1
|
Quiñones-Parra SM, Gras S, Nguyen THO, Farenc C, Szeto C, Rowntree LC, Chaurasia P, Sant S, Boon ACM, Jayasinghe D, Rimmelzwaan GF, Petersen J, Doherty PC, Uldrich AP, Littler DR, Rossjohn J, Kedzierska K. Molecular determinants of cross-strain influenza A virus recognition by αβ T cell receptors. Sci Immunol 2025; 10:eadn3805. [PMID: 39919196 DOI: 10.1126/sciimmunol.adn3805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/26/2024] [Accepted: 01/16/2025] [Indexed: 02/09/2025]
Abstract
Cross-reactive αβ T cell receptors (TCRs) recognizing multiple peptide variants can provide effective control of rapidly evolving viruses yet remain understudied. By screening 12 naturally occurring influenza-derived HLA-B*35:01-restricted nucleoprotein (NP)418-426 epitopes (B*35:01-NP418) that emerged since 1918 within influenza A viruses, including 2024 A/H5N1 viruses, we identified functional broadly cross-reactive T cells universally recognizing NP418 variants. Binding studies demonstrated that TCR cross-reactivity was concomitant with diminished antigen sensitivity. Primary human B*35:01/NP418+CD8+ T cell lines displayed reduced cross-reactivity in the absence of CD8 coreceptor binding, validating the low avidity of cross-reactive B*35:01-NP418+CD8+ T cell responses. Six TCR-HLA-B*35:01/NP418 crystal structures showed how cross-reactive TCRs recognized multiple B*35:01/NP418 epitope variants. Specific TCR interactions were formed with invariant and conserved peptide-HLA features, thus remaining distal from highly varied positions of the NP418 epitope. Our study defines molecular mechanisms associated with extensive TCR cross-reactivity toward naturally occurring viral variants highly relevant to universal protective immunity against influenza.
Collapse
Affiliation(s)
- Sergio M Quiñones-Parra
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Carine Farenc
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Christopher Szeto
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Priyanka Chaurasia
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sneha Sant
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Dhilshan Jayasinghe
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | - Jan Petersen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Peter C Doherty
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Adam P Uldrich
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Dene R Littler
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Huang CG, Hsieh MJ, Wu YC, Huang PW, Lin YJ, Tsao KC, Shih SR, Lee LA. Influence of Donor-Specific Characteristics on Cytokine Responses in H3N2 Influenza A Virus Infection: New Insights from an Ex Vivo Model. Int J Mol Sci 2024; 25:10941. [PMID: 39456722 PMCID: PMC11507259 DOI: 10.3390/ijms252010941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Influenza A virus (IAV) is known for causing seasonal epidemics ranging from flu to more severe outcomes like pneumonia, cytokine storms, and acute respiratory distress syndrome. The innate immune response and inflammasome activation play pivotal roles in sensing, preventing, and clearing the infection, as well as in the potential exacerbation of disease progression. This study examines the complex relationships between donor-specific characteristics and cytokine responses during H3N2 IAV infection using an ex vivo model. At 24 h post infection in 31 human lung explant tissue samples, key cytokines such as interleukin (IL)-6, IL-10, tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN-γ) were upregulated. Interestingly, a history of lung cancer did not impact the acute immune response. However, cigarette smoking and programmed death-ligand 1 (PD-L1) expression on macrophages significantly increased IL-2 levels. Conversely, age inversely affected IL-4 levels, and diabetes mellitus negatively influenced IL-6 levels. Additionally, both diabetes mellitus and programmed cell death protein 1 (PD-1) expression on CD3+/CD4+ T cells negatively impacted TNF-α levels, while body mass index was inversely associated with IFN-γ production. Toll-like receptor 2 (TLR2) expression emerged as crucial in mediating acute innate and adaptive immune responses. These findings highlight the intricate interplay between individual physiological traits and immune responses during influenza infection, underscoring the importance of tailored and personalized approaches in IAV treatment and prevention.
Collapse
Affiliation(s)
- Chung-Guei Huang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (C.-G.H.); (P.-W.H.); (Y.-J.L.); (K.-C.T.); (S.-R.S.)
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan 33302, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ming-Ju Hsieh
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (M.-J.H.); (Y.-C.W.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Cheng Wu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (M.-J.H.); (Y.-C.W.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- School of Medicine, College of Life Science and Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Po-Wei Huang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (C.-G.H.); (P.-W.H.); (Y.-J.L.); (K.-C.T.); (S.-R.S.)
| | - Ya-Jhu Lin
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (C.-G.H.); (P.-W.H.); (Y.-J.L.); (K.-C.T.); (S.-R.S.)
| | - Kuo-Chien Tsao
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (C.-G.H.); (P.-W.H.); (Y.-J.L.); (K.-C.T.); (S.-R.S.)
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan 33302, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 33302, Taiwan
| | - Shin-Ru Shih
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (C.-G.H.); (P.-W.H.); (Y.-J.L.); (K.-C.T.); (S.-R.S.)
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan 33302, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 33302, Taiwan
| | - Li-Ang Lee
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- School of Medicine, College of Life Science and Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan
- Department of Otorhinolaryngology, Head and Neck Surgery, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan 33305, Taiwan
| |
Collapse
|
3
|
Weeratunga P, Denney L, Bull JA, Repapi E, Sergeant M, Etherington R, Vuppussetty C, Turner GDH, Clelland C, Woo J, Cross A, Issa F, de Andrea CE, Melero Bermejo I, Sims D, McGowan S, Zurke YX, Ahern DJ, Gamez EC, Whalley J, Richards D, Klenerman P, Monaco C, Udalova IA, Dong T, Antanaviciute A, Ogg G, Knight JC, Byrne HM, Taylor S, Ho LP. Single cell spatial analysis reveals inflammatory foci of immature neutrophil and CD8 T cells in COVID-19 lungs. Nat Commun 2023; 14:7216. [PMID: 37940670 PMCID: PMC10632491 DOI: 10.1038/s41467-023-42421-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Single cell spatial interrogation of the immune-structural interactions in COVID -19 lungs is challenging, mainly because of the marked cellular infiltrate and architecturally distorted microstructure. To address this, we develop a suite of mathematical tools to search for statistically significant co-locations amongst immune and structural cells identified using 37-plex imaging mass cytometry. This unbiased method reveals a cellular map interleaved with an inflammatory network of immature neutrophils, cytotoxic CD8 T cells, megakaryocytes and monocytes co-located with regenerating alveolar progenitors and endothelium. Of note, a highly active cluster of immature neutrophils and CD8 T cells, is found spatially linked with alveolar progenitor cells, and temporally with the diffuse alveolar damage stage. These findings offer further insights into how immune cells interact in the lungs of severe COVID-19 disease. We provide our pipeline [Spatial Omics Oxford Pipeline (SpOOx)] and visual-analytical tool, Multi-Dimensional Viewer (MDV) software, as a resource for spatial analysis.
Collapse
Affiliation(s)
- Praveen Weeratunga
- MRC Translational Immunology Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Laura Denney
- MRC Translational Immunology Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Joshua A Bull
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
| | - Emmanouela Repapi
- MRC WIMM Computational Biology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Martin Sergeant
- MRC WIMM Computational Biology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Rachel Etherington
- MRC Translational Immunology Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Chaitanya Vuppussetty
- MRC Translational Immunology Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Gareth D H Turner
- Department of Cellular Pathology and Radcliffe Department of Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Colin Clelland
- Anatomic Pathology, Weill Cornell Medical College, Doha, Qatar
| | - Jeongmin Woo
- MRC Translational Immunology Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Amy Cross
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | | | | | - David Sims
- MRC WIMM Computational Biology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Simon McGowan
- MRC WIMM Computational Biology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - David J Ahern
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK
| | - Eddie C Gamez
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Justin Whalley
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Duncan Richards
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Diseases, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Claudia Monaco
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK
| | - Irina A Udalova
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK
| | - Tao Dong
- MRC Translational Immunology Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Agne Antanaviciute
- MRC Translational Immunology Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Graham Ogg
- MRC Translational Immunology Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Helen M Byrne
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Stephen Taylor
- MRC WIMM Computational Biology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Ling-Pei Ho
- MRC Translational Immunology Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
- Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Antoun E, Peng Y, Dong T. Vaccine-induced CD8 + T cells are key to protection from SARS-CoV-2. Nat Immunol 2023; 24:1594-1596. [PMID: 37735590 DOI: 10.1038/s41590-023-01621-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Affiliation(s)
- Elie Antoun
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Yanchun Peng
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Tao Dong
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK.
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Chen Q, Liu M, Guo H, Wang K, Liu J, Wang Y, Lin Y, Li J, Li P, Yang L, Jia L, Yang J, Li P, Song H. Altered Respiratory Microbiomes, Plasma Metabolites, and Immune Responses in Influenza A Virus and Methicillin-Resistant Staphylococcus aureus Coinfection. Microbiol Spectr 2023; 11:e0524722. [PMID: 37318361 PMCID: PMC10433956 DOI: 10.1128/spectrum.05247-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/29/2023] [Indexed: 06/16/2023] Open
Abstract
Influenza A virus (IAV)-methicillin-resistant Staphylococcus aureus (MRSA) coinfection causes severe respiratory infections. The host microbiome plays an important role in respiratory tract infections. However, the relationships among the immune responses, metabolic characteristics, and respiratory microbial characteristics of IAV-MRSA coinfection have not been fully studied. We used specific-pathogen-free (SPF) C57BL/6N mice infected with IAV and MRSA to build a nonlethal model of IAV-MRSA coinfection and characterized the upper respiratory tract (URT) and lower respiratory tract (LRT) microbiomes at 4 and 13 days postinfection by full-length 16S rRNA gene sequencing. Immune response and plasma metabolism profile analyses were performed at 4 days postinfection by flow cytometry and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The relationships among the LRT microbiota, the immune response, and the plasma metabolism profile were analyzed by Spearman's correlation analysis. IAV-MRSA coinfection showed significant weight loss and lung injury and significantly increased loads of IAV and MRSA in bronchoalveolar lavage fluid (BALF). Microbiome data showed that coinfection significantly increased the relative abundances of Enterococcus faecalis, Enterobacter hormaechei, Citrobacter freundii, and Klebsiella pneumoniae and decreased the relative abundances of Lactobacillus reuteri and Lactobacillus murinus. The percentages of CD4+/CD8+ T cells and B cells in the spleen; the levels of interleukin-9 (IL-9), interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), IL-6, and IL-8 in the lung; and the level of mevalonolactone in plasma were increased in IAV-MRSA-coinfected mice. L. murinus was positively correlated with lung macrophages and natural killer (NK) cells, negatively correlated with spleen B cells and CD4+/CD8+ T cells, and correlated with multiple plasma metabolites. Future research is needed to clarify whether L. murinus mediates or alters the severity of IAV-MRSA coinfection. IMPORTANCE The respiratory microbiome plays an important role in respiratory tract infections. In this study, we characterized the URT and LRT microbiota, the host immune response, and plasma metabolic profiles during IAV-MRSA coinfection and evaluated their correlations. We observed that IAV-MRSA coinfection induced severe lung injury and dysregulated host immunity and plasma metabolic profiles, as evidenced by the aggravation of lung pathological damage, the reduction of innate immune cells, the strong adaptation of the immune response, and the upregulation of mevalonolactone in plasma. L. murinus was strongly correlated with immune cells and plasma metabolites. Our findings contribute to a better understanding of the role of the host microbiome in respiratory tract infections and identified a key bacterial species, L. murinus, that may provide important references for the development of probiotic therapies.
Collapse
Affiliation(s)
- Qichao Chen
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Manjiao Liu
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing City, Jiangsu Province, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing City, Jiangsu Province, China
| | - Hao Guo
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing City, Jiangsu Province, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing City, Jiangsu Province, China
| | - Kaiying Wang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Jiangfeng Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yun Wang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
- School of Public Health, China Medical University, Shenyang City, Liaoning Province, China
| | - Yanfeng Lin
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Jinhui Li
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Peihan Li
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Lang Yang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Leili Jia
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Juntao Yang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Peng Li
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Hongbin Song
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| |
Collapse
|
6
|
Li H, Zhao M, Zhang H, Quan C, Zhang D, Liu Y, Liu M, Xue C, Tan S, Guo Y, Zhao Y, Wu G, Gao GF, Cao B, Liu WJ. Pneumonia Severity and Phase Linked to Virus-Specific T Cell Responses with Distinct Immune Checkpoints during pH1N1 Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2154-2162. [PMID: 35418471 DOI: 10.4049/jimmunol.2101021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
The detailed features and the longitudinal variation of influenza-specific T cell responses within naturally infected patients and the relationship with disease severity remain uncertain. In this study, we characterized the longitudinal influenza-specific CD4+ and CD8+ T cell responses, T cell activation, and migration-related cytokine/chemokine secretion in pH1N1-infected patients with or without viral pneumonia with human PBMCs. Both the influenza-specific CD4+ and CD8+ T cells presented higher responses in patients with severe infection than in mild ones, but with distinct longitudinal variations, phenotypes of memory markers, and immune checkpoints. At 7 ± 3 d after onset of illness, effector CD8+ T cells (CD45RA+CCR7-) with high expression of inhibitory immune receptor CD200R dominated the specific T cell responses. However, at 21 ± 3 d after onset of illness, effector memory CD4+ T cells (CD45RA-CCR7-) with high expression of PD1, CTLA4, and LAG3 were higher among the patients with severe disease. The specific T cell magnitude, T cell activation, and migration-related cytokines/chemokines possessed a strong connection with disease severity. Our findings illuminate the distinct characteristics of immune system activation during dynamic disease phases and its correlation with lung injury of pH1N1 patients.
