1
|
Slattery JD, Rambousek JR, Tsui E, Honeycutt MK, Goldberg M, Graham JL, Wietecha TA, Wolden-Hanson T, Williams AL, O’Brien KD, Havel PJ, Blevins JE. Effects of systemic oxytocin and beta-3 receptor agonist (CL 316243) treatment on body weight and adiposity in male diet-induced obese rats. Front Endocrinol (Lausanne) 2025; 16:1503096. [PMID: 40104132 PMCID: PMC11913664 DOI: 10.3389/fendo.2025.1503096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/31/2025] [Indexed: 03/20/2025] Open
Abstract
Previous studies have implicated hindbrain oxytocin (OT) receptors in the control of food intake and brown adipose tissue (BAT) thermogenesis. We recently demonstrated that hindbrain [fourth ventricle (4V)] administration of oxytocin (OT) could be used as an adjunct to drugs that directly target beta-3 adrenergic receptors (β3-AR) to elicit weight loss in diet-induced obese (DIO) rodents. What remains unclear is whether systemic OT can be used as an adjunct with the β3-AR agonist, CL 316243, to increase BAT thermogenesis and elicit weight loss in DIO rats. We hypothesized that systemic OT and β3-AR agonist (CL 316243) treatment would produce an additive effect to reduce body weight and adiposity in DIO rats by decreasing food intake and stimulating BAT thermogenesis. To test this hypothesis, we determined the effects of systemic (subcutaneous) infusions of OT (50 nmol/day) or vehicle (VEH) when combined with daily systemic (intraperitoneal) injections of CL 316243 (0.5 mg/kg) or VEH on body weight, adiposity, food intake and brown adipose tissue temperature (TIBAT). OT and CL 316243 monotherapy decreased body weight by 8.0 ± 0.9% (P<0.05) and 8.6 ± 0.6% (P<0.05), respectively, but OT in combination with CL 316243 produced more substantial weight loss (14.9 ± 1.0%; P<0.05) compared to either treatment alone. These effects were associated with decreased adiposity, energy intake and elevated TIBAT during the treatment period. The findings from the current study suggest that the effects of systemic OT and CL 316243 to elicit weight loss are additive and appear to be driven primarily by OT-elicited changes in food intake and CL 316243-elicited increases in BAT thermogenesis.
Collapse
Affiliation(s)
- Jared D. Slattery
- Veterans Affairs (VA) Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - June R. Rambousek
- Veterans Affairs (VA) Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Edison Tsui
- Veterans Affairs (VA) Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Mackenzie K. Honeycutt
- Veterans Affairs (VA) Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Matvey Goldberg
- Veterans Affairs (VA) Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - James L. Graham
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Tomasz A. Wietecha
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington (UW) School of Medicine, Seattle, WA, United States
- University of Washington (UW) Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
| | - Tami Wolden-Hanson
- Veterans Affairs (VA) Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Amber L. Williams
- Veterans Affairs (VA) Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Kevin D. O’Brien
- University of Washington (UW) Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Peter J. Havel
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - James E. Blevins
- Veterans Affairs (VA) Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington (UW) School of Medicine, Seattle, WA, United States
| |
Collapse
|
2
|
Slattery JD, Rambousek JR, Tsui E, Honeycutt MK, Goldberg M, Graham JL, Wietecha TA, Wolden-Hanson T, Williams AL, O'Brien KD, Havel PJ, Blevins JE. Effects of systemic oxytocin and beta-3 receptor agonist (CL 316243) treatment on body weight and adiposity in male diet-induced obese rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.27.615550. [PMID: 39502365 PMCID: PMC11537314 DOI: 10.1101/2024.09.27.615550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Previous studies have implicated hindbrain oxytocin (OT) receptors in the control of food intake and brown adipose tissue (BAT) thermogenesis. We recently demonstrated that hindbrain [fourth ventricle (4V)] administration of oxytocin (OT) could be used as an adjunct to drugs that directly target beta-3 adrenergic receptors (β3-AR) to elicit weight loss in diet-induced obese (DIO) rodents. What remains unclear is whether systemic OT can be used as an adjunct with the β3-AR agonist, CL 316243, to increase BAT thermogenesis and elicit weight loss in DIO rats. We hypothesized that systemic OT and β3-AR agonist (CL 316243) treatment would produce an additive effect to reduce body weight and adiposity in DIO rats by decreasing food intake and stimulating BAT thermogenesis. To test this hypothesis, we determined the effects of systemic (subcutaneous) infusions of OT (50 nmol/day) or vehicle (VEH) when combined with daily systemic (intraperitoneal) injections of CL 316243 (0.5 mg/kg) or VEH on body weight, adiposity, food intake and brown adipose tissue temperature (TIBAT). OT and CL 316243 monotherapy decreased body weight by 8.0±0.9% (P<0.05) and 8.6±0.6% (P<0.05), respectively, but OT in combination with CL 316243 produced more substantial weight loss (14.9±1.0%; P<0.05) compared to either treatment alone. These effects were associated with decreased adiposity, energy intake and elevated TIBAT during the treatment period. The findings from the current study suggest that the effects of systemic OT and CL 316243 to elicit weight loss are additive and appear to be driven primarily by OT-elicited changes in food intake and CL 316243-elicited increases in BAT thermogenesis.
Collapse
Affiliation(s)
- Jared D Slattery
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - June R Rambousek
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Edison Tsui
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Mackenzie K Honeycutt
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Matvey Goldberg
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - James L Graham
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Tomasz A Wietecha
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109
| | - Tami Wolden-Hanson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Amber L Williams
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Kevin D O'Brien
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109
| | - Peter J Havel
- Department of Nutrition, University of California, Davis, CA 95616, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Nath D, Barbhuiya PA, Sen S, Pathak MP. A Review on In-vivo and In-vitro Models of Obesity and Obesity-Associated Co-Morbidities. Endocr Metab Immune Disord Drug Targets 2025; 25:458-478. [PMID: 39136512 DOI: 10.2174/0118715303312932240801073903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Obesity is becoming a global pandemic with pandemic proportions. According to the WHO estimates, there were over 1.9 billion overweight individuals and over 650 million obese adults in the globe in 2016. In recent years, scientists have encountered difficulties in choosing acceptable animal models, leading to a multitude of contradicting aspects and incorrect outcomes. This review comprehensively evaluates different screening models of obesity and obesity-associated comorbidities to reveal the advantages and disadvantages/limitations of each model while also mentioning the time duration each model requires to induce obesity. METHODS For this review, the authors have gone through a vast number of article sources from different scientific databases, such as Google Scholar, Web of Science, Medline, and PubMed. RESULTS In-vivo models used to represent a variety of obesity-inducing processes, such as diet-induced, drug-induced, surgical, chemical, stress-induced, and genetic models, are discussed. Animal cell models are examined with an emphasis on their use in understanding the molecular causes of obesity, for which we discussed in depth the important cell lines, including 3T3-L1, OP9, 3T3-F442A, and C3H10T1/2. Screening models of obesity-associated co-morbidities like diabetes, asthma, cardiovascular disorders, cancer, and polycystic ovarian syndrome (PCOS) were discussed, which provided light on the complex interactions between obesity and numerous health problems. CONCLUSION Mimicking obesity in an animal model reflects multifactorial aspects is a matter of challenge. Future studies could address the ethical issues surrounding the use of animals in obesity research as well as investigate newly developed models, such as non-mammalian models. In conclusion, improving our knowledge and management of obesity and related health problems will require ongoing assessment and improvement of study models.
Collapse
Affiliation(s)
- Digbijoy Nath
- Faculty of Pharmaceutical Science, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, 781026, India
- Centre for Research on Ethnomedicine, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, 781026, India
| | - Pervej Alom Barbhuiya
- Faculty of Pharmaceutical Science, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, 781026, India
- Centre for Research on Ethnomedicine, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, 781026, India
| | - Saikat Sen
- Faculty of Pharmaceutical Science, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, 781026, India
- Centre for Research on Ethnomedicine, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, 781026, India
| | - Manash Pratim Pathak
- Faculty of Pharmaceutical Science, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, 781026, India
- Centre for Research on Ethnomedicine, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, 781026, India
| |
Collapse
|
4
|
Edwards MM, Nguyen HK, Dodson AD, Herbertson AJ, Honeycutt MK, Slattery JD, Rambousek JR, Tsui E, Wolden-Hanson T, Wietecha TA, Graham JL, Tapia GP, Sikkema CL, O'Brien KD, Mundinger TO, Peskind ER, Ryu V, Havel PJ, Khan AM, Taborsky GJ, Blevins JE. Sympathetic innervation of interscapular brown adipose tissue is not a predominant mediator of Oxytocin (OT)-elicited reductions of body weight gain and adiposity in male diet-induced obese rats. FRONTIERS IN DRUG DELIVERY 2024; 4:1497746. [PMID: 39866535 PMCID: PMC11759500 DOI: 10.3389/fddev.2024.1497746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Recent studies indicate that central administration of oxytocin (OT) reduces body weight (BW) in high fat diet-induced obese (DIO) rodents by reducing energy intake and increasing energy expenditure (EE). Previous studies in our lab have shown that administration of OT into the fourth ventricle (4V; hindbrain) elicits weight loss and stimulates interscapular brown adipose tissue temperature (TIBAT) in DIO rats. We hypothesized that OT-elicited stimulation of sympathetic nervous system (SNS) activation of IBAT contributes to its ability to activate BAT and reduce BW in DIO rats. To test this, we determined the effect of disrupting SNS activation of IBAT on OT-elicited stimulation of TIBAT and reduction of BW in DIO rats. We first confirmed that bilateral surgical SNS denervation to IBAT was successful based on having achieved ≥ 60% reduction in IBAT norepinephrine (NE) content from DIO rats. NE content was selectively reduced in IBAT by 94.7 ± 2.7, 96.8 ± 1.8 and 85.9 ± 6.1% (P<0.05) at 1, 6 and 7-weeks post-denervation, respectively, and was unchanged in liver or inguinal white adipose tissue. We then measured the impact of bilateral surgical SNS denervation to IBAT on the ability of acute 4V OT (1, 5 μg) to stimulate TIBAT in DIO rats. We found that the high dose of 4V OT (5 μg) stimulated TIBAT similarly between sham and denervated rats (P=NS) and that the effects of 4V OT to stimulate TIBAT did not require beta-3 adrenergic receptor signaling. We subsequently measured the effect of bilateral surgical denervation of IBAT on the effect of chronic 4V OT (16 nmol/day) or vehicle infusion to reduce BW, adiposity, and energy intake in DIO rats. Chronic 4V OT reduced BW gain by -7.2 ± 9.6 g and -14.1 ± 8.8 g in sham and denervated rats (P<0.05 vs vehicle treatment), respectively, and this effect was similar between groups (P=NS). These effects were associated with reductions in adiposity and energy intake (P<0.05). Collectively, these findings support the hypothesis that sympathetic innervation of IBAT is not required for central OT to increase BAT thermogenesis and reduce BW gain and adiposity in male DIO rats.
Collapse
Affiliation(s)
- Melise M Edwards
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Ha K Nguyen
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Andrew D Dodson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Adam J Herbertson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Mackenzie K Honeycutt
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Jared D Slattery
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - June R Rambousek
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Edison Tsui
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Tami Wolden-Hanson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Tomasz A Wietecha
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109
| | - James L Graham
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Geronimo P Tapia
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Carl L Sikkema
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington
| | - Kevin D O'Brien
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109
| | - Thomas O Mundinger
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Elaine R Peskind
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington
| | - Vitaly Ryu
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter J Havel
- Department of Nutrition, University of California, Davis, CA 95616, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Arshad M Khan
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Gerald J Taborsky
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
5
|
Huo Y, Samora M, McCuller RK, Stanhope KL, Havel PJ, Harrison ML, Stone AJ. Interleukin-1 type 1 receptor blockade attenuates the exaggerated exercise pressor reflex in male UC Davis type 2 diabetic mellitus rats. J Physiol 2024. [PMID: 39557607 DOI: 10.1113/jp287120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
An exaggerated exercise pressor reflex and peripheral neuropathy are both evoked by the same type of thinly myelinated afferents and are present in patients with type 2 diabetes mellitus (T2DM). Although it is known that the pro-inflammatory cytokine interleukin-1β (IL-1β) contributes to peripheral neuropathy, the effects of IL-1β on the exercise pressor reflex in T2DM are not known. Therefore, we aimed to determine the effect of IL-1 receptors on the exercise pressor reflex in T2DM. We compared changes in peak pressor (mean arterial pressure; ΔMAP), blood pressure index (ΔBPi), heart rate (ΔHR) and heart rate index (ΔHRi) responses to static and intermittent contractions and tendon stretch before and after peripheral IL-1 type 1 receptor blockade (anakinra, Kineret®) in T2DM and healthy male rats and IL-1 receptor activation (IL-1β) in healthy rats. Blocking IL-1 receptors significantly attenuated the ΔMAP and ΔBPi to static contraction in T2DM rats. Furthermore, blocking IL-1 receptors significantly attenuated the ΔMAP, ΔBPi and ΔHRi to intermittent contraction, and ΔMAP to tendon stretch in T2DM rats (all P < 0.05). In addition, IL-1 receptor activation significantly exaggerated the ΔMAP and ΔBPi to static contraction and ΔMAP, ΔBPi and ΔHR to intermittent contraction in healthy rats, all P < 0.05. Furthermore, circulating IL-1β serum concentrations were significantly greater in T2DM rats than in healthy rats (P < 0.05). We conclude that IL-1 signalling contributes to the exaggerated exercise pressor reflex in T2DM, suggesting for the first time that inflammatory cytokines play a critical role in exaggerated blood pressure responses to exercise in those with T2DM. KEY POINTS: Chronic inflammation, a complication of type 2 diabetes mellitus (T2DM), causes increased production of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumour necrosis factor-α. IL-1β has been shown to sensitize muscle afferents that conduct the exercise pressor reflex. We found blocking of IL-1 receptors by anakinra (Kineret®), an IL-1 type 1 receptor antagonist, significantly attenuated the exaggerated exercise pressor reflex in T2DM rats, but not in healthy rats. In addition, activating IL-1 receptors with IL-1β significantly augmented the exercise pressor reflex in healthy rats. Our findings suggest that IL-1 receptors, by mediating IL-1β signalling, play a role in exaggerating the exercise pressor reflex in T2DM. These results highlight the complex interplay between inflammation and the autonomic nervous system in regulating cardiovascular function, and the potential for using an FDA-approved IL-1 receptor antagonist, Kineret®, as a therapeutic approach to reduce adverse cardiovascular events during physical activity in those with T2DM.
Collapse
Affiliation(s)
- Yu Huo
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA
| | - Milena Samora
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA
| | - Richard K McCuller
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA
| | - Kimber L Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California Davis, Davis, CA, USA
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California Davis, Davis, CA, USA
| | - Michelle L Harrison
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA
| | - Audrey J Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
6
|
Edwards MM, Nguyen HK, Dodson AD, Herbertson AJ, Honeycutt MK, Slattery JD, Rambousek JR, Tsui E, Wolden-Hanson T, Wietecha TA, Graham JL, Tapia GP, Sikkema CL, O'Brien KD, Mundinger TO, Peskind ER, Ryu V, Havel PJ, Khan AM, Taborsky GJ, Blevins JE. Sympathetic innervation of interscapular brown adipose tissue is not a predominant mediator of OT-elicited reductions of body weight gain and adiposity in male diet-induced obese rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612710. [PMID: 39345420 PMCID: PMC11430106 DOI: 10.1101/2024.09.12.612710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Recent studies indicate that central administration of oxytocin (OT) reduces body weight (BW) in high fat diet-induced obese (DIO) rodents by reducing energy intake and increasing energy expenditure (EE). Previous studies in our lab have shown that administration of OT into the fourth ventricle (4V; hindbrain) elicits weight loss and stimulates interscapular brown adipose tissue temperature (TIBAT) in DIO rats. We hypothesized that OT-elicited stimulation of sympathetic nervous system (SNS) activation of IBAT contributes to its ability to activate BAT and reduce BW in DIO rats. To test this, we determined the effect of disrupting SNS activation of IBAT on OT-elicited stimulation of TIBAT and reduction of BW in DIO rats. We first confirmed that bilateral surgical SNS denervation to IBAT was successful based on having achieved ≥ 60% reduction in IBAT norepinephrine (NE) content from DIO rats. NE content was selectively reduced in IBAT by 94.7 ± 2.7, 96.8 ± 1.8 and 85.9 ± 6.1% (P<0.05) at 1, 6 and 7-weeks post-denervation, respectively, and was unchanged in liver or inguinal white adipose tissue. We then measured the impact of bilateral surgical SNS denervation to IBAT on the ability of acute 4V OT (1, 5 μg) to stimulate TIBAT in DIO rats. We found that the high dose of 4V OT (5 μg) stimulated TIBAT similarly between sham and denervated rats (P=NS) and that the effects of 4V OT to stimulate TIBAT did not require beta-3 adrenergic receptor signaling. We subsequently measured the effect of bilateral surgical denervation of IBAT on the effect of chronic 4V OT (16 nmol/day) or vehicle infusion to reduce BW, adiposity, and energy intake in DIO rats. Chronic 4V OT reduced BW gain by -7.2 ± 9.6 g and -14.1 ± 8.8 g in sham and denervated rats (P<0.05 vs vehicle treatment), respectively, and this effect was similar between groups (P=NS). These effects were associated with reductions in adiposity and energy intake (P<0.05). Collectively, these findings support the hypothesis that sympathetic innervation of IBAT is not required for central OT to increase BAT thermogenesis and reduce BW gain and adiposity in male DIO rats.
