1
|
Panthong W, Pientong C, Nukpook T, Heawchaiyaphum C, Aromseree S, Ekalaksananan T. OSI-027 as a Potential Drug Candidate Targeting Upregulated Hub Protein TAF1 in Potential Mechanism of Sinonasal Squamous Cell Carcinoma: Insights from Proteomics and Molecular Docking. BIOLOGY 2024; 13:1089. [PMID: 39765756 PMCID: PMC11673211 DOI: 10.3390/biology13121089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025]
Abstract
Sinonasal squamous cell carcinoma (SNSCC) is a rare tumor with high mortality and recurrence rates. However, SNSCC carcinogenesis mechanisms and potential therapeutic drugs have not been fully elucidated. This study investigated the key molecular mechanisms and hub proteins involved in SNSCC carcinogenesis using proteomics and bioinformatic analysis. Dysregulated proteins were validated by RT-qPCR in SNSCC and nasal polyp (NP) tissues. Proteomic analysis revealed that differentially expressed proteins were clustered using MCODE scores ≥ 4 into three modules. The specific hub proteins in each module were analyzed in carcinogenesis pathways using STRING, highlighting potential mechanisms of histone modification and spliceosome dysregulation. Spliceosome components SNRNP200 and SF3A3 were significantly downregulated in SNSCC by RT-qPCR. Web-based applications L1000CDS2 and iLINCS were applied to identify 10 potential repurposable drugs that could reverse the gene expression pattern associated with SNSCC. Docking studies of TAF1, a protein in histone modification, with these 10 small molecule inhibitors indicated OSI-027 to be the most promising due to its strong binding interactions with key residues. These findings suggest that hub proteins involved in the underlying mechanism of SNSCC carcinogenesis may serve as valuable targets for drug development, with OSI-027 emerging as a novel candidate against TAF1 in SNSCC.
Collapse
Affiliation(s)
- Watcharapong Panthong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (T.N.); (C.H.); (S.A.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (T.N.); (C.H.); (S.A.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thawaree Nukpook
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (T.N.); (C.H.); (S.A.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chukkris Heawchaiyaphum
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (T.N.); (C.H.); (S.A.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sirinart Aromseree
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (T.N.); (C.H.); (S.A.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (T.N.); (C.H.); (S.A.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
2
|
Song C, Jiao Z, Hou Z, Xing Y, Sha X, Wang Y, Chen J, Liu S, Li Z, Yin F. Versatile Split-and-Mix Liposome PROTAC Platform for Efficient Degradation of Target Protein In Vivo. JACS AU 2024; 4:2915-2924. [PMID: 39211615 PMCID: PMC11350581 DOI: 10.1021/jacsau.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 09/04/2024]
Abstract
PROTAC (Proteolysis TArgeting Chimeras) is a promising therapeutic approach for targeted protein degradation that recruits an E3 ubiquitin ligase to a specific protein of interest (POI), leading to its degradation by the proteasome. Recently, we developed a novel split-and-mix PROTAC system based on liposome self-assembly (LipoSM-PROTAC) which could achieve target protein degradation at comparable concentrations comparable to small molecules. In this study, we expanded protein targets based on the LipoSM-PROTAC platform and further examined its therapeutic effects in vivo. Notably, this platform could efficiently degrade the protein level of MEK1/2 in A375 cells or Alk in NCI-H2228 cells and display obvious tumor inhibition (60-70% inhibition rate) with negligible toxicity. This study further proved the LipoSM-PROTAC's application potentials.
Collapse
Affiliation(s)
- Chunli Song
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
| | - Zijun Jiao
- Pingshan
Translational Medicine Center, Shenzhen
Bay Laboratory, Shenzhen 518118, China
- Frontiers
Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China
| | - Zhanfeng Hou
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
| | - Yun Xing
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
| | - Xinrui Sha
- Pingshan
Translational Medicine Center, Shenzhen
Bay Laboratory, Shenzhen 518118, China
| | - Yuechen Wang
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
| | - Jiaxin Chen
- Pingshan
Translational Medicine Center, Shenzhen
Bay Laboratory, Shenzhen 518118, China
| | - Susheng Liu
- Pingshan
Translational Medicine Center, Shenzhen
Bay Laboratory, Shenzhen 518118, China
| | - Zigang Li
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
- Pingshan
Translational Medicine Center, Shenzhen
Bay Laboratory, Shenzhen 518118, China
| | - Feng Yin
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
- Pingshan
Translational Medicine Center, Shenzhen
Bay Laboratory, Shenzhen 518118, China
| |
Collapse
|
3
|
Russo GC, Crawford AJ, Clark D, Cui J, Carney R, Karl MN, Su B, Starich B, Lih TS, Kamat P, Zhang Q, Nair PR, Wu PH, Lee MH, Leong HS, Zhang H, Rebecca VW, Wirtz D. E-cadherin interacts with EGFR resulting in hyper-activation of ERK in multiple models of breast cancer. Oncogene 2024; 43:1445-1462. [PMID: 38509231 DOI: 10.1038/s41388-024-03007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024]
Abstract
The loss of intercellular adhesion molecule E-cadherin is a hallmark of the epithelial-mesenchymal transition (EMT), during which tumor cells transition into an invasive phenotype. Accordingly, E-cadherin has long been considered a tumor suppressor gene; however, E-cadherin expression is paradoxically correlated with breast cancer survival rates. Using novel multi-compartment organoids and multiple in vivo models, we show that E-cadherin promotes a hyper-proliferative phenotype in breast cancer cells via interaction with the transmembrane receptor EGFR. The E-cad and EGFR interaction results in activation of the MEK/ERK signaling pathway, leading to a significant increase in proliferation via activation of transcription factors, including c-Fos. Pharmacological inhibition of MEK activity in E-cadherin positive breast cancer significantly decreases both tumor growth and macro-metastasis in vivo. This work provides evidence for a novel role of E-cadherin in breast tumor progression and identifies a new target to treat hyper-proliferative E-cadherin-positive breast tumors, thus providing the foundation to utilize E-cadherin as a biomarker for specific therapeutic success.
Collapse
Affiliation(s)
- Gabriella C Russo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
- Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Ashleigh J Crawford
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
- Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - David Clark
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Julie Cui
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Ryan Carney
- Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Michelle N Karl
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
- Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Boyang Su
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Bartholomew Starich
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
- Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Tung-Shing Lih
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Pratik Kamat
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
- Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Qiming Zhang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Praful R Nair
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
- Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
- Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Meng-Horng Lee
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Hon S Leong
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Hui Zhang
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Vito W Rebecca
- Department of Biochemistry and Molecular Biology, Johns Hopkins University School of Public Health, Baltimore, MD, 21231, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA.
- Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA.
| |
Collapse
|
4
|
Tunoğlu S, Tutar L, Gümüş M, Tunoğlu ENY, Koca İ, Tutar Y. Hsp Inhibitor is Affective Against Adenocarcinomic Human Alveolar Basal Epithelial Cells Through Modulating ERK/MAPK Signaling Pathway. Chem Biodivers 2024; 21:e202301422. [PMID: 38156745 DOI: 10.1002/cbdv.202301422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
The extracellular signal-regulated kinase (ERK) - mitogen-activated protein kinase (MAPK) pathway regulates cell proliferation, differentiation, and apoptosis. Heat Shock Protein 90 (HSP90) is required to activate proto-oncogenic protein kinases and promotes tumor growth through anti-apoptotic effects on A549-non-small cell lung cancer (NSCLC). Therefore, deregulation of the ERK-MAPK pathway and abnormal expression of HSP90 are reasonably frequent events in NSCLC. In this study, novel perimidine-pyrazole compounds employed to block ERK-MAPK deregulation through inhibiting HSP dependent cancer cell survival mechanisms. A set of perimidine-pyrazole derivatives effects was monitored on NSCLC cell line. Array experiments performed to understand the effect of the compounds on signaling pathways and results were analyzed by gene enrichment analysis. Further, senescence and apoptosis experiments were performed to support the enrichment results along with in silico methods to determine perimidine-pyrazole/HSP interactions. Treatment of NSCLC cells with perimidine-pyrazole derivatives displayed cancer-inhibitory, pro-senescent and pro-apoptotic effects on NSCLC cells through ERK/MAPK pathway and these compounds are promising templates for designing anticancer drugs.
Collapse
Affiliation(s)
- Servet Tunoğlu
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Lütfi Tutar
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Kırsehir Ahi Evran University, Kırsehir, Turkey
| | - Mehmet Gümüş
- Akdağmadeni Health College, Yozgat Bozok University, Yozgat, Turkey
| | - Ezgi Nurdan Yenilmez Tunoğlu
- Division of Medical Techniques and Services, Vocational School of Health Sciences, Demiroglu Science University, Turkey
| | - İrfan Koca
- Department of Chemistry, Faculty of Arts Sciences, Yozgat Bozok University, Yozgat, Turkey
| | - Yusuf Tutar
- Division of Biochemistry, Department of Basic Pharmaceutical Sciences, Hamidiye Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
- Division of Molecular Oncology, Hamidiye Health Sciences Institute, University of Health Sciences, Istanbul, Turkey
- Validebağ Research Center, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
5
|
Damayanti NP, Saadatzadeh MR, Dobrota E, Ordaz JD, Bailey BJ, Pandya PH, Bijangi-Vishehsaraei K, Shannon HE, Alfonso A, Coy K, Trowbridge M, Sinn AL, Zhang ZY, Gallagher RI, Wulfkuhle J, Petricoin E, Richardson AM, Marshall MS, Lion A, Ferguson MJ, Balsara KE, Pollok KE. Establishment and characterization of patient-derived xenograft of a rare pediatric anaplastic pleomorphic xanthoastrocytoma (PXA) bearing a CDC42SE2-BRAF fusion. Sci Rep 2023; 13:9163. [PMID: 37280243 PMCID: PMC10244396 DOI: 10.1038/s41598-023-36107-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/30/2023] [Indexed: 06/08/2023] Open
Abstract
Pleomorphic xanthoastrocytoma (PXA) is a rare subset of primary pediatric glioma with 70% 5-year disease free survival. However, up to 20% of cases present with local recurrence and malignant transformation into more aggressive type anaplastic PXA (AXPA) or glioblastoma. The understanding of disease etiology and mechanisms driving PXA and APXA are limited, and there is no standard of care. Therefore, development of relevant preclinical models to investigate molecular underpinnings of disease and to guide novel therapeutic approaches are of interest. Here, for the first time we established, and characterized a patient-derived xenograft (PDX) from a leptomeningeal spread of a patient with recurrent APXA bearing a novel CDC42SE2-BRAF fusion. An integrated -omics analysis was conducted to assess model fidelity of the genomic, transcriptomic, and proteomic/phosphoproteomic landscapes. A stable xenoline was derived directly from the patient recurrent tumor and maintained in 2D and 3D culture systems. Conserved histology features between the PDX and matched APXA specimen were maintained through serial passages. Whole exome sequencing (WES) demonstrated a high degree of conservation in the genomic landscape between PDX and matched human tumor, including small variants (Pearson's r = 0.794-0.839) and tumor mutational burden (~ 3 mutations/MB). Large chromosomal variations including chromosomal gains and losses were preserved in PDX. Notably, chromosomal gain in chromosomes 4-9, 17 and 18 and loss in the short arm of chromosome 9 associated with homozygous 9p21.3 deletion involving CDKN2A/B locus were identified in both patient tumor and PDX sample. Moreover, chromosomal rearrangement involving 7q34 fusion; CDC42SE-BRAF t (5;7) (q31.1, q34) (5:130,721,239, 7:140,482,820) was identified in the PDX tumor, xenoline and matched human tumor. Transcriptomic profile of the patient's tumor was retained in PDX (Pearson r = 0.88) and in xenoline (Pearson r = 0.63) as well as preservation of enriched signaling pathways (FDR Adjusted P < 0.05) including MAPK, EGFR and PI3K/AKT pathways. The multi-omics data of (WES, transcriptome, and reverse phase protein array (RPPA) was integrated to deduce potential actionable pathways for treatment (FDR < 0.05) including KEGG01521, KEGG05202, and KEGG05200. Both xenoline and PDX were resistant to the MEK inhibitors trametinib or mirdametinib at clinically relevant doses, recapitulating the patient's resistance to such treatment in the clinic. This set of APXA models will serve as a preclinical resource for developing novel therapeutic regimens for rare anaplastic PXAs and pediatric high-grade gliomas bearing BRAF fusions.
Collapse
Affiliation(s)
- Nur P Damayanti
- Neuro-Oncology Program, Pediatric Neurosurgery, Department of Neurosurgery, Indiana University, Indianapolis, IN, 46202, USA
- Department of Neurosurgery, Indiana University, Indianapolis, IN, 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
| | - M Reza Saadatzadeh
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Erika Dobrota
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Josue D Ordaz
- Department of Neurosurgery, Indiana University, Indianapolis, IN, 46202, USA
| | - Barbara J Bailey
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana University Simon Comprehensive Cancer Center Preclinical Modeling and Therapeutics Core, Indianapolis, USA
| | - Pankita H Pandya
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Khadijeh Bijangi-Vishehsaraei
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Translational Research Integrated Biology Laboratory/Indiana Pediatric Biobank, Riley Children Hospital, Indianapolis, IN, 46202, USA
| | - Harlan E Shannon
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | - Kathy Coy
- Indiana University Simon Comprehensive Cancer Center Preclinical Modeling and Therapeutics Core, Indianapolis, USA
| | - Melissa Trowbridge
- Indiana University Simon Comprehensive Cancer Center Preclinical Modeling and Therapeutics Core, Indianapolis, USA
| | - Anthony L Sinn
- Indiana University Simon Comprehensive Cancer Center Preclinical Modeling and Therapeutics Core, Indianapolis, USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, IN, 47907, USA
| | - Rosa I Gallagher
- Center for Applied Proteomics and Molecular Medicine, Institute for Biomedical Innovation, George Mason University, Manassas, VA, 20110, USA
| | - Julia Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, Institute for Biomedical Innovation, George Mason University, Manassas, VA, 20110, USA
| | - Emanuel Petricoin
- Center for Applied Proteomics and Molecular Medicine, Institute for Biomedical Innovation, George Mason University, Manassas, VA, 20110, USA
| | - Angela M Richardson
- Department of Neurosurgery, Indiana University, Indianapolis, IN, 46202, USA
- Indiana University Simon Comprehensive Cancer Center Preclinical Modeling and Therapeutics Core, Indianapolis, USA
| | - Mark S Marshall
- Pediatric Cancer Precision Genomics Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Alex Lion
- Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Michael J Ferguson
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Pediatric Cancer Precision Genomics Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Karl E Balsara
- Neuro-Oncology Program, Pediatric Neurosurgery, Department of Neurosurgery, Indiana University, Indianapolis, IN, 46202, USA.