Collapse
Affiliation(s)
- Hui Li
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Min Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hangjie Zhang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chuansong Quan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dannie Zhang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yingmei Liu
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Meng Liu
- Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China
| | - Chunxue Xue
- Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China
| | - Shuguang Tan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yaxin Guo
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yingze Zhao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guizhen Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China;
- University of Chinese Academy of Sciences, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, Beijing, China;
- Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China; and
| | - William J Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China;
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Cui XR, Guo YH, Liu QQ. Cangma Huadu granules, a new drug with great potential to treat coronavirus and influenza infections, exert its efficacy through anti-inflammatory and immune regulation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114965. [PMID: 34990767 PMCID: PMC8723765 DOI: 10.1016/j.jep.2021.114965] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 05/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coronavirus and influenza virus infection seriously threaten human health. Cangma Huadu Granules (CMHD) is an in-hospital preparation composed of eight traditional Chinese medicines (TCM), which has been clinically used against COVID-19 in China and may be a promising candidate for the treatment of influenza. However, the role of its treatment urgently needs to be studied. AIM OF THE STUDY To evaluate the therapeutic effects of CMHD on pneumonia induced by coronavirus (HCoV-229E) and influenza A virus (H1N1/FM1) in mice and explore its mechanism of anti-infection. MATERIALS AND METHODS Mice were infected with HCoV-229E or H1N1/FM1 virus through the nasal cavity. CMHD (12.1, 6.05 and 3.03 g/kg/d) or the positive control drugs were administered intragastrically. The lung index and histopathological changes were used to evaluate the therapeutic effect of CMHD. The expression of TNF-α, IL-1β, IL-6 and IL-4 in Serum and the proportion of CD4+ and CD8+ T lymphocytes in peripheral blood were detected to evaluate the anti-inflammatory and immune regulation effects of CMHD, respectively. Furthermore, the levels of p-NF-κBp65/ NF-κB p65, which was the key targets of the NF-κB pathway was analyzed. RESULTS In HCoV-229E-induced pneumonia, the lung index was markedly reduced, and lung pathology was improved in mice that treated with CMHD (12.1, 6.05 g/kg/d). Meanwhile, the expression of TNF-α, IL-6 were obviously inhibited, but the expression of IL-4 was significantly increased in CMHD groups. Compared with the model group, CMHD could also markedly upregulate the level of CD4+ and CD8+. Furthermore, CMHD has a markedly effect on inhibit the expression of p-NF-κB p65/NF-κB p65 in the lung. In H1N1-induced pneumonia, the lung index of mice in the CMHD (12.1 g/kg/d) treatment group was lower than that in the model group, and less inflammatory infiltration could be seen in the lung pathological. Moreover, CMHD could also obviously decrease the expression of TNF-α, IL-1β, IL-6, but significantly increase the expression of IL-4. Except for that, CMHD could also markedly downregulate the level of CD4+ and upregulate the level of CD8+ compared with the model group. In addition, CMHD has a markedly effect on inhibit the expression of p-NF-κB p65/NF-κB p65 in the lung. CONCLUSION CMHD can significantly combats viral infections caused by HCoV-229E and H1N1, and the mechanism may be related to its multiple functions of anti-inflammatory, immunity regulating and inhibiting NF-κB signal transduction pathway.
Collapse
Affiliation(s)
- Xu-Ran Cui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Chinese Medicine, Beijing, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Yu-Hong Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Qing-Quan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Chinese Medicine, Beijing, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China.
| |
Collapse
|
8
|
Tomic A, Skelly DT, Ogbe A, O'Connor D, Pace M, Adland E, Alexander F, Ali M, Allott K, Azim Ansari M, Belij-Rammerstorfer S, Bibi S, Blackwell L, Brown A, Brown H, Cavell B, Clutterbuck EA, de Silva T, Eyre D, Lumley S, Flaxman A, Grist J, Hackstein CP, Halkerston R, Harding AC, Hill J, James T, Jay C, Johnson SA, Kronsteiner B, Lie Y, Linder A, Longet S, Marinou S, Matthews PC, Mellors J, Petropoulos C, Rongkard P, Sedik C, Silva-Reyes L, Smith H, Stockdale L, Taylor S, Thomas S, Tipoe T, Turtle L, Vieira VA, Wrin T, Pollard AJ, Lambe T, Conlon CP, Jeffery K, Travis S, Goulder P, Frater J, Mentzer AJ, Stafford L, Carroll MW, James WS, Klenerman P, Barnes E, Dold C, Dunachie SJ. Divergent trajectories of antiviral memory after SARS-CoV-2 infection. Nat Commun 2022; 13:1251. [PMID: 35273178 PMCID: PMC8913789 DOI: 10.1038/s41467-022-28898-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/17/2022] [Indexed: 12/17/2022] Open
Abstract
The trajectories of acquired immunity to severe acute respiratory syndrome coronavirus 2 infection are not fully understood. We present a detailed longitudinal cohort study of UK healthcare workers prior to vaccination, presenting April-June 2020 with asymptomatic or symptomatic infection. Here we show a highly variable range of responses, some of which (T cell interferon-gamma ELISpot, N-specific antibody) wane over time, while others (spike-specific antibody, B cell memory ELISpot) are stable. We use integrative analysis and a machine-learning approach (SIMON - Sequential Iterative Modeling OverNight) to explore this heterogeneity. We identify a subgroup of participants with higher antibody responses and interferon-gamma ELISpot T cell responses, and a robust trajectory for longer term immunity associates with higher levels of neutralising antibodies against the infecting (Victoria) strain and also against variants B.1.1.7 (alpha) and B.1.351 (beta). These variable trajectories following early priming may define subsequent protection from severe disease from novel variants.
Collapse
Affiliation(s)
- Adriana Tomic
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.
| | - Donal T Skelly
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Dept of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Ane Ogbe
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Matthew Pace
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Emily Adland
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Frances Alexander
- United Kingdom Health Security Agency, Porton Down, Wiltshire, England
| | - Mohammad Ali
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Kirk Allott
- Department of Clinical Biochemistry, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - M Azim Ansari
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | | | - Sagida Bibi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Luke Blackwell
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Anthony Brown
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Helen Brown
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Breeze Cavell
- United Kingdom Health Security Agency, Porton Down, Wiltshire, England
| | | | - Thushan de Silva
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - David Eyre
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Big Data Institute, Nuffield Dept. of Population Health, University of Oxford, Oxford, UK
| | - Sheila Lumley
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Amy Flaxman
- Jenner Institute, University of Oxford, Oxford, UK
| | - James Grist
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Carl-Philipp Hackstein
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Rachel Halkerston
- United Kingdom Health Security Agency, Porton Down, Wiltshire, England
| | - Adam C Harding
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Jennifer Hill
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Tim James
- Department of Clinical Biochemistry, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Cecilia Jay
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Síle A Johnson
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Oxford University Medical School, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Barbara Kronsteiner
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford Centre For Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Yolanda Lie
- Monogram Biosciences LabCorp, San Francisco, CA, USA
| | - Aline Linder
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Stephanie Longet
- United Kingdom Health Security Agency, Porton Down, Wiltshire, England
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Spyridoula Marinou
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Philippa C Matthews
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Jack Mellors
- United Kingdom Health Security Agency, Porton Down, Wiltshire, England
| | | | - Patpong Rongkard
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Cynthia Sedik
- Monogram Biosciences LabCorp, San Francisco, CA, USA
| | - Laura Silva-Reyes
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Holly Smith
- Jenner Institute, University of Oxford, Oxford, UK
| | - Lisa Stockdale
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Stephen Taylor
- United Kingdom Health Security Agency, Porton Down, Wiltshire, England
| | - Stephen Thomas
- United Kingdom Health Security Agency, Porton Down, Wiltshire, England
| | - Timothy Tipoe
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Lance Turtle
- HPRU in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust (a member of Liverpool Health Partners), Liverpool, UK
| | - Vinicius Adriano Vieira
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Terri Wrin
- Monogram Biosciences LabCorp, San Francisco, CA, USA
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Teresa Lambe
- Jenner Institute, University of Oxford, Oxford, UK
| | - Chris P Conlon
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Katie Jeffery
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Simon Travis
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Philip Goulder
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, UK
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alex J Mentzer
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Lizzie Stafford
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Miles W Carroll
- United Kingdom Health Security Agency, Porton Down, Wiltshire, England
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - William S James
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK.
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, Oxford, UK.
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Susanna J Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Oxford Centre For Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| |
Collapse
|
9
|
Post-SARS-CoV-2 Acute Telogen Effluvium: An Expected Complication. J Clin Med 2022; 11:jcm11051234. [PMID: 35268325 PMCID: PMC8911426 DOI: 10.3390/jcm11051234] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 02/04/2023] Open
Abstract
Post-SARS-CoV-2 telogen effluvium has been described in case reports of COVID-19 patients. We evaluated the prevalence of post-SARS-CoV-2 telogen effluvium in patients from a single medical center, exploring any causal links with the infection. Our hospital-based, cross-sectional study was conducted with patient participants discharged with a diagnosis of SARS-CoV-2 pneumonia from 1 March to 4 April 2020. All patients were evaluated by the same senior dermatologist; a clinical/dermatoscopic evaluation was performed. Alopecia was assessed in 31.3% of patients, with a significant difference in sex (females 73%, males 26.7%). The average time detected from the onset of the first symptoms to alopecia was 68.43 days. Overall, there were no significant associations between alopecia and COVID-19-related features (length of hospitalization, virologic positivity, or duration of fever), treatment characteristics, or laboratory findings. In this paper, we report that post-infection acute telogen effluvium occurs in a significant number of COVID-19 patients. The burden of this condition may impair the quality of life, with a significant impact on individuals.
Collapse
|
10
|
Potential benefits of precise corticosteroid therapy for critical COVID-19. Respir Physiol Neurobiol 2021; 297:103813. [PMID: 34801741 PMCID: PMC8600764 DOI: 10.1016/j.resp.2021.103813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/20/2021] [Accepted: 11/04/2021] [Indexed: 12/21/2022]
Abstract
This study was aimed to explore the precise dose of corticosteroid therapy in critical COVID-19. A total of forty-five critical COVID-19 patients were enrolled. The process of critical COVID-19 was divided into alveolitis and fibrosis stages. Most nonsurvivors died in fibrosis phase. Nonsurvivors had more dyspnea symptoms, fewer days of hospitalization, shorter duration of alveolitis and fibrosis. High-dose daily corticosteroid therapy (≥150 mg/d) was associated with shorter survival time and lower lymphocyte count in fibrosis phase. Moreover, a high cumulative dose (≥604 mg) was tied to longer duration of virus shedding, lower oxygenation index (OI), higher incidence of tracheal intubation, fewer lymphocytes and higher levels of C-reactive protein (CRP) and lactate dehydrogenase (LDH). In alveolitis phase, the low-to-moderate-dose daily corticosteroid therapy and a small cumulative dose reduced lymphocytes. In conclusion, low-to-moderate dose corticosteroids may be beneficial in the fibrosis phase. High-dose corticosteroid therapy in the fibrosis phase aggravates the severity of critical COVID-19.
Collapse
|
11
|
Reynolds D, Vazquez Guillamet C, Day A, Borcherding N, Vazquez Guillamet R, Choreño-Parra JA, House SL, O'Halloran JA, Zúñiga J, Ellebedy AH, Byers DE, Mudd PA. Comprehensive Immunologic Evaluation of Bronchoalveolar Lavage Samples from Human Patients with Moderate and Severe Seasonal Influenza and Severe COVID-19. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1229-1238. [PMID: 34348975 PMCID: PMC8387368 DOI: 10.4049/jimmunol.2100294] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022]
Abstract
Infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) or seasonal influenza may lead to respiratory failure requiring intubation and mechanical ventilation. The pathophysiology of this respiratory failure is attributed to local immune dysregulation, but how the immune response to viral infection in the lower airways of the human lung differs between individuals with respiratory failure and those without is not well understood. We used quantitative multiparameter flow cytometry and multiplex cytokine assays to evaluate matched blood and bronchoalveolar lavage (BAL) samples from control human subjects, subjects with symptomatic seasonal influenza who did not have respiratory failure, and subjects with severe seasonal influenza or SARS-CoV-2 infection with respiratory failure. We find that severe cases are associated with an influx of nonclassical monocytes, activated T cells, and plasmablast B cells into the lower airways. Cytokine concentrations were not elevated in the lower airways of moderate influenza patients compared with controls; however, 28 of 35 measured cytokines were significantly elevated in severe influenza, severe SARS-CoV-2 infection, or both. We noted the largest elevations in IL-6, IP-10, MCP-1, and IL-8. IL-1 family cytokines and RANTES were higher in severe influenza infection than severe SARS-CoV-2 infection. Interestingly, only the concentration of IP-10-correlated between blood and BAL during severe infection. Our results demonstrate inflammatory immune dysregulation in the lower airways during severe viral pneumonia that is distinct from lower airway responses seen in human patients with symptomatic, but not severe, illness and suggest that measurement of blood IP-10 concentration may predict this unique dysregulation.
Collapse
Affiliation(s)
- Daniel Reynolds
- Division of Pulmonology and Critical Care, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Cristina Vazquez Guillamet
- Division of Pulmonology and Critical Care, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Aaron Day
- Department of Emergency Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Nicholas Borcherding
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO
| | - Rodrigo Vazquez Guillamet
- Division of Pulmonology and Critical Care, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - José Alberto Choreño-Parra
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, México City, México
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, México
| | - Stacey L House
- Department of Emergency Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Jane A O'Halloran
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Joaquín Zúñiga
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, México City, México
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, México City, México; and
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO
- Bursky Center for Human Immunology and Immunotherapy Program, Washington University School of Medicine, Saint Louis, MO
| | - Derek E Byers
- Division of Pulmonology and Critical Care, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Philip A Mudd
- Department of Emergency Medicine, Washington University School of Medicine, Saint Louis, MO;
| |
Collapse
|
12
|
Casado JL, Vizcarra P, Velasco H, Hammerle J, McGee A, Fernandez-Escribano M, Vallejo A. Progressive and Parallel Decline of Humoral and T-Cell Immunity in Convalescent Healthcare Workers with Asymptomatic or Mild-to-Moderate Severe Acute Respiratory Syndrome Coronavirus 2 Infection. J Infect Dis 2021; 224:241-245. [PMID: 33961690 PMCID: PMC8136002 DOI: 10.1093/infdis/jiab242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/30/2021] [Indexed: 11/14/2022] Open
Abstract
We investigated the duration of humoral and T-cell immune response in paired samples among 22 convalescent healthcare workers (HCWs). A median of 1.8 months after diagnosis, T-cell response was significantly lower in HCWs with early loss of antibodies (6 cases [27%]). After 5.1 months, antibody decline was observed in 77% of cases (41% seroreverted; P < .01), and 36% had lost T-cell response (75% lost response to spike protein). Persistence of immune response was observed in those who developed a greater adaptive immune response. Our data point to the initial immune response as the relevant player in coronavirus disease 2019 duration of protection.