Collapse
Affiliation(s)
- Melise M Edwards
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Ha K Nguyen
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Andrew D Dodson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Adam J Herbertson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Mackenzie K Honeycutt
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Jared D Slattery
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - June R Rambousek
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Edison Tsui
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Tami Wolden-Hanson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Tomasz A Wietecha
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109
| | - James L Graham
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Geronimo P Tapia
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Carl L Sikkema
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington
| | - Kevin D O'Brien
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109
| | - Thomas O Mundinger
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Elaine R Peskind
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington
| | - Vitaly Ryu
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter J Havel
- Department of Nutrition, University of California, Davis, CA 95616, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Arshad M Khan
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Gerald J Taborsky
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Islam RA, Han X, Shaligram S, Esfandiarei M, Stallone JN, Rahimian R. Sexual Dimorphism in Impairment of Acetylcholine-Mediated Vasorelaxation in Zucker Diabetic Fatty (ZDF) Rat Aorta: A Monogenic Model of Obesity-Induced Type 2 Diabetes. Int J Mol Sci 2024; 25:11328. [PMID: 39457110 PMCID: PMC11508232 DOI: 10.3390/ijms252011328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Several reports, including our previous studies, indicate that hyperglycemia and diabetes mellitus exert differential effects on vascular function in males and females. This study examines sex differences in the vascular effects of type 2 diabetes (T2D) in an established monogenic model of obesity-induced T2D, Zucker Diabetic Fatty (ZDF) rats. Acetylcholine (ACh) responses were assessed in phenylephrine pre-contracted rings before and after apocynin, a NADPH oxidase (NOX) inhibitor. The mRNA expressions of aortic endothelial NOS (eNOS), and key NOX isoforms were also measured. We demonstrated the following: (1) diabetes had contrasting effects on aortic vasorelaxation in ZDF rats, impairing relaxation to ACh in females while enhancing it in male ZDF rats; (2) inhibition of NOX, a major source of superoxide in vasculature, restored aortic vasorelaxation in female ZDF rats; and (3) eNOS and NOX4 mRNA expressions were elevated in female (but not male) ZDF rat aortas compared to their respective leans. This study highlights sexual dimorphism in ACh-mediated vasorelaxation in the aorta of ZDF rats, suggesting that superoxide may play a role in the impaired vasorelaxation observed in female ZDF rats.
Collapse
Affiliation(s)
- Rifat Ara Islam
- Department of Pharmaceutical Sciences, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA; (R.A.I.); (S.S.)
| | - Xiaoyuan Han
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, Stockton, CA 94115, USA;
| | - Sonali Shaligram
- Department of Pharmaceutical Sciences, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA; (R.A.I.); (S.S.)
| | - Mitra Esfandiarei
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA;
| | - John N. Stallone
- Department of Veterinary Physiology and Pharmacology and Michael E. DeBakey Institute for Comparative Cardiovascular Sciences, School of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4466, USA;
| | - Roshanak Rahimian
- Department of Pharmaceutical Sciences, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA; (R.A.I.); (S.S.)
| |
Collapse
|
8
|
Dodson AD, Herbertson AJ, Honeycutt MK, Vered R, Slattery JD, Goldberg M, Tsui E, Wolden-Hanson T, Graham JL, Wietecha TA, O’Brien KD, Havel PJ, Sikkema CL, Peskind ER, Mundinger TO, Taborsky GJ, Blevins JE. Sympathetic Innervation of Interscapular Brown Adipose Tissue Is Not a Predominant Mediator of Oxytocin-Induced Brown Adipose Tissue Thermogenesis in Female High Fat Diet-Fed Rats. Curr Issues Mol Biol 2024; 46:11394-11424. [PMID: 39451559 PMCID: PMC11506511 DOI: 10.3390/cimb46100679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Recent studies have indicated that hindbrain [fourth ventricle (4V)] administration of the neurohypophyseal hormone, oxytocin (OT), reduces body weight, energy intake and stimulates interscapular brown adipose tissue temperature (TIBAT) in male diet-induced obese (DIO) rats. What remains unclear is whether chronic hindbrain (4V) OT can impact body weight in female high fat diet-fed (HFD) rodents and whether this involves activation of brown adipose tissue (BAT). We hypothesized that OT-elicited stimulation of sympathetic nervous system (SNS) activation of interscapular brown adipose tissue (IBAT) contributes to its ability to activate BAT and reduce body weight in female high HFD-fed rats. To test this hypothesis, we determined the effect of disrupting SNS activation of IBAT on OT-elicited stimulation of TIBAT and reduction of body weight in DIO rats. We first measured the impact of bilateral surgical SNS denervation to IBAT on the ability of acute 4V OT (0.5, 1, and 5 µg ≈ 0.5, 0.99, and 4.96 nmol) to stimulate TIBAT in female HFD-fed rats. We found that the high dose of 4V OT (5 µg ≈ 4.96 nmol) stimulated TIBAT similarly between sham rats and denervated rats (p = NS). We subsequently measured the effect of bilateral surgical denervation of IBAT on the effect of chronic 4V OT (16 nmol/day ≈ 16.1 μg/day) or vehicle infusion to reduce body weight, adiposity and energy intake in female HFD-fed rats (N = 7-8/group). Chronic 4V OT reduced body weight gain (sham: -18.0 ± 4.9 g; denervation: -15.9 ± 3.7 g) and adiposity (sham: -13.9 ± 3.7 g; denervation: -13.6 ± 2.4 g) relative to vehicle treatment (p < 0.05) and these effects were similar between groups (p = NS). These effects were attributed, in part, to reduced energy intake evident during weeks 2 (p < 0.05) and 3 (p < 0.05). To test whether these results translate to other female rodent species, we also examined the effect of chronic 4V infusion of OT on body weight and adiposity in two strains of female HFD-fed mice. Similar to what we found in the HFD-fed rat model, we also found that chronic 4V OT (16 nmol/day) infusion resulted in reduced body weight gain, adiposity and energy intake in female DIO C57BL/6J and DBA/2J mice (p < 0.05 vs. vehicle). Together, these findings suggest that (1) sympathetic innervation of IBAT is not necessary for OT-elicited increases in BAT thermogenesis and weight loss in female HFD-fed rats and (2) the effects of OT to reduce weight gain and adiposity translate to other female mouse models of diet-induced obesity (DIO).
Collapse
Affiliation(s)
- Andrew D. Dodson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
| | - Adam J. Herbertson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
| | - Mackenzie K. Honeycutt
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
| | - Ron Vered
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
| | - Jared D. Slattery
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
| | - Matvey Goldberg
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
| | - Edison Tsui
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
| | - Tami Wolden-Hanson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
| | - James L. Graham
- Department of Nutrition, University of California, Davis, CA 95616, USA; (J.L.G.); (P.J.H.)
| | - Tomasz A. Wietecha
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; (T.A.W.); (T.O.M.)
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109, USA;
| | - Kevin D. O’Brien
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109, USA;
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Peter J. Havel
- Department of Nutrition, University of California, Davis, CA 95616, USA; (J.L.G.); (P.J.H.)
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Carl L. Sikkema
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Elaine R. Peskind
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Thomas O. Mundinger
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; (T.A.W.); (T.O.M.)
| | - Gerald J. Taborsky
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; (T.A.W.); (T.O.M.)
| | - James E. Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; (T.A.W.); (T.O.M.)
| |
Collapse
|
9
|
Edwards MM, Nguyen HK, Dodson AD, Herbertson AJ, Wolden-Hanson T, Wietecha TA, Honeycutt MK, Slattery JD, O’Brien KD, Graham JL, Havel PJ, Mundinger TO, Sikkema CL, Peskind ER, Ryu V, Taborsky GJ, Blevins JE. Sympathetic innervation of interscapular brown adipose tissue is not a predominant mediator of oxytocin-elicited reductions of body weight and adiposity in male diet-induced obese mice. Front Endocrinol (Lausanne) 2024; 15:1440070. [PMID: 39145314 PMCID: PMC11321955 DOI: 10.3389/fendo.2024.1440070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 08/16/2024] Open
Abstract
Previous studies indicate that CNS administration of oxytocin (OT) reduces body weight in high fat diet-induced obese (DIO) rodents by reducing food intake and increasing energy expenditure (EE). We recently demonstrated that hindbrain (fourth ventricular [4V]) administration of OT elicits weight loss and elevates interscapular brown adipose tissue temperature (TIBAT, a surrogate measure of increased EE) in DIO mice. What remains unclear is whether OT-elicited weight loss requires increased sympathetic nervous system (SNS) outflow to IBAT. We hypothesized that OT-induced stimulation of SNS outflow to IBAT contributes to its ability to activate BAT and elicit weight loss in DIO mice. To test this hypothesis, we determined the effect of disrupting SNS activation of IBAT on the ability of 4V OT administration to increase TIBAT and elicit weight loss in DIO mice. We first determined whether bilateral surgical SNS denervation to IBAT was successful as noted by ≥ 60% reduction in IBAT norepinephrine (NE) content in DIO mice. NE content was selectively reduced in IBAT at 1-, 6- and 7-weeks post-denervation by 95.9 ± 2.0, 77.4 ± 12.7 and 93.6 ± 4.6% (P<0.05), respectively and was unchanged in inguinal white adipose tissue, pancreas or liver. We subsequently measured the effects of acute 4V OT (1, 5 µg ≈ 0.99, 4.96 nmol) on TIBAT in DIO mice following sham or bilateral surgical SNS denervation to IBAT. We found that the high dose of 4V OT (5 µg ≈ 4.96 nmol) elevated TIBAT similarly in sham mice as in denervated mice. We subsequently measured the effects of chronic 4V OT (16 nmol/day over 29 days) or vehicle infusions on body weight, adiposity and food intake in DIO mice following sham or bilateral surgical denervation of IBAT. Chronic 4V OT reduced body weight by 5.7 ± 2.23% and 6.6 ± 1.4% in sham and denervated mice (P<0.05), respectively, and this effect was similar between groups (P=NS). OT produced corresponding reductions in whole body fat mass (P<0.05). Together, these findings support the hypothesis that sympathetic innervation of IBAT is not necessary for OT-elicited increases in BAT thermogenesis and reductions of body weight and adiposity in male DIO mice.
Collapse
Affiliation(s)
- Melise M. Edwards
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Ha K. Nguyen
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Andrew D. Dodson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Adam J. Herbertson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Tami Wolden-Hanson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Tomasz A. Wietecha
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
| | - Mackenzie K. Honeycutt
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Jared D. Slattery
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Kevin D. O’Brien
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
| | - James L. Graham
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Peter J. Havel
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Thomas O. Mundinger
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Carl L. Sikkema
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, United States
| | - Elaine R. Peskind
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, United States
| | - Vitaly Ryu
- Department of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Gerald J. Taborsky
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - James E. Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
10
|
Edwards MM, Nguyen HK, Dodson AD, Herbertson AJ, Wolden-Hanson T, Wietecha T, Honeycutt MK, Slattery JD, O'Brien KD, Graham JL, Havel PJ, Mundinger TO, Sikkema C, Peskind ER, Ryu V, Taborsky GJ, Blevins JE. Sympathetic innervation of interscapular brown adipose tissue is not a predominant mediator of oxytocin-elicited reductions of body weight and adiposity in male diet-induced obese mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596425. [PMID: 38854021 PMCID: PMC11160755 DOI: 10.1101/2024.05.29.596425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Previous studies indicate that CNS administration of oxytocin (OT) reduces body weight in high fat diet-induced obese (DIO) rodents by reducing food intake and increasing energy expenditure (EE). We recently demonstrated that hindbrain (fourth ventricular [4V]) administration of OT elicits weight loss and elevates interscapular brown adipose tissue temperature (T IBAT , a surrogate measure of increased EE) in DIO mice. What remains unclear is whether OT-elicited weight loss requires increased sympathetic nervous system (SNS) outflow to IBAT. We hypothesized that OT-induced stimulation of SNS outflow to IBAT contributes to its ability to activate BAT and elicit weight loss in DIO mice. To test this hypothesis, we determined the effect of disrupting SNS activation of IBAT on the ability of 4V OT administration to increase T IBAT and elicit weight loss in DIO mice. We first determined whether bilateral surgical SNS denervation to IBAT was successful as noted by ≥ 60% reduction in IBAT norepinephrine (NE) content in DIO mice. NE content was selectively reduced in IBAT at 1-, 6- and 7-weeks post-denervation by 95.9±2.0, 77.4±12.7 and 93.6±4.6% ( P <0.05), respectively and was unchanged in inguinal white adipose tissue, pancreas or liver. We subsequently measured the effects of acute 4V OT (1, 5 µg ≈ 0.99, 4.96 nmol) on T IBAT in DIO mice following sham or bilateral surgical SNS denervation to IBAT. We found that the high dose of 4V OT (5 µg ≈ 4.96 nmol) elevated T IBAT similarly in sham mice as in denervated mice. We subsequently measured the effects of chronic 4V OT (16 nmol/day over 29 days) or vehicle infusions on body weight, adiposity and food intake in DIO mice following sham or bilateral surgical denervation of IBAT. Chronic 4V OT reduced body weight by 5.7±2.23% and 6.6±1.4% in sham and denervated mice ( P <0.05), respectively, and this effect was similar between groups ( P =NS). OT produced corresponding reductions in whole body fat mass ( P <0.05). Together, these findings support the hypothesis that sympathetic innervation of IBAT is not necessary for OT-elicited increases in BAT thermogenesis and reductions of body weight and adiposity in male DIO mice.
Collapse
|
11
|
Samora M, Huo Y, Stanhope KL, Havel PJ, Kaufman MP, Harrison ML, Stone AJ. Cyclooxygenase products contribute to the exaggerated exercise pressor reflex evoked by static muscle contraction in male UCD-type 2 diabetes mellitus rats. J Appl Physiol (1985) 2024; 136:1226-1237. [PMID: 38545661 PMCID: PMC11368523 DOI: 10.1152/japplphysiol.00879.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 05/15/2024] Open
Abstract
Cyclooxygenase (COX) products of arachidonic acid metabolism, specifically prostaglandins, play a role in evoking and transmitting the exercise pressor reflex in health and disease. Individuals with type 2 diabetes mellitus (T2DM) have an exaggerated exercise pressor reflex; however, the mechanisms for this exaggerated reflex are not fully understood. We aimed to determine the role played by COX products in the exaggerated exercise pressor reflex in T2DM rats. The exercise pressor reflex was evoked by static muscle contraction in unanesthetized, decerebrate, male, adult University of California Davis (UCD)-T2DM (n = 8) and healthy Sprague-Dawley (n = 8) rats. Changes (Δ) in peak mean arterial pressure (MAP) and heart rate (HR) during muscle contraction were compared before and after intra-arterial injection of indomethacin (1 mg/kg) into the contracting hindlimb. Data are presented as means ± SD. Inhibition of COX activity attenuated the exaggerated peak MAP (Before: Δ32 ± 13 mmHg and After: Δ18 ± 8 mmHg; P = 0.004) and blood pressor index (BPi) (Before: Δ683 ± 324 mmHg·s and After: Δ361 ± 222 mmHg·s; P = 0.006), but not HR (Before: Δ23 ± 8 beats/min and After Δ19 ± 10 beats/min; P = 0.452) responses to muscle contraction in T2DM rats. In healthy rats, COX activity inhibition did not affect MAP, HR, or BPi responses to muscle contraction. Inhibition of COX activity significantly reduced local production of prostaglandin E2 in T2DM and healthy rats. We conclude that peripheral inhibition of COX activity attenuates the pressor response to muscle contraction in T2DM rats, suggesting that COX products partially contribute to the exaggerated exercise pressor reflex in those with T2DM.NEW & NOTEWORTHY We compared the pressor and cardioaccelerator responses to static muscle contraction before and after inhibition of cyclooxygenase (COX) activity within the contracting hindlimb in decerebrate, unanesthetized type 2 diabetic mellitus (T2DM) and healthy rats. The pressor responses to muscle contraction were attenuated after peripheral inhibition of COX activity in T2DM but not in healthy rats. We concluded that COX products partially contribute to the exaggerated pressor reflex in those with T2DM.