- Department of Neurosurgery, University of Oklahoma School of Medicine, Oklahoma City, OH, 73104, USA.
| | - Karen E Pollok
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA.
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Indiana University Simon Comprehensive Cancer Center Preclinical Modeling and Therapeutics Core, Indianapolis, USA.
- Pediatric Cancer Precision Genomics Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
6
|
Andalib KMS, Rahman MH, Habib A. Bioinformatics and cheminformatics approaches to identify pathways, molecular mechanisms and drug substances related to genetic basis of cervical cancer. J Biomol Struct Dyn 2023; 41:14232-14247. [PMID: 36852684 DOI: 10.1080/07391102.2023.2179542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/07/2023] [Indexed: 03/01/2023]
Abstract
Cervical cancer (CC) is a global threat to women and our knowledge is frighteningly little about its underlying genomic contributors. Our research aimed to understand the underlying molecular and genetic mechanisms of CC by integrating bioinformatics and network-based study. Transcriptomic analyses of three microarray datasets identified 218 common differentially expressed genes (DEGs) within control samples and CC specimens. KEGG pathway analysis revealed pathways in cell cycle, drug metabolism, DNA replication and the significant GO terms were cornification, proteolysis, cell division and DNA replication. Protein-protein interaction (PPI) network analysis identified 20 hub genes and survival analyses validated CDC45, MCM2, PCNA and TOP2A as CC biomarkers. Subsequently, 10 transcriptional factors (TFs) and 10 post-transcriptional regulators were detected through TFs-DEGs and miRNAs-DEGs regulatory network assessment. Finally, the CC biomarkers were subjected to a drug-gene relationship analysis to find the best target inhibitors. Standard cheminformatics method including in silico ADMET and molecular docking study substantiated PD0325901 and Selumetinib as the most potent candidate-drug for CC treatment. Overall, this meticulous study holds promises for further in vitro and in vivo research on CC diagnosis, prognosis and therapies. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- K M Salim Andalib
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Md Habibur Rahman
- Department of Computer Science and Engineering, Islamic University, Kushtia, Bangladesh
- Center for Advanced Bioinformatics and Artificial Intelligent Research, Islamic University, Kushtia, Bangladesh
| | - Ahsan Habib
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| |
Collapse
|
7
|
Lin Y, Lin F, Zhang Z, Peng L, Yang W, Yang M, Luo B, Wu T, Li D, Li X, Ran B, Anuchapreeda S, Chaiwongsa R, Khamphikham P, Duangmano S, Xu J, He T, Pornprasert S. The FGFR1 Signaling Pathway Upregulates the Oncogenic Transcription Factor FOXQ1 to Promote Breast Cancer Cell Growth. Int J Biol Sci 2023; 19:744-759. [PMID: 36778115 PMCID: PMC9909991 DOI: 10.7150/ijbs.74574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
FGFR1 is a receptor tyrosine kinase deregulated in certain breast cancers (BCs) with a poor prognosis. Although FGFR1-activated phosphorylation cascades have been mapped, the key genes regulated by FGFR1 in BC are largely unclear. FOXQ1 is an oncogenic transcription factor. Although we found that activation of FGFR1 robustly upregulated FOXQ1 mRNA, how FGFR1 regulates FOXQ1 gene expression and whether FOXQ1 is essential for FGFR1-stimulated cell proliferation are unknown. Herein, we confirmed that activation of FGFR1 robustly upregulated FOXQ1 mRNA and protein in BC cells. Knockdown of FOXQ1 blocked the FGFR1 signaling-stimulated BC cell proliferation, colony formation, and xenograft tumor growth. Inhibition of MEK or ERK1/2 activities, or knockout of ERK2 but not ERK1 suppressed the FGFR1 signaling-promoted FOXQ1 gene expression. Inhibition of ERK2 in ERK1 knockout cells blocked, while ectopic expression of FOXQ1 in ERK2 knockout cells rescued the FGFR1-signaling-promoted cell growth. Mechanistically, c-FOS, an early response transcription factor upregulated by the FGFR1-MEK-ERK2 pathway, bound to the FOXQ1 promoter to mediate the FGFR1 signaling-promoted FOXQ1 expression. These results indicate that the FGFR1-ERK2-c-FOS-FOXQ1 regulatory axis plays an essential role in the FGFR1 signaling-promoted BC growth. Targeting ERK2 and FOXQ1 should block BC growth caused by a deregulated FGFR1 signaling.
Collapse
Affiliation(s)
- Yan Lin
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China.,Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Fengkang Lin
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China.,Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou Sichuan, 646000, China
| | - Zhuoran Zhang
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Lijia Peng
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Wenli Yang
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Mao Yang
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Bo Luo
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Ting Wu
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Dabing Li
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xuesen Li
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Bing Ran
- Functional laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou Sichuan, 646000, China
| | - Songyot Anuchapreeda
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Rujirek Chaiwongsa
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pinyaphat Khamphikham
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Suwit Duangmano
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Tao He
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Sakorn Pornprasert
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
8
|
Mathpal S, Sharma P, Joshi T, Pande V, Mahmud S, Jeong MK, Obaidullah AJ, Chandra S, Kim B. Identification of Zinc-Binding Inhibitors of Matrix Metalloproteinase-9 to Prevent Cancer Through Deep Learning and Molecular Dynamics Simulation Approach. Front Mol Biosci 2022; 9:857430. [PMID: 35463960 PMCID: PMC9024349 DOI: 10.3389/fmolb.2022.857430] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
The overexpression of matrix metalloproteinase-9 (MMP-9) is associated with tumor development and angiogenesis, and hence, it has been considered an attractive drug target for anticancer therapy. To assist in drug design endeavors for MMP-9 targets, an in silico study was presented to investigate whether our compounds inhibit MMP-9 by binding to the catalytic domain, similar to their inhibitor or not. For that, in the initial stage, a deep-learning algorithm was used for the predictive modeling of the CHEMBL321 dataset of MMP-9 inhibitors. Several regression models were built and evaluated based on R2, MAE MSE, RMSE, and Loss. The best model was utilized to screen the drug bank database containing 9,102 compounds to seek novel compounds as MMP-9 inhibitors. Then top high score compounds were selected for molecular docking based on the comparison between the score of the reference molecule. Furthermore, molecules having the highest docking scores were selected, and interaction mechanisms with respect to S1 pocket and catalytic zinc ion of these compounds were also discussed. Those compounds, involving binding to the catalytic zinc ion and the S1 pocket of MMP-9, were considered preferentially for molecular dynamics studies (100 ns) and an MM-PBSA (last 30 ns) analysis. Based on the results, we proposed several novel compounds as potential candidates for MMP-9 inhibition and investigated their binding properties with MMP-9. The findings suggested that these compounds may be useful in the design and development of MMP-9 inhibitors in the future.
Collapse
Affiliation(s)
- Shalini Mathpal
- Department of Biotechnology, Kumaun University Uttarakhand, Bhimtal, India
| | - Priyanka Sharma
- Department of Botany, DSB, Campus, Kumaun University, Nainital, India
| | - Tushar Joshi
- Department of Biotechnology, Kumaun University Uttarakhand, Bhimtal, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University Uttarakhand, Bhimtal, India
| | - Shafi Mahmud
- Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
- Department of Genome Science, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Mi-Kyung Jeong
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Ahmad J. Obaidullah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Subhash Chandra
- Computational Biology and Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, India
- *Correspondence: Subhash Chandra, ; Bonglee Kim,
| | - Bonglee Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Subhash Chandra, ; Bonglee Kim,
| |
Collapse
|
9
|
Zhang L, Yuan Y, Yu J, Liu H. SEMCM: A Self-Expressive Matrix Completion Model for Anti-cancer Drug Sensitivity Prediction. Curr Bioinform 2022. [DOI: 10.2174/1574893617666220302123118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Genomic data sets generated by several recent large scale high-throughput screening efforts pose a thorny computational challenge for anticancer drug sensitivity prediction.
Objective:
We aimed to design an algorithm model that would predict missing elements in incomplete matrices and could be applicable to drug response prediction programs.
Method:
We developed a novel self-expressive matrix completion model to improve the predictive performance of drug response prediction problems. The model is based on the idea of subspace clustering and as a convex problem, it can be solved by alternating direction method of
multipliers. The original incomplete matrix can be filled through model training and parameters updated iteratively.
Results:
We applied SEMCM to Genomics of Drug Sensitivity in Cancer
(GDSC) and Cancer Cell Line Encyclopedia (CCLE) datasets to predict
unknown response values. A large number of experiments have proved that the algorithm has good prediction results and stability, which are better than several existing advanced drug sensitivity prediction and matrix
completion algorithms. Without modeling mutation information, SEMCM
could correctly predict cell line-drug associations for mutated cell lines and
wild cell lines. SEMCM can also be used for drug repositioning. The newly
predicted drug responses of GDSC dataset suggest that BL-41 was highly
sensitive to Bortezomib. Moreover, the sensitivity of A172 and NCI-H1437
to Paclitaxel was roughly the same.
Conclusion:
We report an efficient anticancer drug sensitivity prediction algorithm which is open-source and can predict the unknown responses of
cancer cell lines to drugs. Experimental results prove that our method can
not only improve the prediction accuracy but also can be applied to drug
repositioning.
Collapse
Affiliation(s)
- Lin Zhang
- Engineering Research Center of Intelligent Control for Underground
Space, Ministry of Education,
- China University of Mining and Technology, Xuzhou 221116, China
| | - Yuwei Yuan
- Engineering Research Center of Intelligent Control for Underground
Space, Ministry of Education,
- China University of Mining and Technology, Xuzhou 221116, China
| | - Jian Yu
- Engineering Research Center of Intelligent Control for Underground
Space, Ministry of Education,
- China University of Mining and Technology, Xuzhou 221116, China
| | - Hui Liu
- Engineering Research Center of Intelligent Control for Underground
Space, Ministry of Education,
- China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
10
|
Yan Y, Shi H, Zhao Z, Wang S, Zhou S, Mu Y, Ding N, Lai Y, Zhao AZ, Cheng L, Li F. Adiponectin Deficiency Promotes Endometrial Carcinoma Pathogenesis and Development via Activation of
Mitogen‐Activated
Protein Kinase. J Pathol 2022; 257:146-157. [PMID: 35072951 DOI: 10.1002/path.5874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/06/2021] [Accepted: 01/21/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Yunjing Yan
- The School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong Province China
| | - Hui Shi
- Department of Pathology Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing Jiangsu Province China
| | - Zhenggang Zhao
- The School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong Province China
| | - Shuai Wang
- The School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong Province China
| | - Sujin Zhou
- The School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong Province China
| | - Yunping Mu
- The School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong Province China
| | - Ning Ding
- The School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong Province China
| | - Yimei Lai
- Department of Pathology First Affiliated Hospital of Gannan Medical University Ganzhou Jiangxi Province China
| | - Allan Z. Zhao
- The School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong Province China
| | - Lixian Cheng
- Key laboratory of Functional and Clinical Translational Medicine Xiamen Key Laboratory of Respiratory Diseases, Xiamen Medical College Xiamen Fujian Province China
| | - Fanghong Li
- The School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong Province China
| |
Collapse
|
11
|
Cha Y, Kim T, Jeon J, Jang Y, Kim PB, Lopes C, Leblanc P, Cohen BM, Kim KS. SIRT2 regulates mitochondrial dynamics and reprogramming via MEK1-ERK-DRP1 and AKT1-DRP1 axes. Cell Rep 2021; 37:110155. [PMID: 34965411 PMCID: PMC8780843 DOI: 10.1016/j.celrep.2021.110155] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/01/2021] [Accepted: 12/01/2021] [Indexed: 02/08/2023] Open
Abstract
During somatic reprogramming, cellular energy metabolism fundamentally switches from predominantly mitochondrial oxidative phosphorylation toward glycolysis. This metabolic reprogramming, also called the Warburg effect, is critical for the induction of pluripotency, but its molecular mechanisms remain poorly defined. Notably, SIRT2 is consistently downregulated during the reprogramming process and regulates glycolytic switch. Here, we report that downregulation of SIRT2 increases acetylation of mitogen-activated protein kinase (MAPK) kinase-1 (MEK1) at Lys175, resulting in activation of extracellular signal-regulated kinases (ERKs) and subsequent activation of the pro-fission factor dynamin-related protein 1 (DRP1). In parallel, downregulation of SIRT2 hyperacetylates the serine/threonine protein kinase AKT1 at Lys20 in a non-canonical way, activating DRP1 and metabolic reprogramming. Together, our study identified two axes, SIRT2-MEK1-ERK-DRP1 and SIRT2-AKT1-DRP1, that critically link mitochondrial dynamics and oxidative phosphorylation to the somatic reprogramming process. These upstream signals, together with SIRT2’s role in glycolytic switching, may underlie the Warburg effect observed in human somatic cell reprogramming. Mitochondrial remodeling has critical roles for the somatic cell reprogramming process. Cha et al. report the functional role of SIRT2 in mitochondrial dynamics and remodeling during the human somatic cell reprogramming process. They identify two axes, SIRT2-MEK1-ERK-DRP1 and SIRT2-AKT1-DRP1, that link SIRT2 downregulation to mitochondrial remodeling and somatic cell reprogramming.