Collapse
Affiliation(s)
- Jose L Casado
- Department of Infectious Diseases, Ramon y Cajal Hospital, Madrid, Spain
| | - Pilar Vizcarra
- Department of Infectious Diseases, Ramon y Cajal Hospital, Madrid, Spain
| | - Hector Velasco
- Laboratory of Immunovirology, Ramón y Cajal Hospital, Madrid, Spain
| | - Johannes Hammerle
- Department of Prevention of Occupational Risks, Ramón y Cajal Hospital, Madrid, Spain
| | - Amaranta McGee
- Department of Preventive Medicine and Public Health, Ramón y Cajal Hospital, Madrid, Spain
| | | | - Alejandro Vallejo
- Department of Infectious Diseases, Ramon y Cajal Hospital, Madrid, Spain.,Laboratory of Immunovirology, Ramón y Cajal Hospital, Madrid, Spain
| |
Collapse
|
13
|
Nguyen THO, Koutsakos M, van de Sandt CE, Crawford JC, Loh L, Sant S, Grzelak L, Allen EK, Brahm T, Clemens EB, Auladell M, Hensen L, Wang Z, Nüssing S, Jia X, Günther P, Wheatley AK, Kent SJ, Aban M, Deng YM, Laurie KL, Hurt AC, Gras S, Rossjohn J, Crowe J, Xu J, Jackson D, Brown LE, La Gruta N, Chen W, Doherty PC, Turner SJ, Kotsimbos TC, Thomas PG, Cheng AC, Kedzierska K. Immune cellular networks underlying recovery from influenza virus infection in acute hospitalized patients. Nat Commun 2021; 12:2691. [PMID: 33976217 PMCID: PMC8113517 DOI: 10.1038/s41467-021-23018-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
How innate and adaptive immune responses work in concert to resolve influenza disease is yet to be fully investigated in one single study. Here, we utilize longitudinal samples from patients hospitalized with acute influenza to understand these immune responses. We report the dynamics of 18 important immune parameters, related to clinical, genetic and virological factors, in influenza patients across different severity levels. Influenza disease correlates with increases in IL-6/IL-8/MIP-1α/β cytokines and lower antibody responses. Robust activation of circulating T follicular helper cells correlates with peak antibody-secreting cells and influenza heamaglutinin-specific memory B-cell numbers, which phenotypically differs from vaccination-induced B-cell responses. Numbers of influenza-specific CD8+ or CD4+ T cells increase early in disease and retain an activated phenotype during patient recovery. We report the characterisation of immune cellular networks underlying recovery from influenza infection which are highly relevant to other infectious diseases.
Collapse
Affiliation(s)
- Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Carolien E van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | | - Liyen Loh
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Sneha Sant
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Ludivine Grzelak
- Biology Department, École Normale Supérieure Paris-Saclay, Université Paris-Saclay Cachan, Cachan, France
| | - Emma K Allen
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Tim Brahm
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Maria Auladell
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Zhongfang Wang
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Simone Nüssing
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Patrick Günther
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
- ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, VIC, Australia
| | - Malet Aban
- World Health Organisation (WHO) Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Yi-Mo Deng
- World Health Organisation (WHO) Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Karen L Laurie
- World Health Organisation (WHO) Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Aeron C Hurt
- World Health Organisation (WHO) Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Stephanie Gras
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
- Department of Biochemistry and Genetics, La Trobe Institute For Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Jane Crowe
- Deepdene Surgery, Deepdene, VIC, Australia
| | - Jianqing Xu
- Shanghai Public Health Clinical Centre and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai, China
| | - David Jackson
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Lorena E Brown
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Nicole La Gruta
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute For Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Peter C Doherty
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Stephen J Turner
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tom C Kotsimbos
- Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia
| | - Paul G Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Allen C Cheng
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.
- Infection Prevention and Healthcare Epidemiology Unit, Alfred Health, Melbourne, VIC, Australia.
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.
| |
Collapse
|
14
|
Noisumdaeng P, Roytrakul T, Prasertsopon J, Pooruk P, Lerdsamran H, Assanasen S, Kitphati R, Auewarakul P, Puthavathana P. T cell mediated immunity against influenza H5N1 nucleoprotein, matrix and hemagglutinin derived epitopes in H5N1 survivors and non-H5N1 subjects. PeerJ 2021; 9:e11021. [PMID: 33854839 PMCID: PMC7955671 DOI: 10.7717/peerj.11021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/06/2021] [Indexed: 12/12/2022] Open
Abstract
Background Protection against the influenza virus by a specific antibody is relatively strain specific; meanwhile broader immunity may be conferred by cell-mediated immune response to the conserved epitopes across influenza virus subtypes. A universal broad-spectrum influenza vaccine which confronts not only seasonal influenza virus, but also avian influenza H5N1 virus is promising. Methods This study determined the specific and cross-reactive T cell responses against the highly pathogenic avian influenza A (H5N1) virus in four survivors and 33 non-H5N1 subjects including 10 H3N2 patients and 23 healthy individuals. Ex vivo IFN-γ ELISpot assay using overlapping peptides spanning the entire nucleoprotein (NP), matrix (M) and hemagglutinin (HA) derived from A/Thailand/1(KAN-1)/2004 (H5N1) virus was employed in adjunct with flow cytometry for determining T cell functions. Microneutralization (microNT) assay was performed to determine the status of previous H5N1 virus infection. Results IFN-γ ELISpot assay demonstrated that survivors nos. 1 and 2 had markedly higher T cell responses against H5N1 NP, M and HA epitopes than survivors nos. 3 and 4; and the magnitude of T cell responses against NP were higher than that of M and HA. Durability of the immunoreactivity persisted for as long as four years after disease onset. Upon stimulation by NP in IFN-γ ELISpot assay, 60% of H3N2 patients and 39% of healthy subjects exhibited a cross-reactive T cell response. The higher frequency and magnitude of responses in H3N2 patients may be due to blood collection at the convalescent phase of the patients. In H5N1 survivors, the effector peptide-specific T cells generated from bulk culture PBMCs by in vitro stimulation displayed a polyfunction by simultaneously producing IFN-γ and TNF-α, together with upregulation of CD107a in recognition of the target cells pulsed with peptide or infected with rVac-NP virus as investigated by flow cytometry. Conclusions This study provides an insight into the better understanding on the homosubtypic and heterosubtypic T cell-mediated immune responses in H5N1 survivors and non-H5N1 subjects. NP is an immunodominant target of cross-recognition owing to its high conservancy. Therefore, the development of vaccine targeting the conserved NP may be a novel strategy for influenza vaccine design.
Collapse
Affiliation(s)
- Pirom Noisumdaeng
- Faculty of Public Health, Thammasat University, Khlong Luang, Pathum Thani, Thailand.,Thammasat University Research Unit in Modern Microbiology and Public Health Genomics, Thammasat University, Khlong Luang, Pathum Thani, Thailand.,Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-noi, Bangkok, Thailand
| | - Thaneeya Roytrakul
- National Center for Genetic Engineering and Biotechnology, Khlong Luang, Pathum Thani, Thailand
| | - Jarunee Prasertsopon
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Phisanu Pooruk
- The Government Pharmaceutical Organization, Biological Product Vaccine Production Plant, Kaengkhoi, Saraburi, Thailand
| | - Hatairat Lerdsamran
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Susan Assanasen
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-noi, Bangkok, Thailand
| | | | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-noi, Bangkok, Thailand
| | - Pilaipan Puthavathana
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-noi, Bangkok, Thailand.,Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
15
|
Bertoletti A, Tan AT, Le Bert N. The T-cell response to SARS-CoV-2: kinetic and quantitative aspects and the case for their protective role. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab006. [PMID: 38626271 PMCID: PMC7928654 DOI: 10.1093/oxfimm/iqab006] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 12/23/2022] Open
Abstract
Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2), the etiological agent of Coronavirus Diseases 2019 (COVID-19), triggers an adaptive immunity in the infected host that results in the production of virus-specific antibodies and T cells. Although kinetic and quantitative aspects of antibodies have been analyzed in large patient cohorts, similar information about SARS-CoV-2-specific T cells are scarce. We summarize the available knowledge of quantitative and temporal features of the SARS-CoV-2 T-cell response in this review. Currently, most of the data are derived only from the analysis of the circulatory compartment. Despite this limitation, early appearance, multi-specificity and functionality of SARS-CoV-2-specific T cells are associated with accelerated viral clearance and with protection from severe COVID-19.
Collapse
Affiliation(s)
- Antonio Bertoletti
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Singapore Immunology Network, A*STAR, Singapore
| | - Anthony T Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Nina Le Bert
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| |
Collapse
|
16
|
Pérez-Rubio G, Ponce-Gallegos MA, Domínguez-Mazzocco BA, Ponce-Gallegos J, García-Ramírez RA, Falfán-Valencia R. Role of the Host Genetic Susceptibility to 2009 Pandemic Influenza A H1N1. Viruses 2021; 13:344. [PMID: 33671828 PMCID: PMC7926867 DOI: 10.3390/v13020344] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/07/2021] [Accepted: 02/18/2021] [Indexed: 01/05/2023] Open
Abstract
Influenza A virus (IAV) is the most common infectious agent in humans, and infects approximately 10-20% of the world's population, resulting in 3-5 million hospitalizations per year. A scientific literature search was performed using the PubMed database and the Medical Subject Headings (MeSH) "Influenza A H1N1" and "Genetic susceptibility". Due to the amount of information and evidence about genetic susceptibility generated from the studies carried out in the last influenza A H1N1 pandemic, studies published between January 2009 to May 2020 were considered; 119 papers were found. Several pathways are involved in the host defense against IAV infection (innate immune response, pro-inflammatory cytokines, chemokines, complement activation, and HLA molecules participating in viral antigen presentation). On the other hand, single nucleotide polymorphisms (SNPs) are a type of variation involving the change of a single base pair that can mean that encoded proteins do not carry out their functions properly, allowing higher viral replication and abnormal host response to infection, such as a cytokine storm. Some of the most studied SNPs associated with IAV infection genetic susceptibility are located in the FCGR2A, C1QBP, CD55, and RPAIN genes, affecting host immune responses through abnormal complement activation. Also, SNPs in IFITM3 (which participates in endosomes and lysosomes fusion) represent some of the most critical polymorphisms associated with IAV infection, suggesting an ineffective virus clearance. Regarding inflammatory response genes, single nucleotide variants in IL1B, TNF, LTA IL17A, IL8, IL6, IRAK2, PIK3CG, and HLA complex are associated with altered phenotype in pro-inflammatory molecules, participating in IAV infection and the severest form of the disease.
Collapse
Affiliation(s)
- Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (G.P.-R.); (M.A.P.-G.); (B.A.D.-M.); (R.A.G.-R.)
| | - Marco Antonio Ponce-Gallegos
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (G.P.-R.); (M.A.P.-G.); (B.A.D.-M.); (R.A.G.-R.)
| | - Bruno André Domínguez-Mazzocco
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (G.P.-R.); (M.A.P.-G.); (B.A.D.-M.); (R.A.G.-R.)
| | - Jaime Ponce-Gallegos
- High Speciality Cardiology Unit “Korazón”, Puerta de Hierro Hospital, Tepic 63173, Nayarit, Mexico;
| | - Román Alejandro García-Ramírez
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (G.P.-R.); (M.A.P.-G.); (B.A.D.-M.); (R.A.G.-R.)
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (G.P.-R.); (M.A.P.-G.); (B.A.D.-M.); (R.A.G.-R.)
| |
Collapse
|
17
|
Edmans M, McNee A, Porter E, Vatzia E, Paudyal B, Martini V, Gubbins S, Francis O, Harley R, Thomas A, Burt R, Morgan S, Fuller A, Sewell A, Charleston B, Bailey M, Tchilian E. Magnitude and Kinetics of T Cell and Antibody Responses During H1N1pdm09 Infection in Inbred Babraham Pigs and Outbred Pigs. Front Immunol 2021; 11:604913. [PMID: 33603740 PMCID: PMC7884753 DOI: 10.3389/fimmu.2020.604913] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022] Open
Abstract
We have used the pig, a large natural host animal for influenza with many physiological similarities to humans, to characterize αβ, γδ T cell and antibody (Ab) immune responses to the 2009 pandemic H1N1 virus infection. We evaluated the kinetic of virus infection and associated response in inbred Babraham pigs with identical MHC (Swine Leucocyte Antigen) and compared them to commercial outbred animals. High level of nasal virus shedding continued up to days 4 to 5 post infection followed by a steep decline and clearance of virus by day 9. Adaptive T cell and Ab responses were detectable from days 5 to 6 post infection reaching a peak at 9 to 14 days. γδ T cells produced cytokines ex vivo at day 2 post infection, while virus reactive IFNγ producing γδ T cells were detected from day 7 post infection. Analysis of NP tetramer specific and virus specific CD8 and CD4 T cells in blood, lung, lung draining lymph nodes, and broncho-alveolar lavage (BAL) showed clear differences in cytokine production between these tissues. BAL contained the most highly activated CD8, CD4, and γδ T cells producing large amounts of cytokines, which likely contribute to elimination of virus. The weak response in blood did not reflect the powerful local lung immune responses. The immune response in the Babraham pig following H1N1pdm09 influenza infection was comparable to that of outbred animals. The ability to utilize these two swine models together will provide unparalleled power to analyze immune responses to influenza.