Collapse
Affiliation(s)
- Milena Samora
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas, United States
| | - Yu Huo
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas, United States
| | - Kimber L Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California Davis, Davis, California, United States
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California Davis, Davis, California, United States
| | - Marc P Kaufman
- Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Michelle L Harrison
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas, United States
| | - Audrey J Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas, United States
| |
Collapse
|
12
|
Piccolo BD, Graham JL, Tabor-Simecka L, Randolph CE, Moody B, Robeson MS, Kang P, Fox R, Lan R, Pack L, Woford N, Yeruva L, LeRoith T, Stanhope KL, Havel PJ. Colonic epithelial hypoxia remains constant during the progression of diabetes in male UC Davis type 2 diabetes mellitus rats. BMJ Open Diabetes Res Care 2024; 12:e003813. [PMID: 38453236 PMCID: PMC10921531 DOI: 10.1136/bmjdrc-2023-003813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
INTRODUCTION Colonocyte oxidation of bacterial-derived butyrate has been reported to maintain synergistic obligate anaerobe populations by reducing colonocyte oxygen levels; however, it is not known whether this process is disrupted during the progression of type 2 diabetes. Our aim was to determine whether diabetes influences colonocyte oxygen levels in the University of California Davis type 2 diabetes mellitus (UCD-T2DM) rat model. RESEARCH DESIGN AND METHODS Age-matched male UCD-T2DM rats (174±4 days) prior to the onset of diabetes (PD, n=15), within 1 month post-onset (RD, n=12), and 3 months post-onset (D3M, n=12) were included in this study. Rats were administered an intraperitoneal injection of pimonidazole (60 mg/kg body weight) 1 hour prior to euthanasia and tissue collection to estimate colonic oxygen levels. Colon tissue was fixed in 10% formalin, embedded in paraffin, and processed for immunohistochemical detection of pimonidazole. The colonic microbiome was assessed by 16S gene rRNA amplicon sequencing and content of short-chain fatty acids was measured by liquid chromatography-mass spectrometry. RESULTS HbA1c % increased linearly across the PD (5.9±0.1), RD (7.6±0.4), and D3M (11.5±0.6) groups, confirming the progression of diabetes in this cohort. D3M rats had a 2.5% increase in known facultative anaerobes, Escherichia-Shigella, and Streptococcus (false discovery rate <0.05) genera in colon contents. The intensity of pimonidazole staining of colonic epithelia did not differ across groups (p=0.37). Colon content concentrations of acetate and propionate also did not differ across UCD-T2DM groups; however, colonic butyric acid levels were higher in D3M rats relative to PD rats (p<0.01). CONCLUSIONS The advancement of diabetes in UCD-T2DM rats was associated with an increase in facultative anaerobes; however, this was not explained by changes in colonocyte oxygen levels. The mechanisms underlying shifts in gut microbe populations associated with the progression of diabetes in the UCD-T2DM rat model remain to be identified.
Collapse
Affiliation(s)
- Brian D Piccolo
- USDA-ARS Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - James L Graham
- Department of Nutrition, University of California Davis, Davis, California, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | | | - Christopher E Randolph
- Center for Translational Pediatric Research, Arkansas Children's Research Institute, Little Rock, Arkansas, USA
| | - Becky Moody
- USDA-ARS Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
| | - Michael S Robeson
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ping Kang
- USDA-ARS Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
| | - Renee Fox
- USDA-ARS Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
| | - Renny Lan
- USDA-ARS Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Lindsay Pack
- USDA-ARS Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
| | - Noah Woford
- College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, Tennessee, USA
| | - Laxmi Yeruva
- USDA-ARS Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
| | - Tanya LeRoith
- Department of Biomedical Science and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Kimber L Stanhope
- Department of Nutrition, University of California Davis, Davis, California, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Peter J Havel
- Department of Nutrition, University of California Davis, Davis, California, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| |
Collapse
|
13
|
Chandrasekaran P, Weiskirchen R. The Role of Obesity in Type 2 Diabetes Mellitus-An Overview. Int J Mol Sci 2024; 25:1882. [PMID: 38339160 PMCID: PMC10855901 DOI: 10.3390/ijms25031882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Obesity or excessive weight gain is identified as the most important and significant risk factor in the development and progression of type 2 diabetes mellitus (DM) in all age groups. It has reached pandemic dimensions, making the treatment of obesity crucial in the prevention and management of type 2 DM worldwide. Multiple clinical studies have demonstrated that moderate and sustained weight loss can improve blood glucose levels, insulin action and reduce the need for diabetic medications. A combined approach of diet, exercise and lifestyle modifications can successfully reduce obesity and subsequently ameliorate the ill effects and deadly complications of DM. This approach also helps largely in the prevention, control and remission of DM. Obesity and DM are chronic diseases that are increasing globally, requiring new approaches to manage and prevent diabetes in obese individuals. Therefore, it is essential to understand the mechanistic link between the two and design a comprehensive approach to increase life expectancy and improve the quality of life in patients with type 2 DM and obesity. This literature review provides explicit information on the clinical definitions of obesity and type 2 DM, the incidence and prevalence of type 2 DM in obese individuals, the indispensable role of obesity in the pathophysiology of type 2 DM and their mechanistic link. It also discusses clinical studies and outlines the recent management approaches for the treatment of these associated conditions. Additionally, in vivo studies on obesity and type 2 DM are discussed here as they pave the way for more rigorous development of therapeutic approaches.
Collapse
Affiliation(s)
- Preethi Chandrasekaran
- UT Southwestern Medical Center Dallas, 5323 Harry Hines Blvd. ND10.504, Dallas, TX 75390-9014, USA
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH), University Hospital Aachen, D-52074 Aachen, Germany
| |
Collapse
|
14
|
Rosenberg JL, Schaible E, Bostrom A, Lazar AA, Graham JL, Stanhope KL, Ritchie RO, Alliston TN, Lotz JC, Havel PJ, Acevedo C, Fields AJ. Type 2 diabetes impairs annulus fibrosus fiber deformation and rotation under disc compression in the University of California Davis type 2 diabetes mellitus (UCD-T2DM) rat model. PNAS NEXUS 2023; 2:pgad363. [PMID: 38094616 PMCID: PMC10718642 DOI: 10.1093/pnasnexus/pgad363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/17/2023] [Indexed: 12/17/2023]
Abstract
Understanding the biomechanical behavior of the intervertebral disc is crucial for studying disease mechanisms and developing tissue engineering strategies for managing disc degeneration. We used synchrotron small-angle X-ray scattering to investigate how changes to collagen behavior contribute to alterations in the disc's ability to resist compression. Coccygeal motion segments from 6-month-old lean Sprague-Dawley rats ( n = 7 ) and diabetic obese University of California Davis type 2 diabetes mellitus (UCD-T2DM) rats ( n = 6 , diabetic for 68 ± 7 days) were compressed during simultaneous synchrotron scanning to measure collagen strain at the nanoscale (beamline 7.3.3 of the Advanced Light Source). After compression, the annulus fibrosus was assayed for nonenzymatic cross-links. In discs from lean rats, resistance to compression involved two main energy-dissipation mechanisms at the nanoscale: (1) rotation of the two groups of collagen fibrils forming the annulus fibrosus and (2) straightening (uncrimping) and stretching of the collagen fibrils. In discs from diabetic rats, both mechanisms were significantly impaired. Specifically, diabetes reduced fibril rotation by 31% and reduced collagen fibril strain by 30% (compared to lean discs). The stiffening of collagen fibrils in the discs from diabetic rats was consistent with a 31% higher concentration of nonenzymatic cross-links and with evidence of earlier onset plastic deformations such as fibril sliding and fibril-matrix delamination. These findings suggest that fibril reorientation, stretching, and straightening are key deformation mechanisms that facilitate whole-disc compression, and that type 2 diabetes impairs these efficient and low-energy elastic deformation mechanisms, thereby altering whole-disc behavior and inducing the earlier onset of plastic deformation.
Collapse
Affiliation(s)
- James L Rosenberg
- Departments of Mechanical and Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Eric Schaible
- Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA
| | - Alan Bostrom
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94143, USA
| | - Ann A Lazar
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94143, USA
| | - James L Graham
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Kimber L Stanhope
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Robert O Ritchie
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - Tamara N Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143, USA
| | - Jeffrey C Lotz
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143, USA
| | - Peter J Havel
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Claire Acevedo
- Departments of Mechanical and Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093, USA
| | - Aaron J Fields
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
15
|
Pandey S, Chmelir T, Chottova Dvorakova M. Animal Models in Diabetic Research-History, Presence, and Future Perspectives. Biomedicines 2023; 11:2852. [PMID: 37893225 PMCID: PMC10603837 DOI: 10.3390/biomedicines11102852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Diabetes mellitus (DM) is a very serious disease, the incidence of which has been increasing worldwide. The beginning of diabetic research can be traced back to the 17th century. Since then, animals have been experimented on for diabetic research. However, the greatest development of diabetes research occurred in the second half of the last century, along with the development of laboratory techniques. Information obtained by monitoring patients and animal models led to the finding that there are several types of DM that differ significantly from each other in the causes of the onset and course of the disease. Through different types of animal models, researchers have studied the pathophysiology of all types of diabetic conditions and discovered suitable methods for therapy. Interestingly, despite the unquestionable success in understanding DM through animal models, we did not fully succeed in transferring the data obtained from animal models to human clinical research. On the contrary, we have observed that the chances of drug failure in human clinical trials are very high. In this review, we will summarize the history and presence of animal models in the research of DM over the last hundred years. Furthermore, we have summarized the new methodological approaches, such as "organ-on-chip," that have the potential to screen the newly discovered drugs for human clinical trials and advance the level of knowledge about diabetes, as well as its therapy, towards a personalized approach.
Collapse
Affiliation(s)
- Shashank Pandey
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic;
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Tomas Chmelir
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic;
| | - Magdalena Chottova Dvorakova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic;
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic;
| |
Collapse
|
16
|
Yagihashi S. Contribution of animal models to diabetes research: Its history, significance, and translation to humans. J Diabetes Investig 2023; 14:1015-1037. [PMID: 37401013 PMCID: PMC10445217 DOI: 10.1111/jdi.14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 07/05/2023] Open
Abstract
Diabetes mellitus is still expanding globally and is epidemic in developing countries. The combat of this plague has caused enormous economic and social burdens related to a lowered quality of life in people with diabetes. Despite recent significant improvements of life expectancy in patients with diabetes, there is still a need for efforts to elucidate the complexities and mechanisms of the disease processes to overcome this difficult disorder. To this end, the use of appropriate animal models in diabetes studies is invaluable for translation to humans and for the development of effective treatment. In this review, a variety of animal models of diabetes with spontaneous onset in particular will be introduced and discussed for their implication in diabetes research.
Collapse
Affiliation(s)
- Soroku Yagihashi
- Department of Exploratory Medicine for Nature, Life and HumansToho University School of MedicineChibaJapan
- Department of PathologyHirosaki University Graduate School of MedicineHirosakiJapan
| |
Collapse
|
17
|
Razan MR, Amissi S, Islam RA, Graham JL, Stanhope KL, Havel PJ, Rahimian R. Moderate-Intensity Exercise Improves Mesenteric Arterial Function in Male UC Davis Type-2 Diabetes Mellitus (UCD-T2DM) Rats: A Shift in the Relative Importance of Endothelium-Derived Relaxing Factors (EDRF). Biomedicines 2023; 11:biomedicines11041129. [PMID: 37189747 DOI: 10.3390/biomedicines11041129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
The beneficial cardiovascular effects of exercise are well documented, however the mechanisms by which exercise improves vascular function in diabetes are not fully understood. This study investigates whether there are (1) improvements in blood pressure and endothelium-dependent vasorelaxation (EDV) and (2) alterations in the relative contribution of endothelium-derived relaxing factors (EDRF) in modulating mesenteric arterial reactivity in male UC Davis type-2 diabetes mellitus (UCD-T2DM) rats, following an 8-week moderate-intensity exercise (MIE) intervention. EDV to acetylcholine (ACh) was measured before and after exposure to pharmacological inhibitors. Contractile responses to phenylephrine and myogenic tone were determined. The arterial expressions of endothelial nitric oxide (NO) synthase (eNOS), cyclooxygenase (COX), and calcium-activated potassium channel (KCa) channels were also measured. T2DM significantly impaired EDV, increased contractile responses and myogenic tone. The impairment of EDV was accompanied by elevated NO and COX importance, whereas the contribution of prostanoid- and NO-independent (endothelium-derived hyperpolarization, EDH) relaxation was not apparent compared to controls. MIE 1) enhanced EDV, while it reduced contractile responses, myogenic tone and systolic blood pressure (SBP), and 2) caused a shift away from a reliance on COX toward a greater reliance on EDH in diabetic arteries. We provide the first evidence of the beneficial effects of MIE via the altered importance of EDRF in mesenteric arterial relaxation in male UCD-T2DM rats.
Collapse
Affiliation(s)
- Md Rahatullah Razan
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| | - Said Amissi
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| | - Rifat Ara Islam
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| | - James L Graham
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Kimber L Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Roshanak Rahimian
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| |
Collapse
|
18
|
Rashmi P, Urmila A, Likhit A, Subhash B, Shailendra G. Rodent models for diabetes. 3 Biotech 2023; 13:80. [PMID: 36778766 PMCID: PMC9908807 DOI: 10.1007/s13205-023-03488-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Diabetes mellitus (DM) is associated with many health complications and is potentially a morbid condition. As prevalence increases at an alarming rate around the world, research into new antidiabetic compounds with different mechanisms is the top priority. Therefore, the preclinical experimental induction of DM is imperative for advancing knowledge, understanding pathogenesis, and developing new drugs. Efforts have been made to examine recent literature on the various induction methods of Type I and Type II DM. The review summarizes the different in vivo models of DM induced by chemical, surgical, and genetic (immunological) manipulations and the use of pathogens such as viruses. For good preclinical assessment, the animal model must exhibit face, predictive, and construct validity. Among all reported models, chemically induced DM with streptozotocin was found to be the most preferred model. However, the purpose of the research and the outcomes to be achieved should be taken into account. This review was aimed at bringing together models, benefits, limitations, species, and strains. It will help the researcher to understand the pathophysiology of DM and to choose appropriate animal models.
Collapse
Affiliation(s)
- Patil Rashmi
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, 411038 India
| | - Aswar Urmila
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, 411038 India
| | - Akotkar Likhit
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, 411038 India
| | - Bodhankar Subhash
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, 411038 India
| | - Gurav Shailendra
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Panaji, Goa India
| |
Collapse
|
19
|
Huo Y, Grotle AK, McCuller RK, Samora M, Stanhope KL, Havel PJ, Harrison ML, Stone AJ. Exaggerated exercise pressor reflex in male UC Davis type 2 diabetic rats is due to the pathophysiology of the disease and not aging. Front Physiol 2023; 13:1063326. [PMID: 36703927 PMCID: PMC9871248 DOI: 10.3389/fphys.2022.1063326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction: Studies in humans and animals have found that type 2 diabetes mellitus (T2DM) exaggerates the blood pressure (BP) response to exercise, which increases the risk of adverse cardiovascular events such as heart attack and stroke. T2DM is a chronic disease that, without appropriate management, progresses in severity as individuals grow older. Thus, it is possible that aging may also exaggerate the BP response to exercise. Therefore, the purpose of the current study was to determine the effect of the pathophysiology of T2DM on the exercise pressor reflex independent of aging. Methods: We compared changes in peak pressor (mean arterial pressure; ΔMAP), BP index (ΔBPi), heart rate (ΔHR), and HR index (ΔHRi) responses to static contraction, intermittent contraction, and tendon stretch in UCD-T2DM rats to those of healthy, age-matched Sprague Dawley rats at three different stages of the disease. Results: We found that the ΔMAP, ΔBPi, ΔHR, and ΔHRi responses to static contraction were significantly higher in T2DM rats (ΔMAP: 29 ± 4 mmHg; ΔBPi: 588 ± 51 mmHg•s; ΔHR: 22 ± 5 bpm; ΔHRi: 478 ± 45 bpm•s) compared to controls (ΔMAP: 10 ± 1 mmHg, p < 0.0001; ΔBPi: 121 ± 19 mmHg•s, p < 0.0001; ΔHR: 5 ± 2 bpm, p = 0.01; ΔHRi: 92 ± 19 bpm•s, p < 0.0001) shortly after diabetes onset. Likewise, the ΔMAP, ΔBPi, and ΔHRi to tendon stretch were significantly higher in T2DM rats (ΔMAP: 33 ± 7 mmHg; ΔBPi: 697 ± 70 mmHg•s; ΔHRi: 496 ± 51 bpm•s) compared to controls (ΔMAP: 12 ± 5 mmHg, p = 0.002; ΔBPi: 186 ± 30 mmHg•s, p < 0.0001; ΔHRi: 144 ± 33 bpm•s, p < 0.0001) shortly after diabetes onset. The ΔBPi and ΔHRi, but not ΔMAP, to intermittent contraction was significantly higher in T2DM rats (ΔBPi: 543 ± 42 mmHg•s; ΔHRi: 453 ± 53 bpm•s) compared to controls (ΔBPi: 140 ± 16 mmHg•s, p < 0.0001; ΔHRi: 108 ± 22 bpm•s, p = 0.0002) shortly after diabetes onset. Discussion: Our findings suggest that the exaggerated exercise pressor reflex and mechanoreflex seen in T2DM are due to the pathophysiology of the disease and not aging.