Collapse
Affiliation(s)
- Young Cha
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA 02478, USA.
| | - Taewoo Kim
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA 02478, USA
| | - Jeha Jeon
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA 02478, USA
| | - Yongwoo Jang
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA 02478, USA; Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea
| | - Patrick B Kim
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA 02478, USA
| | - Claudia Lopes
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA 02478, USA
| | - Pierre Leblanc
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA 02478, USA
| | - Bruce M Cohen
- Department of Psychiatry and Program for Neuropsychiatric Research, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Kwang-Soo Kim
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA 02478, USA.
| |
Collapse
|
12
|
Zhang S, Wang H, Melick CH, Jeong MH, Curukovic A, Tiwary S, Lama-Sherpa TD, Meng D, Servage KA, James NG, Jewell JL. AKAP13 couples GPCR signaling to mTORC1 inhibition. PLoS Genet 2021; 17:e1009832. [PMID: 34673774 PMCID: PMC8570464 DOI: 10.1371/journal.pgen.1009832] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/05/2021] [Accepted: 09/21/2021] [Indexed: 01/14/2023] Open
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) senses multiple stimuli to regulate anabolic and catabolic processes. mTORC1 is typically hyperactivated in multiple human diseases such as cancer and type 2 diabetes. Extensive research has focused on signaling pathways that can activate mTORC1 such as growth factors and amino acids. However, less is known about signaling cues that can directly inhibit mTORC1 activity. Here, we identify A-kinase anchoring protein 13 (AKAP13) as an mTORC1 binding protein, and a crucial regulator of mTORC1 inhibition by G-protein coupled receptor (GPCR) signaling. GPCRs paired to Gαs proteins increase cyclic adenosine 3’5’ monophosphate (cAMP) to activate protein kinase A (PKA). Mechanistically, AKAP13 acts as a scaffold for PKA and mTORC1, where PKA inhibits mTORC1 through the phosphorylation of Raptor on Ser 791. Importantly, AKAP13 mediates mTORC1-induced cell proliferation, cell size, and colony formation. AKAP13 expression correlates with mTORC1 activation and overall lung adenocarcinoma patient survival, as well as lung cancer tumor growth in vivo. Our study identifies AKAP13 as an important player in mTORC1 inhibition by GPCRs, and targeting this pathway may be beneficial for human diseases with hyperactivated mTORC1. The mammalian target of rapamycin complex 1 (mTORC1) can sense multiple upstream stimuli to regulate cell growth and metabolism. Increased mTORC1 activation results in many human diseases such as cancer. Small molecules like rapamycin that target and inhibit mTORC1, are available in the clinic with limited success. Thus, decoding the mechanisms involved in mTORC1 regulation is crucial. Most of the research has focused on stimuli that activate mTORC1. Less is known about signaling pathways that can directly inhibit mTORC1 activity. G-protein coupled receptors (GPCRs) coupled to Gαs proteins signal to and potently inhibit mTORC1. In this study, we have identified AKAP13 to play a crucial role in mTORC1 inhibition by GPCR signaling. Importantly, GPCRs are the largest family of drug targets with many approved FDA compounds. Targeting this signaling pathway may be beneficial for human diseases with hyperactivated mTORC1.
Collapse
Affiliation(s)
- Shihai Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Huanyu Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Chase H. Melick
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Mi-Hyeon Jeong
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Adna Curukovic
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Shweta Tiwary
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Tshering D. Lama-Sherpa
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Delong Meng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Kelly A. Servage
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Nicholas G. James
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Jenna L. Jewell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
13
|
Koh SB, Ross K, Isakoff SJ, Melkonjan N, He L, Matissek KJ, Schultz A, Mayer EL, Traina TA, Carey LA, Rugo HS, Liu MC, Stearns V, Langenbucher A, Saladi SV, Ramaswamy S, Lawrence MS, Ellisen LW. RASAL2 Confers Collateral MEK/EGFR Dependency in Chemoresistant Triple-Negative Breast Cancer. Clin Cancer Res 2021; 27:4883-4897. [PMID: 34168046 DOI: 10.1158/1078-0432.ccr-21-0714] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/30/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE While chemotherapy remains the standard treatment for triple-negative breast cancer (TNBC), identifying and managing chemoresistant tumors has proven elusive. We sought to discover hallmarks and therapeutically actionable features of refractory TNBC through molecular analysis of primary chemoresistant TNBC specimens. EXPERIMENTAL DESIGN We performed transcriptional profiling of tumors from a phase II clinical trial of platinum chemotherapy for advanced TNBC (TBCRC-009), revealing a gene expression signature that identified de novo chemorefractory tumors. We then employed pharmacogenomic data mining, proteomic and other molecular studies to define the therapeutic vulnerabilities of these tumors. RESULTS We reveal the RAS-GTPase-activating protein (RAS-GAP) RASAL2 as an upregulated factor that mediates chemotherapy resistance but also an exquisite collateral sensitivity to combination MAP kinase kinase (MEK1/2) and EGFR inhibitors in TNBC. Mechanistically, RASAL2 GAP activity is required to confer kinase inhibitor sensitivity, as RASAL2-high TNBCs sustain basal RAS activity through suppression of negative feedback regulators SPRY1/2, together with EGFR upregulation. Consequently, RASAL2 expression results in failed feedback compensation upon co-inhibition of MEK1/2 and EGFR that induces synergistic apoptosis in vitro and in vivo. In patients with TNBC, high RASAL2 levels predict clinical chemotherapy response and long-term outcomes, and are associated via direct transcriptional regulation with activated oncogenic Yes-Associated Protein (YAP). Accordingly, chemorefractory patient-derived TNBC models exhibit YAP activation, high RASAL2 expression, and tumor regression in response to MEK/EGFR inhibitor combinations despite well-tolerated intermittent dosing. CONCLUSIONS These findings identify RASAL2 as a mediator of TNBC chemoresistance that rewires MAPK feedback and cross-talk to confer profound collateral sensitivity to combination MEK1/2 and EGFR inhibitors.
Collapse
Affiliation(s)
- Siang-Boon Koh
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Kenneth Ross
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard University, Cambridge, Massachusetts
| | - Steven J Isakoff
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Nsan Melkonjan
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Lei He
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Karina J Matissek
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Andrew Schultz
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Erica L Mayer
- Harvard Medical School, Boston, Massachusetts.,Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Lisa A Carey
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hope S Rugo
- University of California San Francisco, San Francisco, California
| | - Minetta C Liu
- Georgetown Lombardi Comprehensive Cancer Center, Washington, District of Columbia
| | - Vered Stearns
- Johns Hopkins University and Sidney Kimmel Cancer Center, Baltimore, Maryland
| | - Adam Langenbucher
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Srinivas Vinod Saladi
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Sridhar Ramaswamy
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard University, Cambridge, Massachusetts.,Ludwig Center at Harvard, Harvard University, Boston, Massachusetts
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard University, Cambridge, Massachusetts
| | - Leif W Ellisen
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts. .,Harvard Medical School, Boston, Massachusetts.,Ludwig Center at Harvard, Harvard University, Boston, Massachusetts
| |
Collapse
|
14
|
Characterization of Biological Pathways Regulating Acute Cold Resistance of Zebrafish. Int J Mol Sci 2021; 22:ijms22063028. [PMID: 33809683 PMCID: PMC8001686 DOI: 10.3390/ijms22063028] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 02/08/2023] Open
Abstract
Low temperature stress represents a major threat to the lives of both farmed and wild fish species. However, biological pathways determining the development of cold resistance in fish remain largely unknown. Zebrafish larvae at 96 hpf were exposed to lethal cold stress (10 °C) for different time periods to evaluate the adverse effects at organism, tissue and cell levels. Time series RNA sequencing (RNA-seq) experiments were performed to delineate the transcriptomic landscape of zebrafish larvae under cold stress and during the subsequent rewarming phase. The genes regulated by cold stress were characterized by progressively enhanced or decreased expression, whereas the genes associated with rewarming were characterized by rapid upregulation upon return to normal temperature (28 °C). Genes such as trib3, dusp5 and otud1 were identified as the representative molecular markers of cold-induced damages through network analysis. Biological pathways involved in cold stress responses were mined from the transcriptomic data and their functions in regulating cold resistance were validated using specific inhibitors. The autophagy, FoxO and MAPK (mitogen-activated protein kinase) signaling pathways were revealed to be survival pathways for enhancing cold resistance, while apoptosis and necroptosis were the death pathways responsible for cold-induced mortality. Functional mechanisms of the survival-enhancing factors Foxo1, ERK (extracellular signal-regulated kinase) and p38 MAPK were further characterized by inhibiting their activities upon cold stress and analyzing gene expression though RNA-seq. These factors were demonstrated to determine the cold resistance of zebrafish through regulating apoptosis and p53 signaling pathway. These findings have provided novel insights into the stress responses elicited by lethal cold and shed new light on the molecular mechanisms underlying cold resistance of fish.
Collapse
|
15
|
D'Amore C, Borgo C, Sarno S, Salvi M. Role of CK2 inhibitor CX-4945 in anti-cancer combination therapy - potential clinical relevance. Cell Oncol (Dordr) 2020; 43:1003-1016. [PMID: 33052585 PMCID: PMC7717057 DOI: 10.1007/s13402-020-00566-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Protein kinase CK2 inhibition has long been considered as an attractive anti-cancer strategy based on the following considerations: CK2 is a pro-survival kinase, it is frequently over-expressed in human tumours and its over-expression correlates with a worse prognosis. Preclinical evidence strongly supports the feasibility of this target and, although dozens of CK2 inhibitors have been described in the literature so far, CX-4945 (silmitasertib) was the first that entered into clinical trials for the treatment of both human haematological and solid tumours. However, kinase inhibitor monotherapies turned out to be effective only in a limited number of malignancies, probably due to the multifaceted causes that underlie them, supporting the emerging view that multi-targeted approaches to treat human tumours could be more effective. CONCLUSIONS In this review, we will address combined anti-cancer therapeutic strategies described so far which involve the use of CX-4945. Data from preclinical studies clearly show the ability of CX-4945 to synergistically cooperate with different classes of anti-neoplastic agents, thereby contributing to an orchestrated anti-tumour action against multiple targets. Overall, these promising outcomes support the translation of CX-4945 combined therapies into clinical anti-cancer applications.
Collapse
Affiliation(s)
- Claudio D'Amore
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | - Christian Borgo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Stefania Sarno
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
16
|
Landers SM, Bhalla AD, Ma X, Lusby K, Ingram D, Al Sannaa G, Wang WL, Lazar AJ, Torres KE. AXL Inhibition Enhances MEK Inhibitor Sensitivity in Malignant Peripheral Nerve Sheath Tumors. ACTA ACUST UNITED AC 2020; 4:511-525. [PMID: 33283192 PMCID: PMC7717506 DOI: 10.26502/jcsct.5079091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Dysregulation of the receptor tyrosine kinase AXL is known to promote cancer cell growth and survival in many sarcomas, including the rare subtype, malignant peripheral nerve sheath tumors (MPNST). MPNSTs are largely chemoresistant and carry a poor prognosis. AXL is an attractive potential therapeutic target, as it is aberrantly expressed, and its activation may be an early event in MPNST. However, the effect of AXL inhibition on MPNST development and progression is not known. Here, we investigated the role of AXL in MPNST development and the effects of AXL and MEK1/2 co-inhibition on MPNSTs. We used western blotting to examine AXL expression and activation in MPNST cell lines. We analyzed the effects of exogenous growth arrest-specific 6 (GAS6) expression on downstream signaling and the proliferation, migration, and invasion of MPNST cells. The effect of AXL knockdown with or without mitogen-activated protein kinase (MAPK) inhibition on downstream signal transduction and tumorigenesis was also examined in vivo and in vitro. We found that AXL knockdown increased MAPK pathway signaling. This compensation, in turn, abrogated the antitumorigenic effects linked to AXL knockdown in vivo. AXL knockdown, combined with pharmacological MEK inhibition, reduced the proliferation and increased the apoptosis of MPNST cells both in vitro and in vivo. The pharmacological co-inhibition of AXL and MEK1/2 reduced MPNST volumes. Together these findings suggest that AXL inhibition enhances the sensitivity of MPNST to other small molecule inhibitors. We conclude that combination therapy with AXL inhibitor may be a therapeutic option for MPNST.