Collapse
Affiliation(s)
- Matthew Edmans
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Adam McNee
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Emily Porter
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Eleni Vatzia
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Basu Paudyal
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Veronica Martini
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Simon Gubbins
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Ore Francis
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Ross Harley
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Amy Thomas
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Rachel Burt
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Sophie Morgan
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Anna Fuller
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Andrew Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Bryan Charleston
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Mick Bailey
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Elma Tchilian
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| |
Collapse
|
18
|
Liu S, Huang Z, Deng X, Zou X, Li H, Mu S, Cao B. Identification of key candidate biomarkers for severe influenza infection by integrated bioinformatical analysis and initial clinical validation. J Cell Mol Med 2021; 25:1725-1738. [PMID: 33448094 PMCID: PMC7875920 DOI: 10.1111/jcmm.16275] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
One of the key barriers for early identification and intervention of severe influenza cases is a lack of reliable immunologic indicators. In this study, we utilized differentially expressed genes screening incorporating weighted gene co‐expression network analysis in one eligible influenza GEO data set (GSE111368) to identify hub genes associated with clinical severity. A total of 10 genes (PBI, MMP8, TCN1, RETN, OLFM4, ELANE, LTF, LCN2, DEFA4 and HP) were identified. Gene set enrichment analysis (GSEA) for single hub gene revealed that these genes had a close association with antimicrobial response and neutrophils activity. To further evaluate these genes' ability for diagnosis/prognosis of disease developments, we adopted double validation with (a) another new independent data set (GSE101702); and (b) plasma samples collected from hospitalized influenza patients. We found that 10 hub genes presented highly correlation with disease severity. In particular, BPI and MMP8 encoding proteins in plasma achieved higher expression in severe and dead cases, which indicated an adverse disease development and suggested a frustrating prognosis. These findings provide new insight into severe influenza pathogenesis and identify two significant candidate genes that were superior to the conventional clinical indicators. These candidate genes or encoding proteins could be biomarker for clinical diagnosis and therapeutic targets for severe influenza infection.
Collapse
Affiliation(s)
- Shuai Liu
- China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Zhisheng Huang
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaoyan Deng
- Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohui Zou
- China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hui Li
- China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shengrui Mu
- China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Bin Cao
- China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
19
|
Liu J, Zhang S, Dong X, Li Z, Xu Q, Feng H, Cai J, Huang S, Guo J, Zhang L, Chen Y, Zhu W, Du H, Liu Y, Wang T, Chen L, Wen Z, Annane D, Qu J, Chen D. Corticosteroid treatment in severe COVID-19 patients with acute respiratory distress syndrome. J Clin Invest 2020; 130:6417-6428. [PMID: 33141117 DOI: 10.1172/jci140617] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUNDCorticosteroids are widely used in patients with COVID 19, although their benefit-to-risk ratio remains controversial.METHODSPatients with severe COVID-19-related acute respiratory distress syndrome (ARDS) were included from December 29, 2019 to March 16, 2020 in 5 tertiary Chinese hospitals. Cox proportional hazards and competing risks analyses were conducted to analyze the impact of corticosteroids on mortality and SARS-CoV-2 RNA clearance, respectively. We performed a propensity score (PS) matching analysis to control confounding factors.RESULTSOf 774 eligible patients, 409 patients received corticosteroids, with a median time from hospitalization to starting corticosteroids of 1.0 day (IQR 0.0-3.0 days) . As compared with usual care, treatment with corticosteroids was associated with increased rate of myocardial (15.6% vs. 10.4%, P = 0.041) and liver injury (18.3% vs. 9.9%, P = 0.001), of shock (22.0% vs. 12.6%, P < 0.001), of need for mechanical ventilation (38.1% vs. 19.5%, P < 0.001), and increased rate of 28-day all-cause mortality (44.3% vs. 31.0%, P < 0.001). After PS matching, corticosteroid therapy was associated with 28-day mortality (adjusted HR 1.46, 95% CI 1.01-2.13, P = 0.045). High dose (>200 mg) and early initiation (≤3 days from hospitalization) of corticosteroid therapy were associated with a higher 28-day mortality rate. Corticosteroid use was also associated with a delay in SARS-CoV-2 coronavirus RNA clearance in the competing risk analysis (subhazard ratio 1.59, 95% CI 1.17-2.15, P = 0.003).CONCLUSIONAdministration of corticosteroids in severe COVID-19-related ARDS is associated with increased 28-day mortality and delayed SARS-CoV-2 coronavirus RNA clearance after adjustment for time-varying confounders.FUNDINGNone.
Collapse
Affiliation(s)
- Jiao Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Critical Care Medicine, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng Zhang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan Dong
- Tuberculosis and Respiratory Department, Wuhan Jinyin-tan Hospital, Wuhan, China
| | - Zhongyi Li
- Department of Critical Care Medicine, Wuhan No. 9 Hospital, Wuhan, China
| | - Qianghong Xu
- Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou, China
| | - Huibin Feng
- Intensive Care Unit, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Jing Cai
- Department of Critical Care Medicine, Second Affiliated Hospital of Zhejiang University Medical College, Hangzhou, China
| | - Sisi Huang
- Department of Critical Care Medicine, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Guo
- Intensive Care Unit, Huazhong University of Science and Technology Union Jiangbei Hospital, Wuhan, China
| | - Lidi Zhang
- Department of Critical Care Medicine, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yizhu Chen
- Department of Critical Care Medicine, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhu
- Intensive Care Unit, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Hangxiang Du
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongan Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Limin Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenliang Wen
- Department of Critical Care Medicine, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Djillali Annane
- FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis), RHU RECORDS (Rapi'd rEcognition of CORticosteroiD resistant or sensitive Sepsis), Department of Intensive Care, Hôpital Raymond Poincaré (APHP), Laboratory of Infection and Inflammation - U1173, School of Medicine Simone Veil, University Versailles Saint Quentin - University Paris Saclay, INSERM, Garches, France
| | - Jieming Qu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dechang Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Critical Care Medicine, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Wu CY, Chuang HY, Wong CH. Influenza virus neuraminidase regulates host CD8 + T-cell response in mice. Commun Biol 2020; 3:748. [PMID: 33293641 PMCID: PMC7722854 DOI: 10.1038/s42003-020-01486-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/03/2020] [Indexed: 11/08/2022] Open
Abstract
Influenza A virus (IAV)-specific CD8+ T-cell response was shown to provide protection against pandemic and seasonal influenza infections. However, the response was often relatively weak and the mechanism was unclear. Here, we show that the composition of IAV released from infected cells is regulated by the neuraminidase (NA) activity and the cells infected by NA-defective virus cause intracellular viral protein accumulation and cell death. In addition, after uptake of NA-defective viruses by dendritic cells (DCs), an expression of the major histocompatibility complex class I is induced to activate IAV-specific CD8+ T-cell response. When mice were infected by NA-defective IAV, a CD8+ T-cell response to the highly conserved viral antigens including PB1, NP, HA, M1, M2 and NS1 was observed along with the increasing expression of IL10, IL12 and IL27. Vaccination of mice with NA-defective H1N1 A/WSN/33 induced a strong IAV-specific CD8+ T cell response against H1N1, H3N2 and H5N1. This study reveals the role of NA in the IAV-specific CD8+ T-cell response and virion assembly process, and provides an alternative direction toward the development of universal influenza vaccines.
Collapse
Affiliation(s)
- Chung-Yi Wu
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist., Taipei, 115, Taiwan
| | - Hong-Yang Chuang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist., Taipei, 115, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist., Taipei, 115, Taiwan.
- Department of Chemistry, The Scripps Research Institute, 10550N. Torrey Pines Rd., La Jolla, CA, 92037, USA.
| |
Collapse
|
21
|
Vaz de Paula CB, de Azevedo MLV, Nagashima S, Martins APC, Malaquias MAS, Miggiolaro AFRDS, da Silva Motta Júnior J, Avelino G, do Carmo LAP, Carstens LB, de Noronha L. IL-4/IL-13 remodeling pathway of COVID-19 lung injury. Sci Rep 2020; 10:18689. [PMID: 33122784 PMCID: PMC7596721 DOI: 10.1038/s41598-020-75659-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
The COVID-19 fatality rate is high when compared to the H1N1pdm09 (pandemic Influenza A virus H1N1 subtype) rate, and although both cause an aggravated inflammatory response, the differences in the mechanisms of both pandemic pneumonias need clarification. Thus, our goal was to analyze tissue expression of interleukins 4, 13, (IL-4, IL-13), transforming growth factor-beta (TGF-β), and the number of M2 macrophages (Sphingosine-1) in patients who died by COVID-19, comparing with cases of severe pneumopathy caused by H1N1pdm09, and a control group without lung injury. Six lung biopsy samples of patients who died of SARS-CoV-2 (COVID-19 group) were used and compared with ten lung samples of adults who died from a severe infection of H1N1pdm09 (H1N1 group) and eleven samples of patients who died from different causes without lung injury (CONTROL group). The expression of IL-4, IL-13, TGF-β, and M2 macrophages score (Sphingosine-1) were identified through immunohistochemistry (IHC). Significantly higher IL-4 tissue expression and Sphingosine-1 in M2 macrophages were observed in the COVID-19 group compared to both the H1N1 and the CONTROL groups. A different mechanism of diffuse alveolar damage (DAD) in SARS-CoV-2 compared to H1N1pdm09 infections were observed. IL-4 expression and lung remodeling are phenomena observed in both SARS-CoV-2 and H1N1pdm09. However, SARS-CoV-2 seems to promote lung damage through different mechanisms, such as the scarce participation Th1/Th17 response and the higher participation of the Th2. Understanding and managing the aggravated and ineffective immune response elicited by SARS-CoV-2 merits further clarification to improve treatments propose.
Collapse
Affiliation(s)
- Caroline Busatta Vaz de Paula
- School of Medicine, Postgraduate Program of Health Sciences, Pontifícia Universidade Católica do Paraná-PUCPR, Rua Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil.
| | - Marina Luise Viola de Azevedo
- Laboratory of Experimental Pathology, School of Medicine, Pontifícia Universidade Católica do Paraná-PUCPR, R. Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil
| | - Seigo Nagashima
- School of Medicine, Postgraduate Program of Health Sciences, Pontifícia Universidade Católica do Paraná-PUCPR, Rua Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil
| | - Ana Paula Camargo Martins
- Laboratory of Experimental Pathology, School of Medicine, Pontifícia Universidade Católica do Paraná-PUCPR, R. Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil
| | - Mineia Alessandra Scaranello Malaquias
- School of Medicine, Postgraduate Program of Health Sciences, Pontifícia Universidade Católica do Paraná-PUCPR, Rua Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil
| | - Anna Flavia Ribeiro Dos Santos Miggiolaro
- School of Medicine, Postgraduate Program of Health Sciences, Pontifícia Universidade Católica do Paraná-PUCPR, Rua Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil
| | - Jarbas da Silva Motta Júnior
- School of Medicine, Postgraduate Program of Health Sciences, Pontifícia Universidade Católica do Paraná-PUCPR, Rua Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil
| | - Gibran Avelino
- Hospital Marcelino Champagnat, School of Medicine, Pontifical Catholic University of Paraná-PUCPR, R. Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil
| | - Leticia Arianne Panini do Carmo
- School of Medicine, Pontifícia Universidade Católica do Paraná-PUCPR, R. Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil
| | - Lucas Baena Carstens
- School of Medicine, Pontifícia Universidade Católica do Paraná-PUCPR, R. Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil
| | - Lucia de Noronha
- Laboratory of Experimental Pathology, School of Medicine, Pontifícia Universidade Católica do Paraná-PUCPR, R. Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil
| |
Collapse
|
22
|
Ahmed-Hassan H, Sisson B, Shukla RK, Wijewantha Y, Funderburg NT, Li Z, Hayes D, Demberg T, Liyanage NPM. Innate Immune Responses to Highly Pathogenic Coronaviruses and Other Significant Respiratory Viral Infections. Front Immunol 2020; 11:1979. [PMID: 32973803 PMCID: PMC7468245 DOI: 10.3389/fimmu.2020.01979] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
The new pandemic virus SARS-CoV-2 emerged in China and spread around the world in <3 months, infecting millions of people, and causing countries to shut down public life and businesses. Nearly all nations were unprepared for this pandemic with healthcare systems stretched to their limits due to the lack of an effective vaccine and treatment. Infection with SARS-CoV-2 can lead to Coronavirus disease 2019 (COVID-19). COVID-19 is respiratory disease that can result in a cytokine storm with stark differences in morbidity and mortality between younger and older patient populations. Details regarding mechanisms of viral entry via the respiratory system and immune system correlates of protection or pathogenesis have not been fully elucidated. Here, we provide an overview of the innate immune responses in the lung to the coronaviruses MERS-CoV, SARS-CoV, and SARS-CoV-2. This review provides insight into key innate immune mechanisms that will aid in the development of therapeutics and preventive vaccines for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Hanaa Ahmed-Hassan
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States.,Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Brianna Sisson
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Rajni Kant Shukla
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Yasasvi Wijewantha
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Nicholas T Funderburg
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States
| | - Zihai Li
- The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
| | - Don Hayes
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | | | - Namal P M Liyanage
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States.,Department of Veterinary Biosciences, College of Veterinary Medicine, Ohio State University, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
23
|
Xing X, Hu S, Chen M, Zhan F, Liu H, Chen Z, Zhang H, Zeng G, Xu Q, Zhang H, Liu M, Liu H, Gao L, Zhang L. Severe acute respiratory infection risk following glucocorticosteroid treatment in uncomplicated influenza-like illness resulting from pH1N1 influenza infection: a case control study. BMC Infect Dis 2019; 19:1080. [PMID: 31878888 PMCID: PMC6933691 DOI: 10.1186/s12879-019-4669-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 11/29/2019] [Indexed: 01/07/2023] Open
Abstract
Background Current studies regarding glucocorticosteroid treatment of influenza have only estimated risk of critical illness or death which can be easily confounded by timing of treatment administration. We used severe acute respiratory infection (sARI) as an endpoint and investigated risk associated with receiving glucocorticosteroids before sARI onset. Methods sARI cases were defined as influenza-like illness (ILI) with pH1N1 infection and respiratory distress. Controls were defined as pH1N1 cases other than sARI and randomly selected from the community. We compared glucocorticosteroids and other medications used before sARI onset using a matched case control study adjusted for age group as well as underlying disease. Time-dependent risk and dose responses at different time periods over the course of sARI cases were also examined. Results Of the sARI cases, 34% received glucocorticosteroids before sARI onset compared to 3.8% of controls during equivalent days (ORM-H = 17,95%CI = 2.1–135). Receiving glucocorticosteroids before sARI onset increased risk of developing subsequent critical illness or death (ORM-H = 5.7,95%CI = 1.6–20.2), and the ORM-H increased from 5.7 to 8.5 for continued glucocorticosteroid use after sARI onset. However, only receiving glucocorticosteroids after sARI onset did not increase risk of severe illness (ORM-H = 1.1,95%CI = 0.3–4.6). Each increase in glucocorticosteroids dose of 1 mg/kg/day before sARI onset resulted in an increase of 0.62 (R2 = 0.87) in the pMEWS score at the time of sARI onset. Conclusions Early glucocorticosteroid treatment increased risk of sARI and subsequent critical illness or death; however, only receiving glucocorticosteroids after sARI onset did not increase risk of severe illness.
