalian model for preclinical evaluation of the safety and efficacy of drug candidates, experimental therapeutic vaccines, and immunomodulators for the treatment and prevention of HBV disease sequelae.
Collapse
Affiliation(s)
- Stephan Menne
- Department of Clinical Sciences, College of Veterinary Medicine, Veterinary Medical Center, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|