Collapse
Affiliation(s)
- Sharon M. Landers
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Angela D. Bhalla
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - XiaoYan Ma
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristelle Lusby
- Department of Surgery, Division of Plastic Surgery, Indianapolis University School of Medicine, Indianapolis, IN, USA
| | - Davis Ingram
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ghadah Al Sannaa
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston TX, USA
| | - Wei-Lien Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander J. Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keila E. Torres
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Corresponding Author: Dr. Keila E. Torres, Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA, Tel: (713) 792-4242;
| |
Collapse
|
17
|
Emerging role of phytochemicals in targeting predictive, prognostic, and diagnostic biomarkers of lung cancer. Food Chem Toxicol 2020; 144:111592. [PMID: 32702507 DOI: 10.1016/j.fct.2020.111592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
Abstract
Lung-cancer is the foremost cause of cancer in humans worldwide, of which 80-85% cases are composed of non-small cell lung carcinoma. All treatment decisions depend on the pattern of biomarkers selection to enhance the response to the targeted therapies. Although advanced treatments are available for lung-cancer, the disease treatment remains not adequate. There are several synthetic chemotherapeutic agents available for the treatment of lung cancer. However, due to their toxic effect, survival rate is still 15-18%. Besides, medicinal plants are a huge reservoir of natural products that provide protective effects against lung cancer. Likewise, successful studies of potential phytochemicals in targeting lung-cancer biomarkers have created a novel paradigm for the discovery of potent drugs against lung-cancer. Hence, to defeat severe toxicity and resistance towards the synthetic drugs, detailed studies are required regarding the available phytochemicals and targets responsible for the treatment of lung-cancer. The present review provides a comprehensive information about the lung-cancer biomarkers under the classification of predictive, prognostic, and diagnostic type. Moreover, it discusses and enlists the phytochemicals with mode of action against different biomarkers, effective doses in in vitro, in vivo, and clinical studies, the limitations associated with usage of phytochemicals as a drug to prevent/cure lung-cancer and the latest techniques employed to overcome such issues.
Collapse
|
18
|
Erkes DA, Cai W, Sanchez IM, Purwin TJ, Rogers C, Field CO, Berger AC, Hartsough EJ, Rodeck U, Alnemri ES, Aplin AE. Mutant BRAF and MEK Inhibitors Regulate the Tumor Immune Microenvironment via Pyroptosis. Cancer Discov 2020; 10:254-269. [PMID: 31796433 PMCID: PMC7007378 DOI: 10.1158/2159-8290.cd-19-0672] [Citation(s) in RCA: 322] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/23/2019] [Accepted: 11/26/2019] [Indexed: 11/16/2022]
Abstract
Combinations of BRAF inhibitors and MEK inhibitors (BRAFi + MEKi) are FDA-approved to treat BRAF V600E/K-mutant melanoma. Efficacy of BRAFi + MEKi associates with cancer cell death and alterations in the tumor immune microenvironment; however, the links are poorly understood. We show that BRAFi + MEKi caused durable melanoma regression in an immune-mediated manner. BRAFi + MEKi treatment promoted cleavage of gasdermin E (GSDME) and release of HMGB1, markers of pyroptotic cell death. GSDME-deficient melanoma showed defective HMGB1 release, reduced tumor-associated T cell and activated dendritic cell infiltrates in response to BRAFi + MEKi, and more frequent tumor regrowth after drug removal. Importantly, BRAFi + MEKi-resistant disease lacked pyroptosis markers and showed decreased intratumoral T-cell infiltration but was sensitive to pyroptosis-inducing chemotherapy. These data implicate BRAFi + MEKi-induced pyroptosis in antitumor immune responses and highlight new therapeutic strategies for resistant melanoma. SIGNIFICANCE: Targeted inhibitors and immune checkpoint agents have advanced the care of patients with melanoma; however, detailed knowledge of the intersection between these two research areas is lacking. We describe a molecular mechanism of targeted inhibitor regulation of an immune-stimulatory form of cell death and provide a proof-of-principle salvage therapy concept for inhibitor-resistant melanoma.See related commentary by Smalley, p. 176.This article is highlighted in the In This Issue feature, p. 161.
Collapse
Affiliation(s)
- Dan A Erkes
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Weijia Cai
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ileine M Sanchez
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Timothy J Purwin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Corey Rogers
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Conroy O Field
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam C Berger
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Edward J Hartsough
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Ulrich Rodeck
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Emad S Alnemri
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Iravani A, Solomon B, Pattison DA, Jackson P, Ravi Kumar A, Kong G, Hofman MS, Akhurst T, Hicks RJ. Mitogen-Activated Protein Kinase Pathway Inhibition for Redifferentiation of Radioiodine Refractory Differentiated Thyroid Cancer: An Evolving Protocol. Thyroid 2019; 29:1634-1645. [PMID: 31637953 DOI: 10.1089/thy.2019.0143] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background: Some patients with metastatic differentiated thyroid cancer (DTC) lack iodine avidity and are therefore unsuitable for radioactive iodine (RAI) therapy. Limited experience suggests that single-agent selective mitogen-activated protein kinase (MAPK) pathway inhibitors can restore expression of the sodium-iodide symporter rendering RAI refractory (RAIR) DTC patients amenable to RAI therapy. The aim of this study was to assess the feasibility of mutation-guided MAPK-pathway blockade combined with thyroid hormone withdrawal (THW) for redifferentiation. Methods: This is a retrospective review of metastatic RAIR DTC and driver mutation in MAPK pathway, treated on a redifferentiation protocol. All patients had metastatic disease that had never been RAI-avid and/or imaging and biochemical progression despite treatment with RAI within the past 12 months. Patients with tumors harboring an NRAS mutation were treated with an MEK inhibitor (trametinib), and tumors with a BRAFV600E mutation with combined BRAF and MEK inhibition (dabrafenib and trametinib; or vemurafenib and cobimetinib) for four weeks. Thyrotropin stimulation was performed by THW for four weeks. Restoration of RAI uptake was determined by 124I positron emission tomography/computed tomography imaging. The response was assessed at least three months post-RAI. Results: From 2015 to 2017, six patients (age 45-70, four females) received redifferentiation therapy. Three patients had an NRAS mutation; two with follicular thyroid carcinoma (FTC) and one with a poorly differentiated thyroid carcinoma (PDTC); and three patients had a BRAFV600E mutation and papillary thyroid carcinoma (PTC). One NRAS and all BRAFV600E mutation cases demonstrated restoration of RAI uptake and proceeded to RAI therapy with a median follow-up of 16.6 months (range 13.5-42.3 months). The patient with an NRAS mutation and two of three patients with a BRAFV600E demonstrated partial imaging response beyond a three-month follow-up. Grade 3 adverse events (acneiform rash) were observed in two patients with NRAS mutations. Conclusions: Mutation-guided MAPK pathway inhibition with MEK inhibitor or a combination of BRAF inhibitor and MEK inhibitor under concurrent THW is a feasible and a promising strategy to redifferentiate RAIR DTC, thereby rendering them suitable for RAI therapy with satisfactory retention following treatment.
Collapse
Affiliation(s)
- Amir Iravani
- Department of Cancer Imaging and Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Benjamin Solomon
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - David A Pattison
- Department of Nuclear Medicine and Specialised PET Services, Royal Brisbane & Women's Hospital, Brisbane, Australia
- School of Medicine, University of Queensland, St Lucia, Australia
| | - Price Jackson
- Department of Cancer Imaging and Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Aravind Ravi Kumar
- Department of Cancer Imaging and Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Grace Kong
- Department of Cancer Imaging and Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Michael S Hofman
- Department of Cancer Imaging and Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Tim Akhurst
- Department of Cancer Imaging and Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Rodney J Hicks
- Department of Cancer Imaging and Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
20
|
Jin Y, Liu M, Sa R, Fu H, Cheng L, Chen L. Mouse models of thyroid cancer: Bridging pathogenesis and novel therapeutics. Cancer Lett 2019; 469:35-53. [PMID: 31589905 DOI: 10.1016/j.canlet.2019.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022]
Abstract
Due to a global increase in the incidence of thyroid cancer, numerous novel mouse models were established to reveal thyroid cancer pathogenesis and test promising therapeutic strategies, necessitating a comprehensive review of translational medicine that covers (i) the role of mouse models in the research of thyroid cancer pathogenesis, and (ii) preclinical testing of potential anti-thyroid cancer therapeutics. The present review article aims to: (i) describe the current approaches for mouse modeling of thyroid cancer, (ii) provide insight into the biology and genetics of thyroid cancers, and (iii) offer guidance on the use of mouse models for testing potential therapeutics in preclinical settings. Based on research with mouse models of thyroid cancer pathogenesis involving the RTK, RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, SRC, and JAK-STAT signaling pathways, inhibitors of VEGFR, MEK, mTOR, SRC, and STAT3 have been developed as anti-thyroid cancer drugs for "bench-to-bedside" translation. In the future, mouse models of thyroid cancer will be designed to be ''humanized" and "patient-like," offering opportunities to: (i) investigate the pathogenesis of thyroid cancer through target screening based on the CRISPR/Cas system, (ii) test drugs based on new mouse models, and (iii) explore the underlying mechanisms based on multi-omics.
Collapse
Affiliation(s)
- Yuchen Jin
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Min Liu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China; Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
| | - Ri Sa
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Hao Fu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Lin Cheng
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Libo Chen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
21
|
Siano G, Caiazza MC, Ollà I, Varisco M, Madaro G, Quercioli V, Calvello M, Cattaneo A, Di Primio C. Identification of an ERK Inhibitor as a Therapeutic Drug Against Tau Aggregation in a New Cell-Based Assay. Front Cell Neurosci 2019; 13:386. [PMID: 31496937 PMCID: PMC6712076 DOI: 10.3389/fncel.2019.00386] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/06/2019] [Indexed: 01/01/2023] Open
Abstract
Formation of Tau aggregates is a common pathological feature of tauopathies and their accumulation directly correlates with cytotoxicity and neuronal degeneration. Great efforts have been made to understand Tau aggregation and to find therapeutics halting or reversing the process, however, progress has been slowed due to the lack of a suitable method for monitoring Tau aggregation. We developed a cell-based assay allowing to detect and quantify Tau aggregation in living cells. The system is based on the FRET biosensor CST able to monitor the molecular dynamic of Tau aggregation in different cellular conditions. We probed candidate compounds that could block Tau hyperphosphorylation. In particular, to foster the drug discovery process, we tested kinase inhibitors approved for the treatment of other diseases. We identified the ERK inhibitor PD-901 as a promising therapeutic molecule since it reduces and prevents Tau aggregation. This evidence establishes the CST cell-based aggregation assay as a reliable tool for drug discovery and suggests that PD-901 might be a promising compound to be tested for further preclinical studies on AD.
Collapse
Affiliation(s)
- Giacomo Siano
- Laboratorio di Biologia (BIO@SNS), Scuola Normale Superiore, Pisa, Italy
| | | | - Ivana Ollà
- Laboratorio di Biologia (BIO@SNS), Scuola Normale Superiore, Pisa, Italy
| | - Martina Varisco
- Laboratorio di Biologia (BIO@SNS), Scuola Normale Superiore, Pisa, Italy
| | - Giuseppe Madaro
- Laboratorio di Biologia (BIO@SNS), Scuola Normale Superiore, Pisa, Italy
| | | | | | - Antonino Cattaneo
- Laboratorio di Biologia (BIO@SNS), Scuola Normale Superiore, Pisa, Italy.,Neurotrophins and Neurodegenerative Diseases Laboratory, Rita Levi-Montalcini European Brain Research Institute, Rome, Italy
| | - Cristina Di Primio
- Laboratorio di Biologia (BIO@SNS), Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
22
|
MAPK pathway: a potential target for the treatment of non-small-cell lung carcinoma. Future Med Chem 2019; 11:793-795. [DOI: 10.4155/fmc-2018-0468] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
23
|
Graim K, Friedl V, Houlahan KE, Stuart JM. PLATYPUS: A Multiple-View Learning Predictive Framework for Cancer Drug Sensitivity Prediction. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2019; 24:136-147. [PMID: 30864317 PMCID: PMC6417802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Cancer is a complex collection of diseases that are to some degree unique to each patient. Precision oncology aims to identify the best drug treatment regime using molecular data on tumor samples. While omics-level data is becoming more widely available for tumor specimens, the datasets upon which computational learning methods can be trained vary in coverage from sample to sample and from data type to data type. Methods that can 'connect the dots' to leverage more of the information provided by these studies could offer major advantages for maximizing predictive potential. We introduce a multi-view machinelearning strategy called PLATYPUS that builds 'views' from multiple data sources that are all used as features for predicting patient outcomes. We show that a learning strategy that finds agreement across the views on unlabeled data increases the performance of the learning methods over any single view. We illustrate the power of the approach by deriving signatures for drug sensitivity in a large cancer cell line database. Code and additional information are available from the PLATYPUS website https://sysbiowiki.soe.ucsc.edu/platypus.
Collapse
Affiliation(s)
| | - Verena Friedl
- Dept. of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA
| | | | - Joshua M. Stuart
- Dept. of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
24
|
Zobel M, Disanza A, Senic-Matuglia F, Franco M, Colaluca IN, Confalonieri S, Bisi S, Barbieri E, Caldieri G, Sigismund S, Pece S, Chavrier P, Di Fiore PP, Scita G. A NUMB-EFA6B-ARF6 recycling route controls apically restricted cell protrusions and mesenchymal motility. J Cell Biol 2018; 217:3161-3182. [PMID: 30061108 PMCID: PMC6123001 DOI: 10.1083/jcb.201802023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/17/2018] [Accepted: 06/05/2018] [Indexed: 12/13/2022] Open
Abstract
The endocytic protein NUMB has been implicated in the control of various polarized cellular processes, including the acquisition of mesenchymal migratory traits through molecular mechanisms that have only been partially defined. Here, we report that NUMB is a negative regulator of a specialized set of understudied, apically restricted, actin-based protrusions, the circular dorsal ruffles (CDRs), induced by either PDGF or HGF stimulation. Through its PTB domain, NUMB binds directly to an N-terminal NPLF motif of the ARF6 guanine nucleotide exchange factor, EFA6B, and promotes its exchange activity in vitro. In cells, a NUMB-EFA6B-ARF6 axis regulates the recycling of the actin regulatory cargo RAC1 and is critical for the formation of CDRs that mark the acquisition of a mesenchymal mode of motility. Consistently, loss of NUMB promotes HGF-induced cell migration and invasion. Thus, NUMB negatively controls membrane protrusions and the acquisition of mesenchymal migratory traits by modulating EFA6B-ARF6 activity.