Collapse
Affiliation(s)
- Xuesen Xing
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei Province, China. .,Chinese Field Epidemiology Training Program, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China.
| | - Shixiong Hu
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan Province, China
| | - Meihua Chen
- Wuhan No. 1 Hospital, Wuhan, Hubei Province, China
| | - Faxian Zhan
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei Province, China
| | - Huihui Liu
- Chinese Field Epidemiology Training Program, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Zhang Chen
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan Province, China
| | - Hengjiao Zhang
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan Province, China
| | - Ge Zeng
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan Province, China
| | - Qiaohua Xu
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan Province, China
| | - Hong Zhang
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan Province, China
| | - Man Liu
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei Province, China
| | - Honghui Liu
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei Province, China
| | - Lidong Gao
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan Province, China.
| | - Lijie Zhang
- Chinese Field Epidemiology Training Program, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
24
|
Valkenburg SA, Fang VJ, Leung NHL, Chu DKW, Ip DKM, Perera RAPM, Wang Y, Li APY, Peiris JSM, Cowling BJ, Poon LLM. Cross-reactive antibody-dependent cellular cytotoxicity antibodies are increased by recent infection in a household study of influenza transmission. Clin Transl Immunology 2019; 8:e1092. [PMID: 31763042 PMCID: PMC6864499 DOI: 10.1002/cti2.1092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES Influenza causes a spectrum of disease from asymptomatic infection to fatal outcome, and pre-existing immunity can alter susceptibility and disease severity. In a household transmission study, we recruited outpatients with confirmed influenza virus infection and prospectively identified secondary infections in their household contacts, therefore identifying infection cases with baseline samples for determining immune-mediated protection from influenza infection. METHODS We examined baseline broadly reactive immune correlates of relevance to universal vaccine development, specifically antibody-dependent cytotoxic (ADCC) antibodies and T-cell responses in functional assays. Antibodies were assessed in a cell-based NK cell degranulation assay by flow cytometry, and T-cell responses were assessed by IFN-γ intracellular cytokine staining flow cytometry assay. RESULTS The magnitude of antibody responses and ADCC function for multiple influenza-specific proteins was lower in participants who became infected, consolidating the role of pre-existing antibodies in protection from seasonal influenza virus infection. Among H1N1-infected contacts, we found that higher levels of pre-existing H1-haemagglutinin ADCC responses correlated with reduced symptom severity. Recent infection boosted the titre and magnitude of haemagglutinin-, neuraminidase- and nucleoprotein-specific ADCC antibodies. Limited T-cell samples precluded conclusions on the role of pre-existing T-cell responses. CONCLUSIONS Overall, ADCC responses are a protective correlate against influenza virus infection that should be considered in future vaccine development and evaluation.Influenza-specific ADCC responses are elevated in uninfected subjects, associated with reduced symptoms and boosted by recent infection, whilst HA stem and NA IgG are also elevated in uninfected participants irrespective of ADCC function.
Collapse
Affiliation(s)
- Sophie A Valkenburg
- Li Ka Shing Faculty of MedicineHKU Pasteur Research PoleSchool of Public HealthThe University of Hong KongHong Kong
- Li Ka Shing Faculty of MedicineSchool of Public HealthWHO Collaborating Centre for Infectious Disease Epidemiology and ControlThe University of Hong KongHong Kong
| | - Vicky J Fang
- Li Ka Shing Faculty of MedicineSchool of Public HealthWHO Collaborating Centre for Infectious Disease Epidemiology and ControlThe University of Hong KongHong Kong
| | - Nancy HL Leung
- Li Ka Shing Faculty of MedicineSchool of Public HealthWHO Collaborating Centre for Infectious Disease Epidemiology and ControlThe University of Hong KongHong Kong
| | - Daniel KW Chu
- Li Ka Shing Faculty of MedicineSchool of Public HealthWHO Collaborating Centre for Infectious Disease Epidemiology and ControlThe University of Hong KongHong Kong
| | - Dennis KM Ip
- Li Ka Shing Faculty of MedicineSchool of Public HealthWHO Collaborating Centre for Infectious Disease Epidemiology and ControlThe University of Hong KongHong Kong
| | - Ranawaka APM Perera
- Li Ka Shing Faculty of MedicineSchool of Public HealthWHO Collaborating Centre for Infectious Disease Epidemiology and ControlThe University of Hong KongHong Kong
| | - Yizhuo Wang
- Li Ka Shing Faculty of MedicineSchool of Public HealthWHO Collaborating Centre for Infectious Disease Epidemiology and ControlThe University of Hong KongHong Kong
| | - Athena PY Li
- Li Ka Shing Faculty of MedicineHKU Pasteur Research PoleSchool of Public HealthThe University of Hong KongHong Kong
| | - JS Malik Peiris
- Li Ka Shing Faculty of MedicineSchool of Public HealthWHO Collaborating Centre for Infectious Disease Epidemiology and ControlThe University of Hong KongHong Kong
| | - Benjamin J Cowling
- Li Ka Shing Faculty of MedicineSchool of Public HealthWHO Collaborating Centre for Infectious Disease Epidemiology and ControlThe University of Hong KongHong Kong
| | - Leo LM Poon
- Li Ka Shing Faculty of MedicineSchool of Public HealthWHO Collaborating Centre for Infectious Disease Epidemiology and ControlThe University of Hong KongHong Kong
| |
Collapse
|
25
|
Schwaiger T, Sehl J, Karte C, Schäfer A, Hühr J, Mettenleiter TC, Schröder C, Köllner B, Ulrich R, Blohm U. Experimental H1N1pdm09 infection in pigs mimics human seasonal influenza infections. PLoS One 2019; 14:e0222943. [PMID: 31539406 PMCID: PMC6754157 DOI: 10.1371/journal.pone.0222943] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/10/2019] [Indexed: 01/07/2023] Open
Abstract
Pigs are anatomically, genetically and physiologically comparable to humans and represent a natural host for influenza A virus (IAV) infections. Thus, pigs may represent a relevant biomedical model for human IAV infections. We set out to investigate the systemic as well as the local immune response in pigs upon two subsequent intranasal infections with IAV H1N1pdm09. We detected decreasing numbers of peripheral blood lymphocytes after the first infection. The simultaneous increase in the frequencies of proliferating cells correlated with an increase in infiltrating leukocytes in the lung. Enhanced perforin expression in αβ and γδ T cells in the respiratory tract indicated a cytotoxic T cell response restricted to the route of virus entry such as the nose, the lung and the bronchoalveolar lavage. Simultaneously, increasing frequencies of CD8αα expressing αβ T cells were observed rapidly after the first infection, which may have inhibited uncontrolled inflammation in the respiratory tract. Taking together, the results of this study demonstrate that experimental IAV infection in pigs mimics major characteristics of human seasonal IAV infections.
Collapse
Affiliation(s)
- Theresa Schwaiger
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Julia Sehl
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Claudia Karte
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Alexander Schäfer
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Jane Hühr
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Charlotte Schröder
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Bernd Köllner
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Reiner Ulrich
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Ulrike Blohm
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
- * E-mail:
| |
Collapse
|
26
|
Abstract
Influenza pandemics with different extent occur every year in the world. It can cause high morbidity and mortality, arouse fear panic in public, and attract extensive attention worldwide. This paper reviews the research progress in epidemiological characteristics, detection methods, pathogenesis, treatment and prophylactic measures of influenza in China. It will be helpful for us to understand the current situation of influenza.
Collapse
|
27
|
Ni YN, Chen G, Sun J, Liang BM, Liang ZA. The effect of corticosteroids on mortality of patients with influenza pneumonia: a systematic review and meta-analysis. Crit Care 2019; 23:99. [PMID: 30917856 PMCID: PMC6437920 DOI: 10.1186/s13054-019-2395-8] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/15/2019] [Indexed: 02/07/2023] Open
Abstract
Background The effect of corticosteroids on clinical outcomes in patients with influenza pneumonia remains controversial. We aimed to further evaluate the influence of corticosteroids on mortality in adult patients with influenza pneumonia by comparing corticosteroid-treated and placebo-treated patients. Methods The PubMed, Embase, Medline, Cochrane Central Register of Controlled Trials (CENTRAL), and Information Sciences Institute (ISI) Web of Science databases were searched for all controlled studies that compared the effects of corticosteroids and placebo in adult patients with influenza pneumonia. The primary outcome was mortality, and the secondary outcomes were mechanical ventilation (MV) days, length of stay in the intensive care unit (ICU LOS), and the rate of secondary infection. Results Ten trials involving 6548 patients were pooled in our final analysis. Significant heterogeneity was found in all outcome measures except for ICU LOS (I2 = 38%, P = 0.21). Compared with placebo, corticosteroids were associated with higher mortality (risk ratio [RR] 1.75, 95% confidence interval [CI] 1.30 ~ 2.36, Z = 3.71, P = 0.0002), longer ICU LOS (mean difference [MD] 2.14, 95% CI 1.17 ~ 3.10, Z = 4.35, P < 0.0001), and a higher rate of secondary infection (RR 1.98, 95% CI 1.04 ~ 3.78, Z = 2.08, P = 0.04) but not MV days (MD 0.81, 95% CI − 1.23 ~ 2.84, Z = 0.78, P = 0.44) in patients with influenza pneumonia. Conclusions In patients with influenza pneumonia, corticosteroid use is associated with higher mortality. Trial registration PROSPERO (ID: CRD42018112384). Electronic supplementary material The online version of this article (10.1186/s13054-019-2395-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yue-Nan Ni
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Guo Chen
- Department of Geriatrics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Jiankui Sun
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, No. 14, Section 3 Renmin Nanlu, Chengdu, 610041, Sichuan, China
| | - Bin-Miao Liang
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| | - Zong-An Liang
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| |
Collapse
|
28
|
Estrada LD, Schultz-Cherry S. Development of a Universal Influenza Vaccine. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:392-398. [PMID: 30617121 PMCID: PMC6327971 DOI: 10.4049/jimmunol.1801054] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/30/2018] [Indexed: 12/17/2022]
Abstract
The severity of the 2017-18 influenza season, combined with the low efficacy for some vaccine components, highlights the need to improve our current seasonal influenza vaccine. Thus, the National Institute of Allergy and Infectious Diseases recently announced a strategic plan to improve current influenza vaccines and eventually develop a "universal" influenza vaccine. This review will highlight the many different strategies being undertaken in pursuit of this goal and the exciting advances made by the influenza community. There is no doubt that an improved influenza vaccine is on the horizon.
Collapse
Affiliation(s)
- Leonardo D Estrada
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| |
Collapse
|
29
|
Gordon S. Legacy of the influenza pandemic 1918: Introduction. Biomed J 2018; 41:215-217. [PMID: 30348264 PMCID: PMC6197992 DOI: 10.1016/j.bj.2018.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 11/28/2022] Open
Affiliation(s)
- Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Exeter College Emeritus Fellow in Pathology, and Emeritus GlaxoWellcome Professor of Cellular Pathology, University of Oxford, UK.
| |
Collapse
|
30
|
McMichael AJ. Legacy of the influenza pandemic 1918: The host T cell response. Biomed J 2018; 41:242-248. [PMID: 30348267 PMCID: PMC6197988 DOI: 10.1016/j.bj.2018.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/03/2018] [Indexed: 01/05/2023] Open
Abstract
The influenza virus was instrumental in unravelling critical aspects of the antiviral T lymphocyte mediated immune response. A major finding was the demonstration that CD8 T lymphocytes recognize short viral peptides presented by class I molecules of the major histocompatibility complex. Studies of influenza specific T cells have also led to an understanding of their important role in recovery from influenza virus infection in humans.