Collapse
Affiliation(s)
- Yu Huo
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Ann-Katrin Grotle
- Department of Sport, Food and Natural Sciences, Western Norway University of Applied Science, Bergen, Norway
| | - Richard K. McCuller
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Milena Samora
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Kimber L. Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Peter J. Havel
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Michelle L. Harrison
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Audrey J. Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
20
|
Swarbrick MM, Cox CL, Graham JL, Knudsen LB, Stanhope K, Raun K, Havel PJ. Growth hormone treatment does not augment the anti-diabetic effects of liraglutide in UCD-T2DM rats. Endocrinol Diabetes Metab 2022; 6:e392. [PMID: 36480511 PMCID: PMC9836246 DOI: 10.1002/edm2.392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION The incretin hormone glucagon-like peptide-1 (GLP-1) slows gastric emptying, increases satiety and enhances insulin secretion. GLP-1 receptor agonists, such as liraglutide, are used therapeutically in humans to improve glycaemic control and delay the onset of type 2 diabetes mellitus (T2DM). In UCD-T2DM rats, a model of polygenic obesity and insulin resistance, we have previously reported that daily liraglutide administration delayed diabetes onset by >4 months. Growth hormone (GH) may exert anti-diabetic effects, including increasing β-cell mass and insulin secretion, while disrupting GH signalling in mice reduces both the size and number of pancreatic islets. We therefore hypothesized that GH supplementation would augment liraglutide's anti-diabetic effects. METHODS Male UCD-T2DM rats were treated daily with GH (0.3 mg/kg) and/or liraglutide (0.2 mg/kg) from 2 months of age. Control (vehicle) and food-restricted (with food intake matched to liraglutide-treated rats) groups were also studied. The effects of treatment on diabetes onset and weight gain were assessed, as well as measures of glucose tolerance, lipids and islet morphology. RESULTS Liraglutide treatment significantly reduced food intake and body weight and improved glucose tolerance and insulin sensitivity, relative to controls. After 4.5 months, none of the liraglutide-treated rats had developed T2DM (overall p = .019). Liraglutide-treated rats also displayed lower fasting triglyceride (TG) concentrations and lower hepatic TG content, compared to control rats. Islet morphology was improved in liraglutide-treated rats, with significantly increased pancreatic insulin content (p < .05 vs. controls). Although GH treatment tended to increase body weight (and gastrocnemius muscle weight), there were no obvious effects on diabetes onset or other diabetes-related outcomes. CONCLUSION GH supplementation did not augment the anti-diabetic effects of liraglutide.
Collapse
Affiliation(s)
- Michael M. Swarbrick
- Departments of Nutrition and Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisOne Shielad AvenueDavisCaliforniaUSA,Present address:
Bone Research Program, ANZAC Research InstituteThe University of SydneyConcordNew South WalesAustralia,Present address:
Concord Clinical School, Faculty of Medicine and HealthThe University of SydneyAustralia
| | - Chad L. Cox
- Departments of Nutrition and Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisOne Shielad AvenueDavisCaliforniaUSA
| | - James L. Graham
- Departments of Nutrition and Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisOne Shielad AvenueDavisCaliforniaUSA
| | | | - Kimber Stanhope
- Departments of Nutrition and Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisOne Shielad AvenueDavisCaliforniaUSA
| | | | - Peter J. Havel
- Departments of Nutrition and Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisOne Shielad AvenueDavisCaliforniaUSA
| |
Collapse
|
21
|
Dietary Carbohydrate as Glycemic Load, Not Fat, Coupled with Genetic Permissiveness Favoring Rapid Growth and Extra Calories, Dictate Metabolic Syndrome and Diabetes Induction in Nile Rats ( Arvicanthis niloticus). Nutrients 2022; 14:nu14153064. [PMID: 35893924 PMCID: PMC9331090 DOI: 10.3390/nu14153064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Objective: Whether dietary carbohydrate (CHO) or fat is more involved in type 2 diabetes (T2DM) induction uncomplicated by dietary fiber was addressed in a spontaneous diabetic model, the diurnal Nile rat that mimics the human condition. Methods: A total of 138 male Nile rats were fed plant-based and animal-based saturated fat where 10% energy as CHO and fat were exchanged across 5 diets keeping protein constant, from 70:10:20 to 20:60:20 as CHO:fat:protein %energy. Diabetes induction was analyzed by: 1. diet composition, i.e., CHO:fat ratio, to study the impact of diet; 2. quintiles of average caloric intake per day to study the impact of calories; 3. quintiles of diabetes severity to study the epigenetic impact on diabetes resistance. Results: High glycemic load (GLoad) was most problematic if coupled with high caloric consumption. Diabetes severity highlighted rapid growth and caloric intake as likely epigenetic factors distorting glucose metabolism. The largest weanling rats ate more, grew faster, and developed more diabetes when the dietary GLoad exceeded their gene-based metabolic capacity for glucose disposal. Diabetes risk increased for susceptible rats when energy intake exceeded 26 kcal/day and the GLoad was >175/2000 kcal of diet and when the diet provided >57% energy as CHO. Most resistant rats ate <25 kcal/day independent of the CHO:fat diet ratio or the GLoad adjusted to body size. Conclusion: Beyond the CHO:fat ratio and GLoad, neither the type of fat nor the dietary polyunsaturated/saturated fatty acid (P/S) ratio had a significant impact, suggesting genetic permissiveness affecting caloric and glucose intake and glucose disposition were key to modulating Nile rat diabetes. Fat became protective by limiting GLoad when it contributed >40% energy and displaced CHO to <50% energy, thereby decreasing the number of diabetic rats and diabetes severity.
Collapse
|
22
|
Razan MR, Akther F, Islam RA, Graham JL, Stanhope KL, Havel PJ, Rahimian R. 17β-Estradiol Treatment Improves Acetylcholine-Induced Relaxation of Mesenteric Arteries in Ovariectomized UC Davis Type 2 Diabetes Mellitus Rats in Prediabetic State. Front Physiol 2022; 13:900813. [PMID: 35784863 PMCID: PMC9248973 DOI: 10.3389/fphys.2022.900813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
We recently reported sex differences in mesenteric arterial function of the UC Davis type-2 diabetes mellitus (UCD-T2DM) rats as early as the prediabetic state. We reported that mesenteric arteries (MA) from prediabetic male rats exhibited a greater impairment compared to that in prediabetic females. However, when females became diabetic, they exhibited a greater vascular dysfunction than males. Thus, the aim of this study was to investigate whether the female sex hormone, estrogen preserves mesenteric arterial vasorelaxation in UCD-T2DM female rats at an early prediabetic state. Age-matched female Sprague Dawley and prediabetic (PD) UCD-T2DM rats were ovariectomized (OVX) and subcutaneously implanted with either placebo or 17β-estradiol (E2, 1.5 mg) pellets for 45 days. We assessed the contribution of endothelium-derived relaxing factors (EDRF) to acetylcholine (ACh)-induced vasorelaxation, using pharmacological inhibitors. Responses to sodium nitroprusside (SNP) and phenylephrine (PE) were also measured. Additionally, metabolic parameters and expression of some targets associated with vascular and insulin signaling were determined. We demonstrated that the responses to ACh and SNP were severely impaired in the prediabetic state (PD OVX) rats, while E2 treatment restored vasorelaxation in the PD OVX + E2. Moreover, the responses to PE was significantly enhanced in MA of PD OVX groups, regardless of placebo or E2 treatment. Overall, our data suggest that 1) the impairment of ACh responses in PD OVX rats may, in part, result from the elevated contractile responses to PE, loss of contribution of endothelium-dependent hyperpolarization (EDH) to vasorelaxation, and a decreased sensitivity of MA to nitric oxide (NO), and 2) the basis for the protective effects of E2 may be partly attributed to the elevation of the NO contribution to vasorelaxation and its interaction with MA as well as potential improvement of insulin signaling. Here, we provide the first evidence of the role of E2 in protecting MA from early vascular dysfunction in prediabetic female rats.
Collapse
Affiliation(s)
- Md Rahatullah Razan
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| | - Farjana Akther
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| | - Rifat A. Islam
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| | - James L. Graham
- Department of Molecular Biosciences, School of Veterinary Medicine, Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Kimber L. Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Peter J. Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Roshanak Rahimian
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
- *Correspondence: Roshanak Rahimian,
| |
Collapse
|
23
|
Cardiac NF-κB Acetylation Increases While Nrf2-Related Gene Expression and Mitochondrial Activity Are Impaired during the Progression of Diabetes in UCD-T2DM Rats. Antioxidants (Basel) 2022; 11:antiox11050927. [PMID: 35624791 PMCID: PMC9137621 DOI: 10.3390/antiox11050927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
The onset of type II diabetes increases the heart’s susceptibility to oxidative damage because of the associated inflammation and diminished antioxidant response. Transcription factor NF-κB initiates inflammation while Nrf2 controls antioxidant defense. Current evidence suggests crosstalk between these transcription factors that may become dysregulated during type II diabetes mellitus (T2DM) manifestation. The objective of this study was to examine the dynamic changes that occur in both transcription factors and target genes during the progression of T2DM in the heart. Novel UC Davis T2DM (UCD-T2DM) rats at the following states were utilized: (1) lean, control Sprague-Dawley (SD; n = 7), (2) insulin-resistant pre-diabetic UCD-T2DM (Pre; n = 9), (3) 2-week recently diabetic UCD-T2DM (2Wk; n = 9), (4) 3-month diabetic UCD-T2DM (3Mo; n = 14), and (5) 6-month diabetic UCD-T2DM (6Mo; n = 9). NF-κB acetylation increased 2-fold in 3Mo and 6Mo diabetic animals compared to SD and Pre animals. Nox4 protein increased 4-fold by 6Mo compared to SD. Nrf2 translocation increased 82% in Pre compared to SD but fell 47% in 6Mo animals. GCLM protein fell 35% in 6Mo animals compared to Pre. Hmox1 mRNA decreased 45% in 6Mo animals compared to SD. These data suggest that during the progression of T2DM, NF-κB related genes increase while Nrf2 genes are suppressed or unchanged, perpetuating inflammation and a lesser ability to handle an oxidant burden altering the heart’s redox state. Collectively, these changes likely contribute to the diabetes-associated cardiovascular complications.
Collapse
|
24
|
Plante I, Winn LM, Vaillancourt C, Grigorova P, Parent L. Killing two birds with one stone: Pregnancy is a sensitive window for endocrine effects on both the mother and the fetus. ENVIRONMENTAL RESEARCH 2022; 205:112435. [PMID: 34843719 DOI: 10.1016/j.envres.2021.112435] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Pregnancy is a complex process requiring tremendous physiological changes in the mother in order to fulfill the needs of the growing fetus, and to give birth, expel the placenta and nurse the newborn. These physiological modifications are accompanied with psychological changes, as well as with variations in habits and behaviors. As a result, this period of life is considered as a sensitive window as impaired functional and physiological changes in the mother can have short- and long-term impacts on her health. In addition, dysregulation of the placenta and of mechanisms governing placentation have been linked to chronic diseases later-on in life for the fetus, in a concept known as the Developmental Origin of Health and Diseases (DOHaD). This concept stipulates that any change in the environment during the pre-conception and perinatal (in utero life and neonatal) period to puberty, can be "imprinted" in the organism, thereby impacting the health and risk of chronic diseases later in life. Pregnancy is a succession of events that is regulated, in large part, by hormones and growth factors. Therefore, small changes in hormonal balance can have important effects on both the mother and the developing fetus. An increasing number of studies demonstrate that exposure to endocrine disrupting compounds (EDCs) affect both the mother and the fetus giving rise to growing concerns surrounding these exposures. This review will give an overview of changes that happen during pregnancy with respect to the mother, the placenta, and the fetus, and of the current literature regarding the effects of EDCs during this specific sensitive window of exposure.
Collapse
Affiliation(s)
- Isabelle Plante
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada.
| | - Louise M Winn
- Queen's University, School of Environmental Studies, Department of Biomedical and Molecular Sciences, Kingston, ON, Canada
| | | | - Petya Grigorova
- Département Science et Technologie, Université TELUQ, Montreal, QC, Canada
| | - Lise Parent
- Département Science et Technologie, Université TELUQ, Montreal, QC, Canada
| |
Collapse
|
25
|
Wang AN, Carlos J, Fraser GM, McGuire JJ. Zucker Diabetic Sprague Dawley rat (ZDSD): type 2 diabetes translational research model. Exp Physiol 2022; 107:265-282. [PMID: 35178802 PMCID: PMC9314054 DOI: 10.1113/ep089947] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
Abstract
New Findings What is the topic of this review? The Zucker Diabetic‐Sprague Dawley (ZDSD) rat is in the early adoption phase of use by researchers in the fields of diabetes, including prediabetes, obesity and metabolic syndrome. It is essential that physiology researchers choose preclinical models that model human type 2 diabetes appropriately and are aware of the limitations on experimental design. What advances does it highlight? Our review of the scientific literature finds that although sex, age and diets contribute to variability, the ZDSD phenotype and disease progression model the characteristics of humans who have prediabetes and diabetes, including co‐morbidities.
Abstract Type 2 diabetes (T2D) is a prevalent disease and a significant concern for global population health. For persons with T2D, clinical treatments target not only the characteristics of hyperglycaemia and insulin resistance, but also co‐morbidities, such as obesity, cardiovascular and renal disease, neuropathies and skeletal bone conditions. The Zucker Diabetic‐Sprague Dawley (ZDSD) rat is a rodent model developed for experimental studies of T2D. We reviewed the scientific literature to highlight the characteristics of T2D development and the associated phenotypes, such as metabolic syndrome, cardiovascular complications and bone and skeletal pathologies in ZDSD rats. We found that ZDSD phenotype characteristics are independent of leptin receptor signalling. The ZDSD rat develops prediabetes, then progresses to overt diabetes that is accelerated by introduction of a timed high‐fat diet. In male ZDSD rats, glycated haemoglobin (HbA1c) increases at a constant rate from 7 to >30 weeks of age. Diabetic ZDSD rats are moderately hypertensive compared with other rat strains. Diabetes in ZDSD rats leads to endothelial dysfunction in specific vasculatures, impaired wound healing, decreased systolic and diastolic cardiac function, neuropathy and nephropathy. Changes to bone composition and the skeleton increase the risk of bone fractures. Zucker Diabetic‐Sprague Dawley rats have not yet achieved widespread use by researchers. We highlight sex‐related differences in the ZDSD phenotype and gaps in knowledge for future studies. Overall, scientific data support the premise that the phenotype and disease progression in ZDSD rats models the characteristics in humans. We conclude that ZDSD rats are an advantageous model to advance understanding and discovery of treatments for T2D through preclinical research.
Collapse
Affiliation(s)
- Andrea N Wang
- Departments of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Joselia Carlos
- Departments of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Graham M Fraser
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland, Canada
| | - John J McGuire
- Departments of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,Physiology & Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
26
|
Ding N, Zheng C. Jiangtang Tongmai Prescription Reduced Diabetic Lung Injury Through SnoN and TGF-β1/Smads Signaling Pathway. Front Endocrinol (Lausanne) 2022; 13:846583. [PMID: 35784541 PMCID: PMC9248361 DOI: 10.3389/fendo.2022.846583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/21/2022] [Indexed: 11/27/2022] Open
Abstract
By establishing a rat diabetes model in rats with intervening treatment by Jiangtang Tongmai Prescription (JTTMP), this study explored the restorative pairing effect of JTTMP on diabetic lung injury. The model of type II diabetes model was used to establish the rat diabetes model, using a high-fat diet and streptozotocin (STZ) induction. Different doses of JTTMP and metformin were administered as a therapeutic to intervene, and blood was collected to assess the blood glucose level of each group of rats. HE (Hematoxylin and eosin (H&E) staining was performed to detect the morphological changes in rat lung tissue and enzyme-linked immunoassay ELISA was used to detect and quantify the expression of interleukin (IL)-6, TNF tumor necrosis factor-ɑa, and IL-1β in serum and the lung tissue of each group of rats. The level expression of TGF-β1 [transforming growth factor (TGF)-β1), SnoN (transcriptional co-repressor Ski-N terminal (SnoN)], Smad2, Smad3, Smad7, and other signaling pathway proteins were assessed by Western blot. In comparison with the normal control (NC) group, rats in the diabetes model (DM) group lost weight and showed significantly increased blood sugar levels. The levels of TGF-β1 and Smad2/3 were increased in the DM group but Smad7 decreased. After 8 weeks of JTTMP intervention, the level of TGF-β1 and Smad2/3 decreased but Smad7 increased, blood sugar decreased significantly and the expression of inflammatory factors in lung tissue decreased. Therefore, JTTMP may activate SnoN and the downstream TGF-β1/Smads signaling pathway to repair diabetic lung injury, which suggests its application has potential for future clinical treatment of diabetes with lung injury.
Collapse
Affiliation(s)
- Nian Ding
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Medical Ward, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Chenghong Zheng
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Medical Ward, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
- *Correspondence: Chenghong Zheng,
| |
Collapse
|
27
|
Piccolo BD, Graham JL, Kang P, Randolph CE, Shankar K, Yeruva L, Fox R, Robeson MS, Moody B, LeRoith T, Stanhope KL, Adams SH, Havel PJ. Progression of diabetes is associated with changes in the ileal transcriptome and ileal-colon morphology in the UC Davis Type 2 Diabetes Mellitus rat. Physiol Rep 2021; 9:e15102. [PMID: 34806320 PMCID: PMC8606862 DOI: 10.14814/phy2.15102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Deterioration in glucose homeostasis has been associated with intestinal dysbiosis, but it is not known how metabolic dysregulation alters the gastrointestinal environment. We investigated how the progression of diabetes alters ileal and colonic epithelial mucosal structure, microbial abundance, and transcript expression in the University of California Davis Type 2 Diabetes Mellitus (UCD-T2DM) rat model. Male UCD-T2DM rats (age ~170 days) were included if <1-month (n = 6, D1M) or 3-month (n = 6, D3M) post-onset of diabetes. Younger nondiabetic UCD-T2DM rats were included as a nondiabetic comparison (n = 6, ND, age ~70 days). Ileum villi height/crypt depths and colon crypt depths were assessed by histology. Microbial abundance of colon content was measured with 16S rRNA sequencing. Ileum and colon transcriptional abundances were analyzed using RNA sequencing. Ileum villi height and crypt depth were greater in D3M rats compared to ND. Colon crypt depth was greatest in D3M rats compared to both ND and D1M rats. Colon abundances of Akkermansia and Muribaculaceae were lower in D3M rats relative to D1M, while Oscillospirales, Phascolarctobacterium, and an unidentified genus of Lachnospiraceae were higher. Only two transcripts were altered by diabetes advancement within the colon; however, 2039 ileal transcripts were altered. Only colonic abundances of Sptlc3, Enpp7, Slc7a15, and Kctd14 had more than twofold changes between D1M and D3M rats. The advancement of diabetes in the UCD-T2DM rat results in a trophic effect on the mucosal epithelia and was associated with regulation of gastrointestinal tract RNA expression, which appears more pronounced in the ileum relative to the colon.