Collapse
Affiliation(s)
- Martina Zobel
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Andrea Disanza
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Michel Franco
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | | | | | - Sara Bisi
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Elisa Barbieri
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Giusi Caldieri
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Sara Sigismund
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Salvatore Pece
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Philippe Chavrier
- Institut Curie, PSL Research University, Paris, France
- Centre National de la Recherche Scientifique UMR 144, Membrane and Cytoskeleton Dynamics Team, Paris, France
| | - Pier Paolo Di Fiore
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giorgio Scita
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
25
|
Chronic treatment with a MEK inhibitor reverses enhanced excitatory field potentials in Syngap1+/− mice. Pharmacol Rep 2018; 70:777-783. [DOI: 10.1016/j.pharep.2018.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/14/2018] [Accepted: 02/21/2018] [Indexed: 01/21/2023]
|
26
|
Rashid FA, Mansoor Q, Tabassum S, Aziz H, Arfat WO, Naoum GE, Ismail M, Farooqi AA. Signaling cascades in thyroid cancer: Increasing the armory of archers to hit bullseye. J Cell Biochem 2018; 119:3798-3808. [PMID: 29243843 DOI: 10.1002/jcb.26620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/12/2017] [Indexed: 12/18/2022]
Abstract
Thyroid cancer is a multifaceted and therapeutically challenging disease and rapidly accumulating experimentally verified findings have considerably improve our understanding of the molecular mechanisms which underlie its development. Substantial fraction of information has been added into existing landscape of molecular oncology and we have started to develop a sharper understanding of the underlying mechanisms of thyroid cancer. Wealth of information demystified different intracellular signaling cascades which are frequently deregulated in thyroid cancer. In vitro assays and xenografted mice based studies have helped us to identify drug targets and different synthetic and natural products are currently being tested to effectively treat thyroid cancer. Cabozantinib and vandetanib have been approved to treat medullary thyroid cancer (MTC) and two agents (lenvatinib and sorafenib) are also being used to treat radioactive-iodine refractory differentiated thyroid cancer. This review comprehensively summarizes most recent advancements in our knowledge related to dysregulated intracellular signaling cascades in thyroid cancer and how different proteins can be therapeutically exploited. (1) We discuss how loss of TRAIL mediated apoptosis occurred in thyroid cancer cells and how different strategies can be used to restore apoptosis in resistant cancer cells; (2) We provide detailed account of seemingly opposite roles of NOTCH signaling in thyroid cancers; (3) TGF/SMAD mediated signaling also needs detailed research because of context dependent role in thyroid cancer. Researchers have only begun to scratch the surface of how TGF signaling works in thyroid cancer and metastasis; and (4) Role of SHH signaling in thyroid cancer stem cells is also well appreciated and targeting of SHH pathway will be an important aspect in treatment of thyroid cancer. Better concepts and improved knowledge will be helpful for clinicians in getting a step closer to individualized medicine.
Collapse
Affiliation(s)
- Faiza Abdul Rashid
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan.,Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Qaisar Mansoor
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | - Sobia Tabassum
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Hafsa Aziz
- Nuclear Medicine, Oncology and Radiotherapy Institute, H-10 Campus, Islamabad, Pakistan
| | - Waleed O Arfat
- Alexandria Comprehensive Cancer Center, Alexandria, Egypt.,Department of Radiation Oncology, Alexandria University, Alexandria, Egypt
| | - George E Naoum
- Alexandria Comprehensive Cancer Center, Alexandria, Egypt.,Department of Radiation oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Muhammad Ismail
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | | |
Collapse
|
27
|
Tesselaar MH, Smit JW, Nagarajah J, Netea-Maier RT, Plantinga TS. Pathological processes and therapeutic advances in radioiodide refractory thyroid cancer. J Mol Endocrinol 2017; 59:R141-R154. [PMID: 28931558 DOI: 10.1530/jme-17-0134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022]
Abstract
While in most patients with non-medullary thyroid cancer (TC), disease remission is achieved by thyroidectomy and ablation of tumor remnants by radioactive iodide (RAI), a substantial subgroup of patients with metastatic disease present tumor lesions that have acquired RAI resistance as a result of dedifferentiation. Although oncogenic mutations in BRAF, TERT promoter and TP53 are associated with an increased propensity for induction of dedifferentiation, the role of genetic and epigenetic aberrations and their effects on important intracellular signaling pathways is not yet fully elucidated. Also immune, metabolic, stemness and microRNA pathways have emerged as important determinants of TC dedifferentiation and RAI resistance. These signaling pathways have major clinical implications since their targeting could inhibit TC progression and could enable redifferentiation to restore RAI sensitivity. In this review, we discuss the current insights into the pathological processes conferring dedifferentiation and RAI resistance in TC and elaborate on novel advances in diagnostics and therapy to improve the clinical outcome of RAI-refractory TC patients.
Collapse
Affiliation(s)
- Marika H Tesselaar
- Department of PathologyRadboud University Medical Center, Nijmegen, The Netherlands
| | - Johannes W Smit
- Internal MedicineDivision of Endocrinology Radboud University Medical Center, Nijmegen, The Netherlands
| | - James Nagarajah
- Radiology & Nuclear MedicineRadboud University Medical Center, Nijmegen, The Netherlands
| | - Romana T Netea-Maier
- Internal MedicineDivision of Endocrinology Radboud University Medical Center, Nijmegen, The Netherlands
| | - Theo S Plantinga
- Department of PathologyRadboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
28
|
de Gooijer MC, Zhang P, Weijer R, Buil LCM, Beijnen JH, van Tellingen O. The impact of P-glycoprotein and breast cancer resistance protein on the brain pharmacokinetics and pharmacodynamics of a panel of MEK inhibitors. Int J Cancer 2017; 142:381-391. [PMID: 28921565 DOI: 10.1002/ijc.31052] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/18/2017] [Accepted: 09/05/2017] [Indexed: 12/21/2022]
Abstract
Mitogen/extracellular signal-regulated kinase (MEK) inhibitors have been tested in clinical trials for treatment of intracranial neoplasms, including glioblastoma (GBM), but efficacy of these drugs has not yet been demonstrated. The blood-brain barrier (BBB) is a major impediment to adequate delivery of drugs into the brain and may thereby also limit the successful implementation of MEK inhibitors against intracranial malignancies. The BBB is equipped with a range of ATP-dependent efflux transport proteins, of which P-gp (ABCB1) and BCRP (ABCG2) are the two most dominant for drug efflux from the brain. We investigated their impact on the pharmacokinetics and target engagement of a panel of clinically applied MEK inhibitors, in order to select the most promising candidate for brain cancers in the context of clinical pharmacokinetics and inhibitor characteristics. To this end, we used in vitro drug transport assays and conducted pharmacokinetic and pharmacodynamic studies in wildtype and ABC-transporter knockout mice. PD0325901 displayed more promising characteristics than trametinib (GSK1120212), binimetinib (MEK162), selumetinib (AZD6244), and pimasertib (AS703026): PD0325901 was the weakest substrate of P-gp and BCRP in vitro, its brain penetration was only marginally higher in Abcb1a/b;Abcg2-/- mice, and efficient target inhibition in the brain could be achieved at clinically relevant plasma levels. Notably, target inhibition could also be demonstrated for selumetinib, but only at plasma levels far above levels in patients receiving the maximum tolerated dose. In summary, our study recommends further development of PD0325901 for the treatment of intracranial neoplasms.
Collapse
Affiliation(s)
- Mark C de Gooijer
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066, CX, The Netherlands.,Mouse Cancer Clinic, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066, CX, The Netherlands
| | - Ping Zhang
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066, CX, The Netherlands.,Mouse Cancer Clinic, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066, CX, The Netherlands.,Department of Neurosurgery, Qilu Hospital, Shandong University, Wenhua Xi Road 107, Jinan, 250012, People's Republic of China
| | - Ruud Weijer
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066, CX, The Netherlands.,Mouse Cancer Clinic, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066, CX, The Netherlands
| | - Levi C M Buil
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066, CX, The Netherlands.,Mouse Cancer Clinic, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066, CX, The Netherlands
| | - Jos H Beijnen
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066, CX, The Netherlands.,Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute/MC Slotervaart Hospital, Louwesweg 6, Amsterdam, 1066, EC, The Netherlands.,Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, Utrecht, 3584, CG, The Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066, CX, The Netherlands.,Mouse Cancer Clinic, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066, CX, The Netherlands
| |
Collapse
|
29
|
Geeleher P, Zhang Z, Wang F, Gruener RF, Nath A, Morrison G, Bhutra S, Grossman RL, Huang RS. Discovering novel pharmacogenomic biomarkers by imputing drug response in cancer patients from large genomics studies. Genome Res 2017; 27:1743-1751. [PMID: 28847918 PMCID: PMC5630037 DOI: 10.1101/gr.221077.117] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 08/03/2017] [Indexed: 12/20/2022]
Abstract
Obtaining accurate drug response data in large cohorts of cancer patients is very challenging; thus, most cancer pharmacogenomics discovery is conducted in preclinical studies, typically using cell lines and mouse models. However, these platforms suffer from serious limitations, including small sample sizes. Here, we have developed a novel computational method that allows us to impute drug response in very large clinical cancer genomics data sets, such as The Cancer Genome Atlas (TCGA). The approach works by creating statistical models relating gene expression to drug response in large panels of cancer cell lines and applying these models to tumor gene expression data in the clinical data sets (e.g., TCGA). This yields an imputed drug response for every drug in each patient. These imputed drug response data are then associated with somatic genetic variants measured in the clinical cohort, such as copy number changes or mutations in protein coding genes. These analyses recapitulated drug associations for known clinically actionable somatic genetic alterations and identified new predictive biomarkers for existing drugs.
Collapse
Affiliation(s)
- Paul Geeleher
- Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Zhenyu Zhang
- Center for Data Intensive Science, The University of Chicago, Chicago, Illinois 60637, USA
| | - Fan Wang
- Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Robert F Gruener
- Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Aritro Nath
- Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Gladys Morrison
- Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Steven Bhutra
- Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Robert L Grossman
- Center for Data Intensive Science, The University of Chicago, Chicago, Illinois 60637, USA
| | - R Stephanie Huang
- Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
30
|
Shi L, Song R, Yao X, Ren Y. Effects of selenium on the proliferation, apoptosis and testosterone production of sheep Leydig cells in vitro. Theriogenology 2017; 93:24-32. [DOI: 10.1016/j.theriogenology.2017.01.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/07/2017] [Accepted: 01/11/2017] [Indexed: 12/11/2022]
|
31
|
Deciphering KRAS and NRAS mutated clone dynamics in MLL-AF4 paediatric leukaemia by ultra deep sequencing analysis. Sci Rep 2016; 6:34449. [PMID: 27698462 PMCID: PMC5048141 DOI: 10.1038/srep34449] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/09/2016] [Indexed: 12/28/2022] Open
Abstract
To induce and sustain the leukaemogenic process, MLL-AF4+ leukaemia seems to require very few genetic alterations in addition to the fusion gene itself. Studies of infant and paediatric patients with MLL-AF4+ B cell precursor acute lymphoblastic leukaemia (BCP-ALL) have reported mutations in KRAS and NRAS with incidences ranging from 25 to 50%. Whereas previous studies employed Sanger sequencing, here we used next generation amplicon deep sequencing for in depth evaluation of RAS mutations in 36 paediatric patients at diagnosis of MLL-AF4+ leukaemia. RAS mutations including those in small sub-clones were detected in 63.9% of patients. Furthermore, the mutational analysis of 17 paired samples at diagnosis and relapse revealed complex RAS clone dynamics and showed that the mutated clones present at relapse were almost all originated from clones that were already detectable at diagnosis and survived to the initial therapy. Finally, we showed that mutated patients were indeed characterized by a RAS related signature at both transcriptional and protein levels and that the targeting of the RAS pathway could be of beneficial for treatment of MLL-AF4+ BCP-ALL clones carrying somatic RAS mutations.
Collapse
|
32
|
Chua KN, Kong LR, Sim WJ, Ng HC, Ong WR, Thiery JP, Huynh H, Goh BC. Combinatorial treatment using targeted MEK and SRC inhibitors synergistically abrogates tumor cell growth and induces mesenchymal-epithelial transition in non-small-cell lung carcinoma. Oncotarget 2016; 6:29991-30005. [PMID: 26358373 PMCID: PMC4745777 DOI: 10.18632/oncotarget.5031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/07/2015] [Indexed: 12/24/2022] Open
Abstract
Oncogenesis in non-small cell lung cancer (NSCLC) is regulated by a complex signal transduction network. Single-agent targeted therapy fails frequently due to treatment insensitivity and acquired resistance. In this study, we demonstrate that co-inhibition of the MAPK and SRC pathways using a PD0325901 and Saracatinib kinase inhibitor combination can abrogate tumor growth in NSCLC. PD0325901/Saracatinib at 0.25:1 combination was screened against a panel of 28 NSCLC cell lines and 68% of cell lines were found to be sensitive (IC50 < 2 μM) to this combination. In Snail1 positive NSCLC lines, the drug combination complementarily enhanced mesenchymal-epithelial transition (MET), increasing both E-cadherin and Plakoglobin expression, and reducing Snail1, FAK and PXN expression. In addition, the drug combination abrogated cell migration and matrigel invasion. The co-inhibition of MAPK and SRC induced strong G1/G0 cell cycle arrest in the NSCLC lines, inhibited anchorage independent growth and delayed tumor growth in H460 and H358 mouse xenografts. These data provide rationale for further investigating the combination of MAPK and SRC pathway inhibitors in advanced stage NSCLC.