Collapse
Affiliation(s)
- Andrew J McMichael
- Nuffield Department of Medicine, University of Oxford, NDM Research Building, Old Road Campus, Oxford, OX3 7FZ, UK.
| |
Collapse
|
31
|
Zhao M, Chen J, Tan S, Dong T, Jiang H, Zheng J, Quan C, Liao Q, Zhang H, Wang X, Wang Q, Bi Y, Liu F, Feng L, Horby PW, Klenerman P, Gao GF, Liu WJ, Yu H. Prolonged Evolution of Virus-Specific Memory T Cell Immunity after Severe Avian Influenza A (H7N9) Virus Infection. J Virol 2018; 92:e01024-18. [PMID: 29925664 PMCID: PMC6096810 DOI: 10.1128/jvi.01024-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 12/19/2022] Open
Abstract
Since 2013, influenza A H7N9 virus has emerged as the most common avian influenza virus subtype causing human infection, and it is associated with a high fatality risk. However, the characteristics of immune memory in patients who have recovered from H7N9 infection are not well understood. We assembled a cohort of 45 H7N9 survivors followed for up to 15 months after infection. Humoral and cellular immune responses were analyzed in sequential samples obtained at 1.5 to 4 months, 6 to 8 months, and 12 to 15 months postinfection. H7N9-specific antibody concentrations declined over time, and protective antibodies persisted longer in severely ill patients admitted to the intensive care unit (ICU) and patients presenting with acute respiratory distress syndrome (ARDS) than in patients with mild disease. Frequencies of virus-specific gamma interferon (IFN-γ)-secreting T cells were lower in critically ill patients requiring ventilation than in patients without ventilation within 4 months after infection. The percentages of H7N9-specific IFN-γ-secreting T cells tended to increase over time in patients ≥60 years or in critically ill patients requiring ventilation. Elevated levels of antigen-specific CD8+ T cells expressing the lung-homing marker CD49a were observed at 6 to 8 months after H7N9 infection compared to those in samples obtained at 1.5 to 4 months. Our findings indicate the prolonged reconstruction and evolution of virus-specific T cell immunity in older or critically ill patients and have implications for T cell-directed immunization strategies.IMPORTANCE Avian influenza A H7N9 virus remains a major threat to public health. However, no previous studies have determined the characteristics and dynamics of virus-specific T cell immune memory in patients who have recovered from H7N9 infection. Our findings showed that establishment of H7N9-specific T cell memory after H7N9 infection was prolonged in older and severely affected patients. Severely ill patients mounted lower T cell responses in the first 4 months after infection, while T cell responses tended to increase over time in older and severely ill patients. Higher levels of antigen-specific CD8+ T cells expressing the lung-homing marker CD49a were detected at 6 to 8 months after infection. Our results indicated a long-term impact of H7N9 infection on virus-specific memory T cells. These findings advance our understanding of the dynamics of virus-specific memory T cell immunity after H7N9 infection, which is relevant to the development of T cell-based universal influenza vaccines.
Collapse
Affiliation(s)
- Min Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Junbo Chen
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Shuguang Tan
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Tao Dong
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Hui Jiang
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiandong Zheng
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chuansong Quan
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qiaohong Liao
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hangjie Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiling Wang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Qianli Wang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Yuhai Bi
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Fengfeng Liu
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Luzhao Feng
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Peter W Horby
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - George F Gao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - William J Liu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongjie Yu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
32
|
Heterosubtypic Protections against Human-Infecting Avian Influenza Viruses Correlate to Biased Cross-T-Cell Responses. mBio 2018; 9:mBio.01408-18. [PMID: 30087171 PMCID: PMC6083907 DOI: 10.1128/mbio.01408-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Against a backdrop of seasonal influenza virus epidemics, emerging avian influenza viruses (AIVs) occasionally jump from birds to humans, posing a public health risk, especially with the recent sharp increase in H7N9 infections. Evaluations of cross-reactive T-cell immunity to seasonal influenza viruses and human-infecting AIVs have been reported previously. However, the roles of influenza A virus-derived epitopes in the cross-reactive T-cell responses and heterosubtypic protections are not well understood; understanding those roles is important for preventing and controlling new emerging AIVs. Here, among the members of a healthy population presumed to have previously been infected by pandemic H1N1 (pH1N1), we found that pH1N1-specific T cells showed cross- but biased reactivity to human-infecting AIVs, i.e., H5N1, H6N1, H7N9, and H9N2, which correlates with distinct protections. Through a T-cell epitope-based phylogenetic analysis, the cellular immunogenic clustering expanded the relevant conclusions to a broader range of virus strains. We defined the potential key conserved epitopes required for cross-protection and revealed the molecular basis for the immunogenic variations. Our study elucidated an overall profile of cross-reactivity to AIVs and provided useful recommendations for broad-spectrum vaccine development. We revealed preexisting but biased T-cell reactivity of pH1N1 influenza virus to human-infecting AIVs, which provided distinct protections. The cross-reactive T-cell recognition had a regular pattern that depended on the T-cell epitope matrix revealed via bioinformatics analysis. Our study elucidated an overall profile of cross-reactivity to AIVs and provided useful recommendations for broad-spectrum vaccine development.
Collapse
|
33
|
Valkenburg SA, Leung NHL, Bull MB, Yan LM, Li APY, Poon LLM, Cowling BJ. The Hurdles From Bench to Bedside in the Realization and Implementation of a Universal Influenza Vaccine. Front Immunol 2018; 9:1479. [PMID: 30013557 PMCID: PMC6036122 DOI: 10.3389/fimmu.2018.01479] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/14/2018] [Indexed: 12/23/2022] Open
Abstract
Influenza viruses circulate worldwide causing annual epidemics that have a substantial impact on public health. This is despite vaccines being in use for over 70 years and currently being administered to around 500 million people each year. Improvements in vaccine design are needed to increase the strength, breadth, and duration of immunity against diverse strains that circulate during regular epidemics, occasional pandemics, and from animal reservoirs. Universal vaccine strategies that target more conserved regions of the virus, such as the hemagglutinin (HA)-stalk, or recruit other cellular responses, such as T cells and NK cells, have the potential to provide broader immunity. Many pre-pandemic vaccines in clinical development do not utilize new vaccine platforms but use "tried and true" recombinant HA protein or inactivated virus strategies despite substantial leaps in fundamental research on universal vaccines. Significant hurdles exist for universal vaccine development from bench to bedside, so that promising preclinical data is not yet translating to human clinical trials. Few studies have assessed immune correlates derived from asymptomatic influenza virus infections, due to the scale of a study required to identity these cases. The realization and implementation of a universal influenza vaccine requires identification and standardization of set points of protective immune correlates, and consideration of dosage schedule to maximize vaccine uptake.
Collapse
Affiliation(s)
- Sophie A. Valkenburg
- HKU Pasteur Research Pole, The University of Hong Kong, Pokfulam, Hong Kong
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong
| | - Nancy H. L. Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong
| | - Maireid B. Bull
- HKU Pasteur Research Pole, The University of Hong Kong, Pokfulam, Hong Kong
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong
| | - Li-meng Yan
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong
| | - Athena P. Y. Li
- HKU Pasteur Research Pole, The University of Hong Kong, Pokfulam, Hong Kong
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong
| | - Leo L. M. Poon
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong
| | - Benjamin J. Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
34
|
Clemens EB, van de Sandt C, Wong SS, Wakim LM, Valkenburg SA. Harnessing the Power of T Cells: The Promising Hope for a Universal Influenza Vaccine. Vaccines (Basel) 2018; 6:vaccines6020018. [PMID: 29587436 PMCID: PMC6027237 DOI: 10.3390/vaccines6020018] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Next-generation vaccines that utilize T cells could potentially overcome the limitations of current influenza vaccines that rely on antibodies to provide narrow subtype-specific protection and are prone to antigenic mismatch with circulating strains. Evidence from animal models shows that T cells can provide heterosubtypic protection and are crucial for immune control of influenza virus infections. This has provided hope for the design of a universal vaccine able to prime against diverse influenza virus strains and subtypes. However, multiple hurdles exist for the realisation of a universal T cell vaccine. Overall primary concerns are: extrapolating human clinical studies, seeding durable effective T cell resident memory (Trm), population human leucocyte antigen (HLA) coverage, and the potential for T cell-mediated immune escape. Further comprehensive human clinical data is needed during natural infection to validate the protective role T cells play during infection in the absence of antibodies. Furthermore, fundamental questions still exist regarding the site, longevity and duration, quantity, and phenotype of T cells needed for optimal protection. Standardised experimental methods, and eventually simplified commercial assays, to assess peripheral influenza-specific T cell responses are needed for larger-scale clinical studies of T cells as a correlate of protection against influenza infection. The design and implementation of a T cell-inducing vaccine will require a consensus on the level of protection acceptable in the community, which may not provide sterilizing immunity but could protect the individual from severe disease, reduce the length of infection, and potentially reduce transmission in the community. Therefore, increasing the standard of care potentially offered by T cell vaccines should be considered in the context of pandemic preparedness and zoonotic infections, and in combination with improved antibody vaccine targeting methods. Current pandemic vaccine preparedness measures and ongoing clinical trials under-utilise T cell-inducing vaccines, reflecting the myriad questions that remain about how, when, where, and which T cells are needed to fight influenza virus infection. This review aims to bring together basic fundamentals of T cell biology with human clinical data, which need to be considered for the implementation of a universal vaccine against influenza that harnesses the power of T cells.
Collapse
Affiliation(s)
- E Bridie Clemens
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Carolien van de Sandt
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Sook San Wong
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Linda M Wakim
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Sophie A Valkenburg
- HKU Pasteur Research Pole, School of Public Health, University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
35
|
Wong SS, Oshansky CM, Guo XZJ, Ralston J, Wood T, Seeds R, Newbern C, Waite B, Reynolds G, Widdowson MA, Huang QS, Webby RJ, Thomas PG. Severe Influenza Is Characterized by Prolonged Immune Activation: Results From the SHIVERS Cohort Study. J Infect Dis 2018; 217:245-256. [PMID: 29112724 PMCID: PMC7335675 DOI: 10.1093/infdis/jix571] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/30/2017] [Indexed: 12/21/2022] Open
Abstract
Background The immunologic factors underlying severe influenza are poorly understood. To address this, we compared the immune responses of influenza-confirmed hospitalized individuals with severe acute respiratory illness (SARI) to those of nonhospitalized individuals with influenza-like illness (ILI). Methods Peripheral blood lymphocytes were collected from 27 patients with ILI and 27 with SARI, at time of enrollment and then 2 weeks later. Innate and adaptive cellular immune responses were assessed by flow cytometry, and serum cytokine levels were assessed by a bead-based assay. Results During the acute phase, SARI was associated with significantly reduced numbers of circulating myeloid dendritic cells, CD192+ monocytes, and influenza virus-specific CD8+ and CD4+ T cells as compared to ILI. By the convalescent phase, however, most SARI cases displayed continued immune activation characterized by increased numbers of CD16+ monocytes and proliferating, and influenza virus-specific, CD8+ T cells as compared to ILI cases. SARI was also associated with reduced amounts of cytokines that regulate T-cell responses (ie, interleukin 4, interleukin 13, interleukin 12, interleukin 10, and tumor necrosis factor β) and hematopoiesis (interleukin 3 and granulocyte-macrophage colony-stimulating factor) but increased amounts of a proinflammatory cytokine (tumor necrosis factor α), chemotactic cytokines (MDC, MCP-1, GRO, and fractalkine), and growth-promoting cytokines (PDGFBB/AA, VEGF, and EGF) as compared to ILI. Conclusions Severe influenza cases showed a delay in the peripheral immune activation that likely led prolonged inflammation, compared with mild influenza cases.
Collapse
Affiliation(s)
- Sook-San Wong
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis
| | | | - Xi-Zhi J Guo
- Department of Immunology, St. Jude Children's Research Hospital, Memphis
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis
| | - Jacqui Ralston
- Institute for Environmental Science and Research, National Centre for Biosecurity and Infectious Disease-Wallaceville, Upper Hutt
| | - Timothy Wood
- Institute for Environmental Science and Research, National Centre for Biosecurity and Infectious Disease-Wallaceville, Upper Hutt
| | - Ruth Seeds
- Institute for Environmental Science and Research, National Centre for Biosecurity and Infectious Disease-Wallaceville, Upper Hutt
| | - Claire Newbern
- Institute for Environmental Science and Research, National Centre for Biosecurity and Infectious Disease-Wallaceville, Upper Hutt
| | - Ben Waite
- Institute for Environmental Science and Research, National Centre for Biosecurity and Infectious Disease-Wallaceville, Upper Hutt
| | - Gary Reynolds
- Immunisation Advisory Service, Department of Population Health, University of Auckland, New Zealand
| | - Marc-Alain Widdowson
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Q Sue Huang
- Institute for Environmental Science and Research, National Centre for Biosecurity and Infectious Disease-Wallaceville, Upper Hutt
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis
| |
Collapse
|
36
|
McKimm-Breschkin JL, Jiang S, Hui DS, Beigel JH, Govorkova EA, Lee N. Prevention and treatment of respiratory viral infections: Presentations on antivirals, traditional therapies and host-directed interventions at the 5th ISIRV Antiviral Group conference. Antiviral Res 2018; 149:118-142. [PMID: 29162476 PMCID: PMC7133686 DOI: 10.1016/j.antiviral.2017.11.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Abstract
The International Society for Influenza and other Respiratory Virus Diseases held its 5th Antiviral Group (isirv-AVG) Conference in Shanghai, China, in conjunction with the Shanghai Public Health Center and Fudan University from 14-16 June 2017. The three-day programme encompassed presentations on some of the clinical features, management, immune responses and virology of respiratory infections, including influenza A(H1N1)pdm09 and A(H7N9) viruses, MERS-CoV, SARS-CoV, adenovirus Type 80, enterovirus D68, metapneumovirus and respiratory syncytial virus (RSV). Updates were presented on several therapeutics currently in clinical trials, including influenza polymerase inhibitors pimodivir/JNJ6362387, S033188, favipiravir, monoclonal antibodies MHAA45449A and VIS410, and host directed strategies for influenza including nitazoxanide, and polymerase ALS-008112 and fusion inhibitors AK0529, GS-5806 for RSV. Updates were also given on the use of the currently licensed neuraminidase inhibitors. Given the location in China, there were also presentations on the use of Traditional Chinese Medicines. Following on from the previous conference, there were ongoing discussions on appropriate endpoints for severe influenza in clinical trials from regulators and clinicians, an issue which remains unresolved. The aim of this conference summary is to provide information for not only conference participants, but a detailed referenced review of the current status of clinical trials, and pre-clinical development of therapeutics and vaccines for influenza and other respiratory diseases for a broader audience.