Collapse
Affiliation(s)
- Brian D. Piccolo
- USDA‐ARS Arkansas Children's Nutrition CenterLittle RockArkansasUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - James L. Graham
- Department of Molecular BiosciencesSchool of Veterinary MedicineUniversity of California DavisDavisCaliforniaUSA
- Department of NutritionUniversity of California DavisDavisCaliforniaUSA
| | - Ping Kang
- USDA‐ARS Arkansas Children's Nutrition CenterLittle RockArkansasUSA
| | - Christopher E. Randolph
- Center for Translational Pediatric ResearchArkansas Children's Research InstituteLittle RockArkansasUSA
| | - Kartik Shankar
- Department of PediatricsSection of NutritionUniversity of Colorado School of MedicineAnschutz Medical CampusAuroraColoradoUSA
| | - Laxmi Yeruva
- USDA‐ARS Arkansas Children's Nutrition CenterLittle RockArkansasUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
- Arkansas Children's Research InstituteLittle RockArkansasUSA
| | - Renee Fox
- USDA‐ARS Arkansas Children's Nutrition CenterLittle RockArkansasUSA
| | - Michael S. Robeson
- Department of Biomedical InformaticsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Becky Moody
- USDA‐ARS Arkansas Children's Nutrition CenterLittle RockArkansasUSA
| | - Tanya LeRoith
- Department of Biomedical Science and PathobiologyVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| | - Kimber L. Stanhope
- Department of Molecular BiosciencesSchool of Veterinary MedicineUniversity of California DavisDavisCaliforniaUSA
- Department of NutritionUniversity of California DavisDavisCaliforniaUSA
| | - Sean H. Adams
- Department of SurgeryUniversity of California Davis School of MedicineSacramentoCaliforniaUSA
- Center for Alimentary and Metabolic ScienceUniversity of California Davis School of MedicineSacramentoCaliforniaUSA
| | - Peter J. Havel
- Department of Molecular BiosciencesSchool of Veterinary MedicineUniversity of California DavisDavisCaliforniaUSA
- Department of NutritionUniversity of California DavisDavisCaliforniaUSA
| |
Collapse
|
28
|
Anekonda VT, Thompson BW, Ho JM, Roberts ZS, Edwards MM, Nguyen HK, Dodson AD, Wolden-Hanson T, Chukri DW, Herbertson AJ, Graham JL, Havel PJ, Wietecha TA, O’Brien KD, Blevins JE. Hindbrain Administration of Oxytocin Reduces Food Intake, Weight Gain and Activates Catecholamine Neurons in the Hindbrain Nucleus of the Solitary Tract in Rats. J Clin Med 2021; 10:5078. [PMID: 34768597 PMCID: PMC8584350 DOI: 10.3390/jcm10215078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Existing studies show that CNS oxytocin (OT) signaling is important in the control of energy balance, but it is unclear which neurons may contribute to these effects. Our goals were to examine (1) the dose-response effects of acute OT administration into the third (3V; forebrain) and fourth (4V; hindbrain) ventricles to assess sensitivity to OT in forebrain and hindbrain sites, (2) the extent to which chronic 4V administration of OT reduces weight gain associated with the progression of diet-induced obesity, and (3) whether nucleus tractus solitarius (NTS) catecholamine neurons are downstream targets of 4V OT. Initially, we examined the dose-response effects of 3V and 4V OT (0.04, 0.2, 1, or 5 μg). 3V and 4V OT (5 μg) suppressed 0.5-h food intake by 71.7 ± 6.0% and 60 ± 12.9%, respectively. 4V OT (0.04, 0.2, 1 μg) reduced food intake by 30.9 ± 12.9, 42.1 ± 9.4, and 56.4 ± 9.0%, respectively, whereas 3V administration of OT (1 μg) was only effective at reducing 0.5-h food intake by 38.3 ± 10.9%. We subsequently found that chronic 4V OT infusion, as with chronic 3V infusion, reduced body weight gain (specific to fat mass) and tended to reduce plasma leptin in high-fat diet (HFD)-fed rats, in part, through a reduction in energy intake. Lastly, we determined that 4V OT increased the number of hindbrain caudal NTS Fos (+) neurons (156 ± 25) relative to vehicle (12 ± 3). The 4V OT also induced Fos in tyrosine hydroxylase (TH; marker of catecholamine neurons) (+) neurons (25 ± 7%) relative to vehicle (0.8 ± 0.3%). Collectively, these findings support the hypothesis that OT within the hindbrain is effective at reducing food intake, weight gain, and adiposity and that NTS catecholamine neurons in addition to non-catecholaminergic neurons are downstream targets of CNS OT.
Collapse
Affiliation(s)
- Vishwanath T. Anekonda
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (V.T.A.); (B.W.T.); (J.M.H.); (Z.S.R.); (M.M.E.); (H.K.N.); (A.D.D.); (T.W.-H.); (D.W.C.); (A.J.H.)
| | - Benjamin W. Thompson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (V.T.A.); (B.W.T.); (J.M.H.); (Z.S.R.); (M.M.E.); (H.K.N.); (A.D.D.); (T.W.-H.); (D.W.C.); (A.J.H.)
| | - Jacqueline M. Ho
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (V.T.A.); (B.W.T.); (J.M.H.); (Z.S.R.); (M.M.E.); (H.K.N.); (A.D.D.); (T.W.-H.); (D.W.C.); (A.J.H.)
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA;
| | - Zachary S. Roberts
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (V.T.A.); (B.W.T.); (J.M.H.); (Z.S.R.); (M.M.E.); (H.K.N.); (A.D.D.); (T.W.-H.); (D.W.C.); (A.J.H.)
| | - Melise M. Edwards
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (V.T.A.); (B.W.T.); (J.M.H.); (Z.S.R.); (M.M.E.); (H.K.N.); (A.D.D.); (T.W.-H.); (D.W.C.); (A.J.H.)
| | - Ha K. Nguyen
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (V.T.A.); (B.W.T.); (J.M.H.); (Z.S.R.); (M.M.E.); (H.K.N.); (A.D.D.); (T.W.-H.); (D.W.C.); (A.J.H.)
| | - Andrew D. Dodson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (V.T.A.); (B.W.T.); (J.M.H.); (Z.S.R.); (M.M.E.); (H.K.N.); (A.D.D.); (T.W.-H.); (D.W.C.); (A.J.H.)
| | - Tami Wolden-Hanson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (V.T.A.); (B.W.T.); (J.M.H.); (Z.S.R.); (M.M.E.); (H.K.N.); (A.D.D.); (T.W.-H.); (D.W.C.); (A.J.H.)
| | - Daniel W. Chukri
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (V.T.A.); (B.W.T.); (J.M.H.); (Z.S.R.); (M.M.E.); (H.K.N.); (A.D.D.); (T.W.-H.); (D.W.C.); (A.J.H.)
| | - Adam J. Herbertson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (V.T.A.); (B.W.T.); (J.M.H.); (Z.S.R.); (M.M.E.); (H.K.N.); (A.D.D.); (T.W.-H.); (D.W.C.); (A.J.H.)
| | - James L. Graham
- Department of Nutrition and Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (J.L.G.); (P.J.H.)
| | - Peter J. Havel
- Department of Nutrition and Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (J.L.G.); (P.J.H.)
| | - Tomasz A. Wietecha
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA;
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109, USA;
| | - Kevin D. O’Brien
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109, USA;
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - James E. Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (V.T.A.); (B.W.T.); (J.M.H.); (Z.S.R.); (M.M.E.); (H.K.N.); (A.D.D.); (T.W.-H.); (D.W.C.); (A.J.H.)
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA;
| |
Collapse
|
29
|
Edwards MM, Nguyen HK, Dodson AD, Herbertson AJ, Wietecha TA, Wolden-Hanson T, Graham JL, Honeycutt MK, Slattery JD, O’Brien KD, Havel PJ, Blevins JE. Effects of Combined Oxytocin and Beta-3 Receptor Agonist (CL 316243) Treatment on Body Weight and Adiposity in Male Diet-Induced Obese Rats. Front Physiol 2021; 12:725912. [PMID: 34566687 PMCID: PMC8457402 DOI: 10.3389/fphys.2021.725912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Previous studies have indicated that oxytocin (OT) reduces body weight in diet-induced obese (DIO) rodents through reductions in energy intake and increases in energy expenditure. We recently demonstrated that hindbrain [fourth ventricular (4V)] administration of OT evokes weight loss and elevates interscapular brown adipose tissue temperature (T IBAT ) in DIO rats. What remains unclear is whether OT can be used as an adjunct with other drugs that directly target beta-3 receptors in IBAT to promote BAT thermogenesis and reduce body weight in DIO rats. We hypothesized that the combined treatment of OT and the beta-3 agonist, CL 316243, would produce an additive effect to decrease body weight and adiposity in DIO rats by reducing energy intake and increasing BAT thermogenesis. We assessed the effects of 4V infusions of OT (16 nmol/day) or vehicle (VEH) in combination with daily intraperitoneal injections of CL 316243 (0.5 mg/kg) or VEH on food intake, T IBAT , body weight and body composition. OT and CL 316243 alone reduced body weight by 7.8 ± 1.3% (P < 0.05) and 9.1 ± 2.1% (P < 0.05), respectively, but the combined treatment produced more pronounced weight loss (15.5 ± 1.2%; P < 0.05) than either treatment alone. These effects were associated with decreased adiposity, adipocyte size, energy intake and increased uncoupling protein 1 (UCP-1) content in epididymal white adipose tissue (EWAT) (P < 0.05). In addition, CL 316243 alone (P < 0.05) and in combination with OT (P < 0.05) elevated T IBAT and IBAT UCP-1 content and IBAT thermogenic gene expression. These findings are consistent with the hypothesis that the combined treatment of OT and the beta-3 agonist, CL 316243, produces an additive effect to decrease body weight. The findings from the current study suggest that the effects of the combined treatment on energy intake, fat mass, adipocyte size and browning of EWAT were not additive and appear to be driven, in part, by transient changes in energy intake in response to OT or CL 316243 alone as well as CL 316243-elicited reduction of fat mass and adipocyte size and induction of browning of EWAT.
Collapse
Affiliation(s)
- Melise M. Edwards
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Ha K. Nguyen
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Andrew D. Dodson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Adam J. Herbertson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Tomasz A. Wietecha
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
| | - Tami Wolden-Hanson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - James L. Graham
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Mackenzie K. Honeycutt
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Jared D. Slattery
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Kevin D. O’Brien
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Peter J. Havel
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - James E. Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
30
|
Broz K, Walk RE, Tang SY. Complications in the spine associated with type 2 diabetes: The role of advanced glycation end-products. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2021; 11. [PMID: 35992525 PMCID: PMC9390092 DOI: 10.1016/j.medntd.2021.100065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2D) is an increasingly prevalent disease with numerous comorbidities including many in the spine. T2D is strongly linked with vertebral fractures, intervertebral disc (IVD) degeneration, and severe chronic spinal pain. Yet the causative mechanism for these musculoskeletal impairments remains unclear. The chronic hyperglycemic state in T2D promotes the formation of advanced glycation end-products (AGEs) in tissues, and the accumulation of AGEs may play a role in musculoskeletal complications by modifying the extracellular matrix, impairing cellular homeostasis, and perpetuating an inflammatory cascade via its receptor (RAGE). The AGE and RAGE associated alterations in extracellular matrix composition and morphological features of the vertebral bodies and IVDs are likely contributors to the incidence and severity of spinal pathologies in T2D. This review will broadly examine the effects of AGEs on tissues in the spine in the context of T2D, with an emphasis on the changes in the vertebrae and the IVD. Along with the clinical and epidemiological findings, we will provide an overview of preclinical rodent models of T2D that exhibit deficits in the IVD and vertebral bone. Elucidating the role of AGEs and RAGE will be crucial for understanding the disease mechanisms and translation therapies of musculoskeletal pathologies in T2D.
Collapse
Affiliation(s)
- Kaitlyn Broz
- Institute of Material Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Remy E. Walk
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Simon Y. Tang
- Institute of Material Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Corresponding author. Department of Orthopaedic Surgery, Washington University in St. Louis, School of Medicine, 660 S. Euclid Avenue, Campus Box 8233, St. Louis, MO, 63110, USA. (S.Y. Tang)
| |
Collapse
|
31
|
Park JM, Josan S, Hurd RE, Graham J, Havel PJ, Bendahan D, Mayer D, Chung Y, Spielman DM, Jue T. Hyperpolarized NMR study of the impact of pyruvate dehydrogenase kinase inhibition on the pyruvate dehydrogenase and TCA flux in type 2 diabetic rat muscle. Pflugers Arch 2021; 473:1761-1773. [PMID: 34415396 DOI: 10.1007/s00424-021-02613-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 01/06/2023]
Abstract
The role of pyruvate dehydrogenase in mediating lipid-induced insulin resistance stands as a central question in the pathogenesis of type 2 diabetes mellitus. Many researchers have invoked the Randle hypothesis to explain the reduced glucose disposal in skeletal muscle by envisioning an elevated acetyl CoA pool arising from increased oxidation of fatty acids. Over the years, in vivo NMR studies have challenged that monolithic view. The advent of the dissolution dynamic nuclear polarization NMR technique and a unique type 2 diabetic rat model provides an opportunity to clarify. Dynamic nuclear polarization enhances dramatically the NMR signal sensitivity and allows the measurement of metabolic kinetics in vivo. Diabetic muscle has much lower pyruvate dehydrogenase activity than control muscle, as evidenced in the conversion of [1-13C]lactate and [2-13C]pyruvate to HCO3- and acetyl carnitine. The pyruvate dehydrogenase kinase inhibitor, dichloroacetate, restores rapidly the diabetic pyruvate dehydrogenase activity to control level. However, diabetic muscle has a much larger dynamic change in pyruvate dehydrogenase flux than control. The dichloroacetate-induced surge in pyruvate dehydrogenase activity produces a differential amount of acetyl carnitine but does not affect the tricarboxylic acid flux. Further studies can now proceed with the dynamic nuclear polarization approach and a unique rat model to interrogate closely the biochemical mechanism interfacing oxidative metabolism with insulin resistance and metabolic inflexibility.
Collapse
Affiliation(s)
- Jae Mo Park
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.,Department of Radiology, Stanford University, 1201 Welch Rd., Stanford, CA, 94305, USA
| | - Sonal Josan
- Department of Radiology, Stanford University, 1201 Welch Rd., Stanford, CA, 94305, USA.,Neuroscience Program, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA
| | - Ralph E Hurd
- Department of Radiology, Stanford University, 1201 Welch Rd., Stanford, CA, 94305, USA.,Applied Science Laboratory, GE Healthcare, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA
| | - James Graham
- Department of Molecular Biosciences, University of California Davis, 3426 Meyer Hall, Davis, CA, 95616, USA
| | - Peter J Havel
- Department of Molecular Biosciences, University of California Davis, 3426 Meyer Hall, Davis, CA, 95616, USA
| | - David Bendahan
- CNRS, Aix-Marseille University, CRMBM, 13385, Marseille, France
| | - Dirk Mayer
- Neuroscience Program, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA.,Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, 22 S. Green St., Baltimore, MD, 21201, USA
| | - Youngran Chung
- Department of Biochemistry and Molecular Medicine, University of California-Davis, 4323 Tupper Hall, Davis, CA, 95616, USA
| | - Daniel M Spielman
- Department of Radiology, Stanford University, 1201 Welch Rd., Stanford, CA, 94305, USA
| | - Thomas Jue
- Department of Biochemistry and Molecular Medicine, University of California-Davis, 4323 Tupper Hall, Davis, CA, 95616, USA.
| |
Collapse
|
32
|
Akther F, Razan MR, Shaligram S, Graham JL, Stanhope KL, Allen KN, Vázquez-Medina JP, Havel PJ, Rahimian R. Potentiation of Acetylcholine-Induced Relaxation of Aorta in Male UC Davis Type 2 Diabetes Mellitus (UCD-T2DM) Rats: Sex-Specific Responses. Front Physiol 2021; 12:616317. [PMID: 34366875 PMCID: PMC8339592 DOI: 10.3389/fphys.2021.616317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
Previous reports suggest that diabetes may differentially affect the vascular beds of females and males. The objectives of this study were to examine whether there were (1) sex differences in aortic function and (2) alterations in the relative contribution of endothelium-derived relaxing factors in modulating aortic reactivity in UC Davis Type 2 Diabetes Mellitus (UCD-T2DM) rats. Endothelium-dependent vasorelaxation (EDV) in response to acetylcholine (ACh) was measured in aortic rings before and after exposure to pharmacological inhibitors. Relaxation responses to sodium nitroprusside were assessed in endothelium-denuded rings. Moreover, contractile responses to phenylephrine (PE) were measured before and after incubation of aortic rings with a nitric oxide synthase (NOS) inhibitor in the presence of indomethacin. Metabolic parameters and expression of molecules associated with vascular and insulin signaling as well as reactive oxygen species generation were determined. Diabetes slightly but significantly impaired EDV in response to ACh in aortas from females but potentiated the relaxation response in males. The potentiation of EDV in diabetic male aortas was accompanied by a traces of nitric oxide (NO)- and prostanoid-independent relaxation and elevated aortic expression of small- and intermediate conductance Ca2+-activated K+ channels in this group. The smooth muscle sensitivity to NO was not altered, whereas the responsiveness to PE was significantly enhanced in aortas of diabetic groups in both sexes. Endothelium-derived NO during smooth muscle contraction, as assessed by the potentiation of the response to PE after NOS inhibition, was reduced in aortas of diabetic rats regardless of sex. Accordingly, decreases in pAkt and peNOS were observed in aortas from diabetic rats in both sexes compared with controls. Our data suggest that a decrease in insulin sensitivity via pAkt-peNOS-dependent signaling and an increase in oxidative stress may contribute to the elevated contractile responses observed in diabetic aortas in both sexes. This study demonstrates that aortic function in UCD-T2DM rats is altered in both sexes. Here, we provide the first evidence of sexual dimorphism in aortic relaxation in UCD-T2DM rats.