Collapse
Affiliation(s)
- Kian Ngiap Chua
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Li Ren Kong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Wen Jing Sim
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Hsien Chun Ng
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | | | - Jean Paul Thiery
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Hematology-Oncology, National University Hospital, Singapore.,National University Cancer Institute, Singapore
| |
Collapse
|
33
|
Wu CH, Wu X, Zhang HW. Inhibition of acquired-resistance hepatocellular carcinoma cell growth by combining sorafenib with phosphoinositide 3-kinase and rat sarcoma inhibitor. J Surg Res 2016; 206:371-379. [PMID: 27884331 DOI: 10.1016/j.jss.2016.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 07/03/2016] [Accepted: 08/03/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND To provide support for combined usage of phosphoinositide 3-kinase (PI3K) inhibitors or mitogen-activated protein kinase pathway inhibitors together with sorafenib in treatment of sorafenib-resistant hepatocellular carcinoma. MATERIALS AND METHODS The sorafenib-resistant cell lines were established to evaluate the effects of MK-2206 2HCL, a dual PI3K/mammalian target of rapamycin (mTOR) inhibitor, and PD0325901, an rat sarcoma (RAS) and/or extracellular signal-regulated kinase (ERK) inhibitor, on cell proliferation and apoptosis, as both single and combined treatments with sorafenib. In addition, multidrug resistance 1 gene expression, mutation status of key members in PI3K/mTOR, and RAS/ERK pathways and pathway activation were analyzed to identify predictors of drug response. RESULTS Molecular studies reveal that combining MK-2206 2HCL or PD0325901 with sorafenib not only has a synergistic effect, in suppressing PI3K/protein kinase B/mTOR and RAS/MEK/ERK signaling more effectively than either treatment alone, but also prevents the cross activation of the other pathway that occurs with single treatments in both sorafenib sensitive and resistant lines. PD0325901 exhibited a stronger synergic effect with sorafenib than MK-2206 2HCL. Sorafenib-resistant cell lines were characterized by activation of both of the two pathways, as indicated by multidrug resistance 1 gene expression profiles and pathway activity analysis. CONCLUSIONS Our studies have showed that both inhibitors of PI3K/mTOR and RAS/ERK signaling are potentially effective antihepatocellular carcinoma drugs especially in treating sorafenib-resistant hepatocellular carcinoma.
Collapse
Affiliation(s)
- Chang-Hao Wu
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiang Wu
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Hong-Wei Zhang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
34
|
Shang J, Lu S, Jiang Y, Zhang J. Allosteric modulators of MEK1: drug design and discovery. Chem Biol Drug Des 2016; 88:485-97. [PMID: 27115708 DOI: 10.1111/cbdd.12780] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 04/01/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022]
Abstract
Mitogen-activated protein kinase kinase (MAPKK, MEK) mediates signal transduction, controlling cell proliferation and survival. MEK occupies a key downstream position in the Ras-Raf-MEK-ERK signaling pathway, implying that inhibition of MEK will potently suppress tumor cell growth, with potential applications in cancer therapy. Based on the promising therapeutic effects of MEK modulators, continued efforts have been made in this class. Here, we review the discovery and development of MEK1 allosteric modulators, classifying them into four structural groups. The allosteric mechanisms and recent clinical progress involving these modulators are also reviewed.
Collapse
Affiliation(s)
- Jialin Shang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yongjun Jiang
- School of Biotechnology and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China. .,Medicinal Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
35
|
Dorris ER, Blackshields G, Sommerville G, Alhashemi M, Dias A, McEneaney V, Smyth P, O'Leary JJ, Sheils O. Pluripotency markers are differentially induced by MEK inhibition in thyroid and melanoma BRAFV600E cell lines. Cancer Biol Ther 2016; 17:526-42. [PMID: 26828826 PMCID: PMC4910922 DOI: 10.1080/15384047.2016.1139230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Oncogenic mutations in BRAF are common in melanoma and thyroid carcinoma and drive constitutive activation of the MAPK pathway. Molecularly targeted therapies of this pathway improves survival compared to chemotherapy; however, responses tend to be short-lived as resistance invariably occursCell line models of melanoma and thyroid carcinoma, +/− BRAFV600E activating mutation, were treated with the MEK inhibitor PD0325901. Treated and naive samples were assayed for expression of key members of the MAPK pathway. Global microRNA expression profiling of naive and resistant cells was performed via next generation sequencingand indicated pluripotency pathways in resistance. Parental cell lines were progressed to holoclones to confirm the miRNA stemness profileMembers of the MIR302/373/374/520 family of embryonic stem cell specific cell cycle regulating (ESCC) microRNAs were identified as differentially expressed between resistant BRAFV600E melanoma and thyroid cell lines. Upregulated expression of gene and protein stemness markers, upregulated expression of MAPK pathway genes and downregulation of the ESCC MIR302 cluster in BRAFV600E melanoma indicated an increased stem-like phenotype in resistant BRAFV600E melanoma. Conversely, downregulated expression of gene and protein stemness markers, downregulated expression of MAPK pathway genes, upregulation of the ESCC MIR520 cluster, reeexpression of cell surface receptors, and induced differentiation-associated morphology in resistant BRAFV600E indicate a differentiated phenotype associated with MEK inhibitor resistance in BRAFV600E thyroid cellsThe differential patterns of resistance observed between BRAFV600E melanoma and thyroid cell lines may reflect tissue type or de novo differentiation, but could have significant impact on the response of primary and metastatic cells to MEK inhibitor treatment. This study provides a basis for the investigation of the cellular differentiation/self-renewal access and its role in resistance to MEK inhibition.
Collapse
Affiliation(s)
- Emma R Dorris
- a Department of Histopathology , Sir Patrick Dun Research Lab, Trinity College Dublin , Dublin , Ireland
| | - Gordon Blackshields
- a Department of Histopathology , Sir Patrick Dun Research Lab, Trinity College Dublin , Dublin , Ireland
| | - Gary Sommerville
- a Department of Histopathology , Sir Patrick Dun Research Lab, Trinity College Dublin , Dublin , Ireland
| | - Mohsen Alhashemi
- a Department of Histopathology , Sir Patrick Dun Research Lab, Trinity College Dublin , Dublin , Ireland
| | - Andrew Dias
- a Department of Histopathology , Sir Patrick Dun Research Lab, Trinity College Dublin , Dublin , Ireland
| | - Victoria McEneaney
- a Department of Histopathology , Sir Patrick Dun Research Lab, Trinity College Dublin , Dublin , Ireland
| | - Paul Smyth
- a Department of Histopathology , Sir Patrick Dun Research Lab, Trinity College Dublin , Dublin , Ireland
| | - John J O'Leary
- a Department of Histopathology , Sir Patrick Dun Research Lab, Trinity College Dublin , Dublin , Ireland
| | - Orla Sheils
- a Department of Histopathology , Sir Patrick Dun Research Lab, Trinity College Dublin , Dublin , Ireland
| |
Collapse
|
36
|
Tas SW, Maracle CX, Balogh E, Szekanecz Z. Targeting of proangiogenic signalling pathways in chronic inflammation. Nat Rev Rheumatol 2015; 12:111-22. [PMID: 26633288 DOI: 10.1038/nrrheum.2015.164] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Angiogenesis is de novo capillary outgrowth from pre-existing blood vessels. This process not only is crucial for normal development, but also has an important role in supplying oxygen and nutrients to inflamed tissues, as well as in facilitating the migration of inflammatory cells to the synovium in rheumatoid arthritis, spondyloarthritis and other systemic autoimmune diseases. Neovascularization is dependent on the balance of proangiogenic and antiangiogenic mediators, including growth factors, cytokines, chemokines, cell adhesion molecules and matrix metalloproteinases. This Review describes the various intracellular signalling pathways that govern these angiogenic processes and discusses potential approaches to interfere with pathological angiogenesis, and thereby ameliorate inflammatory disease, by targeting these pathways.
Collapse
Affiliation(s)
- Sander W Tas
- Amsterdam Rheumatology &Immunology Centre, Department of Experimental Immunology, Academic Medical Centre and University of Amsterdam, EULAR &FOCIS (Federation of Clinical Immunology Societies) Centre of Excellence, Meibergdreef 9, F4-105, 1105 AZ Amsterdam, Netherlands
| | - Chrissta X Maracle
- Amsterdam Rheumatology &Immunology Centre, Department of Experimental Immunology, Academic Medical Centre and University of Amsterdam, EULAR &FOCIS (Federation of Clinical Immunology Societies) Centre of Excellence, Meibergdreef 9, F4-105, 1105 AZ Amsterdam, Netherlands
| | - Emese Balogh
- Department of Rheumatology, Institute of Medicine, University of Debrecen, Faculty of Medicine, Nagyerdei Str. 98, Debrecen 4032, Hungary
| | - Zoltán Szekanecz
- Department of Rheumatology, Institute of Medicine, University of Debrecen, Faculty of Medicine, Nagyerdei Str. 98, Debrecen 4032, Hungary
| |
Collapse
|
37
|
Berlier JL, Rigutto S, Dalla Valle A, Lechanteur J, Soyfoo MS, Gangji V, Rasschaert J. Adenosine triphosphate prevents serum deprivation-induced apoptosis in human mesenchymal stem cells via activation of the MAPK signaling pathways. Stem Cells 2015; 33:211-8. [PMID: 25183652 DOI: 10.1002/stem.1831] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/07/2014] [Indexed: 01/07/2023]
Abstract
Human mesenchymal stem cells (hMSC) are multipotent cells derived from various sources including adipose and placental tissues as well as bone marrow. Owing to their regenerative and immunomodulatory properties, their use as a potential therapeutic tool is being extensively tested. However, one of the major hurdles in using cell-based therapy is the use of fetal bovine serum that can trigger immune responses, viral and prion diseases. The development of a culture medium devoid of serum while preserving cell viability is therefore a major challenge. In this study, we demonstrated that adenosine triphosphate (ATP) restrained serum deprivation-induced cell death in hMSC by preventing caspases 3/7 activation and modulating ERK1/2 and p38 MAPK signaling pathways. We also showed that serum deprivation conditions triggered dephosphorylation of the proapoptotic protein Bad leading to cell death. Adjunction of ATP restored the phosphorylation state of Bad. Furthermore, ATP significantly modulated the expression of proapoptopic and antiapoptotic genes, in favor of an antiapoptotic profile expression. Finally, we established that hMSC released a high amount of ATP in the extracellular medium when cultured in a serum-free medium. Collectively, our results demonstrate that ATP favors hMSC viability in serum deprivation conditions. Moreover, they shed light on the cardinal role of the MAPK pathways, ERK1/2 and p38 MAPK, in promoting hMSC survival.
Collapse
Affiliation(s)
- Jessica L Berlier
- Laboratory of Bone and Metabolic Biochemistry, Faculty of Medicine, Université libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
38
|
Characterization of thyroid cancer cell lines in murine orthotopic and intracardiac metastasis models. Discov Oncol 2015; 6:87-99. [PMID: 25800363 DOI: 10.1007/s12672-015-0219-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/27/2015] [Indexed: 01/29/2023] Open
Abstract
Thyroid cancer incidence has been increasing over time, and it is estimated that ∼1950 advanced thyroid cancer patients will die of their disease in 2015. To combat this disease, an enhanced understanding of thyroid cancer development and progression as well as the development of efficacious, targeted therapies are needed. In vitro and in vivo studies utilizing thyroid cancer cell lines and animal models are critically important to these research efforts. In this report, we detail our studies with a panel of authenticated human anaplastic and papillary thyroid cancer (ATC and PTC) cell lines engineered to express firefly luciferase in two in vivo murine cancer models-an orthotopic thyroid cancer model as well as an intracardiac injection metastasis model. In these models, primary tumor growth in the orthotopic model and the establishment and growth of metastases in the intracardiac injection model are followed in vivo using an IVIS imaging system. In the orthotopic model, the ATC cell lines 8505C and T238 and the PTC cell lines K1/GLAG-66 and BCPAP had take rates >90 % with final tumor volumes ranging 84-214 mm(3) over 4-5 weeks. In the intracardiac model, metastasis establishment was successful in the ATC cell lines HTh74, HTh7, 8505C, THJ-16T, and Cal62 with take rates ≥70 %. Only one of the PTC cell lines tested (BCPAP) was successful in the intracardiac model with a take rate of 30 %. These data will be beneficial to inform the choice of cell line and model system for the design of future thyroid cancer studies.
Collapse
|
39
|
Fallahi P, Mazzi V, Vita R, Ferrari SM, Materazzi G, Galleri D, Benvenga S, Miccoli P, Antonelli A. New therapies for dedifferentiated papillary thyroid cancer. Int J Mol Sci 2015; 16:6153-82. [PMID: 25789503 PMCID: PMC4394525 DOI: 10.3390/ijms16036153] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/14/2015] [Accepted: 03/04/2015] [Indexed: 12/15/2022] Open
Abstract
The number of thyroid cancers is increasing. Standard treatment usually includes primary surgery, thyroid-stimulating hormone suppressive therapy, and ablation of the thyroid remnant with radioactive iodine (RAI). Despite the generally good prognosis of thyroid carcinoma, about 5% of patients will develop metastatic disease, which fails to respond to RAI, exhibiting a more aggressive behavior. The lack of specific, effective and well-tolerated drugs, the scarcity of data about the association of multi-targeting drugs, and the limited role of radioiodine for dedifferentiated thyroid cancer, call for further efforts in the field of new drugs development. Rearranged during transfection (RET)/papillary thyroid carcinoma gene rearrangements, BRAF (B-RAF proto-oncogene, serine/threonine kinase) gene mutations, RAS (rat sarcoma) mutations, and vascular endothelial growth factor receptor 2 angiogenesis pathways are some of the known pathways playing a crucial role in the development of thyroid cancer. Targeted novel compounds have been demonstrated to induce clinical responses and stabilization of disease. Sorafenib has been approved for differentiated thyroid cancer refractory to RAI.