Collapse
Affiliation(s)
| | - Shibo Jiang
- College of Basic Medical Sciences, Fudan University, Shanghai, China; Lindsley F. Kimball Research Institute, New York Blood Center, NY, USA
| | - David S Hui
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - John H Beigel
- Leidos Biomedical Research, Inc., Support to National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Elena A Govorkova
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, USA
| | - Nelson Lee
- Faculty of Medicine and Dentistry, University of Alberta, Canada
| |
Collapse
|
37
|
Skevaki C, Hudemann C, Matrosovich M, Möbs C, Paul S, Wachtendorf A, Alashkar Alhamwe B, Potaczek DP, Hagner S, Gemsa D, Garn H, Sette A, Renz H. Influenza-derived peptides cross-react with allergens and provide asthma protection. J Allergy Clin Immunol 2017; 142:804-814. [PMID: 29132960 DOI: 10.1016/j.jaci.2017.07.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 07/04/2017] [Accepted: 07/19/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND The hygiene hypothesis is the leading concept to explain the current asthma epidemic, which is built on the observation that a lack of bacterial contact early in life induces allergic TH2 immune responses. OBJECTIVE Because little is known about the contribution of respiratory tract viruses in this context, we evaluated the effect of prior influenza infection on the development of allergic asthma. METHODS Mice were infected with influenza and, once recovered, subjected to an ovalbumin- or house dust mite-induced experimental asthma protocol. Influenza-polarized effector memory T (Tem) cells were transferred adoptively to allergen-sensitized animals before allergen challenge. A comprehensive in silico analysis assessed homologies between virus- and allergen-derived proteins. Influenza-polarized Tem cells were stimulated ex vivo with candidate peptides. Mice were immunized with a pool of virus-derived T-cell epitopes. RESULTS In 2 murine models we found a long-lasting preventive effect against experimental asthma features. Protection could be attributed about equally to CD4+ and CD8+ Tem cells from influenza-infected mice. An in silico bioinformatic analysis identified 4 influenza- and 3 allergen-derived MHC class I and MHC class II candidate T-cell epitopes with potential antigen-specific cross-reactivity between influenza and allergens. Lymphocytes from influenza-infected mice produced IFN-γ and IL-2 but not IL-5 on stimulation with the aforementioned peptides. Immunization with a mixture of the influenza peptides conferred asthma protection, and peptide-immunized mice transferred protection through CD4+ and CD8+ Tem cells. CONCLUSION For the first time, our results illustrate heterologous immunity of virus-infected animals toward allergens. This finding extends the original hygiene hypothesis.
Collapse
Affiliation(s)
- Chrysanthi Skevaki
- Institute of Laboratory Medicine and Pathobiochemistry, Member of the German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany
| | - Christoph Hudemann
- Institute of Laboratory Medicine and Pathobiochemistry, Member of the German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany
| | | | - Christian Möbs
- Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany
| | - Sinu Paul
- La Jolla Institute for Allergy and Immunology, La Jolla, Calif
| | - Andreas Wachtendorf
- Institute of Laboratory Medicine and Pathobiochemistry, Member of the German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany
| | - Bilal Alashkar Alhamwe
- Institute of Laboratory Medicine and Pathobiochemistry, Member of the German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany
| | - Daniel P Potaczek
- Institute of Laboratory Medicine and Pathobiochemistry, Member of the German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany; John Paul II Hospital, Krakow, Poland
| | - Stefanie Hagner
- Institute of Laboratory Medicine and Pathobiochemistry, Member of the German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany
| | - Diethard Gemsa
- Institute of Laboratory Medicine and Pathobiochemistry, Member of the German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany
| | - Holger Garn
- Institute of Laboratory Medicine and Pathobiochemistry, Member of the German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany
| | | | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Member of the German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany.
| |
Collapse
|
38
|
Li H, Yang SG, Gu L, Zhang Y, Yan XX, Liang ZA, Zhang W, Jia HY, Chen W, Liu M, Yu KJ, Xue CX, Hu K, Zou Q, Li LJ, Cao B, Wang C. Effect of low-to-moderate-dose corticosteroids on mortality of hospitalized adolescents and adults with influenza A(H1N1)pdm09 viral pneumonia. Influenza Other Respir Viruses 2017; 11:345-354. [PMID: 28464462 PMCID: PMC5485871 DOI: 10.1111/irv.12456] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2017] [Indexed: 02/05/2023] Open
Abstract
Background The effect of corticosteroids on influenza A(H1N1)pdm09 viral pneumonia patients remains controversial, and the impact of dosage has never been studied. Methods Using data of hospitalized adolescent and adult patients with influenza A(H1N1)pdm09 viral pneumonia, prospectively collected from 407 hospitals in mainland China, the effects of low‐to‐moderate‐dose (25‐150 mg d−1) and high‐dose (>150 mg d−1) corticosteroids on 30‐day mortality, 60‐day mortality, and nosocomial infection were assessed with multivariate Cox regression and propensity score‐matched case–control analysis. Results In total, 2141 patients (median age: 34 years; morality rate: 15.9%) were included. Among them, 1160 (54.2%) had PaO2/FiO2<300 mm Hg on admission, and 1055 (49.3%) received corticosteroids therapy. Corticosteroids, without consideration of dose, did not influence either 30‐day or 60‐day mortality. Further analysis revealed that, as compared with the no‐corticosteroid group, low‐to‐moderate‐dose corticosteroids were related to reduced 30‐day mortality (adjusted hazard ratio [aHR] 0.64 [95% CI 0.43‐0.96, P=.033]). In the subgroup analysis among patients with PaO2/FiO2<300 mm Hg, low‐to‐moderate‐dose corticosteroid treatment significantly reduced both 30‐day mortality (aHR 0.49 [95% CI 0.32‐0.77]) and 60‐day mortality (aHR 0.51 [95% CI 0.33‐0.78]), while high‐dose corticosteroid therapy yielded no difference. For patients with PaO2/FiO2 ≥300 mm Hg, corticosteroids (irrespective of dose) showed no benefit and even increased 60‐day mortality (aHR 3.02 [95% CI 1.06‐8.58]). Results were similar in the propensity model analysis. Conclusions Low‐to‐moderate‐dose corticosteroids might reduce mortality of influenza A(H1N1)pdm09 viral pneumonia patients with PaO2/FiO2<300 mm Hg. Mild patients with PaO2/FiO2 ≥300 mm Hg could not benefit from corticosteroid therapy.
Collapse
Affiliation(s)
- Hui Li
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shi-Gui Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Li Gu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yao Zhang
- Global Health, Population & Nutrition, Global Research & Services, Family Health International 360, Durham, NC, USA
| | - Xi-Xin Yan
- Department of Respiratory Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zong-An Liang
- West China Hospital of Sichuan University, Chengdu, China
| | - Wei Zhang
- The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Hong-Yu Jia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Meng Liu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Kai-Jiang Yu
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chun-Xue Xue
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ke Hu
- Renmin Hospital of Wuhan University, Wuhan, China
| | - Qi Zou
- Fujian Medical University Union Hospital, Fuzhou, China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Bin Cao
- Center for Respiratory Diseases China-Japan Friendship Hospital, Beijing, China.,Department of Respiratory Medicine, Capital Medical University, Beijing, China.,National Clinical Research Centre for Respiratory Disease, Beijing, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Chen Wang
- Center for Respiratory Diseases China-Japan Friendship Hospital, Beijing, China.,Department of Respiratory Medicine, Capital Medical University, Beijing, China.,National Clinical Research Centre for Respiratory Disease, Beijing, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | | |
Collapse
|
39
|
|
40
|
Liu WJ, Tan S, Zhao M, Quan C, Bi Y, Wu Y, Zhang S, Zhang H, Xiao H, Qi J, Yan J, Liu W, Yu H, Shu Y, Wu G, Gao GF. Cross-immunity Against Avian Influenza A(H7N9) Virus in the Healthy Population Is Affected by Antigenicity-Dependent Substitutions. J Infect Dis 2016; 214:1937-1946. [PMID: 27738054 DOI: 10.1093/infdis/jiw471] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/29/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The emergence of infections by the novel avian influenza A(H7N9) virus has posed a threat to human health. Cross-immunity between A(H7N9) and other heterosubtypic influenza viruses affected by antigenicity-dependent substitutions needs to be investigated. METHODS We investigated the cellular and humoral immune responses against A(H7N9) and 2009 pandemic influenza A(H1N1) virus (A[H1N1]pdm09), by serological and T-cell-specific assays, in a healthy population. The molecular bases of the cellular and humoral antigenic variability of A(H7N9) were illuminated by structural determination. RESULTS We not only found that antibodies against A(H7N9) were lacking in the studied population, but also revealed that both CD4+ and CD8+ T cells that cross-reacted with A(H7N9) were at significantly lower levels than those against the A(H1N1)pdm09 peptides with substitutions. Moreover, individual peptides for A(H7N9) with low cross-reactivity were identified. Structural determination indicated that substitutions within these peptides influence the antigenic variability of A(H7N9) through both major histocompatibility complex (MHC) binding and T-cell receptor docking. CONCLUSIONS The impact of antigenicity-dependent substitutions on cross-reactivity of T-cell immunity against the novel influenza virus A(H7N9) in the healthy population benefits the understanding of immune evasion of influenza viruses and provides a useful reference for universal vaccine development.
Collapse
Affiliation(s)
- William J Liu
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention.,College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou
| | - Shuguang Tan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology.,University of Chinese Academy of Sciences, Beijing
| | - Min Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology.,University of Chinese Academy of Sciences, Beijing
| | - Chuansong Quan
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology
| | - Ying Wu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology
| | - Shuijun Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology
| | - Haifeng Zhang
- College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou
| | - Haixia Xiao
- Laboratory of Protein Engineering and Vaccine, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology
| | - Hongjie Yu
- Division of Infectious Disease, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention
| | - Yuelong Shu
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention
| | - Guizhen Wu
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention
| | - George F Gao
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology.,Research Network of Immunity and Health, Beijing Institutes of Life Science, Chinese Academy of Sciences.,University of Chinese Academy of Sciences, Beijing.,College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou
| |
Collapse
|
41
|
MAIT cells are activated during human viral infections. Nat Commun 2016; 7:11653. [PMID: 27337592 PMCID: PMC4931007 DOI: 10.1038/ncomms11653] [Citation(s) in RCA: 390] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/07/2016] [Indexed: 02/08/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are abundant in humans and recognize bacterial ligands. Here, we demonstrate that MAIT cells are also activated during human viral infections in vivo. MAIT cells activation was observed during infection with dengue virus, hepatitis C virus and influenza virus. This activation—driving cytokine release and Granzyme B upregulation—is TCR-independent but dependent on IL-18 in synergy with IL-12, IL-15 and/or interferon-α/β. IL-18 levels and MAIT cell activation correlate with disease severity in acute dengue infection. Furthermore, HCV treatment with interferon-α leads to specific MAIT cell activation in vivo in parallel with an enhanced therapeutic response. Moreover, TCR-independent activation of MAIT cells leads to a reduction of HCV replication in vitro mediated by IFN-γ. Together these data demonstrate MAIT cells are activated following viral infections, and suggest a potential role in both host defence and immunopathology. Mucosal Associated Invariant T cells have been implicated in response to bacterial pathogens. Here the authors show that in human viral infections, these cells are activated by IL-18 in cooperation with other pro-inflammatory cytokines, producing interferon gamma and granzyme B.
Collapse
|
42
|
Sridhar S. Heterosubtypic T-Cell Immunity to Influenza in Humans: Challenges for Universal T-Cell Influenza Vaccines. Front Immunol 2016; 7:195. [PMID: 27242800 PMCID: PMC4871858 DOI: 10.3389/fimmu.2016.00195] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/03/2016] [Indexed: 11/25/2022] Open
Abstract
Influenza A virus (IAV) remains a significant global health issue causing annual epidemics, pandemics, and sporadic human infections with highly pathogenic avian or swine influenza viruses. Current inactivated and live vaccines are the mainstay of the public health response to influenza, although vaccine efficacy is lower against antigenically distinct viral strains. The first pandemic of the twenty-first century underlined the urgent need to develop new vaccines capable of protecting against a broad range of influenza strains. Such “universal” influenza vaccines are based on the idea of heterosubtypic immunity, wherein immune responses to epitopes conserved across IAV strains can confer protection against subsequent infection and disease. T-cells recognizing conserved antigens are a key contributor in reducing viral load and limiting disease severity during heterosubtypic infection in animal models. Recent studies undertaken during the 2009 H1N1 pandemic provided key insights into the role of cross-reactive T-cells in mediating heterosubtypic protection in humans. This review focuses on human influenza to discuss the epidemiological observations that underpin cross-protective immunity, the role of T-cells as key players in mediating heterosubtypic immunity including recent data from natural history cohort studies and the ongoing clinical development of T-cell-inducing universal influenza vaccines. The challenges and knowledge gaps for developing vaccines to generate long-lived protective T-cell responses is discussed.