Collapse
Affiliation(s)
- Farjana Akther
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| | - Md Rahatullah Razan
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| | - Sonali Shaligram
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| | - James L. Graham
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Kimber L. Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Kaitlin N. Allen
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| | | | - Peter J. Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Roshanak Rahimian
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| |
Collapse
|
33
|
Edwards MM, Nguyen HK, Herbertson AJ, Dodson AD, Wietecha T, Wolden-Hanson T, Graham JL, O'Brien KD, Havel PJ, Blevins JE. Chronic hindbrain administration of oxytocin elicits weight loss in male diet-induced obese mice. Am J Physiol Regul Integr Comp Physiol 2021; 320:R471-R487. [PMID: 33470901 PMCID: PMC8238148 DOI: 10.1152/ajpregu.00294.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 02/08/2023]
Abstract
Previous studies indicate that oxytocin (OT) administration reduces body weight in high-fat diet (HFD)-induced obese (DIO) rodents through both reductions in food intake and increases in energy expenditure. We recently demonstrated that chronic hindbrain [fourth ventricular (4V)] infusions of OT evoke weight loss in DIO rats. Based on these findings, we hypothesized that chronic 4V OT would elicit weight loss in DIO mice. We assessed the effects of 4V infusions of OT (16 nmol/day) or vehicle over 28 days on body weight, food intake, and body composition. OT reduced body weight by approximately 4.5% ± 1.4% in DIO mice relative to OT pretreatment body weight (P < 0.05). These effects were associated with reduced adiposity and adipocyte size [inguinal white adipose tissue (IWAT)] (P < 0.05) and attributed, in part, to reduced energy intake (P < 0.05) at a dose that did not increase kaolin intake (P = NS). OT tended to increase uncoupling protein-1 expression in IWAT (0.05 < P < 0.1) suggesting that OT stimulates browning of WAT. To assess OT-elicited changes in brown adipose tissue (BAT) thermogenesis, we examined the effects of 4V OT on interscapular BAT temperature (TIBAT). 4V OT (1 µg) elevated TIBAT at 0.75 (P = 0.08), 1, and 1.25 h (P < 0.05) postinjection; a higher dose (5 µg) elevated TIBAT at 0.75-, 1-, 1.25-, 1.5-, 1.75- (P < 0.05), and 2-h (0.05 < P < 0.1) postinjection. Together, these findings support the hypothesis that chronic hindbrain OT treatment evokes sustained weight loss in DIO mice by reducing energy intake and increasing BAT thermogenesis at a dose that is not associated with evidence of visceral illness.
Collapse
MESH Headings
- Adipocytes, Brown/drug effects
- Adipocytes, Brown/metabolism
- Adipocytes, Brown/pathology
- Adipocytes, White/drug effects
- Adipocytes, White/metabolism
- Adipocytes, White/pathology
- Adiposity/drug effects
- Animals
- Anti-Obesity Agents/administration & dosage
- Diet, High-Fat
- Disease Models, Animal
- Eating/drug effects
- Energy Intake/drug effects
- Infusions, Intraventricular
- Leptin/blood
- Male
- Mice, Inbred C57BL
- Obesity/drug therapy
- Obesity/metabolism
- Obesity/pathology
- Obesity/physiopathology
- Oxytocin/administration & dosage
- Rhombencephalon/drug effects
- Rhombencephalon/physiopathology
- Thermogenesis/drug effects
- Uncoupling Protein 1/metabolism
- Weight Loss/drug effects
- Mice
Collapse
Affiliation(s)
- Melise M Edwards
- Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Veteran Affairs Puget Sound Health Care System, Seattle, Washington
| | - Ha K Nguyen
- Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Veteran Affairs Puget Sound Health Care System, Seattle, Washington
| | - Adam J Herbertson
- Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Veteran Affairs Puget Sound Health Care System, Seattle, Washington
| | - Andrew D Dodson
- Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Veteran Affairs Puget Sound Health Care System, Seattle, Washington
| | - Tomasz Wietecha
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, Washington
| | - Tami Wolden-Hanson
- Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Veteran Affairs Puget Sound Health Care System, Seattle, Washington
| | - James L Graham
- Department of Nutrition, University of California, Davis, California
| | - Kevin D O'Brien
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, Washington
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Peter J Havel
- Department of Nutrition, University of California, Davis, California
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California
| | - James E Blevins
- Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Veteran Affairs Puget Sound Health Care System, Seattle, Washington
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
34
|
Mercer KE, Yeruva L, Pack L, Graham JL, Stanhope KL, Chintapalli SV, Wankhade UD, Shankar K, Havel PJ, Adams SH, Piccolo BD. Xenometabolite signatures in the UC Davis type 2 diabetes mellitus rat model revealed using a metabolomics platform enriched with microbe-derived metabolites. Am J Physiol Gastrointest Liver Physiol 2020; 319:G157-G169. [PMID: 32508155 PMCID: PMC7500265 DOI: 10.1152/ajpgi.00105.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The gut microbiome has the potential to create or modify xenometabolites (i.e., nonhost-derived metabolites) through de novo synthesis or modification of exogenous and endogenous compounds. While there are isolated examples of xenometabolites influencing host health and disease, wide-scale characterization of these metabolites remains limited. We developed a metabolomics platform ("XenoScan") using liquid chromatography-mass spectrometry to characterize a range of known and suspected xenometabolites and their derivatives. This assay currently applies authentic standards for 190 molecules, enriched for metabolites of microbial origin. As a proof-of-principle, we characterized the cecal content xenometabolomics profile in adult male lean Sprague-Dawley (LSD) and University of California, Davis type 2 diabetes mellitus (UCD-T2DM) rats at different stages of diabetes. These results were correlated to specific bacterial species generated via shotgun metagenomic sequencing. UCD-T2DM rats had a unique xenometabolite profile compared with LSD rats, regardless of diabetes status, suggesting that at least some of the variation is associated with host genetics. Furthermore, modeling approaches revealed that several xenometabolites discriminated UCD-T2DM rats at early stages of diabetes versus those at 3 mo postdiabetes onset. Several xenometabolite hubs correlated with specific bacterial species in both LSD and UCD-T2DM rats. For example, indole-3-propionic acid negatively correlated with species within the Oscillibacter genus in UCD-T2DM rats considered to be prediabetic or recently diagnosed diabetic, in contrast to gluconic acid and trimethylamine, which were positively correlated with Oscillibacter species. The application of a xenometabolite-enriched metabolomics assay in relevant milieus will enable rapid identification of a wide variety of gut-derived metabolites, their derivatives, and their potential biochemical origins of xenometabolites in relationship to host gastrointestinal microbial ecology.NEW & NOTEWORTHY We debut a liquid chromatography-mass spectrometry (LC/MS) platform called the XenoScan, which is a metabolomics platform for xenometabolites (nonself-originating metabolites). This assay has 190 in-house standards with the majority enriched for microbe-derived metabolites. As a proof-of-principle, we used the XenoScan to discriminate genetic differences from cecal samples associated with different rat lineages, in addition to characterizing diabetes progression in rat model of type 2 diabetes. Complementing microbial sequencing data with xenometabolites uncovered novel microbial metabolism in targeted organisms.
Collapse
Affiliation(s)
- Kelly E. Mercer
- 1Arkansas Children’s Nutrition
Center, Little Rock, Arkansas,2Department of Pediatrics, University of
Arkansas for Medical Sciences, Little Rock,
Arkansas
| | - Laxmi Yeruva
- 1Arkansas Children’s Nutrition
Center, Little Rock, Arkansas,2Department of Pediatrics, University of
Arkansas for Medical Sciences, Little Rock,
Arkansas,3Arkansas Children’s Research
Institute, Little Rock, Arkansas
| | - Lindsay Pack
- 1Arkansas Children’s Nutrition
Center, Little Rock, Arkansas
| | - James L. Graham
- 4Department of Nutrition, University of
California of California, Davis,
California,5Department of Molecular Biosciences, School of Veterinary
Medicine, University of California, Davis,
California
| | - Kimber L. Stanhope
- 4Department of Nutrition, University of
California of California, Davis,
California,5Department of Molecular Biosciences, School of Veterinary
Medicine, University of California, Davis,
California
| | - Sree V. Chintapalli
- 1Arkansas Children’s Nutrition
Center, Little Rock, Arkansas,2Department of Pediatrics, University of
Arkansas for Medical Sciences, Little Rock,
Arkansas
| | - Umesh D. Wankhade
- 1Arkansas Children’s Nutrition
Center, Little Rock, Arkansas,2Department of Pediatrics, University of
Arkansas for Medical Sciences, Little Rock,
Arkansas
| | - Kartik Shankar
- 6Department of Pediatrics, University of
Colorado Anschutz Medical Campus, Aurora,
Colorado
| | - Peter J. Havel
- 4Department of Nutrition, University of
California of California, Davis,
California,5Department of Molecular Biosciences, School of Veterinary
Medicine, University of California, Davis,
California
| | - Sean H. Adams
- 1Arkansas Children’s Nutrition
Center, Little Rock, Arkansas,2Department of Pediatrics, University of
Arkansas for Medical Sciences, Little Rock,
Arkansas
| | - Brian D. Piccolo
- 1Arkansas Children’s Nutrition
Center, Little Rock, Arkansas,2Department of Pediatrics, University of
Arkansas for Medical Sciences, Little Rock,
Arkansas
| |
Collapse
|
35
|
Waterman C, Graham JL, Arnold CD, Stanhope KL, Tong JH, Jaja-Chimedza A, Havel PJ. Moringa Isothiocyanate-rich Seed Extract Delays the Onset of Diabetes in UC Davis Type-2 Diabetes Mellitus Rats. Sci Rep 2020; 10:8861. [PMID: 32483245 PMCID: PMC7264139 DOI: 10.1038/s41598-020-65722-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 05/07/2020] [Indexed: 12/27/2022] Open
Abstract
Moringa seeds have been used traditionally in the management of type 2 diabetes mellitus (T2DM) and contain potent bioactive isothiocyanates. This study evaluated the efficacy of an isothiocyanate-rich moringa seed extract in delaying the onset of T2DM in UC Davis T2DM rats, a well validated model which closely mimics T2DM in humans. Rats were separated into three groups; control, moringa seed extract at 0.4%, and a weight matched group. Rats were fed respective diets for 8 months, during which energy intake, body weight, the onset of diabetes circulating hormones, metabolites and markers of inflammation and liver function, and were monitored. The MS group had a significantly slower rate of diabetes onset p = 0.027), lower plasma glucose (p = 0.043), and lower HbA1c (p = 0.008) compared with CON animals. There were no significant differences in food intake and body weight between all groups. This study demonstrated MS can delay the onset of diabetes in the UC Davis T2DM rat model to a greater extent than moderate caloric restriction (by comparison to the WM group). The results support its documented traditional uses and a bioactive role of moringa isothiocyanates and suggest the potential efficacy for moringa supplementation for diabetes management in populations at risk for T2DM.
Collapse
Affiliation(s)
- Carrie Waterman
- Department of Nutrition, UC Davis, One Shields Ave, Davis, CA, 95616, USA.
| | - James L Graham
- Department of Nutrition, UC Davis, One Shields Ave, Davis, CA, 95616, USA.,Department of Molecular Biosciences, School of Veterinary Medicine, UC, Davis, USA
| | - Charles D Arnold
- Department of Nutrition, UC Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Kimber L Stanhope
- Department of Nutrition, UC Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Jason H Tong
- Department of Nutrition, UC Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Asha Jaja-Chimedza
- Department of Plant Biology, Rutgers University, 59 Dudley Rd, New Brunswick, NJ, 08901, USA
| | - Peter J Havel
- Department of Nutrition, UC Davis, One Shields Ave, Davis, CA, 95616, USA.,Department of Molecular Biosciences, School of Veterinary Medicine, UC, Davis, USA
| |
Collapse
|
36
|
Mesenteric arterial dysfunction in the UC Davis Type 2 Diabetes Mellitus rat model is dependent on pre-diabetic versus diabetic status and is sexually dimorphic. Eur J Pharmacol 2020; 879:173089. [PMID: 32320701 DOI: 10.1016/j.ejphar.2020.173089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 01/27/2023]
Abstract
Previous reports suggest that diabetes may differentially affect the vascular beds of females and males. However, there is insufficient evidence to establish the timeline of the vascular dysfunction in diabetes, specifically in relation to sex. Here, we determined whether mesenteric arterial function is altered in UC Davis Type-2 Diabetes Mellitus (UCD-T2DM) rats and if this occurs as early as the pre-diabetic stage of the disease. Specifically, we investigated whether vascular dysfunction differs between pre-diabetic or diabetic status and if this varies by sex. We measured the responses to endothelium-dependent and -independent vasorelaxant as well as vasoconstrictor agents and explored the potential mechanisms involved in sex-specific development of arterial dysfunction in UCD-T2DM rats. In addition, indices of insulin sensitivity were assessed. We report the reduced insulin sensitivity in pre-diabetic males and diabetic females. Vascular relaxation to acetylcholine was impaired to a greater extent in mesenteric artery from males in the pre-diabetic stage than in their female counterparts. In contrast, the arteries from females with diabetes exhibited a greater impairment to acetylcholine compared with diabetic males. Additionally, the sensitivity of mesenteric artery to contractile agents in females, but not in males, after the onset of diabetes was increased. Our data suggest that the reduced insulin sensitivity through AKT may predispose vessels to injury in the pre-diabetic stage in males. On the other hand, reduced insulin sensitivity as well as enhanced responsiveness to contractile agents may predispose arteries to injury in the diabetic stage in females.
Collapse
|
37
|
Verma N, Liu M, Ly H, Loria A, Campbell KS, Bush H, Kern PA, Jose PA, Taegtmeyer H, Bers DM, Despa S, Goldstein LB, Murray AJ, Despa F. Diabetic microcirculatory disturbances and pathologic erythropoiesis are provoked by deposition of amyloid-forming amylin in red blood cells and capillaries. Kidney Int 2020; 97:143-155. [PMID: 31739987 PMCID: PMC6943180 DOI: 10.1016/j.kint.2019.07.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 01/11/2023]
Abstract
In the setting of type-2 diabetes, there are declines of structural stability and functionality of blood capillaries and red blood cells (RBCs), increasing the risk for microcirculatory disturbances. Correcting hyperglycemia is not entirely effective at reestablishing normal cellular metabolism and function. Therefore, identification of pathological changes occurring before the development of overt hyperglycemia may lead to novel therapeutic targets for reducing the risk of microvascular dysfunction. Here we determine whether RBC-capillary interactions are altered by prediabetic hypersecretion of amylin, an amyloid forming hormone co-synthesized with insulin, and is reversed by endothelial cell-secreted epoxyeicosatrienoic acids. In patients, we found amylin deposition in RBCs in association with type-2 diabetes, heart failure, cancer and stroke. Amylin-coated RBCs have altered shape and reduced functional (non-glycated) hemoglobin. Amylin-coated RBCs administered intravenously in control rats upregulated erythropoietin and renal arginase expression and activity. We also found that diabetic rats expressing amyloid-forming human amylin in the pancreas (the HIP rat model) have increased tissue levels of hypoxia-inducible transcription factors, compared to diabetic rats that express non-amyloid forming rat amylin (the UCD rat model). Upregulation of erythropoietin correlated with lower hematocrit in the HIP model indicating pathologic erythropoiesis. In the HIP model, pharmacological upregulation of endogenous epoxyeicosatrienoic acids protected the renal microvasculature against amylin deposition and also reduced renal accumulation of HIFs. Thus, prediabetes induces dysregulation of amylin homeostasis and promotes amylin deposition in RBCs and the microvasculature altering RBC-capillary interaction leading to activation of hypoxia signaling pathways and pathologic erythropoiesis. Hence, dysregulation of amylin homeostasis could be a therapeutic target for ameliorating diabetic vascular complications.