Collapse
Affiliation(s)
- Poupak Fallahi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi, 10, 56126 Pisa, Italy.
| | - Valeria Mazzi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi, 10, 56126 Pisa, Italy.
| | - Roberto Vita
- Department of Clinical & Experimental Medicine, Section of Endocrinology, University of Messina, Piazza Pugliatti, 1, 98122 Messina, Italy.
| | - Silvia Martina Ferrari
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi, 10, 56126 Pisa, Italy.
| | - Gabriele Materazzi
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi, 10, 56126 Pisa, Italy.
| | - David Galleri
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi, 10, 56126 Pisa, Italy.
| | - Salvatore Benvenga
- Department of Clinical & Experimental Medicine, Section of Endocrinology, University of Messina, Piazza Pugliatti, 1, 98122 Messina, Italy.
| | - Paolo Miccoli
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi, 10, 56126 Pisa, Italy.
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi, 10, 56126 Pisa, Italy.
| |
Collapse
|
40
|
Bian Y, Han J, Kannabiran V, Mohan S, Cheng H, Friedman J, Zhang L, VanWaes C, Chen Z. MEK inhibitor PD-0325901 overcomes resistance to CK2 inhibitor CX-4945 and exhibits anti-tumor activity in head and neck cancer. Int J Biol Sci 2015; 11:411-22. [PMID: 25798061 PMCID: PMC4366640 DOI: 10.7150/ijbs.10745] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/17/2015] [Indexed: 11/05/2022] Open
Abstract
The serine-threonine kinase CK2 exhibits genomic alterations and aberrant overexpression in human head and neck squamous cell carcinomas (HNSCC). Here, we investigated the effects of CK2 inhibitor CX-4945 in human HNSCC cell lines and xenograft models. The IC50's of CX-4945 for 9 UM-SCC cell lines measured by MTT assay ranged from 3.4-11.9 μM. CX-4945 induced cell cycle arrest and cell death measured by DNA flow cytometry, and inhibited prosurvival mediators phospho-AKT and p-S6 in UM-SCC1 and UM-SCC46 cells. CX-4945 decreased NF-κB and Bcl-XL reporter gene activities in both cell lines, but upregulated proapoptotic TP53 and p21 reporter activities, and induced phospho-ERK, AP-1, and IL-8 activity in UM-SCC1 cells. CX-4945 exhibited modest anti-tumor activity in UM-SCC1 xenografts. Tumor immunostaining revealed significant inhibition of PI3K-Akt-mTOR pathway and increased apoptosis marker TUNEL, but also induced p-ERK, c-JUN, JUNB, FOSL1 and proliferation (Ki67) markers, as a possible resistance mechanism. To overcome the drug resistance, we tested MEK inhibitor PD-0325901 (PD-901), which inhibited ERK-AP-1 activation alone and in combination with CX-4945. PD-901 alone displayed significant anti-tumor effects in vivo, and the combination of PD-901 and CX-4945 slightly enhanced anti-tumor activity when compared with PD-901 alone. Immunostaining of tumor specimens after treatment revealed inhibition of p-AKT S129 and p-AKT T308 by CX-4945, and inhibition of p-ERK T202/204 and AP-1 family member FOSL-1 by PD-901. Our study reveals a drug resistance mechanism mediated by the MEK-ERK-AP-1 pathway in HNSCC. MEK inhibitor PD-0325901 is active in HNSCC resistant to CX-4945, meriting further clinical investigation.
Collapse
Affiliation(s)
- Yansong Bian
- 1. Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA
| | - Jiawei Han
- 1. Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA; ; 2. Department of Otolaryngology Head and Neck Surgery, National Key Discipline, Key Laboratory of Otolaryngology Head and Neck Surgery of the Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Vishnu Kannabiran
- 1. Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA; ; 3. NIH Clinical Research Training Program-NIH Medical Research Scholars Program, Bethesda, MD, USA
| | - Suresh Mohan
- 1. Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA; ; 3. NIH Clinical Research Training Program-NIH Medical Research Scholars Program, Bethesda, MD, USA
| | - Hui Cheng
- 1. Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA
| | - Jay Friedman
- 1. Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA
| | - Luo Zhang
- 2. Department of Otolaryngology Head and Neck Surgery, National Key Discipline, Key Laboratory of Otolaryngology Head and Neck Surgery of the Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Carter VanWaes
- 1. Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA
| | - Zhong Chen
- 1. Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA
| |
Collapse
|
41
|
Henderson YC, Ahn SH, Ryu J, Chen Y, Williams MD, El-Naggar AK, Gagea M, Schweppe RE, Haugen BR, Lai SY, Clayman GL. Development and characterization of six new human papillary thyroid carcinoma cell lines. J Clin Endocrinol Metab 2015; 100:E243-52. [PMID: 25427145 PMCID: PMC4318904 DOI: 10.1210/jc.2014-2624] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 11/21/2014] [Indexed: 12/28/2022]
Abstract
CONTEXT Cell lines are a widely used tool in cancer research. However, despite the relatively high incidence of papillary thyroid carcinoma (PTC), there are only four PTC cell lines available for international research audience. OBJECTIVE The objective of this study was to establish and characterize new PTC cell lines that represent primary tumor biology. Surgical specimens were obtained to generate PTC cell lines. Short tandem repeat profiling was used to confirm the uniqueness of the cell lines against databases of known cell lines and mutations were assessed using Sequenom. The expression of thyroid-specific genes was examined using real-time PCR. Tumorigenicity was determined using an orthotopic thyroid xenograft tumor mouse model. RESULTS Six PTC cell lines (five conventional PTCs and one follicular variant of PTC) were generated and found to be unique when compared by short tandem repeat profiling against databases of all existing cell lines. The five conventional PTC cell lines carry the BRAF V600E mutation and the follicular variant of PTC cell line had an NRAS mutation. Five of the six cell lines had a mutation in the promoter of the human telomerase reverse transcriptase gene. None of the cell lines have RET/PTC rearrangements. Three cell lines were tumorigenic in the orthotopic thyroid xenograft tumor mouse model. CONCLUSIONS These five characterized conventional PTC cell lines and the unique follicular variant of PTC cell line should be valuable reagents for thyroid cancer research. The three tumorigenic cell lines can be used for in vivo testing of targeted therapeutic and novel agents.
Collapse
Affiliation(s)
- Ying C Henderson
- Departments of Head and Neck Surgery (Y.C.H., Y.C., S.Y.L., G.L.C.), Pathology (M.D.W., A.K.E-N.), Veterinary Medicine and Surgery (M.G.), Molecular and Cellular Oncology (S.Y.L.), and Cancer Biology (G.L.C.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030; Department of Otolaryngology-Head and Neck Surgery (S.H.A), College of Medicine, Seoul National University Bundang Hospital, Kyunggi-do, 463-707 Korea; Center for Thyroid Cancer (J.R), National Cancer Center, Goyang-si, Gyeonggi-do, 410-769 Korea; Department of Endocrinology (R.E.S., B.R.H.), University of Colorado at Denver Anschutz Medical Campus, Aurora, Colorado 80045
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Falchook GS, Millward M, Hong D, Naing A, Piha-Paul S, Waguespack SG, Cabanillas ME, Sherman SI, Ma B, Curtis M, Goodman V, Kurzrock R. BRAF inhibitor dabrafenib in patients with metastatic BRAF-mutant thyroid cancer. Thyroid 2015; 25:71-7. [PMID: 25285888 PMCID: PMC4291160 DOI: 10.1089/thy.2014.0123] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Mutations of v-raf murine sarcoma viral oncogene homolog B (BRAF) are commonly identified in papillary and anaplastic thyroid carcinoma and are associated with worse prognosis compared with the wild type. BRAF inhibition in papillary thyroid carcinoma cell lines and xenografts inhibits proliferation and decreases downstream phosphorylation. Our objectives were to analyze safety and efficacy of the selective BRAF inhibitor dabrafenib in patients with metastatic BRAF-mutant thyroid carcinoma. METHODS We present the subset of patients with BRAF-mutant thyroid carcinoma enrolled in a larger phase 1 study, the main results of which are reported elsewhere. RESULTS Fourteen patients with BRAF(V600E)-mutant thyroid carcinoma were enrolled, of whom 13 (93%) had received prior radioactive iodine. The median duration on treatment was 8.4 months, and seven (50%) patients received treatment for ≥10 months. The most common treatment-related adverse events were skin papillomas (n=8, 57%), hyperkeratosis (n=5, 36%), and alopecia (n=4, 29%), all of which were grade 1. Treatment-related adverse events grade ≥3 included grade 4 elevated lipase and grade 3 elevated amylase, fatigue, febrile neutropenia, and cutaneous squamous cell carcinoma (n=1 for each). Four (29%) partial responses were observed, and nine (64%) patients achieved at least 10% decrease. Only one responder progressed while on the study drug after a response duration of 9.3 months. The other three responders had not progressed, with response duration of 4.6+, 10.4+, and 21.4+ months. With seven (50%) patients showing no progression at the time of study completion, the median progression-free survival was 11.3 months. CONCLUSIONS Dabrafenib was well tolerated and resulted in durable responses in BRAF-mutant differentiated thyroid carcinoma patients.
Collapse
|
43
|
El Meskini R, Iacovelli AJ, Kulaga A, Gumprecht M, Martin PL, Baran M, Householder DB, Van Dyke T, Weaver Ohler Z. A preclinical orthotopic model for glioblastoma recapitulates key features of human tumors and demonstrates sensitivity to a combination of MEK and PI3K pathway inhibitors. Dis Model Mech 2015; 8:45-56. [PMID: 25431423 PMCID: PMC4283649 DOI: 10.1242/dmm.018168] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/18/2014] [Indexed: 12/25/2022] Open
Abstract
Current therapies for glioblastoma multiforme (GBM), the highest grade malignant brain tumor, are mostly ineffective, and better preclinical model systems are needed to increase the successful translation of drug discovery efforts into the clinic. Previous work describes a genetically engineered mouse (GEM) model that contains perturbations in the most frequently dysregulated networks in GBM (driven by RB, KRAS and/or PI3K signaling and PTEN) that induce development of Grade IV astrocytoma with properties of the human disease. Here, we developed and characterized an orthotopic mouse model derived from the GEM that retains the features of the GEM model in an immunocompetent background; however, this model is also tractable and efficient for preclinical evaluation of candidate therapeutic regimens. Orthotopic brain tumors are highly proliferative, invasive and vascular, and express histology markers characteristic of human GBM. Primary tumor cells were examined for sensitivity to chemotherapeutics and targeted drugs. PI3K and MAPK pathway inhibitors, when used as single agents, inhibited cell proliferation but did not result in significant apoptosis. However, in combination, these inhibitors resulted in a substantial increase in cell death. Moreover, these findings translated into the in vivo orthotopic model: PI3K or MAPK inhibitor treatment regimens resulted in incomplete pathway suppression and feedback loops, whereas dual treatment delayed tumor growth through increased apoptosis and decreased tumor cell proliferation. Analysis of downstream pathway components revealed a cooperative effect on target downregulation. These concordant results, together with the morphologic similarities to the human GBM disease characteristics of the model, validate it as a new platform for the evaluation of GBM treatment.
Collapse
Affiliation(s)
- Rajaa El Meskini
- Center for Advanced Preclinical Research, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Anthony J Iacovelli
- Center for Advanced Preclinical Research, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Alan Kulaga
- Center for Advanced Preclinical Research, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Michelle Gumprecht
- Center for Advanced Preclinical Research, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Philip L Martin
- Center for Advanced Preclinical Research, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Maureen Baran
- Center for Advanced Preclinical Research, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Deborah B Householder
- Center for Advanced Preclinical Research, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Terry Van Dyke
- Center for Advanced Preclinical Research, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA. Mouse Cancer Genetics Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Zoë Weaver Ohler
- Center for Advanced Preclinical Research, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| |
Collapse
|
44
|
Burgenske DM, Monsma DJ, Dylewski D, Scott SB, Sayfie AD, Kim DG, Luchtefeld M, Martin KR, Stephenson P, Hostetter G, Dujovny N, MacKeigan JP. Establishment of genetically diverse patient-derived xenografts of colorectal cancer. Am J Cancer Res 2014; 4:824-837. [PMID: 25520871 PMCID: PMC4266715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/20/2014] [Indexed: 06/04/2023] Open
Abstract
Preclinical compounds tested in animal models often show limited efficacy when transitioned into human clinical trials. As a result, many patients are stratified into treatment regimens that have little impact on their disease. In order to create preclinical models that can more accurately predict tumor responses, we established patient-derived xenograft (PDX) models of colorectal cancer (CRC). Surgically resected tumor specimens from colorectal cancer patients were implanted subcutaneously into athymic nude mice. Following successful establishment, fourteen models underwent further evaluation to determine whether these models exhibit heterogeneity, both at the cellular and genetic level. Histological review revealed properties not found in CRC cell lines, most notably in overall architecture (predominantly columnar epithelium with evidence of gland formation) and the presence of mucin-producing cells. Custom CRC gene panels identified somatic driver mutations in each model, and therapeutic efficacy studies in tumor-bearing mice were designed to determine how models with known mutations respond to PI3K, mTOR, or MAPK inhibitors. Interestingly, MAPK pathway inhibition drove tumor responses across most models tested. Noteworthy, the MAPK inhibitor PD0325901 alone did not significantly mediate tumor response in the context of a KRAS(G12D) model, and improved tumor responses resulted when combined with mTOR inhibition. As a result, these genetically diverse models represent a valuable resource for preclinical efficacy and drug discovery studies.