Collapse
|
43
|
Mohn KGI, Cox RJ, Tunheim G, Berdal JE, Hauge AG, Jul-Larsen Å, Peters B, Oftung F, Jonassen CM, Mjaaland S. Immune Responses in Acute and Convalescent Patients with Mild, Moderate and Severe Disease during the 2009 Influenza Pandemic in Norway. PLoS One 2015; 10:e0143281. [PMID: 26606759 PMCID: PMC4659565 DOI: 10.1371/journal.pone.0143281] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 11/03/2015] [Indexed: 01/31/2023] Open
Abstract
Increased understanding of immune responses influencing clinical severity during pandemic influenza infection is important for improved treatment and vaccine development. In this study we recruited 46 adult patients during the 2009 influenza pandemic and characterized humoral and cellular immune responses. Those included were either acute hospitalized or convalescent patients with different disease severities (mild, moderate or severe). In general, protective antibody responses increased with enhanced disease severity. In the acute patients, we found higher levels of TNF-α single-producing CD4+T-cells in the severely ill as compared to patients with moderate disease. Stimulation of peripheral blood mononuclear cells (PBMC) from a subset of acute patients with peptide T-cell epitopes showed significantly lower frequencies of influenza specific CD8+ compared with CD4+ IFN-γ T-cells in acute patients. Both T-cell subsets were predominantly directed against the envelope antigens (HA and NA). However, in the convalescent patients we found high levels of both CD4+ and CD8+ T-cells directed against conserved core antigens (NP, PA, PB, and M). The results indicate that the antigen targets recognized by the T-cell subsets may vary according to the phase of infection. The apparent low levels of cross-reactive CD8+ T-cells recognizing internal antigens in acute hospitalized patients suggest an important role for this T-cell subset in protective immunity against influenza.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Cytokines/metabolism
- Epitopes, T-Lymphocyte/immunology
- Female
- Host-Pathogen Interactions/immunology
- Humans
- Immunity
- Immunity, Cellular
- Immunity, Humoral
- Immunoglobulin G/immunology
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A virus/immunology
- Influenza, Human/diagnosis
- Influenza, Human/epidemiology
- Influenza, Human/immunology
- Male
- Middle Aged
- Neutralization Tests
- Norway/epidemiology
- Pandemics
- Prospective Studies
- Severity of Illness Index
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Young Adult
Collapse
Affiliation(s)
- Kristin G.-I. Mohn
- The Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- Infectious Diseases Unit, Department of Internal Medicine, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen, and The Norwegian Institute of Public Health, Oslo, Norway
- * E-mail: (KGIM); (SM)
| | - Rebecca Jane Cox
- The Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Research & Development, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen, and The Norwegian Institute of Public Health, Oslo, Norway
| | - Gro Tunheim
- Division of Infectious Disease Control, Department of Bacteriology and Immunology, Norwegian Institute of Public Health, Oslo, Norway
- K.G. Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen, and The Norwegian Institute of Public Health, Oslo, Norway
| | - Jan Erik Berdal
- Department of Infectious Diseases, Akershus University Hospital, Nordbyhagen, Norway
| | - Anna Germundsson Hauge
- Section for Virology, Department of Laboratory Services, Norwegian Veterinary Institute, Oslo, Norway
- Division of Infectious Disease Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Åsne Jul-Larsen
- The Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Fredrik Oftung
- Division of Infectious Disease Control, Department of Bacteriology and Immunology, Norwegian Institute of Public Health, Oslo, Norway
- K.G. Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen, and The Norwegian Institute of Public Health, Oslo, Norway
| | - Christine Monceyron Jonassen
- Genetic Unit, Department of Multidisciplinary Laboratory Medicine and Medical Biochemistry, Akershus University Hospital, Nordbyhagen, Norway
- Genetic Unit, Centre for Laboratory Medicine, Østfold Hospital Trust, Fredrikstad, Norway
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Siri Mjaaland
- Division of Infectious Disease Control, Department of Bacteriology and Immunology, Norwegian Institute of Public Health, Oslo, Norway
- K.G. Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen, and The Norwegian Institute of Public Health, Oslo, Norway
- * E-mail: (KGIM); (SM)
| |
Collapse
|
44
|
Dong T. CD8+ cytotoxic T lymphocytes in human influenza virus infection. Natl Sci Rev 2015; 2:264-265. [PMID: 26543667 DOI: 10.1093/nsr/nwv033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tao Dong
- MRC Human Immunology Unit, Weather all Institute of Molecular Medicine, Oxford University, UK ; CAMS-Oxford Joint Centre for Translational Immunology, China and UK
| |
Collapse
|
45
|
Wang Z, Wan Y, Qiu C, Quiñones-Parra S, Zhu Z, Loh L, Tian D, Ren Y, Hu Y, Zhang X, Thomas PG, Inouye M, Doherty PC, Kedzierska K, Xu J. Recovery from severe H7N9 disease is associated with diverse response mechanisms dominated by CD8⁺ T cells. Nat Commun 2015; 6:6833. [PMID: 25967273 DOI: 10.1038/ncomms7833] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 03/02/2015] [Indexed: 01/20/2023] Open
Abstract
The avian origin A/H7N9 influenza virus causes high admission rates (>99%) and mortality (>30%), with ultimately favourable outcomes ranging from rapid recovery to prolonged hospitalization. Using a multicolour assay for monitoring adaptive and innate immunity, here we dissect the kinetic emergence of different effector mechanisms across the spectrum of H7N9 disease and recovery. We find that a diversity of response mechanisms contribute to resolution and survival. Patients discharged within 2-3 weeks have early prominent H7N9-specific CD8(+) T-cell responses, while individuals with prolonged hospital stays have late recruitment of CD8(+)/CD4(+) T cells and antibodies simultaneously (recovery by week 4), augmented even later by prominent NK cell responses (recovery >30 days). In contrast, those who succumbed have minimal influenza-specific immunity and little evidence of T-cell activation. Our study illustrates the importance of robust CD8(+) T-cell memory for protection against severe influenza disease caused by newly emerging influenza A viruses.
Collapse
Affiliation(s)
- Zhongfang Wang
- 1] Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai 201508, China [2] Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville 3010, Victoria, Australia
| | - Yanmin Wan
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Chenli Qiu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Sergio Quiñones-Parra
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville 3010, Victoria, Australia
| | - Zhaoqin Zhu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Liyen Loh
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville 3010, Victoria, Australia
| | - Di Tian
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Yanqin Ren
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Yunwen Hu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Paul G Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennesse 38105, USA
| | - Michael Inouye
- 1] Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville 3010, Victoria, Australia [2] Medical Systems Biology, Department of Pathology, University of Melbourne, Parkville, 3010, Australia
| | - Peter C Doherty
- 1] Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville 3010, Victoria, Australia [2] Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennesse 38105, USA
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville 3010, Victoria, Australia
| | - Jianqing Xu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai 201508, China
| |
Collapse
|
46
|
Allen EK, Thomas PG. Immunity to influenza. Preventing infection and regulating disease. Am J Respir Crit Care Med 2015; 191:248-51. [PMID: 25635487 DOI: 10.1164/rccm.201412-2245ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- E Kaitlynn Allen
- 1 Department of Immunology St. Jude Children's Research Hospital Memphis, Tennessee
| | | |
Collapse
|
47
|
Chiu C, Openshaw PJ. Antiviral B cell and T cell immunity in the lungs. Nat Immunol 2015; 16:18-26. [PMID: 25521681 PMCID: PMC7097128 DOI: 10.1038/ni.3056] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/14/2014] [Indexed: 12/13/2022]
Abstract
Respiratory viruses are frequent causes of repeated common colds, bronchitis and pneumonia, which often occur unpredictably as epidemics and pandemics. Despite those decimating effects on health and decades of intensive research, treatments remain largely supportive. The only commonly available vaccines are against influenza virus, and even these need improvement. The lung shares some features with other mucosal sites, but preservation of its especially delicate anatomical structures necessitates a fine balance of pro- and anti-inflammatory responses; well-timed, appropriately placed and tightly regulated T cell and B cell responses are essential for protection from infection and limitation of symptoms, whereas poorly regulated inflammation contributes to tissue damage and disease. Recent advances in understanding adaptive immunity should facilitate vaccine development and reduce the global effect of respiratory viruses.
Collapse
Affiliation(s)
- Christopher Chiu
- Centre for Respiratory Infection, National Heart and Lung Institute, Imperial College London, London, UK
| | - Peter J Openshaw
- Centre for Respiratory Infection, National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
48
|
Ou C, Shi N, Yang Q, Zhang Y, Wu Z, Wang B, Compans RW, He C. Protocatechuic acid, a novel active substance against avian influenza virus H9N2 infection. PLoS One 2014; 9:e111004. [PMID: 25337912 PMCID: PMC4206475 DOI: 10.1371/journal.pone.0111004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 09/19/2014] [Indexed: 01/28/2023] Open
Abstract
Influenza virus H9N2 subtype has triggered co-infection with other infectious agents, resulting in huge economical losses in the poultry industry. Our current study aims to evaluate the antiviral activity of protocatechuic acid (PCA) against a virulent H9N2 strain in a mouse model. 120 BALB/c mice were divided into one control group, one untreated group, one 50 mg/kg amantadine hydrochloride-treated group and three PCA groups treated 12 hours post-inoculation with 40, 20 or 10 mg/kg PCA for 7 days. All the infected animals were inoculated intranasally with 0.2 ml of a A/Chicken/Hebei/4/2008(H9N2) inoculum. A significant body weight loss was found in the 20 mg/kg and 40 mg/kg PCA-treated and amantadine groups as compared to the control group. The 14 day survivals were 94.4%, 100% and 95% in the PCA-treated groups and 94.4% in the amantadine hydrochloride group, compared to less than 60% in the untreated group. Virus loads were less in the PCA-treated groups compared to the amantadine-treated or the untreated groups. Neutrophil cells in BALF were significantly decreased while IFN-γ, IL-2, TNF-α and IL-6 decreased significantly at days 7 in the PCA-treated groups compared to the untreated group. Furthermore, a significantly decreased CD4+/CD8+ ratio and an increased proportion of CD19 cells were observed in the PCA-treated groups and amantadine-treated group compared to the untreated group. Mice administered with PCA exhibited a higher survival rate and greater viral clearance associated with an inhibition of inflammatory cytokines and activation of CD8+ T cell subsets. PCA is a promising novel agent against bird flu infection in the poultry industry.
Collapse
Affiliation(s)
- Changbo Ou
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, China; Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ningning Shi
- College of Life Sciences, Agricultural University of Hebei, Baoding, China
| | - Qunhui Yang
- Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yu Zhang
- Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zongxue Wu
- Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Baozhong Wang
- Department of Microbiology and Immunology, and Yerkes Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Richard W Compans
- Department of Microbiology and Immunology, and Yerkes Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Cheng He
- Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
49
|
Guihot A, Luyt CE, Parrot A, Rousset D, Cavaillon JM, Boutolleau D, Fitting C, Pajanirassa P, Mallet A, Fartoukh M, Agut H, Musset L, Zoorob R, Kirilovksy A, Combadière B, van der Werf S, Autran B, Carcelain G. Low titers of serum antibodies inhibiting hemagglutination predict fatal fulminant influenza A(H1N1) 2009 infection. Am J Respir Crit Care Med 2014; 189:1240-9. [PMID: 24646009 DOI: 10.1164/rccm.201311-2071oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
RATIONALE The biology of fatal pandemic influenza infection remains undefined. OBJECTIVES To characterize the virologic and immune parameters associated with severity or death in patients who required mechanical ventilation for A(H1N1) 2009 pneumonia of various degrees of severity during the two waves of the 2009-2011 pandemic in Paris, France. METHODS This multicenter study included 34 unvaccinated patients with very severe or fatal confirmed influenza A(H1N1) infections. It analyzed plasma A(H1N1) 2009 reverse-transcriptase polymerase chain reaction, hemagglutinin 222G viral mutation, and humoral and cellular immune responses to the virus, assessed in hemagglutination inhibition (HI), microneutralization, ELISA, lymphoproliferative, ELISpot IFN-γ, and cytokine and chemokine assays. MEASUREMENTS AND MAIN RESULTS The patients' median age was 35 years. Influenza A(H1N1) 2009 viremia was detected in 4 of 34 cases, and a 222G hemagglutinin mutation in 7 of 17 cases, all of them with sequential organ failure assessment greater than or equal to 8. HI antibodies were detectable in 19 of 26 survivors and undetectable in all six fatal fulminant cases. ELISA and microneutralization titers were concordant. B-cell immunophenotyping and plasma levels of immunoglobulin classes did not differ between patients who survived and died. After immune complex dissociation, influenza ELISA serology became strongly positive in the bronchoalveolar lavage of the two fatal cases tested. H1N1-specific T-cell responses in lymphoproliferative and IFN-γ assays were detectable in survivors' peripheral blood, and lymphoproliferative assays were negative in the three fatal cases tested. Plasma levels of IL-6 and IL-10 were high in fatal cases and correlated with severity. Finally, a negative HI serology 4 days after the onset of influenza symptoms predicted death from fulminant influenza (P = 0.04). CONCLUSIONS Early negative A(H1N1) 2009 HI serology can predict death from influenza. This negative serology in fatal cases in young adults reflects the trapping of anti-H1N1 antibodies in immune complexes in the lungs, associated with poor specific helper T-cell response. Clinical trial registered with www.clinicaltrials.gov (NCT 01089400).
Collapse
Affiliation(s)
- Amélie Guihot
- 1 Laboratory of Immunity and Infection, UPMC Univ Paris 06, UMR-S945, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Quiñones-Parra S, Loh L, Brown LE, Kedzierska K, Valkenburg SA. Universal immunity to influenza must outwit immune evasion. Front Microbiol 2014; 5:285. [PMID: 24971078 PMCID: PMC4054793 DOI: 10.3389/fmicb.2014.00285] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/23/2014] [Indexed: 12/23/2022] Open
Abstract
Although an influenza vaccine has been available for 70 years, influenza virus still causes seasonal epidemics and worldwide pandemics. Currently available vaccines elicit strain-specific antibody (Ab) responses to the surface haemagglutinin (HA) and neuraminidase (NA) proteins, but these can be ineffective against serologically-distinct viral variants and novel subtypes. Thus, there is a great need for cross-protective or "universal" influenza vaccines to overcome the necessity for annual immunization against seasonal influenza and to provide immunity to reduce the severity of infection with pandemic or outbreak viruses. It is well established that natural influenza infection can provide cross-reactive immunity that can reduce the impact of infection with distinct influenza type A strains and subtypes, including H1N1, H3N2, H2N2, H5N1, and H7N9. The key to generating universal influenza immunity through vaccination is to target functionally-conserved regions of the virus, which include epitopes on the internal proteins for cross-reactive T cell immunity or on the HA stem for broadly reactive Ab responses. In the wake of the 2009 H1N1 pandemic, broadly neutralizing antibodies (bnAbs) have been characterized and isolated from convalescent and vaccinated individuals, inspiring development of new vaccination techniques to elicit such responses. Induction of influenza-specific T cell responses through vaccination has also been recently examined in clinical trials. Strong evidence is available from human and animal models of influenza to show that established influenza-specific T cell memory can reduce viral shedding and symptom severity. However, the published evidence also shows that CD8(+) T cells can efficiently select immune escape mutants early after influenza virus infection. Here, we discuss universal immunity to influenza viruses mediated by both cross-reactive T cells and Abs, the mechanisms of immune evasion in influenza, and propose how to counteract commonly occurring immune-escape variants.
Collapse
Affiliation(s)
- Sergio Quiñones-Parra
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville VIC, Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville VIC, Australia
| | - Lorena E Brown
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville VIC, Australia
| | - Sophie A Valkenburg
- Centre for Influenza Research and School of Public Health, The University of Hong Kong Hong Kong, China
| |
Collapse
|