Collapse
Affiliation(s)
- Nirmal Verma
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Miao Liu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Han Ly
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Analia Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Kenneth S Campbell
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Heather Bush
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| | - Philip A Kern
- Division of Endocrinology, Department of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Pedro A Jose
- Department of Medicine, Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Heinrich Taegtmeyer
- Department of Internal Medicine, McGovern Medical School at University of Texas Health, Houston, Texas, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Sanda Despa
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Larry B Goldstein
- Department of Neurology, University of Kentucky, Lexington, Kentucky, USA
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Florin Despa
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA; Department of Neurology, University of Kentucky, Lexington, Kentucky, USA.
| |
Collapse
|
38
|
Papaetis GS. Liraglutide Therapy in a Prediabetic State: Rethinking the Evidence. Curr Diabetes Rev 2020; 16:699-715. [PMID: 31886752 DOI: 10.2174/1573399816666191230113446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/20/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Prediabetes is defined as a state of glucose metabolism between normal glucose tolerance and type 2 diabetes. Continuous β-cell failure and death are the reasons for the evolution from normal glucose tolerance to prediabetes and finally type 2 diabetes. INTRODUCTION The necessity of new therapeutic approaches in order to prevent or delay the development of type 2 diabetes is obligatory. Liraglutide, a long-acting GLP-1 receptor agonist, has 97% homology for native GLP-1. Identification of the trophic and antiapoptotic properties of liraglutide in preclinical studies, together with evidence of sustained β-cell function longevity during its administration in type 2 diabetes individuals, indicated its earliest possible administration during this disease, or even before its development, so as to postpone or delay its onset. METHODS Pubmed and Google databases have been thoroughly searched and relevant studies were selected. RESULTS This paper explores the current evidence of liraglutide administration both in humans and animal models with prediabetes. Also, it investigates the safety profile of liraglutide treatment and its future role to postpone or delay the evolution of type 2 diabetes. CONCLUSION Liralgutide remains a valuable tool in our therapeutic armamentarium for individuals who are overweight or obese and have prediabetes. Future well designed studies will give valuable information that will help clinicians to stratify individuals who will derive the most benefit from this agent, achieving targeted therapeutic strategies.
Collapse
Affiliation(s)
- Georgios S Papaetis
- Internal Medicine and Diabetes Clinic, Eleftherios Venizelos Avenue 62, Paphos, Cyprus
| |
Collapse
|
39
|
Grotle AK, Stone AJ. Exaggerated exercise pressor reflex in type 2 diabetes: Potential role of oxidative stress. Auton Neurosci 2019; 222:102591. [PMID: 31669797 PMCID: PMC6858935 DOI: 10.1016/j.autneu.2019.102591] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) leads to exaggerated cardiovascular responses to exercise, in part due to an exaggerated exercise pressor reflex. Accumulating data suggest excessive oxidative stress contributes to an exaggerated exercise pressor reflex in cardiovascular-related diseases. Excessive oxidative stress is also a primary underlying mechanism for the development and progression of T2DM. However, whether oxidative stress plays a role in mediating the exaggerated exercise pressor reflex in T2DM is not known. Therefore, this review explores the potential role of oxidative stress leading to increased activation of the afferent arm of the exercise pressor reflex. Several lines of evidence support direct and indirect effects of oxidative stress on the exercise pressor reflex. For example, intramuscular ROS may directly and indirectly (by attenuating contracting muscle blood flow) increase group III and IV afferent activity. Oxidative stress is a primary underlying mechanism for the development of neuropathic pain, which in turn is associated with increased group III and IV afferent activity. These are the same type of afferents that evoke muscle pain and the exercise pressor reflex. Furthermore, oxidative stress-induced release of inflammatory mediators may modulate afferent activity. Collectively, these alterations may result in a positive feedback loop that further amplifies the exercise pressor reflex. An exaggerated reflex increases the risk of adverse cardiovascular events. Thus, identifying the contribution of oxidative stress could provide a potential therapeutic target to reduce this risk in T2DM.
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Audrey J Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX 78712, United States of America.
| |
Collapse
|
40
|
Knudsen LB. Inventing Liraglutide, a Glucagon-Like Peptide-1 Analogue, for the Treatment of Diabetes and Obesity. ACS Pharmacol Transl Sci 2019; 2:468-484. [PMID: 32259078 DOI: 10.1021/acsptsci.9b00048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Indexed: 01/08/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) has been in focus since the early 1980s as a long looked for incretin hormone, released from the gastrointestinal tract and with an important effect on glucose-dependent insulin secretion, providing efficient glucose lowering, with little risk for hypoglycemia. The enzyme dipeptidyl peptidase-4 (DPP-4) degrades GLP-1 very fast, and the remaining metabolite is cleared rapidly by the kidneys. Liraglutide is a fatty acid acylated analogue of GLP-1 that provides efficacy for 24 h/day. The mechanism of action for liraglutide is reviewed in detail with focus on pancreatic efficacy and safety, thyroid safety, and weight loss mechanism. Evolving science hypothesizes that GLP-1 has important effects on atherosclerosis, relevant for the cardiovascular benefit seen in the treatment of diabetes and obesity. Also, GLP-1 may be relevant in neurodegenerative diseases.
Collapse
Affiliation(s)
- Lotte Bjerre Knudsen
- Global Drug Discovery, Novo Nordisk, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| |
Collapse
|
41
|
Hung C, Napoli E, Ross-Inta C, Graham J, Flores-Torres AL, Stanhope KL, Froment P, Havel PJ, Giulivi C. Ileal interposition surgery targets the hepatic TGF-β pathway, influencing gluconeogenesis and mitochondrial bioenergetics in the UCD-T2DM rat model of diabetes. FASEB J 2019; 33:11270-11283. [PMID: 31307210 DOI: 10.1096/fj.201802714r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ileal interposition (IT) is a surgical procedure that increases the delivery of incompletely digested nutrients and biliary and pancreatic secretions to the distal intestinal mucosa. Here, we investigated the metabolic impact of this intervention in 2-mo-old prediabetic University of California, Davis type 2 diabetes mellitus rats by assessing liver gene expression at 1.5 mo post-IT surgery. Pathway analysis indicated decreased signaling via TGF-β/Smad (a family of proteins named mothers against decapentaplegic homologs), peroxisome proliferator-activated receptor (PPAR), and PI3K-Akt-AMPK-mechanistic target of rapamycin, likely targeting hepatic stellate cells because differentiation and activation of these cells is associated with decreased signaling via PPAR and TGF-β/Smad. IT surgery up-regulated the expression of genes involved in regulation of cholesterol and terpenoid syntheses and down-regulated those involved in glycerophospholipid metabolism [including cardiolipin (CL)], lipogenesis, and gluconeogenesis. Consistent with the down-regulation of the hepatic CL pathway, IT surgery produced a metabolic switch in liver, kidney cortex, and fat depots toward decreased mitochondrial fatty acid β-oxidation, the process required to fuel high energy-demanding pathways (e.g., gluconeogenesis and glyceroneogenesis), whereas opposite effects were observed in skeletal and cardiac muscles. This study demonstrates for the first time the presence of metabolic pathways that complement the effects of IT surgery to maximize its benefits and potentially identify similarly effective, durable, and less invasive therapeutic options for metabolic disease, including inhibitors of TGF-β signaling.-Hung, C., Napoli, E., Ross-Inta, C., Graham, J., Flores-Torres, A. L., Stanhope, K. L., Froment, P., Havel, P. J., Giulivi, C. Ileal interposition surgery targets the hepatic TGF-β pathway, influencing gluconeogenesis and mitochondrial bioenergetics in the UCD-T2DM rat model of diabetes.
Collapse
Affiliation(s)
- Connie Hung
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Catherine Ross-Inta
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - James Graham
- Department of Nutrition, University of California, Davis, Davis, California, USA
| | - Amanda L Flores-Torres
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA.,Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Kimber L Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA.,Department of Nutrition, University of California, Davis, Davis, California, USA
| | - Pascal Froment
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Unité Mixte de Recherche (UMR) 85, Paris, France
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA.,Department of Nutrition, University of California, Davis, Davis, California, USA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA.,Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Davis, California, USA
| |
Collapse
|
42
|
Subramaniam A, Landstrom M, Hayes KC. Genetic Permissiveness and Dietary Glycemic Load Interact to Predict Type-II Diabetes in the Nile rat ( Arvicanthis niloticus). Nutrients 2019; 11:nu11071538. [PMID: 31284621 PMCID: PMC6683243 DOI: 10.3390/nu11071538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/16/2019] [Accepted: 07/01/2019] [Indexed: 12/31/2022] Open
Abstract
Objective: The Nile rat (Arvicanthis niloticus) is a superior model for Type-II Diabetes Mellitus (T2DM) induced by diets with a high glycemic index (GI) and glycemic load (GLoad). To better define the age and gender attributes of diabetes in early stages of progression, weanling rats were fed a high carbohydrate (hiCHO) diet for between 2 to 10 weeks. Methods: Data from four experiments compared two diabetogenic semipurified diets (Diet 133 (60:20:20, as % energy from CHO, fat, protein with a high glycemic load (GLoad) of 224 per 2000 kcal) versus Diets 73 MBS or 73 MB (70:10:20 with or without sucrose and higher GLoads of 259 or 295, respectively). An epidemiological technique was used to stratify the diabetes into quintiles of blood glucose (Q1 to Q5), after 2–10 weeks of dietary induction in 654 rats. The related metagenetic physiological growth and metabolic outcomes were related to the degree of diabetes based on fasting blood glucose (FBG), random blood glucose (RBG), and oral glucose tolerance test (OGTT) at 30 min and 60 min. Results: Experiment 1 (Diet 73MBS) demonstrated that the diabetes begins aggressively in weanlings during the first 2 weeks of a hiCHO challenge, linking genetic permissiveness to diabetes susceptibility or resistance from an early age. In Experiment 2, ninety male Nile rats fed Diet 133 (60:20:20) for 10 weeks identified two quintiles of resistant rats (Q1,Q2) that lowered their RBG between 6 weeks and 10 weeks on diet, whereas Q3–Q5 became progressively more diabetic, suggesting an ongoing struggle for control over glucose metabolism, which either stabilized or not, depending on genetic permissiveness. Experiment 3 (32 males fed 70:10:20) and Experiment 4 (30 females fed 60:20:20) lasted 8 weeks and 3 weeks respectively, for gender and time comparisons. The most telling link between a quintile rank and diabetes risk was telegraphed by energy intake (kcal/day) that established the cumulative GLoad per rat for the entire trial, which was apparent from the first week of feeding. This genetic permissiveness associated with hyperphagia across quintiles was maintained throughout the study and was mirrored in body weight gain without appreciable differences in feed efficiency. This suggests that appetite and greater growth rate linked to a fiber-free high GLoad diet were the dominant factors driving the diabetes. Male rats fed the highest GLoad diet (Diet 73MB 70:10:20, GLoad 295 per 2000 kcal for 8 weeks in Experiment 3], ate more calories and developed diabetes even more aggressively, again emphasizing the Cumulative GLoad as a primary stressor for expressing the genetic permissiveness underlying the diabetes. Conclusion: Thus, the Nile rat model, unlike other rodents but similar to humans, represents a superior model for high GLoad, low-fiber diets that induce diabetes from an early age in a manner similar to the dietary paradigm underlying T2DM in humans, most likely originating in childhood.
Collapse
Affiliation(s)
| | | | - K C Hayes
- Biology Department, Brandeis University, Waltham, MA, 02453, USA.
| |
Collapse
|
43
|
Grotle AK, Crawford CK, Huo Y, Ybarbo KM, Harrison ML, Graham J, Stanhope KL, Havel PJ, Fadel PJ, Stone AJ. Exaggerated cardiovascular responses to muscle contraction and tendon stretch in UCD type-2 diabetes mellitus rats. Am J Physiol Heart Circ Physiol 2019; 317:H479-H486. [PMID: 31274351 DOI: 10.1152/ajpheart.00229.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Patients with type-2 diabetes mellitus (T2DM) have exaggerated sympathetic activity and blood pressure responses to exercise. However, the underlying mechanisms for these responses, as well as how these responses change throughout disease progression, are not completely understood. For this study, we examined the effect of the progression of T2DM on the exercise pressor reflex, a critical neurocardiovascular mechanism that functions to increase sympathetic activity and blood pressure during exercise. We also aimed to examine the effect of T2DM on reflexive cardiovascular responses to static contraction, as well as those responses to tendon stretch when an exaggerated exercise pressor reflex was present. We evoked the exercise pressor reflex and mechanoreflex by statically contracting the hindlimb muscles and stretching the Achilles tendon, respectively, for 30 s. We then compared pressor and cardioaccelerator responses in unanesthetized, decerebrated University of California Davis (UCD)-T2DM rats at 21 and 31 wk following the onset of T2DM to responses in healthy nondiabetic rats. We found that the pressor response to static contraction was greater in the 31-wk T2DM [change in mean arterial pressure (∆MAP) = 39 ± 5 mmHg] but not in the 21-wk T2DM (∆MAP = 24 ± 5 mmHg) rats compared with nondiabetic rats (∆MAP = 18 ± 2 mmHg; P < 0.05). Similarly, the pressor and the cardioaccelerator responses to tendon stretch were significantly greater in the 31-wk T2DM rats [∆MAP = 69 ± 6 mmHg; change in heart rate (∆HR) = 28 ± 4 beats/min] compared with nondiabetic rats (∆MAP = 14 ± 2 mmHg; ∆HR = 5 ± 3 beats/min; P < 0.05). These findings suggest that the exercise pressor reflex changes as T2DM progresses and that a sensitized mechanoreflex may play a role in exaggerating these cardiovascular responses.NEW & NOTEWORTHY This is the first study to provide evidence that as type-2 diabetes mellitus (T2DM) progresses, the exercise pressor reflex becomes exaggerated, an effect that may be due to a sensitized mechanoreflex. Moreover, these findings provide compelling evidence suggesting that impairments in the reflexive control of circulation contribute to exaggerated blood pressure responses to exercise in T2DM.
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Charles K Crawford
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Yu Huo
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Kai M Ybarbo
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Michelle L Harrison
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - James Graham
- Department of Molecular Biosciences School of Veterinary Medicine and Department of Nutrition; University of California Davis, Davis, California
| | - Kimber L Stanhope
- Department of Molecular Biosciences School of Veterinary Medicine and Department of Nutrition; University of California Davis, Davis, California
| | - Peter J Havel
- Department of Molecular Biosciences School of Veterinary Medicine and Department of Nutrition; University of California Davis, Davis, California
| | - Paul J Fadel
- Department of Kinesiology; The University of Texas at Arlington, Arlington, Texas
| | - Audrey J Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
44
|
Hung YH, Kanke M, Kurtz CL, Cubitt R, Bunaciu RP, Miao J, Zhou L, Graham JL, Hussain MM, Havel P, Biddinger S, White PJ, Sethupathy P. Acute suppression of insulin resistance-associated hepatic miR-29 in vivo improves glycemic control in adult mice. Physiol Genomics 2019; 51:379-389. [PMID: 31251698 DOI: 10.1152/physiolgenomics.00037.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
MicroRNAs (miRNAs) are important posttranscriptional regulators of metabolism and energy homeostasis. Dysregulation of certain miRNAs in the liver has been shown to contribute to the pathogenesis of Type 2 diabetes (T2D), in part by impairing hepatic insulin sensitivity. By small RNA-sequencing analysis, we identified seven hepatic miRNAs (including miR-29b) that are consistently aberrantly expressed across five different rodent models of metabolic dysfunction that share the feature of insulin resistance (IR). We also showed that hepatic miR-29b exhibits persistent dysregulation during disease progression in a rat model of diabetes, UCD-T2DM. Furthermore, we observed that hepatic levels of miR-29 family members are attenuated by interventions known to improve IR in rodent and rhesus macaque models. To examine the function of the miR-29 family in modulating insulin sensitivity, we used locked nucleic acid (LNA) technology and demonstrated that acute in vivo suppression of the miR-29 family in adult mice leads to significant reduction of fasting blood glucose (in both chow-fed lean and high-fat diet-fed obese mice) and improvement in insulin sensitivity (in chow-fed lean mice). We carried out whole transcriptome studies and uncovered candidate mechanisms, including regulation of DNA methyltransferase 3a (Dnmt3a) and the hormone-encoding gene Energy homeostasis associated (Enho). In sum, we showed that IR/T2D is linked to dysregulation of hepatic miR-29b across numerous models and that acute suppression of the miR-29 family in adult mice leads to improved glycemic control. Future studies should investigate the therapeutic utility of miR-29 suppression in different metabolic disease states.Enho; insulin resistance; liver; microRNA-29 (miR-29); UCD-T2DM.