Collapse
Affiliation(s)
- Danielle M Burgenske
- Laboratory of Systems Biology, Van Andel Research InstituteGrand Rapids, MI 49503, USA
- Van Andel Institute Graduate SchoolGrand Rapids, MI 49503, USA
| | - David J Monsma
- Preclinical Therapeutics, Van Andel Research InstituteGrand Rapids, MI 49503, USA
| | - Dawna Dylewski
- Preclinical Therapeutics, Van Andel Research InstituteGrand Rapids, MI 49503, USA
| | - Stephanie B Scott
- Preclinical Therapeutics, Van Andel Research InstituteGrand Rapids, MI 49503, USA
| | - Aaron D Sayfie
- Laboratory of Systems Biology, Van Andel Research InstituteGrand Rapids, MI 49503, USA
| | - Donald G Kim
- Ferguson-Blodgett Digestive Disease Institute, Spectrum Health Medical GroupGrand Rapids, MI 49503, USA
| | - Martin Luchtefeld
- Ferguson-Blodgett Digestive Disease Institute, Spectrum Health Medical GroupGrand Rapids, MI 49503, USA
| | - Katie R Martin
- Laboratory of Systems Biology, Van Andel Research InstituteGrand Rapids, MI 49503, USA
| | - Paul Stephenson
- Department of Statistics, Grand Valley State UniversityAllendale, MI 49401, USA
| | - Galen Hostetter
- Laboratory of Analytical Pathology, Van Andel Research InstituteGrand Rapids, MI 49503, USA
| | - Nadav Dujovny
- Ferguson-Blodgett Digestive Disease Institute, Spectrum Health Medical GroupGrand Rapids, MI 49503, USA
| | - Jeffrey P MacKeigan
- Laboratory of Systems Biology, Van Andel Research InstituteGrand Rapids, MI 49503, USA
- Van Andel Institute Graduate SchoolGrand Rapids, MI 49503, USA
| |
Collapse
|
45
|
Pénzváltó Z, Lánczky A, Lénárt J, Meggyesházi N, Krenács T, Szoboszlai N, Denkert C, Pete I, Győrffy B. MEK1 is associated with carboplatin resistance and is a prognostic biomarker in epithelial ovarian cancer. BMC Cancer 2014; 14:837. [PMID: 25408231 PMCID: PMC4247127 DOI: 10.1186/1471-2407-14-837] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 11/04/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Primary systemic treatment for ovarian cancer is surgery, followed by platinum based chemotherapy. Platinum resistant cancers progress/recur in approximately 25% of cases within six months. We aimed to identify clinically useful biomarkers of platinum resistance. METHODS A database of ovarian cancer transcriptomic datasets including treatment and response information was set up by mining the GEO and TCGA repositories. Receiver operator characteristics (ROC) analysis was performed in R for each gene and these were then ranked using their achieved area under the curve (AUC) values. The most significant candidates were selected and in vitro functionally evaluated in four epithelial ovarian cancer cell lines (SKOV-3-, CAOV-3, ES-2 and OVCAR-3), using gene silencing combined with drug treatment in viability and apoptosis assays. We collected 94 tumor samples and the strongest candidate was validated by IHC and qRT-PCR in these. RESULTS All together 1,452 eligible patients were identified. Based on the ROC analysis the eight most significant genes were JRK, CNOT8, RTF1, CCT3, NFAT2CIP, MEK1, FUBP1 and CSDE1. Silencing of MEK1, CSDE1, CNOT8 and RTF1, and pharmacological inhibition of MEK1 caused significant sensitization in the cell lines. Of the eight genes, JRK (p = 3.2E-05), MEK1 (p = 0.0078), FUBP1 (p = 0.014) and CNOT8 (p = 0.00022) also correlated to progression free survival. The correlation between the best biomarker candidate MEK1 and survival was validated in two independent cohorts by qRT-PCR (n = 34, HR = 5.8, p = 0.003) and IHC (n = 59, HR = 4.3, p = 0.033). CONCLUSION We identified MEK1 as a promising prognostic biomarker candidate correlated to response to platinum based chemotherapy in ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Balázs Győrffy
- MTA-TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary.
| |
Collapse
|
46
|
Pitts TM, Newton TP, Bradshaw-Pierce EL, Addison R, Arcaroli JJ, Klauck PJ, Bagby SM, Hyatt SL, Purkey A, Tentler JJ, Tan AC, Messersmith WA, Eckhardt SG, Leong S. Dual pharmacological targeting of the MAP kinase and PI3K/mTOR pathway in preclinical models of colorectal cancer. PLoS One 2014; 9:e113037. [PMID: 25401499 PMCID: PMC4234626 DOI: 10.1371/journal.pone.0113037] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/17/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The activation of the MAPK and PI3K/AKT/mTOR pathways is implicated in the majority of cancers. Activating mutations in both of these pathways has been described in colorectal cancer (CRC), thus indicating their potential as therapeutic targets. This study evaluated the combination of a PI3K/mTOR inhibitor (PF-04691502/PF-502) in combination with a MEK inhibitor (PD-0325901/PD-901) in CRC cell lines and patient-derived CRC tumor xenograft models (PDTX). MATERIALS AND METHODS The anti-proliferative effects of PF-502 and PD-901 were assessed as single agents and in combination against a panel of CRC cell lines with various molecular backgrounds. Synergy was evaluated using the Bliss Additivity method. In selected cell lines, we investigated the combination effects on downstream effectors by immunoblotting. The combination was then evaluated in several fully genetically annotated CRC PDTX models. RESULTS The in vitro experiments demonstrated a wide range of IC50 values for both agents against a cell line panel. The combination of PF-502 and PD-901 demonstrated synergistic anti-proliferative activity with Bliss values in the additive range. As expected, p-AKT and p-ERK were downregulated by PF-502 and PD-901, respectively. In PDTX models, following a 30-day exposure to PF-502, PD-901 or the combination, the combination demonstrated enhanced reduction in tumor growth as compared to either single agent regardless of KRAS or PI3K mutational status. CONCLUSIONS The combination of a PI3K/mTOR and a MEK inhibitor demonstrated enhanced anti-proliferative effects against CRC cell lines and PDTX models.
Collapse
Affiliation(s)
- Todd M. Pitts
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| | - Timothy P. Newton
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Erica L. Bradshaw-Pierce
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Rebecca Addison
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - John J. Arcaroli
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Peter J. Klauck
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Stacey M. Bagby
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Stephanie L. Hyatt
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Alicia Purkey
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - John J. Tentler
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Aik Choon Tan
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Wells A. Messersmith
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - S. Gail Eckhardt
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Stephen Leong
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
47
|
Sogabe S, Togashi Y, Kato H, Kogita A, Mizukami T, Sakamoto Y, Banno E, Terashima M, Hayashi H, de Velasco MA, Sakai K, Fujita Y, Tomida S, Yasuda T, Takeyama Y, Okuno K, Nishio K. MEK inhibitor for gastric cancer with MEK1 gene mutations. Mol Cancer Ther 2014; 13:3098-106. [PMID: 25253779 DOI: 10.1158/1535-7163.mct-14-0429] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The prognosis for patients with unresectable advanced or recurrent gastric cancer remains poor. The identification of additional oncogenes with influences similar to those of epidermal growth factor receptor gene mutations, upon which the growth of cancer cells is dependent, is needed. In this study, we evaluated sensitivity to MEK inhibitors (GSK1120212 and PD0325901) in several gastric cancer cell lines in vitro and found three poorly differentiated gastric cancer cell lines that were hypersensitive to the inhibitors. The sequence analyses in these three cell lines revealed that one cell line had a novel MEK1 mutation, while the other two had previously reported KRAS and MEK1 mutations, respectively; the gene statuses of the other resistant cell lines were all wild-type. Experiments using MEK1 expression vectors demonstrated that the MEK1 mutations induced the phosphorylation of ERK1/2 and had a transforming potential, enhancing the tumorigenicity. The MEK inhibitor dramatically reduced the phosphorylation of ERK1/2 and induced apoptosis in the cell lines with MEK1 mutations. In vivo, tumor growth was also dramatically decreased by an inhibitor. One of the 46 gastric cancer clinical samples that were examined had a MEK1 mutation; this tumor had a poorly differentiated histology. Considering the addiction of cancer cells to active MEK1 mutations for proliferation, gastric cancer with such oncogenic MEK1 mutations might be suitable for targeted therapy with MEK inhibitors.
Collapse
Affiliation(s)
- Shunsuke Sogabe
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka, Japan. Department of Surgery, Kinki University Faculty of Medicine, Osaka, Japan
| | - Yosuke Togashi
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Hiroaki Kato
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka, Japan. Department of Surgery, Kinki University Faculty of Medicine, Osaka, Japan
| | - Akihiro Kogita
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka, Japan. Department of Surgery, Kinki University Faculty of Medicine, Osaka, Japan
| | - Takuro Mizukami
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Yoichi Sakamoto
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Eri Banno
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Masato Terashima
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Hidetoshi Hayashi
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Marco A de Velasco
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Yoshihiko Fujita
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Shuta Tomida
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Takushi Yasuda
- Department of Surgery, Kinki University Faculty of Medicine, Osaka, Japan
| | - Yoshifumi Takeyama
- Department of Surgery, Kinki University Faculty of Medicine, Osaka, Japan
| | - Kiyotaka Okuno
- Department of Surgery, Kinki University Faculty of Medicine, Osaka, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka, Japan.
| |
Collapse
|
48
|
MEK1/2 inhibitors in the treatment of gynecologic malignancies. Gynecol Oncol 2014; 133:128-37. [DOI: 10.1016/j.ygyno.2014.01.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 12/19/2022]
|
49
|
Martin-Liberal J, Lagares-Tena L, Larkin J. Prospects for MEK inhibitors for treating cancer. Expert Opin Drug Saf 2014; 13:483-95. [PMID: 24597490 DOI: 10.1517/14740338.2014.892578] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION The MAPK pathway is a signaling network that plays a key role in many normal cellular processes and in a large number of human malignancies. One of its effectors, MEK, is essential for the carcinogenesis of different tumors. In recent years, several drugs able to inhibit MEK have been assessed in clinical trials. Trametinib has recently become the first MEK inhibitor licensed for cancer treatment (advanced melanoma). AREAS COVERED We comprehensively review the safety and clinical efficacy of the family of MEK inhibitors, either alone or in combination with other drugs. We discuss data ranging from the Phase III trial of trametinib in melanoma to the most recent drugs with early signs of antitumor activity. In addition, we explain the reasons for the unsuccessful results of the early trials with MEK inhibitors and provide a view of their role in cancer treatment in forthcoming years. EXPERT OPINION MEK inhibitors are a potentially safe and active treatment option for the treatment of many human malignancies. The information provided by a large series of studies currently ongoing will be very valuable in order to optimize their use. Adequate selection of patients is crucial for achieving successful results with these compounds.
Collapse
Affiliation(s)
- Juan Martin-Liberal
- The Royal Marsden Hospital , Fulham Road, London SW3 6JJ , UK +44 20 7811 8576 ; +44 20 7811 8103 ;
| | | | | |
Collapse
|
50
|
El-Hoss J, Kolind M, Jackson MT, Deo N, Mikulec K, McDonald MM, Little CB, Little DG, Schindeler A. Modulation of endochondral ossification by MEK inhibitors PD0325901 and AZD6244 (Selumetinib). Bone 2014; 59:151-61. [PMID: 24269278 DOI: 10.1016/j.bone.2013.11.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/06/2013] [Accepted: 11/15/2013] [Indexed: 01/19/2023]
Abstract
MEK inhibitors (MEKi) PD0325901 and AZD6244 (Selumetinib) are drugs currently under clinical investigation for cancer treatment, however the Ras-MAPK pathway is also an important mediator of normal bone cell differentiation and function. In this study we examined the effects of these compounds on endochondral processes using both in vitro and in vivo models. Treatment with PD0325901 or AZD6244 significantly increased Runx2 and Alkaline phosphate gene expression in calvarial osteoblasts and decreased TRAP+ cells in induced osteoclast cultures. To test the effects of these drugs on bone healing, C57/Bl6 mice underwent a closed tibial fracture and were treated with PD0325901 or AZD6244 at 10mg/kg/day. Animals were culled at day 10 and at day 21 post-fracture for analysis of the fracture callus and the femoral growth plate in the contralateral leg. MEKi treatment markedly increased cartilage volume in the soft callus at day 10 post-fracture (+60% PD0325901, +20% AZD6244) and continued treatment led to a delay in cartilage remodeling. At the growth plate, we observed an increase in the height of the hypertrophic zone relative to the proliferative zone of +78% in PD0325901 treated mice. Osteoclast surface was significantly decreased both at the terminal end of the growth plate and within the fracture calluses of MEKi treated animals. The mechanistic effects of MEKi on genes encoding cartilage matrix proteins and catabolic enzymes were examined in articular chondrocyte cultures. PD0325901 or AZD6244 led to increased matrix protein expression (Col2a1 and Acan) and decreased expression of catabolic factors (Mmp13 and Adamts-5). Taken together, these data support the hypothesis that MEKi treatment can impact chondrocyte hypertrophy, matrix resorption, and fracture healing. These compounds can also affect bone architecture by expanding the hypertrophic zone of the growth plate and reducing osteoclast surface systemically.
Collapse
Affiliation(s)
- J El-Hoss
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - M Kolind
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia
| | - M T Jackson
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, Sydney, Australia
| | - N Deo
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - K Mikulec
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia
| | - M M McDonald
- Bone Biology Group, Garvan Institute for Medical Research, Sydney, Australia
| | - C B Little
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, Sydney, Australia
| | - D G Little
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - A Schindeler
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia.
| |
Collapse
|