Collapse
Affiliation(s)
- Yu-Han Hung
- Department of Biomedical Sciences, Cornell University, Ithaca, New York
| | - Matt Kanke
- Department of Biomedical Sciences, Cornell University, Ithaca, New York
| | - C Lisa Kurtz
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Rebecca Cubitt
- Department of Biomedical Sciences, Cornell University, Ithaca, New York
| | - Rodica P Bunaciu
- Department of Biomedical Sciences, Cornell University, Ithaca, New York
| | - Ji Miao
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Liye Zhou
- Diabetes and Obesity Center, NYU Winthrop Hospital, Mineola, New York
| | - James L Graham
- Department of Nutrition, University of California, Davis, California
| | - M Mahmood Hussain
- Diabetes and Obesity Center, NYU Winthrop Hospital, Mineola, New York
| | - Peter Havel
- Department of Nutrition, University of California, Davis, California
| | - Sudha Biddinger
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Phillip J White
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | | |
Collapse
|
45
|
Planchart A, Green A, Hoyo C, Mattingly CJ. Heavy Metal Exposure and Metabolic Syndrome: Evidence from Human and Model System Studies. Curr Environ Health Rep 2019; 5:110-124. [PMID: 29460222 DOI: 10.1007/s40572-018-0182-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Metabolic syndrome (MS) describes the co-occurrence of conditions that increase one's risk for heart disease and other disorders such as diabetes and stroke. The worldwide increase in the prevalence of MS cannot be fully explained by lifestyle factors such as sedentary behavior and caloric intake alone. Environmental exposures, such as heavy metals, have been implicated, but results are conflicting and possible mechanisms remain unclear. To assess recent progress in determining a possible role between heavy metal exposure and MS, we reviewed epidemiological and model system data for cadmium (Cd), lead (Pb), and mercury (Hg) from the last decade. RECENT FINDINGS Data from 36 epidemiological studies involving 17 unique countries/regions and 13 studies leveraging model systems are included in this review. Epidemiological and model system studies support a possible association between heavy metal exposure and MS or comorbid conditions; however, results remain conflicting. Epidemiological studies were predominantly cross-sectional and collectively, they highlight a global interest in this question and reveal evidence of differential susceptibility by sex and age to heavy metal exposures. In vivo studies in rats and mice and in vitro cell-based assays provide insights into potential mechanisms of action relevant to MS including altered regulation of lipid and glucose homeostasis, adipogenesis, and oxidative stress. Heavy metal exposure may contribute to MS or comorbid conditions; however, available data are conflicting. Causal inference remains challenging as epidemiological data are largely cross-sectional; and variation in study design, including samples used for heavy metal measurements, age of subjects at which MS outcomes are measured; the scope and treatment of confounding factors; and the population demographics vary widely. Prospective studies, standardization or increased consistency across study designs and reporting, and consideration of molecular mechanisms informed by model system studies are needed to better assess potential causal links between heavy metal exposure and MS.
Collapse
Affiliation(s)
- Antonio Planchart
- Department of Biological Sciences, NC State University, Toxicology building, 850 Main Campus Dr, Raleigh, NC, 27606, USA.,Center for Human Health and the Environment, NC State University, Toxicology building, 850 Main Campus Dr, Raleigh, NC, 27606, USA
| | - Adrian Green
- Department of Biological Sciences, NC State University, Toxicology building, 850 Main Campus Dr, Raleigh, NC, 27606, USA
| | - Cathrine Hoyo
- Department of Biological Sciences, NC State University, Toxicology building, 850 Main Campus Dr, Raleigh, NC, 27606, USA.,Center for Human Health and the Environment, NC State University, Toxicology building, 850 Main Campus Dr, Raleigh, NC, 27606, USA
| | - Carolyn J Mattingly
- Department of Biological Sciences, NC State University, Toxicology building, 850 Main Campus Dr, Raleigh, NC, 27606, USA. .,Center for Human Health and the Environment, NC State University, Toxicology building, 850 Main Campus Dr, Raleigh, NC, 27606, USA.
| |
Collapse
|
46
|
Piccolo BD, Graham JL, Stanhope KL, Nookaew I, Mercer KE, Chintapalli SV, Wankhade UD, Shankar K, Havel PJ, Adams SH. Diabetes-associated alterations in the cecal microbiome and metabolome are independent of diet or environment in the UC Davis Type 2 Diabetes Mellitus Rat model. Am J Physiol Endocrinol Metab 2018; 315:E961-E972. [PMID: 30016149 PMCID: PMC6293161 DOI: 10.1152/ajpendo.00203.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/02/2018] [Accepted: 07/12/2018] [Indexed: 01/04/2023]
Abstract
The composition of the gut microbiome is altered in obesity and type 2 diabetes; however, it is not known whether these alterations are mediated by dietary factors or related to declines in metabolic health. To address this, cecal contents were collected from age-matched, chow-fed male University of California, Davis Type 2 Diabetes Mellitus (UCD-T2DM) rats before the onset of diabetes (prediabetic PD; n = 15), 2 wk recently diabetic (RD; n = 10), 3 mo (D3M; n = 11), and 6 mo (D6M; n = 8) postonset of diabetes. Bacterial species and functional gene counts were assessed by shotgun metagenomic sequencing of bacterial DNA in cecal contents, while metabolites were identified by gas chromatography-quadrupole time-off-flight-mass spectrometry. Metagenomic analysis showed a shift from Firmicutes species in early stages of diabetes (PD + RD) toward an enrichment of Bacteroidetes species in later stages of diabetes (D3M + D6M). In total, 45 bacterial species discriminated early and late stages of diabetes with 25 of these belonging to either Bacteroides or Prevotella genera. Furthermore, 61 bacterial gene clusters discriminated early and later stages of diabetes with elevations of enzymes related to stress response (e.g., glutathione and glutaredoxin) and amino acid, carbohydrate, and bacterial cell wall metabolism. Twenty-five cecal metabolites discriminated early vs. late stages of diabetes, with the largest differences observed in abundances of dehydroabietic acid and phosphate. Alterations in the gut microbiota and cecal metabolome track diabetes progression in UCD-T2DM rats when controlling for diet, age, and housing environment. Results suggest that diabetes-specific host signals impact the ecology and end product metabolites of the gut microbiome when diet is held constant.
Collapse
Affiliation(s)
- Brian D Piccolo
- Arkansas Children's Nutrition Center , Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Science , Little Rock, Arkansas
| | - James L Graham
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California , Davis, California
- Department of Nutrition, University of California , Davis, California
| | - Kimber L Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California , Davis, California
- Department of Nutrition, University of California , Davis, California
| | - Intawat Nookaew
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| | - Kelly E Mercer
- Arkansas Children's Nutrition Center , Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Science , Little Rock, Arkansas
| | - Sree V Chintapalli
- Arkansas Children's Nutrition Center , Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Science , Little Rock, Arkansas
| | - Umesh D Wankhade
- Arkansas Children's Nutrition Center , Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Science , Little Rock, Arkansas
| | - Kartik Shankar
- Arkansas Children's Nutrition Center , Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Science , Little Rock, Arkansas
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California , Davis, California
- Department of Nutrition, University of California , Davis, California
| | - Sean H Adams
- Arkansas Children's Nutrition Center , Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Science , Little Rock, Arkansas
| |
Collapse
|
47
|
Seelke AM, Rhine MA, Khun K, Shweyk AN, Scott AM, Bond JM, Graham JL, Havel PJ, Wolden-Hanson T, Bales KL, Blevins JE. Intranasal oxytocin reduces weight gain in diet-induced obese prairie voles. Physiol Behav 2018; 196:67-77. [PMID: 30144467 DOI: 10.1016/j.physbeh.2018.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/17/2018] [Accepted: 08/19/2018] [Indexed: 12/17/2022]
Abstract
Oxytocin (OT) elicits weight loss in diet-induced obese (DIO) rodents, nonhuman primates and humans by reducing food intake and increasing energy expenditure. In addition to being important in the regulation of energy balance, OT is involved in social behaviors including parent-infant bonds, friendships, and pair bonds. However, the impact of social context on susceptibility to diet-induced obesity (DIO) and feeding behavior (including food sharing) has not been investigated in a rodent model that forms strong social bonds (i.e. prairie vole). Our goals were to determine in Prairie voles (Microtus ochrogaster) whether i) social context impacts susceptibility to DIO and ii) chronic intranasal OT reverses DIO. Voles were housed in divided cages with holes in the divider and paired with a same-sex animal with either the same food [high fat diet (HFD)/HFD, [low fat diet (LFD; chow)/chow], or the opposite food (HFD/chow or chow/HFD) for 19 weeks. HFD-fed voles pair-housed with voles maintained on the HFD demonstrated increased weight relative to pair-housed voles that were both maintained on chow. The study was repeated to determine the impact of social context on DIO susceptibility and body composition when animals are maintained on purified sugar-sweetened HFD and LFD to enhance palatability. As before, we found that voles demonstrated higher weight gain on the HFD/HFD housing paradigm, in part, through increased energy intake and the weight gain was a consequence of an increase in fat mass. However, HFD-fed animals housed with LFD-fed animals (and vice versa) showed intermediate patterns of weight gain and evidence of food sharing. Of translational importance is the finding that chronic intranasal OT appeared to reduce weight gain in DIO voles through a decrease in fat mass with no reduction in lean body mass. These effects were associated with transient reductions in food intake and increased food sharing. These findings identify a role of social context in the pathogenesis of DIO and indicate that chronic intranasal OT treatment reduces weight gain and body fat mass in DIO prairie voles, in part, by reducing food intake.
Collapse
Affiliation(s)
- Adele M Seelke
- Department of Psychology, University of California, Davis, CA, USA
| | - Maya A Rhine
- Department of Psychology, University of California, Davis, CA, USA
| | - Konterri Khun
- Department of Psychology, University of California, Davis, CA, USA
| | - Amira N Shweyk
- Department of Psychology, University of California, Davis, CA, USA
| | | | - Jessica M Bond
- Department of Psychology, University of California, Davis, CA, USA
| | - James L Graham
- Department of Nutrition and Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Peter J Havel
- Department of Nutrition and Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Tami Wolden-Hanson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Karen L Bales
- Department of Psychology, University of California, Davis, CA, USA
| | - James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
48
|
Acevedo C, Sylvia M, Schaible E, Graham JL, Stanhope KL, Metz LN, Gludovatz B, Schwartz AV, Ritchie RO, Alliston TN, Havel PJ, Fields AJ. Contributions of Material Properties and Structure to Increased Bone Fragility for a Given Bone Mass in the UCD-T2DM Rat Model of Type 2 Diabetes. J Bone Miner Res 2018; 33:1066-1075. [PMID: 29342321 PMCID: PMC6011658 DOI: 10.1002/jbmr.3393] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/30/2017] [Accepted: 01/10/2018] [Indexed: 12/18/2022]
Abstract
Adults with type 2 diabetes (T2D) have a higher fracture risk for a given bone quantity, but the mechanisms remain unclear. Using a rat model of polygenic obese T2D, we demonstrate that diabetes significantly reduces whole-bone strength for a given bone mass (μCT-derived BMC), and we quantify the roles of T2D-induced deficits in material properties versus bone structure; ie, geometry and microarchitecture. Lumbar vertebrae and ulnae were harvested from 6-month-old lean Sprague-Dawley rats, obese Sprague-Dawley rats, and diabetic obese UCD-T2DM rats (diabetic for 69 ± 7 days; blood glucose >200 mg/dL). Both obese rats and those with diabetes had reduced whole-bone strength for a given BMC. In obese rats, this was attributable to structural deficits, whereas in UCD-T2DM rats, this was attributable to structural deficits and to deficits in tissue material properties. For the vertebra, deficits in bone structure included thinner and more rod-like trabeculae; for the ulnae, these deficits included inefficient distribution of bone mass to resist bending. Deficits in ulnar material properties in UCD-T2DM rats were associated with increased non-enzymatic crosslinking and impaired collagen fibril deformation. Specifically, small-angle X-ray scattering revealed that diabetes reduced collagen fibril ultimate strain by 40%, and those changes coincided with significant reductions in the elastic, yield, and ultimate tensile properties of the bone tissue. Importantly, the biomechanical effects of these material property deficits were substantial. Prescribing diabetes-specific tissue yield strains in high-resolution finite element models reduced whole-bone strength by a similar amount (and in some cases a 3.4-fold greater amount) as the structural deficits. These findings provide insight into factors that increase bone fragility for a given bone mass in T2D; not only does diabetes associate with less biomechanically efficient bone structure, but diabetes also reduces tissue ductility by limiting collagen fibril deformation, and in doing so, reduces the maximum load capacity of the bone. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Claire Acevedo
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA.,Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Meghan Sylvia
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| | - Eric Schaible
- Experimental Systems Group, Advanced Light Source, Berkeley, CA, USA
| | - James L Graham
- Department of Molecular Biosciences, University of California, Davis, Davis, CA, USA.,Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Kimber L Stanhope
- Department of Molecular Biosciences, University of California, Davis, Davis, CA, USA.,Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Lionel N Metz
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| | - Bernd Gludovatz
- School of Mechanical and Manufacturing Engineering, UNSW Sydney, NSW, Australia
| | - Ann V Schwartz
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Robert O Ritchie
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Tamara N Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| | - Peter J Havel
- Department of Molecular Biosciences, University of California, Davis, Davis, CA, USA.,Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Aaron J Fields
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| |
Collapse
|
49
|
Kleinert M, Clemmensen C, Hofmann SM, Moore MC, Renner S, Woods SC, Huypens P, Beckers J, de Angelis MH, Schürmann A, Bakhti M, Klingenspor M, Heiman M, Cherrington AD, Ristow M, Lickert H, Wolf E, Havel PJ, Müller TD, Tschöp MH. Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol 2018; 14:140-162. [PMID: 29348476 DOI: 10.1038/nrendo.2017.161] [Citation(s) in RCA: 568] [Impact Index Per Article: 81.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
More than one-third of the worldwide population is overweight or obese and therefore at risk of developing type 2 diabetes mellitus. In order to mitigate this pandemic, safer and more potent therapeutics are urgently required. This necessitates the continued use of animal models to discover, validate and optimize novel therapeutics for their safe use in humans. In order to improve the transition from bench to bedside, researchers must not only carefully select the appropriate model but also draw the right conclusions. In this Review, we consolidate the key information on the currently available animal models of obesity and diabetes and highlight the advantages, limitations and important caveats of each of these models.
Collapse
Affiliation(s)
- Maximilian Kleinert
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, D-80333 Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Christoffer Clemmensen
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, D-80333 Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Susanna M Hofmann
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Ziemssenstr. 1, D-80336 Munich, Germany
| | - Mary C Moore
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37212, USA
| | - Simone Renner
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilan University München, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Stephen C Woods
- University of Cincinnati College of Medicine, Department of Psychiatry and Behavioral Neuroscience, Metabolic Diseases Institute, 2170 East Galbraith Road, Cincinnati, Ohio 45237, USA
| | - Peter Huypens
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Johannes Beckers
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Technische Universität München, Chair of Experimental Genetics, D-85354 Freising, Germany
| | - Martin Hrabe de Angelis
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Technische Universität München, Chair of Experimental Genetics, D-85354 Freising, Germany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | - Mostafa Bakhti
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, Technische Universität München, TUM School of Life Sciences Weihenstephan, Gregor-Mendel-Str. 2, D-85354 Freising, Germany
- Else Kröner-Fresenius Center for Nutritional Medicine, Technische Universität München, D-85354 Freising, Germany
- Institute for Food & Health, Technische Universität München, D-85354 Freising, Germany
| | - Mark Heiman
- MicroBiome Therapeutics, 1316 Jefferson Ave, New Orleans, Louisiana 70115, USA
| | - Alan D Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37212, USA
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, CH-8603 Zurich-Schwerzenbach, Switzerland
| | - Heiko Lickert
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Eckhard Wolf
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilan University München, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, 3135 Meyer Hall, University of California, Davis, California 95616-5270, USA
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, D-80333 Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, D-80333 Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| |
Collapse
|
50
|
Subramaniam A, Landstrom M, Luu A, Hayes KC. The Nile Rat (Arvicanthis niloticus) as a Superior Carbohydrate-Sensitive Model for Type 2 Diabetes Mellitus (T2DM). Nutrients 2018; 10:nu10020235. [PMID: 29463026 PMCID: PMC5852811 DOI: 10.3390/nu10020235] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 02/06/2023] Open
Abstract
Type II diabetes mellitus (T2DM) is a multifactorial disease involving complex genetic and environmental interactions. No single animal model has so far mirrored all the characteristics or complications of diabetes in humans. Since this disease represents a chronic nutritional insult based on a diet bearing a high glycemic load, the ideal model should recapitulate the underlying dietary issues. Most rodent models have three shortcomings: (1) they are genetically or chemically modified to produce diabetes; (2) unlike humans, most require high-fat feeding; (3) and they take too long to develop diabetes. By contrast, Nile rats develop diabetes rapidly (8-10 weeks) with high-carbohydrate (hiCHO) diets, similar to humans, and are protected by high fat (with low glycemic load) intake. This review describes diabetes progression in the Nile rat, including various aspects of breeding, feeding, and handling for best experimental outcomes. The diabetes is characterized by a striking genetic permissiveness influencing hyperphagia and hyperinsulinemia; random blood glucose is the best index of disease progression; and kidney failure with chronic morbidity and death are outcomes, all of which mimic uncontrolled T2DM in humans. Non-alcoholic fatty liver disease (NAFLD), also described in diabetic humans, results from hepatic triglyceride and cholesterol accumulation associated with rising blood glucose. Protection is afforded by low glycemic load diets rich in certain fibers or polyphenols. Accordingly, the Nile rat provides a unique opportunity to identify the nutritional factors and underlying genetic and molecular mechanisms that characterize human T2DM.
Collapse
Affiliation(s)
| | | | - Alice Luu
- Department of Biology, Brandeis University, Waltham, MA 02454, USA.
| | - K C Hayes
- Department of Biology, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|